drm/amd/display: Fix two cursor duplication when using overlay
[linux-2.6-microblaze.git] / drivers / nvdimm / region_devs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4  */
5 #include <linux/scatterlist.h>
6 #include <linux/memregion.h>
7 #include <linux/highmem.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/hash.h>
11 #include <linux/sort.h>
12 #include <linux/io.h>
13 #include <linux/nd.h>
14 #include "nd-core.h"
15 #include "nd.h"
16
17 /*
18  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
19  * irrelevant.
20  */
21 #include <linux/io-64-nonatomic-hi-lo.h>
22
23 static DEFINE_PER_CPU(int, flush_idx);
24
25 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
26                 struct nd_region_data *ndrd)
27 {
28         int i, j;
29
30         dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
31                         nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
32         for (i = 0; i < (1 << ndrd->hints_shift); i++) {
33                 struct resource *res = &nvdimm->flush_wpq[i];
34                 unsigned long pfn = PHYS_PFN(res->start);
35                 void __iomem *flush_page;
36
37                 /* check if flush hints share a page */
38                 for (j = 0; j < i; j++) {
39                         struct resource *res_j = &nvdimm->flush_wpq[j];
40                         unsigned long pfn_j = PHYS_PFN(res_j->start);
41
42                         if (pfn == pfn_j)
43                                 break;
44                 }
45
46                 if (j < i)
47                         flush_page = (void __iomem *) ((unsigned long)
48                                         ndrd_get_flush_wpq(ndrd, dimm, j)
49                                         & PAGE_MASK);
50                 else
51                         flush_page = devm_nvdimm_ioremap(dev,
52                                         PFN_PHYS(pfn), PAGE_SIZE);
53                 if (!flush_page)
54                         return -ENXIO;
55                 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
56                                 + (res->start & ~PAGE_MASK));
57         }
58
59         return 0;
60 }
61
62 int nd_region_activate(struct nd_region *nd_region)
63 {
64         int i, j, num_flush = 0;
65         struct nd_region_data *ndrd;
66         struct device *dev = &nd_region->dev;
67         size_t flush_data_size = sizeof(void *);
68
69         nvdimm_bus_lock(&nd_region->dev);
70         for (i = 0; i < nd_region->ndr_mappings; i++) {
71                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
72                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
73
74                 if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
75                         nvdimm_bus_unlock(&nd_region->dev);
76                         return -EBUSY;
77                 }
78
79                 /* at least one null hint slot per-dimm for the "no-hint" case */
80                 flush_data_size += sizeof(void *);
81                 num_flush = min_not_zero(num_flush, nvdimm->num_flush);
82                 if (!nvdimm->num_flush)
83                         continue;
84                 flush_data_size += nvdimm->num_flush * sizeof(void *);
85         }
86         nvdimm_bus_unlock(&nd_region->dev);
87
88         ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
89         if (!ndrd)
90                 return -ENOMEM;
91         dev_set_drvdata(dev, ndrd);
92
93         if (!num_flush)
94                 return 0;
95
96         ndrd->hints_shift = ilog2(num_flush);
97         for (i = 0; i < nd_region->ndr_mappings; i++) {
98                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
99                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
100                 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
101
102                 if (rc)
103                         return rc;
104         }
105
106         /*
107          * Clear out entries that are duplicates. This should prevent the
108          * extra flushings.
109          */
110         for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
111                 /* ignore if NULL already */
112                 if (!ndrd_get_flush_wpq(ndrd, i, 0))
113                         continue;
114
115                 for (j = i + 1; j < nd_region->ndr_mappings; j++)
116                         if (ndrd_get_flush_wpq(ndrd, i, 0) ==
117                             ndrd_get_flush_wpq(ndrd, j, 0))
118                                 ndrd_set_flush_wpq(ndrd, j, 0, NULL);
119         }
120
121         return 0;
122 }
123
124 static void nd_region_release(struct device *dev)
125 {
126         struct nd_region *nd_region = to_nd_region(dev);
127         u16 i;
128
129         for (i = 0; i < nd_region->ndr_mappings; i++) {
130                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
131                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
132
133                 put_device(&nvdimm->dev);
134         }
135         free_percpu(nd_region->lane);
136         memregion_free(nd_region->id);
137         if (is_nd_blk(dev))
138                 kfree(to_nd_blk_region(dev));
139         else
140                 kfree(nd_region);
141 }
142
143 struct nd_region *to_nd_region(struct device *dev)
144 {
145         struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
146
147         WARN_ON(dev->type->release != nd_region_release);
148         return nd_region;
149 }
150 EXPORT_SYMBOL_GPL(to_nd_region);
151
152 struct device *nd_region_dev(struct nd_region *nd_region)
153 {
154         if (!nd_region)
155                 return NULL;
156         return &nd_region->dev;
157 }
158 EXPORT_SYMBOL_GPL(nd_region_dev);
159
160 struct nd_blk_region *to_nd_blk_region(struct device *dev)
161 {
162         struct nd_region *nd_region = to_nd_region(dev);
163
164         WARN_ON(!is_nd_blk(dev));
165         return container_of(nd_region, struct nd_blk_region, nd_region);
166 }
167 EXPORT_SYMBOL_GPL(to_nd_blk_region);
168
169 void *nd_region_provider_data(struct nd_region *nd_region)
170 {
171         return nd_region->provider_data;
172 }
173 EXPORT_SYMBOL_GPL(nd_region_provider_data);
174
175 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
176 {
177         return ndbr->blk_provider_data;
178 }
179 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
180
181 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
182 {
183         ndbr->blk_provider_data = data;
184 }
185 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
186
187 /**
188  * nd_region_to_nstype() - region to an integer namespace type
189  * @nd_region: region-device to interrogate
190  *
191  * This is the 'nstype' attribute of a region as well, an input to the
192  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
193  * namespace devices with namespace drivers.
194  */
195 int nd_region_to_nstype(struct nd_region *nd_region)
196 {
197         if (is_memory(&nd_region->dev)) {
198                 u16 i, label;
199
200                 for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) {
201                         struct nd_mapping *nd_mapping = &nd_region->mapping[i];
202                         struct nvdimm *nvdimm = nd_mapping->nvdimm;
203
204                         if (test_bit(NDD_LABELING, &nvdimm->flags))
205                                 label++;
206                 }
207                 if (label)
208                         return ND_DEVICE_NAMESPACE_PMEM;
209                 else
210                         return ND_DEVICE_NAMESPACE_IO;
211         } else if (is_nd_blk(&nd_region->dev)) {
212                 return ND_DEVICE_NAMESPACE_BLK;
213         }
214
215         return 0;
216 }
217 EXPORT_SYMBOL(nd_region_to_nstype);
218
219 static unsigned long long region_size(struct nd_region *nd_region)
220 {
221         if (is_memory(&nd_region->dev)) {
222                 return nd_region->ndr_size;
223         } else if (nd_region->ndr_mappings == 1) {
224                 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
225
226                 return nd_mapping->size;
227         }
228
229         return 0;
230 }
231
232 static ssize_t size_show(struct device *dev,
233                 struct device_attribute *attr, char *buf)
234 {
235         struct nd_region *nd_region = to_nd_region(dev);
236
237         return sprintf(buf, "%llu\n", region_size(nd_region));
238 }
239 static DEVICE_ATTR_RO(size);
240
241 static ssize_t deep_flush_show(struct device *dev,
242                 struct device_attribute *attr, char *buf)
243 {
244         struct nd_region *nd_region = to_nd_region(dev);
245
246         /*
247          * NOTE: in the nvdimm_has_flush() error case this attribute is
248          * not visible.
249          */
250         return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
251 }
252
253 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
254                 const char *buf, size_t len)
255 {
256         bool flush;
257         int rc = strtobool(buf, &flush);
258         struct nd_region *nd_region = to_nd_region(dev);
259
260         if (rc)
261                 return rc;
262         if (!flush)
263                 return -EINVAL;
264         rc = nvdimm_flush(nd_region, NULL);
265         if (rc)
266                 return rc;
267
268         return len;
269 }
270 static DEVICE_ATTR_RW(deep_flush);
271
272 static ssize_t mappings_show(struct device *dev,
273                 struct device_attribute *attr, char *buf)
274 {
275         struct nd_region *nd_region = to_nd_region(dev);
276
277         return sprintf(buf, "%d\n", nd_region->ndr_mappings);
278 }
279 static DEVICE_ATTR_RO(mappings);
280
281 static ssize_t nstype_show(struct device *dev,
282                 struct device_attribute *attr, char *buf)
283 {
284         struct nd_region *nd_region = to_nd_region(dev);
285
286         return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
287 }
288 static DEVICE_ATTR_RO(nstype);
289
290 static ssize_t set_cookie_show(struct device *dev,
291                 struct device_attribute *attr, char *buf)
292 {
293         struct nd_region *nd_region = to_nd_region(dev);
294         struct nd_interleave_set *nd_set = nd_region->nd_set;
295         ssize_t rc = 0;
296
297         if (is_memory(dev) && nd_set)
298                 /* pass, should be precluded by region_visible */;
299         else
300                 return -ENXIO;
301
302         /*
303          * The cookie to show depends on which specification of the
304          * labels we are using. If there are not labels then default to
305          * the v1.1 namespace label cookie definition. To read all this
306          * data we need to wait for probing to settle.
307          */
308         nd_device_lock(dev);
309         nvdimm_bus_lock(dev);
310         wait_nvdimm_bus_probe_idle(dev);
311         if (nd_region->ndr_mappings) {
312                 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
313                 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
314
315                 if (ndd) {
316                         struct nd_namespace_index *nsindex;
317
318                         nsindex = to_namespace_index(ndd, ndd->ns_current);
319                         rc = sprintf(buf, "%#llx\n",
320                                         nd_region_interleave_set_cookie(nd_region,
321                                                 nsindex));
322                 }
323         }
324         nvdimm_bus_unlock(dev);
325         nd_device_unlock(dev);
326
327         if (rc)
328                 return rc;
329         return sprintf(buf, "%#llx\n", nd_set->cookie1);
330 }
331 static DEVICE_ATTR_RO(set_cookie);
332
333 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
334 {
335         resource_size_t blk_max_overlap = 0, available, overlap;
336         int i;
337
338         WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
339
340  retry:
341         available = 0;
342         overlap = blk_max_overlap;
343         for (i = 0; i < nd_region->ndr_mappings; i++) {
344                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
345                 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
346
347                 /* if a dimm is disabled the available capacity is zero */
348                 if (!ndd)
349                         return 0;
350
351                 if (is_memory(&nd_region->dev)) {
352                         available += nd_pmem_available_dpa(nd_region,
353                                         nd_mapping, &overlap);
354                         if (overlap > blk_max_overlap) {
355                                 blk_max_overlap = overlap;
356                                 goto retry;
357                         }
358                 } else if (is_nd_blk(&nd_region->dev))
359                         available += nd_blk_available_dpa(nd_region);
360         }
361
362         return available;
363 }
364
365 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
366 {
367         resource_size_t available = 0;
368         int i;
369
370         if (is_memory(&nd_region->dev))
371                 available = PHYS_ADDR_MAX;
372
373         WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
374         for (i = 0; i < nd_region->ndr_mappings; i++) {
375                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
376
377                 if (is_memory(&nd_region->dev))
378                         available = min(available,
379                                         nd_pmem_max_contiguous_dpa(nd_region,
380                                                                    nd_mapping));
381                 else if (is_nd_blk(&nd_region->dev))
382                         available += nd_blk_available_dpa(nd_region);
383         }
384         if (is_memory(&nd_region->dev))
385                 return available * nd_region->ndr_mappings;
386         return available;
387 }
388
389 static ssize_t available_size_show(struct device *dev,
390                 struct device_attribute *attr, char *buf)
391 {
392         struct nd_region *nd_region = to_nd_region(dev);
393         unsigned long long available = 0;
394
395         /*
396          * Flush in-flight updates and grab a snapshot of the available
397          * size.  Of course, this value is potentially invalidated the
398          * memory nvdimm_bus_lock() is dropped, but that's userspace's
399          * problem to not race itself.
400          */
401         nd_device_lock(dev);
402         nvdimm_bus_lock(dev);
403         wait_nvdimm_bus_probe_idle(dev);
404         available = nd_region_available_dpa(nd_region);
405         nvdimm_bus_unlock(dev);
406         nd_device_unlock(dev);
407
408         return sprintf(buf, "%llu\n", available);
409 }
410 static DEVICE_ATTR_RO(available_size);
411
412 static ssize_t max_available_extent_show(struct device *dev,
413                 struct device_attribute *attr, char *buf)
414 {
415         struct nd_region *nd_region = to_nd_region(dev);
416         unsigned long long available = 0;
417
418         nd_device_lock(dev);
419         nvdimm_bus_lock(dev);
420         wait_nvdimm_bus_probe_idle(dev);
421         available = nd_region_allocatable_dpa(nd_region);
422         nvdimm_bus_unlock(dev);
423         nd_device_unlock(dev);
424
425         return sprintf(buf, "%llu\n", available);
426 }
427 static DEVICE_ATTR_RO(max_available_extent);
428
429 static ssize_t init_namespaces_show(struct device *dev,
430                 struct device_attribute *attr, char *buf)
431 {
432         struct nd_region_data *ndrd = dev_get_drvdata(dev);
433         ssize_t rc;
434
435         nvdimm_bus_lock(dev);
436         if (ndrd)
437                 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
438         else
439                 rc = -ENXIO;
440         nvdimm_bus_unlock(dev);
441
442         return rc;
443 }
444 static DEVICE_ATTR_RO(init_namespaces);
445
446 static ssize_t namespace_seed_show(struct device *dev,
447                 struct device_attribute *attr, char *buf)
448 {
449         struct nd_region *nd_region = to_nd_region(dev);
450         ssize_t rc;
451
452         nvdimm_bus_lock(dev);
453         if (nd_region->ns_seed)
454                 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
455         else
456                 rc = sprintf(buf, "\n");
457         nvdimm_bus_unlock(dev);
458         return rc;
459 }
460 static DEVICE_ATTR_RO(namespace_seed);
461
462 static ssize_t btt_seed_show(struct device *dev,
463                 struct device_attribute *attr, char *buf)
464 {
465         struct nd_region *nd_region = to_nd_region(dev);
466         ssize_t rc;
467
468         nvdimm_bus_lock(dev);
469         if (nd_region->btt_seed)
470                 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
471         else
472                 rc = sprintf(buf, "\n");
473         nvdimm_bus_unlock(dev);
474
475         return rc;
476 }
477 static DEVICE_ATTR_RO(btt_seed);
478
479 static ssize_t pfn_seed_show(struct device *dev,
480                 struct device_attribute *attr, char *buf)
481 {
482         struct nd_region *nd_region = to_nd_region(dev);
483         ssize_t rc;
484
485         nvdimm_bus_lock(dev);
486         if (nd_region->pfn_seed)
487                 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
488         else
489                 rc = sprintf(buf, "\n");
490         nvdimm_bus_unlock(dev);
491
492         return rc;
493 }
494 static DEVICE_ATTR_RO(pfn_seed);
495
496 static ssize_t dax_seed_show(struct device *dev,
497                 struct device_attribute *attr, char *buf)
498 {
499         struct nd_region *nd_region = to_nd_region(dev);
500         ssize_t rc;
501
502         nvdimm_bus_lock(dev);
503         if (nd_region->dax_seed)
504                 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
505         else
506                 rc = sprintf(buf, "\n");
507         nvdimm_bus_unlock(dev);
508
509         return rc;
510 }
511 static DEVICE_ATTR_RO(dax_seed);
512
513 static ssize_t read_only_show(struct device *dev,
514                 struct device_attribute *attr, char *buf)
515 {
516         struct nd_region *nd_region = to_nd_region(dev);
517
518         return sprintf(buf, "%d\n", nd_region->ro);
519 }
520
521 static ssize_t read_only_store(struct device *dev,
522                 struct device_attribute *attr, const char *buf, size_t len)
523 {
524         bool ro;
525         int rc = strtobool(buf, &ro);
526         struct nd_region *nd_region = to_nd_region(dev);
527
528         if (rc)
529                 return rc;
530
531         nd_region->ro = ro;
532         return len;
533 }
534 static DEVICE_ATTR_RW(read_only);
535
536 static ssize_t align_show(struct device *dev,
537                 struct device_attribute *attr, char *buf)
538 {
539         struct nd_region *nd_region = to_nd_region(dev);
540
541         return sprintf(buf, "%#lx\n", nd_region->align);
542 }
543
544 static ssize_t align_store(struct device *dev,
545                 struct device_attribute *attr, const char *buf, size_t len)
546 {
547         struct nd_region *nd_region = to_nd_region(dev);
548         unsigned long val, dpa;
549         u32 remainder;
550         int rc;
551
552         rc = kstrtoul(buf, 0, &val);
553         if (rc)
554                 return rc;
555
556         if (!nd_region->ndr_mappings)
557                 return -ENXIO;
558
559         /*
560          * Ensure space-align is evenly divisible by the region
561          * interleave-width because the kernel typically has no facility
562          * to determine which DIMM(s), dimm-physical-addresses, would
563          * contribute to the tail capacity in system-physical-address
564          * space for the namespace.
565          */
566         dpa = div_u64_rem(val, nd_region->ndr_mappings, &remainder);
567         if (!is_power_of_2(dpa) || dpa < PAGE_SIZE
568                         || val > region_size(nd_region) || remainder)
569                 return -EINVAL;
570
571         /*
572          * Given that space allocation consults this value multiple
573          * times ensure it does not change for the duration of the
574          * allocation.
575          */
576         nvdimm_bus_lock(dev);
577         nd_region->align = val;
578         nvdimm_bus_unlock(dev);
579
580         return len;
581 }
582 static DEVICE_ATTR_RW(align);
583
584 static ssize_t region_badblocks_show(struct device *dev,
585                 struct device_attribute *attr, char *buf)
586 {
587         struct nd_region *nd_region = to_nd_region(dev);
588         ssize_t rc;
589
590         nd_device_lock(dev);
591         if (dev->driver)
592                 rc = badblocks_show(&nd_region->bb, buf, 0);
593         else
594                 rc = -ENXIO;
595         nd_device_unlock(dev);
596
597         return rc;
598 }
599 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
600
601 static ssize_t resource_show(struct device *dev,
602                 struct device_attribute *attr, char *buf)
603 {
604         struct nd_region *nd_region = to_nd_region(dev);
605
606         return sprintf(buf, "%#llx\n", nd_region->ndr_start);
607 }
608 static DEVICE_ATTR_ADMIN_RO(resource);
609
610 static ssize_t persistence_domain_show(struct device *dev,
611                 struct device_attribute *attr, char *buf)
612 {
613         struct nd_region *nd_region = to_nd_region(dev);
614
615         if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
616                 return sprintf(buf, "cpu_cache\n");
617         else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
618                 return sprintf(buf, "memory_controller\n");
619         else
620                 return sprintf(buf, "\n");
621 }
622 static DEVICE_ATTR_RO(persistence_domain);
623
624 static struct attribute *nd_region_attributes[] = {
625         &dev_attr_size.attr,
626         &dev_attr_align.attr,
627         &dev_attr_nstype.attr,
628         &dev_attr_mappings.attr,
629         &dev_attr_btt_seed.attr,
630         &dev_attr_pfn_seed.attr,
631         &dev_attr_dax_seed.attr,
632         &dev_attr_deep_flush.attr,
633         &dev_attr_read_only.attr,
634         &dev_attr_set_cookie.attr,
635         &dev_attr_available_size.attr,
636         &dev_attr_max_available_extent.attr,
637         &dev_attr_namespace_seed.attr,
638         &dev_attr_init_namespaces.attr,
639         &dev_attr_badblocks.attr,
640         &dev_attr_resource.attr,
641         &dev_attr_persistence_domain.attr,
642         NULL,
643 };
644
645 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
646 {
647         struct device *dev = container_of(kobj, typeof(*dev), kobj);
648         struct nd_region *nd_region = to_nd_region(dev);
649         struct nd_interleave_set *nd_set = nd_region->nd_set;
650         int type = nd_region_to_nstype(nd_region);
651
652         if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
653                 return 0;
654
655         if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
656                 return 0;
657
658         if (!is_memory(dev) && a == &dev_attr_badblocks.attr)
659                 return 0;
660
661         if (a == &dev_attr_resource.attr && !is_memory(dev))
662                 return 0;
663
664         if (a == &dev_attr_deep_flush.attr) {
665                 int has_flush = nvdimm_has_flush(nd_region);
666
667                 if (has_flush == 1)
668                         return a->mode;
669                 else if (has_flush == 0)
670                         return 0444;
671                 else
672                         return 0;
673         }
674
675         if (a == &dev_attr_persistence_domain.attr) {
676                 if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
677                                         | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
678                         return 0;
679                 return a->mode;
680         }
681
682         if (a == &dev_attr_align.attr)
683                 return a->mode;
684
685         if (a != &dev_attr_set_cookie.attr
686                         && a != &dev_attr_available_size.attr)
687                 return a->mode;
688
689         if ((type == ND_DEVICE_NAMESPACE_PMEM
690                                 || type == ND_DEVICE_NAMESPACE_BLK)
691                         && a == &dev_attr_available_size.attr)
692                 return a->mode;
693         else if (is_memory(dev) && nd_set)
694                 return a->mode;
695
696         return 0;
697 }
698
699 static ssize_t mappingN(struct device *dev, char *buf, int n)
700 {
701         struct nd_region *nd_region = to_nd_region(dev);
702         struct nd_mapping *nd_mapping;
703         struct nvdimm *nvdimm;
704
705         if (n >= nd_region->ndr_mappings)
706                 return -ENXIO;
707         nd_mapping = &nd_region->mapping[n];
708         nvdimm = nd_mapping->nvdimm;
709
710         return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
711                         nd_mapping->start, nd_mapping->size,
712                         nd_mapping->position);
713 }
714
715 #define REGION_MAPPING(idx) \
716 static ssize_t mapping##idx##_show(struct device *dev,          \
717                 struct device_attribute *attr, char *buf)       \
718 {                                                               \
719         return mappingN(dev, buf, idx);                         \
720 }                                                               \
721 static DEVICE_ATTR_RO(mapping##idx)
722
723 /*
724  * 32 should be enough for a while, even in the presence of socket
725  * interleave a 32-way interleave set is a degenerate case.
726  */
727 REGION_MAPPING(0);
728 REGION_MAPPING(1);
729 REGION_MAPPING(2);
730 REGION_MAPPING(3);
731 REGION_MAPPING(4);
732 REGION_MAPPING(5);
733 REGION_MAPPING(6);
734 REGION_MAPPING(7);
735 REGION_MAPPING(8);
736 REGION_MAPPING(9);
737 REGION_MAPPING(10);
738 REGION_MAPPING(11);
739 REGION_MAPPING(12);
740 REGION_MAPPING(13);
741 REGION_MAPPING(14);
742 REGION_MAPPING(15);
743 REGION_MAPPING(16);
744 REGION_MAPPING(17);
745 REGION_MAPPING(18);
746 REGION_MAPPING(19);
747 REGION_MAPPING(20);
748 REGION_MAPPING(21);
749 REGION_MAPPING(22);
750 REGION_MAPPING(23);
751 REGION_MAPPING(24);
752 REGION_MAPPING(25);
753 REGION_MAPPING(26);
754 REGION_MAPPING(27);
755 REGION_MAPPING(28);
756 REGION_MAPPING(29);
757 REGION_MAPPING(30);
758 REGION_MAPPING(31);
759
760 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
761 {
762         struct device *dev = container_of(kobj, struct device, kobj);
763         struct nd_region *nd_region = to_nd_region(dev);
764
765         if (n < nd_region->ndr_mappings)
766                 return a->mode;
767         return 0;
768 }
769
770 static struct attribute *mapping_attributes[] = {
771         &dev_attr_mapping0.attr,
772         &dev_attr_mapping1.attr,
773         &dev_attr_mapping2.attr,
774         &dev_attr_mapping3.attr,
775         &dev_attr_mapping4.attr,
776         &dev_attr_mapping5.attr,
777         &dev_attr_mapping6.attr,
778         &dev_attr_mapping7.attr,
779         &dev_attr_mapping8.attr,
780         &dev_attr_mapping9.attr,
781         &dev_attr_mapping10.attr,
782         &dev_attr_mapping11.attr,
783         &dev_attr_mapping12.attr,
784         &dev_attr_mapping13.attr,
785         &dev_attr_mapping14.attr,
786         &dev_attr_mapping15.attr,
787         &dev_attr_mapping16.attr,
788         &dev_attr_mapping17.attr,
789         &dev_attr_mapping18.attr,
790         &dev_attr_mapping19.attr,
791         &dev_attr_mapping20.attr,
792         &dev_attr_mapping21.attr,
793         &dev_attr_mapping22.attr,
794         &dev_attr_mapping23.attr,
795         &dev_attr_mapping24.attr,
796         &dev_attr_mapping25.attr,
797         &dev_attr_mapping26.attr,
798         &dev_attr_mapping27.attr,
799         &dev_attr_mapping28.attr,
800         &dev_attr_mapping29.attr,
801         &dev_attr_mapping30.attr,
802         &dev_attr_mapping31.attr,
803         NULL,
804 };
805
806 static const struct attribute_group nd_mapping_attribute_group = {
807         .is_visible = mapping_visible,
808         .attrs = mapping_attributes,
809 };
810
811 static const struct attribute_group nd_region_attribute_group = {
812         .attrs = nd_region_attributes,
813         .is_visible = region_visible,
814 };
815
816 static const struct attribute_group *nd_region_attribute_groups[] = {
817         &nd_device_attribute_group,
818         &nd_region_attribute_group,
819         &nd_numa_attribute_group,
820         &nd_mapping_attribute_group,
821         NULL,
822 };
823
824 static const struct device_type nd_blk_device_type = {
825         .name = "nd_blk",
826         .release = nd_region_release,
827         .groups = nd_region_attribute_groups,
828 };
829
830 static const struct device_type nd_pmem_device_type = {
831         .name = "nd_pmem",
832         .release = nd_region_release,
833         .groups = nd_region_attribute_groups,
834 };
835
836 static const struct device_type nd_volatile_device_type = {
837         .name = "nd_volatile",
838         .release = nd_region_release,
839         .groups = nd_region_attribute_groups,
840 };
841
842 bool is_nd_pmem(struct device *dev)
843 {
844         return dev ? dev->type == &nd_pmem_device_type : false;
845 }
846
847 bool is_nd_blk(struct device *dev)
848 {
849         return dev ? dev->type == &nd_blk_device_type : false;
850 }
851
852 bool is_nd_volatile(struct device *dev)
853 {
854         return dev ? dev->type == &nd_volatile_device_type : false;
855 }
856
857 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
858                 struct nd_namespace_index *nsindex)
859 {
860         struct nd_interleave_set *nd_set = nd_region->nd_set;
861
862         if (!nd_set)
863                 return 0;
864
865         if (nsindex && __le16_to_cpu(nsindex->major) == 1
866                         && __le16_to_cpu(nsindex->minor) == 1)
867                 return nd_set->cookie1;
868         return nd_set->cookie2;
869 }
870
871 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
872 {
873         struct nd_interleave_set *nd_set = nd_region->nd_set;
874
875         if (nd_set)
876                 return nd_set->altcookie;
877         return 0;
878 }
879
880 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
881 {
882         struct nd_label_ent *label_ent, *e;
883
884         lockdep_assert_held(&nd_mapping->lock);
885         list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
886                 list_del(&label_ent->list);
887                 kfree(label_ent);
888         }
889 }
890
891 /*
892  * When a namespace is activated create new seeds for the next
893  * namespace, or namespace-personality to be configured.
894  */
895 void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev)
896 {
897         nvdimm_bus_lock(dev);
898         if (nd_region->ns_seed == dev) {
899                 nd_region_create_ns_seed(nd_region);
900         } else if (is_nd_btt(dev)) {
901                 struct nd_btt *nd_btt = to_nd_btt(dev);
902
903                 if (nd_region->btt_seed == dev)
904                         nd_region_create_btt_seed(nd_region);
905                 if (nd_region->ns_seed == &nd_btt->ndns->dev)
906                         nd_region_create_ns_seed(nd_region);
907         } else if (is_nd_pfn(dev)) {
908                 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
909
910                 if (nd_region->pfn_seed == dev)
911                         nd_region_create_pfn_seed(nd_region);
912                 if (nd_region->ns_seed == &nd_pfn->ndns->dev)
913                         nd_region_create_ns_seed(nd_region);
914         } else if (is_nd_dax(dev)) {
915                 struct nd_dax *nd_dax = to_nd_dax(dev);
916
917                 if (nd_region->dax_seed == dev)
918                         nd_region_create_dax_seed(nd_region);
919                 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
920                         nd_region_create_ns_seed(nd_region);
921         }
922         nvdimm_bus_unlock(dev);
923 }
924
925 int nd_blk_region_init(struct nd_region *nd_region)
926 {
927         struct device *dev = &nd_region->dev;
928         struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
929
930         if (!is_nd_blk(dev))
931                 return 0;
932
933         if (nd_region->ndr_mappings < 1) {
934                 dev_dbg(dev, "invalid BLK region\n");
935                 return -ENXIO;
936         }
937
938         return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
939 }
940
941 /**
942  * nd_region_acquire_lane - allocate and lock a lane
943  * @nd_region: region id and number of lanes possible
944  *
945  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
946  * We optimize for the common case where there are 256 lanes, one
947  * per-cpu.  For larger systems we need to lock to share lanes.  For now
948  * this implementation assumes the cost of maintaining an allocator for
949  * free lanes is on the order of the lock hold time, so it implements a
950  * static lane = cpu % num_lanes mapping.
951  *
952  * In the case of a BTT instance on top of a BLK namespace a lane may be
953  * acquired recursively.  We lock on the first instance.
954  *
955  * In the case of a BTT instance on top of PMEM, we only acquire a lane
956  * for the BTT metadata updates.
957  */
958 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
959 {
960         unsigned int cpu, lane;
961
962         cpu = get_cpu();
963         if (nd_region->num_lanes < nr_cpu_ids) {
964                 struct nd_percpu_lane *ndl_lock, *ndl_count;
965
966                 lane = cpu % nd_region->num_lanes;
967                 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
968                 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
969                 if (ndl_count->count++ == 0)
970                         spin_lock(&ndl_lock->lock);
971         } else
972                 lane = cpu;
973
974         return lane;
975 }
976 EXPORT_SYMBOL(nd_region_acquire_lane);
977
978 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
979 {
980         if (nd_region->num_lanes < nr_cpu_ids) {
981                 unsigned int cpu = get_cpu();
982                 struct nd_percpu_lane *ndl_lock, *ndl_count;
983
984                 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
985                 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
986                 if (--ndl_count->count == 0)
987                         spin_unlock(&ndl_lock->lock);
988                 put_cpu();
989         }
990         put_cpu();
991 }
992 EXPORT_SYMBOL(nd_region_release_lane);
993
994 /*
995  * PowerPC requires this alignment for memremap_pages(). All other archs
996  * should be ok with SUBSECTION_SIZE (see memremap_compat_align()).
997  */
998 #define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M
999
1000 static unsigned long default_align(struct nd_region *nd_region)
1001 {
1002         unsigned long align;
1003         int i, mappings;
1004         u32 remainder;
1005
1006         if (is_nd_blk(&nd_region->dev))
1007                 align = PAGE_SIZE;
1008         else
1009                 align = MEMREMAP_COMPAT_ALIGN_MAX;
1010
1011         for (i = 0; i < nd_region->ndr_mappings; i++) {
1012                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1013                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
1014
1015                 if (test_bit(NDD_ALIASING, &nvdimm->flags)) {
1016                         align = MEMREMAP_COMPAT_ALIGN_MAX;
1017                         break;
1018                 }
1019         }
1020
1021         mappings = max_t(u16, 1, nd_region->ndr_mappings);
1022         div_u64_rem(align, mappings, &remainder);
1023         if (remainder)
1024                 align *= mappings;
1025
1026         return align;
1027 }
1028
1029 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
1030                 struct nd_region_desc *ndr_desc,
1031                 const struct device_type *dev_type, const char *caller)
1032 {
1033         struct nd_region *nd_region;
1034         struct device *dev;
1035         void *region_buf;
1036         unsigned int i;
1037         int ro = 0;
1038
1039         for (i = 0; i < ndr_desc->num_mappings; i++) {
1040                 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1041                 struct nvdimm *nvdimm = mapping->nvdimm;
1042
1043                 if ((mapping->start | mapping->size) % PAGE_SIZE) {
1044                         dev_err(&nvdimm_bus->dev,
1045                                 "%s: %s mapping%d is not %ld aligned\n",
1046                                 caller, dev_name(&nvdimm->dev), i, PAGE_SIZE);
1047                         return NULL;
1048                 }
1049
1050                 if (test_bit(NDD_UNARMED, &nvdimm->flags))
1051                         ro = 1;
1052
1053                 if (test_bit(NDD_NOBLK, &nvdimm->flags)
1054                                 && dev_type == &nd_blk_device_type) {
1055                         dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not BLK capable\n",
1056                                         caller, dev_name(&nvdimm->dev), i);
1057                         return NULL;
1058                 }
1059         }
1060
1061         if (dev_type == &nd_blk_device_type) {
1062                 struct nd_blk_region_desc *ndbr_desc;
1063                 struct nd_blk_region *ndbr;
1064
1065                 ndbr_desc = to_blk_region_desc(ndr_desc);
1066                 ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
1067                                 * ndr_desc->num_mappings,
1068                                 GFP_KERNEL);
1069                 if (ndbr) {
1070                         nd_region = &ndbr->nd_region;
1071                         ndbr->enable = ndbr_desc->enable;
1072                         ndbr->do_io = ndbr_desc->do_io;
1073                 }
1074                 region_buf = ndbr;
1075         } else {
1076                 nd_region = kzalloc(struct_size(nd_region, mapping,
1077                                                 ndr_desc->num_mappings),
1078                                     GFP_KERNEL);
1079                 region_buf = nd_region;
1080         }
1081
1082         if (!region_buf)
1083                 return NULL;
1084         nd_region->id = memregion_alloc(GFP_KERNEL);
1085         if (nd_region->id < 0)
1086                 goto err_id;
1087
1088         nd_region->lane = alloc_percpu(struct nd_percpu_lane);
1089         if (!nd_region->lane)
1090                 goto err_percpu;
1091
1092         for (i = 0; i < nr_cpu_ids; i++) {
1093                 struct nd_percpu_lane *ndl;
1094
1095                 ndl = per_cpu_ptr(nd_region->lane, i);
1096                 spin_lock_init(&ndl->lock);
1097                 ndl->count = 0;
1098         }
1099
1100         for (i = 0; i < ndr_desc->num_mappings; i++) {
1101                 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1102                 struct nvdimm *nvdimm = mapping->nvdimm;
1103
1104                 nd_region->mapping[i].nvdimm = nvdimm;
1105                 nd_region->mapping[i].start = mapping->start;
1106                 nd_region->mapping[i].size = mapping->size;
1107                 nd_region->mapping[i].position = mapping->position;
1108                 INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1109                 mutex_init(&nd_region->mapping[i].lock);
1110
1111                 get_device(&nvdimm->dev);
1112         }
1113         nd_region->ndr_mappings = ndr_desc->num_mappings;
1114         nd_region->provider_data = ndr_desc->provider_data;
1115         nd_region->nd_set = ndr_desc->nd_set;
1116         nd_region->num_lanes = ndr_desc->num_lanes;
1117         nd_region->flags = ndr_desc->flags;
1118         nd_region->ro = ro;
1119         nd_region->numa_node = ndr_desc->numa_node;
1120         nd_region->target_node = ndr_desc->target_node;
1121         ida_init(&nd_region->ns_ida);
1122         ida_init(&nd_region->btt_ida);
1123         ida_init(&nd_region->pfn_ida);
1124         ida_init(&nd_region->dax_ida);
1125         dev = &nd_region->dev;
1126         dev_set_name(dev, "region%d", nd_region->id);
1127         dev->parent = &nvdimm_bus->dev;
1128         dev->type = dev_type;
1129         dev->groups = ndr_desc->attr_groups;
1130         dev->of_node = ndr_desc->of_node;
1131         nd_region->ndr_size = resource_size(ndr_desc->res);
1132         nd_region->ndr_start = ndr_desc->res->start;
1133         nd_region->align = default_align(nd_region);
1134         if (ndr_desc->flush)
1135                 nd_region->flush = ndr_desc->flush;
1136         else
1137                 nd_region->flush = NULL;
1138
1139         nd_device_register(dev);
1140
1141         return nd_region;
1142
1143  err_percpu:
1144         memregion_free(nd_region->id);
1145  err_id:
1146         kfree(region_buf);
1147         return NULL;
1148 }
1149
1150 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1151                 struct nd_region_desc *ndr_desc)
1152 {
1153         ndr_desc->num_lanes = ND_MAX_LANES;
1154         return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1155                         __func__);
1156 }
1157 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1158
1159 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
1160                 struct nd_region_desc *ndr_desc)
1161 {
1162         if (ndr_desc->num_mappings > 1)
1163                 return NULL;
1164         ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
1165         return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
1166                         __func__);
1167 }
1168 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
1169
1170 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1171                 struct nd_region_desc *ndr_desc)
1172 {
1173         ndr_desc->num_lanes = ND_MAX_LANES;
1174         return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1175                         __func__);
1176 }
1177 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1178
1179 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
1180 {
1181         int rc = 0;
1182
1183         if (!nd_region->flush)
1184                 rc = generic_nvdimm_flush(nd_region);
1185         else {
1186                 if (nd_region->flush(nd_region, bio))
1187                         rc = -EIO;
1188         }
1189
1190         return rc;
1191 }
1192 /**
1193  * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1194  * @nd_region: blk or interleaved pmem region
1195  */
1196 int generic_nvdimm_flush(struct nd_region *nd_region)
1197 {
1198         struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1199         int i, idx;
1200
1201         /*
1202          * Try to encourage some diversity in flush hint addresses
1203          * across cpus assuming a limited number of flush hints.
1204          */
1205         idx = this_cpu_read(flush_idx);
1206         idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1207
1208         /*
1209          * The pmem_wmb() is needed to 'sfence' all
1210          * previous writes such that they are architecturally visible for
1211          * the platform buffer flush. Note that we've already arranged for pmem
1212          * writes to avoid the cache via memcpy_flushcache().  The final
1213          * wmb() ensures ordering for the NVDIMM flush write.
1214          */
1215         pmem_wmb();
1216         for (i = 0; i < nd_region->ndr_mappings; i++)
1217                 if (ndrd_get_flush_wpq(ndrd, i, 0))
1218                         writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1219         wmb();
1220
1221         return 0;
1222 }
1223 EXPORT_SYMBOL_GPL(nvdimm_flush);
1224
1225 /**
1226  * nvdimm_has_flush - determine write flushing requirements
1227  * @nd_region: blk or interleaved pmem region
1228  *
1229  * Returns 1 if writes require flushing
1230  * Returns 0 if writes do not require flushing
1231  * Returns -ENXIO if flushing capability can not be determined
1232  */
1233 int nvdimm_has_flush(struct nd_region *nd_region)
1234 {
1235         int i;
1236
1237         /* no nvdimm or pmem api == flushing capability unknown */
1238         if (nd_region->ndr_mappings == 0
1239                         || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1240                 return -ENXIO;
1241
1242         for (i = 0; i < nd_region->ndr_mappings; i++) {
1243                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1244                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
1245
1246                 /* flush hints present / available */
1247                 if (nvdimm->num_flush)
1248                         return 1;
1249         }
1250
1251         /*
1252          * The platform defines dimm devices without hints, assume
1253          * platform persistence mechanism like ADR
1254          */
1255         return 0;
1256 }
1257 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1258
1259 int nvdimm_has_cache(struct nd_region *nd_region)
1260 {
1261         return is_nd_pmem(&nd_region->dev) &&
1262                 !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1263 }
1264 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1265
1266 bool is_nvdimm_sync(struct nd_region *nd_region)
1267 {
1268         if (is_nd_volatile(&nd_region->dev))
1269                 return true;
1270
1271         return is_nd_pmem(&nd_region->dev) &&
1272                 !test_bit(ND_REGION_ASYNC, &nd_region->flags);
1273 }
1274 EXPORT_SYMBOL_GPL(is_nvdimm_sync);
1275
1276 struct conflict_context {
1277         struct nd_region *nd_region;
1278         resource_size_t start, size;
1279 };
1280
1281 static int region_conflict(struct device *dev, void *data)
1282 {
1283         struct nd_region *nd_region;
1284         struct conflict_context *ctx = data;
1285         resource_size_t res_end, region_end, region_start;
1286
1287         if (!is_memory(dev))
1288                 return 0;
1289
1290         nd_region = to_nd_region(dev);
1291         if (nd_region == ctx->nd_region)
1292                 return 0;
1293
1294         res_end = ctx->start + ctx->size;
1295         region_start = nd_region->ndr_start;
1296         region_end = region_start + nd_region->ndr_size;
1297         if (ctx->start >= region_start && ctx->start < region_end)
1298                 return -EBUSY;
1299         if (res_end > region_start && res_end <= region_end)
1300                 return -EBUSY;
1301         return 0;
1302 }
1303
1304 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1305                 resource_size_t size)
1306 {
1307         struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1308         struct conflict_context ctx = {
1309                 .nd_region = nd_region,
1310                 .start = start,
1311                 .size = size,
1312         };
1313
1314         return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1315 }