drm/i915/gt: Do not restore invalid RS state
[linux-2.6-microblaze.git] / drivers / nvdimm / region_devs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4  */
5 #include <linux/scatterlist.h>
6 #include <linux/memregion.h>
7 #include <linux/highmem.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/hash.h>
11 #include <linux/sort.h>
12 #include <linux/io.h>
13 #include <linux/nd.h>
14 #include "nd-core.h"
15 #include "nd.h"
16
17 /*
18  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
19  * irrelevant.
20  */
21 #include <linux/io-64-nonatomic-hi-lo.h>
22
23 static DEFINE_PER_CPU(int, flush_idx);
24
25 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
26                 struct nd_region_data *ndrd)
27 {
28         int i, j;
29
30         dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
31                         nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
32         for (i = 0; i < (1 << ndrd->hints_shift); i++) {
33                 struct resource *res = &nvdimm->flush_wpq[i];
34                 unsigned long pfn = PHYS_PFN(res->start);
35                 void __iomem *flush_page;
36
37                 /* check if flush hints share a page */
38                 for (j = 0; j < i; j++) {
39                         struct resource *res_j = &nvdimm->flush_wpq[j];
40                         unsigned long pfn_j = PHYS_PFN(res_j->start);
41
42                         if (pfn == pfn_j)
43                                 break;
44                 }
45
46                 if (j < i)
47                         flush_page = (void __iomem *) ((unsigned long)
48                                         ndrd_get_flush_wpq(ndrd, dimm, j)
49                                         & PAGE_MASK);
50                 else
51                         flush_page = devm_nvdimm_ioremap(dev,
52                                         PFN_PHYS(pfn), PAGE_SIZE);
53                 if (!flush_page)
54                         return -ENXIO;
55                 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
56                                 + (res->start & ~PAGE_MASK));
57         }
58
59         return 0;
60 }
61
62 int nd_region_activate(struct nd_region *nd_region)
63 {
64         int i, j, num_flush = 0;
65         struct nd_region_data *ndrd;
66         struct device *dev = &nd_region->dev;
67         size_t flush_data_size = sizeof(void *);
68
69         nvdimm_bus_lock(&nd_region->dev);
70         for (i = 0; i < nd_region->ndr_mappings; i++) {
71                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
72                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
73
74                 if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
75                         nvdimm_bus_unlock(&nd_region->dev);
76                         return -EBUSY;
77                 }
78
79                 /* at least one null hint slot per-dimm for the "no-hint" case */
80                 flush_data_size += sizeof(void *);
81                 num_flush = min_not_zero(num_flush, nvdimm->num_flush);
82                 if (!nvdimm->num_flush)
83                         continue;
84                 flush_data_size += nvdimm->num_flush * sizeof(void *);
85         }
86         nvdimm_bus_unlock(&nd_region->dev);
87
88         ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
89         if (!ndrd)
90                 return -ENOMEM;
91         dev_set_drvdata(dev, ndrd);
92
93         if (!num_flush)
94                 return 0;
95
96         ndrd->hints_shift = ilog2(num_flush);
97         for (i = 0; i < nd_region->ndr_mappings; i++) {
98                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
99                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
100                 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
101
102                 if (rc)
103                         return rc;
104         }
105
106         /*
107          * Clear out entries that are duplicates. This should prevent the
108          * extra flushings.
109          */
110         for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
111                 /* ignore if NULL already */
112                 if (!ndrd_get_flush_wpq(ndrd, i, 0))
113                         continue;
114
115                 for (j = i + 1; j < nd_region->ndr_mappings; j++)
116                         if (ndrd_get_flush_wpq(ndrd, i, 0) ==
117                             ndrd_get_flush_wpq(ndrd, j, 0))
118                                 ndrd_set_flush_wpq(ndrd, j, 0, NULL);
119         }
120
121         return 0;
122 }
123
124 static void nd_region_release(struct device *dev)
125 {
126         struct nd_region *nd_region = to_nd_region(dev);
127         u16 i;
128
129         for (i = 0; i < nd_region->ndr_mappings; i++) {
130                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
131                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
132
133                 put_device(&nvdimm->dev);
134         }
135         free_percpu(nd_region->lane);
136         memregion_free(nd_region->id);
137         if (is_nd_blk(dev))
138                 kfree(to_nd_blk_region(dev));
139         else
140                 kfree(nd_region);
141 }
142
143 struct nd_region *to_nd_region(struct device *dev)
144 {
145         struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
146
147         WARN_ON(dev->type->release != nd_region_release);
148         return nd_region;
149 }
150 EXPORT_SYMBOL_GPL(to_nd_region);
151
152 struct device *nd_region_dev(struct nd_region *nd_region)
153 {
154         if (!nd_region)
155                 return NULL;
156         return &nd_region->dev;
157 }
158 EXPORT_SYMBOL_GPL(nd_region_dev);
159
160 struct nd_blk_region *to_nd_blk_region(struct device *dev)
161 {
162         struct nd_region *nd_region = to_nd_region(dev);
163
164         WARN_ON(!is_nd_blk(dev));
165         return container_of(nd_region, struct nd_blk_region, nd_region);
166 }
167 EXPORT_SYMBOL_GPL(to_nd_blk_region);
168
169 void *nd_region_provider_data(struct nd_region *nd_region)
170 {
171         return nd_region->provider_data;
172 }
173 EXPORT_SYMBOL_GPL(nd_region_provider_data);
174
175 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
176 {
177         return ndbr->blk_provider_data;
178 }
179 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
180
181 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
182 {
183         ndbr->blk_provider_data = data;
184 }
185 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
186
187 /**
188  * nd_region_to_nstype() - region to an integer namespace type
189  * @nd_region: region-device to interrogate
190  *
191  * This is the 'nstype' attribute of a region as well, an input to the
192  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
193  * namespace devices with namespace drivers.
194  */
195 int nd_region_to_nstype(struct nd_region *nd_region)
196 {
197         if (is_memory(&nd_region->dev)) {
198                 u16 i, alias;
199
200                 for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
201                         struct nd_mapping *nd_mapping = &nd_region->mapping[i];
202                         struct nvdimm *nvdimm = nd_mapping->nvdimm;
203
204                         if (test_bit(NDD_ALIASING, &nvdimm->flags))
205                                 alias++;
206                 }
207                 if (alias)
208                         return ND_DEVICE_NAMESPACE_PMEM;
209                 else
210                         return ND_DEVICE_NAMESPACE_IO;
211         } else if (is_nd_blk(&nd_region->dev)) {
212                 return ND_DEVICE_NAMESPACE_BLK;
213         }
214
215         return 0;
216 }
217 EXPORT_SYMBOL(nd_region_to_nstype);
218
219 static ssize_t size_show(struct device *dev,
220                 struct device_attribute *attr, char *buf)
221 {
222         struct nd_region *nd_region = to_nd_region(dev);
223         unsigned long long size = 0;
224
225         if (is_memory(dev)) {
226                 size = nd_region->ndr_size;
227         } else if (nd_region->ndr_mappings == 1) {
228                 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
229
230                 size = nd_mapping->size;
231         }
232
233         return sprintf(buf, "%llu\n", size);
234 }
235 static DEVICE_ATTR_RO(size);
236
237 static ssize_t deep_flush_show(struct device *dev,
238                 struct device_attribute *attr, char *buf)
239 {
240         struct nd_region *nd_region = to_nd_region(dev);
241
242         /*
243          * NOTE: in the nvdimm_has_flush() error case this attribute is
244          * not visible.
245          */
246         return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
247 }
248
249 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
250                 const char *buf, size_t len)
251 {
252         bool flush;
253         int rc = strtobool(buf, &flush);
254         struct nd_region *nd_region = to_nd_region(dev);
255
256         if (rc)
257                 return rc;
258         if (!flush)
259                 return -EINVAL;
260         rc = nvdimm_flush(nd_region, NULL);
261         if (rc)
262                 return rc;
263
264         return len;
265 }
266 static DEVICE_ATTR_RW(deep_flush);
267
268 static ssize_t mappings_show(struct device *dev,
269                 struct device_attribute *attr, char *buf)
270 {
271         struct nd_region *nd_region = to_nd_region(dev);
272
273         return sprintf(buf, "%d\n", nd_region->ndr_mappings);
274 }
275 static DEVICE_ATTR_RO(mappings);
276
277 static ssize_t nstype_show(struct device *dev,
278                 struct device_attribute *attr, char *buf)
279 {
280         struct nd_region *nd_region = to_nd_region(dev);
281
282         return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
283 }
284 static DEVICE_ATTR_RO(nstype);
285
286 static ssize_t set_cookie_show(struct device *dev,
287                 struct device_attribute *attr, char *buf)
288 {
289         struct nd_region *nd_region = to_nd_region(dev);
290         struct nd_interleave_set *nd_set = nd_region->nd_set;
291         ssize_t rc = 0;
292
293         if (is_memory(dev) && nd_set)
294                 /* pass, should be precluded by region_visible */;
295         else
296                 return -ENXIO;
297
298         /*
299          * The cookie to show depends on which specification of the
300          * labels we are using. If there are not labels then default to
301          * the v1.1 namespace label cookie definition. To read all this
302          * data we need to wait for probing to settle.
303          */
304         nd_device_lock(dev);
305         nvdimm_bus_lock(dev);
306         wait_nvdimm_bus_probe_idle(dev);
307         if (nd_region->ndr_mappings) {
308                 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
309                 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
310
311                 if (ndd) {
312                         struct nd_namespace_index *nsindex;
313
314                         nsindex = to_namespace_index(ndd, ndd->ns_current);
315                         rc = sprintf(buf, "%#llx\n",
316                                         nd_region_interleave_set_cookie(nd_region,
317                                                 nsindex));
318                 }
319         }
320         nvdimm_bus_unlock(dev);
321         nd_device_unlock(dev);
322
323         if (rc)
324                 return rc;
325         return sprintf(buf, "%#llx\n", nd_set->cookie1);
326 }
327 static DEVICE_ATTR_RO(set_cookie);
328
329 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
330 {
331         resource_size_t blk_max_overlap = 0, available, overlap;
332         int i;
333
334         WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
335
336  retry:
337         available = 0;
338         overlap = blk_max_overlap;
339         for (i = 0; i < nd_region->ndr_mappings; i++) {
340                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
341                 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
342
343                 /* if a dimm is disabled the available capacity is zero */
344                 if (!ndd)
345                         return 0;
346
347                 if (is_memory(&nd_region->dev)) {
348                         available += nd_pmem_available_dpa(nd_region,
349                                         nd_mapping, &overlap);
350                         if (overlap > blk_max_overlap) {
351                                 blk_max_overlap = overlap;
352                                 goto retry;
353                         }
354                 } else if (is_nd_blk(&nd_region->dev))
355                         available += nd_blk_available_dpa(nd_region);
356         }
357
358         return available;
359 }
360
361 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
362 {
363         resource_size_t available = 0;
364         int i;
365
366         if (is_memory(&nd_region->dev))
367                 available = PHYS_ADDR_MAX;
368
369         WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
370         for (i = 0; i < nd_region->ndr_mappings; i++) {
371                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
372
373                 if (is_memory(&nd_region->dev))
374                         available = min(available,
375                                         nd_pmem_max_contiguous_dpa(nd_region,
376                                                                    nd_mapping));
377                 else if (is_nd_blk(&nd_region->dev))
378                         available += nd_blk_available_dpa(nd_region);
379         }
380         if (is_memory(&nd_region->dev))
381                 return available * nd_region->ndr_mappings;
382         return available;
383 }
384
385 static ssize_t available_size_show(struct device *dev,
386                 struct device_attribute *attr, char *buf)
387 {
388         struct nd_region *nd_region = to_nd_region(dev);
389         unsigned long long available = 0;
390
391         /*
392          * Flush in-flight updates and grab a snapshot of the available
393          * size.  Of course, this value is potentially invalidated the
394          * memory nvdimm_bus_lock() is dropped, but that's userspace's
395          * problem to not race itself.
396          */
397         nd_device_lock(dev);
398         nvdimm_bus_lock(dev);
399         wait_nvdimm_bus_probe_idle(dev);
400         available = nd_region_available_dpa(nd_region);
401         nvdimm_bus_unlock(dev);
402         nd_device_unlock(dev);
403
404         return sprintf(buf, "%llu\n", available);
405 }
406 static DEVICE_ATTR_RO(available_size);
407
408 static ssize_t max_available_extent_show(struct device *dev,
409                 struct device_attribute *attr, char *buf)
410 {
411         struct nd_region *nd_region = to_nd_region(dev);
412         unsigned long long available = 0;
413
414         nd_device_lock(dev);
415         nvdimm_bus_lock(dev);
416         wait_nvdimm_bus_probe_idle(dev);
417         available = nd_region_allocatable_dpa(nd_region);
418         nvdimm_bus_unlock(dev);
419         nd_device_unlock(dev);
420
421         return sprintf(buf, "%llu\n", available);
422 }
423 static DEVICE_ATTR_RO(max_available_extent);
424
425 static ssize_t init_namespaces_show(struct device *dev,
426                 struct device_attribute *attr, char *buf)
427 {
428         struct nd_region_data *ndrd = dev_get_drvdata(dev);
429         ssize_t rc;
430
431         nvdimm_bus_lock(dev);
432         if (ndrd)
433                 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
434         else
435                 rc = -ENXIO;
436         nvdimm_bus_unlock(dev);
437
438         return rc;
439 }
440 static DEVICE_ATTR_RO(init_namespaces);
441
442 static ssize_t namespace_seed_show(struct device *dev,
443                 struct device_attribute *attr, char *buf)
444 {
445         struct nd_region *nd_region = to_nd_region(dev);
446         ssize_t rc;
447
448         nvdimm_bus_lock(dev);
449         if (nd_region->ns_seed)
450                 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
451         else
452                 rc = sprintf(buf, "\n");
453         nvdimm_bus_unlock(dev);
454         return rc;
455 }
456 static DEVICE_ATTR_RO(namespace_seed);
457
458 static ssize_t btt_seed_show(struct device *dev,
459                 struct device_attribute *attr, char *buf)
460 {
461         struct nd_region *nd_region = to_nd_region(dev);
462         ssize_t rc;
463
464         nvdimm_bus_lock(dev);
465         if (nd_region->btt_seed)
466                 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
467         else
468                 rc = sprintf(buf, "\n");
469         nvdimm_bus_unlock(dev);
470
471         return rc;
472 }
473 static DEVICE_ATTR_RO(btt_seed);
474
475 static ssize_t pfn_seed_show(struct device *dev,
476                 struct device_attribute *attr, char *buf)
477 {
478         struct nd_region *nd_region = to_nd_region(dev);
479         ssize_t rc;
480
481         nvdimm_bus_lock(dev);
482         if (nd_region->pfn_seed)
483                 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
484         else
485                 rc = sprintf(buf, "\n");
486         nvdimm_bus_unlock(dev);
487
488         return rc;
489 }
490 static DEVICE_ATTR_RO(pfn_seed);
491
492 static ssize_t dax_seed_show(struct device *dev,
493                 struct device_attribute *attr, char *buf)
494 {
495         struct nd_region *nd_region = to_nd_region(dev);
496         ssize_t rc;
497
498         nvdimm_bus_lock(dev);
499         if (nd_region->dax_seed)
500                 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
501         else
502                 rc = sprintf(buf, "\n");
503         nvdimm_bus_unlock(dev);
504
505         return rc;
506 }
507 static DEVICE_ATTR_RO(dax_seed);
508
509 static ssize_t read_only_show(struct device *dev,
510                 struct device_attribute *attr, char *buf)
511 {
512         struct nd_region *nd_region = to_nd_region(dev);
513
514         return sprintf(buf, "%d\n", nd_region->ro);
515 }
516
517 static ssize_t read_only_store(struct device *dev,
518                 struct device_attribute *attr, const char *buf, size_t len)
519 {
520         bool ro;
521         int rc = strtobool(buf, &ro);
522         struct nd_region *nd_region = to_nd_region(dev);
523
524         if (rc)
525                 return rc;
526
527         nd_region->ro = ro;
528         return len;
529 }
530 static DEVICE_ATTR_RW(read_only);
531
532 static ssize_t region_badblocks_show(struct device *dev,
533                 struct device_attribute *attr, char *buf)
534 {
535         struct nd_region *nd_region = to_nd_region(dev);
536         ssize_t rc;
537
538         nd_device_lock(dev);
539         if (dev->driver)
540                 rc = badblocks_show(&nd_region->bb, buf, 0);
541         else
542                 rc = -ENXIO;
543         nd_device_unlock(dev);
544
545         return rc;
546 }
547 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
548
549 static ssize_t resource_show(struct device *dev,
550                 struct device_attribute *attr, char *buf)
551 {
552         struct nd_region *nd_region = to_nd_region(dev);
553
554         return sprintf(buf, "%#llx\n", nd_region->ndr_start);
555 }
556 static DEVICE_ATTR(resource, 0400, resource_show, NULL);
557
558 static ssize_t persistence_domain_show(struct device *dev,
559                 struct device_attribute *attr, char *buf)
560 {
561         struct nd_region *nd_region = to_nd_region(dev);
562
563         if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
564                 return sprintf(buf, "cpu_cache\n");
565         else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
566                 return sprintf(buf, "memory_controller\n");
567         else
568                 return sprintf(buf, "\n");
569 }
570 static DEVICE_ATTR_RO(persistence_domain);
571
572 static struct attribute *nd_region_attributes[] = {
573         &dev_attr_size.attr,
574         &dev_attr_nstype.attr,
575         &dev_attr_mappings.attr,
576         &dev_attr_btt_seed.attr,
577         &dev_attr_pfn_seed.attr,
578         &dev_attr_dax_seed.attr,
579         &dev_attr_deep_flush.attr,
580         &dev_attr_read_only.attr,
581         &dev_attr_set_cookie.attr,
582         &dev_attr_available_size.attr,
583         &dev_attr_max_available_extent.attr,
584         &dev_attr_namespace_seed.attr,
585         &dev_attr_init_namespaces.attr,
586         &dev_attr_badblocks.attr,
587         &dev_attr_resource.attr,
588         &dev_attr_persistence_domain.attr,
589         NULL,
590 };
591
592 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
593 {
594         struct device *dev = container_of(kobj, typeof(*dev), kobj);
595         struct nd_region *nd_region = to_nd_region(dev);
596         struct nd_interleave_set *nd_set = nd_region->nd_set;
597         int type = nd_region_to_nstype(nd_region);
598
599         if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
600                 return 0;
601
602         if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
603                 return 0;
604
605         if (!is_memory(dev) && a == &dev_attr_badblocks.attr)
606                 return 0;
607
608         if (a == &dev_attr_resource.attr && !is_memory(dev))
609                 return 0;
610
611         if (a == &dev_attr_deep_flush.attr) {
612                 int has_flush = nvdimm_has_flush(nd_region);
613
614                 if (has_flush == 1)
615                         return a->mode;
616                 else if (has_flush == 0)
617                         return 0444;
618                 else
619                         return 0;
620         }
621
622         if (a == &dev_attr_persistence_domain.attr) {
623                 if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
624                                         | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
625                         return 0;
626                 return a->mode;
627         }
628
629         if (a != &dev_attr_set_cookie.attr
630                         && a != &dev_attr_available_size.attr)
631                 return a->mode;
632
633         if ((type == ND_DEVICE_NAMESPACE_PMEM
634                                 || type == ND_DEVICE_NAMESPACE_BLK)
635                         && a == &dev_attr_available_size.attr)
636                 return a->mode;
637         else if (is_memory(dev) && nd_set)
638                 return a->mode;
639
640         return 0;
641 }
642
643 static ssize_t mappingN(struct device *dev, char *buf, int n)
644 {
645         struct nd_region *nd_region = to_nd_region(dev);
646         struct nd_mapping *nd_mapping;
647         struct nvdimm *nvdimm;
648
649         if (n >= nd_region->ndr_mappings)
650                 return -ENXIO;
651         nd_mapping = &nd_region->mapping[n];
652         nvdimm = nd_mapping->nvdimm;
653
654         return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
655                         nd_mapping->start, nd_mapping->size,
656                         nd_mapping->position);
657 }
658
659 #define REGION_MAPPING(idx) \
660 static ssize_t mapping##idx##_show(struct device *dev,          \
661                 struct device_attribute *attr, char *buf)       \
662 {                                                               \
663         return mappingN(dev, buf, idx);                         \
664 }                                                               \
665 static DEVICE_ATTR_RO(mapping##idx)
666
667 /*
668  * 32 should be enough for a while, even in the presence of socket
669  * interleave a 32-way interleave set is a degenerate case.
670  */
671 REGION_MAPPING(0);
672 REGION_MAPPING(1);
673 REGION_MAPPING(2);
674 REGION_MAPPING(3);
675 REGION_MAPPING(4);
676 REGION_MAPPING(5);
677 REGION_MAPPING(6);
678 REGION_MAPPING(7);
679 REGION_MAPPING(8);
680 REGION_MAPPING(9);
681 REGION_MAPPING(10);
682 REGION_MAPPING(11);
683 REGION_MAPPING(12);
684 REGION_MAPPING(13);
685 REGION_MAPPING(14);
686 REGION_MAPPING(15);
687 REGION_MAPPING(16);
688 REGION_MAPPING(17);
689 REGION_MAPPING(18);
690 REGION_MAPPING(19);
691 REGION_MAPPING(20);
692 REGION_MAPPING(21);
693 REGION_MAPPING(22);
694 REGION_MAPPING(23);
695 REGION_MAPPING(24);
696 REGION_MAPPING(25);
697 REGION_MAPPING(26);
698 REGION_MAPPING(27);
699 REGION_MAPPING(28);
700 REGION_MAPPING(29);
701 REGION_MAPPING(30);
702 REGION_MAPPING(31);
703
704 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
705 {
706         struct device *dev = container_of(kobj, struct device, kobj);
707         struct nd_region *nd_region = to_nd_region(dev);
708
709         if (n < nd_region->ndr_mappings)
710                 return a->mode;
711         return 0;
712 }
713
714 static struct attribute *mapping_attributes[] = {
715         &dev_attr_mapping0.attr,
716         &dev_attr_mapping1.attr,
717         &dev_attr_mapping2.attr,
718         &dev_attr_mapping3.attr,
719         &dev_attr_mapping4.attr,
720         &dev_attr_mapping5.attr,
721         &dev_attr_mapping6.attr,
722         &dev_attr_mapping7.attr,
723         &dev_attr_mapping8.attr,
724         &dev_attr_mapping9.attr,
725         &dev_attr_mapping10.attr,
726         &dev_attr_mapping11.attr,
727         &dev_attr_mapping12.attr,
728         &dev_attr_mapping13.attr,
729         &dev_attr_mapping14.attr,
730         &dev_attr_mapping15.attr,
731         &dev_attr_mapping16.attr,
732         &dev_attr_mapping17.attr,
733         &dev_attr_mapping18.attr,
734         &dev_attr_mapping19.attr,
735         &dev_attr_mapping20.attr,
736         &dev_attr_mapping21.attr,
737         &dev_attr_mapping22.attr,
738         &dev_attr_mapping23.attr,
739         &dev_attr_mapping24.attr,
740         &dev_attr_mapping25.attr,
741         &dev_attr_mapping26.attr,
742         &dev_attr_mapping27.attr,
743         &dev_attr_mapping28.attr,
744         &dev_attr_mapping29.attr,
745         &dev_attr_mapping30.attr,
746         &dev_attr_mapping31.attr,
747         NULL,
748 };
749
750 static const struct attribute_group nd_mapping_attribute_group = {
751         .is_visible = mapping_visible,
752         .attrs = mapping_attributes,
753 };
754
755 static const struct attribute_group nd_region_attribute_group = {
756         .attrs = nd_region_attributes,
757         .is_visible = region_visible,
758 };
759
760 static const struct attribute_group *nd_region_attribute_groups[] = {
761         &nd_device_attribute_group,
762         &nd_region_attribute_group,
763         &nd_numa_attribute_group,
764         &nd_mapping_attribute_group,
765         NULL,
766 };
767
768 static const struct device_type nd_blk_device_type = {
769         .name = "nd_blk",
770         .release = nd_region_release,
771         .groups = nd_region_attribute_groups,
772 };
773
774 static const struct device_type nd_pmem_device_type = {
775         .name = "nd_pmem",
776         .release = nd_region_release,
777         .groups = nd_region_attribute_groups,
778 };
779
780 static const struct device_type nd_volatile_device_type = {
781         .name = "nd_volatile",
782         .release = nd_region_release,
783         .groups = nd_region_attribute_groups,
784 };
785
786 bool is_nd_pmem(struct device *dev)
787 {
788         return dev ? dev->type == &nd_pmem_device_type : false;
789 }
790
791 bool is_nd_blk(struct device *dev)
792 {
793         return dev ? dev->type == &nd_blk_device_type : false;
794 }
795
796 bool is_nd_volatile(struct device *dev)
797 {
798         return dev ? dev->type == &nd_volatile_device_type : false;
799 }
800
801 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
802                 struct nd_namespace_index *nsindex)
803 {
804         struct nd_interleave_set *nd_set = nd_region->nd_set;
805
806         if (!nd_set)
807                 return 0;
808
809         if (nsindex && __le16_to_cpu(nsindex->major) == 1
810                         && __le16_to_cpu(nsindex->minor) == 1)
811                 return nd_set->cookie1;
812         return nd_set->cookie2;
813 }
814
815 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
816 {
817         struct nd_interleave_set *nd_set = nd_region->nd_set;
818
819         if (nd_set)
820                 return nd_set->altcookie;
821         return 0;
822 }
823
824 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
825 {
826         struct nd_label_ent *label_ent, *e;
827
828         lockdep_assert_held(&nd_mapping->lock);
829         list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
830                 list_del(&label_ent->list);
831                 kfree(label_ent);
832         }
833 }
834
835 /*
836  * When a namespace is activated create new seeds for the next
837  * namespace, or namespace-personality to be configured.
838  */
839 void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev)
840 {
841         nvdimm_bus_lock(dev);
842         if (nd_region->ns_seed == dev) {
843                 nd_region_create_ns_seed(nd_region);
844         } else if (is_nd_btt(dev)) {
845                 struct nd_btt *nd_btt = to_nd_btt(dev);
846
847                 if (nd_region->btt_seed == dev)
848                         nd_region_create_btt_seed(nd_region);
849                 if (nd_region->ns_seed == &nd_btt->ndns->dev)
850                         nd_region_create_ns_seed(nd_region);
851         } else if (is_nd_pfn(dev)) {
852                 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
853
854                 if (nd_region->pfn_seed == dev)
855                         nd_region_create_pfn_seed(nd_region);
856                 if (nd_region->ns_seed == &nd_pfn->ndns->dev)
857                         nd_region_create_ns_seed(nd_region);
858         } else if (is_nd_dax(dev)) {
859                 struct nd_dax *nd_dax = to_nd_dax(dev);
860
861                 if (nd_region->dax_seed == dev)
862                         nd_region_create_dax_seed(nd_region);
863                 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
864                         nd_region_create_ns_seed(nd_region);
865         }
866         nvdimm_bus_unlock(dev);
867 }
868
869 int nd_blk_region_init(struct nd_region *nd_region)
870 {
871         struct device *dev = &nd_region->dev;
872         struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
873
874         if (!is_nd_blk(dev))
875                 return 0;
876
877         if (nd_region->ndr_mappings < 1) {
878                 dev_dbg(dev, "invalid BLK region\n");
879                 return -ENXIO;
880         }
881
882         return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
883 }
884
885 /**
886  * nd_region_acquire_lane - allocate and lock a lane
887  * @nd_region: region id and number of lanes possible
888  *
889  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
890  * We optimize for the common case where there are 256 lanes, one
891  * per-cpu.  For larger systems we need to lock to share lanes.  For now
892  * this implementation assumes the cost of maintaining an allocator for
893  * free lanes is on the order of the lock hold time, so it implements a
894  * static lane = cpu % num_lanes mapping.
895  *
896  * In the case of a BTT instance on top of a BLK namespace a lane may be
897  * acquired recursively.  We lock on the first instance.
898  *
899  * In the case of a BTT instance on top of PMEM, we only acquire a lane
900  * for the BTT metadata updates.
901  */
902 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
903 {
904         unsigned int cpu, lane;
905
906         cpu = get_cpu();
907         if (nd_region->num_lanes < nr_cpu_ids) {
908                 struct nd_percpu_lane *ndl_lock, *ndl_count;
909
910                 lane = cpu % nd_region->num_lanes;
911                 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
912                 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
913                 if (ndl_count->count++ == 0)
914                         spin_lock(&ndl_lock->lock);
915         } else
916                 lane = cpu;
917
918         return lane;
919 }
920 EXPORT_SYMBOL(nd_region_acquire_lane);
921
922 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
923 {
924         if (nd_region->num_lanes < nr_cpu_ids) {
925                 unsigned int cpu = get_cpu();
926                 struct nd_percpu_lane *ndl_lock, *ndl_count;
927
928                 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
929                 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
930                 if (--ndl_count->count == 0)
931                         spin_unlock(&ndl_lock->lock);
932                 put_cpu();
933         }
934         put_cpu();
935 }
936 EXPORT_SYMBOL(nd_region_release_lane);
937
938 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
939                 struct nd_region_desc *ndr_desc,
940                 const struct device_type *dev_type, const char *caller)
941 {
942         struct nd_region *nd_region;
943         struct device *dev;
944         void *region_buf;
945         unsigned int i;
946         int ro = 0;
947
948         for (i = 0; i < ndr_desc->num_mappings; i++) {
949                 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
950                 struct nvdimm *nvdimm = mapping->nvdimm;
951
952                 if ((mapping->start | mapping->size) % PAGE_SIZE) {
953                         dev_err(&nvdimm_bus->dev,
954                                 "%s: %s mapping%d is not %ld aligned\n",
955                                 caller, dev_name(&nvdimm->dev), i, PAGE_SIZE);
956                         return NULL;
957                 }
958
959                 if (test_bit(NDD_UNARMED, &nvdimm->flags))
960                         ro = 1;
961
962                 if (test_bit(NDD_NOBLK, &nvdimm->flags)
963                                 && dev_type == &nd_blk_device_type) {
964                         dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not BLK capable\n",
965                                         caller, dev_name(&nvdimm->dev), i);
966                         return NULL;
967                 }
968         }
969
970         if (dev_type == &nd_blk_device_type) {
971                 struct nd_blk_region_desc *ndbr_desc;
972                 struct nd_blk_region *ndbr;
973
974                 ndbr_desc = to_blk_region_desc(ndr_desc);
975                 ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
976                                 * ndr_desc->num_mappings,
977                                 GFP_KERNEL);
978                 if (ndbr) {
979                         nd_region = &ndbr->nd_region;
980                         ndbr->enable = ndbr_desc->enable;
981                         ndbr->do_io = ndbr_desc->do_io;
982                 }
983                 region_buf = ndbr;
984         } else {
985                 nd_region = kzalloc(struct_size(nd_region, mapping,
986                                                 ndr_desc->num_mappings),
987                                     GFP_KERNEL);
988                 region_buf = nd_region;
989         }
990
991         if (!region_buf)
992                 return NULL;
993         nd_region->id = memregion_alloc(GFP_KERNEL);
994         if (nd_region->id < 0)
995                 goto err_id;
996
997         nd_region->lane = alloc_percpu(struct nd_percpu_lane);
998         if (!nd_region->lane)
999                 goto err_percpu;
1000
1001         for (i = 0; i < nr_cpu_ids; i++) {
1002                 struct nd_percpu_lane *ndl;
1003
1004                 ndl = per_cpu_ptr(nd_region->lane, i);
1005                 spin_lock_init(&ndl->lock);
1006                 ndl->count = 0;
1007         }
1008
1009         for (i = 0; i < ndr_desc->num_mappings; i++) {
1010                 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1011                 struct nvdimm *nvdimm = mapping->nvdimm;
1012
1013                 nd_region->mapping[i].nvdimm = nvdimm;
1014                 nd_region->mapping[i].start = mapping->start;
1015                 nd_region->mapping[i].size = mapping->size;
1016                 nd_region->mapping[i].position = mapping->position;
1017                 INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1018                 mutex_init(&nd_region->mapping[i].lock);
1019
1020                 get_device(&nvdimm->dev);
1021         }
1022         nd_region->ndr_mappings = ndr_desc->num_mappings;
1023         nd_region->provider_data = ndr_desc->provider_data;
1024         nd_region->nd_set = ndr_desc->nd_set;
1025         nd_region->num_lanes = ndr_desc->num_lanes;
1026         nd_region->flags = ndr_desc->flags;
1027         nd_region->ro = ro;
1028         nd_region->numa_node = ndr_desc->numa_node;
1029         nd_region->target_node = ndr_desc->target_node;
1030         ida_init(&nd_region->ns_ida);
1031         ida_init(&nd_region->btt_ida);
1032         ida_init(&nd_region->pfn_ida);
1033         ida_init(&nd_region->dax_ida);
1034         dev = &nd_region->dev;
1035         dev_set_name(dev, "region%d", nd_region->id);
1036         dev->parent = &nvdimm_bus->dev;
1037         dev->type = dev_type;
1038         dev->groups = ndr_desc->attr_groups;
1039         dev->of_node = ndr_desc->of_node;
1040         nd_region->ndr_size = resource_size(ndr_desc->res);
1041         nd_region->ndr_start = ndr_desc->res->start;
1042         if (ndr_desc->flush)
1043                 nd_region->flush = ndr_desc->flush;
1044         else
1045                 nd_region->flush = NULL;
1046
1047         nd_device_register(dev);
1048
1049         return nd_region;
1050
1051  err_percpu:
1052         memregion_free(nd_region->id);
1053  err_id:
1054         kfree(region_buf);
1055         return NULL;
1056 }
1057
1058 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1059                 struct nd_region_desc *ndr_desc)
1060 {
1061         ndr_desc->num_lanes = ND_MAX_LANES;
1062         return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1063                         __func__);
1064 }
1065 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1066
1067 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
1068                 struct nd_region_desc *ndr_desc)
1069 {
1070         if (ndr_desc->num_mappings > 1)
1071                 return NULL;
1072         ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
1073         return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
1074                         __func__);
1075 }
1076 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
1077
1078 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1079                 struct nd_region_desc *ndr_desc)
1080 {
1081         ndr_desc->num_lanes = ND_MAX_LANES;
1082         return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1083                         __func__);
1084 }
1085 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1086
1087 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
1088 {
1089         int rc = 0;
1090
1091         if (!nd_region->flush)
1092                 rc = generic_nvdimm_flush(nd_region);
1093         else {
1094                 if (nd_region->flush(nd_region, bio))
1095                         rc = -EIO;
1096         }
1097
1098         return rc;
1099 }
1100 /**
1101  * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1102  * @nd_region: blk or interleaved pmem region
1103  */
1104 int generic_nvdimm_flush(struct nd_region *nd_region)
1105 {
1106         struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1107         int i, idx;
1108
1109         /*
1110          * Try to encourage some diversity in flush hint addresses
1111          * across cpus assuming a limited number of flush hints.
1112          */
1113         idx = this_cpu_read(flush_idx);
1114         idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1115
1116         /*
1117          * The first wmb() is needed to 'sfence' all previous writes
1118          * such that they are architecturally visible for the platform
1119          * buffer flush.  Note that we've already arranged for pmem
1120          * writes to avoid the cache via memcpy_flushcache().  The final
1121          * wmb() ensures ordering for the NVDIMM flush write.
1122          */
1123         wmb();
1124         for (i = 0; i < nd_region->ndr_mappings; i++)
1125                 if (ndrd_get_flush_wpq(ndrd, i, 0))
1126                         writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1127         wmb();
1128
1129         return 0;
1130 }
1131 EXPORT_SYMBOL_GPL(nvdimm_flush);
1132
1133 /**
1134  * nvdimm_has_flush - determine write flushing requirements
1135  * @nd_region: blk or interleaved pmem region
1136  *
1137  * Returns 1 if writes require flushing
1138  * Returns 0 if writes do not require flushing
1139  * Returns -ENXIO if flushing capability can not be determined
1140  */
1141 int nvdimm_has_flush(struct nd_region *nd_region)
1142 {
1143         int i;
1144
1145         /* no nvdimm or pmem api == flushing capability unknown */
1146         if (nd_region->ndr_mappings == 0
1147                         || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1148                 return -ENXIO;
1149
1150         for (i = 0; i < nd_region->ndr_mappings; i++) {
1151                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1152                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
1153
1154                 /* flush hints present / available */
1155                 if (nvdimm->num_flush)
1156                         return 1;
1157         }
1158
1159         /*
1160          * The platform defines dimm devices without hints, assume
1161          * platform persistence mechanism like ADR
1162          */
1163         return 0;
1164 }
1165 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1166
1167 int nvdimm_has_cache(struct nd_region *nd_region)
1168 {
1169         return is_nd_pmem(&nd_region->dev) &&
1170                 !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1171 }
1172 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1173
1174 bool is_nvdimm_sync(struct nd_region *nd_region)
1175 {
1176         if (is_nd_volatile(&nd_region->dev))
1177                 return true;
1178
1179         return is_nd_pmem(&nd_region->dev) &&
1180                 !test_bit(ND_REGION_ASYNC, &nd_region->flags);
1181 }
1182 EXPORT_SYMBOL_GPL(is_nvdimm_sync);
1183
1184 struct conflict_context {
1185         struct nd_region *nd_region;
1186         resource_size_t start, size;
1187 };
1188
1189 static int region_conflict(struct device *dev, void *data)
1190 {
1191         struct nd_region *nd_region;
1192         struct conflict_context *ctx = data;
1193         resource_size_t res_end, region_end, region_start;
1194
1195         if (!is_memory(dev))
1196                 return 0;
1197
1198         nd_region = to_nd_region(dev);
1199         if (nd_region == ctx->nd_region)
1200                 return 0;
1201
1202         res_end = ctx->start + ctx->size;
1203         region_start = nd_region->ndr_start;
1204         region_end = region_start + nd_region->ndr_size;
1205         if (ctx->start >= region_start && ctx->start < region_end)
1206                 return -EBUSY;
1207         if (res_end > region_start && res_end <= region_end)
1208                 return -EBUSY;
1209         return 0;
1210 }
1211
1212 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1213                 resource_size_t size)
1214 {
1215         struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1216         struct conflict_context ctx = {
1217                 .nd_region = nd_region,
1218                 .start = start,
1219                 .size = size,
1220         };
1221
1222         return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1223 }