1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
5 #include <linux/scatterlist.h>
6 #include <linux/memregion.h>
7 #include <linux/highmem.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/hash.h>
11 #include <linux/sort.h>
18 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
21 #include <linux/io-64-nonatomic-hi-lo.h>
23 static DEFINE_PER_CPU(int, flush_idx);
25 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
26 struct nd_region_data *ndrd)
30 dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
31 nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
32 for (i = 0; i < (1 << ndrd->hints_shift); i++) {
33 struct resource *res = &nvdimm->flush_wpq[i];
34 unsigned long pfn = PHYS_PFN(res->start);
35 void __iomem *flush_page;
37 /* check if flush hints share a page */
38 for (j = 0; j < i; j++) {
39 struct resource *res_j = &nvdimm->flush_wpq[j];
40 unsigned long pfn_j = PHYS_PFN(res_j->start);
47 flush_page = (void __iomem *) ((unsigned long)
48 ndrd_get_flush_wpq(ndrd, dimm, j)
51 flush_page = devm_nvdimm_ioremap(dev,
52 PFN_PHYS(pfn), PAGE_SIZE);
55 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
56 + (res->start & ~PAGE_MASK));
62 static int nd_region_invalidate_memregion(struct nd_region *nd_region)
64 int i, incoherent = 0;
66 for (i = 0; i < nd_region->ndr_mappings; i++) {
67 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
68 struct nvdimm *nvdimm = nd_mapping->nvdimm;
70 if (test_bit(NDD_INCOHERENT, &nvdimm->flags)) {
79 if (!cpu_cache_has_invalidate_memregion()) {
80 if (IS_ENABLED(CONFIG_NVDIMM_SECURITY_TEST)) {
83 "Bypassing cpu_cache_invalidate_memergion() for testing!\n");
86 dev_err(&nd_region->dev,
87 "Failed to synchronize CPU cache state\n");
92 cpu_cache_invalidate_memregion(IORES_DESC_PERSISTENT_MEMORY);
94 for (i = 0; i < nd_region->ndr_mappings; i++) {
95 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
96 struct nvdimm *nvdimm = nd_mapping->nvdimm;
98 clear_bit(NDD_INCOHERENT, &nvdimm->flags);
104 int nd_region_activate(struct nd_region *nd_region)
106 int i, j, rc, num_flush = 0;
107 struct nd_region_data *ndrd;
108 struct device *dev = &nd_region->dev;
109 size_t flush_data_size = sizeof(void *);
111 nvdimm_bus_lock(&nd_region->dev);
112 for (i = 0; i < nd_region->ndr_mappings; i++) {
113 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
114 struct nvdimm *nvdimm = nd_mapping->nvdimm;
116 if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
117 nvdimm_bus_unlock(&nd_region->dev);
121 /* at least one null hint slot per-dimm for the "no-hint" case */
122 flush_data_size += sizeof(void *);
123 num_flush = min_not_zero(num_flush, nvdimm->num_flush);
124 if (!nvdimm->num_flush)
126 flush_data_size += nvdimm->num_flush * sizeof(void *);
128 nvdimm_bus_unlock(&nd_region->dev);
130 rc = nd_region_invalidate_memregion(nd_region);
134 ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
137 dev_set_drvdata(dev, ndrd);
142 ndrd->hints_shift = ilog2(num_flush);
143 for (i = 0; i < nd_region->ndr_mappings; i++) {
144 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
145 struct nvdimm *nvdimm = nd_mapping->nvdimm;
146 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
153 * Clear out entries that are duplicates. This should prevent the
156 for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
157 /* ignore if NULL already */
158 if (!ndrd_get_flush_wpq(ndrd, i, 0))
161 for (j = i + 1; j < nd_region->ndr_mappings; j++)
162 if (ndrd_get_flush_wpq(ndrd, i, 0) ==
163 ndrd_get_flush_wpq(ndrd, j, 0))
164 ndrd_set_flush_wpq(ndrd, j, 0, NULL);
170 static void nd_region_release(struct device *dev)
172 struct nd_region *nd_region = to_nd_region(dev);
175 for (i = 0; i < nd_region->ndr_mappings; i++) {
176 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
177 struct nvdimm *nvdimm = nd_mapping->nvdimm;
179 put_device(&nvdimm->dev);
181 free_percpu(nd_region->lane);
182 if (!test_bit(ND_REGION_CXL, &nd_region->flags))
183 memregion_free(nd_region->id);
187 struct nd_region *to_nd_region(struct device *dev)
189 struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
191 WARN_ON(dev->type->release != nd_region_release);
194 EXPORT_SYMBOL_GPL(to_nd_region);
196 struct device *nd_region_dev(struct nd_region *nd_region)
200 return &nd_region->dev;
202 EXPORT_SYMBOL_GPL(nd_region_dev);
204 void *nd_region_provider_data(struct nd_region *nd_region)
206 return nd_region->provider_data;
208 EXPORT_SYMBOL_GPL(nd_region_provider_data);
211 * nd_region_to_nstype() - region to an integer namespace type
212 * @nd_region: region-device to interrogate
214 * This is the 'nstype' attribute of a region as well, an input to the
215 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
216 * namespace devices with namespace drivers.
218 int nd_region_to_nstype(struct nd_region *nd_region)
220 if (is_memory(&nd_region->dev)) {
223 for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) {
224 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
225 struct nvdimm *nvdimm = nd_mapping->nvdimm;
227 if (test_bit(NDD_LABELING, &nvdimm->flags))
231 return ND_DEVICE_NAMESPACE_PMEM;
233 return ND_DEVICE_NAMESPACE_IO;
238 EXPORT_SYMBOL(nd_region_to_nstype);
240 static unsigned long long region_size(struct nd_region *nd_region)
242 if (is_memory(&nd_region->dev)) {
243 return nd_region->ndr_size;
244 } else if (nd_region->ndr_mappings == 1) {
245 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
247 return nd_mapping->size;
253 static ssize_t size_show(struct device *dev,
254 struct device_attribute *attr, char *buf)
256 struct nd_region *nd_region = to_nd_region(dev);
258 return sprintf(buf, "%llu\n", region_size(nd_region));
260 static DEVICE_ATTR_RO(size);
262 static ssize_t deep_flush_show(struct device *dev,
263 struct device_attribute *attr, char *buf)
265 struct nd_region *nd_region = to_nd_region(dev);
268 * NOTE: in the nvdimm_has_flush() error case this attribute is
271 return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
274 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
275 const char *buf, size_t len)
278 int rc = strtobool(buf, &flush);
279 struct nd_region *nd_region = to_nd_region(dev);
285 rc = nvdimm_flush(nd_region, NULL);
291 static DEVICE_ATTR_RW(deep_flush);
293 static ssize_t mappings_show(struct device *dev,
294 struct device_attribute *attr, char *buf)
296 struct nd_region *nd_region = to_nd_region(dev);
298 return sprintf(buf, "%d\n", nd_region->ndr_mappings);
300 static DEVICE_ATTR_RO(mappings);
302 static ssize_t nstype_show(struct device *dev,
303 struct device_attribute *attr, char *buf)
305 struct nd_region *nd_region = to_nd_region(dev);
307 return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
309 static DEVICE_ATTR_RO(nstype);
311 static ssize_t set_cookie_show(struct device *dev,
312 struct device_attribute *attr, char *buf)
314 struct nd_region *nd_region = to_nd_region(dev);
315 struct nd_interleave_set *nd_set = nd_region->nd_set;
318 if (is_memory(dev) && nd_set)
319 /* pass, should be precluded by region_visible */;
324 * The cookie to show depends on which specification of the
325 * labels we are using. If there are not labels then default to
326 * the v1.1 namespace label cookie definition. To read all this
327 * data we need to wait for probing to settle.
330 nvdimm_bus_lock(dev);
331 wait_nvdimm_bus_probe_idle(dev);
332 if (nd_region->ndr_mappings) {
333 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
334 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
337 struct nd_namespace_index *nsindex;
339 nsindex = to_namespace_index(ndd, ndd->ns_current);
340 rc = sprintf(buf, "%#llx\n",
341 nd_region_interleave_set_cookie(nd_region,
345 nvdimm_bus_unlock(dev);
350 return sprintf(buf, "%#llx\n", nd_set->cookie1);
352 static DEVICE_ATTR_RO(set_cookie);
354 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
356 resource_size_t available;
359 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
362 for (i = 0; i < nd_region->ndr_mappings; i++) {
363 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
364 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
366 /* if a dimm is disabled the available capacity is zero */
370 available += nd_pmem_available_dpa(nd_region, nd_mapping);
376 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
378 resource_size_t avail = 0;
381 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
382 for (i = 0; i < nd_region->ndr_mappings; i++) {
383 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
385 avail = min_not_zero(avail, nd_pmem_max_contiguous_dpa(
386 nd_region, nd_mapping));
388 return avail * nd_region->ndr_mappings;
391 static ssize_t available_size_show(struct device *dev,
392 struct device_attribute *attr, char *buf)
394 struct nd_region *nd_region = to_nd_region(dev);
395 unsigned long long available = 0;
398 * Flush in-flight updates and grab a snapshot of the available
399 * size. Of course, this value is potentially invalidated the
400 * memory nvdimm_bus_lock() is dropped, but that's userspace's
401 * problem to not race itself.
404 nvdimm_bus_lock(dev);
405 wait_nvdimm_bus_probe_idle(dev);
406 available = nd_region_available_dpa(nd_region);
407 nvdimm_bus_unlock(dev);
410 return sprintf(buf, "%llu\n", available);
412 static DEVICE_ATTR_RO(available_size);
414 static ssize_t max_available_extent_show(struct device *dev,
415 struct device_attribute *attr, char *buf)
417 struct nd_region *nd_region = to_nd_region(dev);
418 unsigned long long available = 0;
421 nvdimm_bus_lock(dev);
422 wait_nvdimm_bus_probe_idle(dev);
423 available = nd_region_allocatable_dpa(nd_region);
424 nvdimm_bus_unlock(dev);
427 return sprintf(buf, "%llu\n", available);
429 static DEVICE_ATTR_RO(max_available_extent);
431 static ssize_t init_namespaces_show(struct device *dev,
432 struct device_attribute *attr, char *buf)
434 struct nd_region_data *ndrd = dev_get_drvdata(dev);
437 nvdimm_bus_lock(dev);
439 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
442 nvdimm_bus_unlock(dev);
446 static DEVICE_ATTR_RO(init_namespaces);
448 static ssize_t namespace_seed_show(struct device *dev,
449 struct device_attribute *attr, char *buf)
451 struct nd_region *nd_region = to_nd_region(dev);
454 nvdimm_bus_lock(dev);
455 if (nd_region->ns_seed)
456 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
458 rc = sprintf(buf, "\n");
459 nvdimm_bus_unlock(dev);
462 static DEVICE_ATTR_RO(namespace_seed);
464 static ssize_t btt_seed_show(struct device *dev,
465 struct device_attribute *attr, char *buf)
467 struct nd_region *nd_region = to_nd_region(dev);
470 nvdimm_bus_lock(dev);
471 if (nd_region->btt_seed)
472 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
474 rc = sprintf(buf, "\n");
475 nvdimm_bus_unlock(dev);
479 static DEVICE_ATTR_RO(btt_seed);
481 static ssize_t pfn_seed_show(struct device *dev,
482 struct device_attribute *attr, char *buf)
484 struct nd_region *nd_region = to_nd_region(dev);
487 nvdimm_bus_lock(dev);
488 if (nd_region->pfn_seed)
489 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
491 rc = sprintf(buf, "\n");
492 nvdimm_bus_unlock(dev);
496 static DEVICE_ATTR_RO(pfn_seed);
498 static ssize_t dax_seed_show(struct device *dev,
499 struct device_attribute *attr, char *buf)
501 struct nd_region *nd_region = to_nd_region(dev);
504 nvdimm_bus_lock(dev);
505 if (nd_region->dax_seed)
506 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
508 rc = sprintf(buf, "\n");
509 nvdimm_bus_unlock(dev);
513 static DEVICE_ATTR_RO(dax_seed);
515 static ssize_t read_only_show(struct device *dev,
516 struct device_attribute *attr, char *buf)
518 struct nd_region *nd_region = to_nd_region(dev);
520 return sprintf(buf, "%d\n", nd_region->ro);
523 static int revalidate_read_only(struct device *dev, void *data)
525 nd_device_notify(dev, NVDIMM_REVALIDATE_REGION);
529 static ssize_t read_only_store(struct device *dev,
530 struct device_attribute *attr, const char *buf, size_t len)
533 int rc = strtobool(buf, &ro);
534 struct nd_region *nd_region = to_nd_region(dev);
540 device_for_each_child(dev, NULL, revalidate_read_only);
543 static DEVICE_ATTR_RW(read_only);
545 static ssize_t align_show(struct device *dev,
546 struct device_attribute *attr, char *buf)
548 struct nd_region *nd_region = to_nd_region(dev);
550 return sprintf(buf, "%#lx\n", nd_region->align);
553 static ssize_t align_store(struct device *dev,
554 struct device_attribute *attr, const char *buf, size_t len)
556 struct nd_region *nd_region = to_nd_region(dev);
557 unsigned long val, dpa;
558 u32 mappings, remainder;
561 rc = kstrtoul(buf, 0, &val);
566 * Ensure space-align is evenly divisible by the region
567 * interleave-width because the kernel typically has no facility
568 * to determine which DIMM(s), dimm-physical-addresses, would
569 * contribute to the tail capacity in system-physical-address
570 * space for the namespace.
572 mappings = max_t(u32, 1, nd_region->ndr_mappings);
573 dpa = div_u64_rem(val, mappings, &remainder);
574 if (!is_power_of_2(dpa) || dpa < PAGE_SIZE
575 || val > region_size(nd_region) || remainder)
579 * Given that space allocation consults this value multiple
580 * times ensure it does not change for the duration of the
583 nvdimm_bus_lock(dev);
584 nd_region->align = val;
585 nvdimm_bus_unlock(dev);
589 static DEVICE_ATTR_RW(align);
591 static ssize_t region_badblocks_show(struct device *dev,
592 struct device_attribute *attr, char *buf)
594 struct nd_region *nd_region = to_nd_region(dev);
599 rc = badblocks_show(&nd_region->bb, buf, 0);
606 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
608 static ssize_t resource_show(struct device *dev,
609 struct device_attribute *attr, char *buf)
611 struct nd_region *nd_region = to_nd_region(dev);
613 return sprintf(buf, "%#llx\n", nd_region->ndr_start);
615 static DEVICE_ATTR_ADMIN_RO(resource);
617 static ssize_t persistence_domain_show(struct device *dev,
618 struct device_attribute *attr, char *buf)
620 struct nd_region *nd_region = to_nd_region(dev);
622 if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
623 return sprintf(buf, "cpu_cache\n");
624 else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
625 return sprintf(buf, "memory_controller\n");
627 return sprintf(buf, "\n");
629 static DEVICE_ATTR_RO(persistence_domain);
631 static struct attribute *nd_region_attributes[] = {
633 &dev_attr_align.attr,
634 &dev_attr_nstype.attr,
635 &dev_attr_mappings.attr,
636 &dev_attr_btt_seed.attr,
637 &dev_attr_pfn_seed.attr,
638 &dev_attr_dax_seed.attr,
639 &dev_attr_deep_flush.attr,
640 &dev_attr_read_only.attr,
641 &dev_attr_set_cookie.attr,
642 &dev_attr_available_size.attr,
643 &dev_attr_max_available_extent.attr,
644 &dev_attr_namespace_seed.attr,
645 &dev_attr_init_namespaces.attr,
646 &dev_attr_badblocks.attr,
647 &dev_attr_resource.attr,
648 &dev_attr_persistence_domain.attr,
652 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
654 struct device *dev = container_of(kobj, typeof(*dev), kobj);
655 struct nd_region *nd_region = to_nd_region(dev);
656 struct nd_interleave_set *nd_set = nd_region->nd_set;
657 int type = nd_region_to_nstype(nd_region);
659 if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
662 if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
665 if (!is_memory(dev) && a == &dev_attr_badblocks.attr)
668 if (a == &dev_attr_resource.attr && !is_memory(dev))
671 if (a == &dev_attr_deep_flush.attr) {
672 int has_flush = nvdimm_has_flush(nd_region);
676 else if (has_flush == 0)
682 if (a == &dev_attr_persistence_domain.attr) {
683 if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
684 | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
689 if (a == &dev_attr_align.attr)
692 if (a != &dev_attr_set_cookie.attr
693 && a != &dev_attr_available_size.attr)
696 if (type == ND_DEVICE_NAMESPACE_PMEM &&
697 a == &dev_attr_available_size.attr)
699 else if (is_memory(dev) && nd_set)
705 static ssize_t mappingN(struct device *dev, char *buf, int n)
707 struct nd_region *nd_region = to_nd_region(dev);
708 struct nd_mapping *nd_mapping;
709 struct nvdimm *nvdimm;
711 if (n >= nd_region->ndr_mappings)
713 nd_mapping = &nd_region->mapping[n];
714 nvdimm = nd_mapping->nvdimm;
716 return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
717 nd_mapping->start, nd_mapping->size,
718 nd_mapping->position);
721 #define REGION_MAPPING(idx) \
722 static ssize_t mapping##idx##_show(struct device *dev, \
723 struct device_attribute *attr, char *buf) \
725 return mappingN(dev, buf, idx); \
727 static DEVICE_ATTR_RO(mapping##idx)
730 * 32 should be enough for a while, even in the presence of socket
731 * interleave a 32-way interleave set is a degenerate case.
766 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
768 struct device *dev = container_of(kobj, struct device, kobj);
769 struct nd_region *nd_region = to_nd_region(dev);
771 if (n < nd_region->ndr_mappings)
776 static struct attribute *mapping_attributes[] = {
777 &dev_attr_mapping0.attr,
778 &dev_attr_mapping1.attr,
779 &dev_attr_mapping2.attr,
780 &dev_attr_mapping3.attr,
781 &dev_attr_mapping4.attr,
782 &dev_attr_mapping5.attr,
783 &dev_attr_mapping6.attr,
784 &dev_attr_mapping7.attr,
785 &dev_attr_mapping8.attr,
786 &dev_attr_mapping9.attr,
787 &dev_attr_mapping10.attr,
788 &dev_attr_mapping11.attr,
789 &dev_attr_mapping12.attr,
790 &dev_attr_mapping13.attr,
791 &dev_attr_mapping14.attr,
792 &dev_attr_mapping15.attr,
793 &dev_attr_mapping16.attr,
794 &dev_attr_mapping17.attr,
795 &dev_attr_mapping18.attr,
796 &dev_attr_mapping19.attr,
797 &dev_attr_mapping20.attr,
798 &dev_attr_mapping21.attr,
799 &dev_attr_mapping22.attr,
800 &dev_attr_mapping23.attr,
801 &dev_attr_mapping24.attr,
802 &dev_attr_mapping25.attr,
803 &dev_attr_mapping26.attr,
804 &dev_attr_mapping27.attr,
805 &dev_attr_mapping28.attr,
806 &dev_attr_mapping29.attr,
807 &dev_attr_mapping30.attr,
808 &dev_attr_mapping31.attr,
812 static const struct attribute_group nd_mapping_attribute_group = {
813 .is_visible = mapping_visible,
814 .attrs = mapping_attributes,
817 static const struct attribute_group nd_region_attribute_group = {
818 .attrs = nd_region_attributes,
819 .is_visible = region_visible,
822 static const struct attribute_group *nd_region_attribute_groups[] = {
823 &nd_device_attribute_group,
824 &nd_region_attribute_group,
825 &nd_numa_attribute_group,
826 &nd_mapping_attribute_group,
830 static const struct device_type nd_pmem_device_type = {
832 .release = nd_region_release,
833 .groups = nd_region_attribute_groups,
836 static const struct device_type nd_volatile_device_type = {
837 .name = "nd_volatile",
838 .release = nd_region_release,
839 .groups = nd_region_attribute_groups,
842 bool is_nd_pmem(const struct device *dev)
844 return dev ? dev->type == &nd_pmem_device_type : false;
847 bool is_nd_volatile(const struct device *dev)
849 return dev ? dev->type == &nd_volatile_device_type : false;
852 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
853 struct nd_namespace_index *nsindex)
855 struct nd_interleave_set *nd_set = nd_region->nd_set;
860 if (nsindex && __le16_to_cpu(nsindex->major) == 1
861 && __le16_to_cpu(nsindex->minor) == 1)
862 return nd_set->cookie1;
863 return nd_set->cookie2;
866 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
868 struct nd_interleave_set *nd_set = nd_region->nd_set;
871 return nd_set->altcookie;
875 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
877 struct nd_label_ent *label_ent, *e;
879 lockdep_assert_held(&nd_mapping->lock);
880 list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
881 list_del(&label_ent->list);
887 * When a namespace is activated create new seeds for the next
888 * namespace, or namespace-personality to be configured.
890 void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev)
892 nvdimm_bus_lock(dev);
893 if (nd_region->ns_seed == dev) {
894 nd_region_create_ns_seed(nd_region);
895 } else if (is_nd_btt(dev)) {
896 struct nd_btt *nd_btt = to_nd_btt(dev);
898 if (nd_region->btt_seed == dev)
899 nd_region_create_btt_seed(nd_region);
900 if (nd_region->ns_seed == &nd_btt->ndns->dev)
901 nd_region_create_ns_seed(nd_region);
902 } else if (is_nd_pfn(dev)) {
903 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
905 if (nd_region->pfn_seed == dev)
906 nd_region_create_pfn_seed(nd_region);
907 if (nd_region->ns_seed == &nd_pfn->ndns->dev)
908 nd_region_create_ns_seed(nd_region);
909 } else if (is_nd_dax(dev)) {
910 struct nd_dax *nd_dax = to_nd_dax(dev);
912 if (nd_region->dax_seed == dev)
913 nd_region_create_dax_seed(nd_region);
914 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
915 nd_region_create_ns_seed(nd_region);
917 nvdimm_bus_unlock(dev);
921 * nd_region_acquire_lane - allocate and lock a lane
922 * @nd_region: region id and number of lanes possible
924 * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
925 * We optimize for the common case where there are 256 lanes, one
926 * per-cpu. For larger systems we need to lock to share lanes. For now
927 * this implementation assumes the cost of maintaining an allocator for
928 * free lanes is on the order of the lock hold time, so it implements a
929 * static lane = cpu % num_lanes mapping.
931 * In the case of a BTT instance on top of a BLK namespace a lane may be
932 * acquired recursively. We lock on the first instance.
934 * In the case of a BTT instance on top of PMEM, we only acquire a lane
935 * for the BTT metadata updates.
937 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
939 unsigned int cpu, lane;
942 if (nd_region->num_lanes < nr_cpu_ids) {
943 struct nd_percpu_lane *ndl_lock, *ndl_count;
945 lane = cpu % nd_region->num_lanes;
946 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
947 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
948 if (ndl_count->count++ == 0)
949 spin_lock(&ndl_lock->lock);
955 EXPORT_SYMBOL(nd_region_acquire_lane);
957 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
959 if (nd_region->num_lanes < nr_cpu_ids) {
960 unsigned int cpu = get_cpu();
961 struct nd_percpu_lane *ndl_lock, *ndl_count;
963 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
964 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
965 if (--ndl_count->count == 0)
966 spin_unlock(&ndl_lock->lock);
971 EXPORT_SYMBOL(nd_region_release_lane);
974 * PowerPC requires this alignment for memremap_pages(). All other archs
975 * should be ok with SUBSECTION_SIZE (see memremap_compat_align()).
977 #define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M
979 static unsigned long default_align(struct nd_region *nd_region)
985 align = MEMREMAP_COMPAT_ALIGN_MAX;
986 if (nd_region->ndr_size < MEMREMAP_COMPAT_ALIGN_MAX)
989 mappings = max_t(u16, 1, nd_region->ndr_mappings);
990 div_u64_rem(align, mappings, &remainder);
997 static struct lock_class_key nvdimm_region_key;
999 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
1000 struct nd_region_desc *ndr_desc,
1001 const struct device_type *dev_type, const char *caller)
1003 struct nd_region *nd_region;
1008 for (i = 0; i < ndr_desc->num_mappings; i++) {
1009 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1010 struct nvdimm *nvdimm = mapping->nvdimm;
1012 if ((mapping->start | mapping->size) % PAGE_SIZE) {
1013 dev_err(&nvdimm_bus->dev,
1014 "%s: %s mapping%d is not %ld aligned\n",
1015 caller, dev_name(&nvdimm->dev), i, PAGE_SIZE);
1019 if (test_bit(NDD_UNARMED, &nvdimm->flags))
1025 kzalloc(struct_size(nd_region, mapping, ndr_desc->num_mappings),
1030 /* CXL pre-assigns memregion ids before creating nvdimm regions */
1031 if (test_bit(ND_REGION_CXL, &ndr_desc->flags)) {
1032 nd_region->id = ndr_desc->memregion;
1034 nd_region->id = memregion_alloc(GFP_KERNEL);
1035 if (nd_region->id < 0)
1039 nd_region->lane = alloc_percpu(struct nd_percpu_lane);
1040 if (!nd_region->lane)
1043 for (i = 0; i < nr_cpu_ids; i++) {
1044 struct nd_percpu_lane *ndl;
1046 ndl = per_cpu_ptr(nd_region->lane, i);
1047 spin_lock_init(&ndl->lock);
1051 for (i = 0; i < ndr_desc->num_mappings; i++) {
1052 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1053 struct nvdimm *nvdimm = mapping->nvdimm;
1055 nd_region->mapping[i].nvdimm = nvdimm;
1056 nd_region->mapping[i].start = mapping->start;
1057 nd_region->mapping[i].size = mapping->size;
1058 nd_region->mapping[i].position = mapping->position;
1059 INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1060 mutex_init(&nd_region->mapping[i].lock);
1062 get_device(&nvdimm->dev);
1064 nd_region->ndr_mappings = ndr_desc->num_mappings;
1065 nd_region->provider_data = ndr_desc->provider_data;
1066 nd_region->nd_set = ndr_desc->nd_set;
1067 nd_region->num_lanes = ndr_desc->num_lanes;
1068 nd_region->flags = ndr_desc->flags;
1070 nd_region->numa_node = ndr_desc->numa_node;
1071 nd_region->target_node = ndr_desc->target_node;
1072 ida_init(&nd_region->ns_ida);
1073 ida_init(&nd_region->btt_ida);
1074 ida_init(&nd_region->pfn_ida);
1075 ida_init(&nd_region->dax_ida);
1076 dev = &nd_region->dev;
1077 dev_set_name(dev, "region%d", nd_region->id);
1078 dev->parent = &nvdimm_bus->dev;
1079 dev->type = dev_type;
1080 dev->groups = ndr_desc->attr_groups;
1081 dev->of_node = ndr_desc->of_node;
1082 nd_region->ndr_size = resource_size(ndr_desc->res);
1083 nd_region->ndr_start = ndr_desc->res->start;
1084 nd_region->align = default_align(nd_region);
1085 if (ndr_desc->flush)
1086 nd_region->flush = ndr_desc->flush;
1088 nd_region->flush = NULL;
1090 device_initialize(dev);
1091 lockdep_set_class(&dev->mutex, &nvdimm_region_key);
1092 nd_device_register(dev);
1097 if (!test_bit(ND_REGION_CXL, &ndr_desc->flags))
1098 memregion_free(nd_region->id);
1104 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1105 struct nd_region_desc *ndr_desc)
1107 ndr_desc->num_lanes = ND_MAX_LANES;
1108 return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1111 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1113 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1114 struct nd_region_desc *ndr_desc)
1116 ndr_desc->num_lanes = ND_MAX_LANES;
1117 return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1120 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1122 void nvdimm_region_delete(struct nd_region *nd_region)
1125 nd_device_unregister(&nd_region->dev, ND_SYNC);
1127 EXPORT_SYMBOL_GPL(nvdimm_region_delete);
1129 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
1133 if (!nd_region->flush)
1134 rc = generic_nvdimm_flush(nd_region);
1136 if (nd_region->flush(nd_region, bio))
1143 * generic_nvdimm_flush() - flush any posted write queues between the cpu and pmem media
1144 * @nd_region: interleaved pmem region
1146 int generic_nvdimm_flush(struct nd_region *nd_region)
1148 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1152 * Try to encourage some diversity in flush hint addresses
1153 * across cpus assuming a limited number of flush hints.
1155 idx = this_cpu_read(flush_idx);
1156 idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1159 * The pmem_wmb() is needed to 'sfence' all
1160 * previous writes such that they are architecturally visible for
1161 * the platform buffer flush. Note that we've already arranged for pmem
1162 * writes to avoid the cache via memcpy_flushcache(). The final
1163 * wmb() ensures ordering for the NVDIMM flush write.
1166 for (i = 0; i < nd_region->ndr_mappings; i++)
1167 if (ndrd_get_flush_wpq(ndrd, i, 0))
1168 writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1173 EXPORT_SYMBOL_GPL(nvdimm_flush);
1176 * nvdimm_has_flush - determine write flushing requirements
1177 * @nd_region: interleaved pmem region
1179 * Returns 1 if writes require flushing
1180 * Returns 0 if writes do not require flushing
1181 * Returns -ENXIO if flushing capability can not be determined
1183 int nvdimm_has_flush(struct nd_region *nd_region)
1187 /* no nvdimm or pmem api == flushing capability unknown */
1188 if (nd_region->ndr_mappings == 0
1189 || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1192 /* Test if an explicit flush function is defined */
1193 if (test_bit(ND_REGION_ASYNC, &nd_region->flags) && nd_region->flush)
1196 /* Test if any flush hints for the region are available */
1197 for (i = 0; i < nd_region->ndr_mappings; i++) {
1198 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1199 struct nvdimm *nvdimm = nd_mapping->nvdimm;
1201 /* flush hints present / available */
1202 if (nvdimm->num_flush)
1207 * The platform defines dimm devices without hints nor explicit flush,
1208 * assume platform persistence mechanism like ADR
1212 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1214 int nvdimm_has_cache(struct nd_region *nd_region)
1216 return is_nd_pmem(&nd_region->dev) &&
1217 !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1219 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1221 bool is_nvdimm_sync(struct nd_region *nd_region)
1223 if (is_nd_volatile(&nd_region->dev))
1226 return is_nd_pmem(&nd_region->dev) &&
1227 !test_bit(ND_REGION_ASYNC, &nd_region->flags);
1229 EXPORT_SYMBOL_GPL(is_nvdimm_sync);
1231 struct conflict_context {
1232 struct nd_region *nd_region;
1233 resource_size_t start, size;
1236 static int region_conflict(struct device *dev, void *data)
1238 struct nd_region *nd_region;
1239 struct conflict_context *ctx = data;
1240 resource_size_t res_end, region_end, region_start;
1242 if (!is_memory(dev))
1245 nd_region = to_nd_region(dev);
1246 if (nd_region == ctx->nd_region)
1249 res_end = ctx->start + ctx->size;
1250 region_start = nd_region->ndr_start;
1251 region_end = region_start + nd_region->ndr_size;
1252 if (ctx->start >= region_start && ctx->start < region_end)
1254 if (res_end > region_start && res_end <= region_end)
1259 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1260 resource_size_t size)
1262 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1263 struct conflict_context ctx = {
1264 .nd_region = nd_region,
1269 return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1272 MODULE_IMPORT_NS(DEVMEM);