Merge tag 'mmc-v6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[linux-2.6-microblaze.git] / drivers / nvdimm / pmem.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Persistent Memory Driver
4  *
5  * Copyright (c) 2014-2015, Intel Corporation.
6  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
7  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
8  */
9
10 #include <linux/blkdev.h>
11 #include <linux/pagemap.h>
12 #include <linux/hdreg.h>
13 #include <linux/init.h>
14 #include <linux/platform_device.h>
15 #include <linux/set_memory.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/badblocks.h>
19 #include <linux/memremap.h>
20 #include <linux/vmalloc.h>
21 #include <linux/blk-mq.h>
22 #include <linux/pfn_t.h>
23 #include <linux/slab.h>
24 #include <linux/uio.h>
25 #include <linux/dax.h>
26 #include <linux/nd.h>
27 #include <linux/mm.h>
28 #include <asm/cacheflush.h>
29 #include "pmem.h"
30 #include "btt.h"
31 #include "pfn.h"
32 #include "nd.h"
33
34 static struct device *to_dev(struct pmem_device *pmem)
35 {
36         /*
37          * nvdimm bus services need a 'dev' parameter, and we record the device
38          * at init in bb.dev.
39          */
40         return pmem->bb.dev;
41 }
42
43 static struct nd_region *to_region(struct pmem_device *pmem)
44 {
45         return to_nd_region(to_dev(pmem)->parent);
46 }
47
48 static phys_addr_t pmem_to_phys(struct pmem_device *pmem, phys_addr_t offset)
49 {
50         return pmem->phys_addr + offset;
51 }
52
53 static sector_t to_sect(struct pmem_device *pmem, phys_addr_t offset)
54 {
55         return (offset - pmem->data_offset) >> SECTOR_SHIFT;
56 }
57
58 static phys_addr_t to_offset(struct pmem_device *pmem, sector_t sector)
59 {
60         return (sector << SECTOR_SHIFT) + pmem->data_offset;
61 }
62
63 static void pmem_mkpage_present(struct pmem_device *pmem, phys_addr_t offset,
64                 unsigned int len)
65 {
66         phys_addr_t phys = pmem_to_phys(pmem, offset);
67         unsigned long pfn_start, pfn_end, pfn;
68
69         /* only pmem in the linear map supports HWPoison */
70         if (is_vmalloc_addr(pmem->virt_addr))
71                 return;
72
73         pfn_start = PHYS_PFN(phys);
74         pfn_end = pfn_start + PHYS_PFN(len);
75         for (pfn = pfn_start; pfn < pfn_end; pfn++) {
76                 struct page *page = pfn_to_page(pfn);
77
78                 /*
79                  * Note, no need to hold a get_dev_pagemap() reference
80                  * here since we're in the driver I/O path and
81                  * outstanding I/O requests pin the dev_pagemap.
82                  */
83                 if (test_and_clear_pmem_poison(page))
84                         clear_mce_nospec(pfn);
85         }
86 }
87
88 static void pmem_clear_bb(struct pmem_device *pmem, sector_t sector, long blks)
89 {
90         if (blks == 0)
91                 return;
92         badblocks_clear(&pmem->bb, sector, blks);
93         if (pmem->bb_state)
94                 sysfs_notify_dirent(pmem->bb_state);
95 }
96
97 static long __pmem_clear_poison(struct pmem_device *pmem,
98                 phys_addr_t offset, unsigned int len)
99 {
100         phys_addr_t phys = pmem_to_phys(pmem, offset);
101         long cleared = nvdimm_clear_poison(to_dev(pmem), phys, len);
102
103         if (cleared > 0) {
104                 pmem_mkpage_present(pmem, offset, cleared);
105                 arch_invalidate_pmem(pmem->virt_addr + offset, len);
106         }
107         return cleared;
108 }
109
110 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
111                 phys_addr_t offset, unsigned int len)
112 {
113         long cleared = __pmem_clear_poison(pmem, offset, len);
114
115         if (cleared < 0)
116                 return BLK_STS_IOERR;
117
118         pmem_clear_bb(pmem, to_sect(pmem, offset), cleared >> SECTOR_SHIFT);
119         if (cleared < len)
120                 return BLK_STS_IOERR;
121         return BLK_STS_OK;
122 }
123
124 static void write_pmem(void *pmem_addr, struct page *page,
125                 unsigned int off, unsigned int len)
126 {
127         unsigned int chunk;
128         void *mem;
129
130         while (len) {
131                 mem = kmap_atomic(page);
132                 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
133                 memcpy_flushcache(pmem_addr, mem + off, chunk);
134                 kunmap_atomic(mem);
135                 len -= chunk;
136                 off = 0;
137                 page++;
138                 pmem_addr += chunk;
139         }
140 }
141
142 static blk_status_t read_pmem(struct page *page, unsigned int off,
143                 void *pmem_addr, unsigned int len)
144 {
145         unsigned int chunk;
146         unsigned long rem;
147         void *mem;
148
149         while (len) {
150                 mem = kmap_atomic(page);
151                 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
152                 rem = copy_mc_to_kernel(mem + off, pmem_addr, chunk);
153                 kunmap_atomic(mem);
154                 if (rem)
155                         return BLK_STS_IOERR;
156                 len -= chunk;
157                 off = 0;
158                 page++;
159                 pmem_addr += chunk;
160         }
161         return BLK_STS_OK;
162 }
163
164 static blk_status_t pmem_do_read(struct pmem_device *pmem,
165                         struct page *page, unsigned int page_off,
166                         sector_t sector, unsigned int len)
167 {
168         blk_status_t rc;
169         phys_addr_t pmem_off = to_offset(pmem, sector);
170         void *pmem_addr = pmem->virt_addr + pmem_off;
171
172         if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
173                 return BLK_STS_IOERR;
174
175         rc = read_pmem(page, page_off, pmem_addr, len);
176         flush_dcache_page(page);
177         return rc;
178 }
179
180 static blk_status_t pmem_do_write(struct pmem_device *pmem,
181                         struct page *page, unsigned int page_off,
182                         sector_t sector, unsigned int len)
183 {
184         phys_addr_t pmem_off = to_offset(pmem, sector);
185         void *pmem_addr = pmem->virt_addr + pmem_off;
186
187         if (unlikely(is_bad_pmem(&pmem->bb, sector, len))) {
188                 blk_status_t rc = pmem_clear_poison(pmem, pmem_off, len);
189
190                 if (rc != BLK_STS_OK)
191                         return rc;
192         }
193
194         flush_dcache_page(page);
195         write_pmem(pmem_addr, page, page_off, len);
196
197         return BLK_STS_OK;
198 }
199
200 static void pmem_submit_bio(struct bio *bio)
201 {
202         int ret = 0;
203         blk_status_t rc = 0;
204         bool do_acct;
205         unsigned long start;
206         struct bio_vec bvec;
207         struct bvec_iter iter;
208         struct pmem_device *pmem = bio->bi_bdev->bd_disk->private_data;
209         struct nd_region *nd_region = to_region(pmem);
210
211         if (bio->bi_opf & REQ_PREFLUSH)
212                 ret = nvdimm_flush(nd_region, bio);
213
214         do_acct = blk_queue_io_stat(bio->bi_bdev->bd_disk->queue);
215         if (do_acct)
216                 start = bio_start_io_acct(bio);
217         bio_for_each_segment(bvec, bio, iter) {
218                 if (op_is_write(bio_op(bio)))
219                         rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset,
220                                 iter.bi_sector, bvec.bv_len);
221                 else
222                         rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset,
223                                 iter.bi_sector, bvec.bv_len);
224                 if (rc) {
225                         bio->bi_status = rc;
226                         break;
227                 }
228         }
229         if (do_acct)
230                 bio_end_io_acct(bio, start);
231
232         if (bio->bi_opf & REQ_FUA)
233                 ret = nvdimm_flush(nd_region, bio);
234
235         if (ret)
236                 bio->bi_status = errno_to_blk_status(ret);
237
238         bio_endio(bio);
239 }
240
241 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
242 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
243                 long nr_pages, enum dax_access_mode mode, void **kaddr,
244                 pfn_t *pfn)
245 {
246         resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
247         sector_t sector = PFN_PHYS(pgoff) >> SECTOR_SHIFT;
248         unsigned int num = PFN_PHYS(nr_pages) >> SECTOR_SHIFT;
249         struct badblocks *bb = &pmem->bb;
250         sector_t first_bad;
251         int num_bad;
252
253         if (kaddr)
254                 *kaddr = pmem->virt_addr + offset;
255         if (pfn)
256                 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
257
258         if (bb->count &&
259             badblocks_check(bb, sector, num, &first_bad, &num_bad)) {
260                 long actual_nr;
261
262                 if (mode != DAX_RECOVERY_WRITE)
263                         return -EIO;
264
265                 /*
266                  * Set the recovery stride is set to kernel page size because
267                  * the underlying driver and firmware clear poison functions
268                  * don't appear to handle large chunk(such as 2MiB) reliably.
269                  */
270                 actual_nr = PHYS_PFN(
271                         PAGE_ALIGN((first_bad - sector) << SECTOR_SHIFT));
272                 dev_dbg(pmem->bb.dev, "start sector(%llu), nr_pages(%ld), first_bad(%llu), actual_nr(%ld)\n",
273                                 sector, nr_pages, first_bad, actual_nr);
274                 if (actual_nr)
275                         return actual_nr;
276                 return 1;
277         }
278
279         /*
280          * If badblocks are present but not in the range, limit known good range
281          * to the requested range.
282          */
283         if (bb->count)
284                 return nr_pages;
285         return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
286 }
287
288 static const struct block_device_operations pmem_fops = {
289         .owner =                THIS_MODULE,
290         .submit_bio =           pmem_submit_bio,
291 };
292
293 static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
294                                     size_t nr_pages)
295 {
296         struct pmem_device *pmem = dax_get_private(dax_dev);
297
298         return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0,
299                                    PFN_PHYS(pgoff) >> SECTOR_SHIFT,
300                                    PAGE_SIZE));
301 }
302
303 static long pmem_dax_direct_access(struct dax_device *dax_dev,
304                 pgoff_t pgoff, long nr_pages, enum dax_access_mode mode,
305                 void **kaddr, pfn_t *pfn)
306 {
307         struct pmem_device *pmem = dax_get_private(dax_dev);
308
309         return __pmem_direct_access(pmem, pgoff, nr_pages, mode, kaddr, pfn);
310 }
311
312 /*
313  * The recovery write thread started out as a normal pwrite thread and
314  * when the filesystem was told about potential media error in the
315  * range, filesystem turns the normal pwrite to a dax_recovery_write.
316  *
317  * The recovery write consists of clearing media poison, clearing page
318  * HWPoison bit, reenable page-wide read-write permission, flush the
319  * caches and finally write.  A competing pread thread will be held
320  * off during the recovery process since data read back might not be
321  * valid, and this is achieved by clearing the badblock records after
322  * the recovery write is complete. Competing recovery write threads
323  * are already serialized by writer lock held by dax_iomap_rw().
324  */
325 static size_t pmem_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
326                 void *addr, size_t bytes, struct iov_iter *i)
327 {
328         struct pmem_device *pmem = dax_get_private(dax_dev);
329         size_t olen, len, off;
330         phys_addr_t pmem_off;
331         struct device *dev = pmem->bb.dev;
332         long cleared;
333
334         off = offset_in_page(addr);
335         len = PFN_PHYS(PFN_UP(off + bytes));
336         if (!is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) >> SECTOR_SHIFT, len))
337                 return _copy_from_iter_flushcache(addr, bytes, i);
338
339         /*
340          * Not page-aligned range cannot be recovered. This should not
341          * happen unless something else went wrong.
342          */
343         if (off || !PAGE_ALIGNED(bytes)) {
344                 dev_dbg(dev, "Found poison, but addr(%p) or bytes(%#zx) not page aligned\n",
345                         addr, bytes);
346                 return 0;
347         }
348
349         pmem_off = PFN_PHYS(pgoff) + pmem->data_offset;
350         cleared = __pmem_clear_poison(pmem, pmem_off, len);
351         if (cleared > 0 && cleared < len) {
352                 dev_dbg(dev, "poison cleared only %ld out of %zu bytes\n",
353                         cleared, len);
354                 return 0;
355         }
356         if (cleared < 0) {
357                 dev_dbg(dev, "poison clear failed: %ld\n", cleared);
358                 return 0;
359         }
360
361         olen = _copy_from_iter_flushcache(addr, bytes, i);
362         pmem_clear_bb(pmem, to_sect(pmem, pmem_off), cleared >> SECTOR_SHIFT);
363
364         return olen;
365 }
366
367 static const struct dax_operations pmem_dax_ops = {
368         .direct_access = pmem_dax_direct_access,
369         .zero_page_range = pmem_dax_zero_page_range,
370         .recovery_write = pmem_recovery_write,
371 };
372
373 static ssize_t write_cache_show(struct device *dev,
374                 struct device_attribute *attr, char *buf)
375 {
376         struct pmem_device *pmem = dev_to_disk(dev)->private_data;
377
378         return sprintf(buf, "%d\n", !!dax_write_cache_enabled(pmem->dax_dev));
379 }
380
381 static ssize_t write_cache_store(struct device *dev,
382                 struct device_attribute *attr, const char *buf, size_t len)
383 {
384         struct pmem_device *pmem = dev_to_disk(dev)->private_data;
385         bool write_cache;
386         int rc;
387
388         rc = strtobool(buf, &write_cache);
389         if (rc)
390                 return rc;
391         dax_write_cache(pmem->dax_dev, write_cache);
392         return len;
393 }
394 static DEVICE_ATTR_RW(write_cache);
395
396 static umode_t dax_visible(struct kobject *kobj, struct attribute *a, int n)
397 {
398 #ifndef CONFIG_ARCH_HAS_PMEM_API
399         if (a == &dev_attr_write_cache.attr)
400                 return 0;
401 #endif
402         return a->mode;
403 }
404
405 static struct attribute *dax_attributes[] = {
406         &dev_attr_write_cache.attr,
407         NULL,
408 };
409
410 static const struct attribute_group dax_attribute_group = {
411         .name           = "dax",
412         .attrs          = dax_attributes,
413         .is_visible     = dax_visible,
414 };
415
416 static const struct attribute_group *pmem_attribute_groups[] = {
417         &dax_attribute_group,
418         NULL,
419 };
420
421 static void pmem_release_disk(void *__pmem)
422 {
423         struct pmem_device *pmem = __pmem;
424
425         dax_remove_host(pmem->disk);
426         kill_dax(pmem->dax_dev);
427         put_dax(pmem->dax_dev);
428         del_gendisk(pmem->disk);
429
430         put_disk(pmem->disk);
431 }
432
433 static int pmem_pagemap_memory_failure(struct dev_pagemap *pgmap,
434                 unsigned long pfn, unsigned long nr_pages, int mf_flags)
435 {
436         struct pmem_device *pmem =
437                         container_of(pgmap, struct pmem_device, pgmap);
438         u64 offset = PFN_PHYS(pfn) - pmem->phys_addr - pmem->data_offset;
439         u64 len = nr_pages << PAGE_SHIFT;
440
441         return dax_holder_notify_failure(pmem->dax_dev, offset, len, mf_flags);
442 }
443
444 static const struct dev_pagemap_ops fsdax_pagemap_ops = {
445         .memory_failure         = pmem_pagemap_memory_failure,
446 };
447
448 static int pmem_attach_disk(struct device *dev,
449                 struct nd_namespace_common *ndns)
450 {
451         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
452         struct nd_region *nd_region = to_nd_region(dev->parent);
453         int nid = dev_to_node(dev), fua;
454         struct resource *res = &nsio->res;
455         struct range bb_range;
456         struct nd_pfn *nd_pfn = NULL;
457         struct dax_device *dax_dev;
458         struct nd_pfn_sb *pfn_sb;
459         struct pmem_device *pmem;
460         struct request_queue *q;
461         struct gendisk *disk;
462         void *addr;
463         int rc;
464
465         pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
466         if (!pmem)
467                 return -ENOMEM;
468
469         rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
470         if (rc)
471                 return rc;
472
473         /* while nsio_rw_bytes is active, parse a pfn info block if present */
474         if (is_nd_pfn(dev)) {
475                 nd_pfn = to_nd_pfn(dev);
476                 rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
477                 if (rc)
478                         return rc;
479         }
480
481         /* we're attaching a block device, disable raw namespace access */
482         devm_namespace_disable(dev, ndns);
483
484         dev_set_drvdata(dev, pmem);
485         pmem->phys_addr = res->start;
486         pmem->size = resource_size(res);
487         fua = nvdimm_has_flush(nd_region);
488         if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
489                 dev_warn(dev, "unable to guarantee persistence of writes\n");
490                 fua = 0;
491         }
492
493         if (!devm_request_mem_region(dev, res->start, resource_size(res),
494                                 dev_name(&ndns->dev))) {
495                 dev_warn(dev, "could not reserve region %pR\n", res);
496                 return -EBUSY;
497         }
498
499         disk = blk_alloc_disk(nid);
500         if (!disk)
501                 return -ENOMEM;
502         q = disk->queue;
503
504         pmem->disk = disk;
505         pmem->pgmap.owner = pmem;
506         pmem->pfn_flags = PFN_DEV;
507         if (is_nd_pfn(dev)) {
508                 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
509                 pmem->pgmap.ops = &fsdax_pagemap_ops;
510                 addr = devm_memremap_pages(dev, &pmem->pgmap);
511                 pfn_sb = nd_pfn->pfn_sb;
512                 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
513                 pmem->pfn_pad = resource_size(res) -
514                         range_len(&pmem->pgmap.range);
515                 pmem->pfn_flags |= PFN_MAP;
516                 bb_range = pmem->pgmap.range;
517                 bb_range.start += pmem->data_offset;
518         } else if (pmem_should_map_pages(dev)) {
519                 pmem->pgmap.range.start = res->start;
520                 pmem->pgmap.range.end = res->end;
521                 pmem->pgmap.nr_range = 1;
522                 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
523                 pmem->pgmap.ops = &fsdax_pagemap_ops;
524                 addr = devm_memremap_pages(dev, &pmem->pgmap);
525                 pmem->pfn_flags |= PFN_MAP;
526                 bb_range = pmem->pgmap.range;
527         } else {
528                 addr = devm_memremap(dev, pmem->phys_addr,
529                                 pmem->size, ARCH_MEMREMAP_PMEM);
530                 bb_range.start =  res->start;
531                 bb_range.end = res->end;
532         }
533
534         if (IS_ERR(addr)) {
535                 rc = PTR_ERR(addr);
536                 goto out;
537         }
538         pmem->virt_addr = addr;
539
540         blk_queue_write_cache(q, true, fua);
541         blk_queue_physical_block_size(q, PAGE_SIZE);
542         blk_queue_logical_block_size(q, pmem_sector_size(ndns));
543         blk_queue_max_hw_sectors(q, UINT_MAX);
544         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
545         blk_queue_flag_set(QUEUE_FLAG_SYNCHRONOUS, q);
546         if (pmem->pfn_flags & PFN_MAP)
547                 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
548
549         disk->fops              = &pmem_fops;
550         disk->private_data      = pmem;
551         nvdimm_namespace_disk_name(ndns, disk->disk_name);
552         set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
553                         / 512);
554         if (devm_init_badblocks(dev, &pmem->bb))
555                 return -ENOMEM;
556         nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_range);
557         disk->bb = &pmem->bb;
558
559         dax_dev = alloc_dax(pmem, &pmem_dax_ops);
560         if (IS_ERR(dax_dev)) {
561                 rc = PTR_ERR(dax_dev);
562                 goto out;
563         }
564         set_dax_nocache(dax_dev);
565         set_dax_nomc(dax_dev);
566         if (is_nvdimm_sync(nd_region))
567                 set_dax_synchronous(dax_dev);
568         rc = dax_add_host(dax_dev, disk);
569         if (rc)
570                 goto out_cleanup_dax;
571         dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
572         pmem->dax_dev = dax_dev;
573
574         rc = device_add_disk(dev, disk, pmem_attribute_groups);
575         if (rc)
576                 goto out_remove_host;
577         if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
578                 return -ENOMEM;
579
580         nvdimm_check_and_set_ro(disk);
581
582         pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
583                                           "badblocks");
584         if (!pmem->bb_state)
585                 dev_warn(dev, "'badblocks' notification disabled\n");
586         return 0;
587
588 out_remove_host:
589         dax_remove_host(pmem->disk);
590 out_cleanup_dax:
591         kill_dax(pmem->dax_dev);
592         put_dax(pmem->dax_dev);
593 out:
594         put_disk(pmem->disk);
595         return rc;
596 }
597
598 static int nd_pmem_probe(struct device *dev)
599 {
600         int ret;
601         struct nd_namespace_common *ndns;
602
603         ndns = nvdimm_namespace_common_probe(dev);
604         if (IS_ERR(ndns))
605                 return PTR_ERR(ndns);
606
607         if (is_nd_btt(dev))
608                 return nvdimm_namespace_attach_btt(ndns);
609
610         if (is_nd_pfn(dev))
611                 return pmem_attach_disk(dev, ndns);
612
613         ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
614         if (ret)
615                 return ret;
616
617         ret = nd_btt_probe(dev, ndns);
618         if (ret == 0)
619                 return -ENXIO;
620
621         /*
622          * We have two failure conditions here, there is no
623          * info reserver block or we found a valid info reserve block
624          * but failed to initialize the pfn superblock.
625          *
626          * For the first case consider namespace as a raw pmem namespace
627          * and attach a disk.
628          *
629          * For the latter, consider this a success and advance the namespace
630          * seed.
631          */
632         ret = nd_pfn_probe(dev, ndns);
633         if (ret == 0)
634                 return -ENXIO;
635         else if (ret == -EOPNOTSUPP)
636                 return ret;
637
638         ret = nd_dax_probe(dev, ndns);
639         if (ret == 0)
640                 return -ENXIO;
641         else if (ret == -EOPNOTSUPP)
642                 return ret;
643
644         /* probe complete, attach handles namespace enabling */
645         devm_namespace_disable(dev, ndns);
646
647         return pmem_attach_disk(dev, ndns);
648 }
649
650 static void nd_pmem_remove(struct device *dev)
651 {
652         struct pmem_device *pmem = dev_get_drvdata(dev);
653
654         if (is_nd_btt(dev))
655                 nvdimm_namespace_detach_btt(to_nd_btt(dev));
656         else {
657                 /*
658                  * Note, this assumes device_lock() context to not
659                  * race nd_pmem_notify()
660                  */
661                 sysfs_put(pmem->bb_state);
662                 pmem->bb_state = NULL;
663         }
664         nvdimm_flush(to_nd_region(dev->parent), NULL);
665 }
666
667 static void nd_pmem_shutdown(struct device *dev)
668 {
669         nvdimm_flush(to_nd_region(dev->parent), NULL);
670 }
671
672 static void pmem_revalidate_poison(struct device *dev)
673 {
674         struct nd_region *nd_region;
675         resource_size_t offset = 0, end_trunc = 0;
676         struct nd_namespace_common *ndns;
677         struct nd_namespace_io *nsio;
678         struct badblocks *bb;
679         struct range range;
680         struct kernfs_node *bb_state;
681
682         if (is_nd_btt(dev)) {
683                 struct nd_btt *nd_btt = to_nd_btt(dev);
684
685                 ndns = nd_btt->ndns;
686                 nd_region = to_nd_region(ndns->dev.parent);
687                 nsio = to_nd_namespace_io(&ndns->dev);
688                 bb = &nsio->bb;
689                 bb_state = NULL;
690         } else {
691                 struct pmem_device *pmem = dev_get_drvdata(dev);
692
693                 nd_region = to_region(pmem);
694                 bb = &pmem->bb;
695                 bb_state = pmem->bb_state;
696
697                 if (is_nd_pfn(dev)) {
698                         struct nd_pfn *nd_pfn = to_nd_pfn(dev);
699                         struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
700
701                         ndns = nd_pfn->ndns;
702                         offset = pmem->data_offset +
703                                         __le32_to_cpu(pfn_sb->start_pad);
704                         end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
705                 } else {
706                         ndns = to_ndns(dev);
707                 }
708
709                 nsio = to_nd_namespace_io(&ndns->dev);
710         }
711
712         range.start = nsio->res.start + offset;
713         range.end = nsio->res.end - end_trunc;
714         nvdimm_badblocks_populate(nd_region, bb, &range);
715         if (bb_state)
716                 sysfs_notify_dirent(bb_state);
717 }
718
719 static void pmem_revalidate_region(struct device *dev)
720 {
721         struct pmem_device *pmem;
722
723         if (is_nd_btt(dev)) {
724                 struct nd_btt *nd_btt = to_nd_btt(dev);
725                 struct btt *btt = nd_btt->btt;
726
727                 nvdimm_check_and_set_ro(btt->btt_disk);
728                 return;
729         }
730
731         pmem = dev_get_drvdata(dev);
732         nvdimm_check_and_set_ro(pmem->disk);
733 }
734
735 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
736 {
737         switch (event) {
738         case NVDIMM_REVALIDATE_POISON:
739                 pmem_revalidate_poison(dev);
740                 break;
741         case NVDIMM_REVALIDATE_REGION:
742                 pmem_revalidate_region(dev);
743                 break;
744         default:
745                 dev_WARN_ONCE(dev, 1, "notify: unknown event: %d\n", event);
746                 break;
747         }
748 }
749
750 MODULE_ALIAS("pmem");
751 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
752 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
753 static struct nd_device_driver nd_pmem_driver = {
754         .probe = nd_pmem_probe,
755         .remove = nd_pmem_remove,
756         .notify = nd_pmem_notify,
757         .shutdown = nd_pmem_shutdown,
758         .drv = {
759                 .name = "nd_pmem",
760         },
761         .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
762 };
763
764 module_nd_driver(nd_pmem_driver);
765
766 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
767 MODULE_LICENSE("GPL v2");