Merge tag 'for-5.8-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux-2.6-microblaze.git] / drivers / nvdimm / pmem.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Persistent Memory Driver
4  *
5  * Copyright (c) 2014-2015, Intel Corporation.
6  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
7  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
8  */
9
10 #include <linux/blkdev.h>
11 #include <linux/hdreg.h>
12 #include <linux/init.h>
13 #include <linux/platform_device.h>
14 #include <linux/set_memory.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/badblocks.h>
18 #include <linux/memremap.h>
19 #include <linux/vmalloc.h>
20 #include <linux/blk-mq.h>
21 #include <linux/pfn_t.h>
22 #include <linux/slab.h>
23 #include <linux/uio.h>
24 #include <linux/dax.h>
25 #include <linux/nd.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mm.h>
28 #include <asm/cacheflush.h>
29 #include "pmem.h"
30 #include "pfn.h"
31 #include "nd.h"
32
33 static struct device *to_dev(struct pmem_device *pmem)
34 {
35         /*
36          * nvdimm bus services need a 'dev' parameter, and we record the device
37          * at init in bb.dev.
38          */
39         return pmem->bb.dev;
40 }
41
42 static struct nd_region *to_region(struct pmem_device *pmem)
43 {
44         return to_nd_region(to_dev(pmem)->parent);
45 }
46
47 static void hwpoison_clear(struct pmem_device *pmem,
48                 phys_addr_t phys, unsigned int len)
49 {
50         unsigned long pfn_start, pfn_end, pfn;
51
52         /* only pmem in the linear map supports HWPoison */
53         if (is_vmalloc_addr(pmem->virt_addr))
54                 return;
55
56         pfn_start = PHYS_PFN(phys);
57         pfn_end = pfn_start + PHYS_PFN(len);
58         for (pfn = pfn_start; pfn < pfn_end; pfn++) {
59                 struct page *page = pfn_to_page(pfn);
60
61                 /*
62                  * Note, no need to hold a get_dev_pagemap() reference
63                  * here since we're in the driver I/O path and
64                  * outstanding I/O requests pin the dev_pagemap.
65                  */
66                 if (test_and_clear_pmem_poison(page))
67                         clear_mce_nospec(pfn);
68         }
69 }
70
71 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
72                 phys_addr_t offset, unsigned int len)
73 {
74         struct device *dev = to_dev(pmem);
75         sector_t sector;
76         long cleared;
77         blk_status_t rc = BLK_STS_OK;
78
79         sector = (offset - pmem->data_offset) / 512;
80
81         cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
82         if (cleared < len)
83                 rc = BLK_STS_IOERR;
84         if (cleared > 0 && cleared / 512) {
85                 hwpoison_clear(pmem, pmem->phys_addr + offset, cleared);
86                 cleared /= 512;
87                 dev_dbg(dev, "%#llx clear %ld sector%s\n",
88                                 (unsigned long long) sector, cleared,
89                                 cleared > 1 ? "s" : "");
90                 badblocks_clear(&pmem->bb, sector, cleared);
91                 if (pmem->bb_state)
92                         sysfs_notify_dirent(pmem->bb_state);
93         }
94
95         arch_invalidate_pmem(pmem->virt_addr + offset, len);
96
97         return rc;
98 }
99
100 static void write_pmem(void *pmem_addr, struct page *page,
101                 unsigned int off, unsigned int len)
102 {
103         unsigned int chunk;
104         void *mem;
105
106         while (len) {
107                 mem = kmap_atomic(page);
108                 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
109                 memcpy_flushcache(pmem_addr, mem + off, chunk);
110                 kunmap_atomic(mem);
111                 len -= chunk;
112                 off = 0;
113                 page++;
114                 pmem_addr += chunk;
115         }
116 }
117
118 static blk_status_t read_pmem(struct page *page, unsigned int off,
119                 void *pmem_addr, unsigned int len)
120 {
121         unsigned int chunk;
122         unsigned long rem;
123         void *mem;
124
125         while (len) {
126                 mem = kmap_atomic(page);
127                 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
128                 rem = memcpy_mcsafe(mem + off, pmem_addr, chunk);
129                 kunmap_atomic(mem);
130                 if (rem)
131                         return BLK_STS_IOERR;
132                 len -= chunk;
133                 off = 0;
134                 page++;
135                 pmem_addr += chunk;
136         }
137         return BLK_STS_OK;
138 }
139
140 static blk_status_t pmem_do_read(struct pmem_device *pmem,
141                         struct page *page, unsigned int page_off,
142                         sector_t sector, unsigned int len)
143 {
144         blk_status_t rc;
145         phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
146         void *pmem_addr = pmem->virt_addr + pmem_off;
147
148         if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
149                 return BLK_STS_IOERR;
150
151         rc = read_pmem(page, page_off, pmem_addr, len);
152         flush_dcache_page(page);
153         return rc;
154 }
155
156 static blk_status_t pmem_do_write(struct pmem_device *pmem,
157                         struct page *page, unsigned int page_off,
158                         sector_t sector, unsigned int len)
159 {
160         blk_status_t rc = BLK_STS_OK;
161         bool bad_pmem = false;
162         phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
163         void *pmem_addr = pmem->virt_addr + pmem_off;
164
165         if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
166                 bad_pmem = true;
167
168         /*
169          * Note that we write the data both before and after
170          * clearing poison.  The write before clear poison
171          * handles situations where the latest written data is
172          * preserved and the clear poison operation simply marks
173          * the address range as valid without changing the data.
174          * In this case application software can assume that an
175          * interrupted write will either return the new good
176          * data or an error.
177          *
178          * However, if pmem_clear_poison() leaves the data in an
179          * indeterminate state we need to perform the write
180          * after clear poison.
181          */
182         flush_dcache_page(page);
183         write_pmem(pmem_addr, page, page_off, len);
184         if (unlikely(bad_pmem)) {
185                 rc = pmem_clear_poison(pmem, pmem_off, len);
186                 write_pmem(pmem_addr, page, page_off, len);
187         }
188
189         return rc;
190 }
191
192 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
193 {
194         int ret = 0;
195         blk_status_t rc = 0;
196         bool do_acct;
197         unsigned long start;
198         struct bio_vec bvec;
199         struct bvec_iter iter;
200         struct pmem_device *pmem = bio->bi_disk->private_data;
201         struct nd_region *nd_region = to_region(pmem);
202
203         if (bio->bi_opf & REQ_PREFLUSH)
204                 ret = nvdimm_flush(nd_region, bio);
205
206         do_acct = blk_queue_io_stat(bio->bi_disk->queue);
207         if (do_acct)
208                 start = bio_start_io_acct(bio);
209         bio_for_each_segment(bvec, bio, iter) {
210                 if (op_is_write(bio_op(bio)))
211                         rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset,
212                                 iter.bi_sector, bvec.bv_len);
213                 else
214                         rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset,
215                                 iter.bi_sector, bvec.bv_len);
216                 if (rc) {
217                         bio->bi_status = rc;
218                         break;
219                 }
220         }
221         if (do_acct)
222                 bio_end_io_acct(bio, start);
223
224         if (bio->bi_opf & REQ_FUA)
225                 ret = nvdimm_flush(nd_region, bio);
226
227         if (ret)
228                 bio->bi_status = errno_to_blk_status(ret);
229
230         bio_endio(bio);
231         return BLK_QC_T_NONE;
232 }
233
234 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
235                        struct page *page, unsigned int op)
236 {
237         struct pmem_device *pmem = bdev->bd_disk->private_data;
238         blk_status_t rc;
239
240         if (op_is_write(op))
241                 rc = pmem_do_write(pmem, page, 0, sector,
242                                    hpage_nr_pages(page) * PAGE_SIZE);
243         else
244                 rc = pmem_do_read(pmem, page, 0, sector,
245                                    hpage_nr_pages(page) * PAGE_SIZE);
246         /*
247          * The ->rw_page interface is subtle and tricky.  The core
248          * retries on any error, so we can only invoke page_endio() in
249          * the successful completion case.  Otherwise, we'll see crashes
250          * caused by double completion.
251          */
252         if (rc == 0)
253                 page_endio(page, op_is_write(op), 0);
254
255         return blk_status_to_errno(rc);
256 }
257
258 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
259 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
260                 long nr_pages, void **kaddr, pfn_t *pfn)
261 {
262         resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
263
264         if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
265                                         PFN_PHYS(nr_pages))))
266                 return -EIO;
267
268         if (kaddr)
269                 *kaddr = pmem->virt_addr + offset;
270         if (pfn)
271                 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
272
273         /*
274          * If badblocks are present, limit known good range to the
275          * requested range.
276          */
277         if (unlikely(pmem->bb.count))
278                 return nr_pages;
279         return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
280 }
281
282 static const struct block_device_operations pmem_fops = {
283         .owner =                THIS_MODULE,
284         .rw_page =              pmem_rw_page,
285         .revalidate_disk =      nvdimm_revalidate_disk,
286 };
287
288 static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
289                                     size_t nr_pages)
290 {
291         struct pmem_device *pmem = dax_get_private(dax_dev);
292
293         return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0,
294                                    PFN_PHYS(pgoff) >> SECTOR_SHIFT,
295                                    PAGE_SIZE));
296 }
297
298 static long pmem_dax_direct_access(struct dax_device *dax_dev,
299                 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
300 {
301         struct pmem_device *pmem = dax_get_private(dax_dev);
302
303         return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
304 }
305
306 /*
307  * Use the 'no check' versions of copy_from_iter_flushcache() and
308  * copy_to_iter_mcsafe() to bypass HARDENED_USERCOPY overhead. Bounds
309  * checking, both file offset and device offset, is handled by
310  * dax_iomap_actor()
311  */
312 static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
313                 void *addr, size_t bytes, struct iov_iter *i)
314 {
315         return _copy_from_iter_flushcache(addr, bytes, i);
316 }
317
318 static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
319                 void *addr, size_t bytes, struct iov_iter *i)
320 {
321         return _copy_to_iter_mcsafe(addr, bytes, i);
322 }
323
324 static const struct dax_operations pmem_dax_ops = {
325         .direct_access = pmem_dax_direct_access,
326         .dax_supported = generic_fsdax_supported,
327         .copy_from_iter = pmem_copy_from_iter,
328         .copy_to_iter = pmem_copy_to_iter,
329         .zero_page_range = pmem_dax_zero_page_range,
330 };
331
332 static const struct attribute_group *pmem_attribute_groups[] = {
333         &dax_attribute_group,
334         NULL,
335 };
336
337 static void pmem_pagemap_cleanup(struct dev_pagemap *pgmap)
338 {
339         struct request_queue *q =
340                 container_of(pgmap->ref, struct request_queue, q_usage_counter);
341
342         blk_cleanup_queue(q);
343 }
344
345 static void pmem_release_queue(void *pgmap)
346 {
347         pmem_pagemap_cleanup(pgmap);
348 }
349
350 static void pmem_pagemap_kill(struct dev_pagemap *pgmap)
351 {
352         struct request_queue *q =
353                 container_of(pgmap->ref, struct request_queue, q_usage_counter);
354
355         blk_freeze_queue_start(q);
356 }
357
358 static void pmem_release_disk(void *__pmem)
359 {
360         struct pmem_device *pmem = __pmem;
361
362         kill_dax(pmem->dax_dev);
363         put_dax(pmem->dax_dev);
364         del_gendisk(pmem->disk);
365         put_disk(pmem->disk);
366 }
367
368 static const struct dev_pagemap_ops fsdax_pagemap_ops = {
369         .kill                   = pmem_pagemap_kill,
370         .cleanup                = pmem_pagemap_cleanup,
371 };
372
373 static int pmem_attach_disk(struct device *dev,
374                 struct nd_namespace_common *ndns)
375 {
376         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
377         struct nd_region *nd_region = to_nd_region(dev->parent);
378         int nid = dev_to_node(dev), fua;
379         struct resource *res = &nsio->res;
380         struct resource bb_res;
381         struct nd_pfn *nd_pfn = NULL;
382         struct dax_device *dax_dev;
383         struct nd_pfn_sb *pfn_sb;
384         struct pmem_device *pmem;
385         struct request_queue *q;
386         struct device *gendev;
387         struct gendisk *disk;
388         void *addr;
389         int rc;
390         unsigned long flags = 0UL;
391
392         pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
393         if (!pmem)
394                 return -ENOMEM;
395
396         rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
397         if (rc)
398                 return rc;
399
400         /* while nsio_rw_bytes is active, parse a pfn info block if present */
401         if (is_nd_pfn(dev)) {
402                 nd_pfn = to_nd_pfn(dev);
403                 rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
404                 if (rc)
405                         return rc;
406         }
407
408         /* we're attaching a block device, disable raw namespace access */
409         devm_namespace_disable(dev, ndns);
410
411         dev_set_drvdata(dev, pmem);
412         pmem->phys_addr = res->start;
413         pmem->size = resource_size(res);
414         fua = nvdimm_has_flush(nd_region);
415         if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
416                 dev_warn(dev, "unable to guarantee persistence of writes\n");
417                 fua = 0;
418         }
419
420         if (!devm_request_mem_region(dev, res->start, resource_size(res),
421                                 dev_name(&ndns->dev))) {
422                 dev_warn(dev, "could not reserve region %pR\n", res);
423                 return -EBUSY;
424         }
425
426         q = blk_alloc_queue(pmem_make_request, dev_to_node(dev));
427         if (!q)
428                 return -ENOMEM;
429
430         pmem->pfn_flags = PFN_DEV;
431         pmem->pgmap.ref = &q->q_usage_counter;
432         if (is_nd_pfn(dev)) {
433                 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
434                 pmem->pgmap.ops = &fsdax_pagemap_ops;
435                 addr = devm_memremap_pages(dev, &pmem->pgmap);
436                 pfn_sb = nd_pfn->pfn_sb;
437                 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
438                 pmem->pfn_pad = resource_size(res) -
439                         resource_size(&pmem->pgmap.res);
440                 pmem->pfn_flags |= PFN_MAP;
441                 memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
442                 bb_res.start += pmem->data_offset;
443         } else if (pmem_should_map_pages(dev)) {
444                 memcpy(&pmem->pgmap.res, &nsio->res, sizeof(pmem->pgmap.res));
445                 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
446                 pmem->pgmap.ops = &fsdax_pagemap_ops;
447                 addr = devm_memremap_pages(dev, &pmem->pgmap);
448                 pmem->pfn_flags |= PFN_MAP;
449                 memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
450         } else {
451                 if (devm_add_action_or_reset(dev, pmem_release_queue,
452                                         &pmem->pgmap))
453                         return -ENOMEM;
454                 addr = devm_memremap(dev, pmem->phys_addr,
455                                 pmem->size, ARCH_MEMREMAP_PMEM);
456                 memcpy(&bb_res, &nsio->res, sizeof(bb_res));
457         }
458
459         if (IS_ERR(addr))
460                 return PTR_ERR(addr);
461         pmem->virt_addr = addr;
462
463         blk_queue_write_cache(q, true, fua);
464         blk_queue_physical_block_size(q, PAGE_SIZE);
465         blk_queue_logical_block_size(q, pmem_sector_size(ndns));
466         blk_queue_max_hw_sectors(q, UINT_MAX);
467         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
468         if (pmem->pfn_flags & PFN_MAP)
469                 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
470
471         disk = alloc_disk_node(0, nid);
472         if (!disk)
473                 return -ENOMEM;
474         pmem->disk = disk;
475
476         disk->fops              = &pmem_fops;
477         disk->queue             = q;
478         disk->flags             = GENHD_FL_EXT_DEVT;
479         disk->private_data      = pmem;
480         disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
481         nvdimm_namespace_disk_name(ndns, disk->disk_name);
482         set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
483                         / 512);
484         if (devm_init_badblocks(dev, &pmem->bb))
485                 return -ENOMEM;
486         nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_res);
487         disk->bb = &pmem->bb;
488
489         if (is_nvdimm_sync(nd_region))
490                 flags = DAXDEV_F_SYNC;
491         dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops, flags);
492         if (IS_ERR(dax_dev)) {
493                 put_disk(disk);
494                 return PTR_ERR(dax_dev);
495         }
496         dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
497         pmem->dax_dev = dax_dev;
498         gendev = disk_to_dev(disk);
499         gendev->groups = pmem_attribute_groups;
500
501         device_add_disk(dev, disk, NULL);
502         if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
503                 return -ENOMEM;
504
505         revalidate_disk(disk);
506
507         pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
508                                           "badblocks");
509         if (!pmem->bb_state)
510                 dev_warn(dev, "'badblocks' notification disabled\n");
511
512         return 0;
513 }
514
515 static int nd_pmem_probe(struct device *dev)
516 {
517         int ret;
518         struct nd_namespace_common *ndns;
519
520         ndns = nvdimm_namespace_common_probe(dev);
521         if (IS_ERR(ndns))
522                 return PTR_ERR(ndns);
523
524         if (is_nd_btt(dev))
525                 return nvdimm_namespace_attach_btt(ndns);
526
527         if (is_nd_pfn(dev))
528                 return pmem_attach_disk(dev, ndns);
529
530         ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
531         if (ret)
532                 return ret;
533
534         ret = nd_btt_probe(dev, ndns);
535         if (ret == 0)
536                 return -ENXIO;
537
538         /*
539          * We have two failure conditions here, there is no
540          * info reserver block or we found a valid info reserve block
541          * but failed to initialize the pfn superblock.
542          *
543          * For the first case consider namespace as a raw pmem namespace
544          * and attach a disk.
545          *
546          * For the latter, consider this a success and advance the namespace
547          * seed.
548          */
549         ret = nd_pfn_probe(dev, ndns);
550         if (ret == 0)
551                 return -ENXIO;
552         else if (ret == -EOPNOTSUPP)
553                 return ret;
554
555         ret = nd_dax_probe(dev, ndns);
556         if (ret == 0)
557                 return -ENXIO;
558         else if (ret == -EOPNOTSUPP)
559                 return ret;
560
561         /* probe complete, attach handles namespace enabling */
562         devm_namespace_disable(dev, ndns);
563
564         return pmem_attach_disk(dev, ndns);
565 }
566
567 static int nd_pmem_remove(struct device *dev)
568 {
569         struct pmem_device *pmem = dev_get_drvdata(dev);
570
571         if (is_nd_btt(dev))
572                 nvdimm_namespace_detach_btt(to_nd_btt(dev));
573         else {
574                 /*
575                  * Note, this assumes nd_device_lock() context to not
576                  * race nd_pmem_notify()
577                  */
578                 sysfs_put(pmem->bb_state);
579                 pmem->bb_state = NULL;
580         }
581         nvdimm_flush(to_nd_region(dev->parent), NULL);
582
583         return 0;
584 }
585
586 static void nd_pmem_shutdown(struct device *dev)
587 {
588         nvdimm_flush(to_nd_region(dev->parent), NULL);
589 }
590
591 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
592 {
593         struct nd_region *nd_region;
594         resource_size_t offset = 0, end_trunc = 0;
595         struct nd_namespace_common *ndns;
596         struct nd_namespace_io *nsio;
597         struct resource res;
598         struct badblocks *bb;
599         struct kernfs_node *bb_state;
600
601         if (event != NVDIMM_REVALIDATE_POISON)
602                 return;
603
604         if (is_nd_btt(dev)) {
605                 struct nd_btt *nd_btt = to_nd_btt(dev);
606
607                 ndns = nd_btt->ndns;
608                 nd_region = to_nd_region(ndns->dev.parent);
609                 nsio = to_nd_namespace_io(&ndns->dev);
610                 bb = &nsio->bb;
611                 bb_state = NULL;
612         } else {
613                 struct pmem_device *pmem = dev_get_drvdata(dev);
614
615                 nd_region = to_region(pmem);
616                 bb = &pmem->bb;
617                 bb_state = pmem->bb_state;
618
619                 if (is_nd_pfn(dev)) {
620                         struct nd_pfn *nd_pfn = to_nd_pfn(dev);
621                         struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
622
623                         ndns = nd_pfn->ndns;
624                         offset = pmem->data_offset +
625                                         __le32_to_cpu(pfn_sb->start_pad);
626                         end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
627                 } else {
628                         ndns = to_ndns(dev);
629                 }
630
631                 nsio = to_nd_namespace_io(&ndns->dev);
632         }
633
634         res.start = nsio->res.start + offset;
635         res.end = nsio->res.end - end_trunc;
636         nvdimm_badblocks_populate(nd_region, bb, &res);
637         if (bb_state)
638                 sysfs_notify_dirent(bb_state);
639 }
640
641 MODULE_ALIAS("pmem");
642 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
643 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
644 static struct nd_device_driver nd_pmem_driver = {
645         .probe = nd_pmem_probe,
646         .remove = nd_pmem_remove,
647         .notify = nd_pmem_notify,
648         .shutdown = nd_pmem_shutdown,
649         .drv = {
650                 .name = "nd_pmem",
651         },
652         .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
653 };
654
655 module_nd_driver(nd_pmem_driver);
656
657 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
658 MODULE_LICENSE("GPL v2");