fab29b514372d069150688241fe77c8ef1edea2f
[linux-2.6-microblaze.git] / drivers / nvdimm / pmem.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Persistent Memory Driver
4  *
5  * Copyright (c) 2014-2015, Intel Corporation.
6  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
7  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
8  */
9
10 #include <linux/blkdev.h>
11 #include <linux/hdreg.h>
12 #include <linux/init.h>
13 #include <linux/platform_device.h>
14 #include <linux/set_memory.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/badblocks.h>
18 #include <linux/memremap.h>
19 #include <linux/vmalloc.h>
20 #include <linux/blk-mq.h>
21 #include <linux/pfn_t.h>
22 #include <linux/slab.h>
23 #include <linux/uio.h>
24 #include <linux/dax.h>
25 #include <linux/nd.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mm.h>
28 #include <asm/cacheflush.h>
29 #include "pmem.h"
30 #include "pfn.h"
31 #include "nd.h"
32
33 static struct device *to_dev(struct pmem_device *pmem)
34 {
35         /*
36          * nvdimm bus services need a 'dev' parameter, and we record the device
37          * at init in bb.dev.
38          */
39         return pmem->bb.dev;
40 }
41
42 static struct nd_region *to_region(struct pmem_device *pmem)
43 {
44         return to_nd_region(to_dev(pmem)->parent);
45 }
46
47 static void hwpoison_clear(struct pmem_device *pmem,
48                 phys_addr_t phys, unsigned int len)
49 {
50         unsigned long pfn_start, pfn_end, pfn;
51
52         /* only pmem in the linear map supports HWPoison */
53         if (is_vmalloc_addr(pmem->virt_addr))
54                 return;
55
56         pfn_start = PHYS_PFN(phys);
57         pfn_end = pfn_start + PHYS_PFN(len);
58         for (pfn = pfn_start; pfn < pfn_end; pfn++) {
59                 struct page *page = pfn_to_page(pfn);
60
61                 /*
62                  * Note, no need to hold a get_dev_pagemap() reference
63                  * here since we're in the driver I/O path and
64                  * outstanding I/O requests pin the dev_pagemap.
65                  */
66                 if (test_and_clear_pmem_poison(page))
67                         clear_mce_nospec(pfn);
68         }
69 }
70
71 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
72                 phys_addr_t offset, unsigned int len)
73 {
74         struct device *dev = to_dev(pmem);
75         sector_t sector;
76         long cleared;
77         blk_status_t rc = BLK_STS_OK;
78
79         sector = (offset - pmem->data_offset) / 512;
80
81         cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
82         if (cleared < len)
83                 rc = BLK_STS_IOERR;
84         if (cleared > 0 && cleared / 512) {
85                 hwpoison_clear(pmem, pmem->phys_addr + offset, cleared);
86                 cleared /= 512;
87                 dev_dbg(dev, "%#llx clear %ld sector%s\n",
88                                 (unsigned long long) sector, cleared,
89                                 cleared > 1 ? "s" : "");
90                 badblocks_clear(&pmem->bb, sector, cleared);
91                 if (pmem->bb_state)
92                         sysfs_notify_dirent(pmem->bb_state);
93         }
94
95         arch_invalidate_pmem(pmem->virt_addr + offset, len);
96
97         return rc;
98 }
99
100 static void write_pmem(void *pmem_addr, struct page *page,
101                 unsigned int off, unsigned int len)
102 {
103         unsigned int chunk;
104         void *mem;
105
106         while (len) {
107                 mem = kmap_atomic(page);
108                 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
109                 memcpy_flushcache(pmem_addr, mem + off, chunk);
110                 kunmap_atomic(mem);
111                 len -= chunk;
112                 off = 0;
113                 page++;
114                 pmem_addr += chunk;
115         }
116 }
117
118 static blk_status_t read_pmem(struct page *page, unsigned int off,
119                 void *pmem_addr, unsigned int len)
120 {
121         unsigned int chunk;
122         unsigned long rem;
123         void *mem;
124
125         while (len) {
126                 mem = kmap_atomic(page);
127                 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
128                 rem = memcpy_mcsafe(mem + off, pmem_addr, chunk);
129                 kunmap_atomic(mem);
130                 if (rem)
131                         return BLK_STS_IOERR;
132                 len -= chunk;
133                 off = 0;
134                 page++;
135                 pmem_addr += chunk;
136         }
137         return BLK_STS_OK;
138 }
139
140 static blk_status_t pmem_do_read(struct pmem_device *pmem,
141                         struct page *page, unsigned int page_off,
142                         sector_t sector, unsigned int len)
143 {
144         blk_status_t rc;
145         phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
146         void *pmem_addr = pmem->virt_addr + pmem_off;
147
148         if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
149                 return BLK_STS_IOERR;
150
151         rc = read_pmem(page, page_off, pmem_addr, len);
152         flush_dcache_page(page);
153         return rc;
154 }
155
156 static blk_status_t pmem_do_write(struct pmem_device *pmem,
157                         struct page *page, unsigned int page_off,
158                         sector_t sector, unsigned int len)
159 {
160         blk_status_t rc = BLK_STS_OK;
161         bool bad_pmem = false;
162         phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
163         void *pmem_addr = pmem->virt_addr + pmem_off;
164
165         if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
166                 bad_pmem = true;
167
168         /*
169          * Note that we write the data both before and after
170          * clearing poison.  The write before clear poison
171          * handles situations where the latest written data is
172          * preserved and the clear poison operation simply marks
173          * the address range as valid without changing the data.
174          * In this case application software can assume that an
175          * interrupted write will either return the new good
176          * data or an error.
177          *
178          * However, if pmem_clear_poison() leaves the data in an
179          * indeterminate state we need to perform the write
180          * after clear poison.
181          */
182         flush_dcache_page(page);
183         write_pmem(pmem_addr, page, page_off, len);
184         if (unlikely(bad_pmem)) {
185                 rc = pmem_clear_poison(pmem, pmem_off, len);
186                 write_pmem(pmem_addr, page, page_off, len);
187         }
188
189         return rc;
190 }
191
192 static blk_qc_t pmem_submit_bio(struct bio *bio)
193 {
194         int ret = 0;
195         blk_status_t rc = 0;
196         bool do_acct;
197         unsigned long start;
198         struct bio_vec bvec;
199         struct bvec_iter iter;
200         struct pmem_device *pmem = bio->bi_disk->private_data;
201         struct nd_region *nd_region = to_region(pmem);
202
203         if (bio->bi_opf & REQ_PREFLUSH)
204                 ret = nvdimm_flush(nd_region, bio);
205
206         do_acct = blk_queue_io_stat(bio->bi_disk->queue);
207         if (do_acct)
208                 start = bio_start_io_acct(bio);
209         bio_for_each_segment(bvec, bio, iter) {
210                 if (op_is_write(bio_op(bio)))
211                         rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset,
212                                 iter.bi_sector, bvec.bv_len);
213                 else
214                         rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset,
215                                 iter.bi_sector, bvec.bv_len);
216                 if (rc) {
217                         bio->bi_status = rc;
218                         break;
219                 }
220         }
221         if (do_acct)
222                 bio_end_io_acct(bio, start);
223
224         if (bio->bi_opf & REQ_FUA)
225                 ret = nvdimm_flush(nd_region, bio);
226
227         if (ret)
228                 bio->bi_status = errno_to_blk_status(ret);
229
230         bio_endio(bio);
231         return BLK_QC_T_NONE;
232 }
233
234 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
235                        struct page *page, unsigned int op)
236 {
237         struct pmem_device *pmem = bdev->bd_disk->private_data;
238         blk_status_t rc;
239
240         if (op_is_write(op))
241                 rc = pmem_do_write(pmem, page, 0, sector, thp_size(page));
242         else
243                 rc = pmem_do_read(pmem, page, 0, sector, thp_size(page));
244         /*
245          * The ->rw_page interface is subtle and tricky.  The core
246          * retries on any error, so we can only invoke page_endio() in
247          * the successful completion case.  Otherwise, we'll see crashes
248          * caused by double completion.
249          */
250         if (rc == 0)
251                 page_endio(page, op_is_write(op), 0);
252
253         return blk_status_to_errno(rc);
254 }
255
256 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
257 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
258                 long nr_pages, void **kaddr, pfn_t *pfn)
259 {
260         resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
261
262         if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
263                                         PFN_PHYS(nr_pages))))
264                 return -EIO;
265
266         if (kaddr)
267                 *kaddr = pmem->virt_addr + offset;
268         if (pfn)
269                 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
270
271         /*
272          * If badblocks are present, limit known good range to the
273          * requested range.
274          */
275         if (unlikely(pmem->bb.count))
276                 return nr_pages;
277         return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
278 }
279
280 static const struct block_device_operations pmem_fops = {
281         .owner =                THIS_MODULE,
282         .submit_bio =           pmem_submit_bio,
283         .rw_page =              pmem_rw_page,
284         .revalidate_disk =      nvdimm_revalidate_disk,
285 };
286
287 static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
288                                     size_t nr_pages)
289 {
290         struct pmem_device *pmem = dax_get_private(dax_dev);
291
292         return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0,
293                                    PFN_PHYS(pgoff) >> SECTOR_SHIFT,
294                                    PAGE_SIZE));
295 }
296
297 static long pmem_dax_direct_access(struct dax_device *dax_dev,
298                 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
299 {
300         struct pmem_device *pmem = dax_get_private(dax_dev);
301
302         return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
303 }
304
305 /*
306  * Use the 'no check' versions of copy_from_iter_flushcache() and
307  * copy_to_iter_mcsafe() to bypass HARDENED_USERCOPY overhead. Bounds
308  * checking, both file offset and device offset, is handled by
309  * dax_iomap_actor()
310  */
311 static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
312                 void *addr, size_t bytes, struct iov_iter *i)
313 {
314         return _copy_from_iter_flushcache(addr, bytes, i);
315 }
316
317 static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
318                 void *addr, size_t bytes, struct iov_iter *i)
319 {
320         return _copy_to_iter_mcsafe(addr, bytes, i);
321 }
322
323 static const struct dax_operations pmem_dax_ops = {
324         .direct_access = pmem_dax_direct_access,
325         .dax_supported = generic_fsdax_supported,
326         .copy_from_iter = pmem_copy_from_iter,
327         .copy_to_iter = pmem_copy_to_iter,
328         .zero_page_range = pmem_dax_zero_page_range,
329 };
330
331 static const struct attribute_group *pmem_attribute_groups[] = {
332         &dax_attribute_group,
333         NULL,
334 };
335
336 static void pmem_pagemap_cleanup(struct dev_pagemap *pgmap)
337 {
338         struct request_queue *q =
339                 container_of(pgmap->ref, struct request_queue, q_usage_counter);
340
341         blk_cleanup_queue(q);
342 }
343
344 static void pmem_release_queue(void *pgmap)
345 {
346         pmem_pagemap_cleanup(pgmap);
347 }
348
349 static void pmem_pagemap_kill(struct dev_pagemap *pgmap)
350 {
351         struct request_queue *q =
352                 container_of(pgmap->ref, struct request_queue, q_usage_counter);
353
354         blk_freeze_queue_start(q);
355 }
356
357 static void pmem_release_disk(void *__pmem)
358 {
359         struct pmem_device *pmem = __pmem;
360
361         kill_dax(pmem->dax_dev);
362         put_dax(pmem->dax_dev);
363         del_gendisk(pmem->disk);
364         put_disk(pmem->disk);
365 }
366
367 static const struct dev_pagemap_ops fsdax_pagemap_ops = {
368         .kill                   = pmem_pagemap_kill,
369         .cleanup                = pmem_pagemap_cleanup,
370 };
371
372 static int pmem_attach_disk(struct device *dev,
373                 struct nd_namespace_common *ndns)
374 {
375         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
376         struct nd_region *nd_region = to_nd_region(dev->parent);
377         int nid = dev_to_node(dev), fua;
378         struct resource *res = &nsio->res;
379         struct resource bb_res;
380         struct nd_pfn *nd_pfn = NULL;
381         struct dax_device *dax_dev;
382         struct nd_pfn_sb *pfn_sb;
383         struct pmem_device *pmem;
384         struct request_queue *q;
385         struct device *gendev;
386         struct gendisk *disk;
387         void *addr;
388         int rc;
389         unsigned long flags = 0UL;
390
391         pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
392         if (!pmem)
393                 return -ENOMEM;
394
395         rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
396         if (rc)
397                 return rc;
398
399         /* while nsio_rw_bytes is active, parse a pfn info block if present */
400         if (is_nd_pfn(dev)) {
401                 nd_pfn = to_nd_pfn(dev);
402                 rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
403                 if (rc)
404                         return rc;
405         }
406
407         /* we're attaching a block device, disable raw namespace access */
408         devm_namespace_disable(dev, ndns);
409
410         dev_set_drvdata(dev, pmem);
411         pmem->phys_addr = res->start;
412         pmem->size = resource_size(res);
413         fua = nvdimm_has_flush(nd_region);
414         if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
415                 dev_warn(dev, "unable to guarantee persistence of writes\n");
416                 fua = 0;
417         }
418
419         if (!devm_request_mem_region(dev, res->start, resource_size(res),
420                                 dev_name(&ndns->dev))) {
421                 dev_warn(dev, "could not reserve region %pR\n", res);
422                 return -EBUSY;
423         }
424
425         q = blk_alloc_queue(dev_to_node(dev));
426         if (!q)
427                 return -ENOMEM;
428
429         pmem->pfn_flags = PFN_DEV;
430         pmem->pgmap.ref = &q->q_usage_counter;
431         if (is_nd_pfn(dev)) {
432                 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
433                 pmem->pgmap.ops = &fsdax_pagemap_ops;
434                 addr = devm_memremap_pages(dev, &pmem->pgmap);
435                 pfn_sb = nd_pfn->pfn_sb;
436                 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
437                 pmem->pfn_pad = resource_size(res) -
438                         resource_size(&pmem->pgmap.res);
439                 pmem->pfn_flags |= PFN_MAP;
440                 memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
441                 bb_res.start += pmem->data_offset;
442         } else if (pmem_should_map_pages(dev)) {
443                 memcpy(&pmem->pgmap.res, &nsio->res, sizeof(pmem->pgmap.res));
444                 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
445                 pmem->pgmap.ops = &fsdax_pagemap_ops;
446                 addr = devm_memremap_pages(dev, &pmem->pgmap);
447                 pmem->pfn_flags |= PFN_MAP;
448                 memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
449         } else {
450                 if (devm_add_action_or_reset(dev, pmem_release_queue,
451                                         &pmem->pgmap))
452                         return -ENOMEM;
453                 addr = devm_memremap(dev, pmem->phys_addr,
454                                 pmem->size, ARCH_MEMREMAP_PMEM);
455                 memcpy(&bb_res, &nsio->res, sizeof(bb_res));
456         }
457
458         if (IS_ERR(addr))
459                 return PTR_ERR(addr);
460         pmem->virt_addr = addr;
461
462         blk_queue_write_cache(q, true, fua);
463         blk_queue_physical_block_size(q, PAGE_SIZE);
464         blk_queue_logical_block_size(q, pmem_sector_size(ndns));
465         blk_queue_max_hw_sectors(q, UINT_MAX);
466         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
467         if (pmem->pfn_flags & PFN_MAP)
468                 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
469
470         disk = alloc_disk_node(0, nid);
471         if (!disk)
472                 return -ENOMEM;
473         pmem->disk = disk;
474
475         disk->fops              = &pmem_fops;
476         disk->queue             = q;
477         disk->flags             = GENHD_FL_EXT_DEVT;
478         disk->private_data      = pmem;
479         disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
480         nvdimm_namespace_disk_name(ndns, disk->disk_name);
481         set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
482                         / 512);
483         if (devm_init_badblocks(dev, &pmem->bb))
484                 return -ENOMEM;
485         nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_res);
486         disk->bb = &pmem->bb;
487
488         if (is_nvdimm_sync(nd_region))
489                 flags = DAXDEV_F_SYNC;
490         dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops, flags);
491         if (IS_ERR(dax_dev)) {
492                 put_disk(disk);
493                 return PTR_ERR(dax_dev);
494         }
495         dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
496         pmem->dax_dev = dax_dev;
497         gendev = disk_to_dev(disk);
498         gendev->groups = pmem_attribute_groups;
499
500         device_add_disk(dev, disk, NULL);
501         if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
502                 return -ENOMEM;
503
504         revalidate_disk(disk);
505
506         pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
507                                           "badblocks");
508         if (!pmem->bb_state)
509                 dev_warn(dev, "'badblocks' notification disabled\n");
510
511         return 0;
512 }
513
514 static int nd_pmem_probe(struct device *dev)
515 {
516         int ret;
517         struct nd_namespace_common *ndns;
518
519         ndns = nvdimm_namespace_common_probe(dev);
520         if (IS_ERR(ndns))
521                 return PTR_ERR(ndns);
522
523         if (is_nd_btt(dev))
524                 return nvdimm_namespace_attach_btt(ndns);
525
526         if (is_nd_pfn(dev))
527                 return pmem_attach_disk(dev, ndns);
528
529         ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
530         if (ret)
531                 return ret;
532
533         ret = nd_btt_probe(dev, ndns);
534         if (ret == 0)
535                 return -ENXIO;
536
537         /*
538          * We have two failure conditions here, there is no
539          * info reserver block or we found a valid info reserve block
540          * but failed to initialize the pfn superblock.
541          *
542          * For the first case consider namespace as a raw pmem namespace
543          * and attach a disk.
544          *
545          * For the latter, consider this a success and advance the namespace
546          * seed.
547          */
548         ret = nd_pfn_probe(dev, ndns);
549         if (ret == 0)
550                 return -ENXIO;
551         else if (ret == -EOPNOTSUPP)
552                 return ret;
553
554         ret = nd_dax_probe(dev, ndns);
555         if (ret == 0)
556                 return -ENXIO;
557         else if (ret == -EOPNOTSUPP)
558                 return ret;
559
560         /* probe complete, attach handles namespace enabling */
561         devm_namespace_disable(dev, ndns);
562
563         return pmem_attach_disk(dev, ndns);
564 }
565
566 static int nd_pmem_remove(struct device *dev)
567 {
568         struct pmem_device *pmem = dev_get_drvdata(dev);
569
570         if (is_nd_btt(dev))
571                 nvdimm_namespace_detach_btt(to_nd_btt(dev));
572         else {
573                 /*
574                  * Note, this assumes nd_device_lock() context to not
575                  * race nd_pmem_notify()
576                  */
577                 sysfs_put(pmem->bb_state);
578                 pmem->bb_state = NULL;
579         }
580         nvdimm_flush(to_nd_region(dev->parent), NULL);
581
582         return 0;
583 }
584
585 static void nd_pmem_shutdown(struct device *dev)
586 {
587         nvdimm_flush(to_nd_region(dev->parent), NULL);
588 }
589
590 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
591 {
592         struct nd_region *nd_region;
593         resource_size_t offset = 0, end_trunc = 0;
594         struct nd_namespace_common *ndns;
595         struct nd_namespace_io *nsio;
596         struct resource res;
597         struct badblocks *bb;
598         struct kernfs_node *bb_state;
599
600         if (event != NVDIMM_REVALIDATE_POISON)
601                 return;
602
603         if (is_nd_btt(dev)) {
604                 struct nd_btt *nd_btt = to_nd_btt(dev);
605
606                 ndns = nd_btt->ndns;
607                 nd_region = to_nd_region(ndns->dev.parent);
608                 nsio = to_nd_namespace_io(&ndns->dev);
609                 bb = &nsio->bb;
610                 bb_state = NULL;
611         } else {
612                 struct pmem_device *pmem = dev_get_drvdata(dev);
613
614                 nd_region = to_region(pmem);
615                 bb = &pmem->bb;
616                 bb_state = pmem->bb_state;
617
618                 if (is_nd_pfn(dev)) {
619                         struct nd_pfn *nd_pfn = to_nd_pfn(dev);
620                         struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
621
622                         ndns = nd_pfn->ndns;
623                         offset = pmem->data_offset +
624                                         __le32_to_cpu(pfn_sb->start_pad);
625                         end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
626                 } else {
627                         ndns = to_ndns(dev);
628                 }
629
630                 nsio = to_nd_namespace_io(&ndns->dev);
631         }
632
633         res.start = nsio->res.start + offset;
634         res.end = nsio->res.end - end_trunc;
635         nvdimm_badblocks_populate(nd_region, bb, &res);
636         if (bb_state)
637                 sysfs_notify_dirent(bb_state);
638 }
639
640 MODULE_ALIAS("pmem");
641 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
642 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
643 static struct nd_device_driver nd_pmem_driver = {
644         .probe = nd_pmem_probe,
645         .remove = nd_pmem_remove,
646         .notify = nd_pmem_notify,
647         .shutdown = nd_pmem_shutdown,
648         .drv = {
649                 .name = "nd_pmem",
650         },
651         .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
652 };
653
654 module_nd_driver(nd_pmem_driver);
655
656 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
657 MODULE_LICENSE("GPL v2");