2 * Persistent Memory Driver
4 * Copyright (c) 2014-2015, Intel Corporation.
5 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blk-mq.h>
29 #include <linux/pfn_t.h>
30 #include <linux/slab.h>
31 #include <linux/uio.h>
32 #include <linux/dax.h>
34 #include <linux/backing-dev.h>
40 static struct device *to_dev(struct pmem_device *pmem)
43 * nvdimm bus services need a 'dev' parameter, and we record the device
49 static struct nd_region *to_region(struct pmem_device *pmem)
51 return to_nd_region(to_dev(pmem)->parent);
54 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
55 phys_addr_t offset, unsigned int len)
57 struct device *dev = to_dev(pmem);
60 blk_status_t rc = BLK_STS_OK;
62 sector = (offset - pmem->data_offset) / 512;
64 cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
67 if (cleared > 0 && cleared / 512) {
69 dev_dbg(dev, "%#llx clear %ld sector%s\n",
70 (unsigned long long) sector, cleared,
71 cleared > 1 ? "s" : "");
72 badblocks_clear(&pmem->bb, sector, cleared);
74 sysfs_notify_dirent(pmem->bb_state);
77 arch_invalidate_pmem(pmem->virt_addr + offset, len);
82 static void write_pmem(void *pmem_addr, struct page *page,
83 unsigned int off, unsigned int len)
89 mem = kmap_atomic(page);
90 chunk = min_t(unsigned int, len, PAGE_SIZE);
91 memcpy_flushcache(pmem_addr, mem + off, chunk);
96 pmem_addr += PAGE_SIZE;
100 static blk_status_t read_pmem(struct page *page, unsigned int off,
101 void *pmem_addr, unsigned int len)
108 mem = kmap_atomic(page);
109 chunk = min_t(unsigned int, len, PAGE_SIZE);
110 rem = memcpy_mcsafe(mem + off, pmem_addr, chunk);
113 return BLK_STS_IOERR;
117 pmem_addr += PAGE_SIZE;
122 static blk_status_t pmem_do_bvec(struct pmem_device *pmem, struct page *page,
123 unsigned int len, unsigned int off, bool is_write,
126 blk_status_t rc = BLK_STS_OK;
127 bool bad_pmem = false;
128 phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
129 void *pmem_addr = pmem->virt_addr + pmem_off;
131 if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
135 if (unlikely(bad_pmem))
138 rc = read_pmem(page, off, pmem_addr, len);
139 flush_dcache_page(page);
143 * Note that we write the data both before and after
144 * clearing poison. The write before clear poison
145 * handles situations where the latest written data is
146 * preserved and the clear poison operation simply marks
147 * the address range as valid without changing the data.
148 * In this case application software can assume that an
149 * interrupted write will either return the new good
152 * However, if pmem_clear_poison() leaves the data in an
153 * indeterminate state we need to perform the write
154 * after clear poison.
156 flush_dcache_page(page);
157 write_pmem(pmem_addr, page, off, len);
158 if (unlikely(bad_pmem)) {
159 rc = pmem_clear_poison(pmem, pmem_off, len);
160 write_pmem(pmem_addr, page, off, len);
167 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
173 struct bvec_iter iter;
174 struct pmem_device *pmem = q->queuedata;
175 struct nd_region *nd_region = to_region(pmem);
177 if (bio->bi_opf & REQ_PREFLUSH)
178 nvdimm_flush(nd_region);
180 do_acct = nd_iostat_start(bio, &start);
181 bio_for_each_segment(bvec, bio, iter) {
182 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
183 bvec.bv_offset, op_is_write(bio_op(bio)),
191 nd_iostat_end(bio, start);
193 if (bio->bi_opf & REQ_FUA)
194 nvdimm_flush(nd_region);
197 return BLK_QC_T_NONE;
200 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
201 struct page *page, bool is_write)
203 struct pmem_device *pmem = bdev->bd_queue->queuedata;
206 rc = pmem_do_bvec(pmem, page, hpage_nr_pages(page) * PAGE_SIZE,
207 0, is_write, sector);
210 * The ->rw_page interface is subtle and tricky. The core
211 * retries on any error, so we can only invoke page_endio() in
212 * the successful completion case. Otherwise, we'll see crashes
213 * caused by double completion.
216 page_endio(page, is_write, 0);
218 return blk_status_to_errno(rc);
221 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
222 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
223 long nr_pages, void **kaddr, pfn_t *pfn)
225 resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
227 if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
228 PFN_PHYS(nr_pages))))
230 *kaddr = pmem->virt_addr + offset;
231 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
234 * If badblocks are present, limit known good range to the
237 if (unlikely(pmem->bb.count))
239 return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
242 static const struct block_device_operations pmem_fops = {
243 .owner = THIS_MODULE,
244 .rw_page = pmem_rw_page,
245 .revalidate_disk = nvdimm_revalidate_disk,
248 static long pmem_dax_direct_access(struct dax_device *dax_dev,
249 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
251 struct pmem_device *pmem = dax_get_private(dax_dev);
253 return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
256 static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
257 void *addr, size_t bytes, struct iov_iter *i)
259 return copy_from_iter_flushcache(addr, bytes, i);
262 static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
263 void *addr, size_t bytes, struct iov_iter *i)
265 return copy_to_iter_mcsafe(addr, bytes, i);
268 static const struct dax_operations pmem_dax_ops = {
269 .direct_access = pmem_dax_direct_access,
270 .copy_from_iter = pmem_copy_from_iter,
271 .copy_to_iter = pmem_copy_to_iter,
274 static const struct attribute_group *pmem_attribute_groups[] = {
275 &dax_attribute_group,
279 static void pmem_release_queue(void *q)
281 blk_cleanup_queue(q);
284 static void pmem_freeze_queue(void *q)
286 blk_freeze_queue_start(q);
289 static void pmem_release_disk(void *__pmem)
291 struct pmem_device *pmem = __pmem;
293 kill_dax(pmem->dax_dev);
294 put_dax(pmem->dax_dev);
295 del_gendisk(pmem->disk);
296 put_disk(pmem->disk);
299 static void pmem_release_pgmap_ops(void *__pgmap)
301 dev_pagemap_put_ops();
304 static void fsdax_pagefree(struct page *page, void *data)
306 wake_up_var(&page->_refcount);
309 static int setup_pagemap_fsdax(struct device *dev, struct dev_pagemap *pgmap)
311 dev_pagemap_get_ops();
312 if (devm_add_action_or_reset(dev, pmem_release_pgmap_ops, pgmap))
314 pgmap->type = MEMORY_DEVICE_FS_DAX;
315 pgmap->page_free = fsdax_pagefree;
320 static int pmem_attach_disk(struct device *dev,
321 struct nd_namespace_common *ndns)
323 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
324 struct nd_region *nd_region = to_nd_region(dev->parent);
325 int nid = dev_to_node(dev), fua;
326 struct resource *res = &nsio->res;
327 struct resource bb_res;
328 struct nd_pfn *nd_pfn = NULL;
329 struct dax_device *dax_dev;
330 struct nd_pfn_sb *pfn_sb;
331 struct pmem_device *pmem;
332 struct request_queue *q;
333 struct device *gendev;
334 struct gendisk *disk;
338 pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
342 /* while nsio_rw_bytes is active, parse a pfn info block if present */
343 if (is_nd_pfn(dev)) {
344 nd_pfn = to_nd_pfn(dev);
345 rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
350 /* we're attaching a block device, disable raw namespace access */
351 devm_nsio_disable(dev, nsio);
353 dev_set_drvdata(dev, pmem);
354 pmem->phys_addr = res->start;
355 pmem->size = resource_size(res);
356 fua = nvdimm_has_flush(nd_region);
357 if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
358 dev_warn(dev, "unable to guarantee persistence of writes\n");
362 if (!devm_request_mem_region(dev, res->start, resource_size(res),
363 dev_name(&ndns->dev))) {
364 dev_warn(dev, "could not reserve region %pR\n", res);
368 q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev), NULL);
372 if (devm_add_action_or_reset(dev, pmem_release_queue, q))
375 pmem->pfn_flags = PFN_DEV;
376 pmem->pgmap.ref = &q->q_usage_counter;
377 if (is_nd_pfn(dev)) {
378 if (setup_pagemap_fsdax(dev, &pmem->pgmap))
380 addr = devm_memremap_pages(dev, &pmem->pgmap);
381 pfn_sb = nd_pfn->pfn_sb;
382 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
383 pmem->pfn_pad = resource_size(res) -
384 resource_size(&pmem->pgmap.res);
385 pmem->pfn_flags |= PFN_MAP;
386 memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
387 bb_res.start += pmem->data_offset;
388 } else if (pmem_should_map_pages(dev)) {
389 memcpy(&pmem->pgmap.res, &nsio->res, sizeof(pmem->pgmap.res));
390 pmem->pgmap.altmap_valid = false;
391 if (setup_pagemap_fsdax(dev, &pmem->pgmap))
393 addr = devm_memremap_pages(dev, &pmem->pgmap);
394 pmem->pfn_flags |= PFN_MAP;
395 memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
397 addr = devm_memremap(dev, pmem->phys_addr,
398 pmem->size, ARCH_MEMREMAP_PMEM);
401 * At release time the queue must be frozen before
402 * devm_memremap_pages is unwound
404 if (devm_add_action_or_reset(dev, pmem_freeze_queue, q))
408 return PTR_ERR(addr);
409 pmem->virt_addr = addr;
411 blk_queue_write_cache(q, true, fua);
412 blk_queue_make_request(q, pmem_make_request);
413 blk_queue_physical_block_size(q, PAGE_SIZE);
414 blk_queue_logical_block_size(q, pmem_sector_size(ndns));
415 blk_queue_max_hw_sectors(q, UINT_MAX);
416 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
417 if (pmem->pfn_flags & PFN_MAP)
418 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
421 disk = alloc_disk_node(0, nid);
426 disk->fops = &pmem_fops;
428 disk->flags = GENHD_FL_EXT_DEVT;
429 disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
430 nvdimm_namespace_disk_name(ndns, disk->disk_name);
431 set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
433 if (devm_init_badblocks(dev, &pmem->bb))
435 nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_res);
436 disk->bb = &pmem->bb;
438 dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops);
443 dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
444 pmem->dax_dev = dax_dev;
446 gendev = disk_to_dev(disk);
447 gendev->groups = pmem_attribute_groups;
449 device_add_disk(dev, disk);
450 if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
453 revalidate_disk(disk);
455 pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
458 dev_warn(dev, "'badblocks' notification disabled\n");
463 static int nd_pmem_probe(struct device *dev)
465 struct nd_namespace_common *ndns;
467 ndns = nvdimm_namespace_common_probe(dev);
469 return PTR_ERR(ndns);
471 if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
475 return nvdimm_namespace_attach_btt(ndns);
478 return pmem_attach_disk(dev, ndns);
480 /* if we find a valid info-block we'll come back as that personality */
481 if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
482 || nd_dax_probe(dev, ndns) == 0)
485 /* ...otherwise we're just a raw pmem device */
486 return pmem_attach_disk(dev, ndns);
489 static int nd_pmem_remove(struct device *dev)
491 struct pmem_device *pmem = dev_get_drvdata(dev);
494 nvdimm_namespace_detach_btt(to_nd_btt(dev));
497 * Note, this assumes device_lock() context to not race
500 sysfs_put(pmem->bb_state);
501 pmem->bb_state = NULL;
503 nvdimm_flush(to_nd_region(dev->parent));
508 static void nd_pmem_shutdown(struct device *dev)
510 nvdimm_flush(to_nd_region(dev->parent));
513 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
515 struct nd_region *nd_region;
516 resource_size_t offset = 0, end_trunc = 0;
517 struct nd_namespace_common *ndns;
518 struct nd_namespace_io *nsio;
520 struct badblocks *bb;
521 struct kernfs_node *bb_state;
523 if (event != NVDIMM_REVALIDATE_POISON)
526 if (is_nd_btt(dev)) {
527 struct nd_btt *nd_btt = to_nd_btt(dev);
530 nd_region = to_nd_region(ndns->dev.parent);
531 nsio = to_nd_namespace_io(&ndns->dev);
535 struct pmem_device *pmem = dev_get_drvdata(dev);
537 nd_region = to_region(pmem);
539 bb_state = pmem->bb_state;
541 if (is_nd_pfn(dev)) {
542 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
543 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
546 offset = pmem->data_offset +
547 __le32_to_cpu(pfn_sb->start_pad);
548 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
553 nsio = to_nd_namespace_io(&ndns->dev);
556 res.start = nsio->res.start + offset;
557 res.end = nsio->res.end - end_trunc;
558 nvdimm_badblocks_populate(nd_region, bb, &res);
560 sysfs_notify_dirent(bb_state);
563 MODULE_ALIAS("pmem");
564 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
565 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
566 static struct nd_device_driver nd_pmem_driver = {
567 .probe = nd_pmem_probe,
568 .remove = nd_pmem_remove,
569 .notify = nd_pmem_notify,
570 .shutdown = nd_pmem_shutdown,
574 .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
577 module_nd_driver(nd_pmem_driver);
579 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
580 MODULE_LICENSE("GPL v2");