Merge tag 'for-linus-3.11-merge-window-part-2' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-microblaze.git] / drivers / net / wireless / rt2x00 / rt2800pci.c
1 /*
2         Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3         Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4         Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5         Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6         Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7         Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8         Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9         Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10         <http://rt2x00.serialmonkey.com>
11
12         This program is free software; you can redistribute it and/or modify
13         it under the terms of the GNU General Public License as published by
14         the Free Software Foundation; either version 2 of the License, or
15         (at your option) any later version.
16
17         This program is distributed in the hope that it will be useful,
18         but WITHOUT ANY WARRANTY; without even the implied warranty of
19         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20         GNU General Public License for more details.
21
22         You should have received a copy of the GNU General Public License
23         along with this program; if not, write to the
24         Free Software Foundation, Inc.,
25         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  */
27
28 /*
29         Module: rt2800pci
30         Abstract: rt2800pci device specific routines.
31         Supported chipsets: RT2800E & RT2800ED.
32  */
33
34 #include <linux/delay.h>
35 #include <linux/etherdevice.h>
36 #include <linux/init.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
41 #include <linux/eeprom_93cx6.h>
42
43 #include "rt2x00.h"
44 #include "rt2x00mmio.h"
45 #include "rt2x00pci.h"
46 #include "rt2x00soc.h"
47 #include "rt2800lib.h"
48 #include "rt2800.h"
49 #include "rt2800pci.h"
50
51 /*
52  * Allow hardware encryption to be disabled.
53  */
54 static bool modparam_nohwcrypt = false;
55 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
56 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
57
58 static bool rt2800pci_hwcrypt_disabled(struct rt2x00_dev *rt2x00dev)
59 {
60         return modparam_nohwcrypt;
61 }
62
63 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
64 {
65         unsigned int i;
66         u32 reg;
67
68         /*
69          * SOC devices don't support MCU requests.
70          */
71         if (rt2x00_is_soc(rt2x00dev))
72                 return;
73
74         for (i = 0; i < 200; i++) {
75                 rt2x00mmio_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
76
77                 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
78                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
79                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
80                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
81                         break;
82
83                 udelay(REGISTER_BUSY_DELAY);
84         }
85
86         if (i == 200)
87                 rt2x00_err(rt2x00dev, "MCU request failed, no response from hardware\n");
88
89         rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
90         rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
91 }
92
93 #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
94 static int rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
95 {
96         void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
97
98         if (!base_addr)
99                 return -ENOMEM;
100
101         memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
102
103         iounmap(base_addr);
104         return 0;
105 }
106 #else
107 static inline int rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
108 {
109         return -ENOMEM;
110 }
111 #endif /* CONFIG_SOC_RT288X || CONFIG_SOC_RT305X */
112
113 #ifdef CONFIG_PCI
114 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
115 {
116         struct rt2x00_dev *rt2x00dev = eeprom->data;
117         u32 reg;
118
119         rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
120
121         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
122         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
123         eeprom->reg_data_clock =
124             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
125         eeprom->reg_chip_select =
126             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
127 }
128
129 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
130 {
131         struct rt2x00_dev *rt2x00dev = eeprom->data;
132         u32 reg = 0;
133
134         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
135         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
136         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
137                            !!eeprom->reg_data_clock);
138         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
139                            !!eeprom->reg_chip_select);
140
141         rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
142 }
143
144 static int rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
145 {
146         struct eeprom_93cx6 eeprom;
147         u32 reg;
148
149         rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
150
151         eeprom.data = rt2x00dev;
152         eeprom.register_read = rt2800pci_eepromregister_read;
153         eeprom.register_write = rt2800pci_eepromregister_write;
154         switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
155         {
156         case 0:
157                 eeprom.width = PCI_EEPROM_WIDTH_93C46;
158                 break;
159         case 1:
160                 eeprom.width = PCI_EEPROM_WIDTH_93C66;
161                 break;
162         default:
163                 eeprom.width = PCI_EEPROM_WIDTH_93C86;
164                 break;
165         }
166         eeprom.reg_data_in = 0;
167         eeprom.reg_data_out = 0;
168         eeprom.reg_data_clock = 0;
169         eeprom.reg_chip_select = 0;
170
171         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
172                                EEPROM_SIZE / sizeof(u16));
173
174         return 0;
175 }
176
177 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
178 {
179         return rt2800_efuse_detect(rt2x00dev);
180 }
181
182 static inline int rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
183 {
184         return rt2800_read_eeprom_efuse(rt2x00dev);
185 }
186 #else
187 static inline int rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
188 {
189         return -EOPNOTSUPP;
190 }
191
192 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
193 {
194         return 0;
195 }
196
197 static inline int rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
198 {
199         return -EOPNOTSUPP;
200 }
201 #endif /* CONFIG_PCI */
202
203 /*
204  * Queue handlers.
205  */
206 static void rt2800pci_start_queue(struct data_queue *queue)
207 {
208         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
209         u32 reg;
210
211         switch (queue->qid) {
212         case QID_RX:
213                 rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
214                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
215                 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
216                 break;
217         case QID_BEACON:
218                 rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
219                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
220                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
221                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
222                 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
223
224                 rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN, &reg);
225                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
226                 rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
227                 break;
228         default:
229                 break;
230         }
231 }
232
233 static void rt2800pci_kick_queue(struct data_queue *queue)
234 {
235         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
236         struct queue_entry *entry;
237
238         switch (queue->qid) {
239         case QID_AC_VO:
240         case QID_AC_VI:
241         case QID_AC_BE:
242         case QID_AC_BK:
243                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
244                 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
245                                           entry->entry_idx);
246                 break;
247         case QID_MGMT:
248                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
249                 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5),
250                                           entry->entry_idx);
251                 break;
252         default:
253                 break;
254         }
255 }
256
257 static void rt2800pci_stop_queue(struct data_queue *queue)
258 {
259         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
260         u32 reg;
261
262         switch (queue->qid) {
263         case QID_RX:
264                 rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
265                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
266                 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
267                 break;
268         case QID_BEACON:
269                 rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
270                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
271                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
272                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
273                 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
274
275                 rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN, &reg);
276                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
277                 rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
278
279                 /*
280                  * Wait for current invocation to finish. The tasklet
281                  * won't be scheduled anymore afterwards since we disabled
282                  * the TBTT and PRE TBTT timer.
283                  */
284                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
285                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
286
287                 break;
288         default:
289                 break;
290         }
291 }
292
293 /*
294  * Firmware functions
295  */
296 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
297 {
298         /*
299          * Chip rt3290 use specific 4KB firmware named rt3290.bin.
300          */
301         if (rt2x00_rt(rt2x00dev, RT3290))
302                 return FIRMWARE_RT3290;
303         else
304                 return FIRMWARE_RT2860;
305 }
306
307 static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
308                                     const u8 *data, const size_t len)
309 {
310         u32 reg;
311
312         /*
313          * enable Host program ram write selection
314          */
315         reg = 0;
316         rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
317         rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
318
319         /*
320          * Write firmware to device.
321          */
322         rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
323                                        data, len);
324
325         rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
326         rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
327
328         rt2x00mmio_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
329         rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
330
331         return 0;
332 }
333
334 /*
335  * Initialization functions.
336  */
337 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
338 {
339         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
340         u32 word;
341
342         if (entry->queue->qid == QID_RX) {
343                 rt2x00_desc_read(entry_priv->desc, 1, &word);
344
345                 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
346         } else {
347                 rt2x00_desc_read(entry_priv->desc, 1, &word);
348
349                 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
350         }
351 }
352
353 static void rt2800pci_clear_entry(struct queue_entry *entry)
354 {
355         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
356         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
357         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
358         u32 word;
359
360         if (entry->queue->qid == QID_RX) {
361                 rt2x00_desc_read(entry_priv->desc, 0, &word);
362                 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
363                 rt2x00_desc_write(entry_priv->desc, 0, word);
364
365                 rt2x00_desc_read(entry_priv->desc, 1, &word);
366                 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
367                 rt2x00_desc_write(entry_priv->desc, 1, word);
368
369                 /*
370                  * Set RX IDX in register to inform hardware that we have
371                  * handled this entry and it is available for reuse again.
372                  */
373                 rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
374                                           entry->entry_idx);
375         } else {
376                 rt2x00_desc_read(entry_priv->desc, 1, &word);
377                 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
378                 rt2x00_desc_write(entry_priv->desc, 1, word);
379         }
380 }
381
382 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
383 {
384         struct queue_entry_priv_mmio *entry_priv;
385
386         /*
387          * Initialize registers.
388          */
389         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
390         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0,
391                                   entry_priv->desc_dma);
392         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0,
393                                   rt2x00dev->tx[0].limit);
394         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0);
395         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0);
396
397         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
398         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1,
399                                   entry_priv->desc_dma);
400         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1,
401                                   rt2x00dev->tx[1].limit);
402         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0);
403         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0);
404
405         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
406         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2,
407                                   entry_priv->desc_dma);
408         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2,
409                                   rt2x00dev->tx[2].limit);
410         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0);
411         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0);
412
413         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
414         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3,
415                                   entry_priv->desc_dma);
416         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3,
417                                   rt2x00dev->tx[3].limit);
418         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0);
419         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0);
420
421         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0);
422         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0);
423         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0);
424         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0);
425
426         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0);
427         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0);
428         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0);
429         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0);
430
431         entry_priv = rt2x00dev->rx->entries[0].priv_data;
432         rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR,
433                                   entry_priv->desc_dma);
434         rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT,
435                                   rt2x00dev->rx[0].limit);
436         rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
437                                   rt2x00dev->rx[0].limit - 1);
438         rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0);
439
440         rt2800_disable_wpdma(rt2x00dev);
441
442         rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0);
443
444         return 0;
445 }
446
447 /*
448  * Device state switch handlers.
449  */
450 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
451                                  enum dev_state state)
452 {
453         u32 reg;
454         unsigned long flags;
455
456         /*
457          * When interrupts are being enabled, the interrupt registers
458          * should clear the register to assure a clean state.
459          */
460         if (state == STATE_RADIO_IRQ_ON) {
461                 rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
462                 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
463         }
464
465         spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
466         reg = 0;
467         if (state == STATE_RADIO_IRQ_ON) {
468                 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
469                 rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
470                 rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
471                 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
472                 rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
473         }
474         rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
475         spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
476
477         if (state == STATE_RADIO_IRQ_OFF) {
478                 /*
479                  * Wait for possibly running tasklets to finish.
480                  */
481                 tasklet_kill(&rt2x00dev->txstatus_tasklet);
482                 tasklet_kill(&rt2x00dev->rxdone_tasklet);
483                 tasklet_kill(&rt2x00dev->autowake_tasklet);
484                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
485                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
486         }
487 }
488
489 static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
490 {
491         u32 reg;
492
493         /*
494          * Reset DMA indexes
495          */
496         rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
497         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
498         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
499         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
500         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
501         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
502         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
503         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
504         rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
505
506         rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
507         rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
508
509         if (rt2x00_is_pcie(rt2x00dev) &&
510             (rt2x00_rt(rt2x00dev, RT3572) ||
511              rt2x00_rt(rt2x00dev, RT5390) ||
512              rt2x00_rt(rt2x00dev, RT5392))) {
513                 rt2x00mmio_register_read(rt2x00dev, AUX_CTRL, &reg);
514                 rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
515                 rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
516                 rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg);
517         }
518
519         rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
520
521         reg = 0;
522         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
523         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
524         rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
525
526         rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
527
528         return 0;
529 }
530
531 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
532 {
533         int retval;
534
535         /* Wait for DMA, ignore error until we initialize queues. */
536         rt2800_wait_wpdma_ready(rt2x00dev);
537
538         if (unlikely(rt2800pci_init_queues(rt2x00dev)))
539                 return -EIO;
540
541         retval = rt2800_enable_radio(rt2x00dev);
542         if (retval)
543                 return retval;
544
545         /* After resume MCU_BOOT_SIGNAL will trash these. */
546         rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
547         rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
548
549         rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_RADIO_OFF, 0xff, 0x02);
550         rt2800pci_mcu_status(rt2x00dev, TOKEN_RADIO_OFF);
551
552         rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP, 0, 0);
553         rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
554
555         return retval;
556 }
557
558 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
559 {
560         if (rt2x00_is_soc(rt2x00dev)) {
561                 rt2800_disable_radio(rt2x00dev);
562                 rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0);
563                 rt2x00mmio_register_write(rt2x00dev, TX_PIN_CFG, 0);
564         }
565 }
566
567 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
568                                enum dev_state state)
569 {
570         if (state == STATE_AWAKE) {
571                 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP,
572                                    0, 0x02);
573                 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
574         } else if (state == STATE_SLEEP) {
575                 rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
576                                           0xffffffff);
577                 rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CID,
578                                           0xffffffff);
579                 rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_SLEEP,
580                                    0xff, 0x01);
581         }
582
583         return 0;
584 }
585
586 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
587                                       enum dev_state state)
588 {
589         int retval = 0;
590
591         switch (state) {
592         case STATE_RADIO_ON:
593                 retval = rt2800pci_enable_radio(rt2x00dev);
594                 break;
595         case STATE_RADIO_OFF:
596                 /*
597                  * After the radio has been disabled, the device should
598                  * be put to sleep for powersaving.
599                  */
600                 rt2800pci_disable_radio(rt2x00dev);
601                 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
602                 break;
603         case STATE_RADIO_IRQ_ON:
604         case STATE_RADIO_IRQ_OFF:
605                 rt2800pci_toggle_irq(rt2x00dev, state);
606                 break;
607         case STATE_DEEP_SLEEP:
608         case STATE_SLEEP:
609         case STATE_STANDBY:
610         case STATE_AWAKE:
611                 retval = rt2800pci_set_state(rt2x00dev, state);
612                 break;
613         default:
614                 retval = -ENOTSUPP;
615                 break;
616         }
617
618         if (unlikely(retval))
619                 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
620                            state, retval);
621
622         return retval;
623 }
624
625 /*
626  * TX descriptor initialization
627  */
628 static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
629 {
630         return (__le32 *) entry->skb->data;
631 }
632
633 static void rt2800pci_write_tx_desc(struct queue_entry *entry,
634                                     struct txentry_desc *txdesc)
635 {
636         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
637         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
638         __le32 *txd = entry_priv->desc;
639         u32 word;
640         const unsigned int txwi_size = entry->queue->winfo_size;
641
642         /*
643          * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
644          * must contains a TXWI structure + 802.11 header + padding + 802.11
645          * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
646          * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
647          * data. It means that LAST_SEC0 is always 0.
648          */
649
650         /*
651          * Initialize TX descriptor
652          */
653         word = 0;
654         rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
655         rt2x00_desc_write(txd, 0, word);
656
657         word = 0;
658         rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
659         rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
660                            !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
661         rt2x00_set_field32(&word, TXD_W1_BURST,
662                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
663         rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size);
664         rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
665         rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
666         rt2x00_desc_write(txd, 1, word);
667
668         word = 0;
669         rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
670                            skbdesc->skb_dma + txwi_size);
671         rt2x00_desc_write(txd, 2, word);
672
673         word = 0;
674         rt2x00_set_field32(&word, TXD_W3_WIV,
675                            !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
676         rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
677         rt2x00_desc_write(txd, 3, word);
678
679         /*
680          * Register descriptor details in skb frame descriptor.
681          */
682         skbdesc->desc = txd;
683         skbdesc->desc_len = TXD_DESC_SIZE;
684 }
685
686 /*
687  * RX control handlers
688  */
689 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
690                                   struct rxdone_entry_desc *rxdesc)
691 {
692         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
693         __le32 *rxd = entry_priv->desc;
694         u32 word;
695
696         rt2x00_desc_read(rxd, 3, &word);
697
698         if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
699                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
700
701         /*
702          * Unfortunately we don't know the cipher type used during
703          * decryption. This prevents us from correct providing
704          * correct statistics through debugfs.
705          */
706         rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
707
708         if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
709                 /*
710                  * Hardware has stripped IV/EIV data from 802.11 frame during
711                  * decryption. Unfortunately the descriptor doesn't contain
712                  * any fields with the EIV/IV data either, so they can't
713                  * be restored by rt2x00lib.
714                  */
715                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
716
717                 /*
718                  * The hardware has already checked the Michael Mic and has
719                  * stripped it from the frame. Signal this to mac80211.
720                  */
721                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
722
723                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
724                         rxdesc->flags |= RX_FLAG_DECRYPTED;
725                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
726                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
727         }
728
729         if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
730                 rxdesc->dev_flags |= RXDONE_MY_BSS;
731
732         if (rt2x00_get_field32(word, RXD_W3_L2PAD))
733                 rxdesc->dev_flags |= RXDONE_L2PAD;
734
735         /*
736          * Process the RXWI structure that is at the start of the buffer.
737          */
738         rt2800_process_rxwi(entry, rxdesc);
739 }
740
741 /*
742  * Interrupt functions.
743  */
744 static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
745 {
746         struct ieee80211_conf conf = { .flags = 0 };
747         struct rt2x00lib_conf libconf = { .conf = &conf };
748
749         rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
750 }
751
752 static bool rt2800pci_txdone_entry_check(struct queue_entry *entry, u32 status)
753 {
754         __le32 *txwi;
755         u32 word;
756         int wcid, tx_wcid;
757
758         wcid = rt2x00_get_field32(status, TX_STA_FIFO_WCID);
759
760         txwi = rt2800_drv_get_txwi(entry);
761         rt2x00_desc_read(txwi, 1, &word);
762         tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
763
764         return (tx_wcid == wcid);
765 }
766
767 static bool rt2800pci_txdone_find_entry(struct queue_entry *entry, void *data)
768 {
769         u32 status = *(u32 *)data;
770
771         /*
772          * rt2800pci hardware might reorder frames when exchanging traffic
773          * with multiple BA enabled STAs.
774          *
775          * For example, a tx queue
776          *    [ STA1 | STA2 | STA1 | STA2 ]
777          * can result in tx status reports
778          *    [ STA1 | STA1 | STA2 | STA2 ]
779          * when the hw decides to aggregate the frames for STA1 into one AMPDU.
780          *
781          * To mitigate this effect, associate the tx status to the first frame
782          * in the tx queue with a matching wcid.
783          */
784         if (rt2800pci_txdone_entry_check(entry, status) &&
785             !test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
786                 /*
787                  * Got a matching frame, associate the tx status with
788                  * the frame
789                  */
790                 entry->status = status;
791                 set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
792                 return true;
793         }
794
795         /* Check the next frame */
796         return false;
797 }
798
799 static bool rt2800pci_txdone_match_first(struct queue_entry *entry, void *data)
800 {
801         u32 status = *(u32 *)data;
802
803         /*
804          * Find the first frame without tx status and assign this status to it
805          * regardless if it matches or not.
806          */
807         if (!test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
808                 /*
809                  * Got a matching frame, associate the tx status with
810                  * the frame
811                  */
812                 entry->status = status;
813                 set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
814                 return true;
815         }
816
817         /* Check the next frame */
818         return false;
819 }
820 static bool rt2800pci_txdone_release_entries(struct queue_entry *entry,
821                                              void *data)
822 {
823         if (test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
824                 rt2800_txdone_entry(entry, entry->status,
825                                     rt2800pci_get_txwi(entry));
826                 return false;
827         }
828
829         /* No more frames to release */
830         return true;
831 }
832
833 static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
834 {
835         struct data_queue *queue;
836         u32 status;
837         u8 qid;
838         int max_tx_done = 16;
839
840         while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
841                 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
842                 if (unlikely(qid >= QID_RX)) {
843                         /*
844                          * Unknown queue, this shouldn't happen. Just drop
845                          * this tx status.
846                          */
847                         rt2x00_warn(rt2x00dev, "Got TX status report with unexpected pid %u, dropping\n",
848                                     qid);
849                         break;
850                 }
851
852                 queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
853                 if (unlikely(queue == NULL)) {
854                         /*
855                          * The queue is NULL, this shouldn't happen. Stop
856                          * processing here and drop the tx status
857                          */
858                         rt2x00_warn(rt2x00dev, "Got TX status for an unavailable queue %u, dropping\n",
859                                     qid);
860                         break;
861                 }
862
863                 if (unlikely(rt2x00queue_empty(queue))) {
864                         /*
865                          * The queue is empty. Stop processing here
866                          * and drop the tx status.
867                          */
868                         rt2x00_warn(rt2x00dev, "Got TX status for an empty queue %u, dropping\n",
869                                     qid);
870                         break;
871                 }
872
873                 /*
874                  * Let's associate this tx status with the first
875                  * matching frame.
876                  */
877                 if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
878                                                 Q_INDEX, &status,
879                                                 rt2800pci_txdone_find_entry)) {
880                         /*
881                          * We cannot match the tx status to any frame, so just
882                          * use the first one.
883                          */
884                         if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
885                                                         Q_INDEX, &status,
886                                                         rt2800pci_txdone_match_first)) {
887                                 rt2x00_warn(rt2x00dev, "No frame found for TX status on queue %u, dropping\n",
888                                             qid);
889                                 break;
890                         }
891                 }
892
893                 /*
894                  * Release all frames with a valid tx status.
895                  */
896                 rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
897                                            Q_INDEX, NULL,
898                                            rt2800pci_txdone_release_entries);
899
900                 if (--max_tx_done == 0)
901                         break;
902         }
903
904         return !max_tx_done;
905 }
906
907 static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
908                                               struct rt2x00_field32 irq_field)
909 {
910         u32 reg;
911
912         /*
913          * Enable a single interrupt. The interrupt mask register
914          * access needs locking.
915          */
916         spin_lock_irq(&rt2x00dev->irqmask_lock);
917         rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
918         rt2x00_set_field32(&reg, irq_field, 1);
919         rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
920         spin_unlock_irq(&rt2x00dev->irqmask_lock);
921 }
922
923 static void rt2800pci_txstatus_tasklet(unsigned long data)
924 {
925         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
926         if (rt2800pci_txdone(rt2x00dev))
927                 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
928
929         /*
930          * No need to enable the tx status interrupt here as we always
931          * leave it enabled to minimize the possibility of a tx status
932          * register overflow. See comment in interrupt handler.
933          */
934 }
935
936 static void rt2800pci_pretbtt_tasklet(unsigned long data)
937 {
938         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
939         rt2x00lib_pretbtt(rt2x00dev);
940         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
941                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
942 }
943
944 static void rt2800pci_tbtt_tasklet(unsigned long data)
945 {
946         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
947         struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
948         u32 reg;
949
950         rt2x00lib_beacondone(rt2x00dev);
951
952         if (rt2x00dev->intf_ap_count) {
953                 /*
954                  * The rt2800pci hardware tbtt timer is off by 1us per tbtt
955                  * causing beacon skew and as a result causing problems with
956                  * some powersaving clients over time. Shorten the beacon
957                  * interval every 64 beacons by 64us to mitigate this effect.
958                  */
959                 if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
960                         rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
961                         rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
962                                            (rt2x00dev->beacon_int * 16) - 1);
963                         rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
964                 } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
965                         rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
966                         rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
967                                            (rt2x00dev->beacon_int * 16));
968                         rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
969                 }
970                 drv_data->tbtt_tick++;
971                 drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
972         }
973
974         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
975                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
976 }
977
978 static void rt2800pci_rxdone_tasklet(unsigned long data)
979 {
980         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
981         if (rt2x00mmio_rxdone(rt2x00dev))
982                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
983         else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
984                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
985 }
986
987 static void rt2800pci_autowake_tasklet(unsigned long data)
988 {
989         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
990         rt2800pci_wakeup(rt2x00dev);
991         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
992                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
993 }
994
995 static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
996 {
997         u32 status;
998         int i;
999
1000         /*
1001          * The TX_FIFO_STATUS interrupt needs special care. We should
1002          * read TX_STA_FIFO but we should do it immediately as otherwise
1003          * the register can overflow and we would lose status reports.
1004          *
1005          * Hence, read the TX_STA_FIFO register and copy all tx status
1006          * reports into a kernel FIFO which is handled in the txstatus
1007          * tasklet. We use a tasklet to process the tx status reports
1008          * because we can schedule the tasklet multiple times (when the
1009          * interrupt fires again during tx status processing).
1010          *
1011          * Furthermore we don't disable the TX_FIFO_STATUS
1012          * interrupt here but leave it enabled so that the TX_STA_FIFO
1013          * can also be read while the tx status tasklet gets executed.
1014          *
1015          * Since we have only one producer and one consumer we don't
1016          * need to lock the kfifo.
1017          */
1018         for (i = 0; i < rt2x00dev->tx->limit; i++) {
1019                 rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO, &status);
1020
1021                 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
1022                         break;
1023
1024                 if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
1025                         rt2x00_warn(rt2x00dev, "TX status FIFO overrun, drop tx status report\n");
1026                         break;
1027                 }
1028         }
1029
1030         /* Schedule the tasklet for processing the tx status. */
1031         tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1032 }
1033
1034 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
1035 {
1036         struct rt2x00_dev *rt2x00dev = dev_instance;
1037         u32 reg, mask;
1038
1039         /* Read status and ACK all interrupts */
1040         rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1041         rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1042
1043         if (!reg)
1044                 return IRQ_NONE;
1045
1046         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1047                 return IRQ_HANDLED;
1048
1049         /*
1050          * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
1051          * for interrupts and interrupt masks we can just use the value of
1052          * INT_SOURCE_CSR to create the interrupt mask.
1053          */
1054         mask = ~reg;
1055
1056         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
1057                 rt2800pci_txstatus_interrupt(rt2x00dev);
1058                 /*
1059                  * Never disable the TX_FIFO_STATUS interrupt.
1060                  */
1061                 rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
1062         }
1063
1064         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
1065                 tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
1066
1067         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
1068                 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1069
1070         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
1071                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1072
1073         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
1074                 tasklet_schedule(&rt2x00dev->autowake_tasklet);
1075
1076         /*
1077          * Disable all interrupts for which a tasklet was scheduled right now,
1078          * the tasklet will reenable the appropriate interrupts.
1079          */
1080         spin_lock(&rt2x00dev->irqmask_lock);
1081         rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1082         reg &= mask;
1083         rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
1084         spin_unlock(&rt2x00dev->irqmask_lock);
1085
1086         return IRQ_HANDLED;
1087 }
1088
1089 /*
1090  * Device probe functions.
1091  */
1092 static int rt2800pci_read_eeprom(struct rt2x00_dev *rt2x00dev)
1093 {
1094         int retval;
1095
1096         if (rt2x00_is_soc(rt2x00dev))
1097                 retval = rt2800pci_read_eeprom_soc(rt2x00dev);
1098         else if (rt2800pci_efuse_detect(rt2x00dev))
1099                 retval = rt2800pci_read_eeprom_efuse(rt2x00dev);
1100         else
1101                 retval = rt2800pci_read_eeprom_pci(rt2x00dev);
1102
1103         return retval;
1104 }
1105
1106 static const struct ieee80211_ops rt2800pci_mac80211_ops = {
1107         .tx                     = rt2x00mac_tx,
1108         .start                  = rt2x00mac_start,
1109         .stop                   = rt2x00mac_stop,
1110         .add_interface          = rt2x00mac_add_interface,
1111         .remove_interface       = rt2x00mac_remove_interface,
1112         .config                 = rt2x00mac_config,
1113         .configure_filter       = rt2x00mac_configure_filter,
1114         .set_key                = rt2x00mac_set_key,
1115         .sw_scan_start          = rt2x00mac_sw_scan_start,
1116         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1117         .get_stats              = rt2x00mac_get_stats,
1118         .get_tkip_seq           = rt2800_get_tkip_seq,
1119         .set_rts_threshold      = rt2800_set_rts_threshold,
1120         .sta_add                = rt2x00mac_sta_add,
1121         .sta_remove             = rt2x00mac_sta_remove,
1122         .bss_info_changed       = rt2x00mac_bss_info_changed,
1123         .conf_tx                = rt2800_conf_tx,
1124         .get_tsf                = rt2800_get_tsf,
1125         .rfkill_poll            = rt2x00mac_rfkill_poll,
1126         .ampdu_action           = rt2800_ampdu_action,
1127         .flush                  = rt2x00mac_flush,
1128         .get_survey             = rt2800_get_survey,
1129         .get_ringparam          = rt2x00mac_get_ringparam,
1130         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
1131 };
1132
1133 static const struct rt2800_ops rt2800pci_rt2800_ops = {
1134         .register_read          = rt2x00mmio_register_read,
1135         .register_read_lock     = rt2x00mmio_register_read, /* same for PCI */
1136         .register_write         = rt2x00mmio_register_write,
1137         .register_write_lock    = rt2x00mmio_register_write, /* same for PCI */
1138         .register_multiread     = rt2x00mmio_register_multiread,
1139         .register_multiwrite    = rt2x00mmio_register_multiwrite,
1140         .regbusy_read           = rt2x00mmio_regbusy_read,
1141         .read_eeprom            = rt2800pci_read_eeprom,
1142         .hwcrypt_disabled       = rt2800pci_hwcrypt_disabled,
1143         .drv_write_firmware     = rt2800pci_write_firmware,
1144         .drv_init_registers     = rt2800pci_init_registers,
1145         .drv_get_txwi           = rt2800pci_get_txwi,
1146 };
1147
1148 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
1149         .irq_handler            = rt2800pci_interrupt,
1150         .txstatus_tasklet       = rt2800pci_txstatus_tasklet,
1151         .pretbtt_tasklet        = rt2800pci_pretbtt_tasklet,
1152         .tbtt_tasklet           = rt2800pci_tbtt_tasklet,
1153         .rxdone_tasklet         = rt2800pci_rxdone_tasklet,
1154         .autowake_tasklet       = rt2800pci_autowake_tasklet,
1155         .probe_hw               = rt2800_probe_hw,
1156         .get_firmware_name      = rt2800pci_get_firmware_name,
1157         .check_firmware         = rt2800_check_firmware,
1158         .load_firmware          = rt2800_load_firmware,
1159         .initialize             = rt2x00mmio_initialize,
1160         .uninitialize           = rt2x00mmio_uninitialize,
1161         .get_entry_state        = rt2800pci_get_entry_state,
1162         .clear_entry            = rt2800pci_clear_entry,
1163         .set_device_state       = rt2800pci_set_device_state,
1164         .rfkill_poll            = rt2800_rfkill_poll,
1165         .link_stats             = rt2800_link_stats,
1166         .reset_tuner            = rt2800_reset_tuner,
1167         .link_tuner             = rt2800_link_tuner,
1168         .gain_calibration       = rt2800_gain_calibration,
1169         .vco_calibration        = rt2800_vco_calibration,
1170         .start_queue            = rt2800pci_start_queue,
1171         .kick_queue             = rt2800pci_kick_queue,
1172         .stop_queue             = rt2800pci_stop_queue,
1173         .flush_queue            = rt2x00mmio_flush_queue,
1174         .write_tx_desc          = rt2800pci_write_tx_desc,
1175         .write_tx_data          = rt2800_write_tx_data,
1176         .write_beacon           = rt2800_write_beacon,
1177         .clear_beacon           = rt2800_clear_beacon,
1178         .fill_rxdone            = rt2800pci_fill_rxdone,
1179         .config_shared_key      = rt2800_config_shared_key,
1180         .config_pairwise_key    = rt2800_config_pairwise_key,
1181         .config_filter          = rt2800_config_filter,
1182         .config_intf            = rt2800_config_intf,
1183         .config_erp             = rt2800_config_erp,
1184         .config_ant             = rt2800_config_ant,
1185         .config                 = rt2800_config,
1186         .sta_add                = rt2800_sta_add,
1187         .sta_remove             = rt2800_sta_remove,
1188 };
1189
1190 static void rt2800pci_queue_init(struct data_queue *queue)
1191 {
1192         switch (queue->qid) {
1193         case QID_RX:
1194                 queue->limit = 128;
1195                 queue->data_size = AGGREGATION_SIZE;
1196                 queue->desc_size = RXD_DESC_SIZE;
1197                 queue->winfo_size = RXWI_DESC_SIZE_4WORDS;
1198                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1199                 break;
1200
1201         case QID_AC_VO:
1202         case QID_AC_VI:
1203         case QID_AC_BE:
1204         case QID_AC_BK:
1205                 queue->limit = 64;
1206                 queue->data_size = AGGREGATION_SIZE;
1207                 queue->desc_size = TXD_DESC_SIZE;
1208                 queue->winfo_size = TXWI_DESC_SIZE_4WORDS;
1209                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1210                 break;
1211
1212         case QID_BEACON:
1213                 queue->limit = 8;
1214                 queue->data_size = 0; /* No DMA required for beacons */
1215                 queue->desc_size = TXD_DESC_SIZE;
1216                 queue->winfo_size = TXWI_DESC_SIZE_4WORDS;
1217                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1218                 break;
1219
1220         case QID_ATIM:
1221                 /* fallthrough */
1222         default:
1223                 BUG();
1224                 break;
1225         }
1226 }
1227
1228 static const struct rt2x00_ops rt2800pci_ops = {
1229         .name                   = KBUILD_MODNAME,
1230         .drv_data_size          = sizeof(struct rt2800_drv_data),
1231         .max_ap_intf            = 8,
1232         .eeprom_size            = EEPROM_SIZE,
1233         .rf_size                = RF_SIZE,
1234         .tx_queues              = NUM_TX_QUEUES,
1235         .queue_init             = rt2800pci_queue_init,
1236         .lib                    = &rt2800pci_rt2x00_ops,
1237         .drv                    = &rt2800pci_rt2800_ops,
1238         .hw                     = &rt2800pci_mac80211_ops,
1239 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1240         .debugfs                = &rt2800_rt2x00debug,
1241 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1242 };
1243
1244 /*
1245  * RT2800pci module information.
1246  */
1247 #ifdef CONFIG_PCI
1248 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1249         { PCI_DEVICE(0x1814, 0x0601) },
1250         { PCI_DEVICE(0x1814, 0x0681) },
1251         { PCI_DEVICE(0x1814, 0x0701) },
1252         { PCI_DEVICE(0x1814, 0x0781) },
1253         { PCI_DEVICE(0x1814, 0x3090) },
1254         { PCI_DEVICE(0x1814, 0x3091) },
1255         { PCI_DEVICE(0x1814, 0x3092) },
1256         { PCI_DEVICE(0x1432, 0x7708) },
1257         { PCI_DEVICE(0x1432, 0x7727) },
1258         { PCI_DEVICE(0x1432, 0x7728) },
1259         { PCI_DEVICE(0x1432, 0x7738) },
1260         { PCI_DEVICE(0x1432, 0x7748) },
1261         { PCI_DEVICE(0x1432, 0x7758) },
1262         { PCI_DEVICE(0x1432, 0x7768) },
1263         { PCI_DEVICE(0x1462, 0x891a) },
1264         { PCI_DEVICE(0x1a3b, 0x1059) },
1265 #ifdef CONFIG_RT2800PCI_RT3290
1266         { PCI_DEVICE(0x1814, 0x3290) },
1267 #endif
1268 #ifdef CONFIG_RT2800PCI_RT33XX
1269         { PCI_DEVICE(0x1814, 0x3390) },
1270 #endif
1271 #ifdef CONFIG_RT2800PCI_RT35XX
1272         { PCI_DEVICE(0x1432, 0x7711) },
1273         { PCI_DEVICE(0x1432, 0x7722) },
1274         { PCI_DEVICE(0x1814, 0x3060) },
1275         { PCI_DEVICE(0x1814, 0x3062) },
1276         { PCI_DEVICE(0x1814, 0x3562) },
1277         { PCI_DEVICE(0x1814, 0x3592) },
1278         { PCI_DEVICE(0x1814, 0x3593) },
1279         { PCI_DEVICE(0x1814, 0x359f) },
1280 #endif
1281 #ifdef CONFIG_RT2800PCI_RT53XX
1282         { PCI_DEVICE(0x1814, 0x5360) },
1283         { PCI_DEVICE(0x1814, 0x5362) },
1284         { PCI_DEVICE(0x1814, 0x5390) },
1285         { PCI_DEVICE(0x1814, 0x5392) },
1286         { PCI_DEVICE(0x1814, 0x539a) },
1287         { PCI_DEVICE(0x1814, 0x539b) },
1288         { PCI_DEVICE(0x1814, 0x539f) },
1289 #endif
1290         { 0, }
1291 };
1292 #endif /* CONFIG_PCI */
1293
1294 MODULE_AUTHOR(DRV_PROJECT);
1295 MODULE_VERSION(DRV_VERSION);
1296 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1297 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1298 #ifdef CONFIG_PCI
1299 MODULE_FIRMWARE(FIRMWARE_RT2860);
1300 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1301 #endif /* CONFIG_PCI */
1302 MODULE_LICENSE("GPL");
1303
1304 #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
1305 static int rt2800soc_probe(struct platform_device *pdev)
1306 {
1307         return rt2x00soc_probe(pdev, &rt2800pci_ops);
1308 }
1309
1310 static struct platform_driver rt2800soc_driver = {
1311         .driver         = {
1312                 .name           = "rt2800_wmac",
1313                 .owner          = THIS_MODULE,
1314                 .mod_name       = KBUILD_MODNAME,
1315         },
1316         .probe          = rt2800soc_probe,
1317         .remove         = rt2x00soc_remove,
1318         .suspend        = rt2x00soc_suspend,
1319         .resume         = rt2x00soc_resume,
1320 };
1321 #endif /* CONFIG_SOC_RT288X || CONFIG_SOC_RT305X */
1322
1323 #ifdef CONFIG_PCI
1324 static int rt2800pci_probe(struct pci_dev *pci_dev,
1325                            const struct pci_device_id *id)
1326 {
1327         return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
1328 }
1329
1330 static struct pci_driver rt2800pci_driver = {
1331         .name           = KBUILD_MODNAME,
1332         .id_table       = rt2800pci_device_table,
1333         .probe          = rt2800pci_probe,
1334         .remove         = rt2x00pci_remove,
1335         .suspend        = rt2x00pci_suspend,
1336         .resume         = rt2x00pci_resume,
1337 };
1338 #endif /* CONFIG_PCI */
1339
1340 static int __init rt2800pci_init(void)
1341 {
1342         int ret = 0;
1343
1344 #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
1345         ret = platform_driver_register(&rt2800soc_driver);
1346         if (ret)
1347                 return ret;
1348 #endif
1349 #ifdef CONFIG_PCI
1350         ret = pci_register_driver(&rt2800pci_driver);
1351         if (ret) {
1352 #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
1353                 platform_driver_unregister(&rt2800soc_driver);
1354 #endif
1355                 return ret;
1356         }
1357 #endif
1358
1359         return ret;
1360 }
1361
1362 static void __exit rt2800pci_exit(void)
1363 {
1364 #ifdef CONFIG_PCI
1365         pci_unregister_driver(&rt2800pci_driver);
1366 #endif
1367 #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
1368         platform_driver_unregister(&rt2800soc_driver);
1369 #endif
1370 }
1371
1372 module_init(rt2800pci_init);
1373 module_exit(rt2800pci_exit);