Linux 6.9-rc1
[linux-2.6-microblaze.git] / drivers / net / wireless / realtek / rtw88 / main.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4
5 #include <linux/devcoredump.h>
6
7 #include "main.h"
8 #include "regd.h"
9 #include "fw.h"
10 #include "ps.h"
11 #include "sec.h"
12 #include "mac.h"
13 #include "coex.h"
14 #include "phy.h"
15 #include "reg.h"
16 #include "efuse.h"
17 #include "tx.h"
18 #include "debug.h"
19 #include "bf.h"
20 #include "sar.h"
21 #include "sdio.h"
22
23 bool rtw_disable_lps_deep_mode;
24 EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
25 bool rtw_bf_support = true;
26 unsigned int rtw_debug_mask;
27 EXPORT_SYMBOL(rtw_debug_mask);
28 /* EDCCA is enabled during normal behavior. For debugging purpose in
29  * a noisy environment, it can be disabled via edcca debugfs. Because
30  * all rtw88 devices will probably be affected if environment is noisy,
31  * rtw_edcca_enabled is just declared by driver instead of by device.
32  * So, turning it off will take effect for all rtw88 devices before
33  * there is a tough reason to maintain rtw_edcca_enabled by device.
34  */
35 bool rtw_edcca_enabled = true;
36
37 module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
38 module_param_named(support_bf, rtw_bf_support, bool, 0644);
39 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
40
41 MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
42 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
43 MODULE_PARM_DESC(debug_mask, "Debugging mask");
44
45 static struct ieee80211_channel rtw_channeltable_2g[] = {
46         {.center_freq = 2412, .hw_value = 1,},
47         {.center_freq = 2417, .hw_value = 2,},
48         {.center_freq = 2422, .hw_value = 3,},
49         {.center_freq = 2427, .hw_value = 4,},
50         {.center_freq = 2432, .hw_value = 5,},
51         {.center_freq = 2437, .hw_value = 6,},
52         {.center_freq = 2442, .hw_value = 7,},
53         {.center_freq = 2447, .hw_value = 8,},
54         {.center_freq = 2452, .hw_value = 9,},
55         {.center_freq = 2457, .hw_value = 10,},
56         {.center_freq = 2462, .hw_value = 11,},
57         {.center_freq = 2467, .hw_value = 12,},
58         {.center_freq = 2472, .hw_value = 13,},
59         {.center_freq = 2484, .hw_value = 14,},
60 };
61
62 static struct ieee80211_channel rtw_channeltable_5g[] = {
63         {.center_freq = 5180, .hw_value = 36,},
64         {.center_freq = 5200, .hw_value = 40,},
65         {.center_freq = 5220, .hw_value = 44,},
66         {.center_freq = 5240, .hw_value = 48,},
67         {.center_freq = 5260, .hw_value = 52,},
68         {.center_freq = 5280, .hw_value = 56,},
69         {.center_freq = 5300, .hw_value = 60,},
70         {.center_freq = 5320, .hw_value = 64,},
71         {.center_freq = 5500, .hw_value = 100,},
72         {.center_freq = 5520, .hw_value = 104,},
73         {.center_freq = 5540, .hw_value = 108,},
74         {.center_freq = 5560, .hw_value = 112,},
75         {.center_freq = 5580, .hw_value = 116,},
76         {.center_freq = 5600, .hw_value = 120,},
77         {.center_freq = 5620, .hw_value = 124,},
78         {.center_freq = 5640, .hw_value = 128,},
79         {.center_freq = 5660, .hw_value = 132,},
80         {.center_freq = 5680, .hw_value = 136,},
81         {.center_freq = 5700, .hw_value = 140,},
82         {.center_freq = 5720, .hw_value = 144,},
83         {.center_freq = 5745, .hw_value = 149,},
84         {.center_freq = 5765, .hw_value = 153,},
85         {.center_freq = 5785, .hw_value = 157,},
86         {.center_freq = 5805, .hw_value = 161,},
87         {.center_freq = 5825, .hw_value = 165,
88          .flags = IEEE80211_CHAN_NO_HT40MINUS},
89 };
90
91 static struct ieee80211_rate rtw_ratetable[] = {
92         {.bitrate = 10, .hw_value = 0x00,},
93         {.bitrate = 20, .hw_value = 0x01,},
94         {.bitrate = 55, .hw_value = 0x02,},
95         {.bitrate = 110, .hw_value = 0x03,},
96         {.bitrate = 60, .hw_value = 0x04,},
97         {.bitrate = 90, .hw_value = 0x05,},
98         {.bitrate = 120, .hw_value = 0x06,},
99         {.bitrate = 180, .hw_value = 0x07,},
100         {.bitrate = 240, .hw_value = 0x08,},
101         {.bitrate = 360, .hw_value = 0x09,},
102         {.bitrate = 480, .hw_value = 0x0a,},
103         {.bitrate = 540, .hw_value = 0x0b,},
104 };
105
106 static const struct ieee80211_iface_limit rtw_iface_limits[] = {
107         {
108                 .max = 1,
109                 .types = BIT(NL80211_IFTYPE_STATION),
110         },
111         {
112                 .max = 1,
113                 .types = BIT(NL80211_IFTYPE_AP),
114         }
115 };
116
117 static const struct ieee80211_iface_combination rtw_iface_combs[] = {
118         {
119                 .limits = rtw_iface_limits,
120                 .n_limits = ARRAY_SIZE(rtw_iface_limits),
121                 .max_interfaces = 2,
122                 .num_different_channels = 1,
123         }
124 };
125
126 u16 rtw_desc_to_bitrate(u8 desc_rate)
127 {
128         struct ieee80211_rate rate;
129
130         if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
131                 return 0;
132
133         rate = rtw_ratetable[desc_rate];
134
135         return rate.bitrate;
136 }
137
138 static struct ieee80211_supported_band rtw_band_2ghz = {
139         .band = NL80211_BAND_2GHZ,
140
141         .channels = rtw_channeltable_2g,
142         .n_channels = ARRAY_SIZE(rtw_channeltable_2g),
143
144         .bitrates = rtw_ratetable,
145         .n_bitrates = ARRAY_SIZE(rtw_ratetable),
146
147         .ht_cap = {0},
148         .vht_cap = {0},
149 };
150
151 static struct ieee80211_supported_band rtw_band_5ghz = {
152         .band = NL80211_BAND_5GHZ,
153
154         .channels = rtw_channeltable_5g,
155         .n_channels = ARRAY_SIZE(rtw_channeltable_5g),
156
157         /* 5G has no CCK rates */
158         .bitrates = rtw_ratetable + 4,
159         .n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
160
161         .ht_cap = {0},
162         .vht_cap = {0},
163 };
164
165 struct rtw_watch_dog_iter_data {
166         struct rtw_dev *rtwdev;
167         struct rtw_vif *rtwvif;
168 };
169
170 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
171 {
172         struct rtw_bf_info *bf_info = &rtwdev->bf_info;
173         u8 fix_rate_enable = 0;
174         u8 new_csi_rate_idx;
175
176         if (rtwvif->bfee.role != RTW_BFEE_SU &&
177             rtwvif->bfee.role != RTW_BFEE_MU)
178                 return;
179
180         rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
181                               bf_info->cur_csi_rpt_rate,
182                               fix_rate_enable, &new_csi_rate_idx);
183
184         if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
185                 bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
186 }
187
188 static void rtw_vif_watch_dog_iter(void *data, struct ieee80211_vif *vif)
189 {
190         struct rtw_watch_dog_iter_data *iter_data = data;
191         struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
192
193         if (vif->type == NL80211_IFTYPE_STATION)
194                 if (vif->cfg.assoc)
195                         iter_data->rtwvif = rtwvif;
196
197         rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
198
199         rtwvif->stats.tx_unicast = 0;
200         rtwvif->stats.rx_unicast = 0;
201         rtwvif->stats.tx_cnt = 0;
202         rtwvif->stats.rx_cnt = 0;
203 }
204
205 /* process TX/RX statistics periodically for hardware,
206  * the information helps hardware to enhance performance
207  */
208 static void rtw_watch_dog_work(struct work_struct *work)
209 {
210         struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
211                                               watch_dog_work.work);
212         struct rtw_traffic_stats *stats = &rtwdev->stats;
213         struct rtw_watch_dog_iter_data data = {};
214         bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
215         bool ps_active;
216
217         mutex_lock(&rtwdev->mutex);
218
219         if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
220                 goto unlock;
221
222         ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
223                                      RTW_WATCH_DOG_DELAY_TIME);
224
225         if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
226                 set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
227         else
228                 clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
229
230         rtw_coex_wl_status_check(rtwdev);
231         rtw_coex_query_bt_hid_list(rtwdev);
232
233         if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
234                 rtw_coex_wl_status_change_notify(rtwdev, 0);
235
236         if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
237             stats->rx_cnt > RTW_LPS_THRESHOLD)
238                 ps_active = true;
239         else
240                 ps_active = false;
241
242         ewma_tp_add(&stats->tx_ewma_tp,
243                     (u32)(stats->tx_unicast >> RTW_TP_SHIFT));
244         ewma_tp_add(&stats->rx_ewma_tp,
245                     (u32)(stats->rx_unicast >> RTW_TP_SHIFT));
246         stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
247         stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
248
249         /* reset tx/rx statictics */
250         stats->tx_unicast = 0;
251         stats->rx_unicast = 0;
252         stats->tx_cnt = 0;
253         stats->rx_cnt = 0;
254
255         if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
256                 goto unlock;
257
258         /* make sure BB/RF is working for dynamic mech */
259         rtw_leave_lps(rtwdev);
260
261         rtw_phy_dynamic_mechanism(rtwdev);
262
263         data.rtwdev = rtwdev;
264         /* rtw_iterate_vifs internally uses an atomic iterator which is needed
265          * to avoid taking local->iflist_mtx mutex
266          */
267         rtw_iterate_vifs(rtwdev, rtw_vif_watch_dog_iter, &data);
268
269         /* fw supports only one station associated to enter lps, if there are
270          * more than two stations associated to the AP, then we can not enter
271          * lps, because fw does not handle the overlapped beacon interval
272          *
273          * rtw_recalc_lps() iterate vifs and determine if driver can enter
274          * ps by vif->type and vif->cfg.ps, all we need to do here is to
275          * get that vif and check if device is having traffic more than the
276          * threshold.
277          */
278         if (rtwdev->ps_enabled && data.rtwvif && !ps_active &&
279             !rtwdev->beacon_loss && !rtwdev->ap_active)
280                 rtw_enter_lps(rtwdev, data.rtwvif->port);
281
282         rtwdev->watch_dog_cnt++;
283
284 unlock:
285         mutex_unlock(&rtwdev->mutex);
286 }
287
288 static void rtw_c2h_work(struct work_struct *work)
289 {
290         struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
291         struct sk_buff *skb, *tmp;
292
293         skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
294                 skb_unlink(skb, &rtwdev->c2h_queue);
295                 rtw_fw_c2h_cmd_handle(rtwdev, skb);
296                 dev_kfree_skb_any(skb);
297         }
298 }
299
300 static void rtw_ips_work(struct work_struct *work)
301 {
302         struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ips_work);
303
304         mutex_lock(&rtwdev->mutex);
305         if (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)
306                 rtw_enter_ips(rtwdev);
307         mutex_unlock(&rtwdev->mutex);
308 }
309
310 static u8 rtw_acquire_macid(struct rtw_dev *rtwdev)
311 {
312         unsigned long mac_id;
313
314         mac_id = find_first_zero_bit(rtwdev->mac_id_map, RTW_MAX_MAC_ID_NUM);
315         if (mac_id < RTW_MAX_MAC_ID_NUM)
316                 set_bit(mac_id, rtwdev->mac_id_map);
317
318         return mac_id;
319 }
320
321 static void rtw_sta_rc_work(struct work_struct *work)
322 {
323         struct rtw_sta_info *si = container_of(work, struct rtw_sta_info,
324                                                rc_work);
325         struct rtw_dev *rtwdev = si->rtwdev;
326
327         mutex_lock(&rtwdev->mutex);
328         rtw_update_sta_info(rtwdev, si, true);
329         mutex_unlock(&rtwdev->mutex);
330 }
331
332 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
333                 struct ieee80211_vif *vif)
334 {
335         struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
336         struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
337         int i;
338
339         si->mac_id = rtw_acquire_macid(rtwdev);
340         if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
341                 return -ENOSPC;
342
343         if (vif->type == NL80211_IFTYPE_STATION && vif->cfg.assoc == 0)
344                 rtwvif->mac_id = si->mac_id;
345         si->rtwdev = rtwdev;
346         si->sta = sta;
347         si->vif = vif;
348         si->init_ra_lv = 1;
349         ewma_rssi_init(&si->avg_rssi);
350         for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
351                 rtw_txq_init(rtwdev, sta->txq[i]);
352         INIT_WORK(&si->rc_work, rtw_sta_rc_work);
353
354         rtw_update_sta_info(rtwdev, si, true);
355         rtw_fw_media_status_report(rtwdev, si->mac_id, true);
356
357         rtwdev->sta_cnt++;
358         rtwdev->beacon_loss = false;
359         rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM joined with macid %d\n",
360                 sta->addr, si->mac_id);
361
362         return 0;
363 }
364
365 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
366                     bool fw_exist)
367 {
368         struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
369         int i;
370
371         cancel_work_sync(&si->rc_work);
372
373         rtw_release_macid(rtwdev, si->mac_id);
374         if (fw_exist)
375                 rtw_fw_media_status_report(rtwdev, si->mac_id, false);
376
377         for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
378                 rtw_txq_cleanup(rtwdev, sta->txq[i]);
379
380         kfree(si->mask);
381
382         rtwdev->sta_cnt--;
383         rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM with macid %d left\n",
384                 sta->addr, si->mac_id);
385 }
386
387 struct rtw_fwcd_hdr {
388         u32 item;
389         u32 size;
390         u32 padding1;
391         u32 padding2;
392 } __packed;
393
394 static int rtw_fwcd_prep(struct rtw_dev *rtwdev)
395 {
396         const struct rtw_chip_info *chip = rtwdev->chip;
397         struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
398         const struct rtw_fwcd_segs *segs = chip->fwcd_segs;
399         u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr);
400         u8 i;
401
402         if (segs) {
403                 prep_size += segs->num * sizeof(struct rtw_fwcd_hdr);
404
405                 for (i = 0; i < segs->num; i++)
406                         prep_size += segs->segs[i];
407         }
408
409         desc->data = vmalloc(prep_size);
410         if (!desc->data)
411                 return -ENOMEM;
412
413         desc->size = prep_size;
414         desc->next = desc->data;
415
416         return 0;
417 }
418
419 static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size)
420 {
421         struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
422         struct rtw_fwcd_hdr *hdr;
423         u8 *next;
424
425         if (!desc->data) {
426                 rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n");
427                 return NULL;
428         }
429
430         next = desc->next + sizeof(struct rtw_fwcd_hdr);
431         if (next - desc->data + size > desc->size) {
432                 rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n");
433                 return NULL;
434         }
435
436         hdr = (struct rtw_fwcd_hdr *)(desc->next);
437         hdr->item = item;
438         hdr->size = size;
439         hdr->padding1 = 0x01234567;
440         hdr->padding2 = 0x89abcdef;
441         desc->next = next + size;
442
443         return next;
444 }
445
446 static void rtw_fwcd_dump(struct rtw_dev *rtwdev)
447 {
448         struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
449
450         rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n");
451
452         /* Data will be freed after lifetime of device coredump. After calling
453          * dev_coredump, data is supposed to be handled by the device coredump
454          * framework. Note that a new dump will be discarded if a previous one
455          * hasn't been released yet.
456          */
457         dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL);
458 }
459
460 static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self)
461 {
462         struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
463
464         if (free_self) {
465                 rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n");
466                 vfree(desc->data);
467         }
468
469         desc->data = NULL;
470         desc->next = NULL;
471 }
472
473 static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
474 {
475         u32 size = rtwdev->chip->fw_rxff_size;
476         u32 *buf;
477         u8 seq;
478
479         buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size);
480         if (!buf)
481                 return -ENOMEM;
482
483         if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) {
484                 rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n");
485                 return -EINVAL;
486         }
487
488         if (GET_FW_DUMP_LEN(buf) == 0) {
489                 rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n");
490                 return -EINVAL;
491         }
492
493         seq = GET_FW_DUMP_SEQ(buf);
494         if (seq > 0) {
495                 rtw_dbg(rtwdev, RTW_DBG_FW,
496                         "fw crash dump's seq is wrong: %d\n", seq);
497                 return -EINVAL;
498         }
499
500         return 0;
501 }
502
503 int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size,
504                 u32 fwcd_item)
505 {
506         u32 rxff = rtwdev->chip->fw_rxff_size;
507         u32 dump_size, done_size = 0;
508         u8 *buf;
509         int ret;
510
511         buf = rtw_fwcd_next(rtwdev, fwcd_item, size);
512         if (!buf)
513                 return -ENOMEM;
514
515         while (size) {
516                 dump_size = size > rxff ? rxff : size;
517
518                 ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size,
519                                           dump_size);
520                 if (ret) {
521                         rtw_err(rtwdev,
522                                 "ddma fw 0x%x [+0x%x] to fw fifo fail\n",
523                                 ocp_src, done_size);
524                         return ret;
525                 }
526
527                 ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0,
528                                        dump_size, (u32 *)(buf + done_size));
529                 if (ret) {
530                         rtw_err(rtwdev,
531                                 "dump fw 0x%x [+0x%x] from fw fifo fail\n",
532                                 ocp_src, done_size);
533                         return ret;
534                 }
535
536                 size -= dump_size;
537                 done_size += dump_size;
538         }
539
540         return 0;
541 }
542 EXPORT_SYMBOL(rtw_dump_fw);
543
544 int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size)
545 {
546         u8 *buf;
547         u32 i;
548
549         if (addr & 0x3) {
550                 WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr);
551                 return -EINVAL;
552         }
553
554         buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size);
555         if (!buf)
556                 return -ENOMEM;
557
558         for (i = 0; i < size; i += 4)
559                 *(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i);
560
561         return 0;
562 }
563 EXPORT_SYMBOL(rtw_dump_reg);
564
565 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
566                            struct ieee80211_bss_conf *conf)
567 {
568         struct ieee80211_vif *vif = NULL;
569
570         if (conf)
571                 vif = container_of(conf, struct ieee80211_vif, bss_conf);
572
573         if (conf && vif->cfg.assoc) {
574                 rtwvif->aid = vif->cfg.aid;
575                 rtwvif->net_type = RTW_NET_MGD_LINKED;
576         } else {
577                 rtwvif->aid = 0;
578                 rtwvif->net_type = RTW_NET_NO_LINK;
579         }
580 }
581
582 static void rtw_reset_key_iter(struct ieee80211_hw *hw,
583                                struct ieee80211_vif *vif,
584                                struct ieee80211_sta *sta,
585                                struct ieee80211_key_conf *key,
586                                void *data)
587 {
588         struct rtw_dev *rtwdev = (struct rtw_dev *)data;
589         struct rtw_sec_desc *sec = &rtwdev->sec;
590
591         rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx);
592 }
593
594 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
595 {
596         struct rtw_dev *rtwdev = (struct rtw_dev *)data;
597
598         if (rtwdev->sta_cnt == 0) {
599                 rtw_warn(rtwdev, "sta count before reset should not be 0\n");
600                 return;
601         }
602         rtw_sta_remove(rtwdev, sta, false);
603 }
604
605 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
606 {
607         struct rtw_dev *rtwdev = (struct rtw_dev *)data;
608         struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
609
610         rtw_bf_disassoc(rtwdev, vif, NULL);
611         rtw_vif_assoc_changed(rtwvif, NULL);
612         rtw_txq_cleanup(rtwdev, vif->txq);
613 }
614
615 void rtw_fw_recovery(struct rtw_dev *rtwdev)
616 {
617         if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
618                 ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work);
619 }
620
621 static void __fw_recovery_work(struct rtw_dev *rtwdev)
622 {
623         int ret = 0;
624
625         set_bit(RTW_FLAG_RESTARTING, rtwdev->flags);
626         clear_bit(RTW_FLAG_RESTART_TRIGGERING, rtwdev->flags);
627
628         ret = rtw_fwcd_prep(rtwdev);
629         if (ret)
630                 goto free;
631         ret = rtw_fw_dump_crash_log(rtwdev);
632         if (ret)
633                 goto free;
634         ret = rtw_chip_dump_fw_crash(rtwdev);
635         if (ret)
636                 goto free;
637
638         rtw_fwcd_dump(rtwdev);
639 free:
640         rtw_fwcd_free(rtwdev, !!ret);
641         rtw_write8(rtwdev, REG_MCU_TST_CFG, 0);
642
643         WARN(1, "firmware crash, start reset and recover\n");
644
645         rcu_read_lock();
646         rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
647         rcu_read_unlock();
648         rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
649         rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
650         bitmap_zero(rtwdev->hw_port, RTW_PORT_NUM);
651         rtw_enter_ips(rtwdev);
652 }
653
654 static void rtw_fw_recovery_work(struct work_struct *work)
655 {
656         struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
657                                               fw_recovery_work);
658
659         mutex_lock(&rtwdev->mutex);
660         __fw_recovery_work(rtwdev);
661         mutex_unlock(&rtwdev->mutex);
662
663         ieee80211_restart_hw(rtwdev->hw);
664 }
665
666 struct rtw_txq_ba_iter_data {
667 };
668
669 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
670 {
671         struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
672         int ret;
673         u8 tid;
674
675         tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
676         while (tid != IEEE80211_NUM_TIDS) {
677                 clear_bit(tid, si->tid_ba);
678                 ret = ieee80211_start_tx_ba_session(sta, tid, 0);
679                 if (ret == -EINVAL) {
680                         struct ieee80211_txq *txq;
681                         struct rtw_txq *rtwtxq;
682
683                         txq = sta->txq[tid];
684                         rtwtxq = (struct rtw_txq *)txq->drv_priv;
685                         set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
686                 }
687
688                 tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
689         }
690 }
691
692 static void rtw_txq_ba_work(struct work_struct *work)
693 {
694         struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
695         struct rtw_txq_ba_iter_data data;
696
697         rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
698 }
699
700 void rtw_set_rx_freq_band(struct rtw_rx_pkt_stat *pkt_stat, u8 channel)
701 {
702         if (IS_CH_2G_BAND(channel))
703                 pkt_stat->band = NL80211_BAND_2GHZ;
704         else if (IS_CH_5G_BAND(channel))
705                 pkt_stat->band = NL80211_BAND_5GHZ;
706         else
707                 return;
708
709         pkt_stat->freq = ieee80211_channel_to_frequency(channel, pkt_stat->band);
710 }
711 EXPORT_SYMBOL(rtw_set_rx_freq_band);
712
713 void rtw_set_dtim_period(struct rtw_dev *rtwdev, int dtim_period)
714 {
715         rtw_write32_set(rtwdev, REG_TCR, BIT_TCR_UPDATE_TIMIE);
716         rtw_write8(rtwdev, REG_DTIM_COUNTER_ROOT, dtim_period - 1);
717 }
718
719 void rtw_update_channel(struct rtw_dev *rtwdev, u8 center_channel,
720                         u8 primary_channel, enum rtw_supported_band band,
721                         enum rtw_bandwidth bandwidth)
722 {
723         enum nl80211_band nl_band = rtw_hw_to_nl80211_band(band);
724         struct rtw_hal *hal = &rtwdev->hal;
725         u8 *cch_by_bw = hal->cch_by_bw;
726         u32 center_freq, primary_freq;
727         enum rtw_sar_bands sar_band;
728         u8 primary_channel_idx;
729
730         center_freq = ieee80211_channel_to_frequency(center_channel, nl_band);
731         primary_freq = ieee80211_channel_to_frequency(primary_channel, nl_band);
732
733         /* assign the center channel used while 20M bw is selected */
734         cch_by_bw[RTW_CHANNEL_WIDTH_20] = primary_channel;
735
736         /* assign the center channel used while current bw is selected */
737         cch_by_bw[bandwidth] = center_channel;
738
739         switch (bandwidth) {
740         case RTW_CHANNEL_WIDTH_20:
741         default:
742                 primary_channel_idx = RTW_SC_DONT_CARE;
743                 break;
744         case RTW_CHANNEL_WIDTH_40:
745                 if (primary_freq > center_freq)
746                         primary_channel_idx = RTW_SC_20_UPPER;
747                 else
748                         primary_channel_idx = RTW_SC_20_LOWER;
749                 break;
750         case RTW_CHANNEL_WIDTH_80:
751                 if (primary_freq > center_freq) {
752                         if (primary_freq - center_freq == 10)
753                                 primary_channel_idx = RTW_SC_20_UPPER;
754                         else
755                                 primary_channel_idx = RTW_SC_20_UPMOST;
756
757                         /* assign the center channel used
758                          * while 40M bw is selected
759                          */
760                         cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel + 4;
761                 } else {
762                         if (center_freq - primary_freq == 10)
763                                 primary_channel_idx = RTW_SC_20_LOWER;
764                         else
765                                 primary_channel_idx = RTW_SC_20_LOWEST;
766
767                         /* assign the center channel used
768                          * while 40M bw is selected
769                          */
770                         cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel - 4;
771                 }
772                 break;
773         }
774
775         switch (center_channel) {
776         case 1 ... 14:
777                 sar_band = RTW_SAR_BAND_0;
778                 break;
779         case 36 ... 64:
780                 sar_band = RTW_SAR_BAND_1;
781                 break;
782         case 100 ... 144:
783                 sar_band = RTW_SAR_BAND_3;
784                 break;
785         case 149 ... 177:
786                 sar_band = RTW_SAR_BAND_4;
787                 break;
788         default:
789                 WARN(1, "unknown ch(%u) to SAR band\n", center_channel);
790                 sar_band = RTW_SAR_BAND_0;
791                 break;
792         }
793
794         hal->current_primary_channel_index = primary_channel_idx;
795         hal->current_band_width = bandwidth;
796         hal->primary_channel = primary_channel;
797         hal->current_channel = center_channel;
798         hal->current_band_type = band;
799         hal->sar_band = sar_band;
800 }
801
802 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
803                             struct rtw_channel_params *chan_params)
804 {
805         struct ieee80211_channel *channel = chandef->chan;
806         enum nl80211_chan_width width = chandef->width;
807         u32 primary_freq, center_freq;
808         u8 center_chan;
809         u8 bandwidth = RTW_CHANNEL_WIDTH_20;
810
811         center_chan = channel->hw_value;
812         primary_freq = channel->center_freq;
813         center_freq = chandef->center_freq1;
814
815         switch (width) {
816         case NL80211_CHAN_WIDTH_20_NOHT:
817         case NL80211_CHAN_WIDTH_20:
818                 bandwidth = RTW_CHANNEL_WIDTH_20;
819                 break;
820         case NL80211_CHAN_WIDTH_40:
821                 bandwidth = RTW_CHANNEL_WIDTH_40;
822                 if (primary_freq > center_freq)
823                         center_chan -= 2;
824                 else
825                         center_chan += 2;
826                 break;
827         case NL80211_CHAN_WIDTH_80:
828                 bandwidth = RTW_CHANNEL_WIDTH_80;
829                 if (primary_freq > center_freq) {
830                         if (primary_freq - center_freq == 10)
831                                 center_chan -= 2;
832                         else
833                                 center_chan -= 6;
834                 } else {
835                         if (center_freq - primary_freq == 10)
836                                 center_chan += 2;
837                         else
838                                 center_chan += 6;
839                 }
840                 break;
841         default:
842                 center_chan = 0;
843                 break;
844         }
845
846         chan_params->center_chan = center_chan;
847         chan_params->bandwidth = bandwidth;
848         chan_params->primary_chan = channel->hw_value;
849 }
850
851 void rtw_set_channel(struct rtw_dev *rtwdev)
852 {
853         const struct rtw_chip_info *chip = rtwdev->chip;
854         struct ieee80211_hw *hw = rtwdev->hw;
855         struct rtw_hal *hal = &rtwdev->hal;
856         struct rtw_channel_params ch_param;
857         u8 center_chan, primary_chan, bandwidth, band;
858
859         rtw_get_channel_params(&hw->conf.chandef, &ch_param);
860         if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
861                 return;
862
863         center_chan = ch_param.center_chan;
864         primary_chan = ch_param.primary_chan;
865         bandwidth = ch_param.bandwidth;
866         band = ch_param.center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
867
868         rtw_update_channel(rtwdev, center_chan, primary_chan, band, bandwidth);
869
870         if (rtwdev->scan_info.op_chan)
871                 rtw_store_op_chan(rtwdev, true);
872
873         chip->ops->set_channel(rtwdev, center_chan, bandwidth,
874                                hal->current_primary_channel_index);
875
876         if (hal->current_band_type == RTW_BAND_5G) {
877                 rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
878         } else {
879                 if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
880                         rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
881                 else
882                         rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
883         }
884
885         rtw_phy_set_tx_power_level(rtwdev, center_chan);
886
887         /* if the channel isn't set for scanning, we will do RF calibration
888          * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration
889          * during scanning on each channel takes too long.
890          */
891         if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
892                 rtwdev->need_rfk = true;
893 }
894
895 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
896 {
897         const struct rtw_chip_info *chip = rtwdev->chip;
898
899         if (rtwdev->need_rfk) {
900                 rtwdev->need_rfk = false;
901                 chip->ops->phy_calibration(rtwdev);
902         }
903 }
904
905 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
906 {
907         int i;
908
909         for (i = 0; i < ETH_ALEN; i++)
910                 rtw_write8(rtwdev, start + i, addr[i]);
911 }
912
913 void rtw_vif_port_config(struct rtw_dev *rtwdev,
914                          struct rtw_vif *rtwvif,
915                          u32 config)
916 {
917         u32 addr, mask;
918
919         if (config & PORT_SET_MAC_ADDR) {
920                 addr = rtwvif->conf->mac_addr.addr;
921                 rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
922         }
923         if (config & PORT_SET_BSSID) {
924                 addr = rtwvif->conf->bssid.addr;
925                 rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
926         }
927         if (config & PORT_SET_NET_TYPE) {
928                 addr = rtwvif->conf->net_type.addr;
929                 mask = rtwvif->conf->net_type.mask;
930                 rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
931         }
932         if (config & PORT_SET_AID) {
933                 addr = rtwvif->conf->aid.addr;
934                 mask = rtwvif->conf->aid.mask;
935                 rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
936         }
937         if (config & PORT_SET_BCN_CTRL) {
938                 addr = rtwvif->conf->bcn_ctrl.addr;
939                 mask = rtwvif->conf->bcn_ctrl.mask;
940                 rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
941         }
942 }
943
944 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
945 {
946         u8 bw = 0;
947
948         switch (bw_cap) {
949         case EFUSE_HW_CAP_IGNORE:
950         case EFUSE_HW_CAP_SUPP_BW80:
951                 bw |= BIT(RTW_CHANNEL_WIDTH_80);
952                 fallthrough;
953         case EFUSE_HW_CAP_SUPP_BW40:
954                 bw |= BIT(RTW_CHANNEL_WIDTH_40);
955                 fallthrough;
956         default:
957                 bw |= BIT(RTW_CHANNEL_WIDTH_20);
958                 break;
959         }
960
961         return bw;
962 }
963
964 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
965 {
966         const struct rtw_chip_info *chip = rtwdev->chip;
967         struct rtw_hal *hal = &rtwdev->hal;
968
969         if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
970             hw_ant_num >= hal->rf_path_num)
971                 return;
972
973         switch (hw_ant_num) {
974         case 1:
975                 hal->rf_type = RF_1T1R;
976                 hal->rf_path_num = 1;
977                 if (!chip->fix_rf_phy_num)
978                         hal->rf_phy_num = hal->rf_path_num;
979                 hal->antenna_tx = BB_PATH_A;
980                 hal->antenna_rx = BB_PATH_A;
981                 break;
982         default:
983                 WARN(1, "invalid hw configuration from efuse\n");
984                 break;
985         }
986 }
987
988 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
989 {
990         u64 ra_mask = 0;
991         u16 mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.rx_mcs_map);
992         u8 vht_mcs_cap;
993         int i, nss;
994
995         /* 4SS, every two bits for MCS7/8/9 */
996         for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
997                 vht_mcs_cap = mcs_map & 0x3;
998                 switch (vht_mcs_cap) {
999                 case 2: /* MCS9 */
1000                         ra_mask |= 0x3ffULL << nss;
1001                         break;
1002                 case 1: /* MCS8 */
1003                         ra_mask |= 0x1ffULL << nss;
1004                         break;
1005                 case 0: /* MCS7 */
1006                         ra_mask |= 0x0ffULL << nss;
1007                         break;
1008                 default:
1009                         break;
1010                 }
1011         }
1012
1013         return ra_mask;
1014 }
1015
1016 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
1017 {
1018         u8 rate_id = 0;
1019
1020         switch (wireless_set) {
1021         case WIRELESS_CCK:
1022                 rate_id = RTW_RATEID_B_20M;
1023                 break;
1024         case WIRELESS_OFDM:
1025                 rate_id = RTW_RATEID_G;
1026                 break;
1027         case WIRELESS_CCK | WIRELESS_OFDM:
1028                 rate_id = RTW_RATEID_BG;
1029                 break;
1030         case WIRELESS_OFDM | WIRELESS_HT:
1031                 if (tx_num == 1)
1032                         rate_id = RTW_RATEID_GN_N1SS;
1033                 else if (tx_num == 2)
1034                         rate_id = RTW_RATEID_GN_N2SS;
1035                 else if (tx_num == 3)
1036                         rate_id = RTW_RATEID_ARFR5_N_3SS;
1037                 break;
1038         case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
1039                 if (bw_mode == RTW_CHANNEL_WIDTH_40) {
1040                         if (tx_num == 1)
1041                                 rate_id = RTW_RATEID_BGN_40M_1SS;
1042                         else if (tx_num == 2)
1043                                 rate_id = RTW_RATEID_BGN_40M_2SS;
1044                         else if (tx_num == 3)
1045                                 rate_id = RTW_RATEID_ARFR5_N_3SS;
1046                         else if (tx_num == 4)
1047                                 rate_id = RTW_RATEID_ARFR7_N_4SS;
1048                 } else {
1049                         if (tx_num == 1)
1050                                 rate_id = RTW_RATEID_BGN_20M_1SS;
1051                         else if (tx_num == 2)
1052                                 rate_id = RTW_RATEID_BGN_20M_2SS;
1053                         else if (tx_num == 3)
1054                                 rate_id = RTW_RATEID_ARFR5_N_3SS;
1055                         else if (tx_num == 4)
1056                                 rate_id = RTW_RATEID_ARFR7_N_4SS;
1057                 }
1058                 break;
1059         case WIRELESS_OFDM | WIRELESS_VHT:
1060                 if (tx_num == 1)
1061                         rate_id = RTW_RATEID_ARFR1_AC_1SS;
1062                 else if (tx_num == 2)
1063                         rate_id = RTW_RATEID_ARFR0_AC_2SS;
1064                 else if (tx_num == 3)
1065                         rate_id = RTW_RATEID_ARFR4_AC_3SS;
1066                 else if (tx_num == 4)
1067                         rate_id = RTW_RATEID_ARFR6_AC_4SS;
1068                 break;
1069         case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
1070                 if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
1071                         if (tx_num == 1)
1072                                 rate_id = RTW_RATEID_ARFR1_AC_1SS;
1073                         else if (tx_num == 2)
1074                                 rate_id = RTW_RATEID_ARFR0_AC_2SS;
1075                         else if (tx_num == 3)
1076                                 rate_id = RTW_RATEID_ARFR4_AC_3SS;
1077                         else if (tx_num == 4)
1078                                 rate_id = RTW_RATEID_ARFR6_AC_4SS;
1079                 } else {
1080                         if (tx_num == 1)
1081                                 rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
1082                         else if (tx_num == 2)
1083                                 rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
1084                         else if (tx_num == 3)
1085                                 rate_id = RTW_RATEID_ARFR4_AC_3SS;
1086                         else if (tx_num == 4)
1087                                 rate_id = RTW_RATEID_ARFR6_AC_4SS;
1088                 }
1089                 break;
1090         default:
1091                 break;
1092         }
1093
1094         return rate_id;
1095 }
1096
1097 #define RA_MASK_CCK_RATES       0x0000f
1098 #define RA_MASK_OFDM_RATES      0x00ff0
1099 #define RA_MASK_HT_RATES_1SS    (0xff000ULL << 0)
1100 #define RA_MASK_HT_RATES_2SS    (0xff000ULL << 8)
1101 #define RA_MASK_HT_RATES_3SS    (0xff000ULL << 16)
1102 #define RA_MASK_HT_RATES        (RA_MASK_HT_RATES_1SS | \
1103                                  RA_MASK_HT_RATES_2SS | \
1104                                  RA_MASK_HT_RATES_3SS)
1105 #define RA_MASK_VHT_RATES_1SS   (0x3ff000ULL << 0)
1106 #define RA_MASK_VHT_RATES_2SS   (0x3ff000ULL << 10)
1107 #define RA_MASK_VHT_RATES_3SS   (0x3ff000ULL << 20)
1108 #define RA_MASK_VHT_RATES       (RA_MASK_VHT_RATES_1SS | \
1109                                  RA_MASK_VHT_RATES_2SS | \
1110                                  RA_MASK_VHT_RATES_3SS)
1111 #define RA_MASK_CCK_IN_BG       0x00005
1112 #define RA_MASK_CCK_IN_HT       0x00005
1113 #define RA_MASK_CCK_IN_VHT      0x00005
1114 #define RA_MASK_OFDM_IN_VHT     0x00010
1115 #define RA_MASK_OFDM_IN_HT_2G   0x00010
1116 #define RA_MASK_OFDM_IN_HT_5G   0x00030
1117
1118 static u64 rtw_rate_mask_rssi(struct rtw_sta_info *si, u8 wireless_set)
1119 {
1120         u8 rssi_level = si->rssi_level;
1121
1122         if (wireless_set == WIRELESS_CCK)
1123                 return 0xffffffffffffffffULL;
1124
1125         if (rssi_level == 0)
1126                 return 0xffffffffffffffffULL;
1127         else if (rssi_level == 1)
1128                 return 0xfffffffffffffff0ULL;
1129         else if (rssi_level == 2)
1130                 return 0xffffffffffffefe0ULL;
1131         else if (rssi_level == 3)
1132                 return 0xffffffffffffcfc0ULL;
1133         else if (rssi_level == 4)
1134                 return 0xffffffffffff8f80ULL;
1135         else
1136                 return 0xffffffffffff0f00ULL;
1137 }
1138
1139 static u64 rtw_rate_mask_recover(u64 ra_mask, u64 ra_mask_bak)
1140 {
1141         if ((ra_mask & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)) == 0)
1142                 ra_mask |= (ra_mask_bak & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1143
1144         if (ra_mask == 0)
1145                 ra_mask |= (ra_mask_bak & (RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1146
1147         return ra_mask;
1148 }
1149
1150 static u64 rtw_rate_mask_cfg(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1151                              u64 ra_mask, bool is_vht_enable)
1152 {
1153         struct rtw_hal *hal = &rtwdev->hal;
1154         const struct cfg80211_bitrate_mask *mask = si->mask;
1155         u64 cfg_mask = GENMASK_ULL(63, 0);
1156         u8 band;
1157
1158         if (!si->use_cfg_mask)
1159                 return ra_mask;
1160
1161         band = hal->current_band_type;
1162         if (band == RTW_BAND_2G) {
1163                 band = NL80211_BAND_2GHZ;
1164                 cfg_mask = mask->control[band].legacy;
1165         } else if (band == RTW_BAND_5G) {
1166                 band = NL80211_BAND_5GHZ;
1167                 cfg_mask = u64_encode_bits(mask->control[band].legacy,
1168                                            RA_MASK_OFDM_RATES);
1169         }
1170
1171         if (!is_vht_enable) {
1172                 if (ra_mask & RA_MASK_HT_RATES_1SS)
1173                         cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
1174                                                     RA_MASK_HT_RATES_1SS);
1175                 if (ra_mask & RA_MASK_HT_RATES_2SS)
1176                         cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
1177                                                     RA_MASK_HT_RATES_2SS);
1178         } else {
1179                 if (ra_mask & RA_MASK_VHT_RATES_1SS)
1180                         cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
1181                                                     RA_MASK_VHT_RATES_1SS);
1182                 if (ra_mask & RA_MASK_VHT_RATES_2SS)
1183                         cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
1184                                                     RA_MASK_VHT_RATES_2SS);
1185         }
1186
1187         ra_mask &= cfg_mask;
1188
1189         return ra_mask;
1190 }
1191
1192 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1193                          bool reset_ra_mask)
1194 {
1195         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1196         struct ieee80211_sta *sta = si->sta;
1197         struct rtw_efuse *efuse = &rtwdev->efuse;
1198         struct rtw_hal *hal = &rtwdev->hal;
1199         u8 wireless_set;
1200         u8 bw_mode;
1201         u8 rate_id;
1202         u8 rf_type = RF_1T1R;
1203         u8 stbc_en = 0;
1204         u8 ldpc_en = 0;
1205         u8 tx_num = 1;
1206         u64 ra_mask = 0;
1207         u64 ra_mask_bak = 0;
1208         bool is_vht_enable = false;
1209         bool is_support_sgi = false;
1210
1211         if (sta->deflink.vht_cap.vht_supported) {
1212                 is_vht_enable = true;
1213                 ra_mask |= get_vht_ra_mask(sta);
1214                 if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
1215                         stbc_en = VHT_STBC_EN;
1216                 if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
1217                         ldpc_en = VHT_LDPC_EN;
1218         } else if (sta->deflink.ht_cap.ht_supported) {
1219                 ra_mask |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20) |
1220                            (sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
1221                 if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
1222                         stbc_en = HT_STBC_EN;
1223                 if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
1224                         ldpc_en = HT_LDPC_EN;
1225         }
1226
1227         if (efuse->hw_cap.nss == 1 || rtwdev->hal.txrx_1ss)
1228                 ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1229
1230         if (hal->current_band_type == RTW_BAND_5G) {
1231                 ra_mask |= (u64)sta->deflink.supp_rates[NL80211_BAND_5GHZ] << 4;
1232                 ra_mask_bak = ra_mask;
1233                 if (sta->deflink.vht_cap.vht_supported) {
1234                         ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
1235                         wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
1236                 } else if (sta->deflink.ht_cap.ht_supported) {
1237                         ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
1238                         wireless_set = WIRELESS_OFDM | WIRELESS_HT;
1239                 } else {
1240                         wireless_set = WIRELESS_OFDM;
1241                 }
1242                 dm_info->rrsr_val_init = RRSR_INIT_5G;
1243         } else if (hal->current_band_type == RTW_BAND_2G) {
1244                 ra_mask |= sta->deflink.supp_rates[NL80211_BAND_2GHZ];
1245                 ra_mask_bak = ra_mask;
1246                 if (sta->deflink.vht_cap.vht_supported) {
1247                         ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
1248                                    RA_MASK_OFDM_IN_VHT;
1249                         wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1250                                        WIRELESS_HT | WIRELESS_VHT;
1251                 } else if (sta->deflink.ht_cap.ht_supported) {
1252                         ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
1253                                    RA_MASK_OFDM_IN_HT_2G;
1254                         wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1255                                        WIRELESS_HT;
1256                 } else if (sta->deflink.supp_rates[0] <= 0xf) {
1257                         wireless_set = WIRELESS_CCK;
1258                 } else {
1259                         ra_mask &= RA_MASK_OFDM_RATES | RA_MASK_CCK_IN_BG;
1260                         wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
1261                 }
1262                 dm_info->rrsr_val_init = RRSR_INIT_2G;
1263         } else {
1264                 rtw_err(rtwdev, "Unknown band type\n");
1265                 ra_mask_bak = ra_mask;
1266                 wireless_set = 0;
1267         }
1268
1269         switch (sta->deflink.bandwidth) {
1270         case IEEE80211_STA_RX_BW_80:
1271                 bw_mode = RTW_CHANNEL_WIDTH_80;
1272                 is_support_sgi = sta->deflink.vht_cap.vht_supported &&
1273                                  (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
1274                 break;
1275         case IEEE80211_STA_RX_BW_40:
1276                 bw_mode = RTW_CHANNEL_WIDTH_40;
1277                 is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1278                                  (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1279                 break;
1280         default:
1281                 bw_mode = RTW_CHANNEL_WIDTH_20;
1282                 is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1283                                  (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1284                 break;
1285         }
1286
1287         if (sta->deflink.vht_cap.vht_supported && ra_mask & 0xffc00000) {
1288                 tx_num = 2;
1289                 rf_type = RF_2T2R;
1290         } else if (sta->deflink.ht_cap.ht_supported && ra_mask & 0xfff00000) {
1291                 tx_num = 2;
1292                 rf_type = RF_2T2R;
1293         }
1294
1295         rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
1296
1297         ra_mask &= rtw_rate_mask_rssi(si, wireless_set);
1298         ra_mask = rtw_rate_mask_recover(ra_mask, ra_mask_bak);
1299         ra_mask = rtw_rate_mask_cfg(rtwdev, si, ra_mask, is_vht_enable);
1300
1301         si->bw_mode = bw_mode;
1302         si->stbc_en = stbc_en;
1303         si->ldpc_en = ldpc_en;
1304         si->rf_type = rf_type;
1305         si->sgi_enable = is_support_sgi;
1306         si->vht_enable = is_vht_enable;
1307         si->ra_mask = ra_mask;
1308         si->rate_id = rate_id;
1309
1310         rtw_fw_send_ra_info(rtwdev, si, reset_ra_mask);
1311 }
1312
1313 static int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
1314 {
1315         const struct rtw_chip_info *chip = rtwdev->chip;
1316         struct rtw_fw_state *fw;
1317
1318         fw = &rtwdev->fw;
1319         wait_for_completion(&fw->completion);
1320         if (!fw->firmware)
1321                 return -EINVAL;
1322
1323         if (chip->wow_fw_name) {
1324                 fw = &rtwdev->wow_fw;
1325                 wait_for_completion(&fw->completion);
1326                 if (!fw->firmware)
1327                         return -EINVAL;
1328         }
1329
1330         return 0;
1331 }
1332
1333 static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
1334                                                        struct rtw_fw_state *fw)
1335 {
1336         const struct rtw_chip_info *chip = rtwdev->chip;
1337
1338         if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
1339             !fw->feature)
1340                 return LPS_DEEP_MODE_NONE;
1341
1342         if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
1343             rtw_fw_feature_check(fw, FW_FEATURE_PG))
1344                 return LPS_DEEP_MODE_PG;
1345
1346         if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
1347             rtw_fw_feature_check(fw, FW_FEATURE_LCLK))
1348                 return LPS_DEEP_MODE_LCLK;
1349
1350         return LPS_DEEP_MODE_NONE;
1351 }
1352
1353 static int rtw_power_on(struct rtw_dev *rtwdev)
1354 {
1355         const struct rtw_chip_info *chip = rtwdev->chip;
1356         struct rtw_fw_state *fw = &rtwdev->fw;
1357         bool wifi_only;
1358         int ret;
1359
1360         ret = rtw_hci_setup(rtwdev);
1361         if (ret) {
1362                 rtw_err(rtwdev, "failed to setup hci\n");
1363                 goto err;
1364         }
1365
1366         /* power on MAC before firmware downloaded */
1367         ret = rtw_mac_power_on(rtwdev);
1368         if (ret) {
1369                 rtw_err(rtwdev, "failed to power on mac\n");
1370                 goto err;
1371         }
1372
1373         ret = rtw_wait_firmware_completion(rtwdev);
1374         if (ret) {
1375                 rtw_err(rtwdev, "failed to wait firmware completion\n");
1376                 goto err_off;
1377         }
1378
1379         ret = rtw_download_firmware(rtwdev, fw);
1380         if (ret) {
1381                 rtw_err(rtwdev, "failed to download firmware\n");
1382                 goto err_off;
1383         }
1384
1385         /* config mac after firmware downloaded */
1386         ret = rtw_mac_init(rtwdev);
1387         if (ret) {
1388                 rtw_err(rtwdev, "failed to configure mac\n");
1389                 goto err_off;
1390         }
1391
1392         chip->ops->phy_set_param(rtwdev);
1393
1394         ret = rtw_hci_start(rtwdev);
1395         if (ret) {
1396                 rtw_err(rtwdev, "failed to start hci\n");
1397                 goto err_off;
1398         }
1399
1400         /* send H2C after HCI has started */
1401         rtw_fw_send_general_info(rtwdev);
1402         rtw_fw_send_phydm_info(rtwdev);
1403
1404         wifi_only = !rtwdev->efuse.btcoex;
1405         rtw_coex_power_on_setting(rtwdev);
1406         rtw_coex_init_hw_config(rtwdev, wifi_only);
1407
1408         return 0;
1409
1410 err_off:
1411         rtw_mac_power_off(rtwdev);
1412
1413 err:
1414         return ret;
1415 }
1416
1417 void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start)
1418 {
1419         if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN))
1420                 return;
1421
1422         if (start) {
1423                 rtw_fw_scan_notify(rtwdev, true);
1424         } else {
1425                 reinit_completion(&rtwdev->fw_scan_density);
1426                 rtw_fw_scan_notify(rtwdev, false);
1427                 if (!wait_for_completion_timeout(&rtwdev->fw_scan_density,
1428                                                  SCAN_NOTIFY_TIMEOUT))
1429                         rtw_warn(rtwdev, "firmware failed to report density after scan\n");
1430         }
1431 }
1432
1433 void rtw_core_scan_start(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif,
1434                          const u8 *mac_addr, bool hw_scan)
1435 {
1436         u32 config = 0;
1437         int ret = 0;
1438
1439         rtw_leave_lps(rtwdev);
1440
1441         if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)) {
1442                 ret = rtw_leave_ips(rtwdev);
1443                 if (ret) {
1444                         rtw_err(rtwdev, "failed to leave idle state\n");
1445                         return;
1446                 }
1447         }
1448
1449         ether_addr_copy(rtwvif->mac_addr, mac_addr);
1450         config |= PORT_SET_MAC_ADDR;
1451         rtw_vif_port_config(rtwdev, rtwvif, config);
1452
1453         rtw_coex_scan_notify(rtwdev, COEX_SCAN_START);
1454         rtw_core_fw_scan_notify(rtwdev, true);
1455
1456         set_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1457         set_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1458 }
1459
1460 void rtw_core_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
1461                             bool hw_scan)
1462 {
1463         struct rtw_vif *rtwvif = vif ? (struct rtw_vif *)vif->drv_priv : NULL;
1464         u32 config = 0;
1465
1466         if (!rtwvif)
1467                 return;
1468
1469         clear_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1470         clear_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1471
1472         rtw_core_fw_scan_notify(rtwdev, false);
1473
1474         ether_addr_copy(rtwvif->mac_addr, vif->addr);
1475         config |= PORT_SET_MAC_ADDR;
1476         rtw_vif_port_config(rtwdev, rtwvif, config);
1477
1478         rtw_coex_scan_notify(rtwdev, COEX_SCAN_FINISH);
1479
1480         if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE))
1481                 ieee80211_queue_work(rtwdev->hw, &rtwdev->ips_work);
1482 }
1483
1484 int rtw_core_start(struct rtw_dev *rtwdev)
1485 {
1486         int ret;
1487
1488         ret = rtw_power_on(rtwdev);
1489         if (ret)
1490                 return ret;
1491
1492         rtw_sec_enable_sec_engine(rtwdev);
1493
1494         rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw);
1495         rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw);
1496
1497         /* rcr reset after powered on */
1498         rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
1499
1500         ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
1501                                      RTW_WATCH_DOG_DELAY_TIME);
1502
1503         set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1504
1505         return 0;
1506 }
1507
1508 static void rtw_power_off(struct rtw_dev *rtwdev)
1509 {
1510         rtw_hci_stop(rtwdev);
1511         rtw_coex_power_off_setting(rtwdev);
1512         rtw_mac_power_off(rtwdev);
1513 }
1514
1515 void rtw_core_stop(struct rtw_dev *rtwdev)
1516 {
1517         struct rtw_coex *coex = &rtwdev->coex;
1518
1519         clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1520         clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
1521
1522         mutex_unlock(&rtwdev->mutex);
1523
1524         cancel_work_sync(&rtwdev->c2h_work);
1525         cancel_work_sync(&rtwdev->update_beacon_work);
1526         cancel_delayed_work_sync(&rtwdev->watch_dog_work);
1527         cancel_delayed_work_sync(&coex->bt_relink_work);
1528         cancel_delayed_work_sync(&coex->bt_reenable_work);
1529         cancel_delayed_work_sync(&coex->defreeze_work);
1530         cancel_delayed_work_sync(&coex->wl_remain_work);
1531         cancel_delayed_work_sync(&coex->bt_remain_work);
1532         cancel_delayed_work_sync(&coex->wl_connecting_work);
1533         cancel_delayed_work_sync(&coex->bt_multi_link_remain_work);
1534         cancel_delayed_work_sync(&coex->wl_ccklock_work);
1535
1536         mutex_lock(&rtwdev->mutex);
1537
1538         rtw_power_off(rtwdev);
1539 }
1540
1541 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
1542                             struct ieee80211_sta_ht_cap *ht_cap)
1543 {
1544         const struct rtw_chip_info *chip = rtwdev->chip;
1545         struct rtw_efuse *efuse = &rtwdev->efuse;
1546
1547         ht_cap->ht_supported = true;
1548         ht_cap->cap = 0;
1549         ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
1550                         IEEE80211_HT_CAP_MAX_AMSDU |
1551                         (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
1552
1553         if (rtw_chip_has_rx_ldpc(rtwdev))
1554                 ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
1555         if (rtw_chip_has_tx_stbc(rtwdev))
1556                 ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC;
1557
1558         if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
1559                 ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
1560                                 IEEE80211_HT_CAP_DSSSCCK40 |
1561                                 IEEE80211_HT_CAP_SGI_40;
1562         ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1563         ht_cap->ampdu_density = chip->ampdu_density;
1564         ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1565         if (efuse->hw_cap.nss > 1) {
1566                 ht_cap->mcs.rx_mask[0] = 0xFF;
1567                 ht_cap->mcs.rx_mask[1] = 0xFF;
1568                 ht_cap->mcs.rx_mask[4] = 0x01;
1569                 ht_cap->mcs.rx_highest = cpu_to_le16(300);
1570         } else {
1571                 ht_cap->mcs.rx_mask[0] = 0xFF;
1572                 ht_cap->mcs.rx_mask[1] = 0x00;
1573                 ht_cap->mcs.rx_mask[4] = 0x01;
1574                 ht_cap->mcs.rx_highest = cpu_to_le16(150);
1575         }
1576 }
1577
1578 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
1579                              struct ieee80211_sta_vht_cap *vht_cap)
1580 {
1581         struct rtw_efuse *efuse = &rtwdev->efuse;
1582         u16 mcs_map;
1583         __le16 highest;
1584
1585         if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
1586             efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
1587                 return;
1588
1589         vht_cap->vht_supported = true;
1590         vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
1591                        IEEE80211_VHT_CAP_SHORT_GI_80 |
1592                        IEEE80211_VHT_CAP_RXSTBC_1 |
1593                        IEEE80211_VHT_CAP_HTC_VHT |
1594                        IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
1595                        0;
1596         if (rtwdev->hal.rf_path_num > 1)
1597                 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
1598         vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
1599                         IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
1600         vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
1601                         IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
1602
1603         if (rtw_chip_has_rx_ldpc(rtwdev))
1604                 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
1605
1606         mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
1607                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
1608                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
1609                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
1610                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
1611                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
1612                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
1613         if (efuse->hw_cap.nss > 1) {
1614                 highest = cpu_to_le16(780);
1615                 mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
1616         } else {
1617                 highest = cpu_to_le16(390);
1618                 mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
1619         }
1620
1621         vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
1622         vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
1623         vht_cap->vht_mcs.rx_highest = highest;
1624         vht_cap->vht_mcs.tx_highest = highest;
1625 }
1626
1627 static u16 rtw_get_max_scan_ie_len(struct rtw_dev *rtwdev)
1628 {
1629         u16 len;
1630
1631         len = rtwdev->chip->max_scan_ie_len;
1632
1633         if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_SCAN_OFFLOAD) &&
1634             rtwdev->chip->id == RTW_CHIP_TYPE_8822C)
1635                 len = IEEE80211_MAX_DATA_LEN;
1636         else if (rtw_fw_feature_ext_check(&rtwdev->fw, FW_FEATURE_EXT_OLD_PAGE_NUM))
1637                 len -= RTW_OLD_PROBE_PG_CNT * TX_PAGE_SIZE;
1638
1639         return len;
1640 }
1641
1642 static void rtw_set_supported_band(struct ieee80211_hw *hw,
1643                                    const struct rtw_chip_info *chip)
1644 {
1645         struct rtw_dev *rtwdev = hw->priv;
1646         struct ieee80211_supported_band *sband;
1647
1648         if (chip->band & RTW_BAND_2G) {
1649                 sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
1650                 if (!sband)
1651                         goto err_out;
1652                 if (chip->ht_supported)
1653                         rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1654                 hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
1655         }
1656
1657         if (chip->band & RTW_BAND_5G) {
1658                 sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
1659                 if (!sband)
1660                         goto err_out;
1661                 if (chip->ht_supported)
1662                         rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1663                 if (chip->vht_supported)
1664                         rtw_init_vht_cap(rtwdev, &sband->vht_cap);
1665                 hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1666         }
1667
1668         return;
1669
1670 err_out:
1671         rtw_err(rtwdev, "failed to set supported band\n");
1672 }
1673
1674 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1675                                      const struct rtw_chip_info *chip)
1676 {
1677         kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
1678         kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
1679 }
1680
1681 static void rtw_vif_smps_iter(void *data, u8 *mac,
1682                               struct ieee80211_vif *vif)
1683 {
1684         struct rtw_dev *rtwdev = (struct rtw_dev *)data;
1685
1686         if (vif->type != NL80211_IFTYPE_STATION || !vif->cfg.assoc)
1687                 return;
1688
1689         if (rtwdev->hal.txrx_1ss)
1690                 ieee80211_request_smps(vif, 0, IEEE80211_SMPS_STATIC);
1691         else
1692                 ieee80211_request_smps(vif, 0, IEEE80211_SMPS_OFF);
1693 }
1694
1695 void rtw_set_txrx_1ss(struct rtw_dev *rtwdev, bool txrx_1ss)
1696 {
1697         const struct rtw_chip_info *chip = rtwdev->chip;
1698         struct rtw_hal *hal = &rtwdev->hal;
1699
1700         if (!chip->ops->config_txrx_mode || rtwdev->hal.txrx_1ss == txrx_1ss)
1701                 return;
1702
1703         rtwdev->hal.txrx_1ss = txrx_1ss;
1704         if (txrx_1ss)
1705                 chip->ops->config_txrx_mode(rtwdev, BB_PATH_A, BB_PATH_A, false);
1706         else
1707                 chip->ops->config_txrx_mode(rtwdev, hal->antenna_tx,
1708                                             hal->antenna_rx, false);
1709         rtw_iterate_vifs_atomic(rtwdev, rtw_vif_smps_iter, rtwdev);
1710 }
1711
1712 static void __update_firmware_feature(struct rtw_dev *rtwdev,
1713                                       struct rtw_fw_state *fw)
1714 {
1715         u32 feature;
1716         const struct rtw_fw_hdr *fw_hdr =
1717                                 (const struct rtw_fw_hdr *)fw->firmware->data;
1718
1719         feature = le32_to_cpu(fw_hdr->feature);
1720         fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
1721
1722         if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C &&
1723             RTW_FW_SUIT_VER_CODE(rtwdev->fw) < RTW_FW_VER_CODE(9, 9, 13))
1724                 fw->feature_ext |= FW_FEATURE_EXT_OLD_PAGE_NUM;
1725 }
1726
1727 static void __update_firmware_info(struct rtw_dev *rtwdev,
1728                                    struct rtw_fw_state *fw)
1729 {
1730         const struct rtw_fw_hdr *fw_hdr =
1731                                 (const struct rtw_fw_hdr *)fw->firmware->data;
1732
1733         fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1734         fw->version = le16_to_cpu(fw_hdr->version);
1735         fw->sub_version = fw_hdr->subversion;
1736         fw->sub_index = fw_hdr->subindex;
1737
1738         __update_firmware_feature(rtwdev, fw);
1739 }
1740
1741 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
1742                                           struct rtw_fw_state *fw)
1743 {
1744         struct rtw_fw_hdr_legacy *legacy =
1745                                 (struct rtw_fw_hdr_legacy *)fw->firmware->data;
1746
1747         fw->h2c_version = 0;
1748         fw->version = le16_to_cpu(legacy->version);
1749         fw->sub_version = legacy->subversion1;
1750         fw->sub_index = legacy->subversion2;
1751 }
1752
1753 static void update_firmware_info(struct rtw_dev *rtwdev,
1754                                  struct rtw_fw_state *fw)
1755 {
1756         if (rtw_chip_wcpu_11n(rtwdev))
1757                 __update_firmware_info_legacy(rtwdev, fw);
1758         else
1759                 __update_firmware_info(rtwdev, fw);
1760 }
1761
1762 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1763 {
1764         struct rtw_fw_state *fw = context;
1765         struct rtw_dev *rtwdev = fw->rtwdev;
1766
1767         if (!firmware || !firmware->data) {
1768                 rtw_err(rtwdev, "failed to request firmware\n");
1769                 complete_all(&fw->completion);
1770                 return;
1771         }
1772
1773         fw->firmware = firmware;
1774         update_firmware_info(rtwdev, fw);
1775         complete_all(&fw->completion);
1776
1777         rtw_info(rtwdev, "%sFirmware version %u.%u.%u, H2C version %u\n",
1778                  fw->type == RTW_WOWLAN_FW ? "WOW " : "",
1779                  fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1780 }
1781
1782 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
1783 {
1784         const char *fw_name;
1785         struct rtw_fw_state *fw;
1786         int ret;
1787
1788         switch (type) {
1789         case RTW_WOWLAN_FW:
1790                 fw = &rtwdev->wow_fw;
1791                 fw_name = rtwdev->chip->wow_fw_name;
1792                 break;
1793
1794         case RTW_NORMAL_FW:
1795                 fw = &rtwdev->fw;
1796                 fw_name = rtwdev->chip->fw_name;
1797                 break;
1798
1799         default:
1800                 rtw_warn(rtwdev, "unsupported firmware type\n");
1801                 return -ENOENT;
1802         }
1803
1804         fw->type = type;
1805         fw->rtwdev = rtwdev;
1806         init_completion(&fw->completion);
1807
1808         ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
1809                                       GFP_KERNEL, fw, rtw_load_firmware_cb);
1810         if (ret) {
1811                 rtw_err(rtwdev, "failed to async firmware request\n");
1812                 return ret;
1813         }
1814
1815         return 0;
1816 }
1817
1818 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1819 {
1820         const struct rtw_chip_info *chip = rtwdev->chip;
1821         struct rtw_hal *hal = &rtwdev->hal;
1822         struct rtw_efuse *efuse = &rtwdev->efuse;
1823
1824         switch (rtw_hci_type(rtwdev)) {
1825         case RTW_HCI_TYPE_PCIE:
1826                 rtwdev->hci.rpwm_addr = 0x03d9;
1827                 rtwdev->hci.cpwm_addr = 0x03da;
1828                 break;
1829         case RTW_HCI_TYPE_SDIO:
1830                 rtwdev->hci.rpwm_addr = REG_SDIO_HRPWM1;
1831                 rtwdev->hci.cpwm_addr = REG_SDIO_HCPWM1_V2;
1832                 break;
1833         case RTW_HCI_TYPE_USB:
1834                 rtwdev->hci.rpwm_addr = 0xfe58;
1835                 rtwdev->hci.cpwm_addr = 0xfe57;
1836                 break;
1837         default:
1838                 rtw_err(rtwdev, "unsupported hci type\n");
1839                 return -EINVAL;
1840         }
1841
1842         hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1843         hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1844         hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1845         if (hal->chip_version & BIT_RF_TYPE_ID) {
1846                 hal->rf_type = RF_2T2R;
1847                 hal->rf_path_num = 2;
1848                 hal->antenna_tx = BB_PATH_AB;
1849                 hal->antenna_rx = BB_PATH_AB;
1850         } else {
1851                 hal->rf_type = RF_1T1R;
1852                 hal->rf_path_num = 1;
1853                 hal->antenna_tx = BB_PATH_A;
1854                 hal->antenna_rx = BB_PATH_A;
1855         }
1856         hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
1857                           hal->rf_path_num;
1858
1859         efuse->physical_size = chip->phy_efuse_size;
1860         efuse->logical_size = chip->log_efuse_size;
1861         efuse->protect_size = chip->ptct_efuse_size;
1862
1863         /* default use ack */
1864         rtwdev->hal.rcr |= BIT_VHT_DACK;
1865
1866         hal->bfee_sts_cap = 3;
1867
1868         return 0;
1869 }
1870
1871 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1872 {
1873         struct rtw_fw_state *fw = &rtwdev->fw;
1874         int ret;
1875
1876         ret = rtw_hci_setup(rtwdev);
1877         if (ret) {
1878                 rtw_err(rtwdev, "failed to setup hci\n");
1879                 goto err;
1880         }
1881
1882         ret = rtw_mac_power_on(rtwdev);
1883         if (ret) {
1884                 rtw_err(rtwdev, "failed to power on mac\n");
1885                 goto err;
1886         }
1887
1888         rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
1889
1890         wait_for_completion(&fw->completion);
1891         if (!fw->firmware) {
1892                 ret = -EINVAL;
1893                 rtw_err(rtwdev, "failed to load firmware\n");
1894                 goto err;
1895         }
1896
1897         ret = rtw_download_firmware(rtwdev, fw);
1898         if (ret) {
1899                 rtw_err(rtwdev, "failed to download firmware\n");
1900                 goto err_off;
1901         }
1902
1903         return 0;
1904
1905 err_off:
1906         rtw_mac_power_off(rtwdev);
1907
1908 err:
1909         return ret;
1910 }
1911
1912 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
1913 {
1914         struct rtw_efuse *efuse = &rtwdev->efuse;
1915         u8 hw_feature[HW_FEATURE_LEN];
1916         u8 id;
1917         u8 bw;
1918         int i;
1919
1920         id = rtw_read8(rtwdev, REG_C2HEVT);
1921         if (id != C2H_HW_FEATURE_REPORT) {
1922                 rtw_err(rtwdev, "failed to read hw feature report\n");
1923                 return -EBUSY;
1924         }
1925
1926         for (i = 0; i < HW_FEATURE_LEN; i++)
1927                 hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1928
1929         rtw_write8(rtwdev, REG_C2HEVT, 0);
1930
1931         bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1932         efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1933         efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1934         efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1935         efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1936         efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1937
1938         rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
1939
1940         if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
1941             efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
1942                 efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1943
1944         rtw_dbg(rtwdev, RTW_DBG_EFUSE,
1945                 "hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1946                 efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1947                 efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1948
1949         return 0;
1950 }
1951
1952 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1953 {
1954         rtw_hci_stop(rtwdev);
1955         rtw_mac_power_off(rtwdev);
1956 }
1957
1958 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
1959 {
1960         struct rtw_efuse *efuse = &rtwdev->efuse;
1961         int ret;
1962
1963         mutex_lock(&rtwdev->mutex);
1964
1965         /* power on mac to read efuse */
1966         ret = rtw_chip_efuse_enable(rtwdev);
1967         if (ret)
1968                 goto out_unlock;
1969
1970         ret = rtw_parse_efuse_map(rtwdev);
1971         if (ret)
1972                 goto out_disable;
1973
1974         ret = rtw_dump_hw_feature(rtwdev);
1975         if (ret)
1976                 goto out_disable;
1977
1978         ret = rtw_check_supported_rfe(rtwdev);
1979         if (ret)
1980                 goto out_disable;
1981
1982         if (efuse->crystal_cap == 0xff)
1983                 efuse->crystal_cap = 0;
1984         if (efuse->pa_type_2g == 0xff)
1985                 efuse->pa_type_2g = 0;
1986         if (efuse->pa_type_5g == 0xff)
1987                 efuse->pa_type_5g = 0;
1988         if (efuse->lna_type_2g == 0xff)
1989                 efuse->lna_type_2g = 0;
1990         if (efuse->lna_type_5g == 0xff)
1991                 efuse->lna_type_5g = 0;
1992         if (efuse->channel_plan == 0xff)
1993                 efuse->channel_plan = 0x7f;
1994         if (efuse->rf_board_option == 0xff)
1995                 efuse->rf_board_option = 0;
1996         if (efuse->bt_setting & BIT(0))
1997                 efuse->share_ant = true;
1998         if (efuse->regd == 0xff)
1999                 efuse->regd = 0;
2000         if (efuse->tx_bb_swing_setting_2g == 0xff)
2001                 efuse->tx_bb_swing_setting_2g = 0;
2002         if (efuse->tx_bb_swing_setting_5g == 0xff)
2003                 efuse->tx_bb_swing_setting_5g = 0;
2004
2005         efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
2006         efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
2007         efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
2008         efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
2009         efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
2010
2011         if (!is_valid_ether_addr(efuse->addr)) {
2012                 eth_random_addr(efuse->addr);
2013                 dev_warn(rtwdev->dev, "efuse MAC invalid, using random\n");
2014         }
2015
2016 out_disable:
2017         rtw_chip_efuse_disable(rtwdev);
2018
2019 out_unlock:
2020         mutex_unlock(&rtwdev->mutex);
2021         return ret;
2022 }
2023
2024 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
2025 {
2026         struct rtw_hal *hal = &rtwdev->hal;
2027         const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
2028
2029         if (!rfe_def)
2030                 return -ENODEV;
2031
2032         rtw_phy_setup_phy_cond(rtwdev, hal->pkg_type);
2033
2034         rtw_phy_init_tx_power(rtwdev);
2035         rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
2036         rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
2037         rtw_phy_tx_power_by_rate_config(hal);
2038         rtw_phy_tx_power_limit_config(hal);
2039
2040         return 0;
2041 }
2042
2043 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
2044 {
2045         int ret;
2046
2047         ret = rtw_chip_parameter_setup(rtwdev);
2048         if (ret) {
2049                 rtw_err(rtwdev, "failed to setup chip parameters\n");
2050                 goto err_out;
2051         }
2052
2053         ret = rtw_chip_efuse_info_setup(rtwdev);
2054         if (ret) {
2055                 rtw_err(rtwdev, "failed to setup chip efuse info\n");
2056                 goto err_out;
2057         }
2058
2059         ret = rtw_chip_board_info_setup(rtwdev);
2060         if (ret) {
2061                 rtw_err(rtwdev, "failed to setup chip board info\n");
2062                 goto err_out;
2063         }
2064
2065         return 0;
2066
2067 err_out:
2068         return ret;
2069 }
2070 EXPORT_SYMBOL(rtw_chip_info_setup);
2071
2072 static void rtw_stats_init(struct rtw_dev *rtwdev)
2073 {
2074         struct rtw_traffic_stats *stats = &rtwdev->stats;
2075         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2076         int i;
2077
2078         ewma_tp_init(&stats->tx_ewma_tp);
2079         ewma_tp_init(&stats->rx_ewma_tp);
2080
2081         for (i = 0; i < RTW_EVM_NUM; i++)
2082                 ewma_evm_init(&dm_info->ewma_evm[i]);
2083         for (i = 0; i < RTW_SNR_NUM; i++)
2084                 ewma_snr_init(&dm_info->ewma_snr[i]);
2085 }
2086
2087 int rtw_core_init(struct rtw_dev *rtwdev)
2088 {
2089         const struct rtw_chip_info *chip = rtwdev->chip;
2090         struct rtw_coex *coex = &rtwdev->coex;
2091         int ret;
2092
2093         INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
2094         INIT_LIST_HEAD(&rtwdev->txqs);
2095
2096         timer_setup(&rtwdev->tx_report.purge_timer,
2097                     rtw_tx_report_purge_timer, 0);
2098         rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0);
2099         if (!rtwdev->tx_wq) {
2100                 rtw_warn(rtwdev, "alloc_workqueue rtw_tx_wq failed\n");
2101                 return -ENOMEM;
2102         }
2103
2104         INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
2105         INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
2106         INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
2107         INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
2108         INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
2109         INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
2110         INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work);
2111         INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work,
2112                           rtw_coex_bt_multi_link_remain_work);
2113         INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work);
2114         INIT_WORK(&rtwdev->tx_work, rtw_tx_work);
2115         INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
2116         INIT_WORK(&rtwdev->ips_work, rtw_ips_work);
2117         INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
2118         INIT_WORK(&rtwdev->update_beacon_work, rtw_fw_update_beacon_work);
2119         INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
2120         skb_queue_head_init(&rtwdev->c2h_queue);
2121         skb_queue_head_init(&rtwdev->coex.queue);
2122         skb_queue_head_init(&rtwdev->tx_report.queue);
2123
2124         spin_lock_init(&rtwdev->txq_lock);
2125         spin_lock_init(&rtwdev->tx_report.q_lock);
2126
2127         mutex_init(&rtwdev->mutex);
2128         mutex_init(&rtwdev->hal.tx_power_mutex);
2129
2130         init_waitqueue_head(&rtwdev->coex.wait);
2131         init_completion(&rtwdev->lps_leave_check);
2132         init_completion(&rtwdev->fw_scan_density);
2133
2134         rtwdev->sec.total_cam_num = 32;
2135         rtwdev->hal.current_channel = 1;
2136         rtwdev->dm_info.fix_rate = U8_MAX;
2137         set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
2138
2139         rtw_stats_init(rtwdev);
2140
2141         /* default rx filter setting */
2142         rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
2143                           BIT_PKTCTL_DLEN | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
2144                           BIT_AB | BIT_AM | BIT_APM;
2145
2146         ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
2147         if (ret) {
2148                 rtw_warn(rtwdev, "no firmware loaded\n");
2149                 goto out;
2150         }
2151
2152         if (chip->wow_fw_name) {
2153                 ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
2154                 if (ret) {
2155                         rtw_warn(rtwdev, "no wow firmware loaded\n");
2156                         wait_for_completion(&rtwdev->fw.completion);
2157                         if (rtwdev->fw.firmware)
2158                                 release_firmware(rtwdev->fw.firmware);
2159                         goto out;
2160                 }
2161         }
2162
2163         return 0;
2164
2165 out:
2166         destroy_workqueue(rtwdev->tx_wq);
2167         return ret;
2168 }
2169 EXPORT_SYMBOL(rtw_core_init);
2170
2171 void rtw_core_deinit(struct rtw_dev *rtwdev)
2172 {
2173         struct rtw_fw_state *fw = &rtwdev->fw;
2174         struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
2175         struct rtw_rsvd_page *rsvd_pkt, *tmp;
2176         unsigned long flags;
2177
2178         rtw_wait_firmware_completion(rtwdev);
2179
2180         if (fw->firmware)
2181                 release_firmware(fw->firmware);
2182
2183         if (wow_fw->firmware)
2184                 release_firmware(wow_fw->firmware);
2185
2186         destroy_workqueue(rtwdev->tx_wq);
2187         timer_delete_sync(&rtwdev->tx_report.purge_timer);
2188         spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
2189         skb_queue_purge(&rtwdev->tx_report.queue);
2190         spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
2191         skb_queue_purge(&rtwdev->coex.queue);
2192         skb_queue_purge(&rtwdev->c2h_queue);
2193
2194         list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
2195                                  build_list) {
2196                 list_del(&rsvd_pkt->build_list);
2197                 kfree(rsvd_pkt);
2198         }
2199
2200         mutex_destroy(&rtwdev->mutex);
2201         mutex_destroy(&rtwdev->hal.tx_power_mutex);
2202 }
2203 EXPORT_SYMBOL(rtw_core_deinit);
2204
2205 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2206 {
2207         struct rtw_hal *hal = &rtwdev->hal;
2208         int max_tx_headroom = 0;
2209         int ret;
2210
2211         max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
2212
2213         if (rtw_hci_type(rtwdev) == RTW_HCI_TYPE_SDIO)
2214                 max_tx_headroom += RTW_SDIO_DATA_PTR_ALIGN;
2215
2216         hw->extra_tx_headroom = max_tx_headroom;
2217         hw->queues = IEEE80211_NUM_ACS;
2218         hw->txq_data_size = sizeof(struct rtw_txq);
2219         hw->sta_data_size = sizeof(struct rtw_sta_info);
2220         hw->vif_data_size = sizeof(struct rtw_vif);
2221
2222         ieee80211_hw_set(hw, SIGNAL_DBM);
2223         ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2224         ieee80211_hw_set(hw, AMPDU_AGGREGATION);
2225         ieee80211_hw_set(hw, MFP_CAPABLE);
2226         ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2227         ieee80211_hw_set(hw, SUPPORTS_PS);
2228         ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
2229         ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
2230         ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
2231         ieee80211_hw_set(hw, HAS_RATE_CONTROL);
2232         ieee80211_hw_set(hw, TX_AMSDU);
2233         ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS);
2234
2235         hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2236                                      BIT(NL80211_IFTYPE_AP) |
2237                                      BIT(NL80211_IFTYPE_ADHOC) |
2238                                      BIT(NL80211_IFTYPE_MESH_POINT);
2239         hw->wiphy->available_antennas_tx = hal->antenna_tx;
2240         hw->wiphy->available_antennas_rx = hal->antenna_rx;
2241
2242         hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
2243                             WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
2244
2245         hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
2246         hw->wiphy->max_scan_ssids = RTW_SCAN_MAX_SSIDS;
2247         hw->wiphy->max_scan_ie_len = rtw_get_max_scan_ie_len(rtwdev);
2248
2249         if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C) {
2250                 hw->wiphy->iface_combinations = rtw_iface_combs;
2251                 hw->wiphy->n_iface_combinations = ARRAY_SIZE(rtw_iface_combs);
2252         }
2253
2254         wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
2255         wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SCAN_RANDOM_SN);
2256         wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL);
2257
2258 #ifdef CONFIG_PM
2259         hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
2260         hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
2261 #endif
2262         rtw_set_supported_band(hw, rtwdev->chip);
2263         SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
2264
2265         hw->wiphy->sar_capa = &rtw_sar_capa;
2266
2267         ret = rtw_regd_init(rtwdev);
2268         if (ret) {
2269                 rtw_err(rtwdev, "failed to init regd\n");
2270                 return ret;
2271         }
2272
2273         ret = ieee80211_register_hw(hw);
2274         if (ret) {
2275                 rtw_err(rtwdev, "failed to register hw\n");
2276                 return ret;
2277         }
2278
2279         ret = rtw_regd_hint(rtwdev);
2280         if (ret) {
2281                 rtw_err(rtwdev, "failed to hint regd\n");
2282                 return ret;
2283         }
2284
2285         rtw_debugfs_init(rtwdev);
2286
2287         rtwdev->bf_info.bfer_mu_cnt = 0;
2288         rtwdev->bf_info.bfer_su_cnt = 0;
2289
2290         return 0;
2291 }
2292 EXPORT_SYMBOL(rtw_register_hw);
2293
2294 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2295 {
2296         const struct rtw_chip_info *chip = rtwdev->chip;
2297
2298         ieee80211_unregister_hw(hw);
2299         rtw_unset_supported_band(hw, chip);
2300 }
2301 EXPORT_SYMBOL(rtw_unregister_hw);
2302
2303 static
2304 void rtw_swap_reg_nbytes(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2305                          const struct rtw_hw_reg *reg2, u8 nbytes)
2306 {
2307         u8 i;
2308
2309         for (i = 0; i < nbytes; i++) {
2310                 u8 v1 = rtw_read8(rtwdev, reg1->addr + i);
2311                 u8 v2 = rtw_read8(rtwdev, reg2->addr + i);
2312
2313                 rtw_write8(rtwdev, reg1->addr + i, v2);
2314                 rtw_write8(rtwdev, reg2->addr + i, v1);
2315         }
2316 }
2317
2318 static
2319 void rtw_swap_reg_mask(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2320                        const struct rtw_hw_reg *reg2)
2321 {
2322         u32 v1, v2;
2323
2324         v1 = rtw_read32_mask(rtwdev, reg1->addr, reg1->mask);
2325         v2 = rtw_read32_mask(rtwdev, reg2->addr, reg2->mask);
2326         rtw_write32_mask(rtwdev, reg2->addr, reg2->mask, v1);
2327         rtw_write32_mask(rtwdev, reg1->addr, reg1->mask, v2);
2328 }
2329
2330 struct rtw_iter_port_switch_data {
2331         struct rtw_dev *rtwdev;
2332         struct rtw_vif *rtwvif_ap;
2333 };
2334
2335 static void rtw_port_switch_iter(void *data, struct ieee80211_vif *vif)
2336 {
2337         struct rtw_iter_port_switch_data *iter_data = data;
2338         struct rtw_dev *rtwdev = iter_data->rtwdev;
2339         struct rtw_vif *rtwvif_target = (struct rtw_vif *)vif->drv_priv;
2340         struct rtw_vif *rtwvif_ap = iter_data->rtwvif_ap;
2341         const struct rtw_hw_reg *reg1, *reg2;
2342
2343         if (rtwvif_target->port != RTW_PORT_0)
2344                 return;
2345
2346         rtw_dbg(rtwdev, RTW_DBG_STATE, "AP port switch from %d -> %d\n",
2347                 rtwvif_ap->port, rtwvif_target->port);
2348
2349         /* Leave LPS so the value swapped are not in PS mode */
2350         rtw_leave_lps(rtwdev);
2351
2352         reg1 = &rtwvif_ap->conf->net_type;
2353         reg2 = &rtwvif_target->conf->net_type;
2354         rtw_swap_reg_mask(rtwdev, reg1, reg2);
2355
2356         reg1 = &rtwvif_ap->conf->mac_addr;
2357         reg2 = &rtwvif_target->conf->mac_addr;
2358         rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2359
2360         reg1 = &rtwvif_ap->conf->bssid;
2361         reg2 = &rtwvif_target->conf->bssid;
2362         rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2363
2364         reg1 = &rtwvif_ap->conf->bcn_ctrl;
2365         reg2 = &rtwvif_target->conf->bcn_ctrl;
2366         rtw_swap_reg_nbytes(rtwdev, reg1, reg2, 1);
2367
2368         swap(rtwvif_target->port, rtwvif_ap->port);
2369         swap(rtwvif_target->conf, rtwvif_ap->conf);
2370
2371         rtw_fw_default_port(rtwdev, rtwvif_target);
2372 }
2373
2374 void rtw_core_port_switch(struct rtw_dev *rtwdev, struct ieee80211_vif *vif)
2375 {
2376         struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2377         struct rtw_iter_port_switch_data iter_data;
2378
2379         if (vif->type != NL80211_IFTYPE_AP || rtwvif->port == RTW_PORT_0)
2380                 return;
2381
2382         iter_data.rtwdev = rtwdev;
2383         iter_data.rtwvif_ap = rtwvif;
2384         rtw_iterate_vifs(rtwdev, rtw_port_switch_iter, &iter_data);
2385 }
2386
2387 static void rtw_check_sta_active_iter(void *data, struct ieee80211_vif *vif)
2388 {
2389         struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2390         bool *active = data;
2391
2392         if (*active)
2393                 return;
2394
2395         if (vif->type != NL80211_IFTYPE_STATION)
2396                 return;
2397
2398         if (vif->cfg.assoc || !is_zero_ether_addr(rtwvif->bssid))
2399                 *active = true;
2400 }
2401
2402 bool rtw_core_check_sta_active(struct rtw_dev *rtwdev)
2403 {
2404         bool sta_active = false;
2405
2406         rtw_iterate_vifs(rtwdev, rtw_check_sta_active_iter, &sta_active);
2407
2408         return rtwdev->ap_active || sta_active;
2409 }
2410
2411 void rtw_core_enable_beacon(struct rtw_dev *rtwdev, bool enable)
2412 {
2413         if (!rtwdev->ap_active)
2414                 return;
2415
2416         if (enable) {
2417                 rtw_write32_set(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2418                 rtw_write32_clr(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2419         } else {
2420                 rtw_write32_clr(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2421                 rtw_write32_set(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2422         }
2423 }
2424
2425 MODULE_AUTHOR("Realtek Corporation");
2426 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
2427 MODULE_LICENSE("Dual BSD/GPL");