Merge tag 'mac80211-next-for-net-next-2021-06-25' of git://git.kernel.org/pub/scm...
[linux-2.6-microblaze.git] / drivers / net / wireless / realtek / rtw88 / main.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4
5 #include <linux/devcoredump.h>
6
7 #include "main.h"
8 #include "regd.h"
9 #include "fw.h"
10 #include "ps.h"
11 #include "sec.h"
12 #include "mac.h"
13 #include "coex.h"
14 #include "phy.h"
15 #include "reg.h"
16 #include "efuse.h"
17 #include "tx.h"
18 #include "debug.h"
19 #include "bf.h"
20
21 bool rtw_disable_lps_deep_mode;
22 EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
23 bool rtw_bf_support = true;
24 unsigned int rtw_debug_mask;
25 EXPORT_SYMBOL(rtw_debug_mask);
26
27 module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
28 module_param_named(support_bf, rtw_bf_support, bool, 0644);
29 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
30
31 MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
32 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
33 MODULE_PARM_DESC(debug_mask, "Debugging mask");
34
35 static struct ieee80211_channel rtw_channeltable_2g[] = {
36         {.center_freq = 2412, .hw_value = 1,},
37         {.center_freq = 2417, .hw_value = 2,},
38         {.center_freq = 2422, .hw_value = 3,},
39         {.center_freq = 2427, .hw_value = 4,},
40         {.center_freq = 2432, .hw_value = 5,},
41         {.center_freq = 2437, .hw_value = 6,},
42         {.center_freq = 2442, .hw_value = 7,},
43         {.center_freq = 2447, .hw_value = 8,},
44         {.center_freq = 2452, .hw_value = 9,},
45         {.center_freq = 2457, .hw_value = 10,},
46         {.center_freq = 2462, .hw_value = 11,},
47         {.center_freq = 2467, .hw_value = 12,},
48         {.center_freq = 2472, .hw_value = 13,},
49         {.center_freq = 2484, .hw_value = 14,},
50 };
51
52 static struct ieee80211_channel rtw_channeltable_5g[] = {
53         {.center_freq = 5180, .hw_value = 36,},
54         {.center_freq = 5200, .hw_value = 40,},
55         {.center_freq = 5220, .hw_value = 44,},
56         {.center_freq = 5240, .hw_value = 48,},
57         {.center_freq = 5260, .hw_value = 52,},
58         {.center_freq = 5280, .hw_value = 56,},
59         {.center_freq = 5300, .hw_value = 60,},
60         {.center_freq = 5320, .hw_value = 64,},
61         {.center_freq = 5500, .hw_value = 100,},
62         {.center_freq = 5520, .hw_value = 104,},
63         {.center_freq = 5540, .hw_value = 108,},
64         {.center_freq = 5560, .hw_value = 112,},
65         {.center_freq = 5580, .hw_value = 116,},
66         {.center_freq = 5600, .hw_value = 120,},
67         {.center_freq = 5620, .hw_value = 124,},
68         {.center_freq = 5640, .hw_value = 128,},
69         {.center_freq = 5660, .hw_value = 132,},
70         {.center_freq = 5680, .hw_value = 136,},
71         {.center_freq = 5700, .hw_value = 140,},
72         {.center_freq = 5720, .hw_value = 144,},
73         {.center_freq = 5745, .hw_value = 149,},
74         {.center_freq = 5765, .hw_value = 153,},
75         {.center_freq = 5785, .hw_value = 157,},
76         {.center_freq = 5805, .hw_value = 161,},
77         {.center_freq = 5825, .hw_value = 165,
78          .flags = IEEE80211_CHAN_NO_HT40MINUS},
79 };
80
81 static struct ieee80211_rate rtw_ratetable[] = {
82         {.bitrate = 10, .hw_value = 0x00,},
83         {.bitrate = 20, .hw_value = 0x01,},
84         {.bitrate = 55, .hw_value = 0x02,},
85         {.bitrate = 110, .hw_value = 0x03,},
86         {.bitrate = 60, .hw_value = 0x04,},
87         {.bitrate = 90, .hw_value = 0x05,},
88         {.bitrate = 120, .hw_value = 0x06,},
89         {.bitrate = 180, .hw_value = 0x07,},
90         {.bitrate = 240, .hw_value = 0x08,},
91         {.bitrate = 360, .hw_value = 0x09,},
92         {.bitrate = 480, .hw_value = 0x0a,},
93         {.bitrate = 540, .hw_value = 0x0b,},
94 };
95
96 u16 rtw_desc_to_bitrate(u8 desc_rate)
97 {
98         struct ieee80211_rate rate;
99
100         if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
101                 return 0;
102
103         rate = rtw_ratetable[desc_rate];
104
105         return rate.bitrate;
106 }
107
108 static struct ieee80211_supported_band rtw_band_2ghz = {
109         .band = NL80211_BAND_2GHZ,
110
111         .channels = rtw_channeltable_2g,
112         .n_channels = ARRAY_SIZE(rtw_channeltable_2g),
113
114         .bitrates = rtw_ratetable,
115         .n_bitrates = ARRAY_SIZE(rtw_ratetable),
116
117         .ht_cap = {0},
118         .vht_cap = {0},
119 };
120
121 static struct ieee80211_supported_band rtw_band_5ghz = {
122         .band = NL80211_BAND_5GHZ,
123
124         .channels = rtw_channeltable_5g,
125         .n_channels = ARRAY_SIZE(rtw_channeltable_5g),
126
127         /* 5G has no CCK rates */
128         .bitrates = rtw_ratetable + 4,
129         .n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
130
131         .ht_cap = {0},
132         .vht_cap = {0},
133 };
134
135 struct rtw_watch_dog_iter_data {
136         struct rtw_dev *rtwdev;
137         struct rtw_vif *rtwvif;
138 };
139
140 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
141 {
142         struct rtw_bf_info *bf_info = &rtwdev->bf_info;
143         u8 fix_rate_enable = 0;
144         u8 new_csi_rate_idx;
145
146         if (rtwvif->bfee.role != RTW_BFEE_SU &&
147             rtwvif->bfee.role != RTW_BFEE_MU)
148                 return;
149
150         rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
151                               bf_info->cur_csi_rpt_rate,
152                               fix_rate_enable, &new_csi_rate_idx);
153
154         if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
155                 bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
156 }
157
158 static void rtw_vif_watch_dog_iter(void *data, u8 *mac,
159                                    struct ieee80211_vif *vif)
160 {
161         struct rtw_watch_dog_iter_data *iter_data = data;
162         struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
163
164         if (vif->type == NL80211_IFTYPE_STATION)
165                 if (vif->bss_conf.assoc)
166                         iter_data->rtwvif = rtwvif;
167
168         rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
169
170         rtwvif->stats.tx_unicast = 0;
171         rtwvif->stats.rx_unicast = 0;
172         rtwvif->stats.tx_cnt = 0;
173         rtwvif->stats.rx_cnt = 0;
174 }
175
176 /* process TX/RX statistics periodically for hardware,
177  * the information helps hardware to enhance performance
178  */
179 static void rtw_watch_dog_work(struct work_struct *work)
180 {
181         struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
182                                               watch_dog_work.work);
183         struct rtw_traffic_stats *stats = &rtwdev->stats;
184         struct rtw_watch_dog_iter_data data = {};
185         bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
186         bool ps_active;
187
188         mutex_lock(&rtwdev->mutex);
189
190         if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
191                 goto unlock;
192
193         ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
194                                      RTW_WATCH_DOG_DELAY_TIME);
195
196         if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
197                 set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
198         else
199                 clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
200
201         if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
202                 rtw_coex_wl_status_change_notify(rtwdev, 0);
203
204         if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
205             stats->rx_cnt > RTW_LPS_THRESHOLD)
206                 ps_active = true;
207         else
208                 ps_active = false;
209
210         ewma_tp_add(&stats->tx_ewma_tp,
211                     (u32)(stats->tx_unicast >> RTW_TP_SHIFT));
212         ewma_tp_add(&stats->rx_ewma_tp,
213                     (u32)(stats->rx_unicast >> RTW_TP_SHIFT));
214         stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
215         stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
216
217         /* reset tx/rx statictics */
218         stats->tx_unicast = 0;
219         stats->rx_unicast = 0;
220         stats->tx_cnt = 0;
221         stats->rx_cnt = 0;
222
223         if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
224                 goto unlock;
225
226         /* make sure BB/RF is working for dynamic mech */
227         rtw_leave_lps(rtwdev);
228
229         rtw_phy_dynamic_mechanism(rtwdev);
230
231         data.rtwdev = rtwdev;
232         /* use atomic version to avoid taking local->iflist_mtx mutex */
233         rtw_iterate_vifs_atomic(rtwdev, rtw_vif_watch_dog_iter, &data);
234
235         /* fw supports only one station associated to enter lps, if there are
236          * more than two stations associated to the AP, then we can not enter
237          * lps, because fw does not handle the overlapped beacon interval
238          *
239          * mac80211 should iterate vifs and determine if driver can enter
240          * ps by passing IEEE80211_CONF_PS to us, all we need to do is to
241          * get that vif and check if device is having traffic more than the
242          * threshold.
243          */
244         if (rtwdev->ps_enabled && data.rtwvif && !ps_active &&
245             !rtwdev->beacon_loss)
246                 rtw_enter_lps(rtwdev, data.rtwvif->port);
247
248         rtwdev->watch_dog_cnt++;
249
250 unlock:
251         mutex_unlock(&rtwdev->mutex);
252 }
253
254 static void rtw_c2h_work(struct work_struct *work)
255 {
256         struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
257         struct sk_buff *skb, *tmp;
258
259         skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
260                 skb_unlink(skb, &rtwdev->c2h_queue);
261                 rtw_fw_c2h_cmd_handle(rtwdev, skb);
262                 dev_kfree_skb_any(skb);
263         }
264 }
265
266 static u8 rtw_acquire_macid(struct rtw_dev *rtwdev)
267 {
268         unsigned long mac_id;
269
270         mac_id = find_first_zero_bit(rtwdev->mac_id_map, RTW_MAX_MAC_ID_NUM);
271         if (mac_id < RTW_MAX_MAC_ID_NUM)
272                 set_bit(mac_id, rtwdev->mac_id_map);
273
274         return mac_id;
275 }
276
277 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
278                 struct ieee80211_vif *vif)
279 {
280         struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
281         int i;
282
283         si->mac_id = rtw_acquire_macid(rtwdev);
284         if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
285                 return -ENOSPC;
286
287         si->sta = sta;
288         si->vif = vif;
289         si->init_ra_lv = 1;
290         ewma_rssi_init(&si->avg_rssi);
291         for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
292                 rtw_txq_init(rtwdev, sta->txq[i]);
293
294         rtw_update_sta_info(rtwdev, si);
295         rtw_fw_media_status_report(rtwdev, si->mac_id, true);
296
297         rtwdev->sta_cnt++;
298         rtwdev->beacon_loss = false;
299         rtw_info(rtwdev, "sta %pM joined with macid %d\n",
300                  sta->addr, si->mac_id);
301
302         return 0;
303 }
304
305 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
306                     bool fw_exist)
307 {
308         struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
309         int i;
310
311         rtw_release_macid(rtwdev, si->mac_id);
312         if (fw_exist)
313                 rtw_fw_media_status_report(rtwdev, si->mac_id, false);
314
315         for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
316                 rtw_txq_cleanup(rtwdev, sta->txq[i]);
317
318         kfree(si->mask);
319
320         rtwdev->sta_cnt--;
321         rtw_info(rtwdev, "sta %pM with macid %d left\n",
322                  sta->addr, si->mac_id);
323 }
324
325 struct rtw_fwcd_hdr {
326         u32 item;
327         u32 size;
328         u32 padding1;
329         u32 padding2;
330 } __packed;
331
332 static int rtw_fwcd_prep(struct rtw_dev *rtwdev)
333 {
334         struct rtw_chip_info *chip = rtwdev->chip;
335         struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
336         const struct rtw_fwcd_segs *segs = chip->fwcd_segs;
337         u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr);
338         u8 i;
339
340         if (segs) {
341                 prep_size += segs->num * sizeof(struct rtw_fwcd_hdr);
342
343                 for (i = 0; i < segs->num; i++)
344                         prep_size += segs->segs[i];
345         }
346
347         desc->data = vmalloc(prep_size);
348         if (!desc->data)
349                 return -ENOMEM;
350
351         desc->size = prep_size;
352         desc->next = desc->data;
353
354         return 0;
355 }
356
357 static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size)
358 {
359         struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
360         struct rtw_fwcd_hdr *hdr;
361         u8 *next;
362
363         if (!desc->data) {
364                 rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n");
365                 return NULL;
366         }
367
368         next = desc->next + sizeof(struct rtw_fwcd_hdr);
369         if (next - desc->data + size > desc->size) {
370                 rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n");
371                 return NULL;
372         }
373
374         hdr = (struct rtw_fwcd_hdr *)(desc->next);
375         hdr->item = item;
376         hdr->size = size;
377         hdr->padding1 = 0x01234567;
378         hdr->padding2 = 0x89abcdef;
379         desc->next = next + size;
380
381         return next;
382 }
383
384 static void rtw_fwcd_dump(struct rtw_dev *rtwdev)
385 {
386         struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
387
388         rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n");
389
390         /* Data will be freed after lifetime of device coredump. After calling
391          * dev_coredump, data is supposed to be handled by the device coredump
392          * framework. Note that a new dump will be discarded if a previous one
393          * hasn't been released yet.
394          */
395         dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL);
396 }
397
398 static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self)
399 {
400         struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
401
402         if (free_self) {
403                 rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n");
404                 vfree(desc->data);
405         }
406
407         desc->data = NULL;
408         desc->next = NULL;
409 }
410
411 static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
412 {
413         u32 size = rtwdev->chip->fw_rxff_size;
414         u32 *buf;
415         u8 seq;
416
417         buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size);
418         if (!buf)
419                 return -ENOMEM;
420
421         if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) {
422                 rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n");
423                 return -EINVAL;
424         }
425
426         if (GET_FW_DUMP_LEN(buf) == 0) {
427                 rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n");
428                 return -EINVAL;
429         }
430
431         seq = GET_FW_DUMP_SEQ(buf);
432         if (seq > 0) {
433                 rtw_dbg(rtwdev, RTW_DBG_FW,
434                         "fw crash dump's seq is wrong: %d\n", seq);
435                 return -EINVAL;
436         }
437
438         return 0;
439 }
440
441 int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size,
442                 u32 fwcd_item)
443 {
444         u32 rxff = rtwdev->chip->fw_rxff_size;
445         u32 dump_size, done_size = 0;
446         u8 *buf;
447         int ret;
448
449         buf = rtw_fwcd_next(rtwdev, fwcd_item, size);
450         if (!buf)
451                 return -ENOMEM;
452
453         while (size) {
454                 dump_size = size > rxff ? rxff : size;
455
456                 ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size,
457                                           dump_size);
458                 if (ret) {
459                         rtw_err(rtwdev,
460                                 "ddma fw 0x%x [+0x%x] to fw fifo fail\n",
461                                 ocp_src, done_size);
462                         return ret;
463                 }
464
465                 ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0,
466                                        dump_size, (u32 *)(buf + done_size));
467                 if (ret) {
468                         rtw_err(rtwdev,
469                                 "dump fw 0x%x [+0x%x] from fw fifo fail\n",
470                                 ocp_src, done_size);
471                         return ret;
472                 }
473
474                 size -= dump_size;
475                 done_size += dump_size;
476         }
477
478         return 0;
479 }
480 EXPORT_SYMBOL(rtw_dump_fw);
481
482 int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size)
483 {
484         u8 *buf;
485         u32 i;
486
487         if (addr & 0x3) {
488                 WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr);
489                 return -EINVAL;
490         }
491
492         buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size);
493         if (!buf)
494                 return -ENOMEM;
495
496         for (i = 0; i < size; i += 4)
497                 *(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i);
498
499         return 0;
500 }
501 EXPORT_SYMBOL(rtw_dump_reg);
502
503 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
504                            struct ieee80211_bss_conf *conf)
505 {
506         if (conf && conf->assoc) {
507                 rtwvif->aid = conf->aid;
508                 rtwvif->net_type = RTW_NET_MGD_LINKED;
509         } else {
510                 rtwvif->aid = 0;
511                 rtwvif->net_type = RTW_NET_NO_LINK;
512         }
513 }
514
515 static void rtw_reset_key_iter(struct ieee80211_hw *hw,
516                                struct ieee80211_vif *vif,
517                                struct ieee80211_sta *sta,
518                                struct ieee80211_key_conf *key,
519                                void *data)
520 {
521         struct rtw_dev *rtwdev = (struct rtw_dev *)data;
522         struct rtw_sec_desc *sec = &rtwdev->sec;
523
524         rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx);
525 }
526
527 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
528 {
529         struct rtw_dev *rtwdev = (struct rtw_dev *)data;
530
531         if (rtwdev->sta_cnt == 0) {
532                 rtw_warn(rtwdev, "sta count before reset should not be 0\n");
533                 return;
534         }
535         rtw_sta_remove(rtwdev, sta, false);
536 }
537
538 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
539 {
540         struct rtw_dev *rtwdev = (struct rtw_dev *)data;
541         struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
542
543         rtw_bf_disassoc(rtwdev, vif, NULL);
544         rtw_vif_assoc_changed(rtwvif, NULL);
545         rtw_txq_cleanup(rtwdev, vif->txq);
546 }
547
548 void rtw_fw_recovery(struct rtw_dev *rtwdev)
549 {
550         if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
551                 ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work);
552 }
553
554 static void __fw_recovery_work(struct rtw_dev *rtwdev)
555 {
556         int ret = 0;
557
558         set_bit(RTW_FLAG_RESTARTING, rtwdev->flags);
559
560         ret = rtw_fwcd_prep(rtwdev);
561         if (ret)
562                 goto free;
563         ret = rtw_fw_dump_crash_log(rtwdev);
564         if (ret)
565                 goto free;
566         ret = rtw_chip_dump_fw_crash(rtwdev);
567         if (ret)
568                 goto free;
569
570         rtw_fwcd_dump(rtwdev);
571 free:
572         rtw_fwcd_free(rtwdev, !!ret);
573         rtw_write8(rtwdev, REG_MCU_TST_CFG, 0);
574
575         WARN(1, "firmware crash, start reset and recover\n");
576
577         rcu_read_lock();
578         rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
579         rcu_read_unlock();
580         rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
581         rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
582         rtw_enter_ips(rtwdev);
583 }
584
585 static void rtw_fw_recovery_work(struct work_struct *work)
586 {
587         struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
588                                               fw_recovery_work);
589
590         mutex_lock(&rtwdev->mutex);
591         __fw_recovery_work(rtwdev);
592         mutex_unlock(&rtwdev->mutex);
593
594         ieee80211_restart_hw(rtwdev->hw);
595 }
596
597 struct rtw_txq_ba_iter_data {
598 };
599
600 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
601 {
602         struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
603         int ret;
604         u8 tid;
605
606         tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
607         while (tid != IEEE80211_NUM_TIDS) {
608                 clear_bit(tid, si->tid_ba);
609                 ret = ieee80211_start_tx_ba_session(sta, tid, 0);
610                 if (ret == -EINVAL) {
611                         struct ieee80211_txq *txq;
612                         struct rtw_txq *rtwtxq;
613
614                         txq = sta->txq[tid];
615                         rtwtxq = (struct rtw_txq *)txq->drv_priv;
616                         set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
617                 }
618
619                 tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
620         }
621 }
622
623 static void rtw_txq_ba_work(struct work_struct *work)
624 {
625         struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
626         struct rtw_txq_ba_iter_data data;
627
628         rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
629 }
630
631 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
632                             struct rtw_channel_params *chan_params)
633 {
634         struct ieee80211_channel *channel = chandef->chan;
635         enum nl80211_chan_width width = chandef->width;
636         u8 *cch_by_bw = chan_params->cch_by_bw;
637         u32 primary_freq, center_freq;
638         u8 center_chan;
639         u8 bandwidth = RTW_CHANNEL_WIDTH_20;
640         u8 primary_chan_idx = 0;
641         u8 i;
642
643         center_chan = channel->hw_value;
644         primary_freq = channel->center_freq;
645         center_freq = chandef->center_freq1;
646
647         /* assign the center channel used while 20M bw is selected */
648         cch_by_bw[RTW_CHANNEL_WIDTH_20] = channel->hw_value;
649
650         switch (width) {
651         case NL80211_CHAN_WIDTH_20_NOHT:
652         case NL80211_CHAN_WIDTH_20:
653                 bandwidth = RTW_CHANNEL_WIDTH_20;
654                 primary_chan_idx = RTW_SC_DONT_CARE;
655                 break;
656         case NL80211_CHAN_WIDTH_40:
657                 bandwidth = RTW_CHANNEL_WIDTH_40;
658                 if (primary_freq > center_freq) {
659                         primary_chan_idx = RTW_SC_20_UPPER;
660                         center_chan -= 2;
661                 } else {
662                         primary_chan_idx = RTW_SC_20_LOWER;
663                         center_chan += 2;
664                 }
665                 break;
666         case NL80211_CHAN_WIDTH_80:
667                 bandwidth = RTW_CHANNEL_WIDTH_80;
668                 if (primary_freq > center_freq) {
669                         if (primary_freq - center_freq == 10) {
670                                 primary_chan_idx = RTW_SC_20_UPPER;
671                                 center_chan -= 2;
672                         } else {
673                                 primary_chan_idx = RTW_SC_20_UPMOST;
674                                 center_chan -= 6;
675                         }
676                         /* assign the center channel used
677                          * while 40M bw is selected
678                          */
679                         cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan + 4;
680                 } else {
681                         if (center_freq - primary_freq == 10) {
682                                 primary_chan_idx = RTW_SC_20_LOWER;
683                                 center_chan += 2;
684                         } else {
685                                 primary_chan_idx = RTW_SC_20_LOWEST;
686                                 center_chan += 6;
687                         }
688                         /* assign the center channel used
689                          * while 40M bw is selected
690                          */
691                         cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan - 4;
692                 }
693                 break;
694         default:
695                 center_chan = 0;
696                 break;
697         }
698
699         chan_params->center_chan = center_chan;
700         chan_params->bandwidth = bandwidth;
701         chan_params->primary_chan_idx = primary_chan_idx;
702
703         /* assign the center channel used while current bw is selected */
704         cch_by_bw[bandwidth] = center_chan;
705
706         for (i = bandwidth + 1; i <= RTW_MAX_CHANNEL_WIDTH; i++)
707                 cch_by_bw[i] = 0;
708 }
709
710 void rtw_set_channel(struct rtw_dev *rtwdev)
711 {
712         struct ieee80211_hw *hw = rtwdev->hw;
713         struct rtw_hal *hal = &rtwdev->hal;
714         struct rtw_chip_info *chip = rtwdev->chip;
715         struct rtw_channel_params ch_param;
716         u8 center_chan, bandwidth, primary_chan_idx;
717         u8 i;
718
719         rtw_get_channel_params(&hw->conf.chandef, &ch_param);
720         if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
721                 return;
722
723         center_chan = ch_param.center_chan;
724         bandwidth = ch_param.bandwidth;
725         primary_chan_idx = ch_param.primary_chan_idx;
726
727         hal->current_band_width = bandwidth;
728         hal->current_channel = center_chan;
729         hal->current_band_type = center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
730
731         for (i = RTW_CHANNEL_WIDTH_20; i <= RTW_MAX_CHANNEL_WIDTH; i++)
732                 hal->cch_by_bw[i] = ch_param.cch_by_bw[i];
733
734         chip->ops->set_channel(rtwdev, center_chan, bandwidth, primary_chan_idx);
735
736         if (hal->current_band_type == RTW_BAND_5G) {
737                 rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
738         } else {
739                 if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
740                         rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
741                 else
742                         rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
743         }
744
745         rtw_phy_set_tx_power_level(rtwdev, center_chan);
746
747         /* if the channel isn't set for scanning, we will do RF calibration
748          * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration
749          * during scanning on each channel takes too long.
750          */
751         if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
752                 rtwdev->need_rfk = true;
753 }
754
755 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
756 {
757         struct rtw_chip_info *chip = rtwdev->chip;
758
759         if (rtwdev->need_rfk) {
760                 rtwdev->need_rfk = false;
761                 chip->ops->phy_calibration(rtwdev);
762         }
763 }
764
765 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
766 {
767         int i;
768
769         for (i = 0; i < ETH_ALEN; i++)
770                 rtw_write8(rtwdev, start + i, addr[i]);
771 }
772
773 void rtw_vif_port_config(struct rtw_dev *rtwdev,
774                          struct rtw_vif *rtwvif,
775                          u32 config)
776 {
777         u32 addr, mask;
778
779         if (config & PORT_SET_MAC_ADDR) {
780                 addr = rtwvif->conf->mac_addr.addr;
781                 rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
782         }
783         if (config & PORT_SET_BSSID) {
784                 addr = rtwvif->conf->bssid.addr;
785                 rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
786         }
787         if (config & PORT_SET_NET_TYPE) {
788                 addr = rtwvif->conf->net_type.addr;
789                 mask = rtwvif->conf->net_type.mask;
790                 rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
791         }
792         if (config & PORT_SET_AID) {
793                 addr = rtwvif->conf->aid.addr;
794                 mask = rtwvif->conf->aid.mask;
795                 rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
796         }
797         if (config & PORT_SET_BCN_CTRL) {
798                 addr = rtwvif->conf->bcn_ctrl.addr;
799                 mask = rtwvif->conf->bcn_ctrl.mask;
800                 rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
801         }
802 }
803
804 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
805 {
806         u8 bw = 0;
807
808         switch (bw_cap) {
809         case EFUSE_HW_CAP_IGNORE:
810         case EFUSE_HW_CAP_SUPP_BW80:
811                 bw |= BIT(RTW_CHANNEL_WIDTH_80);
812                 fallthrough;
813         case EFUSE_HW_CAP_SUPP_BW40:
814                 bw |= BIT(RTW_CHANNEL_WIDTH_40);
815                 fallthrough;
816         default:
817                 bw |= BIT(RTW_CHANNEL_WIDTH_20);
818                 break;
819         }
820
821         return bw;
822 }
823
824 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
825 {
826         struct rtw_hal *hal = &rtwdev->hal;
827         struct rtw_chip_info *chip = rtwdev->chip;
828
829         if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
830             hw_ant_num >= hal->rf_path_num)
831                 return;
832
833         switch (hw_ant_num) {
834         case 1:
835                 hal->rf_type = RF_1T1R;
836                 hal->rf_path_num = 1;
837                 if (!chip->fix_rf_phy_num)
838                         hal->rf_phy_num = hal->rf_path_num;
839                 hal->antenna_tx = BB_PATH_A;
840                 hal->antenna_rx = BB_PATH_A;
841                 break;
842         default:
843                 WARN(1, "invalid hw configuration from efuse\n");
844                 break;
845         }
846 }
847
848 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
849 {
850         u64 ra_mask = 0;
851         u16 mcs_map = le16_to_cpu(sta->vht_cap.vht_mcs.rx_mcs_map);
852         u8 vht_mcs_cap;
853         int i, nss;
854
855         /* 4SS, every two bits for MCS7/8/9 */
856         for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
857                 vht_mcs_cap = mcs_map & 0x3;
858                 switch (vht_mcs_cap) {
859                 case 2: /* MCS9 */
860                         ra_mask |= 0x3ffULL << nss;
861                         break;
862                 case 1: /* MCS8 */
863                         ra_mask |= 0x1ffULL << nss;
864                         break;
865                 case 0: /* MCS7 */
866                         ra_mask |= 0x0ffULL << nss;
867                         break;
868                 default:
869                         break;
870                 }
871         }
872
873         return ra_mask;
874 }
875
876 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
877 {
878         u8 rate_id = 0;
879
880         switch (wireless_set) {
881         case WIRELESS_CCK:
882                 rate_id = RTW_RATEID_B_20M;
883                 break;
884         case WIRELESS_OFDM:
885                 rate_id = RTW_RATEID_G;
886                 break;
887         case WIRELESS_CCK | WIRELESS_OFDM:
888                 rate_id = RTW_RATEID_BG;
889                 break;
890         case WIRELESS_OFDM | WIRELESS_HT:
891                 if (tx_num == 1)
892                         rate_id = RTW_RATEID_GN_N1SS;
893                 else if (tx_num == 2)
894                         rate_id = RTW_RATEID_GN_N2SS;
895                 else if (tx_num == 3)
896                         rate_id = RTW_RATEID_ARFR5_N_3SS;
897                 break;
898         case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
899                 if (bw_mode == RTW_CHANNEL_WIDTH_40) {
900                         if (tx_num == 1)
901                                 rate_id = RTW_RATEID_BGN_40M_1SS;
902                         else if (tx_num == 2)
903                                 rate_id = RTW_RATEID_BGN_40M_2SS;
904                         else if (tx_num == 3)
905                                 rate_id = RTW_RATEID_ARFR5_N_3SS;
906                         else if (tx_num == 4)
907                                 rate_id = RTW_RATEID_ARFR7_N_4SS;
908                 } else {
909                         if (tx_num == 1)
910                                 rate_id = RTW_RATEID_BGN_20M_1SS;
911                         else if (tx_num == 2)
912                                 rate_id = RTW_RATEID_BGN_20M_2SS;
913                         else if (tx_num == 3)
914                                 rate_id = RTW_RATEID_ARFR5_N_3SS;
915                         else if (tx_num == 4)
916                                 rate_id = RTW_RATEID_ARFR7_N_4SS;
917                 }
918                 break;
919         case WIRELESS_OFDM | WIRELESS_VHT:
920                 if (tx_num == 1)
921                         rate_id = RTW_RATEID_ARFR1_AC_1SS;
922                 else if (tx_num == 2)
923                         rate_id = RTW_RATEID_ARFR0_AC_2SS;
924                 else if (tx_num == 3)
925                         rate_id = RTW_RATEID_ARFR4_AC_3SS;
926                 else if (tx_num == 4)
927                         rate_id = RTW_RATEID_ARFR6_AC_4SS;
928                 break;
929         case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
930                 if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
931                         if (tx_num == 1)
932                                 rate_id = RTW_RATEID_ARFR1_AC_1SS;
933                         else if (tx_num == 2)
934                                 rate_id = RTW_RATEID_ARFR0_AC_2SS;
935                         else if (tx_num == 3)
936                                 rate_id = RTW_RATEID_ARFR4_AC_3SS;
937                         else if (tx_num == 4)
938                                 rate_id = RTW_RATEID_ARFR6_AC_4SS;
939                 } else {
940                         if (tx_num == 1)
941                                 rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
942                         else if (tx_num == 2)
943                                 rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
944                         else if (tx_num == 3)
945                                 rate_id = RTW_RATEID_ARFR4_AC_3SS;
946                         else if (tx_num == 4)
947                                 rate_id = RTW_RATEID_ARFR6_AC_4SS;
948                 }
949                 break;
950         default:
951                 break;
952         }
953
954         return rate_id;
955 }
956
957 #define RA_MASK_CCK_RATES       0x0000f
958 #define RA_MASK_OFDM_RATES      0x00ff0
959 #define RA_MASK_HT_RATES_1SS    (0xff000ULL << 0)
960 #define RA_MASK_HT_RATES_2SS    (0xff000ULL << 8)
961 #define RA_MASK_HT_RATES_3SS    (0xff000ULL << 16)
962 #define RA_MASK_HT_RATES        (RA_MASK_HT_RATES_1SS | \
963                                  RA_MASK_HT_RATES_2SS | \
964                                  RA_MASK_HT_RATES_3SS)
965 #define RA_MASK_VHT_RATES_1SS   (0x3ff000ULL << 0)
966 #define RA_MASK_VHT_RATES_2SS   (0x3ff000ULL << 10)
967 #define RA_MASK_VHT_RATES_3SS   (0x3ff000ULL << 20)
968 #define RA_MASK_VHT_RATES       (RA_MASK_VHT_RATES_1SS | \
969                                  RA_MASK_VHT_RATES_2SS | \
970                                  RA_MASK_VHT_RATES_3SS)
971 #define RA_MASK_CCK_IN_HT       0x00005
972 #define RA_MASK_CCK_IN_VHT      0x00005
973 #define RA_MASK_OFDM_IN_VHT     0x00010
974 #define RA_MASK_OFDM_IN_HT_2G   0x00010
975 #define RA_MASK_OFDM_IN_HT_5G   0x00030
976
977 static u64 rtw_update_rate_mask(struct rtw_dev *rtwdev,
978                                 struct rtw_sta_info *si,
979                                 u64 ra_mask, bool is_vht_enable,
980                                 u8 wireless_set)
981 {
982         struct rtw_hal *hal = &rtwdev->hal;
983         const struct cfg80211_bitrate_mask *mask = si->mask;
984         u64 cfg_mask = GENMASK_ULL(63, 0);
985         u8 rssi_level, band;
986
987         if (wireless_set != WIRELESS_CCK) {
988                 rssi_level = si->rssi_level;
989                 if (rssi_level == 0)
990                         ra_mask &= 0xffffffffffffffffULL;
991                 else if (rssi_level == 1)
992                         ra_mask &= 0xfffffffffffffff0ULL;
993                 else if (rssi_level == 2)
994                         ra_mask &= 0xffffffffffffefe0ULL;
995                 else if (rssi_level == 3)
996                         ra_mask &= 0xffffffffffffcfc0ULL;
997                 else if (rssi_level == 4)
998                         ra_mask &= 0xffffffffffff8f80ULL;
999                 else if (rssi_level >= 5)
1000                         ra_mask &= 0xffffffffffff0f00ULL;
1001         }
1002
1003         if (!si->use_cfg_mask)
1004                 return ra_mask;
1005
1006         band = hal->current_band_type;
1007         if (band == RTW_BAND_2G) {
1008                 band = NL80211_BAND_2GHZ;
1009                 cfg_mask = mask->control[band].legacy;
1010         } else if (band == RTW_BAND_5G) {
1011                 band = NL80211_BAND_5GHZ;
1012                 cfg_mask = u64_encode_bits(mask->control[band].legacy,
1013                                            RA_MASK_OFDM_RATES);
1014         }
1015
1016         if (!is_vht_enable) {
1017                 if (ra_mask & RA_MASK_HT_RATES_1SS)
1018                         cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
1019                                                     RA_MASK_HT_RATES_1SS);
1020                 if (ra_mask & RA_MASK_HT_RATES_2SS)
1021                         cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
1022                                                     RA_MASK_HT_RATES_2SS);
1023         } else {
1024                 if (ra_mask & RA_MASK_VHT_RATES_1SS)
1025                         cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
1026                                                     RA_MASK_VHT_RATES_1SS);
1027                 if (ra_mask & RA_MASK_VHT_RATES_2SS)
1028                         cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
1029                                                     RA_MASK_VHT_RATES_2SS);
1030         }
1031
1032         ra_mask &= cfg_mask;
1033
1034         return ra_mask;
1035 }
1036
1037 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si)
1038 {
1039         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1040         struct ieee80211_sta *sta = si->sta;
1041         struct rtw_efuse *efuse = &rtwdev->efuse;
1042         struct rtw_hal *hal = &rtwdev->hal;
1043         u8 wireless_set;
1044         u8 bw_mode;
1045         u8 rate_id;
1046         u8 rf_type = RF_1T1R;
1047         u8 stbc_en = 0;
1048         u8 ldpc_en = 0;
1049         u8 tx_num = 1;
1050         u64 ra_mask = 0;
1051         bool is_vht_enable = false;
1052         bool is_support_sgi = false;
1053
1054         if (sta->vht_cap.vht_supported) {
1055                 is_vht_enable = true;
1056                 ra_mask |= get_vht_ra_mask(sta);
1057                 if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
1058                         stbc_en = VHT_STBC_EN;
1059                 if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
1060                         ldpc_en = VHT_LDPC_EN;
1061         } else if (sta->ht_cap.ht_supported) {
1062                 ra_mask |= (sta->ht_cap.mcs.rx_mask[1] << 20) |
1063                            (sta->ht_cap.mcs.rx_mask[0] << 12);
1064                 if (sta->ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
1065                         stbc_en = HT_STBC_EN;
1066                 if (sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
1067                         ldpc_en = HT_LDPC_EN;
1068         }
1069
1070         if (efuse->hw_cap.nss == 1)
1071                 ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1072
1073         if (hal->current_band_type == RTW_BAND_5G) {
1074                 ra_mask |= (u64)sta->supp_rates[NL80211_BAND_5GHZ] << 4;
1075                 if (sta->vht_cap.vht_supported) {
1076                         ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
1077                         wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
1078                 } else if (sta->ht_cap.ht_supported) {
1079                         ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
1080                         wireless_set = WIRELESS_OFDM | WIRELESS_HT;
1081                 } else {
1082                         wireless_set = WIRELESS_OFDM;
1083                 }
1084                 dm_info->rrsr_val_init = RRSR_INIT_5G;
1085         } else if (hal->current_band_type == RTW_BAND_2G) {
1086                 ra_mask |= sta->supp_rates[NL80211_BAND_2GHZ];
1087                 if (sta->vht_cap.vht_supported) {
1088                         ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
1089                                    RA_MASK_OFDM_IN_VHT;
1090                         wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1091                                        WIRELESS_HT | WIRELESS_VHT;
1092                 } else if (sta->ht_cap.ht_supported) {
1093                         ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
1094                                    RA_MASK_OFDM_IN_HT_2G;
1095                         wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1096                                        WIRELESS_HT;
1097                 } else if (sta->supp_rates[0] <= 0xf) {
1098                         wireless_set = WIRELESS_CCK;
1099                 } else {
1100                         wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
1101                 }
1102                 dm_info->rrsr_val_init = RRSR_INIT_2G;
1103         } else {
1104                 rtw_err(rtwdev, "Unknown band type\n");
1105                 wireless_set = 0;
1106         }
1107
1108         switch (sta->bandwidth) {
1109         case IEEE80211_STA_RX_BW_80:
1110                 bw_mode = RTW_CHANNEL_WIDTH_80;
1111                 is_support_sgi = sta->vht_cap.vht_supported &&
1112                                  (sta->vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
1113                 break;
1114         case IEEE80211_STA_RX_BW_40:
1115                 bw_mode = RTW_CHANNEL_WIDTH_40;
1116                 is_support_sgi = sta->ht_cap.ht_supported &&
1117                                  (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1118                 break;
1119         default:
1120                 bw_mode = RTW_CHANNEL_WIDTH_20;
1121                 is_support_sgi = sta->ht_cap.ht_supported &&
1122                                  (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1123                 break;
1124         }
1125
1126         if (sta->vht_cap.vht_supported && ra_mask & 0xffc00000) {
1127                 tx_num = 2;
1128                 rf_type = RF_2T2R;
1129         } else if (sta->ht_cap.ht_supported && ra_mask & 0xfff00000) {
1130                 tx_num = 2;
1131                 rf_type = RF_2T2R;
1132         }
1133
1134         rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
1135
1136         ra_mask = rtw_update_rate_mask(rtwdev, si, ra_mask, is_vht_enable,
1137                                        wireless_set);
1138
1139         si->bw_mode = bw_mode;
1140         si->stbc_en = stbc_en;
1141         si->ldpc_en = ldpc_en;
1142         si->rf_type = rf_type;
1143         si->wireless_set = wireless_set;
1144         si->sgi_enable = is_support_sgi;
1145         si->vht_enable = is_vht_enable;
1146         si->ra_mask = ra_mask;
1147         si->rate_id = rate_id;
1148
1149         rtw_fw_send_ra_info(rtwdev, si);
1150 }
1151
1152 static int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
1153 {
1154         struct rtw_chip_info *chip = rtwdev->chip;
1155         struct rtw_fw_state *fw;
1156
1157         fw = &rtwdev->fw;
1158         wait_for_completion(&fw->completion);
1159         if (!fw->firmware)
1160                 return -EINVAL;
1161
1162         if (chip->wow_fw_name) {
1163                 fw = &rtwdev->wow_fw;
1164                 wait_for_completion(&fw->completion);
1165                 if (!fw->firmware)
1166                         return -EINVAL;
1167         }
1168
1169         return 0;
1170 }
1171
1172 static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
1173                                                        struct rtw_fw_state *fw)
1174 {
1175         struct rtw_chip_info *chip = rtwdev->chip;
1176
1177         if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
1178             !fw->feature)
1179                 return LPS_DEEP_MODE_NONE;
1180
1181         if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
1182             rtw_fw_feature_check(fw, FW_FEATURE_PG))
1183                 return LPS_DEEP_MODE_PG;
1184
1185         if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
1186             rtw_fw_feature_check(fw, FW_FEATURE_LCLK))
1187                 return LPS_DEEP_MODE_LCLK;
1188
1189         return LPS_DEEP_MODE_NONE;
1190 }
1191
1192 static int rtw_power_on(struct rtw_dev *rtwdev)
1193 {
1194         struct rtw_chip_info *chip = rtwdev->chip;
1195         struct rtw_fw_state *fw = &rtwdev->fw;
1196         bool wifi_only;
1197         int ret;
1198
1199         ret = rtw_hci_setup(rtwdev);
1200         if (ret) {
1201                 rtw_err(rtwdev, "failed to setup hci\n");
1202                 goto err;
1203         }
1204
1205         /* power on MAC before firmware downloaded */
1206         ret = rtw_mac_power_on(rtwdev);
1207         if (ret) {
1208                 rtw_err(rtwdev, "failed to power on mac\n");
1209                 goto err;
1210         }
1211
1212         ret = rtw_wait_firmware_completion(rtwdev);
1213         if (ret) {
1214                 rtw_err(rtwdev, "failed to wait firmware completion\n");
1215                 goto err_off;
1216         }
1217
1218         ret = rtw_download_firmware(rtwdev, fw);
1219         if (ret) {
1220                 rtw_err(rtwdev, "failed to download firmware\n");
1221                 goto err_off;
1222         }
1223
1224         /* config mac after firmware downloaded */
1225         ret = rtw_mac_init(rtwdev);
1226         if (ret) {
1227                 rtw_err(rtwdev, "failed to configure mac\n");
1228                 goto err_off;
1229         }
1230
1231         chip->ops->phy_set_param(rtwdev);
1232
1233         ret = rtw_hci_start(rtwdev);
1234         if (ret) {
1235                 rtw_err(rtwdev, "failed to start hci\n");
1236                 goto err_off;
1237         }
1238
1239         /* send H2C after HCI has started */
1240         rtw_fw_send_general_info(rtwdev);
1241         rtw_fw_send_phydm_info(rtwdev);
1242
1243         wifi_only = !rtwdev->efuse.btcoex;
1244         rtw_coex_power_on_setting(rtwdev);
1245         rtw_coex_init_hw_config(rtwdev, wifi_only);
1246
1247         return 0;
1248
1249 err_off:
1250         rtw_mac_power_off(rtwdev);
1251
1252 err:
1253         return ret;
1254 }
1255
1256 void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start)
1257 {
1258         if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN))
1259                 return;
1260
1261         if (start) {
1262                 rtw_fw_scan_notify(rtwdev, true);
1263         } else {
1264                 reinit_completion(&rtwdev->fw_scan_density);
1265                 rtw_fw_scan_notify(rtwdev, false);
1266                 if (!wait_for_completion_timeout(&rtwdev->fw_scan_density,
1267                                                  SCAN_NOTIFY_TIMEOUT))
1268                         rtw_warn(rtwdev, "firmware failed to report density after scan\n");
1269         }
1270 }
1271
1272 int rtw_core_start(struct rtw_dev *rtwdev)
1273 {
1274         int ret;
1275
1276         ret = rtw_power_on(rtwdev);
1277         if (ret)
1278                 return ret;
1279
1280         rtw_sec_enable_sec_engine(rtwdev);
1281
1282         rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw);
1283         rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw);
1284
1285         /* rcr reset after powered on */
1286         rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
1287
1288         ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
1289                                      RTW_WATCH_DOG_DELAY_TIME);
1290
1291         set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1292
1293         return 0;
1294 }
1295
1296 static void rtw_power_off(struct rtw_dev *rtwdev)
1297 {
1298         rtw_hci_stop(rtwdev);
1299         rtw_coex_power_off_setting(rtwdev);
1300         rtw_mac_power_off(rtwdev);
1301 }
1302
1303 void rtw_core_stop(struct rtw_dev *rtwdev)
1304 {
1305         struct rtw_coex *coex = &rtwdev->coex;
1306
1307         clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1308         clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
1309
1310         mutex_unlock(&rtwdev->mutex);
1311
1312         cancel_work_sync(&rtwdev->c2h_work);
1313         cancel_delayed_work_sync(&rtwdev->watch_dog_work);
1314         cancel_delayed_work_sync(&coex->bt_relink_work);
1315         cancel_delayed_work_sync(&coex->bt_reenable_work);
1316         cancel_delayed_work_sync(&coex->defreeze_work);
1317         cancel_delayed_work_sync(&coex->wl_remain_work);
1318         cancel_delayed_work_sync(&coex->bt_remain_work);
1319         cancel_delayed_work_sync(&coex->wl_connecting_work);
1320         cancel_delayed_work_sync(&coex->bt_multi_link_remain_work);
1321         cancel_delayed_work_sync(&coex->wl_ccklock_work);
1322
1323         mutex_lock(&rtwdev->mutex);
1324
1325         rtw_power_off(rtwdev);
1326 }
1327
1328 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
1329                             struct ieee80211_sta_ht_cap *ht_cap)
1330 {
1331         struct rtw_efuse *efuse = &rtwdev->efuse;
1332
1333         ht_cap->ht_supported = true;
1334         ht_cap->cap = 0;
1335         ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
1336                         IEEE80211_HT_CAP_MAX_AMSDU |
1337                         (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
1338
1339         if (rtw_chip_has_rx_ldpc(rtwdev))
1340                 ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
1341
1342         if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
1343                 ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
1344                                 IEEE80211_HT_CAP_DSSSCCK40 |
1345                                 IEEE80211_HT_CAP_SGI_40;
1346         ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1347         ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_16;
1348         ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1349         if (efuse->hw_cap.nss > 1) {
1350                 ht_cap->mcs.rx_mask[0] = 0xFF;
1351                 ht_cap->mcs.rx_mask[1] = 0xFF;
1352                 ht_cap->mcs.rx_mask[4] = 0x01;
1353                 ht_cap->mcs.rx_highest = cpu_to_le16(300);
1354         } else {
1355                 ht_cap->mcs.rx_mask[0] = 0xFF;
1356                 ht_cap->mcs.rx_mask[1] = 0x00;
1357                 ht_cap->mcs.rx_mask[4] = 0x01;
1358                 ht_cap->mcs.rx_highest = cpu_to_le16(150);
1359         }
1360 }
1361
1362 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
1363                              struct ieee80211_sta_vht_cap *vht_cap)
1364 {
1365         struct rtw_efuse *efuse = &rtwdev->efuse;
1366         u16 mcs_map;
1367         __le16 highest;
1368
1369         if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
1370             efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
1371                 return;
1372
1373         vht_cap->vht_supported = true;
1374         vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
1375                        IEEE80211_VHT_CAP_SHORT_GI_80 |
1376                        IEEE80211_VHT_CAP_RXSTBC_1 |
1377                        IEEE80211_VHT_CAP_HTC_VHT |
1378                        IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
1379                        0;
1380         if (rtwdev->hal.rf_path_num > 1)
1381                 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
1382         vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
1383                         IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
1384         vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
1385                         IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
1386
1387         if (rtw_chip_has_rx_ldpc(rtwdev))
1388                 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
1389
1390         mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
1391                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
1392                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
1393                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
1394                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
1395                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
1396                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
1397         if (efuse->hw_cap.nss > 1) {
1398                 highest = cpu_to_le16(780);
1399                 mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
1400         } else {
1401                 highest = cpu_to_le16(390);
1402                 mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
1403         }
1404
1405         vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
1406         vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
1407         vht_cap->vht_mcs.rx_highest = highest;
1408         vht_cap->vht_mcs.tx_highest = highest;
1409 }
1410
1411 static void rtw_set_supported_band(struct ieee80211_hw *hw,
1412                                    struct rtw_chip_info *chip)
1413 {
1414         struct rtw_dev *rtwdev = hw->priv;
1415         struct ieee80211_supported_band *sband;
1416
1417         if (chip->band & RTW_BAND_2G) {
1418                 sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
1419                 if (!sband)
1420                         goto err_out;
1421                 if (chip->ht_supported)
1422                         rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1423                 hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
1424         }
1425
1426         if (chip->band & RTW_BAND_5G) {
1427                 sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
1428                 if (!sband)
1429                         goto err_out;
1430                 if (chip->ht_supported)
1431                         rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1432                 if (chip->vht_supported)
1433                         rtw_init_vht_cap(rtwdev, &sband->vht_cap);
1434                 hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1435         }
1436
1437         return;
1438
1439 err_out:
1440         rtw_err(rtwdev, "failed to set supported band\n");
1441 }
1442
1443 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1444                                      struct rtw_chip_info *chip)
1445 {
1446         kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
1447         kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
1448 }
1449
1450 static void __update_firmware_feature(struct rtw_dev *rtwdev,
1451                                       struct rtw_fw_state *fw)
1452 {
1453         u32 feature;
1454         const struct rtw_fw_hdr *fw_hdr =
1455                                 (const struct rtw_fw_hdr *)fw->firmware->data;
1456
1457         feature = le32_to_cpu(fw_hdr->feature);
1458         fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
1459 }
1460
1461 static void __update_firmware_info(struct rtw_dev *rtwdev,
1462                                    struct rtw_fw_state *fw)
1463 {
1464         const struct rtw_fw_hdr *fw_hdr =
1465                                 (const struct rtw_fw_hdr *)fw->firmware->data;
1466
1467         fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1468         fw->version = le16_to_cpu(fw_hdr->version);
1469         fw->sub_version = fw_hdr->subversion;
1470         fw->sub_index = fw_hdr->subindex;
1471
1472         __update_firmware_feature(rtwdev, fw);
1473 }
1474
1475 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
1476                                           struct rtw_fw_state *fw)
1477 {
1478         struct rtw_fw_hdr_legacy *legacy =
1479                                 (struct rtw_fw_hdr_legacy *)fw->firmware->data;
1480
1481         fw->h2c_version = 0;
1482         fw->version = le16_to_cpu(legacy->version);
1483         fw->sub_version = legacy->subversion1;
1484         fw->sub_index = legacy->subversion2;
1485 }
1486
1487 static void update_firmware_info(struct rtw_dev *rtwdev,
1488                                  struct rtw_fw_state *fw)
1489 {
1490         if (rtw_chip_wcpu_11n(rtwdev))
1491                 __update_firmware_info_legacy(rtwdev, fw);
1492         else
1493                 __update_firmware_info(rtwdev, fw);
1494 }
1495
1496 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1497 {
1498         struct rtw_fw_state *fw = context;
1499         struct rtw_dev *rtwdev = fw->rtwdev;
1500
1501         if (!firmware || !firmware->data) {
1502                 rtw_err(rtwdev, "failed to request firmware\n");
1503                 complete_all(&fw->completion);
1504                 return;
1505         }
1506
1507         fw->firmware = firmware;
1508         update_firmware_info(rtwdev, fw);
1509         complete_all(&fw->completion);
1510
1511         rtw_info(rtwdev, "Firmware version %u.%u.%u, H2C version %u\n",
1512                  fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1513 }
1514
1515 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
1516 {
1517         const char *fw_name;
1518         struct rtw_fw_state *fw;
1519         int ret;
1520
1521         switch (type) {
1522         case RTW_WOWLAN_FW:
1523                 fw = &rtwdev->wow_fw;
1524                 fw_name = rtwdev->chip->wow_fw_name;
1525                 break;
1526
1527         case RTW_NORMAL_FW:
1528                 fw = &rtwdev->fw;
1529                 fw_name = rtwdev->chip->fw_name;
1530                 break;
1531
1532         default:
1533                 rtw_warn(rtwdev, "unsupported firmware type\n");
1534                 return -ENOENT;
1535         }
1536
1537         fw->rtwdev = rtwdev;
1538         init_completion(&fw->completion);
1539
1540         ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
1541                                       GFP_KERNEL, fw, rtw_load_firmware_cb);
1542         if (ret) {
1543                 rtw_err(rtwdev, "failed to async firmware request\n");
1544                 return ret;
1545         }
1546
1547         return 0;
1548 }
1549
1550 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1551 {
1552         struct rtw_chip_info *chip = rtwdev->chip;
1553         struct rtw_hal *hal = &rtwdev->hal;
1554         struct rtw_efuse *efuse = &rtwdev->efuse;
1555
1556         switch (rtw_hci_type(rtwdev)) {
1557         case RTW_HCI_TYPE_PCIE:
1558                 rtwdev->hci.rpwm_addr = 0x03d9;
1559                 rtwdev->hci.cpwm_addr = 0x03da;
1560                 break;
1561         default:
1562                 rtw_err(rtwdev, "unsupported hci type\n");
1563                 return -EINVAL;
1564         }
1565
1566         hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1567         hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1568         hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1569         if (hal->chip_version & BIT_RF_TYPE_ID) {
1570                 hal->rf_type = RF_2T2R;
1571                 hal->rf_path_num = 2;
1572                 hal->antenna_tx = BB_PATH_AB;
1573                 hal->antenna_rx = BB_PATH_AB;
1574         } else {
1575                 hal->rf_type = RF_1T1R;
1576                 hal->rf_path_num = 1;
1577                 hal->antenna_tx = BB_PATH_A;
1578                 hal->antenna_rx = BB_PATH_A;
1579         }
1580         hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
1581                           hal->rf_path_num;
1582
1583         efuse->physical_size = chip->phy_efuse_size;
1584         efuse->logical_size = chip->log_efuse_size;
1585         efuse->protect_size = chip->ptct_efuse_size;
1586
1587         /* default use ack */
1588         rtwdev->hal.rcr |= BIT_VHT_DACK;
1589
1590         hal->bfee_sts_cap = 3;
1591
1592         return 0;
1593 }
1594
1595 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1596 {
1597         struct rtw_fw_state *fw = &rtwdev->fw;
1598         int ret;
1599
1600         ret = rtw_hci_setup(rtwdev);
1601         if (ret) {
1602                 rtw_err(rtwdev, "failed to setup hci\n");
1603                 goto err;
1604         }
1605
1606         ret = rtw_mac_power_on(rtwdev);
1607         if (ret) {
1608                 rtw_err(rtwdev, "failed to power on mac\n");
1609                 goto err;
1610         }
1611
1612         rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
1613
1614         wait_for_completion(&fw->completion);
1615         if (!fw->firmware) {
1616                 ret = -EINVAL;
1617                 rtw_err(rtwdev, "failed to load firmware\n");
1618                 goto err;
1619         }
1620
1621         ret = rtw_download_firmware(rtwdev, fw);
1622         if (ret) {
1623                 rtw_err(rtwdev, "failed to download firmware\n");
1624                 goto err_off;
1625         }
1626
1627         return 0;
1628
1629 err_off:
1630         rtw_mac_power_off(rtwdev);
1631
1632 err:
1633         return ret;
1634 }
1635
1636 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
1637 {
1638         struct rtw_efuse *efuse = &rtwdev->efuse;
1639         u8 hw_feature[HW_FEATURE_LEN];
1640         u8 id;
1641         u8 bw;
1642         int i;
1643
1644         id = rtw_read8(rtwdev, REG_C2HEVT);
1645         if (id != C2H_HW_FEATURE_REPORT) {
1646                 rtw_err(rtwdev, "failed to read hw feature report\n");
1647                 return -EBUSY;
1648         }
1649
1650         for (i = 0; i < HW_FEATURE_LEN; i++)
1651                 hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1652
1653         rtw_write8(rtwdev, REG_C2HEVT, 0);
1654
1655         bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1656         efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1657         efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1658         efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1659         efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1660         efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1661
1662         rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
1663
1664         if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
1665             efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
1666                 efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1667
1668         rtw_dbg(rtwdev, RTW_DBG_EFUSE,
1669                 "hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1670                 efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1671                 efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1672
1673         return 0;
1674 }
1675
1676 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1677 {
1678         rtw_hci_stop(rtwdev);
1679         rtw_mac_power_off(rtwdev);
1680 }
1681
1682 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
1683 {
1684         struct rtw_efuse *efuse = &rtwdev->efuse;
1685         int ret;
1686
1687         mutex_lock(&rtwdev->mutex);
1688
1689         /* power on mac to read efuse */
1690         ret = rtw_chip_efuse_enable(rtwdev);
1691         if (ret)
1692                 goto out_unlock;
1693
1694         ret = rtw_parse_efuse_map(rtwdev);
1695         if (ret)
1696                 goto out_disable;
1697
1698         ret = rtw_dump_hw_feature(rtwdev);
1699         if (ret)
1700                 goto out_disable;
1701
1702         ret = rtw_check_supported_rfe(rtwdev);
1703         if (ret)
1704                 goto out_disable;
1705
1706         if (efuse->crystal_cap == 0xff)
1707                 efuse->crystal_cap = 0;
1708         if (efuse->pa_type_2g == 0xff)
1709                 efuse->pa_type_2g = 0;
1710         if (efuse->pa_type_5g == 0xff)
1711                 efuse->pa_type_5g = 0;
1712         if (efuse->lna_type_2g == 0xff)
1713                 efuse->lna_type_2g = 0;
1714         if (efuse->lna_type_5g == 0xff)
1715                 efuse->lna_type_5g = 0;
1716         if (efuse->channel_plan == 0xff)
1717                 efuse->channel_plan = 0x7f;
1718         if (efuse->rf_board_option == 0xff)
1719                 efuse->rf_board_option = 0;
1720         if (efuse->bt_setting & BIT(0))
1721                 efuse->share_ant = true;
1722         if (efuse->regd == 0xff)
1723                 efuse->regd = 0;
1724         if (efuse->tx_bb_swing_setting_2g == 0xff)
1725                 efuse->tx_bb_swing_setting_2g = 0;
1726         if (efuse->tx_bb_swing_setting_5g == 0xff)
1727                 efuse->tx_bb_swing_setting_5g = 0;
1728
1729         efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
1730         efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
1731         efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
1732         efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
1733         efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
1734
1735 out_disable:
1736         rtw_chip_efuse_disable(rtwdev);
1737
1738 out_unlock:
1739         mutex_unlock(&rtwdev->mutex);
1740         return ret;
1741 }
1742
1743 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
1744 {
1745         struct rtw_hal *hal = &rtwdev->hal;
1746         const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
1747
1748         if (!rfe_def)
1749                 return -ENODEV;
1750
1751         rtw_phy_setup_phy_cond(rtwdev, 0);
1752
1753         rtw_phy_init_tx_power(rtwdev);
1754         if (rfe_def->agc_btg_tbl)
1755                 rtw_load_table(rtwdev, rfe_def->agc_btg_tbl);
1756         rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
1757         rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
1758         rtw_phy_tx_power_by_rate_config(hal);
1759         rtw_phy_tx_power_limit_config(hal);
1760
1761         return 0;
1762 }
1763
1764 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
1765 {
1766         int ret;
1767
1768         ret = rtw_chip_parameter_setup(rtwdev);
1769         if (ret) {
1770                 rtw_err(rtwdev, "failed to setup chip parameters\n");
1771                 goto err_out;
1772         }
1773
1774         ret = rtw_chip_efuse_info_setup(rtwdev);
1775         if (ret) {
1776                 rtw_err(rtwdev, "failed to setup chip efuse info\n");
1777                 goto err_out;
1778         }
1779
1780         ret = rtw_chip_board_info_setup(rtwdev);
1781         if (ret) {
1782                 rtw_err(rtwdev, "failed to setup chip board info\n");
1783                 goto err_out;
1784         }
1785
1786         return 0;
1787
1788 err_out:
1789         return ret;
1790 }
1791 EXPORT_SYMBOL(rtw_chip_info_setup);
1792
1793 static void rtw_stats_init(struct rtw_dev *rtwdev)
1794 {
1795         struct rtw_traffic_stats *stats = &rtwdev->stats;
1796         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1797         int i;
1798
1799         ewma_tp_init(&stats->tx_ewma_tp);
1800         ewma_tp_init(&stats->rx_ewma_tp);
1801
1802         for (i = 0; i < RTW_EVM_NUM; i++)
1803                 ewma_evm_init(&dm_info->ewma_evm[i]);
1804         for (i = 0; i < RTW_SNR_NUM; i++)
1805                 ewma_snr_init(&dm_info->ewma_snr[i]);
1806 }
1807
1808 int rtw_core_init(struct rtw_dev *rtwdev)
1809 {
1810         struct rtw_chip_info *chip = rtwdev->chip;
1811         struct rtw_coex *coex = &rtwdev->coex;
1812         int ret;
1813
1814         INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
1815         INIT_LIST_HEAD(&rtwdev->txqs);
1816
1817         timer_setup(&rtwdev->tx_report.purge_timer,
1818                     rtw_tx_report_purge_timer, 0);
1819         rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0);
1820
1821         INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
1822         INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
1823         INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
1824         INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
1825         INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
1826         INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
1827         INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work);
1828         INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work,
1829                           rtw_coex_bt_multi_link_remain_work);
1830         INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work);
1831         INIT_WORK(&rtwdev->tx_work, rtw_tx_work);
1832         INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
1833         INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
1834         INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
1835         skb_queue_head_init(&rtwdev->c2h_queue);
1836         skb_queue_head_init(&rtwdev->coex.queue);
1837         skb_queue_head_init(&rtwdev->tx_report.queue);
1838
1839         spin_lock_init(&rtwdev->rf_lock);
1840         spin_lock_init(&rtwdev->h2c.lock);
1841         spin_lock_init(&rtwdev->txq_lock);
1842         spin_lock_init(&rtwdev->tx_report.q_lock);
1843
1844         mutex_init(&rtwdev->mutex);
1845         mutex_init(&rtwdev->coex.mutex);
1846         mutex_init(&rtwdev->hal.tx_power_mutex);
1847
1848         init_waitqueue_head(&rtwdev->coex.wait);
1849         init_completion(&rtwdev->lps_leave_check);
1850         init_completion(&rtwdev->fw_scan_density);
1851
1852         rtwdev->sec.total_cam_num = 32;
1853         rtwdev->hal.current_channel = 1;
1854         set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
1855
1856         rtw_stats_init(rtwdev);
1857
1858         /* default rx filter setting */
1859         rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
1860                           BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
1861                           BIT_AB | BIT_AM | BIT_APM;
1862
1863         ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
1864         if (ret) {
1865                 rtw_warn(rtwdev, "no firmware loaded\n");
1866                 return ret;
1867         }
1868
1869         if (chip->wow_fw_name) {
1870                 ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
1871                 if (ret) {
1872                         rtw_warn(rtwdev, "no wow firmware loaded\n");
1873                         wait_for_completion(&rtwdev->fw.completion);
1874                         if (rtwdev->fw.firmware)
1875                                 release_firmware(rtwdev->fw.firmware);
1876                         return ret;
1877                 }
1878         }
1879
1880         return 0;
1881 }
1882 EXPORT_SYMBOL(rtw_core_init);
1883
1884 void rtw_core_deinit(struct rtw_dev *rtwdev)
1885 {
1886         struct rtw_fw_state *fw = &rtwdev->fw;
1887         struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
1888         struct rtw_rsvd_page *rsvd_pkt, *tmp;
1889         unsigned long flags;
1890
1891         rtw_wait_firmware_completion(rtwdev);
1892
1893         if (fw->firmware)
1894                 release_firmware(fw->firmware);
1895
1896         if (wow_fw->firmware)
1897                 release_firmware(wow_fw->firmware);
1898
1899         destroy_workqueue(rtwdev->tx_wq);
1900         spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
1901         skb_queue_purge(&rtwdev->tx_report.queue);
1902         skb_queue_purge(&rtwdev->coex.queue);
1903         spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
1904
1905         list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
1906                                  build_list) {
1907                 list_del(&rsvd_pkt->build_list);
1908                 kfree(rsvd_pkt);
1909         }
1910
1911         mutex_destroy(&rtwdev->mutex);
1912         mutex_destroy(&rtwdev->coex.mutex);
1913         mutex_destroy(&rtwdev->hal.tx_power_mutex);
1914 }
1915 EXPORT_SYMBOL(rtw_core_deinit);
1916
1917 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
1918 {
1919         struct rtw_hal *hal = &rtwdev->hal;
1920         int max_tx_headroom = 0;
1921         int ret;
1922
1923         /* TODO: USB & SDIO may need extra room? */
1924         max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
1925
1926         hw->extra_tx_headroom = max_tx_headroom;
1927         hw->queues = IEEE80211_NUM_ACS;
1928         hw->txq_data_size = sizeof(struct rtw_txq);
1929         hw->sta_data_size = sizeof(struct rtw_sta_info);
1930         hw->vif_data_size = sizeof(struct rtw_vif);
1931
1932         ieee80211_hw_set(hw, SIGNAL_DBM);
1933         ieee80211_hw_set(hw, RX_INCLUDES_FCS);
1934         ieee80211_hw_set(hw, AMPDU_AGGREGATION);
1935         ieee80211_hw_set(hw, MFP_CAPABLE);
1936         ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
1937         ieee80211_hw_set(hw, SUPPORTS_PS);
1938         ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
1939         ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
1940         ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
1941         ieee80211_hw_set(hw, HAS_RATE_CONTROL);
1942         ieee80211_hw_set(hw, TX_AMSDU);
1943
1944         hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
1945                                      BIT(NL80211_IFTYPE_AP) |
1946                                      BIT(NL80211_IFTYPE_ADHOC) |
1947                                      BIT(NL80211_IFTYPE_MESH_POINT);
1948         hw->wiphy->available_antennas_tx = hal->antenna_tx;
1949         hw->wiphy->available_antennas_rx = hal->antenna_rx;
1950
1951         hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
1952                             WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
1953
1954         hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
1955
1956         wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
1957
1958 #ifdef CONFIG_PM
1959         hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
1960         hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
1961 #endif
1962         rtw_set_supported_band(hw, rtwdev->chip);
1963         SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
1964
1965         rtw_regd_init(rtwdev, rtw_regd_notifier);
1966
1967         ret = ieee80211_register_hw(hw);
1968         if (ret) {
1969                 rtw_err(rtwdev, "failed to register hw\n");
1970                 return ret;
1971         }
1972
1973         if (regulatory_hint(hw->wiphy, rtwdev->regd.alpha2))
1974                 rtw_err(rtwdev, "regulatory_hint fail\n");
1975
1976         rtw_debugfs_init(rtwdev);
1977
1978         rtwdev->bf_info.bfer_mu_cnt = 0;
1979         rtwdev->bf_info.bfer_su_cnt = 0;
1980
1981         return 0;
1982 }
1983 EXPORT_SYMBOL(rtw_register_hw);
1984
1985 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
1986 {
1987         struct rtw_chip_info *chip = rtwdev->chip;
1988
1989         ieee80211_unregister_hw(hw);
1990         rtw_unset_supported_band(hw, chip);
1991 }
1992 EXPORT_SYMBOL(rtw_unregister_hw);
1993
1994 MODULE_AUTHOR("Realtek Corporation");
1995 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
1996 MODULE_LICENSE("Dual BSD/GPL");