mt76: keep a set of software tx queues per phy
[linux-2.6-microblaze.git] / drivers / net / wireless / mediatek / mt76 / dma.c
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
4  */
5
6 #include <linux/dma-mapping.h>
7 #include "mt76.h"
8 #include "dma.h"
9
10 static int
11 mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q,
12                      int idx, int n_desc, int bufsize,
13                      u32 ring_base)
14 {
15         int size;
16         int i;
17
18         spin_lock_init(&q->lock);
19
20         q->regs = dev->mmio.regs + ring_base + idx * MT_RING_SIZE;
21         q->ndesc = n_desc;
22         q->buf_size = bufsize;
23         q->hw_idx = idx;
24
25         size = q->ndesc * sizeof(struct mt76_desc);
26         q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL);
27         if (!q->desc)
28                 return -ENOMEM;
29
30         size = q->ndesc * sizeof(*q->entry);
31         q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL);
32         if (!q->entry)
33                 return -ENOMEM;
34
35         /* clear descriptors */
36         for (i = 0; i < q->ndesc; i++)
37                 q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
38
39         writel(q->desc_dma, &q->regs->desc_base);
40         writel(0, &q->regs->cpu_idx);
41         writel(0, &q->regs->dma_idx);
42         writel(q->ndesc, &q->regs->ring_size);
43
44         return 0;
45 }
46
47 static int
48 mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q,
49                  struct mt76_queue_buf *buf, int nbufs, u32 info,
50                  struct sk_buff *skb, void *txwi)
51 {
52         struct mt76_desc *desc;
53         u32 ctrl;
54         int i, idx = -1;
55
56         if (txwi) {
57                 q->entry[q->head].txwi = DMA_DUMMY_DATA;
58                 q->entry[q->head].skip_buf0 = true;
59         }
60
61         for (i = 0; i < nbufs; i += 2, buf += 2) {
62                 u32 buf0 = buf[0].addr, buf1 = 0;
63
64                 ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len);
65                 if (i < nbufs - 1) {
66                         buf1 = buf[1].addr;
67                         ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len);
68                 }
69
70                 if (i == nbufs - 1)
71                         ctrl |= MT_DMA_CTL_LAST_SEC0;
72                 else if (i == nbufs - 2)
73                         ctrl |= MT_DMA_CTL_LAST_SEC1;
74
75                 idx = q->head;
76                 q->head = (q->head + 1) % q->ndesc;
77
78                 desc = &q->desc[idx];
79
80                 WRITE_ONCE(desc->buf0, cpu_to_le32(buf0));
81                 WRITE_ONCE(desc->buf1, cpu_to_le32(buf1));
82                 WRITE_ONCE(desc->info, cpu_to_le32(info));
83                 WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl));
84
85                 q->queued++;
86         }
87
88         q->entry[idx].txwi = txwi;
89         q->entry[idx].skb = skb;
90
91         return idx;
92 }
93
94 static void
95 mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx,
96                         struct mt76_queue_entry *prev_e)
97 {
98         struct mt76_queue_entry *e = &q->entry[idx];
99         __le32 __ctrl = READ_ONCE(q->desc[idx].ctrl);
100         u32 ctrl = le32_to_cpu(__ctrl);
101
102         if (!e->skip_buf0) {
103                 __le32 addr = READ_ONCE(q->desc[idx].buf0);
104                 u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctrl);
105
106                 dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
107                                  DMA_TO_DEVICE);
108         }
109
110         if (!(ctrl & MT_DMA_CTL_LAST_SEC0)) {
111                 __le32 addr = READ_ONCE(q->desc[idx].buf1);
112                 u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN1, ctrl);
113
114                 dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
115                                  DMA_TO_DEVICE);
116         }
117
118         if (e->txwi == DMA_DUMMY_DATA)
119                 e->txwi = NULL;
120
121         if (e->skb == DMA_DUMMY_DATA)
122                 e->skb = NULL;
123
124         *prev_e = *e;
125         memset(e, 0, sizeof(*e));
126 }
127
128 static void
129 mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)
130 {
131         writel(q->desc_dma, &q->regs->desc_base);
132         writel(q->ndesc, &q->regs->ring_size);
133         q->head = readl(&q->regs->dma_idx);
134         q->tail = q->head;
135         writel(q->head, &q->regs->cpu_idx);
136 }
137
138 static void
139 mt76_dma_tx_cleanup(struct mt76_dev *dev, enum mt76_txq_id qid, bool flush)
140 {
141         struct mt76_sw_queue *sq = &dev->q_tx[qid];
142         struct mt76_queue *q = sq->q;
143         struct mt76_queue_entry entry;
144         unsigned int n_swq_queued[8] = {};
145         unsigned int n_queued = 0;
146         bool wake = false;
147         int i, last;
148
149         if (!q)
150                 return;
151
152         if (flush)
153                 last = -1;
154         else
155                 last = readl(&q->regs->dma_idx);
156
157         while ((q->queued > n_queued) && q->tail != last) {
158                 mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry);
159                 if (entry.schedule)
160                         n_swq_queued[entry.qid]++;
161
162                 q->tail = (q->tail + 1) % q->ndesc;
163                 n_queued++;
164
165                 if (entry.skb)
166                         dev->drv->tx_complete_skb(dev, qid, &entry);
167
168                 if (entry.txwi) {
169                         if (!(dev->drv->drv_flags & MT_DRV_TXWI_NO_FREE))
170                                 mt76_put_txwi(dev, entry.txwi);
171                         wake = !flush;
172                 }
173
174                 if (!flush && q->tail == last)
175                         last = readl(&q->regs->dma_idx);
176         }
177
178         spin_lock_bh(&q->lock);
179
180         q->queued -= n_queued;
181         for (i = 0; i < 4; i++) {
182                 if (!n_swq_queued[i])
183                         continue;
184
185                 dev->q_tx[i].swq_queued -= n_swq_queued[i];
186         }
187
188         /* ext PHY */
189         for (i = 0; i < 4; i++) {
190                 if (!n_swq_queued[i])
191                         continue;
192
193                 dev->q_tx[__MT_TXQ_MAX + i].swq_queued -= n_swq_queued[4 + i];
194         }
195
196         if (flush)
197                 mt76_dma_sync_idx(dev, q);
198
199         wake = wake && q->stopped &&
200                qid < IEEE80211_NUM_ACS && q->queued < q->ndesc - 8;
201         if (wake)
202                 q->stopped = false;
203
204         if (!q->queued)
205                 wake_up(&dev->tx_wait);
206
207         spin_unlock_bh(&q->lock);
208
209         if (wake)
210                 ieee80211_wake_queue(dev->hw, qid);
211 }
212
213 static void *
214 mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx,
215                  int *len, u32 *info, bool *more)
216 {
217         struct mt76_queue_entry *e = &q->entry[idx];
218         struct mt76_desc *desc = &q->desc[idx];
219         dma_addr_t buf_addr;
220         void *buf = e->buf;
221         int buf_len = SKB_WITH_OVERHEAD(q->buf_size);
222
223         buf_addr = le32_to_cpu(READ_ONCE(desc->buf0));
224         if (len) {
225                 u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl));
226                 *len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl);
227                 *more = !(ctl & MT_DMA_CTL_LAST_SEC0);
228         }
229
230         if (info)
231                 *info = le32_to_cpu(desc->info);
232
233         dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE);
234         e->buf = NULL;
235
236         return buf;
237 }
238
239 static void *
240 mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
241                  int *len, u32 *info, bool *more)
242 {
243         int idx = q->tail;
244
245         *more = false;
246         if (!q->queued)
247                 return NULL;
248
249         if (!flush && !(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE)))
250                 return NULL;
251
252         q->tail = (q->tail + 1) % q->ndesc;
253         q->queued--;
254
255         return mt76_dma_get_buf(dev, q, idx, len, info, more);
256 }
257
258 static void
259 mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)
260 {
261         writel(q->head, &q->regs->cpu_idx);
262 }
263
264 static int
265 mt76_dma_tx_queue_skb_raw(struct mt76_dev *dev, enum mt76_txq_id qid,
266                           struct sk_buff *skb, u32 tx_info)
267 {
268         struct mt76_queue *q = dev->q_tx[qid].q;
269         struct mt76_queue_buf buf;
270         dma_addr_t addr;
271
272         addr = dma_map_single(dev->dev, skb->data, skb->len,
273                               DMA_TO_DEVICE);
274         if (unlikely(dma_mapping_error(dev->dev, addr)))
275                 return -ENOMEM;
276
277         buf.addr = addr;
278         buf.len = skb->len;
279
280         spin_lock_bh(&q->lock);
281         mt76_dma_add_buf(dev, q, &buf, 1, tx_info, skb, NULL);
282         mt76_dma_kick_queue(dev, q);
283         spin_unlock_bh(&q->lock);
284
285         return 0;
286 }
287
288 static int
289 mt76_dma_tx_queue_skb(struct mt76_dev *dev, enum mt76_txq_id qid,
290                       struct sk_buff *skb, struct mt76_wcid *wcid,
291                       struct ieee80211_sta *sta)
292 {
293         struct mt76_queue *q = dev->q_tx[qid].q;
294         struct mt76_tx_info tx_info = {
295                 .skb = skb,
296         };
297         struct ieee80211_hw *hw;
298         int len, n = 0, ret = -ENOMEM;
299         struct mt76_queue_entry e;
300         struct mt76_txwi_cache *t;
301         struct sk_buff *iter;
302         dma_addr_t addr;
303         u8 *txwi;
304
305         t = mt76_get_txwi(dev);
306         if (!t) {
307                 hw = mt76_tx_status_get_hw(dev, skb);
308                 ieee80211_free_txskb(hw, skb);
309                 return -ENOMEM;
310         }
311         txwi = mt76_get_txwi_ptr(dev, t);
312
313         skb->prev = skb->next = NULL;
314         if (dev->drv->drv_flags & MT_DRV_TX_ALIGNED4_SKBS)
315                 mt76_insert_hdr_pad(skb);
316
317         len = skb_headlen(skb);
318         addr = dma_map_single(dev->dev, skb->data, len, DMA_TO_DEVICE);
319         if (unlikely(dma_mapping_error(dev->dev, addr)))
320                 goto free;
321
322         tx_info.buf[n].addr = t->dma_addr;
323         tx_info.buf[n++].len = dev->drv->txwi_size;
324         tx_info.buf[n].addr = addr;
325         tx_info.buf[n++].len = len;
326
327         skb_walk_frags(skb, iter) {
328                 if (n == ARRAY_SIZE(tx_info.buf))
329                         goto unmap;
330
331                 addr = dma_map_single(dev->dev, iter->data, iter->len,
332                                       DMA_TO_DEVICE);
333                 if (unlikely(dma_mapping_error(dev->dev, addr)))
334                         goto unmap;
335
336                 tx_info.buf[n].addr = addr;
337                 tx_info.buf[n++].len = iter->len;
338         }
339         tx_info.nbuf = n;
340
341         dma_sync_single_for_cpu(dev->dev, t->dma_addr, dev->drv->txwi_size,
342                                 DMA_TO_DEVICE);
343         ret = dev->drv->tx_prepare_skb(dev, txwi, qid, wcid, sta, &tx_info);
344         dma_sync_single_for_device(dev->dev, t->dma_addr, dev->drv->txwi_size,
345                                    DMA_TO_DEVICE);
346         if (ret < 0)
347                 goto unmap;
348
349         if (q->queued + (tx_info.nbuf + 1) / 2 >= q->ndesc - 1) {
350                 ret = -ENOMEM;
351                 goto unmap;
352         }
353
354         return mt76_dma_add_buf(dev, q, tx_info.buf, tx_info.nbuf,
355                                 tx_info.info, tx_info.skb, t);
356
357 unmap:
358         for (n--; n > 0; n--)
359                 dma_unmap_single(dev->dev, tx_info.buf[n].addr,
360                                  tx_info.buf[n].len, DMA_TO_DEVICE);
361
362 free:
363         e.skb = tx_info.skb;
364         e.txwi = t;
365         dev->drv->tx_complete_skb(dev, qid, &e);
366         mt76_put_txwi(dev, t);
367         return ret;
368 }
369
370 static int
371 mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q)
372 {
373         dma_addr_t addr;
374         void *buf;
375         int frames = 0;
376         int len = SKB_WITH_OVERHEAD(q->buf_size);
377         int offset = q->buf_offset;
378
379         spin_lock_bh(&q->lock);
380
381         while (q->queued < q->ndesc - 1) {
382                 struct mt76_queue_buf qbuf;
383
384                 buf = page_frag_alloc(&q->rx_page, q->buf_size, GFP_ATOMIC);
385                 if (!buf)
386                         break;
387
388                 addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE);
389                 if (unlikely(dma_mapping_error(dev->dev, addr))) {
390                         skb_free_frag(buf);
391                         break;
392                 }
393
394                 qbuf.addr = addr + offset;
395                 qbuf.len = len - offset;
396                 mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL);
397                 frames++;
398         }
399
400         if (frames)
401                 mt76_dma_kick_queue(dev, q);
402
403         spin_unlock_bh(&q->lock);
404
405         return frames;
406 }
407
408 static void
409 mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)
410 {
411         struct page *page;
412         void *buf;
413         bool more;
414
415         spin_lock_bh(&q->lock);
416         do {
417                 buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more);
418                 if (!buf)
419                         break;
420
421                 skb_free_frag(buf);
422         } while (1);
423         spin_unlock_bh(&q->lock);
424
425         if (!q->rx_page.va)
426                 return;
427
428         page = virt_to_page(q->rx_page.va);
429         __page_frag_cache_drain(page, q->rx_page.pagecnt_bias);
430         memset(&q->rx_page, 0, sizeof(q->rx_page));
431 }
432
433 static void
434 mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)
435 {
436         struct mt76_queue *q = &dev->q_rx[qid];
437         int i;
438
439         for (i = 0; i < q->ndesc; i++)
440                 q->desc[i].ctrl &= ~cpu_to_le32(MT_DMA_CTL_DMA_DONE);
441
442         mt76_dma_rx_cleanup(dev, q);
443         mt76_dma_sync_idx(dev, q);
444         mt76_dma_rx_fill(dev, q);
445
446         if (!q->rx_head)
447                 return;
448
449         dev_kfree_skb(q->rx_head);
450         q->rx_head = NULL;
451 }
452
453 static void
454 mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data,
455                   int len, bool more)
456 {
457         struct page *page = virt_to_head_page(data);
458         int offset = data - page_address(page);
459         struct sk_buff *skb = q->rx_head;
460
461         offset += q->buf_offset;
462         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, offset, len,
463                         q->buf_size);
464
465         if (more)
466                 return;
467
468         q->rx_head = NULL;
469         dev->drv->rx_skb(dev, q - dev->q_rx, skb);
470 }
471
472 static int
473 mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)
474 {
475         int len, data_len, done = 0;
476         struct sk_buff *skb;
477         unsigned char *data;
478         bool more;
479
480         while (done < budget) {
481                 u32 info;
482
483                 data = mt76_dma_dequeue(dev, q, false, &len, &info, &more);
484                 if (!data)
485                         break;
486
487                 if (q->rx_head)
488                         data_len = q->buf_size;
489                 else
490                         data_len = SKB_WITH_OVERHEAD(q->buf_size);
491
492                 if (data_len < len + q->buf_offset) {
493                         dev_kfree_skb(q->rx_head);
494                         q->rx_head = NULL;
495
496                         skb_free_frag(data);
497                         continue;
498                 }
499
500                 if (q->rx_head) {
501                         mt76_add_fragment(dev, q, data, len, more);
502                         continue;
503                 }
504
505                 skb = build_skb(data, q->buf_size);
506                 if (!skb) {
507                         skb_free_frag(data);
508                         continue;
509                 }
510                 skb_reserve(skb, q->buf_offset);
511
512                 if (q == &dev->q_rx[MT_RXQ_MCU]) {
513                         u32 *rxfce = (u32 *)skb->cb;
514                         *rxfce = info;
515                 }
516
517                 __skb_put(skb, len);
518                 done++;
519
520                 if (more) {
521                         q->rx_head = skb;
522                         continue;
523                 }
524
525                 dev->drv->rx_skb(dev, q - dev->q_rx, skb);
526         }
527
528         mt76_dma_rx_fill(dev, q);
529         return done;
530 }
531
532 static int
533 mt76_dma_rx_poll(struct napi_struct *napi, int budget)
534 {
535         struct mt76_dev *dev;
536         int qid, done = 0, cur;
537
538         dev = container_of(napi->dev, struct mt76_dev, napi_dev);
539         qid = napi - dev->napi;
540
541         rcu_read_lock();
542
543         do {
544                 cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done);
545                 mt76_rx_poll_complete(dev, qid, napi);
546                 done += cur;
547         } while (cur && done < budget);
548
549         rcu_read_unlock();
550
551         if (done < budget && napi_complete(napi))
552                 dev->drv->rx_poll_complete(dev, qid);
553
554         return done;
555 }
556
557 static int
558 mt76_dma_init(struct mt76_dev *dev)
559 {
560         int i;
561
562         init_dummy_netdev(&dev->napi_dev);
563
564         for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
565                 netif_napi_add(&dev->napi_dev, &dev->napi[i], mt76_dma_rx_poll,
566                                64);
567                 mt76_dma_rx_fill(dev, &dev->q_rx[i]);
568                 napi_enable(&dev->napi[i]);
569         }
570
571         return 0;
572 }
573
574 static const struct mt76_queue_ops mt76_dma_ops = {
575         .init = mt76_dma_init,
576         .alloc = mt76_dma_alloc_queue,
577         .tx_queue_skb_raw = mt76_dma_tx_queue_skb_raw,
578         .tx_queue_skb = mt76_dma_tx_queue_skb,
579         .tx_cleanup = mt76_dma_tx_cleanup,
580         .rx_reset = mt76_dma_rx_reset,
581         .kick = mt76_dma_kick_queue,
582 };
583
584 void mt76_dma_attach(struct mt76_dev *dev)
585 {
586         dev->queue_ops = &mt76_dma_ops;
587 }
588 EXPORT_SYMBOL_GPL(mt76_dma_attach);
589
590 void mt76_dma_cleanup(struct mt76_dev *dev)
591 {
592         int i;
593
594         netif_napi_del(&dev->tx_napi);
595         for (i = 0; i < ARRAY_SIZE(dev->q_tx); i++)
596                 mt76_dma_tx_cleanup(dev, i, true);
597
598         for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
599                 netif_napi_del(&dev->napi[i]);
600                 mt76_dma_rx_cleanup(dev, &dev->q_rx[i]);
601         }
602 }
603 EXPORT_SYMBOL_GPL(mt76_dma_cleanup);