Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf-next
[linux-2.6-microblaze.git] / drivers / net / wireless / ath / wil6210 / main.c
1 /*
2  * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
3  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include <linux/moduleparam.h>
19 #include <linux/if_arp.h>
20 #include <linux/etherdevice.h>
21 #include <linux/rtnetlink.h>
22
23 #include "wil6210.h"
24 #include "txrx.h"
25 #include "txrx_edma.h"
26 #include "wmi.h"
27 #include "boot_loader.h"
28
29 #define WAIT_FOR_HALP_VOTE_MS 100
30 #define WAIT_FOR_SCAN_ABORT_MS 1000
31 #define WIL_DEFAULT_NUM_RX_STATUS_RINGS 1
32 #define WIL_BOARD_FILE_MAX_NAMELEN 128
33
34 bool debug_fw; /* = false; */
35 module_param(debug_fw, bool, 0444);
36 MODULE_PARM_DESC(debug_fw, " do not perform card reset. For FW debug");
37
38 static u8 oob_mode;
39 module_param(oob_mode, byte, 0444);
40 MODULE_PARM_DESC(oob_mode,
41                  " enable out of the box (OOB) mode in FW, for diagnostics and certification");
42
43 bool no_fw_recovery;
44 module_param(no_fw_recovery, bool, 0644);
45 MODULE_PARM_DESC(no_fw_recovery, " disable automatic FW error recovery");
46
47 /* if not set via modparam, will be set to default value of 1/8 of
48  * rx ring size during init flow
49  */
50 unsigned short rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_INIT;
51 module_param(rx_ring_overflow_thrsh, ushort, 0444);
52 MODULE_PARM_DESC(rx_ring_overflow_thrsh,
53                  " RX ring overflow threshold in descriptors.");
54
55 /* We allow allocation of more than 1 page buffers to support large packets.
56  * It is suboptimal behavior performance wise in case MTU above page size.
57  */
58 unsigned int mtu_max = TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
59 static int mtu_max_set(const char *val, const struct kernel_param *kp)
60 {
61         int ret;
62
63         /* sets mtu_max directly. no need to restore it in case of
64          * illegal value since we assume this will fail insmod
65          */
66         ret = param_set_uint(val, kp);
67         if (ret)
68                 return ret;
69
70         if (mtu_max < 68 || mtu_max > WIL_MAX_ETH_MTU)
71                 ret = -EINVAL;
72
73         return ret;
74 }
75
76 static const struct kernel_param_ops mtu_max_ops = {
77         .set = mtu_max_set,
78         .get = param_get_uint,
79 };
80
81 module_param_cb(mtu_max, &mtu_max_ops, &mtu_max, 0444);
82 MODULE_PARM_DESC(mtu_max, " Max MTU value.");
83
84 static uint rx_ring_order;
85 static uint tx_ring_order = WIL_TX_RING_SIZE_ORDER_DEFAULT;
86 static uint bcast_ring_order = WIL_BCAST_RING_SIZE_ORDER_DEFAULT;
87
88 static int ring_order_set(const char *val, const struct kernel_param *kp)
89 {
90         int ret;
91         uint x;
92
93         ret = kstrtouint(val, 0, &x);
94         if (ret)
95                 return ret;
96
97         if ((x < WIL_RING_SIZE_ORDER_MIN) || (x > WIL_RING_SIZE_ORDER_MAX))
98                 return -EINVAL;
99
100         *((uint *)kp->arg) = x;
101
102         return 0;
103 }
104
105 static const struct kernel_param_ops ring_order_ops = {
106         .set = ring_order_set,
107         .get = param_get_uint,
108 };
109
110 module_param_cb(rx_ring_order, &ring_order_ops, &rx_ring_order, 0444);
111 MODULE_PARM_DESC(rx_ring_order, " Rx ring order; size = 1 << order");
112 module_param_cb(tx_ring_order, &ring_order_ops, &tx_ring_order, 0444);
113 MODULE_PARM_DESC(tx_ring_order, " Tx ring order; size = 1 << order");
114 module_param_cb(bcast_ring_order, &ring_order_ops, &bcast_ring_order, 0444);
115 MODULE_PARM_DESC(bcast_ring_order, " Bcast ring order; size = 1 << order");
116
117 enum {
118         WIL_BOOT_ERR,
119         WIL_BOOT_VANILLA,
120         WIL_BOOT_PRODUCTION,
121         WIL_BOOT_DEVELOPMENT,
122 };
123
124 enum {
125         WIL_SIG_STATUS_VANILLA = 0x0,
126         WIL_SIG_STATUS_DEVELOPMENT = 0x1,
127         WIL_SIG_STATUS_PRODUCTION = 0x2,
128         WIL_SIG_STATUS_CORRUPTED_PRODUCTION = 0x3,
129 };
130
131 #define RST_DELAY (20) /* msec, for loop in @wil_wait_device_ready */
132 #define RST_COUNT (1 + 1000/RST_DELAY) /* round up to be above 1 sec total */
133
134 #define PMU_READY_DELAY_MS (4) /* ms, for sleep in @wil_wait_device_ready */
135
136 #define OTP_HW_DELAY (200) /* usec, loop in @wil_wait_device_ready_talyn_mb */
137 /* round up to be above 2 ms total */
138 #define OTP_HW_COUNT (1 + 2000 / OTP_HW_DELAY)
139
140 /*
141  * Due to a hardware issue,
142  * one has to read/write to/from NIC in 32-bit chunks;
143  * regular memcpy_fromio and siblings will
144  * not work on 64-bit platform - it uses 64-bit transactions
145  *
146  * Force 32-bit transactions to enable NIC on 64-bit platforms
147  *
148  * To avoid byte swap on big endian host, __raw_{read|write}l
149  * should be used - {read|write}l would swap bytes to provide
150  * little endian on PCI value in host endianness.
151  */
152 void wil_memcpy_fromio_32(void *dst, const volatile void __iomem *src,
153                           size_t count)
154 {
155         u32 *d = dst;
156         const volatile u32 __iomem *s = src;
157
158         for (; count >= 4; count -= 4)
159                 *d++ = __raw_readl(s++);
160
161         if (unlikely(count)) {
162                 /* count can be 1..3 */
163                 u32 tmp = __raw_readl(s);
164
165                 memcpy(d, &tmp, count);
166         }
167 }
168
169 void wil_memcpy_toio_32(volatile void __iomem *dst, const void *src,
170                         size_t count)
171 {
172         volatile u32 __iomem *d = dst;
173         const u32 *s = src;
174
175         for (; count >= 4; count -= 4)
176                 __raw_writel(*s++, d++);
177
178         if (unlikely(count)) {
179                 /* count can be 1..3 */
180                 u32 tmp = 0;
181
182                 memcpy(&tmp, s, count);
183                 __raw_writel(tmp, d);
184         }
185 }
186
187 static void wil_ring_fini_tx(struct wil6210_priv *wil, int id)
188 {
189         struct wil_ring *ring = &wil->ring_tx[id];
190         struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
191
192         lockdep_assert_held(&wil->mutex);
193
194         if (!ring->va)
195                 return;
196
197         wil_dbg_misc(wil, "vring_fini_tx: id=%d\n", id);
198
199         spin_lock_bh(&txdata->lock);
200         txdata->dot1x_open = false;
201         txdata->mid = U8_MAX;
202         txdata->enabled = 0; /* no Tx can be in progress or start anew */
203         spin_unlock_bh(&txdata->lock);
204         /* napi_synchronize waits for completion of the current NAPI but will
205          * not prevent the next NAPI run.
206          * Add a memory barrier to guarantee that txdata->enabled is zeroed
207          * before napi_synchronize so that the next scheduled NAPI will not
208          * handle this vring
209          */
210         wmb();
211         /* make sure NAPI won't touch this vring */
212         if (test_bit(wil_status_napi_en, wil->status))
213                 napi_synchronize(&wil->napi_tx);
214
215         wil->txrx_ops.ring_fini_tx(wil, ring);
216 }
217
218 static bool wil_vif_is_connected(struct wil6210_priv *wil, u8 mid)
219 {
220         int i;
221
222         for (i = 0; i < WIL6210_MAX_CID; i++) {
223                 if (wil->sta[i].mid == mid &&
224                     wil->sta[i].status == wil_sta_connected)
225                         return true;
226         }
227
228         return false;
229 }
230
231 static void wil_disconnect_cid_complete(struct wil6210_vif *vif, int cid,
232                                         u16 reason_code)
233 __acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock)
234 {
235         uint i;
236         struct wil6210_priv *wil = vif_to_wil(vif);
237         struct net_device *ndev = vif_to_ndev(vif);
238         struct wireless_dev *wdev = vif_to_wdev(vif);
239         struct wil_sta_info *sta = &wil->sta[cid];
240         int min_ring_id = wil_get_min_tx_ring_id(wil);
241
242         might_sleep();
243         wil_dbg_misc(wil,
244                      "disconnect_cid_complete: CID %d, MID %d, status %d\n",
245                      cid, sta->mid, sta->status);
246         /* inform upper layers */
247         if (sta->status != wil_sta_unused) {
248                 if (vif->mid != sta->mid) {
249                         wil_err(wil, "STA MID mismatch with VIF MID(%d)\n",
250                                 vif->mid);
251                 }
252
253                 switch (wdev->iftype) {
254                 case NL80211_IFTYPE_AP:
255                 case NL80211_IFTYPE_P2P_GO:
256                         /* AP-like interface */
257                         cfg80211_del_sta(ndev, sta->addr, GFP_KERNEL);
258                         break;
259                 default:
260                         break;
261                 }
262                 sta->status = wil_sta_unused;
263                 sta->mid = U8_MAX;
264         }
265         /* reorder buffers */
266         for (i = 0; i < WIL_STA_TID_NUM; i++) {
267                 struct wil_tid_ampdu_rx *r;
268
269                 spin_lock_bh(&sta->tid_rx_lock);
270
271                 r = sta->tid_rx[i];
272                 sta->tid_rx[i] = NULL;
273                 wil_tid_ampdu_rx_free(wil, r);
274
275                 spin_unlock_bh(&sta->tid_rx_lock);
276         }
277         /* crypto context */
278         memset(sta->tid_crypto_rx, 0, sizeof(sta->tid_crypto_rx));
279         memset(&sta->group_crypto_rx, 0, sizeof(sta->group_crypto_rx));
280         /* release vrings */
281         for (i = min_ring_id; i < ARRAY_SIZE(wil->ring_tx); i++) {
282                 if (wil->ring2cid_tid[i][0] == cid)
283                         wil_ring_fini_tx(wil, i);
284         }
285         /* statistics */
286         memset(&sta->stats, 0, sizeof(sta->stats));
287         sta->stats.tx_latency_min_us = U32_MAX;
288 }
289
290 static void _wil6210_disconnect_complete(struct wil6210_vif *vif,
291                                          const u8 *bssid, u16 reason_code)
292 {
293         struct wil6210_priv *wil = vif_to_wil(vif);
294         int cid = -ENOENT;
295         struct net_device *ndev;
296         struct wireless_dev *wdev;
297
298         ndev = vif_to_ndev(vif);
299         wdev = vif_to_wdev(vif);
300
301         might_sleep();
302         wil_info(wil, "disconnect_complete: bssid=%pM, reason=%d\n",
303                  bssid, reason_code);
304
305         /* Cases are:
306          * - disconnect single STA, still connected
307          * - disconnect single STA, already disconnected
308          * - disconnect all
309          *
310          * For "disconnect all", there are 3 options:
311          * - bssid == NULL
312          * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
313          * - bssid is our MAC address
314          */
315         if (bssid && !is_broadcast_ether_addr(bssid) &&
316             !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
317                 cid = wil_find_cid(wil, vif->mid, bssid);
318                 wil_dbg_misc(wil,
319                              "Disconnect complete %pM, CID=%d, reason=%d\n",
320                              bssid, cid, reason_code);
321                 if (cid >= 0) /* disconnect 1 peer */
322                         wil_disconnect_cid_complete(vif, cid, reason_code);
323         } else { /* all */
324                 wil_dbg_misc(wil, "Disconnect complete all\n");
325                 for (cid = 0; cid < WIL6210_MAX_CID; cid++)
326                         wil_disconnect_cid_complete(vif, cid, reason_code);
327         }
328
329         /* link state */
330         switch (wdev->iftype) {
331         case NL80211_IFTYPE_STATION:
332         case NL80211_IFTYPE_P2P_CLIENT:
333                 wil_bcast_fini(vif);
334                 wil_update_net_queues_bh(wil, vif, NULL, true);
335                 netif_carrier_off(ndev);
336                 if (!wil_has_other_active_ifaces(wil, ndev, false, true))
337                         wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
338
339                 if (test_and_clear_bit(wil_vif_fwconnected, vif->status)) {
340                         atomic_dec(&wil->connected_vifs);
341                         cfg80211_disconnected(ndev, reason_code,
342                                               NULL, 0,
343                                               vif->locally_generated_disc,
344                                               GFP_KERNEL);
345                         vif->locally_generated_disc = false;
346                 } else if (test_bit(wil_vif_fwconnecting, vif->status)) {
347                         cfg80211_connect_result(ndev, bssid, NULL, 0, NULL, 0,
348                                                 WLAN_STATUS_UNSPECIFIED_FAILURE,
349                                                 GFP_KERNEL);
350                         vif->bss = NULL;
351                 }
352                 clear_bit(wil_vif_fwconnecting, vif->status);
353                 clear_bit(wil_vif_ft_roam, vif->status);
354
355                 break;
356         case NL80211_IFTYPE_AP:
357         case NL80211_IFTYPE_P2P_GO:
358                 if (!wil_vif_is_connected(wil, vif->mid)) {
359                         wil_update_net_queues_bh(wil, vif, NULL, true);
360                         if (test_and_clear_bit(wil_vif_fwconnected,
361                                                vif->status))
362                                 atomic_dec(&wil->connected_vifs);
363                 } else {
364                         wil_update_net_queues_bh(wil, vif, NULL, false);
365                 }
366                 break;
367         default:
368                 break;
369         }
370 }
371
372 static int wil_disconnect_cid(struct wil6210_vif *vif, int cid,
373                               u16 reason_code)
374 {
375         struct wil6210_priv *wil = vif_to_wil(vif);
376         struct wireless_dev *wdev = vif_to_wdev(vif);
377         struct wil_sta_info *sta = &wil->sta[cid];
378         bool del_sta = false;
379
380         might_sleep();
381         wil_dbg_misc(wil, "disconnect_cid: CID %d, MID %d, status %d\n",
382                      cid, sta->mid, sta->status);
383
384         if (sta->status == wil_sta_unused)
385                 return 0;
386
387         if (vif->mid != sta->mid) {
388                 wil_err(wil, "STA MID mismatch with VIF MID(%d)\n", vif->mid);
389                 return -EINVAL;
390         }
391
392         /* inform lower layers */
393         if (wdev->iftype == NL80211_IFTYPE_AP && disable_ap_sme)
394                 del_sta = true;
395
396         /* disconnect by sending command disconnect/del_sta and wait
397          * synchronously for WMI_DISCONNECT_EVENTID event.
398          */
399         return wmi_disconnect_sta(vif, sta->addr, reason_code, del_sta);
400 }
401
402 static void _wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
403                                 u16 reason_code)
404 {
405         struct wil6210_priv *wil;
406         struct net_device *ndev;
407         int cid = -ENOENT;
408
409         if (unlikely(!vif))
410                 return;
411
412         wil = vif_to_wil(vif);
413         ndev = vif_to_ndev(vif);
414
415         might_sleep();
416         wil_info(wil, "disconnect bssid=%pM, reason=%d\n", bssid, reason_code);
417
418         /* Cases are:
419          * - disconnect single STA, still connected
420          * - disconnect single STA, already disconnected
421          * - disconnect all
422          *
423          * For "disconnect all", there are 3 options:
424          * - bssid == NULL
425          * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
426          * - bssid is our MAC address
427          */
428         if (bssid && !is_broadcast_ether_addr(bssid) &&
429             !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
430                 cid = wil_find_cid(wil, vif->mid, bssid);
431                 wil_dbg_misc(wil, "Disconnect %pM, CID=%d, reason=%d\n",
432                              bssid, cid, reason_code);
433                 if (cid >= 0) /* disconnect 1 peer */
434                         wil_disconnect_cid(vif, cid, reason_code);
435         } else { /* all */
436                 wil_dbg_misc(wil, "Disconnect all\n");
437                 for (cid = 0; cid < WIL6210_MAX_CID; cid++)
438                         wil_disconnect_cid(vif, cid, reason_code);
439         }
440
441         /* call event handler manually after processing wmi_call,
442          * to avoid deadlock - disconnect event handler acquires
443          * wil->mutex while it is already held here
444          */
445         _wil6210_disconnect_complete(vif, bssid, reason_code);
446 }
447
448 void wil_disconnect_worker(struct work_struct *work)
449 {
450         struct wil6210_vif *vif = container_of(work,
451                         struct wil6210_vif, disconnect_worker);
452         struct wil6210_priv *wil = vif_to_wil(vif);
453         struct net_device *ndev = vif_to_ndev(vif);
454         int rc;
455         struct {
456                 struct wmi_cmd_hdr wmi;
457                 struct wmi_disconnect_event evt;
458         } __packed reply;
459
460         if (test_bit(wil_vif_fwconnected, vif->status))
461                 /* connect succeeded after all */
462                 return;
463
464         if (!test_bit(wil_vif_fwconnecting, vif->status))
465                 /* already disconnected */
466                 return;
467
468         memset(&reply, 0, sizeof(reply));
469
470         rc = wmi_call(wil, WMI_DISCONNECT_CMDID, vif->mid, NULL, 0,
471                       WMI_DISCONNECT_EVENTID, &reply, sizeof(reply),
472                       WIL6210_DISCONNECT_TO_MS);
473         if (rc) {
474                 wil_err(wil, "disconnect error %d\n", rc);
475                 return;
476         }
477
478         wil_update_net_queues_bh(wil, vif, NULL, true);
479         netif_carrier_off(ndev);
480         cfg80211_connect_result(ndev, NULL, NULL, 0, NULL, 0,
481                                 WLAN_STATUS_UNSPECIFIED_FAILURE, GFP_KERNEL);
482         clear_bit(wil_vif_fwconnecting, vif->status);
483 }
484
485 static int wil_wait_for_recovery(struct wil6210_priv *wil)
486 {
487         if (wait_event_interruptible(wil->wq, wil->recovery_state !=
488                                      fw_recovery_pending)) {
489                 wil_err(wil, "Interrupt, canceling recovery\n");
490                 return -ERESTARTSYS;
491         }
492         if (wil->recovery_state != fw_recovery_running) {
493                 wil_info(wil, "Recovery cancelled\n");
494                 return -EINTR;
495         }
496         wil_info(wil, "Proceed with recovery\n");
497         return 0;
498 }
499
500 void wil_set_recovery_state(struct wil6210_priv *wil, int state)
501 {
502         wil_dbg_misc(wil, "set_recovery_state: %d -> %d\n",
503                      wil->recovery_state, state);
504
505         wil->recovery_state = state;
506         wake_up_interruptible(&wil->wq);
507 }
508
509 bool wil_is_recovery_blocked(struct wil6210_priv *wil)
510 {
511         return no_fw_recovery && (wil->recovery_state == fw_recovery_pending);
512 }
513
514 static void wil_fw_error_worker(struct work_struct *work)
515 {
516         struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
517                                                 fw_error_worker);
518         struct net_device *ndev = wil->main_ndev;
519         struct wireless_dev *wdev;
520
521         wil_dbg_misc(wil, "fw error worker\n");
522
523         if (!ndev || !(ndev->flags & IFF_UP)) {
524                 wil_info(wil, "No recovery - interface is down\n");
525                 return;
526         }
527         wdev = ndev->ieee80211_ptr;
528
529         /* increment @recovery_count if less then WIL6210_FW_RECOVERY_TO
530          * passed since last recovery attempt
531          */
532         if (time_is_after_jiffies(wil->last_fw_recovery +
533                                   WIL6210_FW_RECOVERY_TO))
534                 wil->recovery_count++;
535         else
536                 wil->recovery_count = 1; /* fw was alive for a long time */
537
538         if (wil->recovery_count > WIL6210_FW_RECOVERY_RETRIES) {
539                 wil_err(wil, "too many recovery attempts (%d), giving up\n",
540                         wil->recovery_count);
541                 return;
542         }
543
544         wil->last_fw_recovery = jiffies;
545
546         wil_info(wil, "fw error recovery requested (try %d)...\n",
547                  wil->recovery_count);
548         if (!no_fw_recovery)
549                 wil->recovery_state = fw_recovery_running;
550         if (wil_wait_for_recovery(wil) != 0)
551                 return;
552
553         rtnl_lock();
554         mutex_lock(&wil->mutex);
555         /* Needs adaptation for multiple VIFs
556          * need to go over all VIFs and consider the appropriate
557          * recovery because each one can have different iftype.
558          */
559         switch (wdev->iftype) {
560         case NL80211_IFTYPE_STATION:
561         case NL80211_IFTYPE_P2P_CLIENT:
562         case NL80211_IFTYPE_MONITOR:
563                 /* silent recovery, upper layers will see disconnect */
564                 __wil_down(wil);
565                 __wil_up(wil);
566                 break;
567         case NL80211_IFTYPE_AP:
568         case NL80211_IFTYPE_P2P_GO:
569                 if (no_fw_recovery) /* upper layers do recovery */
570                         break;
571                 /* silent recovery, upper layers will see disconnect */
572                 __wil_down(wil);
573                 __wil_up(wil);
574                 mutex_unlock(&wil->mutex);
575                 wil_cfg80211_ap_recovery(wil);
576                 mutex_lock(&wil->mutex);
577                 wil_info(wil, "... completed\n");
578                 break;
579         default:
580                 wil_err(wil, "No recovery - unknown interface type %d\n",
581                         wdev->iftype);
582                 break;
583         }
584
585         mutex_unlock(&wil->mutex);
586         rtnl_unlock();
587 }
588
589 static int wil_find_free_ring(struct wil6210_priv *wil)
590 {
591         int i;
592         int min_ring_id = wil_get_min_tx_ring_id(wil);
593
594         for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
595                 if (!wil->ring_tx[i].va)
596                         return i;
597         }
598         return -EINVAL;
599 }
600
601 int wil_ring_init_tx(struct wil6210_vif *vif, int cid)
602 {
603         struct wil6210_priv *wil = vif_to_wil(vif);
604         int rc = -EINVAL, ringid;
605
606         if (cid < 0) {
607                 wil_err(wil, "No connection pending\n");
608                 goto out;
609         }
610         ringid = wil_find_free_ring(wil);
611         if (ringid < 0) {
612                 wil_err(wil, "No free vring found\n");
613                 goto out;
614         }
615
616         wil_dbg_wmi(wil, "Configure for connection CID %d MID %d ring %d\n",
617                     cid, vif->mid, ringid);
618
619         rc = wil->txrx_ops.ring_init_tx(vif, ringid, 1 << tx_ring_order,
620                                         cid, 0);
621         if (rc)
622                 wil_err(wil, "init TX for CID %d MID %d vring %d failed\n",
623                         cid, vif->mid, ringid);
624
625 out:
626         return rc;
627 }
628
629 int wil_bcast_init(struct wil6210_vif *vif)
630 {
631         struct wil6210_priv *wil = vif_to_wil(vif);
632         int ri = vif->bcast_ring, rc;
633
634         if (ri >= 0 && wil->ring_tx[ri].va)
635                 return 0;
636
637         ri = wil_find_free_ring(wil);
638         if (ri < 0)
639                 return ri;
640
641         vif->bcast_ring = ri;
642         rc = wil->txrx_ops.ring_init_bcast(vif, ri, 1 << bcast_ring_order);
643         if (rc)
644                 vif->bcast_ring = -1;
645
646         return rc;
647 }
648
649 void wil_bcast_fini(struct wil6210_vif *vif)
650 {
651         struct wil6210_priv *wil = vif_to_wil(vif);
652         int ri = vif->bcast_ring;
653
654         if (ri < 0)
655                 return;
656
657         vif->bcast_ring = -1;
658         wil_ring_fini_tx(wil, ri);
659 }
660
661 void wil_bcast_fini_all(struct wil6210_priv *wil)
662 {
663         int i;
664         struct wil6210_vif *vif;
665
666         for (i = 0; i < wil->max_vifs; i++) {
667                 vif = wil->vifs[i];
668                 if (vif)
669                         wil_bcast_fini(vif);
670         }
671 }
672
673 int wil_priv_init(struct wil6210_priv *wil)
674 {
675         uint i;
676
677         wil_dbg_misc(wil, "priv_init\n");
678
679         memset(wil->sta, 0, sizeof(wil->sta));
680         for (i = 0; i < WIL6210_MAX_CID; i++) {
681                 spin_lock_init(&wil->sta[i].tid_rx_lock);
682                 wil->sta[i].mid = U8_MAX;
683         }
684
685         for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
686                 spin_lock_init(&wil->ring_tx_data[i].lock);
687                 wil->ring2cid_tid[i][0] = WIL6210_MAX_CID;
688         }
689
690         mutex_init(&wil->mutex);
691         mutex_init(&wil->vif_mutex);
692         mutex_init(&wil->wmi_mutex);
693         mutex_init(&wil->halp.lock);
694
695         init_completion(&wil->wmi_ready);
696         init_completion(&wil->wmi_call);
697         init_completion(&wil->halp.comp);
698
699         INIT_WORK(&wil->wmi_event_worker, wmi_event_worker);
700         INIT_WORK(&wil->fw_error_worker, wil_fw_error_worker);
701
702         INIT_LIST_HEAD(&wil->pending_wmi_ev);
703         spin_lock_init(&wil->wmi_ev_lock);
704         spin_lock_init(&wil->net_queue_lock);
705         init_waitqueue_head(&wil->wq);
706
707         wil->wmi_wq = create_singlethread_workqueue(WIL_NAME "_wmi");
708         if (!wil->wmi_wq)
709                 return -EAGAIN;
710
711         wil->wq_service = create_singlethread_workqueue(WIL_NAME "_service");
712         if (!wil->wq_service)
713                 goto out_wmi_wq;
714
715         wil->last_fw_recovery = jiffies;
716         wil->tx_interframe_timeout = WIL6210_ITR_TX_INTERFRAME_TIMEOUT_DEFAULT;
717         wil->rx_interframe_timeout = WIL6210_ITR_RX_INTERFRAME_TIMEOUT_DEFAULT;
718         wil->tx_max_burst_duration = WIL6210_ITR_TX_MAX_BURST_DURATION_DEFAULT;
719         wil->rx_max_burst_duration = WIL6210_ITR_RX_MAX_BURST_DURATION_DEFAULT;
720
721         if (rx_ring_overflow_thrsh == WIL6210_RX_HIGH_TRSH_INIT)
722                 rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_DEFAULT;
723
724         wil->ps_profile =  WMI_PS_PROFILE_TYPE_DEFAULT;
725
726         wil->wakeup_trigger = WMI_WAKEUP_TRIGGER_UCAST |
727                               WMI_WAKEUP_TRIGGER_BCAST;
728         memset(&wil->suspend_stats, 0, sizeof(wil->suspend_stats));
729         wil->ring_idle_trsh = 16;
730
731         wil->reply_mid = U8_MAX;
732         wil->max_vifs = 1;
733
734         /* edma configuration can be updated via debugfs before allocation */
735         wil->num_rx_status_rings = WIL_DEFAULT_NUM_RX_STATUS_RINGS;
736         wil->tx_status_ring_order = WIL_TX_SRING_SIZE_ORDER_DEFAULT;
737
738         /* Rx status ring size should be bigger than the number of RX buffers
739          * in order to prevent backpressure on the status ring, which may
740          * cause HW freeze.
741          */
742         wil->rx_status_ring_order = WIL_RX_SRING_SIZE_ORDER_DEFAULT;
743         /* Number of RX buffer IDs should be bigger than the RX descriptor
744          * ring size as in HW reorder flow, the HW can consume additional
745          * buffers before releasing the previous ones.
746          */
747         wil->rx_buff_id_count = WIL_RX_BUFF_ARR_SIZE_DEFAULT;
748
749         wil->amsdu_en = 1;
750
751         return 0;
752
753 out_wmi_wq:
754         destroy_workqueue(wil->wmi_wq);
755
756         return -EAGAIN;
757 }
758
759 void wil6210_bus_request(struct wil6210_priv *wil, u32 kbps)
760 {
761         if (wil->platform_ops.bus_request) {
762                 wil->bus_request_kbps = kbps;
763                 wil->platform_ops.bus_request(wil->platform_handle, kbps);
764         }
765 }
766
767 /**
768  * wil6210_disconnect - disconnect one connection
769  * @vif: virtual interface context
770  * @bssid: peer to disconnect, NULL to disconnect all
771  * @reason_code: Reason code for the Disassociation frame
772  *
773  * Disconnect and release associated resources. Issue WMI
774  * command(s) to trigger MAC disconnect. When command was issued
775  * successfully, call the wil6210_disconnect_complete function
776  * to handle the event synchronously
777  */
778 void wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
779                         u16 reason_code)
780 {
781         struct wil6210_priv *wil = vif_to_wil(vif);
782
783         wil_dbg_misc(wil, "disconnecting\n");
784
785         del_timer_sync(&vif->connect_timer);
786         _wil6210_disconnect(vif, bssid, reason_code);
787 }
788
789 /**
790  * wil6210_disconnect_complete - handle disconnect event
791  * @vif: virtual interface context
792  * @bssid: peer to disconnect, NULL to disconnect all
793  * @reason_code: Reason code for the Disassociation frame
794  *
795  * Release associated resources and indicate upper layers the
796  * connection is terminated.
797  */
798 void wil6210_disconnect_complete(struct wil6210_vif *vif, const u8 *bssid,
799                                  u16 reason_code)
800 {
801         struct wil6210_priv *wil = vif_to_wil(vif);
802
803         wil_dbg_misc(wil, "got disconnect\n");
804
805         del_timer_sync(&vif->connect_timer);
806         _wil6210_disconnect_complete(vif, bssid, reason_code);
807 }
808
809 void wil_priv_deinit(struct wil6210_priv *wil)
810 {
811         wil_dbg_misc(wil, "priv_deinit\n");
812
813         wil_set_recovery_state(wil, fw_recovery_idle);
814         cancel_work_sync(&wil->fw_error_worker);
815         wmi_event_flush(wil);
816         destroy_workqueue(wil->wq_service);
817         destroy_workqueue(wil->wmi_wq);
818 }
819
820 static void wil_shutdown_bl(struct wil6210_priv *wil)
821 {
822         u32 val;
823
824         wil_s(wil, RGF_USER_BL +
825               offsetof(struct bl_dedicated_registers_v1,
826                        bl_shutdown_handshake), BL_SHUTDOWN_HS_GRTD);
827
828         usleep_range(100, 150);
829
830         val = wil_r(wil, RGF_USER_BL +
831                     offsetof(struct bl_dedicated_registers_v1,
832                              bl_shutdown_handshake));
833         if (val & BL_SHUTDOWN_HS_RTD) {
834                 wil_dbg_misc(wil, "BL is ready for halt\n");
835                 return;
836         }
837
838         wil_err(wil, "BL did not report ready for halt\n");
839 }
840
841 /* this format is used by ARC embedded CPU for instruction memory */
842 static inline u32 ARC_me_imm32(u32 d)
843 {
844         return ((d & 0xffff0000) >> 16) | ((d & 0x0000ffff) << 16);
845 }
846
847 /* defines access to interrupt vectors for wil_freeze_bl */
848 #define ARC_IRQ_VECTOR_OFFSET(N)        ((N) * 8)
849 /* ARC long jump instruction */
850 #define ARC_JAL_INST                    (0x20200f80)
851
852 static void wil_freeze_bl(struct wil6210_priv *wil)
853 {
854         u32 jal, upc, saved;
855         u32 ivt3 = ARC_IRQ_VECTOR_OFFSET(3);
856
857         jal = wil_r(wil, wil->iccm_base + ivt3);
858         if (jal != ARC_me_imm32(ARC_JAL_INST)) {
859                 wil_dbg_misc(wil, "invalid IVT entry found, skipping\n");
860                 return;
861         }
862
863         /* prevent the target from entering deep sleep
864          * and disabling memory access
865          */
866         saved = wil_r(wil, RGF_USER_USAGE_8);
867         wil_w(wil, RGF_USER_USAGE_8, saved | BIT_USER_PREVENT_DEEP_SLEEP);
868         usleep_range(20, 25); /* let the BL process the bit */
869
870         /* redirect to endless loop in the INT_L1 context and let it trap */
871         wil_w(wil, wil->iccm_base + ivt3 + 4, ARC_me_imm32(ivt3));
872         usleep_range(20, 25); /* let the BL get into the trap */
873
874         /* verify the BL is frozen */
875         upc = wil_r(wil, RGF_USER_CPU_PC);
876         if (upc < ivt3 || (upc > (ivt3 + 8)))
877                 wil_dbg_misc(wil, "BL freeze failed, PC=0x%08X\n", upc);
878
879         wil_w(wil, RGF_USER_USAGE_8, saved);
880 }
881
882 static void wil_bl_prepare_halt(struct wil6210_priv *wil)
883 {
884         u32 tmp, ver;
885
886         /* before halting device CPU driver must make sure BL is not accessing
887          * host memory. This is done differently depending on BL version:
888          * 1. For very old BL versions the procedure is skipped
889          * (not supported).
890          * 2. For old BL version we use a special trick to freeze the BL
891          * 3. For new BL versions we shutdown the BL using handshake procedure.
892          */
893         tmp = wil_r(wil, RGF_USER_BL +
894                     offsetof(struct bl_dedicated_registers_v0,
895                              boot_loader_struct_version));
896         if (!tmp) {
897                 wil_dbg_misc(wil, "old BL, skipping halt preparation\n");
898                 return;
899         }
900
901         tmp = wil_r(wil, RGF_USER_BL +
902                     offsetof(struct bl_dedicated_registers_v1,
903                              bl_shutdown_handshake));
904         ver = BL_SHUTDOWN_HS_PROT_VER(tmp);
905
906         if (ver > 0)
907                 wil_shutdown_bl(wil);
908         else
909                 wil_freeze_bl(wil);
910 }
911
912 static inline void wil_halt_cpu(struct wil6210_priv *wil)
913 {
914         if (wil->hw_version >= HW_VER_TALYN_MB) {
915                 wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB,
916                       BIT_USER_USER_CPU_MAN_RST);
917                 wil_w(wil, RGF_USER_MAC_CPU_0_TALYN_MB,
918                       BIT_USER_MAC_CPU_MAN_RST);
919         } else {
920                 wil_w(wil, RGF_USER_USER_CPU_0, BIT_USER_USER_CPU_MAN_RST);
921                 wil_w(wil, RGF_USER_MAC_CPU_0,  BIT_USER_MAC_CPU_MAN_RST);
922         }
923 }
924
925 static inline void wil_release_cpu(struct wil6210_priv *wil)
926 {
927         /* Start CPU */
928         if (wil->hw_version >= HW_VER_TALYN_MB)
929                 wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB, 1);
930         else
931                 wil_w(wil, RGF_USER_USER_CPU_0, 1);
932 }
933
934 static void wil_set_oob_mode(struct wil6210_priv *wil, u8 mode)
935 {
936         wil_info(wil, "oob_mode to %d\n", mode);
937         switch (mode) {
938         case 0:
939                 wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE |
940                       BIT_USER_OOB_R2_MODE);
941                 break;
942         case 1:
943                 wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
944                 wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
945                 break;
946         case 2:
947                 wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
948                 wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
949                 break;
950         default:
951                 wil_err(wil, "invalid oob_mode: %d\n", mode);
952         }
953 }
954
955 static int wil_wait_device_ready(struct wil6210_priv *wil, int no_flash)
956 {
957         int delay = 0;
958         u32 x, x1 = 0;
959
960         /* wait until device ready. */
961         if (no_flash) {
962                 msleep(PMU_READY_DELAY_MS);
963
964                 wil_dbg_misc(wil, "Reset completed\n");
965         } else {
966                 do {
967                         msleep(RST_DELAY);
968                         x = wil_r(wil, RGF_USER_BL +
969                                   offsetof(struct bl_dedicated_registers_v0,
970                                            boot_loader_ready));
971                         if (x1 != x) {
972                                 wil_dbg_misc(wil, "BL.ready 0x%08x => 0x%08x\n",
973                                              x1, x);
974                                 x1 = x;
975                         }
976                         if (delay++ > RST_COUNT) {
977                                 wil_err(wil, "Reset not completed, bl.ready 0x%08x\n",
978                                         x);
979                                 return -ETIME;
980                         }
981                 } while (x != BL_READY);
982
983                 wil_dbg_misc(wil, "Reset completed in %d ms\n",
984                              delay * RST_DELAY);
985         }
986
987         return 0;
988 }
989
990 static int wil_wait_device_ready_talyn_mb(struct wil6210_priv *wil)
991 {
992         u32 otp_hw;
993         u8 signature_status;
994         bool otp_signature_err;
995         bool hw_section_done;
996         u32 otp_qc_secured;
997         int delay = 0;
998
999         /* Wait for OTP signature test to complete */
1000         usleep_range(2000, 2200);
1001
1002         wil->boot_config = WIL_BOOT_ERR;
1003
1004         /* Poll until OTP signature status is valid.
1005          * In vanilla and development modes, when signature test is complete
1006          * HW sets BIT_OTP_SIGNATURE_ERR_TALYN_MB.
1007          * In production mode BIT_OTP_SIGNATURE_ERR_TALYN_MB remains 0, poll
1008          * for signature status change to 2 or 3.
1009          */
1010         do {
1011                 otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
1012                 signature_status = WIL_GET_BITS(otp_hw, 8, 9);
1013                 otp_signature_err = otp_hw & BIT_OTP_SIGNATURE_ERR_TALYN_MB;
1014
1015                 if (otp_signature_err &&
1016                     signature_status == WIL_SIG_STATUS_VANILLA) {
1017                         wil->boot_config = WIL_BOOT_VANILLA;
1018                         break;
1019                 }
1020                 if (otp_signature_err &&
1021                     signature_status == WIL_SIG_STATUS_DEVELOPMENT) {
1022                         wil->boot_config = WIL_BOOT_DEVELOPMENT;
1023                         break;
1024                 }
1025                 if (!otp_signature_err &&
1026                     signature_status == WIL_SIG_STATUS_PRODUCTION) {
1027                         wil->boot_config = WIL_BOOT_PRODUCTION;
1028                         break;
1029                 }
1030                 if  (!otp_signature_err &&
1031                      signature_status ==
1032                      WIL_SIG_STATUS_CORRUPTED_PRODUCTION) {
1033                         /* Unrecognized OTP signature found. Possibly a
1034                          * corrupted production signature, access control
1035                          * is applied as in production mode, therefore
1036                          * do not fail
1037                          */
1038                         wil->boot_config = WIL_BOOT_PRODUCTION;
1039                         break;
1040                 }
1041                 if (delay++ > OTP_HW_COUNT)
1042                         break;
1043
1044                 usleep_range(OTP_HW_DELAY, OTP_HW_DELAY + 10);
1045         } while (!otp_signature_err && signature_status == 0);
1046
1047         if (wil->boot_config == WIL_BOOT_ERR) {
1048                 wil_err(wil,
1049                         "invalid boot config, signature_status %d otp_signature_err %d\n",
1050                         signature_status, otp_signature_err);
1051                 return -ETIME;
1052         }
1053
1054         wil_dbg_misc(wil,
1055                      "signature test done in %d usec, otp_hw 0x%x, boot_config %d\n",
1056                      delay * OTP_HW_DELAY, otp_hw, wil->boot_config);
1057
1058         if (wil->boot_config == WIL_BOOT_VANILLA)
1059                 /* Assuming not SPI boot (currently not supported) */
1060                 goto out;
1061
1062         hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
1063         delay = 0;
1064
1065         while (!hw_section_done) {
1066                 msleep(RST_DELAY);
1067
1068                 otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
1069                 hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
1070
1071                 if (delay++ > RST_COUNT) {
1072                         wil_err(wil, "TO waiting for hw_section_done\n");
1073                         return -ETIME;
1074                 }
1075         }
1076
1077         wil_dbg_misc(wil, "HW section done in %d ms\n", delay * RST_DELAY);
1078
1079         otp_qc_secured = wil_r(wil, RGF_OTP_QC_SECURED);
1080         wil->secured_boot = otp_qc_secured & BIT_BOOT_FROM_ROM ? 1 : 0;
1081         wil_dbg_misc(wil, "secured boot is %sabled\n",
1082                      wil->secured_boot ? "en" : "dis");
1083
1084 out:
1085         wil_dbg_misc(wil, "Reset completed\n");
1086
1087         return 0;
1088 }
1089
1090 static int wil_target_reset(struct wil6210_priv *wil, int no_flash)
1091 {
1092         u32 x;
1093         int rc;
1094
1095         wil_dbg_misc(wil, "Resetting \"%s\"...\n", wil->hw_name);
1096
1097         if (wil->hw_version < HW_VER_TALYN) {
1098                 /* Clear MAC link up */
1099                 wil_s(wil, RGF_HP_CTRL, BIT(15));
1100                 wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0,
1101                       BIT_HPAL_PERST_FROM_PAD);
1102                 wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_CAR_PERST_RST);
1103         }
1104
1105         wil_halt_cpu(wil);
1106
1107         if (!no_flash) {
1108                 /* clear all boot loader "ready" bits */
1109                 wil_w(wil, RGF_USER_BL +
1110                       offsetof(struct bl_dedicated_registers_v0,
1111                                boot_loader_ready), 0);
1112                 /* this should be safe to write even with old BLs */
1113                 wil_w(wil, RGF_USER_BL +
1114                       offsetof(struct bl_dedicated_registers_v1,
1115                                bl_shutdown_handshake), 0);
1116         }
1117         /* Clear Fw Download notification */
1118         wil_c(wil, RGF_USER_USAGE_6, BIT(0));
1119
1120         wil_s(wil, RGF_CAF_OSC_CONTROL, BIT_CAF_OSC_XTAL_EN);
1121         /* XTAL stabilization should take about 3ms */
1122         usleep_range(5000, 7000);
1123         x = wil_r(wil, RGF_CAF_PLL_LOCK_STATUS);
1124         if (!(x & BIT_CAF_OSC_DIG_XTAL_STABLE)) {
1125                 wil_err(wil, "Xtal stabilization timeout\n"
1126                         "RGF_CAF_PLL_LOCK_STATUS = 0x%08x\n", x);
1127                 return -ETIME;
1128         }
1129         /* switch 10k to XTAL*/
1130         wil_c(wil, RGF_USER_SPARROW_M_4, BIT_SPARROW_M_4_SEL_SLEEP_OR_REF);
1131         /* 40 MHz */
1132         wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_CAR_AHB_SW_SEL);
1133
1134         wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x3ff81f);
1135         wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0xf);
1136
1137         if (wil->hw_version >= HW_VER_TALYN_MB) {
1138                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x7e000000);
1139                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1140                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0xc00000f0);
1141                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1142         } else {
1143                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0xfe000000);
1144                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1145                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x000000f0);
1146                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1147         }
1148
1149         wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x0);
1150         wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0x0);
1151
1152         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0);
1153         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0);
1154         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0);
1155         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1156
1157         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x00000003);
1158         /* reset A2 PCIE AHB */
1159         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x00008000);
1160
1161         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1162
1163         if (wil->hw_version == HW_VER_TALYN_MB)
1164                 rc = wil_wait_device_ready_talyn_mb(wil);
1165         else
1166                 rc = wil_wait_device_ready(wil, no_flash);
1167         if (rc)
1168                 return rc;
1169
1170         wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_RST_PWGD);
1171
1172         /* enable fix for HW bug related to the SA/DA swap in AP Rx */
1173         wil_s(wil, RGF_DMA_OFUL_NID_0, BIT_DMA_OFUL_NID_0_RX_EXT_TR_EN |
1174               BIT_DMA_OFUL_NID_0_RX_EXT_A3_SRC);
1175
1176         if (wil->hw_version < HW_VER_TALYN_MB && no_flash) {
1177                 /* Reset OTP HW vectors to fit 40MHz */
1178                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME1, 0x60001);
1179                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME2, 0x20027);
1180                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME3, 0x1);
1181                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME4, 0x20027);
1182                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME5, 0x30003);
1183                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME6, 0x20002);
1184                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME7, 0x60001);
1185                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME8, 0x60001);
1186                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME9, 0x60001);
1187                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME10, 0x60001);
1188                 wil_w(wil, RGF_USER_XPM_RD_DOUT_SAMPLE_TIME, 0x57);
1189         }
1190
1191         return 0;
1192 }
1193
1194 static void wil_collect_fw_info(struct wil6210_priv *wil)
1195 {
1196         struct wiphy *wiphy = wil_to_wiphy(wil);
1197         u8 retry_short;
1198         int rc;
1199
1200         wil_refresh_fw_capabilities(wil);
1201
1202         rc = wmi_get_mgmt_retry(wil, &retry_short);
1203         if (!rc) {
1204                 wiphy->retry_short = retry_short;
1205                 wil_dbg_misc(wil, "FW retry_short: %d\n", retry_short);
1206         }
1207 }
1208
1209 void wil_refresh_fw_capabilities(struct wil6210_priv *wil)
1210 {
1211         struct wiphy *wiphy = wil_to_wiphy(wil);
1212         int features;
1213
1214         wil->keep_radio_on_during_sleep =
1215                 test_bit(WIL_PLATFORM_CAPA_RADIO_ON_IN_SUSPEND,
1216                          wil->platform_capa) &&
1217                 test_bit(WMI_FW_CAPABILITY_D3_SUSPEND, wil->fw_capabilities);
1218
1219         wil_info(wil, "keep_radio_on_during_sleep (%d)\n",
1220                  wil->keep_radio_on_during_sleep);
1221
1222         if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
1223                 wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
1224         else
1225                 wiphy->signal_type = CFG80211_SIGNAL_TYPE_UNSPEC;
1226
1227         if (test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities)) {
1228                 wiphy->max_sched_scan_reqs = 1;
1229                 wiphy->max_sched_scan_ssids = WMI_MAX_PNO_SSID_NUM;
1230                 wiphy->max_match_sets = WMI_MAX_PNO_SSID_NUM;
1231                 wiphy->max_sched_scan_ie_len = WMI_MAX_IE_LEN;
1232                 wiphy->max_sched_scan_plans = WMI_MAX_PLANS_NUM;
1233         }
1234
1235         if (test_bit(WMI_FW_CAPABILITY_TX_REQ_EXT, wil->fw_capabilities))
1236                 wiphy->flags |= WIPHY_FLAG_OFFCHAN_TX;
1237
1238         if (wil->platform_ops.set_features) {
1239                 features = (test_bit(WMI_FW_CAPABILITY_REF_CLOCK_CONTROL,
1240                                      wil->fw_capabilities) &&
1241                             test_bit(WIL_PLATFORM_CAPA_EXT_CLK,
1242                                      wil->platform_capa)) ?
1243                         BIT(WIL_PLATFORM_FEATURE_FW_EXT_CLK_CONTROL) : 0;
1244
1245                 if (wil->n_msi == 3)
1246                         features |= BIT(WIL_PLATFORM_FEATURE_TRIPLE_MSI);
1247
1248                 wil->platform_ops.set_features(wil->platform_handle, features);
1249         }
1250
1251         if (test_bit(WMI_FW_CAPABILITY_BACK_WIN_SIZE_64,
1252                      wil->fw_capabilities)) {
1253                 wil->max_agg_wsize = WIL_MAX_AGG_WSIZE_64;
1254                 wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE_128;
1255         } else {
1256                 wil->max_agg_wsize = WIL_MAX_AGG_WSIZE;
1257                 wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE;
1258         }
1259
1260         update_supported_bands(wil);
1261 }
1262
1263 void wil_mbox_ring_le2cpus(struct wil6210_mbox_ring *r)
1264 {
1265         le32_to_cpus(&r->base);
1266         le16_to_cpus(&r->entry_size);
1267         le16_to_cpus(&r->size);
1268         le32_to_cpus(&r->tail);
1269         le32_to_cpus(&r->head);
1270 }
1271
1272 /* construct actual board file name to use */
1273 void wil_get_board_file(struct wil6210_priv *wil, char *buf, size_t len)
1274 {
1275         const char *board_file;
1276         const char *wil_talyn_fw_name = ftm_mode ? WIL_FW_NAME_FTM_TALYN :
1277                               WIL_FW_NAME_TALYN;
1278
1279         if (wil->board_file) {
1280                 board_file = wil->board_file;
1281         } else {
1282                 /* If specific FW file is used for Talyn,
1283                  * use specific board file
1284                  */
1285                 if (strcmp(wil->wil_fw_name, wil_talyn_fw_name) == 0)
1286                         board_file = WIL_BRD_NAME_TALYN;
1287                 else
1288                         board_file = WIL_BOARD_FILE_NAME;
1289         }
1290
1291         strlcpy(buf, board_file, len);
1292 }
1293
1294 static int wil_get_bl_info(struct wil6210_priv *wil)
1295 {
1296         struct net_device *ndev = wil->main_ndev;
1297         struct wiphy *wiphy = wil_to_wiphy(wil);
1298         union {
1299                 struct bl_dedicated_registers_v0 bl0;
1300                 struct bl_dedicated_registers_v1 bl1;
1301         } bl;
1302         u32 bl_ver;
1303         u8 *mac;
1304         u16 rf_status;
1305
1306         wil_memcpy_fromio_32(&bl, wil->csr + HOSTADDR(RGF_USER_BL),
1307                              sizeof(bl));
1308         bl_ver = le32_to_cpu(bl.bl0.boot_loader_struct_version);
1309         mac = bl.bl0.mac_address;
1310
1311         if (bl_ver == 0) {
1312                 le32_to_cpus(&bl.bl0.rf_type);
1313                 le32_to_cpus(&bl.bl0.baseband_type);
1314                 rf_status = 0; /* actually, unknown */
1315                 wil_info(wil,
1316                          "Boot Loader struct v%d: MAC = %pM RF = 0x%08x bband = 0x%08x\n",
1317                          bl_ver, mac,
1318                          bl.bl0.rf_type, bl.bl0.baseband_type);
1319                 wil_info(wil, "Boot Loader build unknown for struct v0\n");
1320         } else {
1321                 le16_to_cpus(&bl.bl1.rf_type);
1322                 rf_status = le16_to_cpu(bl.bl1.rf_status);
1323                 le32_to_cpus(&bl.bl1.baseband_type);
1324                 le16_to_cpus(&bl.bl1.bl_version_subminor);
1325                 le16_to_cpus(&bl.bl1.bl_version_build);
1326                 wil_info(wil,
1327                          "Boot Loader struct v%d: MAC = %pM RF = 0x%04x (status 0x%04x) bband = 0x%08x\n",
1328                          bl_ver, mac,
1329                          bl.bl1.rf_type, rf_status,
1330                          bl.bl1.baseband_type);
1331                 wil_info(wil, "Boot Loader build %d.%d.%d.%d\n",
1332                          bl.bl1.bl_version_major, bl.bl1.bl_version_minor,
1333                          bl.bl1.bl_version_subminor, bl.bl1.bl_version_build);
1334         }
1335
1336         if (!is_valid_ether_addr(mac)) {
1337                 wil_err(wil, "BL: Invalid MAC %pM\n", mac);
1338                 return -EINVAL;
1339         }
1340
1341         ether_addr_copy(ndev->perm_addr, mac);
1342         ether_addr_copy(wiphy->perm_addr, mac);
1343         if (!is_valid_ether_addr(ndev->dev_addr))
1344                 ether_addr_copy(ndev->dev_addr, mac);
1345
1346         if (rf_status) {/* bad RF cable? */
1347                 wil_err(wil, "RF communication error 0x%04x",
1348                         rf_status);
1349                 return -EAGAIN;
1350         }
1351
1352         return 0;
1353 }
1354
1355 static void wil_bl_crash_info(struct wil6210_priv *wil, bool is_err)
1356 {
1357         u32 bl_assert_code, bl_assert_blink, bl_magic_number;
1358         u32 bl_ver = wil_r(wil, RGF_USER_BL +
1359                            offsetof(struct bl_dedicated_registers_v0,
1360                                     boot_loader_struct_version));
1361
1362         if (bl_ver < 2)
1363                 return;
1364
1365         bl_assert_code = wil_r(wil, RGF_USER_BL +
1366                                offsetof(struct bl_dedicated_registers_v1,
1367                                         bl_assert_code));
1368         bl_assert_blink = wil_r(wil, RGF_USER_BL +
1369                                 offsetof(struct bl_dedicated_registers_v1,
1370                                          bl_assert_blink));
1371         bl_magic_number = wil_r(wil, RGF_USER_BL +
1372                                 offsetof(struct bl_dedicated_registers_v1,
1373                                          bl_magic_number));
1374
1375         if (is_err) {
1376                 wil_err(wil,
1377                         "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1378                         bl_assert_code, bl_assert_blink, bl_magic_number);
1379         } else {
1380                 wil_dbg_misc(wil,
1381                              "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1382                              bl_assert_code, bl_assert_blink, bl_magic_number);
1383         }
1384 }
1385
1386 static int wil_get_otp_info(struct wil6210_priv *wil)
1387 {
1388         struct net_device *ndev = wil->main_ndev;
1389         struct wiphy *wiphy = wil_to_wiphy(wil);
1390         u8 mac[8];
1391         int mac_addr;
1392
1393         if (wil->hw_version >= HW_VER_TALYN_MB)
1394                 mac_addr = RGF_OTP_MAC_TALYN_MB;
1395         else
1396                 mac_addr = RGF_OTP_MAC;
1397
1398         wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr),
1399                              sizeof(mac));
1400         if (!is_valid_ether_addr(mac)) {
1401                 wil_err(wil, "Invalid MAC %pM\n", mac);
1402                 return -EINVAL;
1403         }
1404
1405         ether_addr_copy(ndev->perm_addr, mac);
1406         ether_addr_copy(wiphy->perm_addr, mac);
1407         if (!is_valid_ether_addr(ndev->dev_addr))
1408                 ether_addr_copy(ndev->dev_addr, mac);
1409
1410         return 0;
1411 }
1412
1413 static int wil_wait_for_fw_ready(struct wil6210_priv *wil)
1414 {
1415         ulong to = msecs_to_jiffies(2000);
1416         ulong left = wait_for_completion_timeout(&wil->wmi_ready, to);
1417
1418         if (0 == left) {
1419                 wil_err(wil, "Firmware not ready\n");
1420                 return -ETIME;
1421         } else {
1422                 wil_info(wil, "FW ready after %d ms. HW version 0x%08x\n",
1423                          jiffies_to_msecs(to-left), wil->hw_version);
1424         }
1425         return 0;
1426 }
1427
1428 void wil_abort_scan(struct wil6210_vif *vif, bool sync)
1429 {
1430         struct wil6210_priv *wil = vif_to_wil(vif);
1431         int rc;
1432         struct cfg80211_scan_info info = {
1433                 .aborted = true,
1434         };
1435
1436         lockdep_assert_held(&wil->vif_mutex);
1437
1438         if (!vif->scan_request)
1439                 return;
1440
1441         wil_dbg_misc(wil, "Abort scan_request 0x%p\n", vif->scan_request);
1442         del_timer_sync(&vif->scan_timer);
1443         mutex_unlock(&wil->vif_mutex);
1444         rc = wmi_abort_scan(vif);
1445         if (!rc && sync)
1446                 wait_event_interruptible_timeout(wil->wq, !vif->scan_request,
1447                                                  msecs_to_jiffies(
1448                                                  WAIT_FOR_SCAN_ABORT_MS));
1449
1450         mutex_lock(&wil->vif_mutex);
1451         if (vif->scan_request) {
1452                 cfg80211_scan_done(vif->scan_request, &info);
1453                 vif->scan_request = NULL;
1454         }
1455 }
1456
1457 void wil_abort_scan_all_vifs(struct wil6210_priv *wil, bool sync)
1458 {
1459         int i;
1460
1461         lockdep_assert_held(&wil->vif_mutex);
1462
1463         for (i = 0; i < wil->max_vifs; i++) {
1464                 struct wil6210_vif *vif = wil->vifs[i];
1465
1466                 if (vif)
1467                         wil_abort_scan(vif, sync);
1468         }
1469 }
1470
1471 int wil_ps_update(struct wil6210_priv *wil, enum wmi_ps_profile_type ps_profile)
1472 {
1473         int rc;
1474
1475         if (!test_bit(WMI_FW_CAPABILITY_PS_CONFIG, wil->fw_capabilities)) {
1476                 wil_err(wil, "set_power_mgmt not supported\n");
1477                 return -EOPNOTSUPP;
1478         }
1479
1480         rc  = wmi_ps_dev_profile_cfg(wil, ps_profile);
1481         if (rc)
1482                 wil_err(wil, "wmi_ps_dev_profile_cfg failed (%d)\n", rc);
1483         else
1484                 wil->ps_profile = ps_profile;
1485
1486         return rc;
1487 }
1488
1489 static void wil_pre_fw_config(struct wil6210_priv *wil)
1490 {
1491         /* Mark FW as loaded from host */
1492         wil_s(wil, RGF_USER_USAGE_6, 1);
1493
1494         /* clear any interrupts which on-card-firmware
1495          * may have set
1496          */
1497         wil6210_clear_irq(wil);
1498         /* CAF_ICR - clear and mask */
1499         /* it is W1C, clear by writing back same value */
1500         if (wil->hw_version < HW_VER_TALYN_MB) {
1501                 wil_s(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, ICR), 0);
1502                 wil_w(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, IMV), ~0);
1503         } else {
1504                 wil_s(wil,
1505                       RGF_CAF_ICR_TALYN_MB + offsetof(struct RGF_ICR, ICR), 0);
1506                 wil_w(wil, RGF_CAF_ICR_TALYN_MB +
1507                       offsetof(struct RGF_ICR, IMV), ~0);
1508         }
1509         /* clear PAL_UNIT_ICR (potential D0->D3 leftover)
1510          * In Talyn-MB host cannot access this register due to
1511          * access control, hence PAL_UNIT_ICR is cleared by the FW
1512          */
1513         if (wil->hw_version < HW_VER_TALYN_MB)
1514                 wil_s(wil, RGF_PAL_UNIT_ICR + offsetof(struct RGF_ICR, ICR),
1515                       0);
1516
1517         if (wil->fw_calib_result > 0) {
1518                 __le32 val = cpu_to_le32(wil->fw_calib_result |
1519                                                 (CALIB_RESULT_SIGNATURE << 8));
1520                 wil_w(wil, RGF_USER_FW_CALIB_RESULT, (u32 __force)val);
1521         }
1522 }
1523
1524 static int wil_restore_vifs(struct wil6210_priv *wil)
1525 {
1526         struct wil6210_vif *vif;
1527         struct net_device *ndev;
1528         struct wireless_dev *wdev;
1529         int i, rc;
1530
1531         for (i = 0; i < wil->max_vifs; i++) {
1532                 vif = wil->vifs[i];
1533                 if (!vif)
1534                         continue;
1535                 vif->ap_isolate = 0;
1536                 if (vif->mid) {
1537                         ndev = vif_to_ndev(vif);
1538                         wdev = vif_to_wdev(vif);
1539                         rc = wmi_port_allocate(wil, vif->mid, ndev->dev_addr,
1540                                                wdev->iftype);
1541                         if (rc) {
1542                                 wil_err(wil, "fail to restore VIF %d type %d, rc %d\n",
1543                                         i, wdev->iftype, rc);
1544                                 return rc;
1545                         }
1546                 }
1547         }
1548
1549         return 0;
1550 }
1551
1552 /*
1553  * We reset all the structures, and we reset the UMAC.
1554  * After calling this routine, you're expected to reload
1555  * the firmware.
1556  */
1557 int wil_reset(struct wil6210_priv *wil, bool load_fw)
1558 {
1559         int rc, i;
1560         unsigned long status_flags = BIT(wil_status_resetting);
1561         int no_flash;
1562         struct wil6210_vif *vif;
1563
1564         wil_dbg_misc(wil, "reset\n");
1565
1566         WARN_ON(!mutex_is_locked(&wil->mutex));
1567         WARN_ON(test_bit(wil_status_napi_en, wil->status));
1568
1569         if (debug_fw) {
1570                 static const u8 mac[ETH_ALEN] = {
1571                         0x00, 0xde, 0xad, 0x12, 0x34, 0x56,
1572                 };
1573                 struct net_device *ndev = wil->main_ndev;
1574
1575                 ether_addr_copy(ndev->perm_addr, mac);
1576                 ether_addr_copy(ndev->dev_addr, ndev->perm_addr);
1577                 return 0;
1578         }
1579
1580         if (wil->hw_version == HW_VER_UNKNOWN)
1581                 return -ENODEV;
1582
1583         if (test_bit(WIL_PLATFORM_CAPA_T_PWR_ON_0, wil->platform_capa)) {
1584                 wil_dbg_misc(wil, "Notify FW to set T_POWER_ON=0\n");
1585                 wil_s(wil, RGF_USER_USAGE_8, BIT_USER_SUPPORT_T_POWER_ON_0);
1586         }
1587
1588         if (test_bit(WIL_PLATFORM_CAPA_EXT_CLK, wil->platform_capa)) {
1589                 wil_dbg_misc(wil, "Notify FW on ext clock configuration\n");
1590                 wil_s(wil, RGF_USER_USAGE_8, BIT_USER_EXT_CLK);
1591         }
1592
1593         if (wil->platform_ops.notify) {
1594                 rc = wil->platform_ops.notify(wil->platform_handle,
1595                                               WIL_PLATFORM_EVT_PRE_RESET);
1596                 if (rc)
1597                         wil_err(wil, "PRE_RESET platform notify failed, rc %d\n",
1598                                 rc);
1599         }
1600
1601         set_bit(wil_status_resetting, wil->status);
1602         if (test_bit(wil_status_collecting_dumps, wil->status)) {
1603                 /* Device collects crash dump, cancel the reset.
1604                  * following crash dump collection, reset would take place.
1605                  */
1606                 wil_dbg_misc(wil, "reject reset while collecting crash dump\n");
1607                 rc = -EBUSY;
1608                 goto out;
1609         }
1610
1611         mutex_lock(&wil->vif_mutex);
1612         wil_abort_scan_all_vifs(wil, false);
1613         mutex_unlock(&wil->vif_mutex);
1614
1615         for (i = 0; i < wil->max_vifs; i++) {
1616                 vif = wil->vifs[i];
1617                 if (vif) {
1618                         cancel_work_sync(&vif->disconnect_worker);
1619                         wil6210_disconnect(vif, NULL,
1620                                            WLAN_REASON_DEAUTH_LEAVING);
1621                 }
1622         }
1623         wil_bcast_fini_all(wil);
1624
1625         /* Disable device led before reset*/
1626         wmi_led_cfg(wil, false);
1627
1628         /* prevent NAPI from being scheduled and prevent wmi commands */
1629         mutex_lock(&wil->wmi_mutex);
1630         if (test_bit(wil_status_suspending, wil->status))
1631                 status_flags |= BIT(wil_status_suspending);
1632         bitmap_and(wil->status, wil->status, &status_flags,
1633                    wil_status_last);
1634         wil_dbg_misc(wil, "wil->status (0x%lx)\n", *wil->status);
1635         mutex_unlock(&wil->wmi_mutex);
1636
1637         wil_mask_irq(wil);
1638
1639         wmi_event_flush(wil);
1640
1641         flush_workqueue(wil->wq_service);
1642         flush_workqueue(wil->wmi_wq);
1643
1644         no_flash = test_bit(hw_capa_no_flash, wil->hw_capa);
1645         if (!no_flash)
1646                 wil_bl_crash_info(wil, false);
1647         wil_disable_irq(wil);
1648         rc = wil_target_reset(wil, no_flash);
1649         wil6210_clear_irq(wil);
1650         wil_enable_irq(wil);
1651         wil->txrx_ops.rx_fini(wil);
1652         wil->txrx_ops.tx_fini(wil);
1653         if (rc) {
1654                 if (!no_flash)
1655                         wil_bl_crash_info(wil, true);
1656                 goto out;
1657         }
1658
1659         if (no_flash) {
1660                 rc = wil_get_otp_info(wil);
1661         } else {
1662                 rc = wil_get_bl_info(wil);
1663                 if (rc == -EAGAIN && !load_fw)
1664                         /* ignore RF error if not going up */
1665                         rc = 0;
1666         }
1667         if (rc)
1668                 goto out;
1669
1670         wil_set_oob_mode(wil, oob_mode);
1671         if (load_fw) {
1672                 char board_file[WIL_BOARD_FILE_MAX_NAMELEN];
1673
1674                 if  (wil->secured_boot) {
1675                         wil_err(wil, "secured boot is not supported\n");
1676                         return -ENOTSUPP;
1677                 }
1678
1679                 board_file[0] = '\0';
1680                 wil_get_board_file(wil, board_file, sizeof(board_file));
1681                 wil_info(wil, "Use firmware <%s> + board <%s>\n",
1682                          wil->wil_fw_name, board_file);
1683
1684                 if (!no_flash)
1685                         wil_bl_prepare_halt(wil);
1686
1687                 wil_halt_cpu(wil);
1688                 memset(wil->fw_version, 0, sizeof(wil->fw_version));
1689                 /* Loading f/w from the file */
1690                 rc = wil_request_firmware(wil, wil->wil_fw_name, true);
1691                 if (rc)
1692                         goto out;
1693                 if (wil->brd_file_addr)
1694                         rc = wil_request_board(wil, board_file);
1695                 else
1696                         rc = wil_request_firmware(wil, board_file, true);
1697                 if (rc)
1698                         goto out;
1699
1700                 wil_pre_fw_config(wil);
1701                 wil_release_cpu(wil);
1702         }
1703
1704         /* init after reset */
1705         reinit_completion(&wil->wmi_ready);
1706         reinit_completion(&wil->wmi_call);
1707         reinit_completion(&wil->halp.comp);
1708
1709         clear_bit(wil_status_resetting, wil->status);
1710
1711         if (load_fw) {
1712                 wil_unmask_irq(wil);
1713
1714                 /* we just started MAC, wait for FW ready */
1715                 rc = wil_wait_for_fw_ready(wil);
1716                 if (rc)
1717                         return rc;
1718
1719                 /* check FW is responsive */
1720                 rc = wmi_echo(wil);
1721                 if (rc) {
1722                         wil_err(wil, "wmi_echo failed, rc %d\n", rc);
1723                         return rc;
1724                 }
1725
1726                 wil->txrx_ops.configure_interrupt_moderation(wil);
1727
1728                 /* Enable OFU rdy valid bug fix, to prevent hang in oful34_rx
1729                  * while there is back-pressure from Host during RX
1730                  */
1731                 if (wil->hw_version >= HW_VER_TALYN_MB)
1732                         wil_s(wil, RGF_DMA_MISC_CTL,
1733                               BIT_OFUL34_RDY_VALID_BUG_FIX_EN);
1734
1735                 rc = wil_restore_vifs(wil);
1736                 if (rc) {
1737                         wil_err(wil, "failed to restore vifs, rc %d\n", rc);
1738                         return rc;
1739                 }
1740
1741                 wil_collect_fw_info(wil);
1742
1743                 if (wil->ps_profile != WMI_PS_PROFILE_TYPE_DEFAULT)
1744                         wil_ps_update(wil, wil->ps_profile);
1745
1746                 if (wil->platform_ops.notify) {
1747                         rc = wil->platform_ops.notify(wil->platform_handle,
1748                                                       WIL_PLATFORM_EVT_FW_RDY);
1749                         if (rc) {
1750                                 wil_err(wil, "FW_RDY notify failed, rc %d\n",
1751                                         rc);
1752                                 rc = 0;
1753                         }
1754                 }
1755         }
1756
1757         return rc;
1758
1759 out:
1760         clear_bit(wil_status_resetting, wil->status);
1761         return rc;
1762 }
1763
1764 void wil_fw_error_recovery(struct wil6210_priv *wil)
1765 {
1766         wil_dbg_misc(wil, "starting fw error recovery\n");
1767
1768         if (test_bit(wil_status_resetting, wil->status)) {
1769                 wil_info(wil, "Reset already in progress\n");
1770                 return;
1771         }
1772
1773         wil->recovery_state = fw_recovery_pending;
1774         schedule_work(&wil->fw_error_worker);
1775 }
1776
1777 int __wil_up(struct wil6210_priv *wil)
1778 {
1779         struct net_device *ndev = wil->main_ndev;
1780         struct wireless_dev *wdev = ndev->ieee80211_ptr;
1781         int rc;
1782
1783         WARN_ON(!mutex_is_locked(&wil->mutex));
1784
1785         rc = wil_reset(wil, true);
1786         if (rc)
1787                 return rc;
1788
1789         /* Rx RING. After MAC and beacon */
1790         if (rx_ring_order == 0)
1791                 rx_ring_order = wil->hw_version < HW_VER_TALYN_MB ?
1792                         WIL_RX_RING_SIZE_ORDER_DEFAULT :
1793                         WIL_RX_RING_SIZE_ORDER_TALYN_DEFAULT;
1794
1795         rc = wil->txrx_ops.rx_init(wil, rx_ring_order);
1796         if (rc)
1797                 return rc;
1798
1799         rc = wil->txrx_ops.tx_init(wil);
1800         if (rc)
1801                 return rc;
1802
1803         switch (wdev->iftype) {
1804         case NL80211_IFTYPE_STATION:
1805                 wil_dbg_misc(wil, "type: STATION\n");
1806                 ndev->type = ARPHRD_ETHER;
1807                 break;
1808         case NL80211_IFTYPE_AP:
1809                 wil_dbg_misc(wil, "type: AP\n");
1810                 ndev->type = ARPHRD_ETHER;
1811                 break;
1812         case NL80211_IFTYPE_P2P_CLIENT:
1813                 wil_dbg_misc(wil, "type: P2P_CLIENT\n");
1814                 ndev->type = ARPHRD_ETHER;
1815                 break;
1816         case NL80211_IFTYPE_P2P_GO:
1817                 wil_dbg_misc(wil, "type: P2P_GO\n");
1818                 ndev->type = ARPHRD_ETHER;
1819                 break;
1820         case NL80211_IFTYPE_MONITOR:
1821                 wil_dbg_misc(wil, "type: Monitor\n");
1822                 ndev->type = ARPHRD_IEEE80211_RADIOTAP;
1823                 /* ARPHRD_IEEE80211 or ARPHRD_IEEE80211_RADIOTAP ? */
1824                 break;
1825         default:
1826                 return -EOPNOTSUPP;
1827         }
1828
1829         /* MAC address - pre-requisite for other commands */
1830         wmi_set_mac_address(wil, ndev->dev_addr);
1831
1832         wil_dbg_misc(wil, "NAPI enable\n");
1833         napi_enable(&wil->napi_rx);
1834         napi_enable(&wil->napi_tx);
1835         set_bit(wil_status_napi_en, wil->status);
1836
1837         wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
1838
1839         return 0;
1840 }
1841
1842 int wil_up(struct wil6210_priv *wil)
1843 {
1844         int rc;
1845
1846         wil_dbg_misc(wil, "up\n");
1847
1848         mutex_lock(&wil->mutex);
1849         rc = __wil_up(wil);
1850         mutex_unlock(&wil->mutex);
1851
1852         return rc;
1853 }
1854
1855 int __wil_down(struct wil6210_priv *wil)
1856 {
1857         WARN_ON(!mutex_is_locked(&wil->mutex));
1858
1859         set_bit(wil_status_resetting, wil->status);
1860
1861         wil6210_bus_request(wil, 0);
1862
1863         wil_disable_irq(wil);
1864         if (test_and_clear_bit(wil_status_napi_en, wil->status)) {
1865                 napi_disable(&wil->napi_rx);
1866                 napi_disable(&wil->napi_tx);
1867                 wil_dbg_misc(wil, "NAPI disable\n");
1868         }
1869         wil_enable_irq(wil);
1870
1871         mutex_lock(&wil->vif_mutex);
1872         wil_p2p_stop_radio_operations(wil);
1873         wil_abort_scan_all_vifs(wil, false);
1874         mutex_unlock(&wil->vif_mutex);
1875
1876         return wil_reset(wil, false);
1877 }
1878
1879 int wil_down(struct wil6210_priv *wil)
1880 {
1881         int rc;
1882
1883         wil_dbg_misc(wil, "down\n");
1884
1885         wil_set_recovery_state(wil, fw_recovery_idle);
1886         mutex_lock(&wil->mutex);
1887         rc = __wil_down(wil);
1888         mutex_unlock(&wil->mutex);
1889
1890         return rc;
1891 }
1892
1893 int wil_find_cid(struct wil6210_priv *wil, u8 mid, const u8 *mac)
1894 {
1895         int i;
1896         int rc = -ENOENT;
1897
1898         for (i = 0; i < ARRAY_SIZE(wil->sta); i++) {
1899                 if (wil->sta[i].mid == mid &&
1900                     wil->sta[i].status != wil_sta_unused &&
1901                     ether_addr_equal(wil->sta[i].addr, mac)) {
1902                         rc = i;
1903                         break;
1904                 }
1905         }
1906
1907         return rc;
1908 }
1909
1910 void wil_halp_vote(struct wil6210_priv *wil)
1911 {
1912         unsigned long rc;
1913         unsigned long to_jiffies = msecs_to_jiffies(WAIT_FOR_HALP_VOTE_MS);
1914
1915         mutex_lock(&wil->halp.lock);
1916
1917         wil_dbg_irq(wil, "halp_vote: start, HALP ref_cnt (%d)\n",
1918                     wil->halp.ref_cnt);
1919
1920         if (++wil->halp.ref_cnt == 1) {
1921                 reinit_completion(&wil->halp.comp);
1922                 wil6210_set_halp(wil);
1923                 rc = wait_for_completion_timeout(&wil->halp.comp, to_jiffies);
1924                 if (!rc) {
1925                         wil_err(wil, "HALP vote timed out\n");
1926                         /* Mask HALP as done in case the interrupt is raised */
1927                         wil6210_mask_halp(wil);
1928                 } else {
1929                         wil_dbg_irq(wil,
1930                                     "halp_vote: HALP vote completed after %d ms\n",
1931                                     jiffies_to_msecs(to_jiffies - rc));
1932                 }
1933         }
1934
1935         wil_dbg_irq(wil, "halp_vote: end, HALP ref_cnt (%d)\n",
1936                     wil->halp.ref_cnt);
1937
1938         mutex_unlock(&wil->halp.lock);
1939 }
1940
1941 void wil_halp_unvote(struct wil6210_priv *wil)
1942 {
1943         WARN_ON(wil->halp.ref_cnt == 0);
1944
1945         mutex_lock(&wil->halp.lock);
1946
1947         wil_dbg_irq(wil, "halp_unvote: start, HALP ref_cnt (%d)\n",
1948                     wil->halp.ref_cnt);
1949
1950         if (--wil->halp.ref_cnt == 0) {
1951                 wil6210_clear_halp(wil);
1952                 wil_dbg_irq(wil, "HALP unvote\n");
1953         }
1954
1955         wil_dbg_irq(wil, "halp_unvote:end, HALP ref_cnt (%d)\n",
1956                     wil->halp.ref_cnt);
1957
1958         mutex_unlock(&wil->halp.lock);
1959 }
1960
1961 void wil_init_txrx_ops(struct wil6210_priv *wil)
1962 {
1963         if (wil->use_enhanced_dma_hw)
1964                 wil_init_txrx_ops_edma(wil);
1965         else
1966                 wil_init_txrx_ops_legacy_dma(wil);
1967 }