ath9k_hw: move clock definitions from hw.c to hw.h
[linux-2.6-microblaze.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2  * Copyright (c) 2008-2010 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <asm/unaligned.h>
20
21 #include "hw.h"
22 #include "hw-ops.h"
23 #include "rc.h"
24 #include "ar9003_mac.h"
25
26 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
27
28 MODULE_AUTHOR("Atheros Communications");
29 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31 MODULE_LICENSE("Dual BSD/GPL");
32
33 static int __init ath9k_init(void)
34 {
35         return 0;
36 }
37 module_init(ath9k_init);
38
39 static void __exit ath9k_exit(void)
40 {
41         return;
42 }
43 module_exit(ath9k_exit);
44
45 /* Private hardware callbacks */
46
47 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
48 {
49         ath9k_hw_private_ops(ah)->init_cal_settings(ah);
50 }
51
52 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
53 {
54         ath9k_hw_private_ops(ah)->init_mode_regs(ah);
55 }
56
57 static bool ath9k_hw_macversion_supported(struct ath_hw *ah)
58 {
59         struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
60
61         return priv_ops->macversion_supported(ah->hw_version.macVersion);
62 }
63
64 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
65                                         struct ath9k_channel *chan)
66 {
67         return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
68 }
69
70 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
71 {
72         if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
73                 return;
74
75         ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
76 }
77
78 /********************/
79 /* Helper Functions */
80 /********************/
81
82 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
83 {
84         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
85
86         if (!ah->curchan) /* should really check for CCK instead */
87                 return usecs *ATH9K_CLOCK_RATE_CCK;
88         if (conf->channel->band == IEEE80211_BAND_2GHZ)
89                 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
90
91         if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
92                 return usecs * ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
93         else
94                 return usecs * ATH9K_CLOCK_RATE_5GHZ_OFDM;
95 }
96
97 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
98 {
99         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
100
101         if (conf_is_ht40(conf))
102                 return ath9k_hw_mac_clks(ah, usecs) * 2;
103         else
104                 return ath9k_hw_mac_clks(ah, usecs);
105 }
106
107 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
108 {
109         int i;
110
111         BUG_ON(timeout < AH_TIME_QUANTUM);
112
113         for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
114                 if ((REG_READ(ah, reg) & mask) == val)
115                         return true;
116
117                 udelay(AH_TIME_QUANTUM);
118         }
119
120         ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
121                   "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
122                   timeout, reg, REG_READ(ah, reg), mask, val);
123
124         return false;
125 }
126 EXPORT_SYMBOL(ath9k_hw_wait);
127
128 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
129 {
130         u32 retval;
131         int i;
132
133         for (i = 0, retval = 0; i < n; i++) {
134                 retval = (retval << 1) | (val & 1);
135                 val >>= 1;
136         }
137         return retval;
138 }
139
140 bool ath9k_get_channel_edges(struct ath_hw *ah,
141                              u16 flags, u16 *low,
142                              u16 *high)
143 {
144         struct ath9k_hw_capabilities *pCap = &ah->caps;
145
146         if (flags & CHANNEL_5GHZ) {
147                 *low = pCap->low_5ghz_chan;
148                 *high = pCap->high_5ghz_chan;
149                 return true;
150         }
151         if ((flags & CHANNEL_2GHZ)) {
152                 *low = pCap->low_2ghz_chan;
153                 *high = pCap->high_2ghz_chan;
154                 return true;
155         }
156         return false;
157 }
158
159 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
160                            u8 phy, int kbps,
161                            u32 frameLen, u16 rateix,
162                            bool shortPreamble)
163 {
164         u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
165
166         if (kbps == 0)
167                 return 0;
168
169         switch (phy) {
170         case WLAN_RC_PHY_CCK:
171                 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
172                 if (shortPreamble)
173                         phyTime >>= 1;
174                 numBits = frameLen << 3;
175                 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
176                 break;
177         case WLAN_RC_PHY_OFDM:
178                 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
179                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
180                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
181                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
182                         txTime = OFDM_SIFS_TIME_QUARTER
183                                 + OFDM_PREAMBLE_TIME_QUARTER
184                                 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
185                 } else if (ah->curchan &&
186                            IS_CHAN_HALF_RATE(ah->curchan)) {
187                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
188                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
189                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
190                         txTime = OFDM_SIFS_TIME_HALF +
191                                 OFDM_PREAMBLE_TIME_HALF
192                                 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
193                 } else {
194                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
195                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
196                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
197                         txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
198                                 + (numSymbols * OFDM_SYMBOL_TIME);
199                 }
200                 break;
201         default:
202                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
203                           "Unknown phy %u (rate ix %u)\n", phy, rateix);
204                 txTime = 0;
205                 break;
206         }
207
208         return txTime;
209 }
210 EXPORT_SYMBOL(ath9k_hw_computetxtime);
211
212 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
213                                   struct ath9k_channel *chan,
214                                   struct chan_centers *centers)
215 {
216         int8_t extoff;
217
218         if (!IS_CHAN_HT40(chan)) {
219                 centers->ctl_center = centers->ext_center =
220                         centers->synth_center = chan->channel;
221                 return;
222         }
223
224         if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
225             (chan->chanmode == CHANNEL_G_HT40PLUS)) {
226                 centers->synth_center =
227                         chan->channel + HT40_CHANNEL_CENTER_SHIFT;
228                 extoff = 1;
229         } else {
230                 centers->synth_center =
231                         chan->channel - HT40_CHANNEL_CENTER_SHIFT;
232                 extoff = -1;
233         }
234
235         centers->ctl_center =
236                 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
237         /* 25 MHz spacing is supported by hw but not on upper layers */
238         centers->ext_center =
239                 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
240 }
241
242 /******************/
243 /* Chip Revisions */
244 /******************/
245
246 static void ath9k_hw_read_revisions(struct ath_hw *ah)
247 {
248         u32 val;
249
250         val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
251
252         if (val == 0xFF) {
253                 val = REG_READ(ah, AR_SREV);
254                 ah->hw_version.macVersion =
255                         (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
256                 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
257                 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
258         } else {
259                 if (!AR_SREV_9100(ah))
260                         ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
261
262                 ah->hw_version.macRev = val & AR_SREV_REVISION;
263
264                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
265                         ah->is_pciexpress = true;
266         }
267 }
268
269 /************************************/
270 /* HW Attach, Detach, Init Routines */
271 /************************************/
272
273 static void ath9k_hw_disablepcie(struct ath_hw *ah)
274 {
275         if (AR_SREV_9100(ah))
276                 return;
277
278         ENABLE_REGWRITE_BUFFER(ah);
279
280         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
281         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
282         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
283         REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
284         REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
285         REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
286         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
287         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
288         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
289
290         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
291
292         REGWRITE_BUFFER_FLUSH(ah);
293         DISABLE_REGWRITE_BUFFER(ah);
294 }
295
296 /* This should work for all families including legacy */
297 static bool ath9k_hw_chip_test(struct ath_hw *ah)
298 {
299         struct ath_common *common = ath9k_hw_common(ah);
300         u32 regAddr[2] = { AR_STA_ID0 };
301         u32 regHold[2];
302         u32 patternData[4] = { 0x55555555,
303                                0xaaaaaaaa,
304                                0x66666666,
305                                0x99999999 };
306         int i, j, loop_max;
307
308         if (!AR_SREV_9300_20_OR_LATER(ah)) {
309                 loop_max = 2;
310                 regAddr[1] = AR_PHY_BASE + (8 << 2);
311         } else
312                 loop_max = 1;
313
314         for (i = 0; i < loop_max; i++) {
315                 u32 addr = regAddr[i];
316                 u32 wrData, rdData;
317
318                 regHold[i] = REG_READ(ah, addr);
319                 for (j = 0; j < 0x100; j++) {
320                         wrData = (j << 16) | j;
321                         REG_WRITE(ah, addr, wrData);
322                         rdData = REG_READ(ah, addr);
323                         if (rdData != wrData) {
324                                 ath_print(common, ATH_DBG_FATAL,
325                                           "address test failed "
326                                           "addr: 0x%08x - wr:0x%08x != "
327                                           "rd:0x%08x\n",
328                                           addr, wrData, rdData);
329                                 return false;
330                         }
331                 }
332                 for (j = 0; j < 4; j++) {
333                         wrData = patternData[j];
334                         REG_WRITE(ah, addr, wrData);
335                         rdData = REG_READ(ah, addr);
336                         if (wrData != rdData) {
337                                 ath_print(common, ATH_DBG_FATAL,
338                                           "address test failed "
339                                           "addr: 0x%08x - wr:0x%08x != "
340                                           "rd:0x%08x\n",
341                                           addr, wrData, rdData);
342                                 return false;
343                         }
344                 }
345                 REG_WRITE(ah, regAddr[i], regHold[i]);
346         }
347         udelay(100);
348
349         return true;
350 }
351
352 static void ath9k_hw_init_config(struct ath_hw *ah)
353 {
354         int i;
355
356         ah->config.dma_beacon_response_time = 2;
357         ah->config.sw_beacon_response_time = 10;
358         ah->config.additional_swba_backoff = 0;
359         ah->config.ack_6mb = 0x0;
360         ah->config.cwm_ignore_extcca = 0;
361         ah->config.pcie_powersave_enable = 0;
362         ah->config.pcie_clock_req = 0;
363         ah->config.pcie_waen = 0;
364         ah->config.analog_shiftreg = 1;
365         ah->config.ofdm_trig_low = 200;
366         ah->config.ofdm_trig_high = 500;
367         ah->config.cck_trig_high = 200;
368         ah->config.cck_trig_low = 100;
369
370         /*
371          * For now ANI is disabled for AR9003, it is still
372          * being tested.
373          */
374         if (!AR_SREV_9300_20_OR_LATER(ah))
375                 ah->config.enable_ani = 1;
376
377         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
378                 ah->config.spurchans[i][0] = AR_NO_SPUR;
379                 ah->config.spurchans[i][1] = AR_NO_SPUR;
380         }
381
382         if (ah->hw_version.devid != AR2427_DEVID_PCIE)
383                 ah->config.ht_enable = 1;
384         else
385                 ah->config.ht_enable = 0;
386
387         ah->config.rx_intr_mitigation = true;
388
389         /*
390          * We need this for PCI devices only (Cardbus, PCI, miniPCI)
391          * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
392          * This means we use it for all AR5416 devices, and the few
393          * minor PCI AR9280 devices out there.
394          *
395          * Serialization is required because these devices do not handle
396          * well the case of two concurrent reads/writes due to the latency
397          * involved. During one read/write another read/write can be issued
398          * on another CPU while the previous read/write may still be working
399          * on our hardware, if we hit this case the hardware poops in a loop.
400          * We prevent this by serializing reads and writes.
401          *
402          * This issue is not present on PCI-Express devices or pre-AR5416
403          * devices (legacy, 802.11abg).
404          */
405         if (num_possible_cpus() > 1)
406                 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
407 }
408
409 static void ath9k_hw_init_defaults(struct ath_hw *ah)
410 {
411         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
412
413         regulatory->country_code = CTRY_DEFAULT;
414         regulatory->power_limit = MAX_RATE_POWER;
415         regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
416
417         ah->hw_version.magic = AR5416_MAGIC;
418         ah->hw_version.subvendorid = 0;
419
420         ah->ah_flags = 0;
421         if (!AR_SREV_9100(ah))
422                 ah->ah_flags = AH_USE_EEPROM;
423
424         ah->atim_window = 0;
425         ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
426         ah->beacon_interval = 100;
427         ah->enable_32kHz_clock = DONT_USE_32KHZ;
428         ah->slottime = (u32) -1;
429         ah->globaltxtimeout = (u32) -1;
430         ah->power_mode = ATH9K_PM_UNDEFINED;
431 }
432
433 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
434 {
435         struct ath_common *common = ath9k_hw_common(ah);
436         u32 sum;
437         int i;
438         u16 eeval;
439         u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
440
441         sum = 0;
442         for (i = 0; i < 3; i++) {
443                 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
444                 sum += eeval;
445                 common->macaddr[2 * i] = eeval >> 8;
446                 common->macaddr[2 * i + 1] = eeval & 0xff;
447         }
448         if (sum == 0 || sum == 0xffff * 3)
449                 return -EADDRNOTAVAIL;
450
451         return 0;
452 }
453
454 static int ath9k_hw_post_init(struct ath_hw *ah)
455 {
456         int ecode;
457
458         if (!AR_SREV_9271(ah)) {
459                 if (!ath9k_hw_chip_test(ah))
460                         return -ENODEV;
461         }
462
463         if (!AR_SREV_9300_20_OR_LATER(ah)) {
464                 ecode = ar9002_hw_rf_claim(ah);
465                 if (ecode != 0)
466                         return ecode;
467         }
468
469         ecode = ath9k_hw_eeprom_init(ah);
470         if (ecode != 0)
471                 return ecode;
472
473         ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
474                   "Eeprom VER: %d, REV: %d\n",
475                   ah->eep_ops->get_eeprom_ver(ah),
476                   ah->eep_ops->get_eeprom_rev(ah));
477
478         ecode = ath9k_hw_rf_alloc_ext_banks(ah);
479         if (ecode) {
480                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
481                           "Failed allocating banks for "
482                           "external radio\n");
483                 return ecode;
484         }
485
486         if (!AR_SREV_9100(ah)) {
487                 ath9k_hw_ani_setup(ah);
488                 ath9k_hw_ani_init(ah);
489         }
490
491         return 0;
492 }
493
494 static void ath9k_hw_attach_ops(struct ath_hw *ah)
495 {
496         if (AR_SREV_9300_20_OR_LATER(ah))
497                 ar9003_hw_attach_ops(ah);
498         else
499                 ar9002_hw_attach_ops(ah);
500 }
501
502 /* Called for all hardware families */
503 static int __ath9k_hw_init(struct ath_hw *ah)
504 {
505         struct ath_common *common = ath9k_hw_common(ah);
506         int r = 0;
507
508         if (ah->hw_version.devid == AR5416_AR9100_DEVID)
509                 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
510
511         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
512                 ath_print(common, ATH_DBG_FATAL,
513                           "Couldn't reset chip\n");
514                 return -EIO;
515         }
516
517         ath9k_hw_init_defaults(ah);
518         ath9k_hw_init_config(ah);
519
520         ath9k_hw_attach_ops(ah);
521
522         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
523                 ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
524                 return -EIO;
525         }
526
527         if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
528                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
529                     (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
530                         ah->config.serialize_regmode =
531                                 SER_REG_MODE_ON;
532                 } else {
533                         ah->config.serialize_regmode =
534                                 SER_REG_MODE_OFF;
535                 }
536         }
537
538         ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
539                 ah->config.serialize_regmode);
540
541         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
542                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
543         else
544                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
545
546         if (!ath9k_hw_macversion_supported(ah)) {
547                 ath_print(common, ATH_DBG_FATAL,
548                           "Mac Chip Rev 0x%02x.%x is not supported by "
549                           "this driver\n", ah->hw_version.macVersion,
550                           ah->hw_version.macRev);
551                 return -EOPNOTSUPP;
552         }
553
554         if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
555                 ah->is_pciexpress = false;
556
557         ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
558         ath9k_hw_init_cal_settings(ah);
559
560         ah->ani_function = ATH9K_ANI_ALL;
561         if (AR_SREV_9280_10_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
562                 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
563
564         ath9k_hw_init_mode_regs(ah);
565
566         /*
567          * Configire PCIE after Ini init. SERDES values now come from ini file
568          * This enables PCIe low power mode.
569          */
570         if (AR_SREV_9300_20_OR_LATER(ah)) {
571                 u32 regval;
572                 unsigned int i;
573
574                 /* Set Bits 16 and 17 in the AR_WA register. */
575                 regval = REG_READ(ah, AR_WA);
576                 regval |= 0x00030000;
577                 REG_WRITE(ah, AR_WA, regval);
578
579                 for (i = 0; i < ah->iniPcieSerdesLowPower.ia_rows; i++) {
580                         REG_WRITE(ah,
581                                   INI_RA(&ah->iniPcieSerdesLowPower, i, 0),
582                                   INI_RA(&ah->iniPcieSerdesLowPower, i, 1));
583                 }
584         }
585
586         if (ah->is_pciexpress)
587                 ath9k_hw_configpcipowersave(ah, 0, 0);
588         else
589                 ath9k_hw_disablepcie(ah);
590
591         if (!AR_SREV_9300_20_OR_LATER(ah))
592                 ar9002_hw_cck_chan14_spread(ah);
593
594         r = ath9k_hw_post_init(ah);
595         if (r)
596                 return r;
597
598         ath9k_hw_init_mode_gain_regs(ah);
599         r = ath9k_hw_fill_cap_info(ah);
600         if (r)
601                 return r;
602
603         r = ath9k_hw_init_macaddr(ah);
604         if (r) {
605                 ath_print(common, ATH_DBG_FATAL,
606                           "Failed to initialize MAC address\n");
607                 return r;
608         }
609
610         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
611                 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
612         else
613                 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
614
615         if (AR_SREV_9300_20_OR_LATER(ah))
616                 ar9003_hw_set_nf_limits(ah);
617
618         ath9k_init_nfcal_hist_buffer(ah);
619         ah->bb_watchdog_timeout_ms = 25;
620
621         common->state = ATH_HW_INITIALIZED;
622
623         return 0;
624 }
625
626 int ath9k_hw_init(struct ath_hw *ah)
627 {
628         int ret;
629         struct ath_common *common = ath9k_hw_common(ah);
630
631         /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
632         switch (ah->hw_version.devid) {
633         case AR5416_DEVID_PCI:
634         case AR5416_DEVID_PCIE:
635         case AR5416_AR9100_DEVID:
636         case AR9160_DEVID_PCI:
637         case AR9280_DEVID_PCI:
638         case AR9280_DEVID_PCIE:
639         case AR9285_DEVID_PCIE:
640         case AR9287_DEVID_PCI:
641         case AR9287_DEVID_PCIE:
642         case AR2427_DEVID_PCIE:
643         case AR9300_DEVID_PCIE:
644                 break;
645         default:
646                 if (common->bus_ops->ath_bus_type == ATH_USB)
647                         break;
648                 ath_print(common, ATH_DBG_FATAL,
649                           "Hardware device ID 0x%04x not supported\n",
650                           ah->hw_version.devid);
651                 return -EOPNOTSUPP;
652         }
653
654         ret = __ath9k_hw_init(ah);
655         if (ret) {
656                 ath_print(common, ATH_DBG_FATAL,
657                           "Unable to initialize hardware; "
658                           "initialization status: %d\n", ret);
659                 return ret;
660         }
661
662         return 0;
663 }
664 EXPORT_SYMBOL(ath9k_hw_init);
665
666 static void ath9k_hw_init_qos(struct ath_hw *ah)
667 {
668         ENABLE_REGWRITE_BUFFER(ah);
669
670         REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
671         REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
672
673         REG_WRITE(ah, AR_QOS_NO_ACK,
674                   SM(2, AR_QOS_NO_ACK_TWO_BIT) |
675                   SM(5, AR_QOS_NO_ACK_BIT_OFF) |
676                   SM(0, AR_QOS_NO_ACK_BYTE_OFF));
677
678         REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
679         REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
680         REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
681         REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
682         REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
683
684         REGWRITE_BUFFER_FLUSH(ah);
685         DISABLE_REGWRITE_BUFFER(ah);
686 }
687
688 static void ath9k_hw_init_pll(struct ath_hw *ah,
689                               struct ath9k_channel *chan)
690 {
691         u32 pll = ath9k_hw_compute_pll_control(ah, chan);
692
693         REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
694
695         /* Switch the core clock for ar9271 to 117Mhz */
696         if (AR_SREV_9271(ah)) {
697                 udelay(500);
698                 REG_WRITE(ah, 0x50040, 0x304);
699         }
700
701         udelay(RTC_PLL_SETTLE_DELAY);
702
703         REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
704 }
705
706 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
707                                           enum nl80211_iftype opmode)
708 {
709         u32 imr_reg = AR_IMR_TXERR |
710                 AR_IMR_TXURN |
711                 AR_IMR_RXERR |
712                 AR_IMR_RXORN |
713                 AR_IMR_BCNMISC;
714
715         if (AR_SREV_9300_20_OR_LATER(ah)) {
716                 imr_reg |= AR_IMR_RXOK_HP;
717                 if (ah->config.rx_intr_mitigation)
718                         imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
719                 else
720                         imr_reg |= AR_IMR_RXOK_LP;
721
722         } else {
723                 if (ah->config.rx_intr_mitigation)
724                         imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
725                 else
726                         imr_reg |= AR_IMR_RXOK;
727         }
728
729         if (ah->config.tx_intr_mitigation)
730                 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
731         else
732                 imr_reg |= AR_IMR_TXOK;
733
734         if (opmode == NL80211_IFTYPE_AP)
735                 imr_reg |= AR_IMR_MIB;
736
737         ENABLE_REGWRITE_BUFFER(ah);
738
739         REG_WRITE(ah, AR_IMR, imr_reg);
740         ah->imrs2_reg |= AR_IMR_S2_GTT;
741         REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
742
743         if (!AR_SREV_9100(ah)) {
744                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
745                 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
746                 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
747         }
748
749         REGWRITE_BUFFER_FLUSH(ah);
750         DISABLE_REGWRITE_BUFFER(ah);
751
752         if (AR_SREV_9300_20_OR_LATER(ah)) {
753                 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
754                 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
755                 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
756                 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
757         }
758 }
759
760 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
761 {
762         u32 val = ath9k_hw_mac_to_clks(ah, us);
763         val = min(val, (u32) 0xFFFF);
764         REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
765 }
766
767 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
768 {
769         u32 val = ath9k_hw_mac_to_clks(ah, us);
770         val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
771         REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
772 }
773
774 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
775 {
776         u32 val = ath9k_hw_mac_to_clks(ah, us);
777         val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
778         REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
779 }
780
781 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
782 {
783         if (tu > 0xFFFF) {
784                 ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
785                           "bad global tx timeout %u\n", tu);
786                 ah->globaltxtimeout = (u32) -1;
787                 return false;
788         } else {
789                 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
790                 ah->globaltxtimeout = tu;
791                 return true;
792         }
793 }
794
795 void ath9k_hw_init_global_settings(struct ath_hw *ah)
796 {
797         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
798         int acktimeout;
799         int slottime;
800         int sifstime;
801
802         ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
803                   ah->misc_mode);
804
805         if (ah->misc_mode != 0)
806                 REG_WRITE(ah, AR_PCU_MISC,
807                           REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
808
809         if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
810                 sifstime = 16;
811         else
812                 sifstime = 10;
813
814         /* As defined by IEEE 802.11-2007 17.3.8.6 */
815         slottime = ah->slottime + 3 * ah->coverage_class;
816         acktimeout = slottime + sifstime;
817
818         /*
819          * Workaround for early ACK timeouts, add an offset to match the
820          * initval's 64us ack timeout value.
821          * This was initially only meant to work around an issue with delayed
822          * BA frames in some implementations, but it has been found to fix ACK
823          * timeout issues in other cases as well.
824          */
825         if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
826                 acktimeout += 64 - sifstime - ah->slottime;
827
828         ath9k_hw_setslottime(ah, slottime);
829         ath9k_hw_set_ack_timeout(ah, acktimeout);
830         ath9k_hw_set_cts_timeout(ah, acktimeout);
831         if (ah->globaltxtimeout != (u32) -1)
832                 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
833 }
834 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
835
836 void ath9k_hw_deinit(struct ath_hw *ah)
837 {
838         struct ath_common *common = ath9k_hw_common(ah);
839
840         if (common->state < ATH_HW_INITIALIZED)
841                 goto free_hw;
842
843         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
844
845 free_hw:
846         ath9k_hw_rf_free_ext_banks(ah);
847 }
848 EXPORT_SYMBOL(ath9k_hw_deinit);
849
850 /*******/
851 /* INI */
852 /*******/
853
854 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
855 {
856         u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
857
858         if (IS_CHAN_B(chan))
859                 ctl |= CTL_11B;
860         else if (IS_CHAN_G(chan))
861                 ctl |= CTL_11G;
862         else
863                 ctl |= CTL_11A;
864
865         return ctl;
866 }
867
868 /****************************************/
869 /* Reset and Channel Switching Routines */
870 /****************************************/
871
872 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
873 {
874         struct ath_common *common = ath9k_hw_common(ah);
875         u32 regval;
876
877         ENABLE_REGWRITE_BUFFER(ah);
878
879         /*
880          * set AHB_MODE not to do cacheline prefetches
881         */
882         if (!AR_SREV_9300_20_OR_LATER(ah)) {
883                 regval = REG_READ(ah, AR_AHB_MODE);
884                 REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
885         }
886
887         /*
888          * let mac dma reads be in 128 byte chunks
889          */
890         regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
891         REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
892
893         REGWRITE_BUFFER_FLUSH(ah);
894         DISABLE_REGWRITE_BUFFER(ah);
895
896         /*
897          * Restore TX Trigger Level to its pre-reset value.
898          * The initial value depends on whether aggregation is enabled, and is
899          * adjusted whenever underruns are detected.
900          */
901         if (!AR_SREV_9300_20_OR_LATER(ah))
902                 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
903
904         ENABLE_REGWRITE_BUFFER(ah);
905
906         /*
907          * let mac dma writes be in 128 byte chunks
908          */
909         regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
910         REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
911
912         /*
913          * Setup receive FIFO threshold to hold off TX activities
914          */
915         REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
916
917         if (AR_SREV_9300_20_OR_LATER(ah)) {
918                 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
919                 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
920
921                 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
922                         ah->caps.rx_status_len);
923         }
924
925         /*
926          * reduce the number of usable entries in PCU TXBUF to avoid
927          * wrap around issues.
928          */
929         if (AR_SREV_9285(ah)) {
930                 /* For AR9285 the number of Fifos are reduced to half.
931                  * So set the usable tx buf size also to half to
932                  * avoid data/delimiter underruns
933                  */
934                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
935                           AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
936         } else if (!AR_SREV_9271(ah)) {
937                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
938                           AR_PCU_TXBUF_CTRL_USABLE_SIZE);
939         }
940
941         REGWRITE_BUFFER_FLUSH(ah);
942         DISABLE_REGWRITE_BUFFER(ah);
943
944         if (AR_SREV_9300_20_OR_LATER(ah))
945                 ath9k_hw_reset_txstatus_ring(ah);
946 }
947
948 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
949 {
950         u32 val;
951
952         val = REG_READ(ah, AR_STA_ID1);
953         val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
954         switch (opmode) {
955         case NL80211_IFTYPE_AP:
956                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
957                           | AR_STA_ID1_KSRCH_MODE);
958                 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
959                 break;
960         case NL80211_IFTYPE_ADHOC:
961         case NL80211_IFTYPE_MESH_POINT:
962                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
963                           | AR_STA_ID1_KSRCH_MODE);
964                 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
965                 break;
966         case NL80211_IFTYPE_STATION:
967         case NL80211_IFTYPE_MONITOR:
968                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
969                 break;
970         }
971 }
972
973 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
974                                    u32 *coef_mantissa, u32 *coef_exponent)
975 {
976         u32 coef_exp, coef_man;
977
978         for (coef_exp = 31; coef_exp > 0; coef_exp--)
979                 if ((coef_scaled >> coef_exp) & 0x1)
980                         break;
981
982         coef_exp = 14 - (coef_exp - COEF_SCALE_S);
983
984         coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
985
986         *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
987         *coef_exponent = coef_exp - 16;
988 }
989
990 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
991 {
992         u32 rst_flags;
993         u32 tmpReg;
994
995         if (AR_SREV_9100(ah)) {
996                 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
997                 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
998                 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
999                 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1000                 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1001         }
1002
1003         ENABLE_REGWRITE_BUFFER(ah);
1004
1005         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1006                   AR_RTC_FORCE_WAKE_ON_INT);
1007
1008         if (AR_SREV_9100(ah)) {
1009                 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1010                         AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1011         } else {
1012                 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1013                 if (tmpReg &
1014                     (AR_INTR_SYNC_LOCAL_TIMEOUT |
1015                      AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1016                         u32 val;
1017                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1018
1019                         val = AR_RC_HOSTIF;
1020                         if (!AR_SREV_9300_20_OR_LATER(ah))
1021                                 val |= AR_RC_AHB;
1022                         REG_WRITE(ah, AR_RC, val);
1023
1024                 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1025                         REG_WRITE(ah, AR_RC, AR_RC_AHB);
1026
1027                 rst_flags = AR_RTC_RC_MAC_WARM;
1028                 if (type == ATH9K_RESET_COLD)
1029                         rst_flags |= AR_RTC_RC_MAC_COLD;
1030         }
1031
1032         REG_WRITE(ah, AR_RTC_RC, rst_flags);
1033
1034         REGWRITE_BUFFER_FLUSH(ah);
1035         DISABLE_REGWRITE_BUFFER(ah);
1036
1037         udelay(50);
1038
1039         REG_WRITE(ah, AR_RTC_RC, 0);
1040         if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1041                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1042                           "RTC stuck in MAC reset\n");
1043                 return false;
1044         }
1045
1046         if (!AR_SREV_9100(ah))
1047                 REG_WRITE(ah, AR_RC, 0);
1048
1049         if (AR_SREV_9100(ah))
1050                 udelay(50);
1051
1052         return true;
1053 }
1054
1055 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1056 {
1057         ENABLE_REGWRITE_BUFFER(ah);
1058
1059         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1060                   AR_RTC_FORCE_WAKE_ON_INT);
1061
1062         if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1063                 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1064
1065         REG_WRITE(ah, AR_RTC_RESET, 0);
1066
1067         REGWRITE_BUFFER_FLUSH(ah);
1068         DISABLE_REGWRITE_BUFFER(ah);
1069
1070         if (!AR_SREV_9300_20_OR_LATER(ah))
1071                 udelay(2);
1072
1073         if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1074                 REG_WRITE(ah, AR_RC, 0);
1075
1076         REG_WRITE(ah, AR_RTC_RESET, 1);
1077
1078         if (!ath9k_hw_wait(ah,
1079                            AR_RTC_STATUS,
1080                            AR_RTC_STATUS_M,
1081                            AR_RTC_STATUS_ON,
1082                            AH_WAIT_TIMEOUT)) {
1083                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1084                           "RTC not waking up\n");
1085                 return false;
1086         }
1087
1088         ath9k_hw_read_revisions(ah);
1089
1090         return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1091 }
1092
1093 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1094 {
1095         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1096                   AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1097
1098         switch (type) {
1099         case ATH9K_RESET_POWER_ON:
1100                 return ath9k_hw_set_reset_power_on(ah);
1101         case ATH9K_RESET_WARM:
1102         case ATH9K_RESET_COLD:
1103                 return ath9k_hw_set_reset(ah, type);
1104         default:
1105                 return false;
1106         }
1107 }
1108
1109 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1110                                 struct ath9k_channel *chan)
1111 {
1112         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1113                 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1114                         return false;
1115         } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1116                 return false;
1117
1118         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1119                 return false;
1120
1121         ah->chip_fullsleep = false;
1122         ath9k_hw_init_pll(ah, chan);
1123         ath9k_hw_set_rfmode(ah, chan);
1124
1125         return true;
1126 }
1127
1128 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1129                                     struct ath9k_channel *chan)
1130 {
1131         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1132         struct ath_common *common = ath9k_hw_common(ah);
1133         struct ieee80211_channel *channel = chan->chan;
1134         u32 qnum;
1135         int r;
1136
1137         for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1138                 if (ath9k_hw_numtxpending(ah, qnum)) {
1139                         ath_print(common, ATH_DBG_QUEUE,
1140                                   "Transmit frames pending on "
1141                                   "queue %d\n", qnum);
1142                         return false;
1143                 }
1144         }
1145
1146         if (!ath9k_hw_rfbus_req(ah)) {
1147                 ath_print(common, ATH_DBG_FATAL,
1148                           "Could not kill baseband RX\n");
1149                 return false;
1150         }
1151
1152         ath9k_hw_set_channel_regs(ah, chan);
1153
1154         r = ath9k_hw_rf_set_freq(ah, chan);
1155         if (r) {
1156                 ath_print(common, ATH_DBG_FATAL,
1157                           "Failed to set channel\n");
1158                 return false;
1159         }
1160
1161         ah->eep_ops->set_txpower(ah, chan,
1162                              ath9k_regd_get_ctl(regulatory, chan),
1163                              channel->max_antenna_gain * 2,
1164                              channel->max_power * 2,
1165                              min((u32) MAX_RATE_POWER,
1166                              (u32) regulatory->power_limit));
1167
1168         ath9k_hw_rfbus_done(ah);
1169
1170         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1171                 ath9k_hw_set_delta_slope(ah, chan);
1172
1173         ath9k_hw_spur_mitigate_freq(ah, chan);
1174
1175         if (!chan->oneTimeCalsDone)
1176                 chan->oneTimeCalsDone = true;
1177
1178         return true;
1179 }
1180
1181 bool ath9k_hw_check_alive(struct ath_hw *ah)
1182 {
1183         int count = 50;
1184         u32 reg;
1185
1186         if (AR_SREV_9285_10_OR_LATER(ah))
1187                 return true;
1188
1189         do {
1190                 reg = REG_READ(ah, AR_OBS_BUS_1);
1191
1192                 if ((reg & 0x7E7FFFEF) == 0x00702400)
1193                         continue;
1194
1195                 switch (reg & 0x7E000B00) {
1196                 case 0x1E000000:
1197                 case 0x52000B00:
1198                 case 0x18000B00:
1199                         continue;
1200                 default:
1201                         return true;
1202                 }
1203         } while (count-- > 0);
1204
1205         return false;
1206 }
1207 EXPORT_SYMBOL(ath9k_hw_check_alive);
1208
1209 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1210                     bool bChannelChange)
1211 {
1212         struct ath_common *common = ath9k_hw_common(ah);
1213         u32 saveLedState;
1214         struct ath9k_channel *curchan = ah->curchan;
1215         u32 saveDefAntenna;
1216         u32 macStaId1;
1217         u64 tsf = 0;
1218         int i, r;
1219
1220         ah->txchainmask = common->tx_chainmask;
1221         ah->rxchainmask = common->rx_chainmask;
1222
1223         if (!ah->chip_fullsleep) {
1224                 ath9k_hw_abortpcurecv(ah);
1225                 if (!ath9k_hw_stopdmarecv(ah))
1226                         ath_print(common, ATH_DBG_XMIT,
1227                                 "Failed to stop receive dma\n");
1228         }
1229
1230         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1231                 return -EIO;
1232
1233         if (curchan && !ah->chip_fullsleep)
1234                 ath9k_hw_getnf(ah, curchan);
1235
1236         if (bChannelChange &&
1237             (ah->chip_fullsleep != true) &&
1238             (ah->curchan != NULL) &&
1239             (chan->channel != ah->curchan->channel) &&
1240             ((chan->channelFlags & CHANNEL_ALL) ==
1241              (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1242             !AR_SREV_9280(ah)) {
1243
1244                 if (ath9k_hw_channel_change(ah, chan)) {
1245                         ath9k_hw_loadnf(ah, ah->curchan);
1246                         ath9k_hw_start_nfcal(ah);
1247                         return 0;
1248                 }
1249         }
1250
1251         saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1252         if (saveDefAntenna == 0)
1253                 saveDefAntenna = 1;
1254
1255         macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1256
1257         /* For chips on which RTC reset is done, save TSF before it gets cleared */
1258         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1259                 tsf = ath9k_hw_gettsf64(ah);
1260
1261         saveLedState = REG_READ(ah, AR_CFG_LED) &
1262                 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1263                  AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1264
1265         ath9k_hw_mark_phy_inactive(ah);
1266
1267         /* Only required on the first reset */
1268         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1269                 REG_WRITE(ah,
1270                           AR9271_RESET_POWER_DOWN_CONTROL,
1271                           AR9271_RADIO_RF_RST);
1272                 udelay(50);
1273         }
1274
1275         if (!ath9k_hw_chip_reset(ah, chan)) {
1276                 ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
1277                 return -EINVAL;
1278         }
1279
1280         /* Only required on the first reset */
1281         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1282                 ah->htc_reset_init = false;
1283                 REG_WRITE(ah,
1284                           AR9271_RESET_POWER_DOWN_CONTROL,
1285                           AR9271_GATE_MAC_CTL);
1286                 udelay(50);
1287         }
1288
1289         /* Restore TSF */
1290         if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1291                 ath9k_hw_settsf64(ah, tsf);
1292
1293         if (AR_SREV_9280_10_OR_LATER(ah))
1294                 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1295
1296         if (!AR_SREV_9300_20_OR_LATER(ah))
1297                 ar9002_hw_enable_async_fifo(ah);
1298
1299         r = ath9k_hw_process_ini(ah, chan);
1300         if (r)
1301                 return r;
1302
1303         /* Setup MFP options for CCMP */
1304         if (AR_SREV_9280_20_OR_LATER(ah)) {
1305                 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1306                  * frames when constructing CCMP AAD. */
1307                 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1308                               0xc7ff);
1309                 ah->sw_mgmt_crypto = false;
1310         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1311                 /* Disable hardware crypto for management frames */
1312                 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1313                             AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1314                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1315                             AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1316                 ah->sw_mgmt_crypto = true;
1317         } else
1318                 ah->sw_mgmt_crypto = true;
1319
1320         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1321                 ath9k_hw_set_delta_slope(ah, chan);
1322
1323         ath9k_hw_spur_mitigate_freq(ah, chan);
1324         ah->eep_ops->set_board_values(ah, chan);
1325
1326         ath9k_hw_set_operating_mode(ah, ah->opmode);
1327
1328         ENABLE_REGWRITE_BUFFER(ah);
1329
1330         REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1331         REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1332                   | macStaId1
1333                   | AR_STA_ID1_RTS_USE_DEF
1334                   | (ah->config.
1335                      ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1336                   | ah->sta_id1_defaults);
1337         ath_hw_setbssidmask(common);
1338         REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1339         ath9k_hw_write_associd(ah);
1340         REG_WRITE(ah, AR_ISR, ~0);
1341         REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1342
1343         REGWRITE_BUFFER_FLUSH(ah);
1344         DISABLE_REGWRITE_BUFFER(ah);
1345
1346         r = ath9k_hw_rf_set_freq(ah, chan);
1347         if (r)
1348                 return r;
1349
1350         ENABLE_REGWRITE_BUFFER(ah);
1351
1352         for (i = 0; i < AR_NUM_DCU; i++)
1353                 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1354
1355         REGWRITE_BUFFER_FLUSH(ah);
1356         DISABLE_REGWRITE_BUFFER(ah);
1357
1358         ah->intr_txqs = 0;
1359         for (i = 0; i < ah->caps.total_queues; i++)
1360                 ath9k_hw_resettxqueue(ah, i);
1361
1362         ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1363         ath9k_hw_init_qos(ah);
1364
1365         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1366                 ath9k_enable_rfkill(ah);
1367
1368         ath9k_hw_init_global_settings(ah);
1369
1370         if (!AR_SREV_9300_20_OR_LATER(ah)) {
1371                 ar9002_hw_update_async_fifo(ah);
1372                 ar9002_hw_enable_wep_aggregation(ah);
1373         }
1374
1375         REG_WRITE(ah, AR_STA_ID1,
1376                   REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1377
1378         ath9k_hw_set_dma(ah);
1379
1380         REG_WRITE(ah, AR_OBS, 8);
1381
1382         if (ah->config.rx_intr_mitigation) {
1383                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1384                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1385         }
1386
1387         if (ah->config.tx_intr_mitigation) {
1388                 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1389                 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1390         }
1391
1392         ath9k_hw_init_bb(ah, chan);
1393
1394         if (!ath9k_hw_init_cal(ah, chan))
1395                 return -EIO;
1396
1397         ENABLE_REGWRITE_BUFFER(ah);
1398
1399         ath9k_hw_restore_chainmask(ah);
1400         REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1401
1402         REGWRITE_BUFFER_FLUSH(ah);
1403         DISABLE_REGWRITE_BUFFER(ah);
1404
1405         /*
1406          * For big endian systems turn on swapping for descriptors
1407          */
1408         if (AR_SREV_9100(ah)) {
1409                 u32 mask;
1410                 mask = REG_READ(ah, AR_CFG);
1411                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1412                         ath_print(common, ATH_DBG_RESET,
1413                                 "CFG Byte Swap Set 0x%x\n", mask);
1414                 } else {
1415                         mask =
1416                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1417                         REG_WRITE(ah, AR_CFG, mask);
1418                         ath_print(common, ATH_DBG_RESET,
1419                                 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1420                 }
1421         } else {
1422                 if (common->bus_ops->ath_bus_type == ATH_USB) {
1423                         /* Configure AR9271 target WLAN */
1424                         if (AR_SREV_9271(ah))
1425                                 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1426                         else
1427                                 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1428                 }
1429 #ifdef __BIG_ENDIAN
1430                 else
1431                         REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1432 #endif
1433         }
1434
1435         if (ah->btcoex_hw.enabled)
1436                 ath9k_hw_btcoex_enable(ah);
1437
1438         if (AR_SREV_9300_20_OR_LATER(ah)) {
1439                 ath9k_hw_loadnf(ah, curchan);
1440                 ath9k_hw_start_nfcal(ah);
1441                 ar9003_hw_bb_watchdog_config(ah);
1442         }
1443
1444         return 0;
1445 }
1446 EXPORT_SYMBOL(ath9k_hw_reset);
1447
1448 /************************/
1449 /* Key Cache Management */
1450 /************************/
1451
1452 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
1453 {
1454         u32 keyType;
1455
1456         if (entry >= ah->caps.keycache_size) {
1457                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1458                           "keychache entry %u out of range\n", entry);
1459                 return false;
1460         }
1461
1462         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
1463
1464         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
1465         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
1466         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
1467         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
1468         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
1469         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
1470         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
1471         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
1472
1473         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1474                 u16 micentry = entry + 64;
1475
1476                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
1477                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1478                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
1479                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1480
1481         }
1482
1483         return true;
1484 }
1485 EXPORT_SYMBOL(ath9k_hw_keyreset);
1486
1487 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
1488 {
1489         u32 macHi, macLo;
1490         u32 unicast_flag = AR_KEYTABLE_VALID;
1491
1492         if (entry >= ah->caps.keycache_size) {
1493                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1494                           "keychache entry %u out of range\n", entry);
1495                 return false;
1496         }
1497
1498         if (mac != NULL) {
1499                 /*
1500                  * AR_KEYTABLE_VALID indicates that the address is a unicast
1501                  * address, which must match the transmitter address for
1502                  * decrypting frames.
1503                  * Not setting this bit allows the hardware to use the key
1504                  * for multicast frame decryption.
1505                  */
1506                 if (mac[0] & 0x01)
1507                         unicast_flag = 0;
1508
1509                 macHi = (mac[5] << 8) | mac[4];
1510                 macLo = (mac[3] << 24) |
1511                         (mac[2] << 16) |
1512                         (mac[1] << 8) |
1513                         mac[0];
1514                 macLo >>= 1;
1515                 macLo |= (macHi & 1) << 31;
1516                 macHi >>= 1;
1517         } else {
1518                 macLo = macHi = 0;
1519         }
1520         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
1521         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
1522
1523         return true;
1524 }
1525 EXPORT_SYMBOL(ath9k_hw_keysetmac);
1526
1527 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
1528                                  const struct ath9k_keyval *k,
1529                                  const u8 *mac)
1530 {
1531         const struct ath9k_hw_capabilities *pCap = &ah->caps;
1532         struct ath_common *common = ath9k_hw_common(ah);
1533         u32 key0, key1, key2, key3, key4;
1534         u32 keyType;
1535
1536         if (entry >= pCap->keycache_size) {
1537                 ath_print(common, ATH_DBG_FATAL,
1538                           "keycache entry %u out of range\n", entry);
1539                 return false;
1540         }
1541
1542         switch (k->kv_type) {
1543         case ATH9K_CIPHER_AES_OCB:
1544                 keyType = AR_KEYTABLE_TYPE_AES;
1545                 break;
1546         case ATH9K_CIPHER_AES_CCM:
1547                 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
1548                         ath_print(common, ATH_DBG_ANY,
1549                                   "AES-CCM not supported by mac rev 0x%x\n",
1550                                   ah->hw_version.macRev);
1551                         return false;
1552                 }
1553                 keyType = AR_KEYTABLE_TYPE_CCM;
1554                 break;
1555         case ATH9K_CIPHER_TKIP:
1556                 keyType = AR_KEYTABLE_TYPE_TKIP;
1557                 if (ATH9K_IS_MIC_ENABLED(ah)
1558                     && entry + 64 >= pCap->keycache_size) {
1559                         ath_print(common, ATH_DBG_ANY,
1560                                   "entry %u inappropriate for TKIP\n", entry);
1561                         return false;
1562                 }
1563                 break;
1564         case ATH9K_CIPHER_WEP:
1565                 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
1566                         ath_print(common, ATH_DBG_ANY,
1567                                   "WEP key length %u too small\n", k->kv_len);
1568                         return false;
1569                 }
1570                 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
1571                         keyType = AR_KEYTABLE_TYPE_40;
1572                 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1573                         keyType = AR_KEYTABLE_TYPE_104;
1574                 else
1575                         keyType = AR_KEYTABLE_TYPE_128;
1576                 break;
1577         case ATH9K_CIPHER_CLR:
1578                 keyType = AR_KEYTABLE_TYPE_CLR;
1579                 break;
1580         default:
1581                 ath_print(common, ATH_DBG_FATAL,
1582                           "cipher %u not supported\n", k->kv_type);
1583                 return false;
1584         }
1585
1586         key0 = get_unaligned_le32(k->kv_val + 0);
1587         key1 = get_unaligned_le16(k->kv_val + 4);
1588         key2 = get_unaligned_le32(k->kv_val + 6);
1589         key3 = get_unaligned_le16(k->kv_val + 10);
1590         key4 = get_unaligned_le32(k->kv_val + 12);
1591         if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1592                 key4 &= 0xff;
1593
1594         /*
1595          * Note: Key cache registers access special memory area that requires
1596          * two 32-bit writes to actually update the values in the internal
1597          * memory. Consequently, the exact order and pairs used here must be
1598          * maintained.
1599          */
1600
1601         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1602                 u16 micentry = entry + 64;
1603
1604                 /*
1605                  * Write inverted key[47:0] first to avoid Michael MIC errors
1606                  * on frames that could be sent or received at the same time.
1607                  * The correct key will be written in the end once everything
1608                  * else is ready.
1609                  */
1610                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
1611                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
1612
1613                 /* Write key[95:48] */
1614                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1615                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1616
1617                 /* Write key[127:96] and key type */
1618                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1619                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1620
1621                 /* Write MAC address for the entry */
1622                 (void) ath9k_hw_keysetmac(ah, entry, mac);
1623
1624                 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
1625                         /*
1626                          * TKIP uses two key cache entries:
1627                          * Michael MIC TX/RX keys in the same key cache entry
1628                          * (idx = main index + 64):
1629                          * key0 [31:0] = RX key [31:0]
1630                          * key1 [15:0] = TX key [31:16]
1631                          * key1 [31:16] = reserved
1632                          * key2 [31:0] = RX key [63:32]
1633                          * key3 [15:0] = TX key [15:0]
1634                          * key3 [31:16] = reserved
1635                          * key4 [31:0] = TX key [63:32]
1636                          */
1637                         u32 mic0, mic1, mic2, mic3, mic4;
1638
1639                         mic0 = get_unaligned_le32(k->kv_mic + 0);
1640                         mic2 = get_unaligned_le32(k->kv_mic + 4);
1641                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
1642                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
1643                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
1644
1645                         /* Write RX[31:0] and TX[31:16] */
1646                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1647                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
1648
1649                         /* Write RX[63:32] and TX[15:0] */
1650                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1651                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
1652
1653                         /* Write TX[63:32] and keyType(reserved) */
1654                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
1655                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1656                                   AR_KEYTABLE_TYPE_CLR);
1657
1658                 } else {
1659                         /*
1660                          * TKIP uses four key cache entries (two for group
1661                          * keys):
1662                          * Michael MIC TX/RX keys are in different key cache
1663                          * entries (idx = main index + 64 for TX and
1664                          * main index + 32 + 96 for RX):
1665                          * key0 [31:0] = TX/RX MIC key [31:0]
1666                          * key1 [31:0] = reserved
1667                          * key2 [31:0] = TX/RX MIC key [63:32]
1668                          * key3 [31:0] = reserved
1669                          * key4 [31:0] = reserved
1670                          *
1671                          * Upper layer code will call this function separately
1672                          * for TX and RX keys when these registers offsets are
1673                          * used.
1674                          */
1675                         u32 mic0, mic2;
1676
1677                         mic0 = get_unaligned_le32(k->kv_mic + 0);
1678                         mic2 = get_unaligned_le32(k->kv_mic + 4);
1679
1680                         /* Write MIC key[31:0] */
1681                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1682                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1683
1684                         /* Write MIC key[63:32] */
1685                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1686                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1687
1688                         /* Write TX[63:32] and keyType(reserved) */
1689                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
1690                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1691                                   AR_KEYTABLE_TYPE_CLR);
1692                 }
1693
1694                 /* MAC address registers are reserved for the MIC entry */
1695                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
1696                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
1697
1698                 /*
1699                  * Write the correct (un-inverted) key[47:0] last to enable
1700                  * TKIP now that all other registers are set with correct
1701                  * values.
1702                  */
1703                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1704                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1705         } else {
1706                 /* Write key[47:0] */
1707                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1708                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1709
1710                 /* Write key[95:48] */
1711                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1712                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1713
1714                 /* Write key[127:96] and key type */
1715                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1716                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1717
1718                 /* Write MAC address for the entry */
1719                 (void) ath9k_hw_keysetmac(ah, entry, mac);
1720         }
1721
1722         return true;
1723 }
1724 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
1725
1726 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
1727 {
1728         if (entry < ah->caps.keycache_size) {
1729                 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
1730                 if (val & AR_KEYTABLE_VALID)
1731                         return true;
1732         }
1733         return false;
1734 }
1735 EXPORT_SYMBOL(ath9k_hw_keyisvalid);
1736
1737 /******************************/
1738 /* Power Management (Chipset) */
1739 /******************************/
1740
1741 /*
1742  * Notify Power Mgt is disabled in self-generated frames.
1743  * If requested, force chip to sleep.
1744  */
1745 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1746 {
1747         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1748         if (setChip) {
1749                 /*
1750                  * Clear the RTC force wake bit to allow the
1751                  * mac to go to sleep.
1752                  */
1753                 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1754                             AR_RTC_FORCE_WAKE_EN);
1755                 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1756                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1757
1758                 /* Shutdown chip. Active low */
1759                 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1760                         REG_CLR_BIT(ah, (AR_RTC_RESET),
1761                                     AR_RTC_RESET_EN);
1762         }
1763 }
1764
1765 /*
1766  * Notify Power Management is enabled in self-generating
1767  * frames. If request, set power mode of chip to
1768  * auto/normal.  Duration in units of 128us (1/8 TU).
1769  */
1770 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1771 {
1772         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1773         if (setChip) {
1774                 struct ath9k_hw_capabilities *pCap = &ah->caps;
1775
1776                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1777                         /* Set WakeOnInterrupt bit; clear ForceWake bit */
1778                         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1779                                   AR_RTC_FORCE_WAKE_ON_INT);
1780                 } else {
1781                         /*
1782                          * Clear the RTC force wake bit to allow the
1783                          * mac to go to sleep.
1784                          */
1785                         REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1786                                     AR_RTC_FORCE_WAKE_EN);
1787                 }
1788         }
1789 }
1790
1791 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1792 {
1793         u32 val;
1794         int i;
1795
1796         if (setChip) {
1797                 if ((REG_READ(ah, AR_RTC_STATUS) &
1798                      AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1799                         if (ath9k_hw_set_reset_reg(ah,
1800                                            ATH9K_RESET_POWER_ON) != true) {
1801                                 return false;
1802                         }
1803                         if (!AR_SREV_9300_20_OR_LATER(ah))
1804                                 ath9k_hw_init_pll(ah, NULL);
1805                 }
1806                 if (AR_SREV_9100(ah))
1807                         REG_SET_BIT(ah, AR_RTC_RESET,
1808                                     AR_RTC_RESET_EN);
1809
1810                 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1811                             AR_RTC_FORCE_WAKE_EN);
1812                 udelay(50);
1813
1814                 for (i = POWER_UP_TIME / 50; i > 0; i--) {
1815                         val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1816                         if (val == AR_RTC_STATUS_ON)
1817                                 break;
1818                         udelay(50);
1819                         REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1820                                     AR_RTC_FORCE_WAKE_EN);
1821                 }
1822                 if (i == 0) {
1823                         ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1824                                   "Failed to wakeup in %uus\n",
1825                                   POWER_UP_TIME / 20);
1826                         return false;
1827                 }
1828         }
1829
1830         REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1831
1832         return true;
1833 }
1834
1835 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1836 {
1837         struct ath_common *common = ath9k_hw_common(ah);
1838         int status = true, setChip = true;
1839         static const char *modes[] = {
1840                 "AWAKE",
1841                 "FULL-SLEEP",
1842                 "NETWORK SLEEP",
1843                 "UNDEFINED"
1844         };
1845
1846         if (ah->power_mode == mode)
1847                 return status;
1848
1849         ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
1850                   modes[ah->power_mode], modes[mode]);
1851
1852         switch (mode) {
1853         case ATH9K_PM_AWAKE:
1854                 status = ath9k_hw_set_power_awake(ah, setChip);
1855                 break;
1856         case ATH9K_PM_FULL_SLEEP:
1857                 ath9k_set_power_sleep(ah, setChip);
1858                 ah->chip_fullsleep = true;
1859                 break;
1860         case ATH9K_PM_NETWORK_SLEEP:
1861                 ath9k_set_power_network_sleep(ah, setChip);
1862                 break;
1863         default:
1864                 ath_print(common, ATH_DBG_FATAL,
1865                           "Unknown power mode %u\n", mode);
1866                 return false;
1867         }
1868         ah->power_mode = mode;
1869
1870         return status;
1871 }
1872 EXPORT_SYMBOL(ath9k_hw_setpower);
1873
1874 /*******************/
1875 /* Beacon Handling */
1876 /*******************/
1877
1878 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1879 {
1880         int flags = 0;
1881
1882         ah->beacon_interval = beacon_period;
1883
1884         ENABLE_REGWRITE_BUFFER(ah);
1885
1886         switch (ah->opmode) {
1887         case NL80211_IFTYPE_STATION:
1888         case NL80211_IFTYPE_MONITOR:
1889                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1890                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
1891                 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
1892                 flags |= AR_TBTT_TIMER_EN;
1893                 break;
1894         case NL80211_IFTYPE_ADHOC:
1895         case NL80211_IFTYPE_MESH_POINT:
1896                 REG_SET_BIT(ah, AR_TXCFG,
1897                             AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1898                 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
1899                           TU_TO_USEC(next_beacon +
1900                                      (ah->atim_window ? ah->
1901                                       atim_window : 1)));
1902                 flags |= AR_NDP_TIMER_EN;
1903         case NL80211_IFTYPE_AP:
1904                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1905                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
1906                           TU_TO_USEC(next_beacon -
1907                                      ah->config.
1908                                      dma_beacon_response_time));
1909                 REG_WRITE(ah, AR_NEXT_SWBA,
1910                           TU_TO_USEC(next_beacon -
1911                                      ah->config.
1912                                      sw_beacon_response_time));
1913                 flags |=
1914                         AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1915                 break;
1916         default:
1917                 ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
1918                           "%s: unsupported opmode: %d\n",
1919                           __func__, ah->opmode);
1920                 return;
1921                 break;
1922         }
1923
1924         REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1925         REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1926         REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
1927         REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
1928
1929         REGWRITE_BUFFER_FLUSH(ah);
1930         DISABLE_REGWRITE_BUFFER(ah);
1931
1932         beacon_period &= ~ATH9K_BEACON_ENA;
1933         if (beacon_period & ATH9K_BEACON_RESET_TSF) {
1934                 ath9k_hw_reset_tsf(ah);
1935         }
1936
1937         REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1938 }
1939 EXPORT_SYMBOL(ath9k_hw_beaconinit);
1940
1941 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1942                                     const struct ath9k_beacon_state *bs)
1943 {
1944         u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1945         struct ath9k_hw_capabilities *pCap = &ah->caps;
1946         struct ath_common *common = ath9k_hw_common(ah);
1947
1948         ENABLE_REGWRITE_BUFFER(ah);
1949
1950         REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1951
1952         REG_WRITE(ah, AR_BEACON_PERIOD,
1953                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1954         REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1955                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1956
1957         REGWRITE_BUFFER_FLUSH(ah);
1958         DISABLE_REGWRITE_BUFFER(ah);
1959
1960         REG_RMW_FIELD(ah, AR_RSSI_THR,
1961                       AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1962
1963         beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
1964
1965         if (bs->bs_sleepduration > beaconintval)
1966                 beaconintval = bs->bs_sleepduration;
1967
1968         dtimperiod = bs->bs_dtimperiod;
1969         if (bs->bs_sleepduration > dtimperiod)
1970                 dtimperiod = bs->bs_sleepduration;
1971
1972         if (beaconintval == dtimperiod)
1973                 nextTbtt = bs->bs_nextdtim;
1974         else
1975                 nextTbtt = bs->bs_nexttbtt;
1976
1977         ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1978         ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1979         ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1980         ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1981
1982         ENABLE_REGWRITE_BUFFER(ah);
1983
1984         REG_WRITE(ah, AR_NEXT_DTIM,
1985                   TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1986         REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1987
1988         REG_WRITE(ah, AR_SLEEP1,
1989                   SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1990                   | AR_SLEEP1_ASSUME_DTIM);
1991
1992         if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1993                 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
1994         else
1995                 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
1996
1997         REG_WRITE(ah, AR_SLEEP2,
1998                   SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
1999
2000         REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2001         REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2002
2003         REGWRITE_BUFFER_FLUSH(ah);
2004         DISABLE_REGWRITE_BUFFER(ah);
2005
2006         REG_SET_BIT(ah, AR_TIMER_MODE,
2007                     AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2008                     AR_DTIM_TIMER_EN);
2009
2010         /* TSF Out of Range Threshold */
2011         REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2012 }
2013 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2014
2015 /*******************/
2016 /* HW Capabilities */
2017 /*******************/
2018
2019 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2020 {
2021         struct ath9k_hw_capabilities *pCap = &ah->caps;
2022         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2023         struct ath_common *common = ath9k_hw_common(ah);
2024         struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2025
2026         u16 capField = 0, eeval;
2027
2028         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2029         regulatory->current_rd = eeval;
2030
2031         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
2032         if (AR_SREV_9285_10_OR_LATER(ah))
2033                 eeval |= AR9285_RDEXT_DEFAULT;
2034         regulatory->current_rd_ext = eeval;
2035
2036         capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
2037
2038         if (ah->opmode != NL80211_IFTYPE_AP &&
2039             ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2040                 if (regulatory->current_rd == 0x64 ||
2041                     regulatory->current_rd == 0x65)
2042                         regulatory->current_rd += 5;
2043                 else if (regulatory->current_rd == 0x41)
2044                         regulatory->current_rd = 0x43;
2045                 ath_print(common, ATH_DBG_REGULATORY,
2046                           "regdomain mapped to 0x%x\n", regulatory->current_rd);
2047         }
2048
2049         eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2050         if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2051                 ath_print(common, ATH_DBG_FATAL,
2052                           "no band has been marked as supported in EEPROM.\n");
2053                 return -EINVAL;
2054         }
2055
2056         bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
2057
2058         if (eeval & AR5416_OPFLAGS_11A) {
2059                 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
2060                 if (ah->config.ht_enable) {
2061                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
2062                                 set_bit(ATH9K_MODE_11NA_HT20,
2063                                         pCap->wireless_modes);
2064                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
2065                                 set_bit(ATH9K_MODE_11NA_HT40PLUS,
2066                                         pCap->wireless_modes);
2067                                 set_bit(ATH9K_MODE_11NA_HT40MINUS,
2068                                         pCap->wireless_modes);
2069                         }
2070                 }
2071         }
2072
2073         if (eeval & AR5416_OPFLAGS_11G) {
2074                 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
2075                 if (ah->config.ht_enable) {
2076                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
2077                                 set_bit(ATH9K_MODE_11NG_HT20,
2078                                         pCap->wireless_modes);
2079                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
2080                                 set_bit(ATH9K_MODE_11NG_HT40PLUS,
2081                                         pCap->wireless_modes);
2082                                 set_bit(ATH9K_MODE_11NG_HT40MINUS,
2083                                         pCap->wireless_modes);
2084                         }
2085                 }
2086         }
2087
2088         pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2089         /*
2090          * For AR9271 we will temporarilly uses the rx chainmax as read from
2091          * the EEPROM.
2092          */
2093         if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2094             !(eeval & AR5416_OPFLAGS_11A) &&
2095             !(AR_SREV_9271(ah)))
2096                 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2097                 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2098         else
2099                 /* Use rx_chainmask from EEPROM. */
2100                 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2101
2102         if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
2103                 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2104
2105         pCap->low_2ghz_chan = 2312;
2106         pCap->high_2ghz_chan = 2732;
2107
2108         pCap->low_5ghz_chan = 4920;
2109         pCap->high_5ghz_chan = 6100;
2110
2111         pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
2112         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
2113         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
2114
2115         pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
2116         pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
2117         pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
2118
2119         if (ah->config.ht_enable)
2120                 pCap->hw_caps |= ATH9K_HW_CAP_HT;
2121         else
2122                 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2123
2124         pCap->hw_caps |= ATH9K_HW_CAP_GTT;
2125         pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
2126         pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
2127         pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
2128
2129         if (capField & AR_EEPROM_EEPCAP_MAXQCU)
2130                 pCap->total_queues =
2131                         MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
2132         else
2133                 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
2134
2135         if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
2136                 pCap->keycache_size =
2137                         1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
2138         else
2139                 pCap->keycache_size = AR_KEYTABLE_SIZE;
2140
2141         pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
2142
2143         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
2144                 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
2145         else
2146                 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
2147
2148         if (AR_SREV_9271(ah))
2149                 pCap->num_gpio_pins = AR9271_NUM_GPIO;
2150         else if (AR_SREV_9285_10_OR_LATER(ah))
2151                 pCap->num_gpio_pins = AR9285_NUM_GPIO;
2152         else if (AR_SREV_9280_10_OR_LATER(ah))
2153                 pCap->num_gpio_pins = AR928X_NUM_GPIO;
2154         else
2155                 pCap->num_gpio_pins = AR_NUM_GPIO;
2156
2157         if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
2158                 pCap->hw_caps |= ATH9K_HW_CAP_CST;
2159                 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2160         } else {
2161                 pCap->rts_aggr_limit = (8 * 1024);
2162         }
2163
2164         pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
2165
2166 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2167         ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2168         if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2169                 ah->rfkill_gpio =
2170                         MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2171                 ah->rfkill_polarity =
2172                         MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2173
2174                 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2175         }
2176 #endif
2177         if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2178                 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2179         else
2180                 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2181
2182         if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2183                 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2184         else
2185                 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2186
2187         if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
2188                 pCap->reg_cap =
2189                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2190                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
2191                         AR_EEPROM_EEREGCAP_EN_KK_U2 |
2192                         AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
2193         } else {
2194                 pCap->reg_cap =
2195                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2196                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
2197         }
2198
2199         /* Advertise midband for AR5416 with FCC midband set in eeprom */
2200         if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
2201             AR_SREV_5416(ah))
2202                 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
2203
2204         pCap->num_antcfg_5ghz =
2205                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
2206         pCap->num_antcfg_2ghz =
2207                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
2208
2209         if (AR_SREV_9280_10_OR_LATER(ah) &&
2210             ath9k_hw_btcoex_supported(ah)) {
2211                 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
2212                 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
2213
2214                 if (AR_SREV_9285(ah)) {
2215                         btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2216                         btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
2217                 } else {
2218                         btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2219                 }
2220         } else {
2221                 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2222         }
2223
2224         if (AR_SREV_9300_20_OR_LATER(ah)) {
2225                 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_LDPC |
2226                                  ATH9K_HW_CAP_FASTCLOCK;
2227                 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2228                 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2229                 pCap->rx_status_len = sizeof(struct ar9003_rxs);
2230                 pCap->tx_desc_len = sizeof(struct ar9003_txc);
2231                 pCap->txs_len = sizeof(struct ar9003_txs);
2232         } else {
2233                 pCap->tx_desc_len = sizeof(struct ath_desc);
2234                 if (AR_SREV_9280_20(ah) &&
2235                     ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
2236                       AR5416_EEP_MINOR_VER_16) ||
2237                      ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
2238                         pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2239         }
2240
2241         if (AR_SREV_9300_20_OR_LATER(ah))
2242                 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2243
2244         if (AR_SREV_9287_10_OR_LATER(ah) || AR_SREV_9271(ah))
2245                 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2246
2247         return 0;
2248 }
2249
2250 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
2251                             u32 capability, u32 *result)
2252 {
2253         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2254         switch (type) {
2255         case ATH9K_CAP_CIPHER:
2256                 switch (capability) {
2257                 case ATH9K_CIPHER_AES_CCM:
2258                 case ATH9K_CIPHER_AES_OCB:
2259                 case ATH9K_CIPHER_TKIP:
2260                 case ATH9K_CIPHER_WEP:
2261                 case ATH9K_CIPHER_MIC:
2262                 case ATH9K_CIPHER_CLR:
2263                         return true;
2264                 default:
2265                         return false;
2266                 }
2267         case ATH9K_CAP_TKIP_MIC:
2268                 switch (capability) {
2269                 case 0:
2270                         return true;
2271                 case 1:
2272                         return (ah->sta_id1_defaults &
2273                                 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
2274                         false;
2275                 }
2276         case ATH9K_CAP_TKIP_SPLIT:
2277                 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
2278                         false : true;
2279         case ATH9K_CAP_MCAST_KEYSRCH:
2280                 switch (capability) {
2281                 case 0:
2282                         return true;
2283                 case 1:
2284                         if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
2285                                 return false;
2286                         } else {
2287                                 return (ah->sta_id1_defaults &
2288                                         AR_STA_ID1_MCAST_KSRCH) ? true :
2289                                         false;
2290                         }
2291                 }
2292                 return false;
2293         case ATH9K_CAP_TXPOW:
2294                 switch (capability) {
2295                 case 0:
2296                         return 0;
2297                 case 1:
2298                         *result = regulatory->power_limit;
2299                         return 0;
2300                 case 2:
2301                         *result = regulatory->max_power_level;
2302                         return 0;
2303                 case 3:
2304                         *result = regulatory->tp_scale;
2305                         return 0;
2306                 }
2307                 return false;
2308         case ATH9K_CAP_DS:
2309                 return (AR_SREV_9280_20_OR_LATER(ah) &&
2310                         (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
2311                         ? false : true;
2312         default:
2313                 return false;
2314         }
2315 }
2316 EXPORT_SYMBOL(ath9k_hw_getcapability);
2317
2318 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
2319                             u32 capability, u32 setting, int *status)
2320 {
2321         switch (type) {
2322         case ATH9K_CAP_TKIP_MIC:
2323                 if (setting)
2324                         ah->sta_id1_defaults |=
2325                                 AR_STA_ID1_CRPT_MIC_ENABLE;
2326                 else
2327                         ah->sta_id1_defaults &=
2328                                 ~AR_STA_ID1_CRPT_MIC_ENABLE;
2329                 return true;
2330         case ATH9K_CAP_MCAST_KEYSRCH:
2331                 if (setting)
2332                         ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
2333                 else
2334                         ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
2335                 return true;
2336         default:
2337                 return false;
2338         }
2339 }
2340 EXPORT_SYMBOL(ath9k_hw_setcapability);
2341
2342 /****************************/
2343 /* GPIO / RFKILL / Antennae */
2344 /****************************/
2345
2346 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2347                                          u32 gpio, u32 type)
2348 {
2349         int addr;
2350         u32 gpio_shift, tmp;
2351
2352         if (gpio > 11)
2353                 addr = AR_GPIO_OUTPUT_MUX3;
2354         else if (gpio > 5)
2355                 addr = AR_GPIO_OUTPUT_MUX2;
2356         else
2357                 addr = AR_GPIO_OUTPUT_MUX1;
2358
2359         gpio_shift = (gpio % 6) * 5;
2360
2361         if (AR_SREV_9280_20_OR_LATER(ah)
2362             || (addr != AR_GPIO_OUTPUT_MUX1)) {
2363                 REG_RMW(ah, addr, (type << gpio_shift),
2364                         (0x1f << gpio_shift));
2365         } else {
2366                 tmp = REG_READ(ah, addr);
2367                 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2368                 tmp &= ~(0x1f << gpio_shift);
2369                 tmp |= (type << gpio_shift);
2370                 REG_WRITE(ah, addr, tmp);
2371         }
2372 }
2373
2374 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2375 {
2376         u32 gpio_shift;
2377
2378         BUG_ON(gpio >= ah->caps.num_gpio_pins);
2379
2380         gpio_shift = gpio << 1;
2381
2382         REG_RMW(ah,
2383                 AR_GPIO_OE_OUT,
2384                 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2385                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2386 }
2387 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2388
2389 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2390 {
2391 #define MS_REG_READ(x, y) \
2392         (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2393
2394         if (gpio >= ah->caps.num_gpio_pins)
2395                 return 0xffffffff;
2396
2397         if (AR_SREV_9300_20_OR_LATER(ah))
2398                 return MS_REG_READ(AR9300, gpio) != 0;
2399         else if (AR_SREV_9271(ah))
2400                 return MS_REG_READ(AR9271, gpio) != 0;
2401         else if (AR_SREV_9287_10_OR_LATER(ah))
2402                 return MS_REG_READ(AR9287, gpio) != 0;
2403         else if (AR_SREV_9285_10_OR_LATER(ah))
2404                 return MS_REG_READ(AR9285, gpio) != 0;
2405         else if (AR_SREV_9280_10_OR_LATER(ah))
2406                 return MS_REG_READ(AR928X, gpio) != 0;
2407         else
2408                 return MS_REG_READ(AR, gpio) != 0;
2409 }
2410 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2411
2412 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2413                          u32 ah_signal_type)
2414 {
2415         u32 gpio_shift;
2416
2417         ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2418
2419         gpio_shift = 2 * gpio;
2420
2421         REG_RMW(ah,
2422                 AR_GPIO_OE_OUT,
2423                 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2424                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2425 }
2426 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2427
2428 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2429 {
2430         if (AR_SREV_9271(ah))
2431                 val = ~val;
2432
2433         REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2434                 AR_GPIO_BIT(gpio));
2435 }
2436 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2437
2438 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2439 {
2440         return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2441 }
2442 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2443
2444 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2445 {
2446         REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2447 }
2448 EXPORT_SYMBOL(ath9k_hw_setantenna);
2449
2450 /*********************/
2451 /* General Operation */
2452 /*********************/
2453
2454 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2455 {
2456         u32 bits = REG_READ(ah, AR_RX_FILTER);
2457         u32 phybits = REG_READ(ah, AR_PHY_ERR);
2458
2459         if (phybits & AR_PHY_ERR_RADAR)
2460                 bits |= ATH9K_RX_FILTER_PHYRADAR;
2461         if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2462                 bits |= ATH9K_RX_FILTER_PHYERR;
2463
2464         return bits;
2465 }
2466 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2467
2468 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2469 {
2470         u32 phybits;
2471
2472         ENABLE_REGWRITE_BUFFER(ah);
2473
2474         REG_WRITE(ah, AR_RX_FILTER, bits);
2475
2476         phybits = 0;
2477         if (bits & ATH9K_RX_FILTER_PHYRADAR)
2478                 phybits |= AR_PHY_ERR_RADAR;
2479         if (bits & ATH9K_RX_FILTER_PHYERR)
2480                 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2481         REG_WRITE(ah, AR_PHY_ERR, phybits);
2482
2483         if (phybits)
2484                 REG_WRITE(ah, AR_RXCFG,
2485                           REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
2486         else
2487                 REG_WRITE(ah, AR_RXCFG,
2488                           REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
2489
2490         REGWRITE_BUFFER_FLUSH(ah);
2491         DISABLE_REGWRITE_BUFFER(ah);
2492 }
2493 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2494
2495 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2496 {
2497         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2498                 return false;
2499
2500         ath9k_hw_init_pll(ah, NULL);
2501         return true;
2502 }
2503 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2504
2505 bool ath9k_hw_disable(struct ath_hw *ah)
2506 {
2507         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2508                 return false;
2509
2510         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2511                 return false;
2512
2513         ath9k_hw_init_pll(ah, NULL);
2514         return true;
2515 }
2516 EXPORT_SYMBOL(ath9k_hw_disable);
2517
2518 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
2519 {
2520         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2521         struct ath9k_channel *chan = ah->curchan;
2522         struct ieee80211_channel *channel = chan->chan;
2523
2524         regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2525
2526         ah->eep_ops->set_txpower(ah, chan,
2527                                  ath9k_regd_get_ctl(regulatory, chan),
2528                                  channel->max_antenna_gain * 2,
2529                                  channel->max_power * 2,
2530                                  min((u32) MAX_RATE_POWER,
2531                                  (u32) regulatory->power_limit));
2532 }
2533 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2534
2535 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
2536 {
2537         memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
2538 }
2539 EXPORT_SYMBOL(ath9k_hw_setmac);
2540
2541 void ath9k_hw_setopmode(struct ath_hw *ah)
2542 {
2543         ath9k_hw_set_operating_mode(ah, ah->opmode);
2544 }
2545 EXPORT_SYMBOL(ath9k_hw_setopmode);
2546
2547 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2548 {
2549         REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2550         REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2551 }
2552 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2553
2554 void ath9k_hw_write_associd(struct ath_hw *ah)
2555 {
2556         struct ath_common *common = ath9k_hw_common(ah);
2557
2558         REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2559         REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2560                   ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2561 }
2562 EXPORT_SYMBOL(ath9k_hw_write_associd);
2563
2564 #define ATH9K_MAX_TSF_READ 10
2565
2566 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2567 {
2568         u32 tsf_lower, tsf_upper1, tsf_upper2;
2569         int i;
2570
2571         tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2572         for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2573                 tsf_lower = REG_READ(ah, AR_TSF_L32);
2574                 tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2575                 if (tsf_upper2 == tsf_upper1)
2576                         break;
2577                 tsf_upper1 = tsf_upper2;
2578         }
2579
2580         WARN_ON( i == ATH9K_MAX_TSF_READ );
2581
2582         return (((u64)tsf_upper1 << 32) | tsf_lower);
2583 }
2584 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2585
2586 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2587 {
2588         REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2589         REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2590 }
2591 EXPORT_SYMBOL(ath9k_hw_settsf64);
2592
2593 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2594 {
2595         if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2596                            AH_TSF_WRITE_TIMEOUT))
2597                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
2598                           "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2599
2600         REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2601 }
2602 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2603
2604 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2605 {
2606         if (setting)
2607                 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2608         else
2609                 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2610 }
2611 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2612
2613 /*
2614  *  Extend 15-bit time stamp from rx descriptor to
2615  *  a full 64-bit TSF using the current h/w TSF.
2616 */
2617 u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp)
2618 {
2619         u64 tsf;
2620
2621         tsf = ath9k_hw_gettsf64(ah);
2622         if ((tsf & 0x7fff) < rstamp)
2623                 tsf -= 0x8000;
2624         return (tsf & ~0x7fff) | rstamp;
2625 }
2626 EXPORT_SYMBOL(ath9k_hw_extend_tsf);
2627
2628 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2629 {
2630         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2631         u32 macmode;
2632
2633         if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2634                 macmode = AR_2040_JOINED_RX_CLEAR;
2635         else
2636                 macmode = 0;
2637
2638         REG_WRITE(ah, AR_2040_MODE, macmode);
2639 }
2640
2641 /* HW Generic timers configuration */
2642
2643 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2644 {
2645         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2646         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2647         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2648         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2649         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2650         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2651         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2652         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2653         {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2654         {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2655                                 AR_NDP2_TIMER_MODE, 0x0002},
2656         {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2657                                 AR_NDP2_TIMER_MODE, 0x0004},
2658         {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2659                                 AR_NDP2_TIMER_MODE, 0x0008},
2660         {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2661                                 AR_NDP2_TIMER_MODE, 0x0010},
2662         {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2663                                 AR_NDP2_TIMER_MODE, 0x0020},
2664         {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2665                                 AR_NDP2_TIMER_MODE, 0x0040},
2666         {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2667                                 AR_NDP2_TIMER_MODE, 0x0080}
2668 };
2669
2670 /* HW generic timer primitives */
2671
2672 /* compute and clear index of rightmost 1 */
2673 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2674 {
2675         u32 b;
2676
2677         b = *mask;
2678         b &= (0-b);
2679         *mask &= ~b;
2680         b *= debruijn32;
2681         b >>= 27;
2682
2683         return timer_table->gen_timer_index[b];
2684 }
2685
2686 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2687 {
2688         return REG_READ(ah, AR_TSF_L32);
2689 }
2690 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2691
2692 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2693                                           void (*trigger)(void *),
2694                                           void (*overflow)(void *),
2695                                           void *arg,
2696                                           u8 timer_index)
2697 {
2698         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2699         struct ath_gen_timer *timer;
2700
2701         timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2702
2703         if (timer == NULL) {
2704                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2705                           "Failed to allocate memory"
2706                           "for hw timer[%d]\n", timer_index);
2707                 return NULL;
2708         }
2709
2710         /* allocate a hardware generic timer slot */
2711         timer_table->timers[timer_index] = timer;
2712         timer->index = timer_index;
2713         timer->trigger = trigger;
2714         timer->overflow = overflow;
2715         timer->arg = arg;
2716
2717         return timer;
2718 }
2719 EXPORT_SYMBOL(ath_gen_timer_alloc);
2720
2721 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2722                               struct ath_gen_timer *timer,
2723                               u32 timer_next,
2724                               u32 timer_period)
2725 {
2726         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2727         u32 tsf;
2728
2729         BUG_ON(!timer_period);
2730
2731         set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2732
2733         tsf = ath9k_hw_gettsf32(ah);
2734
2735         ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2736                   "curent tsf %x period %x"
2737                   "timer_next %x\n", tsf, timer_period, timer_next);
2738
2739         /*
2740          * Pull timer_next forward if the current TSF already passed it
2741          * because of software latency
2742          */
2743         if (timer_next < tsf)
2744                 timer_next = tsf + timer_period;
2745
2746         /*
2747          * Program generic timer registers
2748          */
2749         REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2750                  timer_next);
2751         REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2752                   timer_period);
2753         REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2754                     gen_tmr_configuration[timer->index].mode_mask);
2755
2756         /* Enable both trigger and thresh interrupt masks */
2757         REG_SET_BIT(ah, AR_IMR_S5,
2758                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2759                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2760 }
2761 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2762
2763 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2764 {
2765         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2766
2767         if ((timer->index < AR_FIRST_NDP_TIMER) ||
2768                 (timer->index >= ATH_MAX_GEN_TIMER)) {
2769                 return;
2770         }
2771
2772         /* Clear generic timer enable bits. */
2773         REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2774                         gen_tmr_configuration[timer->index].mode_mask);
2775
2776         /* Disable both trigger and thresh interrupt masks */
2777         REG_CLR_BIT(ah, AR_IMR_S5,
2778                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2779                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2780
2781         clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2782 }
2783 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2784
2785 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2786 {
2787         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2788
2789         /* free the hardware generic timer slot */
2790         timer_table->timers[timer->index] = NULL;
2791         kfree(timer);
2792 }
2793 EXPORT_SYMBOL(ath_gen_timer_free);
2794
2795 /*
2796  * Generic Timer Interrupts handling
2797  */
2798 void ath_gen_timer_isr(struct ath_hw *ah)
2799 {
2800         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2801         struct ath_gen_timer *timer;
2802         struct ath_common *common = ath9k_hw_common(ah);
2803         u32 trigger_mask, thresh_mask, index;
2804
2805         /* get hardware generic timer interrupt status */
2806         trigger_mask = ah->intr_gen_timer_trigger;
2807         thresh_mask = ah->intr_gen_timer_thresh;
2808         trigger_mask &= timer_table->timer_mask.val;
2809         thresh_mask &= timer_table->timer_mask.val;
2810
2811         trigger_mask &= ~thresh_mask;
2812
2813         while (thresh_mask) {
2814                 index = rightmost_index(timer_table, &thresh_mask);
2815                 timer = timer_table->timers[index];
2816                 BUG_ON(!timer);
2817                 ath_print(common, ATH_DBG_HWTIMER,
2818                           "TSF overflow for Gen timer %d\n", index);
2819                 timer->overflow(timer->arg);
2820         }
2821
2822         while (trigger_mask) {
2823                 index = rightmost_index(timer_table, &trigger_mask);
2824                 timer = timer_table->timers[index];
2825                 BUG_ON(!timer);
2826                 ath_print(common, ATH_DBG_HWTIMER,
2827                           "Gen timer[%d] trigger\n", index);
2828                 timer->trigger(timer->arg);
2829         }
2830 }
2831 EXPORT_SYMBOL(ath_gen_timer_isr);
2832
2833 /********/
2834 /* HTC  */
2835 /********/
2836
2837 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2838 {
2839         ah->htc_reset_init = true;
2840 }
2841 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2842
2843 static struct {
2844         u32 version;
2845         const char * name;
2846 } ath_mac_bb_names[] = {
2847         /* Devices with external radios */
2848         { AR_SREV_VERSION_5416_PCI,     "5416" },
2849         { AR_SREV_VERSION_5416_PCIE,    "5418" },
2850         { AR_SREV_VERSION_9100,         "9100" },
2851         { AR_SREV_VERSION_9160,         "9160" },
2852         /* Single-chip solutions */
2853         { AR_SREV_VERSION_9280,         "9280" },
2854         { AR_SREV_VERSION_9285,         "9285" },
2855         { AR_SREV_VERSION_9287,         "9287" },
2856         { AR_SREV_VERSION_9271,         "9271" },
2857         { AR_SREV_VERSION_9300,         "9300" },
2858 };
2859
2860 /* For devices with external radios */
2861 static struct {
2862         u16 version;
2863         const char * name;
2864 } ath_rf_names[] = {
2865         { 0,                            "5133" },
2866         { AR_RAD5133_SREV_MAJOR,        "5133" },
2867         { AR_RAD5122_SREV_MAJOR,        "5122" },
2868         { AR_RAD2133_SREV_MAJOR,        "2133" },
2869         { AR_RAD2122_SREV_MAJOR,        "2122" }
2870 };
2871
2872 /*
2873  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2874  */
2875 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2876 {
2877         int i;
2878
2879         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2880                 if (ath_mac_bb_names[i].version == mac_bb_version) {
2881                         return ath_mac_bb_names[i].name;
2882                 }
2883         }
2884
2885         return "????";
2886 }
2887
2888 /*
2889  * Return the RF name. "????" is returned if the RF is unknown.
2890  * Used for devices with external radios.
2891  */
2892 static const char *ath9k_hw_rf_name(u16 rf_version)
2893 {
2894         int i;
2895
2896         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2897                 if (ath_rf_names[i].version == rf_version) {
2898                         return ath_rf_names[i].name;
2899                 }
2900         }
2901
2902         return "????";
2903 }
2904
2905 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2906 {
2907         int used;
2908
2909         /* chipsets >= AR9280 are single-chip */
2910         if (AR_SREV_9280_10_OR_LATER(ah)) {
2911                 used = snprintf(hw_name, len,
2912                                "Atheros AR%s Rev:%x",
2913                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2914                                ah->hw_version.macRev);
2915         }
2916         else {
2917                 used = snprintf(hw_name, len,
2918                                "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2919                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2920                                ah->hw_version.macRev,
2921                                ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2922                                                 AR_RADIO_SREV_MAJOR)),
2923                                ah->hw_version.phyRev);
2924         }
2925
2926         hw_name[used] = '\0';
2927 }
2928 EXPORT_SYMBOL(ath9k_hw_name);