Merge tag 'asoc-fix-v5.9-rc1' of https://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / net / wan / farsync.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      FarSync WAN driver for Linux (2.6.x kernel version)
4  *
5  *      Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
6  *
7  *      Copyright (C) 2001-2004 FarSite Communications Ltd.
8  *      www.farsite.co.uk
9  *
10  *      Author:      R.J.Dunlop    <bob.dunlop@farsite.co.uk>
11  *      Maintainer:  Kevin Curtis  <kevin.curtis@farsite.co.uk>
12  */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/version.h>
19 #include <linux/pci.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/ioport.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/if.h>
27 #include <linux/hdlc.h>
28 #include <asm/io.h>
29 #include <linux/uaccess.h>
30
31 #include "farsync.h"
32
33 /*
34  *      Module info
35  */
36 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
37 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
38 MODULE_LICENSE("GPL");
39
40 /*      Driver configuration and global parameters
41  *      ==========================================
42  */
43
44 /*      Number of ports (per card) and cards supported
45  */
46 #define FST_MAX_PORTS           4
47 #define FST_MAX_CARDS           32
48
49 /*      Default parameters for the link
50  */
51 #define FST_TX_QUEUE_LEN        100     /* At 8Mbps a longer queue length is
52                                          * useful */
53 #define FST_TXQ_DEPTH           16      /* This one is for the buffering
54                                          * of frames on the way down to the card
55                                          * so that we can keep the card busy
56                                          * and maximise throughput
57                                          */
58 #define FST_HIGH_WATER_MARK     12      /* Point at which we flow control
59                                          * network layer */
60 #define FST_LOW_WATER_MARK      8       /* Point at which we remove flow
61                                          * control from network layer */
62 #define FST_MAX_MTU             8000    /* Huge but possible */
63 #define FST_DEF_MTU             1500    /* Common sane value */
64
65 #define FST_TX_TIMEOUT          (2*HZ)
66
67 #ifdef ARPHRD_RAWHDLC
68 #define ARPHRD_MYTYPE   ARPHRD_RAWHDLC  /* Raw frames */
69 #else
70 #define ARPHRD_MYTYPE   ARPHRD_HDLC     /* Cisco-HDLC (keepalives etc) */
71 #endif
72
73 /*
74  * Modules parameters and associated variables
75  */
76 static int fst_txq_low = FST_LOW_WATER_MARK;
77 static int fst_txq_high = FST_HIGH_WATER_MARK;
78 static int fst_max_reads = 7;
79 static int fst_excluded_cards = 0;
80 static int fst_excluded_list[FST_MAX_CARDS];
81
82 module_param(fst_txq_low, int, 0);
83 module_param(fst_txq_high, int, 0);
84 module_param(fst_max_reads, int, 0);
85 module_param(fst_excluded_cards, int, 0);
86 module_param_array(fst_excluded_list, int, NULL, 0);
87
88 /*      Card shared memory layout
89  *      =========================
90  */
91 #pragma pack(1)
92
93 /*      This information is derived in part from the FarSite FarSync Smc.h
94  *      file. Unfortunately various name clashes and the non-portability of the
95  *      bit field declarations in that file have meant that I have chosen to
96  *      recreate the information here.
97  *
98  *      The SMC (Shared Memory Configuration) has a version number that is
99  *      incremented every time there is a significant change. This number can
100  *      be used to check that we have not got out of step with the firmware
101  *      contained in the .CDE files.
102  */
103 #define SMC_VERSION 24
104
105 #define FST_MEMSIZE 0x100000    /* Size of card memory (1Mb) */
106
107 #define SMC_BASE 0x00002000L    /* Base offset of the shared memory window main
108                                  * configuration structure */
109 #define BFM_BASE 0x00010000L    /* Base offset of the shared memory window DMA
110                                  * buffers */
111
112 #define LEN_TX_BUFFER 8192      /* Size of packet buffers */
113 #define LEN_RX_BUFFER 8192
114
115 #define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */
116 #define LEN_SMALL_RX_BUFFER 256
117
118 #define NUM_TX_BUFFER 2         /* Must be power of 2. Fixed by firmware */
119 #define NUM_RX_BUFFER 8
120
121 /* Interrupt retry time in milliseconds */
122 #define INT_RETRY_TIME 2
123
124 /*      The Am186CH/CC processors support a SmartDMA mode using circular pools
125  *      of buffer descriptors. The structure is almost identical to that used
126  *      in the LANCE Ethernet controllers. Details available as PDF from the
127  *      AMD web site: http://www.amd.com/products/epd/processors/\
128  *                    2.16bitcont/3.am186cxfa/a21914/21914.pdf
129  */
130 struct txdesc {                 /* Transmit descriptor */
131         volatile u16 ladr;      /* Low order address of packet. This is a
132                                  * linear address in the Am186 memory space
133                                  */
134         volatile u8 hadr;       /* High order address. Low 4 bits only, high 4
135                                  * bits must be zero
136                                  */
137         volatile u8 bits;       /* Status and config */
138         volatile u16 bcnt;      /* 2s complement of packet size in low 15 bits.
139                                  * Transmit terminal count interrupt enable in
140                                  * top bit.
141                                  */
142         u16 unused;             /* Not used in Tx */
143 };
144
145 struct rxdesc {                 /* Receive descriptor */
146         volatile u16 ladr;      /* Low order address of packet */
147         volatile u8 hadr;       /* High order address */
148         volatile u8 bits;       /* Status and config */
149         volatile u16 bcnt;      /* 2s complement of buffer size in low 15 bits.
150                                  * Receive terminal count interrupt enable in
151                                  * top bit.
152                                  */
153         volatile u16 mcnt;      /* Message byte count (15 bits) */
154 };
155
156 /* Convert a length into the 15 bit 2's complement */
157 /* #define cnv_bcnt(len)   (( ~(len) + 1 ) & 0x7FFF ) */
158 /* Since we need to set the high bit to enable the completion interrupt this
159  * can be made a lot simpler
160  */
161 #define cnv_bcnt(len)   (-(len))
162
163 /* Status and config bits for the above */
164 #define DMA_OWN         0x80    /* SmartDMA owns the descriptor */
165 #define TX_STP          0x02    /* Tx: start of packet */
166 #define TX_ENP          0x01    /* Tx: end of packet */
167 #define RX_ERR          0x40    /* Rx: error (OR of next 4 bits) */
168 #define RX_FRAM         0x20    /* Rx: framing error */
169 #define RX_OFLO         0x10    /* Rx: overflow error */
170 #define RX_CRC          0x08    /* Rx: CRC error */
171 #define RX_HBUF         0x04    /* Rx: buffer error */
172 #define RX_STP          0x02    /* Rx: start of packet */
173 #define RX_ENP          0x01    /* Rx: end of packet */
174
175 /* Interrupts from the card are caused by various events which are presented
176  * in a circular buffer as several events may be processed on one physical int
177  */
178 #define MAX_CIRBUFF     32
179
180 struct cirbuff {
181         u8 rdindex;             /* read, then increment and wrap */
182         u8 wrindex;             /* write, then increment and wrap */
183         u8 evntbuff[MAX_CIRBUFF];
184 };
185
186 /* Interrupt event codes.
187  * Where appropriate the two low order bits indicate the port number
188  */
189 #define CTLA_CHG        0x18    /* Control signal changed */
190 #define CTLB_CHG        0x19
191 #define CTLC_CHG        0x1A
192 #define CTLD_CHG        0x1B
193
194 #define INIT_CPLT       0x20    /* Initialisation complete */
195 #define INIT_FAIL       0x21    /* Initialisation failed */
196
197 #define ABTA_SENT       0x24    /* Abort sent */
198 #define ABTB_SENT       0x25
199 #define ABTC_SENT       0x26
200 #define ABTD_SENT       0x27
201
202 #define TXA_UNDF        0x28    /* Transmission underflow */
203 #define TXB_UNDF        0x29
204 #define TXC_UNDF        0x2A
205 #define TXD_UNDF        0x2B
206
207 #define F56_INT         0x2C
208 #define M32_INT         0x2D
209
210 #define TE1_ALMA        0x30
211
212 /* Port physical configuration. See farsync.h for field values */
213 struct port_cfg {
214         u16 lineInterface;      /* Physical interface type */
215         u8 x25op;               /* Unused at present */
216         u8 internalClock;       /* 1 => internal clock, 0 => external */
217         u8 transparentMode;     /* 1 => on, 0 => off */
218         u8 invertClock;         /* 0 => normal, 1 => inverted */
219         u8 padBytes[6];         /* Padding */
220         u32 lineSpeed;          /* Speed in bps */
221 };
222
223 /* TE1 port physical configuration */
224 struct su_config {
225         u32 dataRate;
226         u8 clocking;
227         u8 framing;
228         u8 structure;
229         u8 interface;
230         u8 coding;
231         u8 lineBuildOut;
232         u8 equalizer;
233         u8 transparentMode;
234         u8 loopMode;
235         u8 range;
236         u8 txBufferMode;
237         u8 rxBufferMode;
238         u8 startingSlot;
239         u8 losThreshold;
240         u8 enableIdleCode;
241         u8 idleCode;
242         u8 spare[44];
243 };
244
245 /* TE1 Status */
246 struct su_status {
247         u32 receiveBufferDelay;
248         u32 framingErrorCount;
249         u32 codeViolationCount;
250         u32 crcErrorCount;
251         u32 lineAttenuation;
252         u8 portStarted;
253         u8 lossOfSignal;
254         u8 receiveRemoteAlarm;
255         u8 alarmIndicationSignal;
256         u8 spare[40];
257 };
258
259 /* Finally sling all the above together into the shared memory structure.
260  * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
261  * evolving under NT for some time so I guess we're stuck with it.
262  * The structure starts at offset SMC_BASE.
263  * See farsync.h for some field values.
264  */
265 struct fst_shared {
266         /* DMA descriptor rings */
267         struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
268         struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
269
270         /* Obsolete small buffers */
271         u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
272         u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
273
274         u8 taskStatus;          /* 0x00 => initialising, 0x01 => running,
275                                  * 0xFF => halted
276                                  */
277
278         u8 interruptHandshake;  /* Set to 0x01 by adapter to signal interrupt,
279                                  * set to 0xEE by host to acknowledge interrupt
280                                  */
281
282         u16 smcVersion;         /* Must match SMC_VERSION */
283
284         u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major
285                                  * version, RR = revision and BB = build
286                                  */
287
288         u16 txa_done;           /* Obsolete completion flags */
289         u16 rxa_done;
290         u16 txb_done;
291         u16 rxb_done;
292         u16 txc_done;
293         u16 rxc_done;
294         u16 txd_done;
295         u16 rxd_done;
296
297         u16 mailbox[4];         /* Diagnostics mailbox. Not used */
298
299         struct cirbuff interruptEvent;  /* interrupt causes */
300
301         u32 v24IpSts[FST_MAX_PORTS];    /* V.24 control input status */
302         u32 v24OpSts[FST_MAX_PORTS];    /* V.24 control output status */
303
304         struct port_cfg portConfig[FST_MAX_PORTS];
305
306         u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */
307
308         u16 cableStatus;        /* lsb: 0=> present, 1=> absent */
309
310         u16 txDescrIndex[FST_MAX_PORTS];        /* transmit descriptor ring index */
311         u16 rxDescrIndex[FST_MAX_PORTS];        /* receive descriptor ring index */
312
313         u16 portMailbox[FST_MAX_PORTS][2];      /* command, modifier */
314         u16 cardMailbox[4];     /* Not used */
315
316         /* Number of times the card thinks the host has
317          * missed an interrupt by not acknowledging
318          * within 2mS (I guess NT has problems)
319          */
320         u32 interruptRetryCount;
321
322         /* Driver private data used as an ID. We'll not
323          * use this as I'd rather keep such things
324          * in main memory rather than on the PCI bus
325          */
326         u32 portHandle[FST_MAX_PORTS];
327
328         /* Count of Tx underflows for stats */
329         u32 transmitBufferUnderflow[FST_MAX_PORTS];
330
331         /* Debounced V.24 control input status */
332         u32 v24DebouncedSts[FST_MAX_PORTS];
333
334         /* Adapter debounce timers. Don't touch */
335         u32 ctsTimer[FST_MAX_PORTS];
336         u32 ctsTimerRun[FST_MAX_PORTS];
337         u32 dcdTimer[FST_MAX_PORTS];
338         u32 dcdTimerRun[FST_MAX_PORTS];
339
340         u32 numberOfPorts;      /* Number of ports detected at startup */
341
342         u16 _reserved[64];
343
344         u16 cardMode;           /* Bit-mask to enable features:
345                                  * Bit 0: 1 enables LED identify mode
346                                  */
347
348         u16 portScheduleOffset;
349
350         struct su_config suConfig;      /* TE1 Bits */
351         struct su_status suStatus;
352
353         u32 endOfSmcSignature;  /* endOfSmcSignature MUST be the last member of
354                                  * the structure and marks the end of shared
355                                  * memory. Adapter code initializes it as
356                                  * END_SIG.
357                                  */
358 };
359
360 /* endOfSmcSignature value */
361 #define END_SIG                 0x12345678
362
363 /* Mailbox values. (portMailbox) */
364 #define NOP             0       /* No operation */
365 #define ACK             1       /* Positive acknowledgement to PC driver */
366 #define NAK             2       /* Negative acknowledgement to PC driver */
367 #define STARTPORT       3       /* Start an HDLC port */
368 #define STOPPORT        4       /* Stop an HDLC port */
369 #define ABORTTX         5       /* Abort the transmitter for a port */
370 #define SETV24O         6       /* Set V24 outputs */
371
372 /* PLX Chip Register Offsets */
373 #define CNTRL_9052      0x50    /* Control Register */
374 #define CNTRL_9054      0x6c    /* Control Register */
375
376 #define INTCSR_9052     0x4c    /* Interrupt control/status register */
377 #define INTCSR_9054     0x68    /* Interrupt control/status register */
378
379 /* 9054 DMA Registers */
380 /*
381  * Note that we will be using DMA Channel 0 for copying rx data
382  * and Channel 1 for copying tx data
383  */
384 #define DMAMODE0        0x80
385 #define DMAPADR0        0x84
386 #define DMALADR0        0x88
387 #define DMASIZ0         0x8c
388 #define DMADPR0         0x90
389 #define DMAMODE1        0x94
390 #define DMAPADR1        0x98
391 #define DMALADR1        0x9c
392 #define DMASIZ1         0xa0
393 #define DMADPR1         0xa4
394 #define DMACSR0         0xa8
395 #define DMACSR1         0xa9
396 #define DMAARB          0xac
397 #define DMATHR          0xb0
398 #define DMADAC0         0xb4
399 #define DMADAC1         0xb8
400 #define DMAMARBR        0xac
401
402 #define FST_MIN_DMA_LEN 64
403 #define FST_RX_DMA_INT  0x01
404 #define FST_TX_DMA_INT  0x02
405 #define FST_CARD_INT    0x04
406
407 /* Larger buffers are positioned in memory at offset BFM_BASE */
408 struct buf_window {
409         u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
410         u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
411 };
412
413 /* Calculate offset of a buffer object within the shared memory window */
414 #define BUF_OFFSET(X)   (BFM_BASE + offsetof(struct buf_window, X))
415
416 #pragma pack()
417
418 /*      Device driver private information
419  *      =================================
420  */
421 /*      Per port (line or channel) information
422  */
423 struct fst_port_info {
424         struct net_device *dev; /* Device struct - must be first */
425         struct fst_card_info *card;     /* Card we're associated with */
426         int index;              /* Port index on the card */
427         int hwif;               /* Line hardware (lineInterface copy) */
428         int run;                /* Port is running */
429         int mode;               /* Normal or FarSync raw */
430         int rxpos;              /* Next Rx buffer to use */
431         int txpos;              /* Next Tx buffer to use */
432         int txipos;             /* Next Tx buffer to check for free */
433         int start;              /* Indication of start/stop to network */
434         /*
435          * A sixteen entry transmit queue
436          */
437         int txqs;               /* index to get next buffer to tx */
438         int txqe;               /* index to queue next packet */
439         struct sk_buff *txq[FST_TXQ_DEPTH];     /* The queue */
440         int rxqdepth;
441 };
442
443 /*      Per card information
444  */
445 struct fst_card_info {
446         char __iomem *mem;      /* Card memory mapped to kernel space */
447         char __iomem *ctlmem;   /* Control memory for PCI cards */
448         unsigned int phys_mem;  /* Physical memory window address */
449         unsigned int phys_ctlmem;       /* Physical control memory address */
450         unsigned int irq;       /* Interrupt request line number */
451         unsigned int nports;    /* Number of serial ports */
452         unsigned int type;      /* Type index of card */
453         unsigned int state;     /* State of card */
454         spinlock_t card_lock;   /* Lock for SMP access */
455         unsigned short pci_conf;        /* PCI card config in I/O space */
456         /* Per port info */
457         struct fst_port_info ports[FST_MAX_PORTS];
458         struct pci_dev *device; /* Information about the pci device */
459         int card_no;            /* Inst of the card on the system */
460         int family;             /* TxP or TxU */
461         int dmarx_in_progress;
462         int dmatx_in_progress;
463         unsigned long int_count;
464         unsigned long int_time_ave;
465         void *rx_dma_handle_host;
466         dma_addr_t rx_dma_handle_card;
467         void *tx_dma_handle_host;
468         dma_addr_t tx_dma_handle_card;
469         struct sk_buff *dma_skb_rx;
470         struct fst_port_info *dma_port_rx;
471         struct fst_port_info *dma_port_tx;
472         int dma_len_rx;
473         int dma_len_tx;
474         int dma_txpos;
475         int dma_rxpos;
476 };
477
478 /* Convert an HDLC device pointer into a port info pointer and similar */
479 #define dev_to_port(D)  (dev_to_hdlc(D)->priv)
480 #define port_to_dev(P)  ((P)->dev)
481
482
483 /*
484  *      Shared memory window access macros
485  *
486  *      We have a nice memory based structure above, which could be directly
487  *      mapped on i386 but might not work on other architectures unless we use
488  *      the readb,w,l and writeb,w,l macros. Unfortunately these macros take
489  *      physical offsets so we have to convert. The only saving grace is that
490  *      this should all collapse back to a simple indirection eventually.
491  */
492 #define WIN_OFFSET(X)   ((long)&(((struct fst_shared *)SMC_BASE)->X))
493
494 #define FST_RDB(C,E)    readb ((C)->mem + WIN_OFFSET(E))
495 #define FST_RDW(C,E)    readw ((C)->mem + WIN_OFFSET(E))
496 #define FST_RDL(C,E)    readl ((C)->mem + WIN_OFFSET(E))
497
498 #define FST_WRB(C,E,B)  writeb ((B), (C)->mem + WIN_OFFSET(E))
499 #define FST_WRW(C,E,W)  writew ((W), (C)->mem + WIN_OFFSET(E))
500 #define FST_WRL(C,E,L)  writel ((L), (C)->mem + WIN_OFFSET(E))
501
502 /*
503  *      Debug support
504  */
505 #if FST_DEBUG
506
507 static int fst_debug_mask = { FST_DEBUG };
508
509 /* Most common debug activity is to print something if the corresponding bit
510  * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
511  * support variable numbers of macro parameters. The inverted if prevents us
512  * eating someone else's else clause.
513  */
514 #define dbg(F, fmt, args...)                                    \
515 do {                                                            \
516         if (fst_debug_mask & (F))                               \
517                 printk(KERN_DEBUG pr_fmt(fmt), ##args);         \
518 } while (0)
519 #else
520 #define dbg(F, fmt, args...)                                    \
521 do {                                                            \
522         if (0)                                                  \
523                 printk(KERN_DEBUG pr_fmt(fmt), ##args);         \
524 } while (0)
525 #endif
526
527 /*
528  *      PCI ID lookup table
529  */
530 static const struct pci_device_id fst_pci_dev_id[] = {
531         {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID, 
532          PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
533
534         {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID, 
535          PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
536
537         {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID, 
538          PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
539
540         {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID, 
541          PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
542
543         {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID, 
544          PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
545
546         {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID, 
547          PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
548
549         {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID, 
550          PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
551         {0,}                    /* End */
552 };
553
554 MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
555
556 /*
557  *      Device Driver Work Queues
558  *
559  *      So that we don't spend too much time processing events in the 
560  *      Interrupt Service routine, we will declare a work queue per Card 
561  *      and make the ISR schedule a task in the queue for later execution.
562  *      In the 2.4 Kernel we used to use the immediate queue for BH's
563  *      Now that they are gone, tasklets seem to be much better than work 
564  *      queues.
565  */
566
567 static void do_bottom_half_tx(struct fst_card_info *card);
568 static void do_bottom_half_rx(struct fst_card_info *card);
569 static void fst_process_tx_work_q(unsigned long work_q);
570 static void fst_process_int_work_q(unsigned long work_q);
571
572 static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
573 static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
574
575 static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
576 static spinlock_t fst_work_q_lock;
577 static u64 fst_work_txq;
578 static u64 fst_work_intq;
579
580 static void
581 fst_q_work_item(u64 * queue, int card_index)
582 {
583         unsigned long flags;
584         u64 mask;
585
586         /*
587          * Grab the queue exclusively
588          */
589         spin_lock_irqsave(&fst_work_q_lock, flags);
590
591         /*
592          * Making an entry in the queue is simply a matter of setting
593          * a bit for the card indicating that there is work to do in the
594          * bottom half for the card.  Note the limitation of 64 cards.
595          * That ought to be enough
596          */
597         mask = (u64)1 << card_index;
598         *queue |= mask;
599         spin_unlock_irqrestore(&fst_work_q_lock, flags);
600 }
601
602 static void
603 fst_process_tx_work_q(unsigned long /*void **/work_q)
604 {
605         unsigned long flags;
606         u64 work_txq;
607         int i;
608
609         /*
610          * Grab the queue exclusively
611          */
612         dbg(DBG_TX, "fst_process_tx_work_q\n");
613         spin_lock_irqsave(&fst_work_q_lock, flags);
614         work_txq = fst_work_txq;
615         fst_work_txq = 0;
616         spin_unlock_irqrestore(&fst_work_q_lock, flags);
617
618         /*
619          * Call the bottom half for each card with work waiting
620          */
621         for (i = 0; i < FST_MAX_CARDS; i++) {
622                 if (work_txq & 0x01) {
623                         if (fst_card_array[i] != NULL) {
624                                 dbg(DBG_TX, "Calling tx bh for card %d\n", i);
625                                 do_bottom_half_tx(fst_card_array[i]);
626                         }
627                 }
628                 work_txq = work_txq >> 1;
629         }
630 }
631
632 static void
633 fst_process_int_work_q(unsigned long /*void **/work_q)
634 {
635         unsigned long flags;
636         u64 work_intq;
637         int i;
638
639         /*
640          * Grab the queue exclusively
641          */
642         dbg(DBG_INTR, "fst_process_int_work_q\n");
643         spin_lock_irqsave(&fst_work_q_lock, flags);
644         work_intq = fst_work_intq;
645         fst_work_intq = 0;
646         spin_unlock_irqrestore(&fst_work_q_lock, flags);
647
648         /*
649          * Call the bottom half for each card with work waiting
650          */
651         for (i = 0; i < FST_MAX_CARDS; i++) {
652                 if (work_intq & 0x01) {
653                         if (fst_card_array[i] != NULL) {
654                                 dbg(DBG_INTR,
655                                     "Calling rx & tx bh for card %d\n", i);
656                                 do_bottom_half_rx(fst_card_array[i]);
657                                 do_bottom_half_tx(fst_card_array[i]);
658                         }
659                 }
660                 work_intq = work_intq >> 1;
661         }
662 }
663
664 /*      Card control functions
665  *      ======================
666  */
667 /*      Place the processor in reset state
668  *
669  * Used to be a simple write to card control space but a glitch in the latest
670  * AMD Am186CH processor means that we now have to do it by asserting and de-
671  * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
672  * at offset 9052_CNTRL.  Note the updates for the TXU.
673  */
674 static inline void
675 fst_cpureset(struct fst_card_info *card)
676 {
677         unsigned char interrupt_line_register;
678         unsigned int regval;
679
680         if (card->family == FST_FAMILY_TXU) {
681                 if (pci_read_config_byte
682                     (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
683                         dbg(DBG_ASS,
684                             "Error in reading interrupt line register\n");
685                 }
686                 /*
687                  * Assert PLX software reset and Am186 hardware reset
688                  * and then deassert the PLX software reset but 186 still in reset
689                  */
690                 outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
691                 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
692                 /*
693                  * We are delaying here to allow the 9054 to reset itself
694                  */
695                 usleep_range(10, 20);
696                 outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
697                 /*
698                  * We are delaying here to allow the 9054 to reload its eeprom
699                  */
700                 usleep_range(10, 20);
701                 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
702
703                 if (pci_write_config_byte
704                     (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
705                         dbg(DBG_ASS,
706                             "Error in writing interrupt line register\n");
707                 }
708
709         } else {
710                 regval = inl(card->pci_conf + CNTRL_9052);
711
712                 outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
713                 outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
714         }
715 }
716
717 /*      Release the processor from reset
718  */
719 static inline void
720 fst_cpurelease(struct fst_card_info *card)
721 {
722         if (card->family == FST_FAMILY_TXU) {
723                 /*
724                  * Force posted writes to complete
725                  */
726                 (void) readb(card->mem);
727
728                 /*
729                  * Release LRESET DO = 1
730                  * Then release Local Hold, DO = 1
731                  */
732                 outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
733                 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
734         } else {
735                 (void) readb(card->ctlmem);
736         }
737 }
738
739 /*      Clear the cards interrupt flag
740  */
741 static inline void
742 fst_clear_intr(struct fst_card_info *card)
743 {
744         if (card->family == FST_FAMILY_TXU) {
745                 (void) readb(card->ctlmem);
746         } else {
747                 /* Poke the appropriate PLX chip register (same as enabling interrupts)
748                  */
749                 outw(0x0543, card->pci_conf + INTCSR_9052);
750         }
751 }
752
753 /*      Enable card interrupts
754  */
755 static inline void
756 fst_enable_intr(struct fst_card_info *card)
757 {
758         if (card->family == FST_FAMILY_TXU) {
759                 outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
760         } else {
761                 outw(0x0543, card->pci_conf + INTCSR_9052);
762         }
763 }
764
765 /*      Disable card interrupts
766  */
767 static inline void
768 fst_disable_intr(struct fst_card_info *card)
769 {
770         if (card->family == FST_FAMILY_TXU) {
771                 outl(0x00000000, card->pci_conf + INTCSR_9054);
772         } else {
773                 outw(0x0000, card->pci_conf + INTCSR_9052);
774         }
775 }
776
777 /*      Process the result of trying to pass a received frame up the stack
778  */
779 static void
780 fst_process_rx_status(int rx_status, char *name)
781 {
782         switch (rx_status) {
783         case NET_RX_SUCCESS:
784                 {
785                         /*
786                          * Nothing to do here
787                          */
788                         break;
789                 }
790         case NET_RX_DROP:
791                 {
792                         dbg(DBG_ASS, "%s: Received packet dropped\n", name);
793                         break;
794                 }
795         }
796 }
797
798 /*      Initilaise DMA for PLX 9054
799  */
800 static inline void
801 fst_init_dma(struct fst_card_info *card)
802 {
803         /*
804          * This is only required for the PLX 9054
805          */
806         if (card->family == FST_FAMILY_TXU) {
807                 pci_set_master(card->device);
808                 outl(0x00020441, card->pci_conf + DMAMODE0);
809                 outl(0x00020441, card->pci_conf + DMAMODE1);
810                 outl(0x0, card->pci_conf + DMATHR);
811         }
812 }
813
814 /*      Tx dma complete interrupt
815  */
816 static void
817 fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
818                     int len, int txpos)
819 {
820         struct net_device *dev = port_to_dev(port);
821
822         /*
823          * Everything is now set, just tell the card to go
824          */
825         dbg(DBG_TX, "fst_tx_dma_complete\n");
826         FST_WRB(card, txDescrRing[port->index][txpos].bits,
827                 DMA_OWN | TX_STP | TX_ENP);
828         dev->stats.tx_packets++;
829         dev->stats.tx_bytes += len;
830         netif_trans_update(dev);
831 }
832
833 /*
834  * Mark it for our own raw sockets interface
835  */
836 static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
837 {
838         skb->dev = dev;
839         skb_reset_mac_header(skb);
840         skb->pkt_type = PACKET_HOST;
841         return htons(ETH_P_CUST);
842 }
843
844 /*      Rx dma complete interrupt
845  */
846 static void
847 fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
848                     int len, struct sk_buff *skb, int rxp)
849 {
850         struct net_device *dev = port_to_dev(port);
851         int pi;
852         int rx_status;
853
854         dbg(DBG_TX, "fst_rx_dma_complete\n");
855         pi = port->index;
856         skb_put_data(skb, card->rx_dma_handle_host, len);
857
858         /* Reset buffer descriptor */
859         FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
860
861         /* Update stats */
862         dev->stats.rx_packets++;
863         dev->stats.rx_bytes += len;
864
865         /* Push upstream */
866         dbg(DBG_RX, "Pushing the frame up the stack\n");
867         if (port->mode == FST_RAW)
868                 skb->protocol = farsync_type_trans(skb, dev);
869         else
870                 skb->protocol = hdlc_type_trans(skb, dev);
871         rx_status = netif_rx(skb);
872         fst_process_rx_status(rx_status, port_to_dev(port)->name);
873         if (rx_status == NET_RX_DROP)
874                 dev->stats.rx_dropped++;
875 }
876
877 /*
878  *      Receive a frame through the DMA
879  */
880 static inline void
881 fst_rx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
882 {
883         /*
884          * This routine will setup the DMA and start it
885          */
886
887         dbg(DBG_RX, "In fst_rx_dma %x %x %d\n", (u32)dma, mem, len);
888         if (card->dmarx_in_progress) {
889                 dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
890         }
891
892         outl(dma, card->pci_conf + DMAPADR0);   /* Copy to here */
893         outl(mem, card->pci_conf + DMALADR0);   /* from here */
894         outl(len, card->pci_conf + DMASIZ0);    /* for this length */
895         outl(0x00000000c, card->pci_conf + DMADPR0);    /* In this direction */
896
897         /*
898          * We use the dmarx_in_progress flag to flag the channel as busy
899          */
900         card->dmarx_in_progress = 1;
901         outb(0x03, card->pci_conf + DMACSR0);   /* Start the transfer */
902 }
903
904 /*
905  *      Send a frame through the DMA
906  */
907 static inline void
908 fst_tx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
909 {
910         /*
911          * This routine will setup the DMA and start it.
912          */
913
914         dbg(DBG_TX, "In fst_tx_dma %x %x %d\n", (u32)dma, mem, len);
915         if (card->dmatx_in_progress) {
916                 dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
917         }
918
919         outl(dma, card->pci_conf + DMAPADR1);   /* Copy from here */
920         outl(mem, card->pci_conf + DMALADR1);   /* to here */
921         outl(len, card->pci_conf + DMASIZ1);    /* for this length */
922         outl(0x000000004, card->pci_conf + DMADPR1);    /* In this direction */
923
924         /*
925          * We use the dmatx_in_progress to flag the channel as busy
926          */
927         card->dmatx_in_progress = 1;
928         outb(0x03, card->pci_conf + DMACSR1);   /* Start the transfer */
929 }
930
931 /*      Issue a Mailbox command for a port.
932  *      Note we issue them on a fire and forget basis, not expecting to see an
933  *      error and not waiting for completion.
934  */
935 static void
936 fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
937 {
938         struct fst_card_info *card;
939         unsigned short mbval;
940         unsigned long flags;
941         int safety;
942
943         card = port->card;
944         spin_lock_irqsave(&card->card_lock, flags);
945         mbval = FST_RDW(card, portMailbox[port->index][0]);
946
947         safety = 0;
948         /* Wait for any previous command to complete */
949         while (mbval > NAK) {
950                 spin_unlock_irqrestore(&card->card_lock, flags);
951                 schedule_timeout_uninterruptible(1);
952                 spin_lock_irqsave(&card->card_lock, flags);
953
954                 if (++safety > 2000) {
955                         pr_err("Mailbox safety timeout\n");
956                         break;
957                 }
958
959                 mbval = FST_RDW(card, portMailbox[port->index][0]);
960         }
961         if (safety > 0) {
962                 dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
963         }
964         if (mbval == NAK) {
965                 dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
966         }
967
968         FST_WRW(card, portMailbox[port->index][0], cmd);
969
970         if (cmd == ABORTTX || cmd == STARTPORT) {
971                 port->txpos = 0;
972                 port->txipos = 0;
973                 port->start = 0;
974         }
975
976         spin_unlock_irqrestore(&card->card_lock, flags);
977 }
978
979 /*      Port output signals control
980  */
981 static inline void
982 fst_op_raise(struct fst_port_info *port, unsigned int outputs)
983 {
984         outputs |= FST_RDL(port->card, v24OpSts[port->index]);
985         FST_WRL(port->card, v24OpSts[port->index], outputs);
986
987         if (port->run)
988                 fst_issue_cmd(port, SETV24O);
989 }
990
991 static inline void
992 fst_op_lower(struct fst_port_info *port, unsigned int outputs)
993 {
994         outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
995         FST_WRL(port->card, v24OpSts[port->index], outputs);
996
997         if (port->run)
998                 fst_issue_cmd(port, SETV24O);
999 }
1000
1001 /*
1002  *      Setup port Rx buffers
1003  */
1004 static void
1005 fst_rx_config(struct fst_port_info *port)
1006 {
1007         int i;
1008         int pi;
1009         unsigned int offset;
1010         unsigned long flags;
1011         struct fst_card_info *card;
1012
1013         pi = port->index;
1014         card = port->card;
1015         spin_lock_irqsave(&card->card_lock, flags);
1016         for (i = 0; i < NUM_RX_BUFFER; i++) {
1017                 offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1018
1019                 FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1020                 FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1021                 FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1022                 FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1023                 FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1024         }
1025         port->rxpos = 0;
1026         spin_unlock_irqrestore(&card->card_lock, flags);
1027 }
1028
1029 /*
1030  *      Setup port Tx buffers
1031  */
1032 static void
1033 fst_tx_config(struct fst_port_info *port)
1034 {
1035         int i;
1036         int pi;
1037         unsigned int offset;
1038         unsigned long flags;
1039         struct fst_card_info *card;
1040
1041         pi = port->index;
1042         card = port->card;
1043         spin_lock_irqsave(&card->card_lock, flags);
1044         for (i = 0; i < NUM_TX_BUFFER; i++) {
1045                 offset = BUF_OFFSET(txBuffer[pi][i][0]);
1046
1047                 FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1048                 FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1049                 FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1050                 FST_WRB(card, txDescrRing[pi][i].bits, 0);
1051         }
1052         port->txpos = 0;
1053         port->txipos = 0;
1054         port->start = 0;
1055         spin_unlock_irqrestore(&card->card_lock, flags);
1056 }
1057
1058 /*      TE1 Alarm change interrupt event
1059  */
1060 static void
1061 fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1062 {
1063         u8 los;
1064         u8 rra;
1065         u8 ais;
1066
1067         los = FST_RDB(card, suStatus.lossOfSignal);
1068         rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1069         ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1070
1071         if (los) {
1072                 /*
1073                  * Lost the link
1074                  */
1075                 if (netif_carrier_ok(port_to_dev(port))) {
1076                         dbg(DBG_INTR, "Net carrier off\n");
1077                         netif_carrier_off(port_to_dev(port));
1078                 }
1079         } else {
1080                 /*
1081                  * Link available
1082                  */
1083                 if (!netif_carrier_ok(port_to_dev(port))) {
1084                         dbg(DBG_INTR, "Net carrier on\n");
1085                         netif_carrier_on(port_to_dev(port));
1086                 }
1087         }
1088
1089         if (los)
1090                 dbg(DBG_INTR, "Assert LOS Alarm\n");
1091         else
1092                 dbg(DBG_INTR, "De-assert LOS Alarm\n");
1093         if (rra)
1094                 dbg(DBG_INTR, "Assert RRA Alarm\n");
1095         else
1096                 dbg(DBG_INTR, "De-assert RRA Alarm\n");
1097
1098         if (ais)
1099                 dbg(DBG_INTR, "Assert AIS Alarm\n");
1100         else
1101                 dbg(DBG_INTR, "De-assert AIS Alarm\n");
1102 }
1103
1104 /*      Control signal change interrupt event
1105  */
1106 static void
1107 fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1108 {
1109         int signals;
1110
1111         signals = FST_RDL(card, v24DebouncedSts[port->index]);
1112
1113         if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1114                        ? IPSTS_INDICATE : IPSTS_DCD)) {
1115                 if (!netif_carrier_ok(port_to_dev(port))) {
1116                         dbg(DBG_INTR, "DCD active\n");
1117                         netif_carrier_on(port_to_dev(port));
1118                 }
1119         } else {
1120                 if (netif_carrier_ok(port_to_dev(port))) {
1121                         dbg(DBG_INTR, "DCD lost\n");
1122                         netif_carrier_off(port_to_dev(port));
1123                 }
1124         }
1125 }
1126
1127 /*      Log Rx Errors
1128  */
1129 static void
1130 fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1131                  unsigned char dmabits, int rxp, unsigned short len)
1132 {
1133         struct net_device *dev = port_to_dev(port);
1134
1135         /*
1136          * Increment the appropriate error counter
1137          */
1138         dev->stats.rx_errors++;
1139         if (dmabits & RX_OFLO) {
1140                 dev->stats.rx_fifo_errors++;
1141                 dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1142                     card->card_no, port->index, rxp);
1143         }
1144         if (dmabits & RX_CRC) {
1145                 dev->stats.rx_crc_errors++;
1146                 dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1147                     card->card_no, port->index);
1148         }
1149         if (dmabits & RX_FRAM) {
1150                 dev->stats.rx_frame_errors++;
1151                 dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1152                     card->card_no, port->index);
1153         }
1154         if (dmabits == (RX_STP | RX_ENP)) {
1155                 dev->stats.rx_length_errors++;
1156                 dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1157                     len, card->card_no, port->index);
1158         }
1159 }
1160
1161 /*      Rx Error Recovery
1162  */
1163 static void
1164 fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1165                      unsigned char dmabits, int rxp, unsigned short len)
1166 {
1167         int i;
1168         int pi;
1169
1170         pi = port->index;
1171         /* 
1172          * Discard buffer descriptors until we see the start of the
1173          * next frame.  Note that for long frames this could be in
1174          * a subsequent interrupt. 
1175          */
1176         i = 0;
1177         while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1178                 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1179                 rxp = (rxp+1) % NUM_RX_BUFFER;
1180                 if (++i > NUM_RX_BUFFER) {
1181                         dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1182                             " than we have\n");
1183                         break;
1184                 }
1185                 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1186                 dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1187         }
1188         dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1189
1190         /* Discard the terminal buffer */
1191         if (!(dmabits & DMA_OWN)) {
1192                 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1193                 rxp = (rxp+1) % NUM_RX_BUFFER;
1194         }
1195         port->rxpos = rxp;
1196         return;
1197
1198 }
1199
1200 /*      Rx complete interrupt
1201  */
1202 static void
1203 fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1204 {
1205         unsigned char dmabits;
1206         int pi;
1207         int rxp;
1208         int rx_status;
1209         unsigned short len;
1210         struct sk_buff *skb;
1211         struct net_device *dev = port_to_dev(port);
1212
1213         /* Check we have a buffer to process */
1214         pi = port->index;
1215         rxp = port->rxpos;
1216         dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1217         if (dmabits & DMA_OWN) {
1218                 dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1219                     pi, rxp);
1220                 return;
1221         }
1222         if (card->dmarx_in_progress) {
1223                 return;
1224         }
1225
1226         /* Get buffer length */
1227         len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1228         /* Discard the CRC */
1229         len -= 2;
1230         if (len == 0) {
1231                 /*
1232                  * This seems to happen on the TE1 interface sometimes
1233                  * so throw the frame away and log the event.
1234                  */
1235                 pr_err("Frame received with 0 length. Card %d Port %d\n",
1236                        card->card_no, port->index);
1237                 /* Return descriptor to card */
1238                 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1239
1240                 rxp = (rxp+1) % NUM_RX_BUFFER;
1241                 port->rxpos = rxp;
1242                 return;
1243         }
1244
1245         /* Check buffer length and for other errors. We insist on one packet
1246          * in one buffer. This simplifies things greatly and since we've
1247          * allocated 8K it shouldn't be a real world limitation
1248          */
1249         dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1250         if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1251                 fst_log_rx_error(card, port, dmabits, rxp, len);
1252                 fst_recover_rx_error(card, port, dmabits, rxp, len);
1253                 return;
1254         }
1255
1256         /* Allocate SKB */
1257         if ((skb = dev_alloc_skb(len)) == NULL) {
1258                 dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1259
1260                 dev->stats.rx_dropped++;
1261
1262                 /* Return descriptor to card */
1263                 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1264
1265                 rxp = (rxp+1) % NUM_RX_BUFFER;
1266                 port->rxpos = rxp;
1267                 return;
1268         }
1269
1270         /*
1271          * We know the length we need to receive, len.
1272          * It's not worth using the DMA for reads of less than
1273          * FST_MIN_DMA_LEN
1274          */
1275
1276         if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1277                 memcpy_fromio(skb_put(skb, len),
1278                               card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1279                               len);
1280
1281                 /* Reset buffer descriptor */
1282                 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1283
1284                 /* Update stats */
1285                 dev->stats.rx_packets++;
1286                 dev->stats.rx_bytes += len;
1287
1288                 /* Push upstream */
1289                 dbg(DBG_RX, "Pushing frame up the stack\n");
1290                 if (port->mode == FST_RAW)
1291                         skb->protocol = farsync_type_trans(skb, dev);
1292                 else
1293                         skb->protocol = hdlc_type_trans(skb, dev);
1294                 rx_status = netif_rx(skb);
1295                 fst_process_rx_status(rx_status, port_to_dev(port)->name);
1296                 if (rx_status == NET_RX_DROP)
1297                         dev->stats.rx_dropped++;
1298         } else {
1299                 card->dma_skb_rx = skb;
1300                 card->dma_port_rx = port;
1301                 card->dma_len_rx = len;
1302                 card->dma_rxpos = rxp;
1303                 fst_rx_dma(card, card->rx_dma_handle_card,
1304                            BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1305         }
1306         if (rxp != port->rxpos) {
1307                 dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1308                 dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1309         }
1310         rxp = (rxp+1) % NUM_RX_BUFFER;
1311         port->rxpos = rxp;
1312 }
1313
1314 /*
1315  *      The bottom halfs to the ISR
1316  *
1317  */
1318
1319 static void
1320 do_bottom_half_tx(struct fst_card_info *card)
1321 {
1322         struct fst_port_info *port;
1323         int pi;
1324         int txq_length;
1325         struct sk_buff *skb;
1326         unsigned long flags;
1327         struct net_device *dev;
1328
1329         /*
1330          *  Find a free buffer for the transmit
1331          *  Step through each port on this card
1332          */
1333
1334         dbg(DBG_TX, "do_bottom_half_tx\n");
1335         for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1336                 if (!port->run)
1337                         continue;
1338
1339                 dev = port_to_dev(port);
1340                 while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1341                          DMA_OWN) &&
1342                        !(card->dmatx_in_progress)) {
1343                         /*
1344                          * There doesn't seem to be a txdone event per-se
1345                          * We seem to have to deduce it, by checking the DMA_OWN
1346                          * bit on the next buffer we think we can use
1347                          */
1348                         spin_lock_irqsave(&card->card_lock, flags);
1349                         if ((txq_length = port->txqe - port->txqs) < 0) {
1350                                 /*
1351                                  * This is the case where one has wrapped and the
1352                                  * maths gives us a negative number
1353                                  */
1354                                 txq_length = txq_length + FST_TXQ_DEPTH;
1355                         }
1356                         spin_unlock_irqrestore(&card->card_lock, flags);
1357                         if (txq_length > 0) {
1358                                 /*
1359                                  * There is something to send
1360                                  */
1361                                 spin_lock_irqsave(&card->card_lock, flags);
1362                                 skb = port->txq[port->txqs];
1363                                 port->txqs++;
1364                                 if (port->txqs == FST_TXQ_DEPTH) {
1365                                         port->txqs = 0;
1366                                 }
1367                                 spin_unlock_irqrestore(&card->card_lock, flags);
1368                                 /*
1369                                  * copy the data and set the required indicators on the
1370                                  * card.
1371                                  */
1372                                 FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1373                                         cnv_bcnt(skb->len));
1374                                 if ((skb->len < FST_MIN_DMA_LEN) ||
1375                                     (card->family == FST_FAMILY_TXP)) {
1376                                         /* Enqueue the packet with normal io */
1377                                         memcpy_toio(card->mem +
1378                                                     BUF_OFFSET(txBuffer[pi]
1379                                                                [port->
1380                                                                 txpos][0]),
1381                                                     skb->data, skb->len);
1382                                         FST_WRB(card,
1383                                                 txDescrRing[pi][port->txpos].
1384                                                 bits,
1385                                                 DMA_OWN | TX_STP | TX_ENP);
1386                                         dev->stats.tx_packets++;
1387                                         dev->stats.tx_bytes += skb->len;
1388                                         netif_trans_update(dev);
1389                                 } else {
1390                                         /* Or do it through dma */
1391                                         memcpy(card->tx_dma_handle_host,
1392                                                skb->data, skb->len);
1393                                         card->dma_port_tx = port;
1394                                         card->dma_len_tx = skb->len;
1395                                         card->dma_txpos = port->txpos;
1396                                         fst_tx_dma(card,
1397                                                    card->tx_dma_handle_card,
1398                                                    BUF_OFFSET(txBuffer[pi]
1399                                                               [port->txpos][0]),
1400                                                    skb->len);
1401                                 }
1402                                 if (++port->txpos >= NUM_TX_BUFFER)
1403                                         port->txpos = 0;
1404                                 /*
1405                                  * If we have flow control on, can we now release it?
1406                                  */
1407                                 if (port->start) {
1408                                         if (txq_length < fst_txq_low) {
1409                                                 netif_wake_queue(port_to_dev
1410                                                                  (port));
1411                                                 port->start = 0;
1412                                         }
1413                                 }
1414                                 dev_kfree_skb(skb);
1415                         } else {
1416                                 /*
1417                                  * Nothing to send so break out of the while loop
1418                                  */
1419                                 break;
1420                         }
1421                 }
1422         }
1423 }
1424
1425 static void
1426 do_bottom_half_rx(struct fst_card_info *card)
1427 {
1428         struct fst_port_info *port;
1429         int pi;
1430         int rx_count = 0;
1431
1432         /* Check for rx completions on all ports on this card */
1433         dbg(DBG_RX, "do_bottom_half_rx\n");
1434         for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1435                 if (!port->run)
1436                         continue;
1437
1438                 while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1439                          & DMA_OWN) && !(card->dmarx_in_progress)) {
1440                         if (rx_count > fst_max_reads) {
1441                                 /*
1442                                  * Don't spend forever in receive processing
1443                                  * Schedule another event
1444                                  */
1445                                 fst_q_work_item(&fst_work_intq, card->card_no);
1446                                 tasklet_schedule(&fst_int_task);
1447                                 break;  /* Leave the loop */
1448                         }
1449                         fst_intr_rx(card, port);
1450                         rx_count++;
1451                 }
1452         }
1453 }
1454
1455 /*
1456  *      The interrupt service routine
1457  *      Dev_id is our fst_card_info pointer
1458  */
1459 static irqreturn_t
1460 fst_intr(int dummy, void *dev_id)
1461 {
1462         struct fst_card_info *card = dev_id;
1463         struct fst_port_info *port;
1464         int rdidx;              /* Event buffer indices */
1465         int wridx;
1466         int event;              /* Actual event for processing */
1467         unsigned int dma_intcsr = 0;
1468         unsigned int do_card_interrupt;
1469         unsigned int int_retry_count;
1470
1471         /*
1472          * Check to see if the interrupt was for this card
1473          * return if not
1474          * Note that the call to clear the interrupt is important
1475          */
1476         dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1477         if (card->state != FST_RUNNING) {
1478                 pr_err("Interrupt received for card %d in a non running state (%d)\n",
1479                        card->card_no, card->state);
1480
1481                 /* 
1482                  * It is possible to really be running, i.e. we have re-loaded
1483                  * a running card
1484                  * Clear and reprime the interrupt source 
1485                  */
1486                 fst_clear_intr(card);
1487                 return IRQ_HANDLED;
1488         }
1489
1490         /* Clear and reprime the interrupt source */
1491         fst_clear_intr(card);
1492
1493         /*
1494          * Is the interrupt for this card (handshake == 1)
1495          */
1496         do_card_interrupt = 0;
1497         if (FST_RDB(card, interruptHandshake) == 1) {
1498                 do_card_interrupt += FST_CARD_INT;
1499                 /* Set the software acknowledge */
1500                 FST_WRB(card, interruptHandshake, 0xEE);
1501         }
1502         if (card->family == FST_FAMILY_TXU) {
1503                 /*
1504                  * Is it a DMA Interrupt
1505                  */
1506                 dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1507                 if (dma_intcsr & 0x00200000) {
1508                         /*
1509                          * DMA Channel 0 (Rx transfer complete)
1510                          */
1511                         dbg(DBG_RX, "DMA Rx xfer complete\n");
1512                         outb(0x8, card->pci_conf + DMACSR0);
1513                         fst_rx_dma_complete(card, card->dma_port_rx,
1514                                             card->dma_len_rx, card->dma_skb_rx,
1515                                             card->dma_rxpos);
1516                         card->dmarx_in_progress = 0;
1517                         do_card_interrupt += FST_RX_DMA_INT;
1518                 }
1519                 if (dma_intcsr & 0x00400000) {
1520                         /*
1521                          * DMA Channel 1 (Tx transfer complete)
1522                          */
1523                         dbg(DBG_TX, "DMA Tx xfer complete\n");
1524                         outb(0x8, card->pci_conf + DMACSR1);
1525                         fst_tx_dma_complete(card, card->dma_port_tx,
1526                                             card->dma_len_tx, card->dma_txpos);
1527                         card->dmatx_in_progress = 0;
1528                         do_card_interrupt += FST_TX_DMA_INT;
1529                 }
1530         }
1531
1532         /*
1533          * Have we been missing Interrupts
1534          */
1535         int_retry_count = FST_RDL(card, interruptRetryCount);
1536         if (int_retry_count) {
1537                 dbg(DBG_ASS, "Card %d int_retry_count is  %d\n",
1538                     card->card_no, int_retry_count);
1539                 FST_WRL(card, interruptRetryCount, 0);
1540         }
1541
1542         if (!do_card_interrupt) {
1543                 return IRQ_HANDLED;
1544         }
1545
1546         /* Scehdule the bottom half of the ISR */
1547         fst_q_work_item(&fst_work_intq, card->card_no);
1548         tasklet_schedule(&fst_int_task);
1549
1550         /* Drain the event queue */
1551         rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1552         wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1553         while (rdidx != wridx) {
1554                 event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1555                 port = &card->ports[event & 0x03];
1556
1557                 dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1558
1559                 switch (event) {
1560                 case TE1_ALMA:
1561                         dbg(DBG_INTR, "TE1 Alarm intr\n");
1562                         if (port->run)
1563                                 fst_intr_te1_alarm(card, port);
1564                         break;
1565
1566                 case CTLA_CHG:
1567                 case CTLB_CHG:
1568                 case CTLC_CHG:
1569                 case CTLD_CHG:
1570                         if (port->run)
1571                                 fst_intr_ctlchg(card, port);
1572                         break;
1573
1574                 case ABTA_SENT:
1575                 case ABTB_SENT:
1576                 case ABTC_SENT:
1577                 case ABTD_SENT:
1578                         dbg(DBG_TX, "Abort complete port %d\n", port->index);
1579                         break;
1580
1581                 case TXA_UNDF:
1582                 case TXB_UNDF:
1583                 case TXC_UNDF:
1584                 case TXD_UNDF:
1585                         /* Difficult to see how we'd get this given that we
1586                          * always load up the entire packet for DMA.
1587                          */
1588                         dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1589                         port_to_dev(port)->stats.tx_errors++;
1590                         port_to_dev(port)->stats.tx_fifo_errors++;
1591                         dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1592                             card->card_no, port->index);
1593                         break;
1594
1595                 case INIT_CPLT:
1596                         dbg(DBG_INIT, "Card init OK intr\n");
1597                         break;
1598
1599                 case INIT_FAIL:
1600                         dbg(DBG_INIT, "Card init FAILED intr\n");
1601                         card->state = FST_IFAILED;
1602                         break;
1603
1604                 default:
1605                         pr_err("intr: unknown card event %d. ignored\n", event);
1606                         break;
1607                 }
1608
1609                 /* Bump and wrap the index */
1610                 if (++rdidx >= MAX_CIRBUFF)
1611                         rdidx = 0;
1612         }
1613         FST_WRB(card, interruptEvent.rdindex, rdidx);
1614         return IRQ_HANDLED;
1615 }
1616
1617 /*      Check that the shared memory configuration is one that we can handle
1618  *      and that some basic parameters are correct
1619  */
1620 static void
1621 check_started_ok(struct fst_card_info *card)
1622 {
1623         int i;
1624
1625         /* Check structure version and end marker */
1626         if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1627                 pr_err("Bad shared memory version %d expected %d\n",
1628                        FST_RDW(card, smcVersion), SMC_VERSION);
1629                 card->state = FST_BADVERSION;
1630                 return;
1631         }
1632         if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1633                 pr_err("Missing shared memory signature\n");
1634                 card->state = FST_BADVERSION;
1635                 return;
1636         }
1637         /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1638         if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1639                 card->state = FST_RUNNING;
1640         } else if (i == 0xFF) {
1641                 pr_err("Firmware initialisation failed. Card halted\n");
1642                 card->state = FST_HALTED;
1643                 return;
1644         } else if (i != 0x00) {
1645                 pr_err("Unknown firmware status 0x%x\n", i);
1646                 card->state = FST_HALTED;
1647                 return;
1648         }
1649
1650         /* Finally check the number of ports reported by firmware against the
1651          * number we assumed at card detection. Should never happen with
1652          * existing firmware etc so we just report it for the moment.
1653          */
1654         if (FST_RDL(card, numberOfPorts) != card->nports) {
1655                 pr_warn("Port count mismatch on card %d.  Firmware thinks %d we say %d\n",
1656                         card->card_no,
1657                         FST_RDL(card, numberOfPorts), card->nports);
1658         }
1659 }
1660
1661 static int
1662 set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1663                    struct fstioc_info *info)
1664 {
1665         int err;
1666         unsigned char my_framing;
1667
1668         /* Set things according to the user set valid flags 
1669          * Several of the old options have been invalidated/replaced by the 
1670          * generic hdlc package.
1671          */
1672         err = 0;
1673         if (info->valid & FSTVAL_PROTO) {
1674                 if (info->proto == FST_RAW)
1675                         port->mode = FST_RAW;
1676                 else
1677                         port->mode = FST_GEN_HDLC;
1678         }
1679
1680         if (info->valid & FSTVAL_CABLE)
1681                 err = -EINVAL;
1682
1683         if (info->valid & FSTVAL_SPEED)
1684                 err = -EINVAL;
1685
1686         if (info->valid & FSTVAL_PHASE)
1687                 FST_WRB(card, portConfig[port->index].invertClock,
1688                         info->invertClock);
1689         if (info->valid & FSTVAL_MODE)
1690                 FST_WRW(card, cardMode, info->cardMode);
1691         if (info->valid & FSTVAL_TE1) {
1692                 FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1693                 FST_WRB(card, suConfig.clocking, info->clockSource);
1694                 my_framing = FRAMING_E1;
1695                 if (info->framing == E1)
1696                         my_framing = FRAMING_E1;
1697                 if (info->framing == T1)
1698                         my_framing = FRAMING_T1;
1699                 if (info->framing == J1)
1700                         my_framing = FRAMING_J1;
1701                 FST_WRB(card, suConfig.framing, my_framing);
1702                 FST_WRB(card, suConfig.structure, info->structure);
1703                 FST_WRB(card, suConfig.interface, info->interface);
1704                 FST_WRB(card, suConfig.coding, info->coding);
1705                 FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1706                 FST_WRB(card, suConfig.equalizer, info->equalizer);
1707                 FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1708                 FST_WRB(card, suConfig.loopMode, info->loopMode);
1709                 FST_WRB(card, suConfig.range, info->range);
1710                 FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1711                 FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1712                 FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1713                 FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1714                 if (info->idleCode)
1715                         FST_WRB(card, suConfig.enableIdleCode, 1);
1716                 else
1717                         FST_WRB(card, suConfig.enableIdleCode, 0);
1718                 FST_WRB(card, suConfig.idleCode, info->idleCode);
1719 #if FST_DEBUG
1720                 if (info->valid & FSTVAL_TE1) {
1721                         printk("Setting TE1 data\n");
1722                         printk("Line Speed = %d\n", info->lineSpeed);
1723                         printk("Start slot = %d\n", info->startingSlot);
1724                         printk("Clock source = %d\n", info->clockSource);
1725                         printk("Framing = %d\n", my_framing);
1726                         printk("Structure = %d\n", info->structure);
1727                         printk("interface = %d\n", info->interface);
1728                         printk("Coding = %d\n", info->coding);
1729                         printk("Line build out = %d\n", info->lineBuildOut);
1730                         printk("Equaliser = %d\n", info->equalizer);
1731                         printk("Transparent mode = %d\n",
1732                                info->transparentMode);
1733                         printk("Loop mode = %d\n", info->loopMode);
1734                         printk("Range = %d\n", info->range);
1735                         printk("Tx Buffer mode = %d\n", info->txBufferMode);
1736                         printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1737                         printk("LOS Threshold = %d\n", info->losThreshold);
1738                         printk("Idle Code = %d\n", info->idleCode);
1739                 }
1740 #endif
1741         }
1742 #if FST_DEBUG
1743         if (info->valid & FSTVAL_DEBUG) {
1744                 fst_debug_mask = info->debug;
1745         }
1746 #endif
1747
1748         return err;
1749 }
1750
1751 static void
1752 gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1753                  struct fstioc_info *info)
1754 {
1755         int i;
1756
1757         memset(info, 0, sizeof (struct fstioc_info));
1758
1759         i = port->index;
1760         info->kernelVersion = LINUX_VERSION_CODE;
1761         info->nports = card->nports;
1762         info->type = card->type;
1763         info->state = card->state;
1764         info->proto = FST_GEN_HDLC;
1765         info->index = i;
1766 #if FST_DEBUG
1767         info->debug = fst_debug_mask;
1768 #endif
1769
1770         /* Only mark information as valid if card is running.
1771          * Copy the data anyway in case it is useful for diagnostics
1772          */
1773         info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1774 #if FST_DEBUG
1775             | FSTVAL_DEBUG
1776 #endif
1777             ;
1778
1779         info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1780         info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1781         info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1782         info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1783         info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1784         info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1785         info->clockStatus = FST_RDW(card, clockStatus[i]);
1786         info->cableStatus = FST_RDW(card, cableStatus);
1787         info->cardMode = FST_RDW(card, cardMode);
1788         info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1789
1790         /*
1791          * The T2U can report cable presence for both A or B
1792          * in bits 0 and 1 of cableStatus.  See which port we are and 
1793          * do the mapping.
1794          */
1795         if (card->family == FST_FAMILY_TXU) {
1796                 if (port->index == 0) {
1797                         /*
1798                          * Port A
1799                          */
1800                         info->cableStatus = info->cableStatus & 1;
1801                 } else {
1802                         /*
1803                          * Port B
1804                          */
1805                         info->cableStatus = info->cableStatus >> 1;
1806                         info->cableStatus = info->cableStatus & 1;
1807                 }
1808         }
1809         /*
1810          * Some additional bits if we are TE1
1811          */
1812         if (card->type == FST_TYPE_TE1) {
1813                 info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1814                 info->clockSource = FST_RDB(card, suConfig.clocking);
1815                 info->framing = FST_RDB(card, suConfig.framing);
1816                 info->structure = FST_RDB(card, suConfig.structure);
1817                 info->interface = FST_RDB(card, suConfig.interface);
1818                 info->coding = FST_RDB(card, suConfig.coding);
1819                 info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1820                 info->equalizer = FST_RDB(card, suConfig.equalizer);
1821                 info->loopMode = FST_RDB(card, suConfig.loopMode);
1822                 info->range = FST_RDB(card, suConfig.range);
1823                 info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1824                 info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1825                 info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1826                 info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1827                 if (FST_RDB(card, suConfig.enableIdleCode))
1828                         info->idleCode = FST_RDB(card, suConfig.idleCode);
1829                 else
1830                         info->idleCode = 0;
1831                 info->receiveBufferDelay =
1832                     FST_RDL(card, suStatus.receiveBufferDelay);
1833                 info->framingErrorCount =
1834                     FST_RDL(card, suStatus.framingErrorCount);
1835                 info->codeViolationCount =
1836                     FST_RDL(card, suStatus.codeViolationCount);
1837                 info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1838                 info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1839                 info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1840                 info->receiveRemoteAlarm =
1841                     FST_RDB(card, suStatus.receiveRemoteAlarm);
1842                 info->alarmIndicationSignal =
1843                     FST_RDB(card, suStatus.alarmIndicationSignal);
1844         }
1845 }
1846
1847 static int
1848 fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1849               struct ifreq *ifr)
1850 {
1851         sync_serial_settings sync;
1852         int i;
1853
1854         if (ifr->ifr_settings.size != sizeof (sync)) {
1855                 return -ENOMEM;
1856         }
1857
1858         if (copy_from_user
1859             (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1860                 return -EFAULT;
1861         }
1862
1863         if (sync.loopback)
1864                 return -EINVAL;
1865
1866         i = port->index;
1867
1868         switch (ifr->ifr_settings.type) {
1869         case IF_IFACE_V35:
1870                 FST_WRW(card, portConfig[i].lineInterface, V35);
1871                 port->hwif = V35;
1872                 break;
1873
1874         case IF_IFACE_V24:
1875                 FST_WRW(card, portConfig[i].lineInterface, V24);
1876                 port->hwif = V24;
1877                 break;
1878
1879         case IF_IFACE_X21:
1880                 FST_WRW(card, portConfig[i].lineInterface, X21);
1881                 port->hwif = X21;
1882                 break;
1883
1884         case IF_IFACE_X21D:
1885                 FST_WRW(card, portConfig[i].lineInterface, X21D);
1886                 port->hwif = X21D;
1887                 break;
1888
1889         case IF_IFACE_T1:
1890                 FST_WRW(card, portConfig[i].lineInterface, T1);
1891                 port->hwif = T1;
1892                 break;
1893
1894         case IF_IFACE_E1:
1895                 FST_WRW(card, portConfig[i].lineInterface, E1);
1896                 port->hwif = E1;
1897                 break;
1898
1899         case IF_IFACE_SYNC_SERIAL:
1900                 break;
1901
1902         default:
1903                 return -EINVAL;
1904         }
1905
1906         switch (sync.clock_type) {
1907         case CLOCK_EXT:
1908                 FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1909                 break;
1910
1911         case CLOCK_INT:
1912                 FST_WRB(card, portConfig[i].internalClock, INTCLK);
1913                 break;
1914
1915         default:
1916                 return -EINVAL;
1917         }
1918         FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1919         return 0;
1920 }
1921
1922 static int
1923 fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1924               struct ifreq *ifr)
1925 {
1926         sync_serial_settings sync;
1927         int i;
1928
1929         /* First check what line type is set, we'll default to reporting X.21
1930          * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1931          * changed
1932          */
1933         switch (port->hwif) {
1934         case E1:
1935                 ifr->ifr_settings.type = IF_IFACE_E1;
1936                 break;
1937         case T1:
1938                 ifr->ifr_settings.type = IF_IFACE_T1;
1939                 break;
1940         case V35:
1941                 ifr->ifr_settings.type = IF_IFACE_V35;
1942                 break;
1943         case V24:
1944                 ifr->ifr_settings.type = IF_IFACE_V24;
1945                 break;
1946         case X21D:
1947                 ifr->ifr_settings.type = IF_IFACE_X21D;
1948                 break;
1949         case X21:
1950         default:
1951                 ifr->ifr_settings.type = IF_IFACE_X21;
1952                 break;
1953         }
1954         if (ifr->ifr_settings.size == 0) {
1955                 return 0;       /* only type requested */
1956         }
1957         if (ifr->ifr_settings.size < sizeof (sync)) {
1958                 return -ENOMEM;
1959         }
1960
1961         i = port->index;
1962         memset(&sync, 0, sizeof(sync));
1963         sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1964         /* Lucky card and linux use same encoding here */
1965         sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
1966             INTCLK ? CLOCK_INT : CLOCK_EXT;
1967         sync.loopback = 0;
1968
1969         if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
1970                 return -EFAULT;
1971         }
1972
1973         ifr->ifr_settings.size = sizeof (sync);
1974         return 0;
1975 }
1976
1977 static int
1978 fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1979 {
1980         struct fst_card_info *card;
1981         struct fst_port_info *port;
1982         struct fstioc_write wrthdr;
1983         struct fstioc_info info;
1984         unsigned long flags;
1985         void *buf;
1986
1987         dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
1988
1989         port = dev_to_port(dev);
1990         card = port->card;
1991
1992         if (!capable(CAP_NET_ADMIN))
1993                 return -EPERM;
1994
1995         switch (cmd) {
1996         case FSTCPURESET:
1997                 fst_cpureset(card);
1998                 card->state = FST_RESET;
1999                 return 0;
2000
2001         case FSTCPURELEASE:
2002                 fst_cpurelease(card);
2003                 card->state = FST_STARTING;
2004                 return 0;
2005
2006         case FSTWRITE:          /* Code write (download) */
2007
2008                 /* First copy in the header with the length and offset of data
2009                  * to write
2010                  */
2011                 if (ifr->ifr_data == NULL) {
2012                         return -EINVAL;
2013                 }
2014                 if (copy_from_user(&wrthdr, ifr->ifr_data,
2015                                    sizeof (struct fstioc_write))) {
2016                         return -EFAULT;
2017                 }
2018
2019                 /* Sanity check the parameters. We don't support partial writes
2020                  * when going over the top
2021                  */
2022                 if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE ||
2023                     wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2024                         return -ENXIO;
2025                 }
2026
2027                 /* Now copy the data to the card. */
2028
2029                 buf = memdup_user(ifr->ifr_data + sizeof(struct fstioc_write),
2030                                   wrthdr.size);
2031                 if (IS_ERR(buf))
2032                         return PTR_ERR(buf);
2033
2034                 memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
2035                 kfree(buf);
2036
2037                 /* Writes to the memory of a card in the reset state constitute
2038                  * a download
2039                  */
2040                 if (card->state == FST_RESET) {
2041                         card->state = FST_DOWNLOAD;
2042                 }
2043                 return 0;
2044
2045         case FSTGETCONF:
2046
2047                 /* If card has just been started check the shared memory config
2048                  * version and marker
2049                  */
2050                 if (card->state == FST_STARTING) {
2051                         check_started_ok(card);
2052
2053                         /* If everything checked out enable card interrupts */
2054                         if (card->state == FST_RUNNING) {
2055                                 spin_lock_irqsave(&card->card_lock, flags);
2056                                 fst_enable_intr(card);
2057                                 FST_WRB(card, interruptHandshake, 0xEE);
2058                                 spin_unlock_irqrestore(&card->card_lock, flags);
2059                         }
2060                 }
2061
2062                 if (ifr->ifr_data == NULL) {
2063                         return -EINVAL;
2064                 }
2065
2066                 gather_conf_info(card, port, &info);
2067
2068                 if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2069                         return -EFAULT;
2070                 }
2071                 return 0;
2072
2073         case FSTSETCONF:
2074
2075                 /*
2076                  * Most of the settings have been moved to the generic ioctls
2077                  * this just covers debug and board ident now
2078                  */
2079
2080                 if (card->state != FST_RUNNING) {
2081                         pr_err("Attempt to configure card %d in non-running state (%d)\n",
2082                                card->card_no, card->state);
2083                         return -EIO;
2084                 }
2085                 if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2086                         return -EFAULT;
2087                 }
2088
2089                 return set_conf_from_info(card, port, &info);
2090
2091         case SIOCWANDEV:
2092                 switch (ifr->ifr_settings.type) {
2093                 case IF_GET_IFACE:
2094                         return fst_get_iface(card, port, ifr);
2095
2096                 case IF_IFACE_SYNC_SERIAL:
2097                 case IF_IFACE_V35:
2098                 case IF_IFACE_V24:
2099                 case IF_IFACE_X21:
2100                 case IF_IFACE_X21D:
2101                 case IF_IFACE_T1:
2102                 case IF_IFACE_E1:
2103                         return fst_set_iface(card, port, ifr);
2104
2105                 case IF_PROTO_RAW:
2106                         port->mode = FST_RAW;
2107                         return 0;
2108
2109                 case IF_GET_PROTO:
2110                         if (port->mode == FST_RAW) {
2111                                 ifr->ifr_settings.type = IF_PROTO_RAW;
2112                                 return 0;
2113                         }
2114                         return hdlc_ioctl(dev, ifr, cmd);
2115
2116                 default:
2117                         port->mode = FST_GEN_HDLC;
2118                         dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2119                             ifr->ifr_settings.type);
2120                         return hdlc_ioctl(dev, ifr, cmd);
2121                 }
2122
2123         default:
2124                 /* Not one of ours. Pass through to HDLC package */
2125                 return hdlc_ioctl(dev, ifr, cmd);
2126         }
2127 }
2128
2129 static void
2130 fst_openport(struct fst_port_info *port)
2131 {
2132         int signals;
2133
2134         /* Only init things if card is actually running. This allows open to
2135          * succeed for downloads etc.
2136          */
2137         if (port->card->state == FST_RUNNING) {
2138                 if (port->run) {
2139                         dbg(DBG_OPEN, "open: found port already running\n");
2140
2141                         fst_issue_cmd(port, STOPPORT);
2142                         port->run = 0;
2143                 }
2144
2145                 fst_rx_config(port);
2146                 fst_tx_config(port);
2147                 fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2148
2149                 fst_issue_cmd(port, STARTPORT);
2150                 port->run = 1;
2151
2152                 signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2153                 if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2154                                ? IPSTS_INDICATE : IPSTS_DCD))
2155                         netif_carrier_on(port_to_dev(port));
2156                 else
2157                         netif_carrier_off(port_to_dev(port));
2158
2159                 port->txqe = 0;
2160                 port->txqs = 0;
2161         }
2162
2163 }
2164
2165 static void
2166 fst_closeport(struct fst_port_info *port)
2167 {
2168         if (port->card->state == FST_RUNNING) {
2169                 if (port->run) {
2170                         port->run = 0;
2171                         fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2172
2173                         fst_issue_cmd(port, STOPPORT);
2174                 } else {
2175                         dbg(DBG_OPEN, "close: port not running\n");
2176                 }
2177         }
2178 }
2179
2180 static int
2181 fst_open(struct net_device *dev)
2182 {
2183         int err;
2184         struct fst_port_info *port;
2185
2186         port = dev_to_port(dev);
2187         if (!try_module_get(THIS_MODULE))
2188           return -EBUSY;
2189
2190         if (port->mode != FST_RAW) {
2191                 err = hdlc_open(dev);
2192                 if (err) {
2193                         module_put(THIS_MODULE);
2194                         return err;
2195                 }
2196         }
2197
2198         fst_openport(port);
2199         netif_wake_queue(dev);
2200         return 0;
2201 }
2202
2203 static int
2204 fst_close(struct net_device *dev)
2205 {
2206         struct fst_port_info *port;
2207         struct fst_card_info *card;
2208         unsigned char tx_dma_done;
2209         unsigned char rx_dma_done;
2210
2211         port = dev_to_port(dev);
2212         card = port->card;
2213
2214         tx_dma_done = inb(card->pci_conf + DMACSR1);
2215         rx_dma_done = inb(card->pci_conf + DMACSR0);
2216         dbg(DBG_OPEN,
2217             "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2218             card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2219             rx_dma_done);
2220
2221         netif_stop_queue(dev);
2222         fst_closeport(dev_to_port(dev));
2223         if (port->mode != FST_RAW) {
2224                 hdlc_close(dev);
2225         }
2226         module_put(THIS_MODULE);
2227         return 0;
2228 }
2229
2230 static int
2231 fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2232 {
2233         /*
2234          * Setting currently fixed in FarSync card so we check and forget
2235          */
2236         if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2237                 return -EINVAL;
2238         return 0;
2239 }
2240
2241 static void
2242 fst_tx_timeout(struct net_device *dev, unsigned int txqueue)
2243 {
2244         struct fst_port_info *port;
2245         struct fst_card_info *card;
2246
2247         port = dev_to_port(dev);
2248         card = port->card;
2249         dev->stats.tx_errors++;
2250         dev->stats.tx_aborted_errors++;
2251         dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2252             card->card_no, port->index);
2253         fst_issue_cmd(port, ABORTTX);
2254
2255         netif_trans_update(dev);
2256         netif_wake_queue(dev);
2257         port->start = 0;
2258 }
2259
2260 static netdev_tx_t
2261 fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2262 {
2263         struct fst_card_info *card;
2264         struct fst_port_info *port;
2265         unsigned long flags;
2266         int txq_length;
2267
2268         port = dev_to_port(dev);
2269         card = port->card;
2270         dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2271
2272         /* Drop packet with error if we don't have carrier */
2273         if (!netif_carrier_ok(dev)) {
2274                 dev_kfree_skb(skb);
2275                 dev->stats.tx_errors++;
2276                 dev->stats.tx_carrier_errors++;
2277                 dbg(DBG_ASS,
2278                     "Tried to transmit but no carrier on card %d port %d\n",
2279                     card->card_no, port->index);
2280                 return NETDEV_TX_OK;
2281         }
2282
2283         /* Drop it if it's too big! MTU failure ? */
2284         if (skb->len > LEN_TX_BUFFER) {
2285                 dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2286                     LEN_TX_BUFFER);
2287                 dev_kfree_skb(skb);
2288                 dev->stats.tx_errors++;
2289                 return NETDEV_TX_OK;
2290         }
2291
2292         /*
2293          * We are always going to queue the packet
2294          * so that the bottom half is the only place we tx from
2295          * Check there is room in the port txq
2296          */
2297         spin_lock_irqsave(&card->card_lock, flags);
2298         if ((txq_length = port->txqe - port->txqs) < 0) {
2299                 /*
2300                  * This is the case where the next free has wrapped but the
2301                  * last used hasn't
2302                  */
2303                 txq_length = txq_length + FST_TXQ_DEPTH;
2304         }
2305         spin_unlock_irqrestore(&card->card_lock, flags);
2306         if (txq_length > fst_txq_high) {
2307                 /*
2308                  * We have got enough buffers in the pipeline.  Ask the network
2309                  * layer to stop sending frames down
2310                  */
2311                 netif_stop_queue(dev);
2312                 port->start = 1;        /* I'm using this to signal stop sent up */
2313         }
2314
2315         if (txq_length == FST_TXQ_DEPTH - 1) {
2316                 /*
2317                  * This shouldn't have happened but such is life
2318                  */
2319                 dev_kfree_skb(skb);
2320                 dev->stats.tx_errors++;
2321                 dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2322                     card->card_no, port->index);
2323                 return NETDEV_TX_OK;
2324         }
2325
2326         /*
2327          * queue the buffer
2328          */
2329         spin_lock_irqsave(&card->card_lock, flags);
2330         port->txq[port->txqe] = skb;
2331         port->txqe++;
2332         if (port->txqe == FST_TXQ_DEPTH)
2333                 port->txqe = 0;
2334         spin_unlock_irqrestore(&card->card_lock, flags);
2335
2336         /* Scehdule the bottom half which now does transmit processing */
2337         fst_q_work_item(&fst_work_txq, card->card_no);
2338         tasklet_schedule(&fst_tx_task);
2339
2340         return NETDEV_TX_OK;
2341 }
2342
2343 /*
2344  *      Card setup having checked hardware resources.
2345  *      Should be pretty bizarre if we get an error here (kernel memory
2346  *      exhaustion is one possibility). If we do see a problem we report it
2347  *      via a printk and leave the corresponding interface and all that follow
2348  *      disabled.
2349  */
2350 static char *type_strings[] = {
2351         "no hardware",          /* Should never be seen */
2352         "FarSync T2P",
2353         "FarSync T4P",
2354         "FarSync T1U",
2355         "FarSync T2U",
2356         "FarSync T4U",
2357         "FarSync TE1"
2358 };
2359
2360 static int
2361 fst_init_card(struct fst_card_info *card)
2362 {
2363         int i;
2364         int err;
2365
2366         /* We're working on a number of ports based on the card ID. If the
2367          * firmware detects something different later (should never happen)
2368          * we'll have to revise it in some way then.
2369          */
2370         for (i = 0; i < card->nports; i++) {
2371                 err = register_hdlc_device(card->ports[i].dev);
2372                 if (err < 0) {
2373                         pr_err("Cannot register HDLC device for port %d (errno %d)\n",
2374                                 i, -err);
2375                         while (i--)
2376                                 unregister_hdlc_device(card->ports[i].dev);
2377                         return err;
2378                 }
2379         }
2380
2381         pr_info("%s-%s: %s IRQ%d, %d ports\n",
2382                 port_to_dev(&card->ports[0])->name,
2383                 port_to_dev(&card->ports[card->nports - 1])->name,
2384                 type_strings[card->type], card->irq, card->nports);
2385         return 0;
2386 }
2387
2388 static const struct net_device_ops fst_ops = {
2389         .ndo_open       = fst_open,
2390         .ndo_stop       = fst_close,
2391         .ndo_start_xmit = hdlc_start_xmit,
2392         .ndo_do_ioctl   = fst_ioctl,
2393         .ndo_tx_timeout = fst_tx_timeout,
2394 };
2395
2396 /*
2397  *      Initialise card when detected.
2398  *      Returns 0 to indicate success, or errno otherwise.
2399  */
2400 static int
2401 fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2402 {
2403         static int no_of_cards_added = 0;
2404         struct fst_card_info *card;
2405         int err = 0;
2406         int i;
2407
2408         printk_once(KERN_INFO
2409                     pr_fmt("FarSync WAN driver " FST_USER_VERSION
2410                            " (c) 2001-2004 FarSite Communications Ltd.\n"));
2411 #if FST_DEBUG
2412         dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2413 #endif
2414         /*
2415          * We are going to be clever and allow certain cards not to be
2416          * configured.  An exclude list can be provided in /etc/modules.conf
2417          */
2418         if (fst_excluded_cards != 0) {
2419                 /*
2420                  * There are cards to exclude
2421                  *
2422                  */
2423                 for (i = 0; i < fst_excluded_cards; i++) {
2424                         if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2425                                 pr_info("FarSync PCI device %d not assigned\n",
2426                                         (pdev->devfn) >> 3);
2427                                 return -EBUSY;
2428                         }
2429                 }
2430         }
2431
2432         /* Allocate driver private data */
2433         card = kzalloc(sizeof(struct fst_card_info), GFP_KERNEL);
2434         if (card == NULL)
2435                 return -ENOMEM;
2436
2437         /* Try to enable the device */
2438         if ((err = pci_enable_device(pdev)) != 0) {
2439                 pr_err("Failed to enable card. Err %d\n", -err);
2440                 goto enable_fail;
2441         }
2442
2443         if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2444                 pr_err("Failed to allocate regions. Err %d\n", -err);
2445                 goto regions_fail;
2446         }
2447
2448         /* Get virtual addresses of memory regions */
2449         card->pci_conf = pci_resource_start(pdev, 1);
2450         card->phys_mem = pci_resource_start(pdev, 2);
2451         card->phys_ctlmem = pci_resource_start(pdev, 3);
2452         if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2453                 pr_err("Physical memory remap failed\n");
2454                 err = -ENODEV;
2455                 goto ioremap_physmem_fail;
2456         }
2457         if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2458                 pr_err("Control memory remap failed\n");
2459                 err = -ENODEV;
2460                 goto ioremap_ctlmem_fail;
2461         }
2462         dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2463
2464         /* Register the interrupt handler */
2465         if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2466                 pr_err("Unable to register interrupt %d\n", card->irq);
2467                 err = -ENODEV;
2468                 goto irq_fail;
2469         }
2470
2471         /* Record info we need */
2472         card->irq = pdev->irq;
2473         card->type = ent->driver_data;
2474         card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2475                         (ent->driver_data == FST_TYPE_T4P))
2476             ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2477         if ((ent->driver_data == FST_TYPE_T1U) ||
2478             (ent->driver_data == FST_TYPE_TE1))
2479                 card->nports = 1;
2480         else
2481                 card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2482                                 (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2483
2484         card->state = FST_UNINIT;
2485         spin_lock_init ( &card->card_lock );
2486
2487         for ( i = 0 ; i < card->nports ; i++ ) {
2488                 struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2489                 hdlc_device *hdlc;
2490                 if (!dev) {
2491                         while (i--)
2492                                 free_netdev(card->ports[i].dev);
2493                         pr_err("FarSync: out of memory\n");
2494                         err = -ENOMEM;
2495                         goto hdlcdev_fail;
2496                 }
2497                 card->ports[i].dev    = dev;
2498                 card->ports[i].card   = card;
2499                 card->ports[i].index  = i;
2500                 card->ports[i].run    = 0;
2501
2502                 hdlc = dev_to_hdlc(dev);
2503
2504                 /* Fill in the net device info */
2505                 /* Since this is a PCI setup this is purely
2506                  * informational. Give them the buffer addresses
2507                  * and basic card I/O.
2508                  */
2509                 dev->mem_start   = card->phys_mem
2510                                  + BUF_OFFSET ( txBuffer[i][0][0]);
2511                 dev->mem_end     = card->phys_mem
2512                                  + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER - 1][LEN_RX_BUFFER - 1]);
2513                 dev->base_addr   = card->pci_conf;
2514                 dev->irq         = card->irq;
2515
2516                 dev->netdev_ops = &fst_ops;
2517                 dev->tx_queue_len = FST_TX_QUEUE_LEN;
2518                 dev->watchdog_timeo = FST_TX_TIMEOUT;
2519                 hdlc->attach = fst_attach;
2520                 hdlc->xmit   = fst_start_xmit;
2521         }
2522
2523         card->device = pdev;
2524
2525         dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2526             card->nports, card->irq);
2527         dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2528             card->pci_conf, card->phys_mem, card->phys_ctlmem);
2529
2530         /* Reset the card's processor */
2531         fst_cpureset(card);
2532         card->state = FST_RESET;
2533
2534         /* Initialise DMA (if required) */
2535         fst_init_dma(card);
2536
2537         /* Record driver data for later use */
2538         pci_set_drvdata(pdev, card);
2539
2540         /* Remainder of card setup */
2541         if (no_of_cards_added >= FST_MAX_CARDS) {
2542                 pr_err("FarSync: too many cards\n");
2543                 err = -ENOMEM;
2544                 goto card_array_fail;
2545         }
2546         fst_card_array[no_of_cards_added] = card;
2547         card->card_no = no_of_cards_added++;    /* Record instance and bump it */
2548         err = fst_init_card(card);
2549         if (err)
2550                 goto init_card_fail;
2551         if (card->family == FST_FAMILY_TXU) {
2552                 /*
2553                  * Allocate a dma buffer for transmit and receives
2554                  */
2555                 card->rx_dma_handle_host =
2556                     pci_alloc_consistent(card->device, FST_MAX_MTU,
2557                                          &card->rx_dma_handle_card);
2558                 if (card->rx_dma_handle_host == NULL) {
2559                         pr_err("Could not allocate rx dma buffer\n");
2560                         err = -ENOMEM;
2561                         goto rx_dma_fail;
2562                 }
2563                 card->tx_dma_handle_host =
2564                     pci_alloc_consistent(card->device, FST_MAX_MTU,
2565                                          &card->tx_dma_handle_card);
2566                 if (card->tx_dma_handle_host == NULL) {
2567                         pr_err("Could not allocate tx dma buffer\n");
2568                         err = -ENOMEM;
2569                         goto tx_dma_fail;
2570                 }
2571         }
2572         return 0;               /* Success */
2573
2574 tx_dma_fail:
2575         pci_free_consistent(card->device, FST_MAX_MTU,
2576                             card->rx_dma_handle_host,
2577                             card->rx_dma_handle_card);
2578 rx_dma_fail:
2579         fst_disable_intr(card);
2580         for (i = 0 ; i < card->nports ; i++)
2581                 unregister_hdlc_device(card->ports[i].dev);
2582 init_card_fail:
2583         fst_card_array[card->card_no] = NULL;
2584 card_array_fail:
2585         for (i = 0 ; i < card->nports ; i++)
2586                 free_netdev(card->ports[i].dev);
2587 hdlcdev_fail:
2588         free_irq(card->irq, card);
2589 irq_fail:
2590         iounmap(card->ctlmem);
2591 ioremap_ctlmem_fail:
2592         iounmap(card->mem);
2593 ioremap_physmem_fail:
2594         pci_release_regions(pdev);
2595 regions_fail:
2596         pci_disable_device(pdev);
2597 enable_fail:
2598         kfree(card);
2599         return err;
2600 }
2601
2602 /*
2603  *      Cleanup and close down a card
2604  */
2605 static void
2606 fst_remove_one(struct pci_dev *pdev)
2607 {
2608         struct fst_card_info *card;
2609         int i;
2610
2611         card = pci_get_drvdata(pdev);
2612
2613         for (i = 0; i < card->nports; i++) {
2614                 struct net_device *dev = port_to_dev(&card->ports[i]);
2615                 unregister_hdlc_device(dev);
2616         }
2617
2618         fst_disable_intr(card);
2619         free_irq(card->irq, card);
2620
2621         iounmap(card->ctlmem);
2622         iounmap(card->mem);
2623         pci_release_regions(pdev);
2624         if (card->family == FST_FAMILY_TXU) {
2625                 /*
2626                  * Free dma buffers
2627                  */
2628                 pci_free_consistent(card->device, FST_MAX_MTU,
2629                                     card->rx_dma_handle_host,
2630                                     card->rx_dma_handle_card);
2631                 pci_free_consistent(card->device, FST_MAX_MTU,
2632                                     card->tx_dma_handle_host,
2633                                     card->tx_dma_handle_card);
2634         }
2635         fst_card_array[card->card_no] = NULL;
2636 }
2637
2638 static struct pci_driver fst_driver = {
2639         .name           = FST_NAME,
2640         .id_table       = fst_pci_dev_id,
2641         .probe          = fst_add_one,
2642         .remove = fst_remove_one,
2643         .suspend        = NULL,
2644         .resume = NULL,
2645 };
2646
2647 static int __init
2648 fst_init(void)
2649 {
2650         int i;
2651
2652         for (i = 0; i < FST_MAX_CARDS; i++)
2653                 fst_card_array[i] = NULL;
2654         spin_lock_init(&fst_work_q_lock);
2655         return pci_register_driver(&fst_driver);
2656 }
2657
2658 static void __exit
2659 fst_cleanup_module(void)
2660 {
2661         pr_info("FarSync WAN driver unloading\n");
2662         pci_unregister_driver(&fst_driver);
2663 }
2664
2665 module_init(fst_init);
2666 module_exit(fst_cleanup_module);