1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * vrf.c: device driver to encapsulate a VRF space
5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
9 * Based on dummy, team and ipvlan drivers
12 #include <linux/ethtool.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
18 #include <linux/init.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netfilter.h>
21 #include <linux/rtnetlink.h>
22 #include <net/rtnetlink.h>
23 #include <linux/u64_stats_sync.h>
24 #include <linux/hashtable.h>
25 #include <linux/spinlock_types.h>
27 #include <linux/inetdevice.h>
30 #include <net/ip_fib.h>
31 #include <net/ip6_fib.h>
32 #include <net/ip6_route.h>
33 #include <net/route.h>
34 #include <net/addrconf.h>
35 #include <net/l3mdev.h>
36 #include <net/fib_rules.h>
37 #include <net/sch_generic.h>
38 #include <net/netns/generic.h>
39 #include <net/netfilter/nf_conntrack.h>
41 #define DRV_NAME "vrf"
42 #define DRV_VERSION "1.1"
44 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
47 #define HASH_INITVAL ((u32)0xcafef00d)
50 DECLARE_HASHTABLE(ht, HT_MAP_BITS);
54 * count how many distinct tables do not comply with the strict mode
56 * shared_tables value must be 0 in order to enable the strict mode.
58 * example of the evolution of shared_tables:
60 * add vrf0 --> table 100 shared_tables = 0 | t0
61 * add vrf1 --> table 101 shared_tables = 0 | t1
62 * add vrf2 --> table 100 shared_tables = 1 | t2
63 * add vrf3 --> table 100 shared_tables = 1 | t3
64 * add vrf4 --> table 101 shared_tables = 2 v t4
66 * shared_tables is a "step function" (or "staircase function")
67 * and it is increased by one when the second vrf is associated to a
70 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
72 * at t3, another dev (vrf3) is bound to the same table 100 but the
73 * value of shared_tables is still 1.
74 * This means that no matter how many new vrfs will register on the
75 * table 100, the shared_tables will not increase (considering only
78 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
80 * Looking at the value of shared_tables we can immediately know if
81 * the strict_mode can or cannot be enforced. Indeed, strict_mode
82 * can be enforced iff shared_tables = 0.
84 * Conversely, shared_tables is decreased when a vrf is de-associated
85 * from a table with exactly two associated vrfs.
93 struct hlist_node hnode;
94 struct list_head vrf_list; /* VRFs registered to this table */
101 static unsigned int vrf_net_id;
103 /* per netns vrf data */
105 /* protected by rtnl lock */
109 struct ctl_table_header *ctl_hdr;
113 struct rtable __rcu *rth;
114 struct rt6_info __rcu *rt6;
115 #if IS_ENABLED(CONFIG_IPV6)
116 struct fib6_table *fib6_table;
120 struct list_head me_list; /* entry in vrf_map_elem */
131 struct u64_stats_sync syncp;
134 static void vrf_rx_stats(struct net_device *dev, int len)
136 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
138 u64_stats_update_begin(&dstats->syncp);
140 dstats->rx_bytes += len;
141 u64_stats_update_end(&dstats->syncp);
144 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
146 vrf_dev->stats.tx_errors++;
150 static void vrf_get_stats64(struct net_device *dev,
151 struct rtnl_link_stats64 *stats)
155 for_each_possible_cpu(i) {
156 const struct pcpu_dstats *dstats;
157 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
160 dstats = per_cpu_ptr(dev->dstats, i);
162 start = u64_stats_fetch_begin_irq(&dstats->syncp);
163 tbytes = dstats->tx_bytes;
164 tpkts = dstats->tx_pkts;
165 tdrops = dstats->tx_drps;
166 rbytes = dstats->rx_bytes;
167 rpkts = dstats->rx_pkts;
168 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
169 stats->tx_bytes += tbytes;
170 stats->tx_packets += tpkts;
171 stats->tx_dropped += tdrops;
172 stats->rx_bytes += rbytes;
173 stats->rx_packets += rpkts;
177 static struct vrf_map *netns_vrf_map(struct net *net)
179 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
181 return &nn_vrf->vmap;
184 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
186 return netns_vrf_map(dev_net(dev));
189 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
191 struct list_head *me_head = &me->vrf_list;
194 if (list_empty(me_head))
197 vrf = list_first_entry(me_head, struct net_vrf, me_list);
202 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
204 struct vrf_map_elem *me;
206 me = kmalloc(sizeof(*me), flags);
213 static void vrf_map_elem_free(struct vrf_map_elem *me)
218 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
219 int ifindex, int users)
221 me->table_id = table_id;
222 me->ifindex = ifindex;
224 INIT_LIST_HEAD(&me->vrf_list);
227 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
230 struct vrf_map_elem *me;
233 key = jhash_1word(table_id, HASH_INITVAL);
234 hash_for_each_possible(vmap->ht, me, hnode, key) {
235 if (me->table_id == table_id)
242 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
244 u32 table_id = me->table_id;
247 key = jhash_1word(table_id, HASH_INITVAL);
248 hash_add(vmap->ht, &me->hnode, key);
251 static void vrf_map_del_elem(struct vrf_map_elem *me)
253 hash_del(&me->hnode);
256 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
258 spin_lock(&vmap->vmap_lock);
261 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
263 spin_unlock(&vmap->vmap_lock);
266 /* called with rtnl lock held */
268 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
270 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
271 struct net_vrf *vrf = netdev_priv(dev);
272 struct vrf_map_elem *new_me, *me;
273 u32 table_id = vrf->tb_id;
274 bool free_new_me = false;
278 /* we pre-allocate elements used in the spin-locked section (so that we
279 * keep the spinlock as short as possible).
281 new_me = vrf_map_elem_alloc(GFP_KERNEL);
285 vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
289 me = vrf_map_lookup_elem(vmap, table_id);
292 vrf_map_add_elem(vmap, me);
296 /* we already have an entry in the vrf_map, so it means there is (at
297 * least) a vrf registered on the specific table.
300 if (vmap->strict_mode) {
301 /* vrfs cannot share the same table */
302 NL_SET_ERR_MSG(extack, "Table is used by another VRF");
310 ++vmap->shared_tables;
312 list_add(&vrf->me_list, &me->vrf_list);
317 vrf_map_unlock(vmap);
319 /* clean-up, if needed */
321 vrf_map_elem_free(new_me);
326 /* called with rtnl lock held */
327 static void vrf_map_unregister_dev(struct net_device *dev)
329 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
330 struct net_vrf *vrf = netdev_priv(dev);
331 u32 table_id = vrf->tb_id;
332 struct vrf_map_elem *me;
337 me = vrf_map_lookup_elem(vmap, table_id);
341 list_del(&vrf->me_list);
345 --vmap->shared_tables;
346 } else if (users == 0) {
347 vrf_map_del_elem(me);
349 /* no one will refer to this element anymore */
350 vrf_map_elem_free(me);
354 vrf_map_unlock(vmap);
357 /* return the vrf device index associated with the table_id */
358 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
360 struct vrf_map *vmap = netns_vrf_map(net);
361 struct vrf_map_elem *me;
366 if (!vmap->strict_mode) {
371 me = vrf_map_lookup_elem(vmap, table_id);
377 ifindex = vrf_map_elem_get_vrf_ifindex(me);
380 vrf_map_unlock(vmap);
385 /* by default VRF devices do not have a qdisc and are expected
386 * to be created with only a single queue.
388 static bool qdisc_tx_is_default(const struct net_device *dev)
390 struct netdev_queue *txq;
393 if (dev->num_tx_queues > 1)
396 txq = netdev_get_tx_queue(dev, 0);
397 qdisc = rcu_access_pointer(txq->qdisc);
399 return !qdisc->enqueue;
402 /* Local traffic destined to local address. Reinsert the packet to rx
403 * path, similar to loopback handling.
405 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
406 struct dst_entry *dst)
412 skb_dst_set(skb, dst);
414 /* set pkt_type to avoid skb hitting packet taps twice -
415 * once on Tx and again in Rx processing
417 skb->pkt_type = PACKET_LOOPBACK;
419 skb->protocol = eth_type_trans(skb, dev);
421 if (likely(__netif_rx(skb) == NET_RX_SUCCESS))
422 vrf_rx_stats(dev, len);
424 this_cpu_inc(dev->dstats->rx_drps);
429 static void vrf_nf_set_untracked(struct sk_buff *skb)
431 if (skb_get_nfct(skb) == 0)
432 nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
435 static void vrf_nf_reset_ct(struct sk_buff *skb)
437 if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
441 #if IS_ENABLED(CONFIG_IPV6)
442 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
447 vrf_nf_reset_ct(skb);
449 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
450 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
452 if (likely(err == 1))
453 err = dst_output(net, sk, skb);
458 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
459 struct net_device *dev)
461 const struct ipv6hdr *iph;
462 struct net *net = dev_net(skb->dev);
464 int ret = NET_XMIT_DROP;
465 struct dst_entry *dst;
466 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
468 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
473 memset(&fl6, 0, sizeof(fl6));
474 /* needed to match OIF rule */
475 fl6.flowi6_l3mdev = dev->ifindex;
476 fl6.flowi6_iif = LOOPBACK_IFINDEX;
477 fl6.daddr = iph->daddr;
478 fl6.saddr = iph->saddr;
479 fl6.flowlabel = ip6_flowinfo(iph);
480 fl6.flowi6_mark = skb->mark;
481 fl6.flowi6_proto = iph->nexthdr;
483 dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
484 if (IS_ERR(dst) || dst == dst_null)
489 /* if dst.dev is the VRF device again this is locally originated traffic
490 * destined to a local address. Short circuit to Rx path.
493 return vrf_local_xmit(skb, dev, dst);
495 skb_dst_set(skb, dst);
497 /* strip the ethernet header added for pass through VRF device */
498 __skb_pull(skb, skb_network_offset(skb));
500 memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
501 ret = vrf_ip6_local_out(net, skb->sk, skb);
502 if (unlikely(net_xmit_eval(ret)))
503 dev->stats.tx_errors++;
505 ret = NET_XMIT_SUCCESS;
509 vrf_tx_error(dev, skb);
510 return NET_XMIT_DROP;
513 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
514 struct net_device *dev)
516 vrf_tx_error(dev, skb);
517 return NET_XMIT_DROP;
521 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
522 static int vrf_ip_local_out(struct net *net, struct sock *sk,
527 vrf_nf_reset_ct(skb);
529 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
530 skb, NULL, skb_dst(skb)->dev, dst_output);
531 if (likely(err == 1))
532 err = dst_output(net, sk, skb);
537 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
538 struct net_device *vrf_dev)
541 int ret = NET_XMIT_DROP;
543 struct net *net = dev_net(vrf_dev);
546 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
551 memset(&fl4, 0, sizeof(fl4));
552 /* needed to match OIF rule */
553 fl4.flowi4_l3mdev = vrf_dev->ifindex;
554 fl4.flowi4_iif = LOOPBACK_IFINDEX;
555 fl4.flowi4_tos = RT_TOS(ip4h->tos);
556 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC;
557 fl4.flowi4_proto = ip4h->protocol;
558 fl4.daddr = ip4h->daddr;
559 fl4.saddr = ip4h->saddr;
561 rt = ip_route_output_flow(net, &fl4, NULL);
567 /* if dst.dev is the VRF device again this is locally originated traffic
568 * destined to a local address. Short circuit to Rx path.
570 if (rt->dst.dev == vrf_dev)
571 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
573 skb_dst_set(skb, &rt->dst);
575 /* strip the ethernet header added for pass through VRF device */
576 __skb_pull(skb, skb_network_offset(skb));
579 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
583 memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
584 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
585 if (unlikely(net_xmit_eval(ret)))
586 vrf_dev->stats.tx_errors++;
588 ret = NET_XMIT_SUCCESS;
593 vrf_tx_error(vrf_dev, skb);
597 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
599 switch (skb->protocol) {
600 case htons(ETH_P_IP):
601 return vrf_process_v4_outbound(skb, dev);
602 case htons(ETH_P_IPV6):
603 return vrf_process_v6_outbound(skb, dev);
605 vrf_tx_error(dev, skb);
606 return NET_XMIT_DROP;
610 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
613 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
615 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
616 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
618 u64_stats_update_begin(&dstats->syncp);
620 dstats->tx_bytes += len;
621 u64_stats_update_end(&dstats->syncp);
623 this_cpu_inc(dev->dstats->tx_drps);
629 static void vrf_finish_direct(struct sk_buff *skb)
631 struct net_device *vrf_dev = skb->dev;
633 if (!list_empty(&vrf_dev->ptype_all) &&
634 likely(skb_headroom(skb) >= ETH_HLEN)) {
635 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
637 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
638 eth_zero_addr(eth->h_dest);
639 eth->h_proto = skb->protocol;
642 dev_queue_xmit_nit(skb, vrf_dev);
643 rcu_read_unlock_bh();
645 skb_pull(skb, ETH_HLEN);
648 vrf_nf_reset_ct(skb);
651 #if IS_ENABLED(CONFIG_IPV6)
652 /* modelled after ip6_finish_output2 */
653 static int vrf_finish_output6(struct net *net, struct sock *sk,
656 struct dst_entry *dst = skb_dst(skb);
657 struct net_device *dev = dst->dev;
658 const struct in6_addr *nexthop;
659 struct neighbour *neigh;
662 vrf_nf_reset_ct(skb);
664 skb->protocol = htons(ETH_P_IPV6);
668 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
669 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
670 if (unlikely(!neigh))
671 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
672 if (!IS_ERR(neigh)) {
673 sock_confirm_neigh(skb, neigh);
674 ret = neigh_output(neigh, skb, false);
675 rcu_read_unlock_bh();
678 rcu_read_unlock_bh();
680 IP6_INC_STATS(dev_net(dst->dev),
681 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
686 /* modelled after ip6_output */
687 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
689 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
690 net, sk, skb, NULL, skb_dst(skb)->dev,
692 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
695 /* set dst on skb to send packet to us via dev_xmit path. Allows
696 * packet to go through device based features such as qdisc, netfilter
697 * hooks and packet sockets with skb->dev set to vrf device.
699 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
702 struct net_vrf *vrf = netdev_priv(vrf_dev);
703 struct dst_entry *dst = NULL;
704 struct rt6_info *rt6;
708 rt6 = rcu_dereference(vrf->rt6);
716 if (unlikely(!dst)) {
717 vrf_tx_error(vrf_dev, skb);
722 skb_dst_set(skb, dst);
727 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
730 vrf_finish_direct(skb);
732 return vrf_ip6_local_out(net, sk, skb);
735 static int vrf_output6_direct(struct net *net, struct sock *sk,
740 skb->protocol = htons(ETH_P_IPV6);
742 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
743 err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
744 NULL, skb->dev, vrf_output6_direct_finish);
746 if (likely(err == 1))
747 vrf_finish_direct(skb);
752 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
757 err = vrf_output6_direct(net, sk, skb);
758 if (likely(err == 1))
759 err = vrf_ip6_local_out(net, sk, skb);
764 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
768 struct net *net = dev_net(vrf_dev);
773 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
774 skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
776 if (likely(err == 1))
777 err = vrf_output6_direct(net, sk, skb);
779 if (likely(err == 1))
785 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
789 /* don't divert link scope packets */
790 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
793 vrf_nf_set_untracked(skb);
795 if (qdisc_tx_is_default(vrf_dev) ||
796 IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
797 return vrf_ip6_out_direct(vrf_dev, sk, skb);
799 return vrf_ip6_out_redirect(vrf_dev, skb);
803 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
805 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
806 struct net *net = dev_net(dev);
807 struct dst_entry *dst;
809 RCU_INIT_POINTER(vrf->rt6, NULL);
812 /* move dev in dst's to loopback so this VRF device can be deleted
813 * - based on dst_ifdown
817 dev_replace_track(dst->dev, net->loopback_dev,
818 &dst->dev_tracker, GFP_KERNEL);
819 dst->dev = net->loopback_dev;
824 static int vrf_rt6_create(struct net_device *dev)
826 int flags = DST_NOPOLICY | DST_NOXFRM;
827 struct net_vrf *vrf = netdev_priv(dev);
828 struct net *net = dev_net(dev);
829 struct rt6_info *rt6;
832 /* IPv6 can be CONFIG enabled and then disabled runtime */
833 if (!ipv6_mod_enabled())
836 vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
837 if (!vrf->fib6_table)
840 /* create a dst for routing packets out a VRF device */
841 rt6 = ip6_dst_alloc(net, dev, flags);
845 rt6->dst.output = vrf_output6;
847 rcu_assign_pointer(vrf->rt6, rt6);
854 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
861 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
865 static int vrf_rt6_create(struct net_device *dev)
871 /* modelled after ip_finish_output2 */
872 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
874 struct dst_entry *dst = skb_dst(skb);
875 struct rtable *rt = (struct rtable *)dst;
876 struct net_device *dev = dst->dev;
877 unsigned int hh_len = LL_RESERVED_SPACE(dev);
878 struct neighbour *neigh;
879 bool is_v6gw = false;
881 vrf_nf_reset_ct(skb);
883 /* Be paranoid, rather than too clever. */
884 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
885 skb = skb_expand_head(skb, hh_len);
887 dev->stats.tx_errors++;
894 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
895 if (!IS_ERR(neigh)) {
898 sock_confirm_neigh(skb, neigh);
899 /* if crossing protocols, can not use the cached header */
900 ret = neigh_output(neigh, skb, is_v6gw);
901 rcu_read_unlock_bh();
905 rcu_read_unlock_bh();
906 vrf_tx_error(skb->dev, skb);
910 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
912 struct net_device *dev = skb_dst(skb)->dev;
914 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
917 skb->protocol = htons(ETH_P_IP);
919 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
920 net, sk, skb, NULL, dev,
922 !(IPCB(skb)->flags & IPSKB_REROUTED));
925 /* set dst on skb to send packet to us via dev_xmit path. Allows
926 * packet to go through device based features such as qdisc, netfilter
927 * hooks and packet sockets with skb->dev set to vrf device.
929 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
932 struct net_vrf *vrf = netdev_priv(vrf_dev);
933 struct dst_entry *dst = NULL;
938 rth = rcu_dereference(vrf->rth);
946 if (unlikely(!dst)) {
947 vrf_tx_error(vrf_dev, skb);
952 skb_dst_set(skb, dst);
957 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
960 vrf_finish_direct(skb);
962 return vrf_ip_local_out(net, sk, skb);
965 static int vrf_output_direct(struct net *net, struct sock *sk,
970 skb->protocol = htons(ETH_P_IP);
972 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
973 err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
974 NULL, skb->dev, vrf_output_direct_finish);
976 if (likely(err == 1))
977 vrf_finish_direct(skb);
982 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
987 err = vrf_output_direct(net, sk, skb);
988 if (likely(err == 1))
989 err = vrf_ip_local_out(net, sk, skb);
994 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
998 struct net *net = dev_net(vrf_dev);
1003 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
1004 skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
1006 if (likely(err == 1))
1007 err = vrf_output_direct(net, sk, skb);
1009 if (likely(err == 1))
1015 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1017 struct sk_buff *skb)
1019 /* don't divert multicast or local broadcast */
1020 if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1021 ipv4_is_lbcast(ip_hdr(skb)->daddr))
1024 vrf_nf_set_untracked(skb);
1026 if (qdisc_tx_is_default(vrf_dev) ||
1027 IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1028 return vrf_ip_out_direct(vrf_dev, sk, skb);
1030 return vrf_ip_out_redirect(vrf_dev, skb);
1033 /* called with rcu lock held */
1034 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1036 struct sk_buff *skb,
1041 return vrf_ip_out(vrf_dev, sk, skb);
1043 return vrf_ip6_out(vrf_dev, sk, skb);
1050 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1052 struct rtable *rth = rtnl_dereference(vrf->rth);
1053 struct net *net = dev_net(dev);
1054 struct dst_entry *dst;
1056 RCU_INIT_POINTER(vrf->rth, NULL);
1059 /* move dev in dst's to loopback so this VRF device can be deleted
1060 * - based on dst_ifdown
1064 dev_replace_track(dst->dev, net->loopback_dev,
1065 &dst->dev_tracker, GFP_KERNEL);
1066 dst->dev = net->loopback_dev;
1071 static int vrf_rtable_create(struct net_device *dev)
1073 struct net_vrf *vrf = netdev_priv(dev);
1076 if (!fib_new_table(dev_net(dev), vrf->tb_id))
1079 /* create a dst for routing packets out through a VRF device */
1080 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
1084 rth->dst.output = vrf_output;
1086 rcu_assign_pointer(vrf->rth, rth);
1091 /**************************** device handling ********************/
1093 /* cycle interface to flush neighbor cache and move routes across tables */
1094 static void cycle_netdev(struct net_device *dev,
1095 struct netlink_ext_ack *extack)
1097 unsigned int flags = dev->flags;
1100 if (!netif_running(dev))
1103 ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1105 ret = dev_change_flags(dev, flags, extack);
1109 "Failed to cycle device %s; route tables might be wrong!\n",
1114 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1115 struct netlink_ext_ack *extack)
1119 /* do not allow loopback device to be enslaved to a VRF.
1120 * The vrf device acts as the loopback for the vrf.
1122 if (port_dev == dev_net(dev)->loopback_dev) {
1123 NL_SET_ERR_MSG(extack,
1124 "Can not enslave loopback device to a VRF");
1128 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1129 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1133 cycle_netdev(port_dev, extack);
1138 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1142 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1143 struct netlink_ext_ack *extack)
1145 if (netif_is_l3_master(port_dev)) {
1146 NL_SET_ERR_MSG(extack,
1147 "Can not enslave an L3 master device to a VRF");
1151 if (netif_is_l3_slave(port_dev))
1154 return do_vrf_add_slave(dev, port_dev, extack);
1157 /* inverse of do_vrf_add_slave */
1158 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1160 netdev_upper_dev_unlink(port_dev, dev);
1161 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1163 cycle_netdev(port_dev, NULL);
1168 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1170 return do_vrf_del_slave(dev, port_dev);
1173 static void vrf_dev_uninit(struct net_device *dev)
1175 struct net_vrf *vrf = netdev_priv(dev);
1177 vrf_rtable_release(dev, vrf);
1178 vrf_rt6_release(dev, vrf);
1180 free_percpu(dev->dstats);
1184 static int vrf_dev_init(struct net_device *dev)
1186 struct net_vrf *vrf = netdev_priv(dev);
1188 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1192 /* create the default dst which points back to us */
1193 if (vrf_rtable_create(dev) != 0)
1196 if (vrf_rt6_create(dev) != 0)
1199 dev->flags = IFF_MASTER | IFF_NOARP;
1201 /* similarly, oper state is irrelevant; set to up to avoid confusion */
1202 dev->operstate = IF_OPER_UP;
1203 netdev_lockdep_set_classes(dev);
1207 vrf_rtable_release(dev, vrf);
1209 free_percpu(dev->dstats);
1215 static const struct net_device_ops vrf_netdev_ops = {
1216 .ndo_init = vrf_dev_init,
1217 .ndo_uninit = vrf_dev_uninit,
1218 .ndo_start_xmit = vrf_xmit,
1219 .ndo_set_mac_address = eth_mac_addr,
1220 .ndo_get_stats64 = vrf_get_stats64,
1221 .ndo_add_slave = vrf_add_slave,
1222 .ndo_del_slave = vrf_del_slave,
1225 static u32 vrf_fib_table(const struct net_device *dev)
1227 struct net_vrf *vrf = netdev_priv(dev);
1232 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1238 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1239 struct sk_buff *skb,
1240 struct net_device *dev)
1242 struct net *net = dev_net(dev);
1244 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1245 skb = NULL; /* kfree_skb(skb) handled by nf code */
1250 static int vrf_prepare_mac_header(struct sk_buff *skb,
1251 struct net_device *vrf_dev, u16 proto)
1256 /* in general, we do not know if there is enough space in the head of
1257 * the packet for hosting the mac header.
1259 err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1261 /* no space in the skb head */
1264 __skb_push(skb, ETH_HLEN);
1265 eth = (struct ethhdr *)skb->data;
1267 skb_reset_mac_header(skb);
1268 skb_reset_mac_len(skb);
1270 /* we set the ethernet destination and the source addresses to the
1271 * address of the VRF device.
1273 ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1274 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1275 eth->h_proto = htons(proto);
1277 /* the destination address of the Ethernet frame corresponds to the
1278 * address set on the VRF interface; therefore, the packet is intended
1279 * to be processed locally.
1281 skb->protocol = eth->h_proto;
1282 skb->pkt_type = PACKET_HOST;
1284 skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1286 skb_pull_inline(skb, ETH_HLEN);
1291 /* prepare and add the mac header to the packet if it was not set previously.
1292 * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1293 * If the mac header was already set, the original mac header is left
1294 * untouched and the function returns immediately.
1296 static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1297 struct net_device *vrf_dev,
1298 u16 proto, struct net_device *orig_dev)
1300 if (skb_mac_header_was_set(skb) && dev_has_header(orig_dev))
1303 return vrf_prepare_mac_header(skb, vrf_dev, proto);
1306 #if IS_ENABLED(CONFIG_IPV6)
1307 /* neighbor handling is done with actual device; do not want
1308 * to flip skb->dev for those ndisc packets. This really fails
1309 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1312 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1314 const struct ipv6hdr *iph = ipv6_hdr(skb);
1317 if (iph->nexthdr == NEXTHDR_ICMP) {
1318 const struct icmp6hdr *icmph;
1319 struct icmp6hdr _icmph;
1321 icmph = skb_header_pointer(skb, sizeof(*iph),
1322 sizeof(_icmph), &_icmph);
1326 switch (icmph->icmp6_type) {
1327 case NDISC_ROUTER_SOLICITATION:
1328 case NDISC_ROUTER_ADVERTISEMENT:
1329 case NDISC_NEIGHBOUR_SOLICITATION:
1330 case NDISC_NEIGHBOUR_ADVERTISEMENT:
1331 case NDISC_REDIRECT:
1341 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1342 const struct net_device *dev,
1345 const struct sk_buff *skb,
1348 struct net_vrf *vrf = netdev_priv(dev);
1350 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1353 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1356 const struct ipv6hdr *iph = ipv6_hdr(skb);
1357 struct flowi6 fl6 = {
1358 .flowi6_iif = ifindex,
1359 .flowi6_mark = skb->mark,
1360 .flowi6_proto = iph->nexthdr,
1361 .daddr = iph->daddr,
1362 .saddr = iph->saddr,
1363 .flowlabel = ip6_flowinfo(iph),
1365 struct net *net = dev_net(vrf_dev);
1366 struct rt6_info *rt6;
1368 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1369 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1373 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1376 skb_dst_set(skb, &rt6->dst);
1379 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1380 struct sk_buff *skb)
1382 int orig_iif = skb->skb_iif;
1383 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1384 bool is_ndisc = ipv6_ndisc_frame(skb);
1386 /* loopback, multicast & non-ND link-local traffic; do not push through
1387 * packet taps again. Reset pkt_type for upper layers to process skb.
1388 * For strict packets with a source LLA, determine the dst using the
1391 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1393 skb->skb_iif = vrf_dev->ifindex;
1394 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1396 if (skb->pkt_type == PACKET_LOOPBACK)
1397 skb->pkt_type = PACKET_HOST;
1398 else if (ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)
1399 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1404 /* if packet is NDISC then keep the ingress interface */
1406 struct net_device *orig_dev = skb->dev;
1408 vrf_rx_stats(vrf_dev, skb->len);
1410 skb->skb_iif = vrf_dev->ifindex;
1412 if (!list_empty(&vrf_dev->ptype_all)) {
1415 err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1419 skb_push(skb, skb->mac_len);
1420 dev_queue_xmit_nit(skb, vrf_dev);
1421 skb_pull(skb, skb->mac_len);
1425 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1429 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1431 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1437 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1438 struct sk_buff *skb)
1444 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1445 struct sk_buff *skb)
1447 struct net_device *orig_dev = skb->dev;
1450 skb->skb_iif = vrf_dev->ifindex;
1451 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1453 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1456 /* loopback traffic; do not push through packet taps again.
1457 * Reset pkt_type for upper layers to process skb
1459 if (skb->pkt_type == PACKET_LOOPBACK) {
1460 skb->pkt_type = PACKET_HOST;
1464 vrf_rx_stats(vrf_dev, skb->len);
1466 if (!list_empty(&vrf_dev->ptype_all)) {
1469 err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP,
1472 skb_push(skb, skb->mac_len);
1473 dev_queue_xmit_nit(skb, vrf_dev);
1474 skb_pull(skb, skb->mac_len);
1478 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1483 /* called with rcu lock held */
1484 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1485 struct sk_buff *skb,
1490 return vrf_ip_rcv(vrf_dev, skb);
1492 return vrf_ip6_rcv(vrf_dev, skb);
1498 #if IS_ENABLED(CONFIG_IPV6)
1499 /* send to link-local or multicast address via interface enslaved to
1500 * VRF device. Force lookup to VRF table without changing flow struct
1501 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1502 * is taken on the dst by this function.
1504 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1507 struct net *net = dev_net(dev);
1508 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1509 struct dst_entry *dst = NULL;
1510 struct rt6_info *rt;
1512 /* VRF device does not have a link-local address and
1513 * sending packets to link-local or mcast addresses over
1514 * a VRF device does not make sense
1516 if (fl6->flowi6_oif == dev->ifindex) {
1517 dst = &net->ipv6.ip6_null_entry->dst;
1521 if (!ipv6_addr_any(&fl6->saddr))
1522 flags |= RT6_LOOKUP_F_HAS_SADDR;
1524 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1532 static const struct l3mdev_ops vrf_l3mdev_ops = {
1533 .l3mdev_fib_table = vrf_fib_table,
1534 .l3mdev_l3_rcv = vrf_l3_rcv,
1535 .l3mdev_l3_out = vrf_l3_out,
1536 #if IS_ENABLED(CONFIG_IPV6)
1537 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1541 static void vrf_get_drvinfo(struct net_device *dev,
1542 struct ethtool_drvinfo *info)
1544 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1545 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1548 static const struct ethtool_ops vrf_ethtool_ops = {
1549 .get_drvinfo = vrf_get_drvinfo,
1552 static inline size_t vrf_fib_rule_nl_size(void)
1556 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1557 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1558 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1559 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
1564 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1566 struct fib_rule_hdr *frh;
1567 struct nlmsghdr *nlh;
1568 struct sk_buff *skb;
1571 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1572 !ipv6_mod_enabled())
1575 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1579 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1581 goto nla_put_failure;
1583 /* rule only needs to appear once */
1584 nlh->nlmsg_flags |= NLM_F_EXCL;
1586 frh = nlmsg_data(nlh);
1587 memset(frh, 0, sizeof(*frh));
1588 frh->family = family;
1589 frh->action = FR_ACT_TO_TBL;
1591 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1592 goto nla_put_failure;
1594 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1595 goto nla_put_failure;
1597 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1598 goto nla_put_failure;
1600 nlmsg_end(skb, nlh);
1602 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1603 skb->sk = dev_net(dev)->rtnl;
1605 err = fib_nl_newrule(skb, nlh, NULL);
1609 err = fib_nl_delrule(skb, nlh, NULL);
1623 static int vrf_add_fib_rules(const struct net_device *dev)
1627 err = vrf_fib_rule(dev, AF_INET, true);
1631 err = vrf_fib_rule(dev, AF_INET6, true);
1635 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1636 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1641 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1642 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1649 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1651 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false);
1654 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1656 vrf_fib_rule(dev, AF_INET6, false);
1660 vrf_fib_rule(dev, AF_INET, false);
1663 netdev_err(dev, "Failed to add FIB rules.\n");
1667 static void vrf_setup(struct net_device *dev)
1671 /* Initialize the device structure. */
1672 dev->netdev_ops = &vrf_netdev_ops;
1673 dev->l3mdev_ops = &vrf_l3mdev_ops;
1674 dev->ethtool_ops = &vrf_ethtool_ops;
1675 dev->needs_free_netdev = true;
1677 /* Fill in device structure with ethernet-generic values. */
1678 eth_hw_addr_random(dev);
1680 /* don't acquire vrf device's netif_tx_lock when transmitting */
1681 dev->features |= NETIF_F_LLTX;
1683 /* don't allow vrf devices to change network namespaces. */
1684 dev->features |= NETIF_F_NETNS_LOCAL;
1686 /* does not make sense for a VLAN to be added to a vrf device */
1687 dev->features |= NETIF_F_VLAN_CHALLENGED;
1689 /* enable offload features */
1690 dev->features |= NETIF_F_GSO_SOFTWARE;
1691 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1692 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1694 dev->hw_features = dev->features;
1695 dev->hw_enc_features = dev->features;
1697 /* default to no qdisc; user can add if desired */
1698 dev->priv_flags |= IFF_NO_QUEUE;
1699 dev->priv_flags |= IFF_NO_RX_HANDLER;
1700 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1702 /* VRF devices do not care about MTU, but if the MTU is set
1703 * too low then the ipv4 and ipv6 protocols are disabled
1704 * which breaks networking.
1706 dev->min_mtu = IPV6_MIN_MTU;
1707 dev->max_mtu = IP6_MAX_MTU;
1708 dev->mtu = dev->max_mtu;
1711 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1712 struct netlink_ext_ack *extack)
1714 if (tb[IFLA_ADDRESS]) {
1715 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1716 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1719 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1720 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1721 return -EADDRNOTAVAIL;
1727 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1729 struct net_device *port_dev;
1730 struct list_head *iter;
1732 netdev_for_each_lower_dev(dev, port_dev, iter)
1733 vrf_del_slave(dev, port_dev);
1735 vrf_map_unregister_dev(dev);
1737 unregister_netdevice_queue(dev, head);
1740 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1741 struct nlattr *tb[], struct nlattr *data[],
1742 struct netlink_ext_ack *extack)
1744 struct net_vrf *vrf = netdev_priv(dev);
1745 struct netns_vrf *nn_vrf;
1746 bool *add_fib_rules;
1750 if (!data || !data[IFLA_VRF_TABLE]) {
1751 NL_SET_ERR_MSG(extack, "VRF table id is missing");
1755 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1756 if (vrf->tb_id == RT_TABLE_UNSPEC) {
1757 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1758 "Invalid VRF table id");
1762 dev->priv_flags |= IFF_L3MDEV_MASTER;
1764 err = register_netdevice(dev);
1768 /* mapping between table_id and vrf;
1769 * note: such binding could not be done in the dev init function
1770 * because dev->ifindex id is not available yet.
1772 vrf->ifindex = dev->ifindex;
1774 err = vrf_map_register_dev(dev, extack);
1776 unregister_netdevice(dev);
1781 nn_vrf = net_generic(net, vrf_net_id);
1783 add_fib_rules = &nn_vrf->add_fib_rules;
1784 if (*add_fib_rules) {
1785 err = vrf_add_fib_rules(dev);
1787 vrf_map_unregister_dev(dev);
1788 unregister_netdevice(dev);
1791 *add_fib_rules = false;
1798 static size_t vrf_nl_getsize(const struct net_device *dev)
1800 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1803 static int vrf_fillinfo(struct sk_buff *skb,
1804 const struct net_device *dev)
1806 struct net_vrf *vrf = netdev_priv(dev);
1808 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1811 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1812 const struct net_device *slave_dev)
1814 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1817 static int vrf_fill_slave_info(struct sk_buff *skb,
1818 const struct net_device *vrf_dev,
1819 const struct net_device *slave_dev)
1821 struct net_vrf *vrf = netdev_priv(vrf_dev);
1823 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1829 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1830 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1833 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1835 .priv_size = sizeof(struct net_vrf),
1837 .get_size = vrf_nl_getsize,
1838 .policy = vrf_nl_policy,
1839 .validate = vrf_validate,
1840 .fill_info = vrf_fillinfo,
1842 .get_slave_size = vrf_get_slave_size,
1843 .fill_slave_info = vrf_fill_slave_info,
1845 .newlink = vrf_newlink,
1846 .dellink = vrf_dellink,
1848 .maxtype = IFLA_VRF_MAX,
1851 static int vrf_device_event(struct notifier_block *unused,
1852 unsigned long event, void *ptr)
1854 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1856 /* only care about unregister events to drop slave references */
1857 if (event == NETDEV_UNREGISTER) {
1858 struct net_device *vrf_dev;
1860 if (!netif_is_l3_slave(dev))
1863 vrf_dev = netdev_master_upper_dev_get(dev);
1864 vrf_del_slave(vrf_dev, dev);
1870 static struct notifier_block vrf_notifier_block __read_mostly = {
1871 .notifier_call = vrf_device_event,
1874 static int vrf_map_init(struct vrf_map *vmap)
1876 spin_lock_init(&vmap->vmap_lock);
1877 hash_init(vmap->ht);
1879 vmap->strict_mode = false;
1884 #ifdef CONFIG_SYSCTL
1885 static bool vrf_strict_mode(struct vrf_map *vmap)
1890 strict_mode = vmap->strict_mode;
1891 vrf_map_unlock(vmap);
1896 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1903 cur_mode = &vmap->strict_mode;
1904 if (*cur_mode == new_mode)
1908 /* disable strict mode */
1911 if (vmap->shared_tables) {
1912 /* we cannot allow strict_mode because there are some
1913 * vrfs that share one or more tables.
1919 /* no tables are shared among vrfs, so we can go back
1920 * to 1:1 association between a vrf with its table.
1926 vrf_map_unlock(vmap);
1931 static int vrf_shared_table_handler(struct ctl_table *table, int write,
1932 void *buffer, size_t *lenp, loff_t *ppos)
1934 struct net *net = (struct net *)table->extra1;
1935 struct vrf_map *vmap = netns_vrf_map(net);
1936 int proc_strict_mode = 0;
1937 struct ctl_table tmp = {
1938 .procname = table->procname,
1939 .data = &proc_strict_mode,
1940 .maxlen = sizeof(int),
1941 .mode = table->mode,
1942 .extra1 = SYSCTL_ZERO,
1943 .extra2 = SYSCTL_ONE,
1948 proc_strict_mode = vrf_strict_mode(vmap);
1950 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1952 if (write && ret == 0)
1953 ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1958 static const struct ctl_table vrf_table[] = {
1960 .procname = "strict_mode",
1962 .maxlen = sizeof(int),
1964 .proc_handler = vrf_shared_table_handler,
1965 /* set by the vrf_netns_init */
1971 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1973 struct ctl_table *table;
1975 table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1979 /* init the extra1 parameter with the reference to current netns */
1980 table[0].extra1 = net;
1982 nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
1983 if (!nn_vrf->ctl_hdr) {
1991 static void vrf_netns_exit_sysctl(struct net *net)
1993 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1994 struct ctl_table *table;
1996 table = nn_vrf->ctl_hdr->ctl_table_arg;
1997 unregister_net_sysctl_table(nn_vrf->ctl_hdr);
2001 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
2006 static void vrf_netns_exit_sysctl(struct net *net)
2011 /* Initialize per network namespace state */
2012 static int __net_init vrf_netns_init(struct net *net)
2014 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
2016 nn_vrf->add_fib_rules = true;
2017 vrf_map_init(&nn_vrf->vmap);
2019 return vrf_netns_init_sysctl(net, nn_vrf);
2022 static void __net_exit vrf_netns_exit(struct net *net)
2024 vrf_netns_exit_sysctl(net);
2027 static struct pernet_operations vrf_net_ops __net_initdata = {
2028 .init = vrf_netns_init,
2029 .exit = vrf_netns_exit,
2031 .size = sizeof(struct netns_vrf),
2034 static int __init vrf_init_module(void)
2038 register_netdevice_notifier(&vrf_notifier_block);
2040 rc = register_pernet_subsys(&vrf_net_ops);
2044 rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2045 vrf_ifindex_lookup_by_table_id);
2049 rc = rtnl_link_register(&vrf_link_ops);
2051 goto table_lookup_unreg;
2056 l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2057 vrf_ifindex_lookup_by_table_id);
2060 unregister_pernet_subsys(&vrf_net_ops);
2063 unregister_netdevice_notifier(&vrf_notifier_block);
2067 module_init(vrf_init_module);
2068 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2069 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2070 MODULE_LICENSE("GPL");
2071 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2072 MODULE_VERSION(DRV_VERSION);