Merge tag 'mfd-next-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[linux-2.6-microblaze.git] / drivers / net / phy / sfp.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/acpi.h>
3 #include <linux/ctype.h>
4 #include <linux/delay.h>
5 #include <linux/gpio/consumer.h>
6 #include <linux/hwmon.h>
7 #include <linux/i2c.h>
8 #include <linux/interrupt.h>
9 #include <linux/jiffies.h>
10 #include <linux/mdio/mdio-i2c.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/of.h>
14 #include <linux/phy.h>
15 #include <linux/platform_device.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19
20 #include "sfp.h"
21 #include "swphy.h"
22
23 enum {
24         GPIO_MODDEF0,
25         GPIO_LOS,
26         GPIO_TX_FAULT,
27         GPIO_TX_DISABLE,
28         GPIO_RATE_SELECT,
29         GPIO_MAX,
30
31         SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32         SFP_F_LOS = BIT(GPIO_LOS),
33         SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34         SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35         SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
36
37         SFP_E_INSERT = 0,
38         SFP_E_REMOVE,
39         SFP_E_DEV_ATTACH,
40         SFP_E_DEV_DETACH,
41         SFP_E_DEV_DOWN,
42         SFP_E_DEV_UP,
43         SFP_E_TX_FAULT,
44         SFP_E_TX_CLEAR,
45         SFP_E_LOS_HIGH,
46         SFP_E_LOS_LOW,
47         SFP_E_TIMEOUT,
48
49         SFP_MOD_EMPTY = 0,
50         SFP_MOD_ERROR,
51         SFP_MOD_PROBE,
52         SFP_MOD_WAITDEV,
53         SFP_MOD_HPOWER,
54         SFP_MOD_WAITPWR,
55         SFP_MOD_PRESENT,
56
57         SFP_DEV_DETACHED = 0,
58         SFP_DEV_DOWN,
59         SFP_DEV_UP,
60
61         SFP_S_DOWN = 0,
62         SFP_S_FAIL,
63         SFP_S_WAIT,
64         SFP_S_INIT,
65         SFP_S_INIT_PHY,
66         SFP_S_INIT_TX_FAULT,
67         SFP_S_WAIT_LOS,
68         SFP_S_LINK_UP,
69         SFP_S_TX_FAULT,
70         SFP_S_REINIT,
71         SFP_S_TX_DISABLE,
72 };
73
74 static const char  * const mod_state_strings[] = {
75         [SFP_MOD_EMPTY] = "empty",
76         [SFP_MOD_ERROR] = "error",
77         [SFP_MOD_PROBE] = "probe",
78         [SFP_MOD_WAITDEV] = "waitdev",
79         [SFP_MOD_HPOWER] = "hpower",
80         [SFP_MOD_WAITPWR] = "waitpwr",
81         [SFP_MOD_PRESENT] = "present",
82 };
83
84 static const char *mod_state_to_str(unsigned short mod_state)
85 {
86         if (mod_state >= ARRAY_SIZE(mod_state_strings))
87                 return "Unknown module state";
88         return mod_state_strings[mod_state];
89 }
90
91 static const char * const dev_state_strings[] = {
92         [SFP_DEV_DETACHED] = "detached",
93         [SFP_DEV_DOWN] = "down",
94         [SFP_DEV_UP] = "up",
95 };
96
97 static const char *dev_state_to_str(unsigned short dev_state)
98 {
99         if (dev_state >= ARRAY_SIZE(dev_state_strings))
100                 return "Unknown device state";
101         return dev_state_strings[dev_state];
102 }
103
104 static const char * const event_strings[] = {
105         [SFP_E_INSERT] = "insert",
106         [SFP_E_REMOVE] = "remove",
107         [SFP_E_DEV_ATTACH] = "dev_attach",
108         [SFP_E_DEV_DETACH] = "dev_detach",
109         [SFP_E_DEV_DOWN] = "dev_down",
110         [SFP_E_DEV_UP] = "dev_up",
111         [SFP_E_TX_FAULT] = "tx_fault",
112         [SFP_E_TX_CLEAR] = "tx_clear",
113         [SFP_E_LOS_HIGH] = "los_high",
114         [SFP_E_LOS_LOW] = "los_low",
115         [SFP_E_TIMEOUT] = "timeout",
116 };
117
118 static const char *event_to_str(unsigned short event)
119 {
120         if (event >= ARRAY_SIZE(event_strings))
121                 return "Unknown event";
122         return event_strings[event];
123 }
124
125 static const char * const sm_state_strings[] = {
126         [SFP_S_DOWN] = "down",
127         [SFP_S_FAIL] = "fail",
128         [SFP_S_WAIT] = "wait",
129         [SFP_S_INIT] = "init",
130         [SFP_S_INIT_PHY] = "init_phy",
131         [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
132         [SFP_S_WAIT_LOS] = "wait_los",
133         [SFP_S_LINK_UP] = "link_up",
134         [SFP_S_TX_FAULT] = "tx_fault",
135         [SFP_S_REINIT] = "reinit",
136         [SFP_S_TX_DISABLE] = "rx_disable",
137 };
138
139 static const char *sm_state_to_str(unsigned short sm_state)
140 {
141         if (sm_state >= ARRAY_SIZE(sm_state_strings))
142                 return "Unknown state";
143         return sm_state_strings[sm_state];
144 }
145
146 static const char *gpio_of_names[] = {
147         "mod-def0",
148         "los",
149         "tx-fault",
150         "tx-disable",
151         "rate-select0",
152 };
153
154 static const enum gpiod_flags gpio_flags[] = {
155         GPIOD_IN,
156         GPIOD_IN,
157         GPIOD_IN,
158         GPIOD_ASIS,
159         GPIOD_ASIS,
160 };
161
162 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
163  * non-cooled module to initialise its laser safety circuitry. We wait
164  * an initial T_WAIT period before we check the tx fault to give any PHY
165  * on board (for a copper SFP) time to initialise.
166  */
167 #define T_WAIT                  msecs_to_jiffies(50)
168 #define T_START_UP              msecs_to_jiffies(300)
169 #define T_START_UP_BAD_GPON     msecs_to_jiffies(60000)
170
171 /* t_reset is the time required to assert the TX_DISABLE signal to reset
172  * an indicated TX_FAULT.
173  */
174 #define T_RESET_US              10
175 #define T_FAULT_RECOVER         msecs_to_jiffies(1000)
176
177 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
178  * time. If the TX_FAULT signal is not deasserted after this number of
179  * attempts at clearing it, we decide that the module is faulty.
180  * N_FAULT is the same but after the module has initialised.
181  */
182 #define N_FAULT_INIT            5
183 #define N_FAULT                 5
184
185 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
186  * R_PHY_RETRY is the number of attempts.
187  */
188 #define T_PHY_RETRY             msecs_to_jiffies(50)
189 #define R_PHY_RETRY             12
190
191 /* SFP module presence detection is poor: the three MOD DEF signals are
192  * the same length on the PCB, which means it's possible for MOD DEF 0 to
193  * connect before the I2C bus on MOD DEF 1/2.
194  *
195  * The SFF-8472 specifies t_serial ("Time from power on until module is
196  * ready for data transmission over the two wire serial bus.") as 300ms.
197  */
198 #define T_SERIAL                msecs_to_jiffies(300)
199 #define T_HPOWER_LEVEL          msecs_to_jiffies(300)
200 #define T_PROBE_RETRY_INIT      msecs_to_jiffies(100)
201 #define R_PROBE_RETRY_INIT      10
202 #define T_PROBE_RETRY_SLOW      msecs_to_jiffies(5000)
203 #define R_PROBE_RETRY_SLOW      12
204
205 /* SFP modules appear to always have their PHY configured for bus address
206  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
207  */
208 #define SFP_PHY_ADDR    22
209
210 struct sff_data {
211         unsigned int gpios;
212         bool (*module_supported)(const struct sfp_eeprom_id *id);
213 };
214
215 struct sfp {
216         struct device *dev;
217         struct i2c_adapter *i2c;
218         struct mii_bus *i2c_mii;
219         struct sfp_bus *sfp_bus;
220         struct phy_device *mod_phy;
221         const struct sff_data *type;
222         size_t i2c_block_size;
223         u32 max_power_mW;
224
225         unsigned int (*get_state)(struct sfp *);
226         void (*set_state)(struct sfp *, unsigned int);
227         int (*read)(struct sfp *, bool, u8, void *, size_t);
228         int (*write)(struct sfp *, bool, u8, void *, size_t);
229
230         struct gpio_desc *gpio[GPIO_MAX];
231         int gpio_irq[GPIO_MAX];
232
233         bool need_poll;
234
235         struct mutex st_mutex;                  /* Protects state */
236         unsigned int state_soft_mask;
237         unsigned int state;
238         struct delayed_work poll;
239         struct delayed_work timeout;
240         struct mutex sm_mutex;                  /* Protects state machine */
241         unsigned char sm_mod_state;
242         unsigned char sm_mod_tries_init;
243         unsigned char sm_mod_tries;
244         unsigned char sm_dev_state;
245         unsigned short sm_state;
246         unsigned char sm_fault_retries;
247         unsigned char sm_phy_retries;
248
249         struct sfp_eeprom_id id;
250         unsigned int module_power_mW;
251         unsigned int module_t_start_up;
252
253 #if IS_ENABLED(CONFIG_HWMON)
254         struct sfp_diag diag;
255         struct delayed_work hwmon_probe;
256         unsigned int hwmon_tries;
257         struct device *hwmon_dev;
258         char *hwmon_name;
259 #endif
260
261 };
262
263 static bool sff_module_supported(const struct sfp_eeprom_id *id)
264 {
265         return id->base.phys_id == SFF8024_ID_SFF_8472 &&
266                id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
267 }
268
269 static const struct sff_data sff_data = {
270         .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
271         .module_supported = sff_module_supported,
272 };
273
274 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
275 {
276         return id->base.phys_id == SFF8024_ID_SFP &&
277                id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
278 }
279
280 static const struct sff_data sfp_data = {
281         .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
282                  SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
283         .module_supported = sfp_module_supported,
284 };
285
286 static const struct of_device_id sfp_of_match[] = {
287         { .compatible = "sff,sff", .data = &sff_data, },
288         { .compatible = "sff,sfp", .data = &sfp_data, },
289         { },
290 };
291 MODULE_DEVICE_TABLE(of, sfp_of_match);
292
293 static unsigned long poll_jiffies;
294
295 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
296 {
297         unsigned int i, state, v;
298
299         for (i = state = 0; i < GPIO_MAX; i++) {
300                 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
301                         continue;
302
303                 v = gpiod_get_value_cansleep(sfp->gpio[i]);
304                 if (v)
305                         state |= BIT(i);
306         }
307
308         return state;
309 }
310
311 static unsigned int sff_gpio_get_state(struct sfp *sfp)
312 {
313         return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
314 }
315
316 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
317 {
318         if (state & SFP_F_PRESENT) {
319                 /* If the module is present, drive the signals */
320                 if (sfp->gpio[GPIO_TX_DISABLE])
321                         gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
322                                                state & SFP_F_TX_DISABLE);
323                 if (state & SFP_F_RATE_SELECT)
324                         gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
325                                                state & SFP_F_RATE_SELECT);
326         } else {
327                 /* Otherwise, let them float to the pull-ups */
328                 if (sfp->gpio[GPIO_TX_DISABLE])
329                         gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
330                 if (state & SFP_F_RATE_SELECT)
331                         gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
332         }
333 }
334
335 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
336                         size_t len)
337 {
338         struct i2c_msg msgs[2];
339         size_t block_size;
340         size_t this_len;
341         u8 bus_addr;
342         int ret;
343
344         if (a2) {
345                 block_size = 16;
346                 bus_addr = 0x51;
347         } else {
348                 block_size = sfp->i2c_block_size;
349                 bus_addr = 0x50;
350         }
351
352         msgs[0].addr = bus_addr;
353         msgs[0].flags = 0;
354         msgs[0].len = 1;
355         msgs[0].buf = &dev_addr;
356         msgs[1].addr = bus_addr;
357         msgs[1].flags = I2C_M_RD;
358         msgs[1].len = len;
359         msgs[1].buf = buf;
360
361         while (len) {
362                 this_len = len;
363                 if (this_len > block_size)
364                         this_len = block_size;
365
366                 msgs[1].len = this_len;
367
368                 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
369                 if (ret < 0)
370                         return ret;
371
372                 if (ret != ARRAY_SIZE(msgs))
373                         break;
374
375                 msgs[1].buf += this_len;
376                 dev_addr += this_len;
377                 len -= this_len;
378         }
379
380         return msgs[1].buf - (u8 *)buf;
381 }
382
383 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
384         size_t len)
385 {
386         struct i2c_msg msgs[1];
387         u8 bus_addr = a2 ? 0x51 : 0x50;
388         int ret;
389
390         msgs[0].addr = bus_addr;
391         msgs[0].flags = 0;
392         msgs[0].len = 1 + len;
393         msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
394         if (!msgs[0].buf)
395                 return -ENOMEM;
396
397         msgs[0].buf[0] = dev_addr;
398         memcpy(&msgs[0].buf[1], buf, len);
399
400         ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
401
402         kfree(msgs[0].buf);
403
404         if (ret < 0)
405                 return ret;
406
407         return ret == ARRAY_SIZE(msgs) ? len : 0;
408 }
409
410 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
411 {
412         struct mii_bus *i2c_mii;
413         int ret;
414
415         if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
416                 return -EINVAL;
417
418         sfp->i2c = i2c;
419         sfp->read = sfp_i2c_read;
420         sfp->write = sfp_i2c_write;
421
422         i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
423         if (IS_ERR(i2c_mii))
424                 return PTR_ERR(i2c_mii);
425
426         i2c_mii->name = "SFP I2C Bus";
427         i2c_mii->phy_mask = ~0;
428
429         ret = mdiobus_register(i2c_mii);
430         if (ret < 0) {
431                 mdiobus_free(i2c_mii);
432                 return ret;
433         }
434
435         sfp->i2c_mii = i2c_mii;
436
437         return 0;
438 }
439
440 /* Interface */
441 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
442 {
443         return sfp->read(sfp, a2, addr, buf, len);
444 }
445
446 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
447 {
448         return sfp->write(sfp, a2, addr, buf, len);
449 }
450
451 static unsigned int sfp_soft_get_state(struct sfp *sfp)
452 {
453         unsigned int state = 0;
454         u8 status;
455         int ret;
456
457         ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
458         if (ret == sizeof(status)) {
459                 if (status & SFP_STATUS_RX_LOS)
460                         state |= SFP_F_LOS;
461                 if (status & SFP_STATUS_TX_FAULT)
462                         state |= SFP_F_TX_FAULT;
463         } else {
464                 dev_err_ratelimited(sfp->dev,
465                                     "failed to read SFP soft status: %d\n",
466                                     ret);
467                 /* Preserve the current state */
468                 state = sfp->state;
469         }
470
471         return state & sfp->state_soft_mask;
472 }
473
474 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
475 {
476         u8 status;
477
478         if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
479                      sizeof(status)) {
480                 if (state & SFP_F_TX_DISABLE)
481                         status |= SFP_STATUS_TX_DISABLE_FORCE;
482                 else
483                         status &= ~SFP_STATUS_TX_DISABLE_FORCE;
484
485                 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
486         }
487 }
488
489 static void sfp_soft_start_poll(struct sfp *sfp)
490 {
491         const struct sfp_eeprom_id *id = &sfp->id;
492
493         sfp->state_soft_mask = 0;
494         if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
495             !sfp->gpio[GPIO_TX_DISABLE])
496                 sfp->state_soft_mask |= SFP_F_TX_DISABLE;
497         if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
498             !sfp->gpio[GPIO_TX_FAULT])
499                 sfp->state_soft_mask |= SFP_F_TX_FAULT;
500         if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
501             !sfp->gpio[GPIO_LOS])
502                 sfp->state_soft_mask |= SFP_F_LOS;
503
504         if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
505             !sfp->need_poll)
506                 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
507 }
508
509 static void sfp_soft_stop_poll(struct sfp *sfp)
510 {
511         sfp->state_soft_mask = 0;
512 }
513
514 static unsigned int sfp_get_state(struct sfp *sfp)
515 {
516         unsigned int state = sfp->get_state(sfp);
517
518         if (state & SFP_F_PRESENT &&
519             sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
520                 state |= sfp_soft_get_state(sfp);
521
522         return state;
523 }
524
525 static void sfp_set_state(struct sfp *sfp, unsigned int state)
526 {
527         sfp->set_state(sfp, state);
528
529         if (state & SFP_F_PRESENT &&
530             sfp->state_soft_mask & SFP_F_TX_DISABLE)
531                 sfp_soft_set_state(sfp, state);
532 }
533
534 static unsigned int sfp_check(void *buf, size_t len)
535 {
536         u8 *p, check;
537
538         for (p = buf, check = 0; len; p++, len--)
539                 check += *p;
540
541         return check;
542 }
543
544 /* hwmon */
545 #if IS_ENABLED(CONFIG_HWMON)
546 static umode_t sfp_hwmon_is_visible(const void *data,
547                                     enum hwmon_sensor_types type,
548                                     u32 attr, int channel)
549 {
550         const struct sfp *sfp = data;
551
552         switch (type) {
553         case hwmon_temp:
554                 switch (attr) {
555                 case hwmon_temp_min_alarm:
556                 case hwmon_temp_max_alarm:
557                 case hwmon_temp_lcrit_alarm:
558                 case hwmon_temp_crit_alarm:
559                 case hwmon_temp_min:
560                 case hwmon_temp_max:
561                 case hwmon_temp_lcrit:
562                 case hwmon_temp_crit:
563                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
564                                 return 0;
565                         fallthrough;
566                 case hwmon_temp_input:
567                 case hwmon_temp_label:
568                         return 0444;
569                 default:
570                         return 0;
571                 }
572         case hwmon_in:
573                 switch (attr) {
574                 case hwmon_in_min_alarm:
575                 case hwmon_in_max_alarm:
576                 case hwmon_in_lcrit_alarm:
577                 case hwmon_in_crit_alarm:
578                 case hwmon_in_min:
579                 case hwmon_in_max:
580                 case hwmon_in_lcrit:
581                 case hwmon_in_crit:
582                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
583                                 return 0;
584                         fallthrough;
585                 case hwmon_in_input:
586                 case hwmon_in_label:
587                         return 0444;
588                 default:
589                         return 0;
590                 }
591         case hwmon_curr:
592                 switch (attr) {
593                 case hwmon_curr_min_alarm:
594                 case hwmon_curr_max_alarm:
595                 case hwmon_curr_lcrit_alarm:
596                 case hwmon_curr_crit_alarm:
597                 case hwmon_curr_min:
598                 case hwmon_curr_max:
599                 case hwmon_curr_lcrit:
600                 case hwmon_curr_crit:
601                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
602                                 return 0;
603                         fallthrough;
604                 case hwmon_curr_input:
605                 case hwmon_curr_label:
606                         return 0444;
607                 default:
608                         return 0;
609                 }
610         case hwmon_power:
611                 /* External calibration of receive power requires
612                  * floating point arithmetic. Doing that in the kernel
613                  * is not easy, so just skip it. If the module does
614                  * not require external calibration, we can however
615                  * show receiver power, since FP is then not needed.
616                  */
617                 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
618                     channel == 1)
619                         return 0;
620                 switch (attr) {
621                 case hwmon_power_min_alarm:
622                 case hwmon_power_max_alarm:
623                 case hwmon_power_lcrit_alarm:
624                 case hwmon_power_crit_alarm:
625                 case hwmon_power_min:
626                 case hwmon_power_max:
627                 case hwmon_power_lcrit:
628                 case hwmon_power_crit:
629                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
630                                 return 0;
631                         fallthrough;
632                 case hwmon_power_input:
633                 case hwmon_power_label:
634                         return 0444;
635                 default:
636                         return 0;
637                 }
638         default:
639                 return 0;
640         }
641 }
642
643 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
644 {
645         __be16 val;
646         int err;
647
648         err = sfp_read(sfp, true, reg, &val, sizeof(val));
649         if (err < 0)
650                 return err;
651
652         *value = be16_to_cpu(val);
653
654         return 0;
655 }
656
657 static void sfp_hwmon_to_rx_power(long *value)
658 {
659         *value = DIV_ROUND_CLOSEST(*value, 10);
660 }
661
662 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
663                                 long *value)
664 {
665         if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
666                 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
667 }
668
669 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
670 {
671         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
672                             be16_to_cpu(sfp->diag.cal_t_offset), value);
673
674         if (*value >= 0x8000)
675                 *value -= 0x10000;
676
677         *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
678 }
679
680 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
681 {
682         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
683                             be16_to_cpu(sfp->diag.cal_v_offset), value);
684
685         *value = DIV_ROUND_CLOSEST(*value, 10);
686 }
687
688 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
689 {
690         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
691                             be16_to_cpu(sfp->diag.cal_txi_offset), value);
692
693         *value = DIV_ROUND_CLOSEST(*value, 500);
694 }
695
696 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
697 {
698         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
699                             be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
700
701         *value = DIV_ROUND_CLOSEST(*value, 10);
702 }
703
704 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
705 {
706         int err;
707
708         err = sfp_hwmon_read_sensor(sfp, reg, value);
709         if (err < 0)
710                 return err;
711
712         sfp_hwmon_calibrate_temp(sfp, value);
713
714         return 0;
715 }
716
717 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
718 {
719         int err;
720
721         err = sfp_hwmon_read_sensor(sfp, reg, value);
722         if (err < 0)
723                 return err;
724
725         sfp_hwmon_calibrate_vcc(sfp, value);
726
727         return 0;
728 }
729
730 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
731 {
732         int err;
733
734         err = sfp_hwmon_read_sensor(sfp, reg, value);
735         if (err < 0)
736                 return err;
737
738         sfp_hwmon_calibrate_bias(sfp, value);
739
740         return 0;
741 }
742
743 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
744 {
745         int err;
746
747         err = sfp_hwmon_read_sensor(sfp, reg, value);
748         if (err < 0)
749                 return err;
750
751         sfp_hwmon_calibrate_tx_power(sfp, value);
752
753         return 0;
754 }
755
756 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
757 {
758         int err;
759
760         err = sfp_hwmon_read_sensor(sfp, reg, value);
761         if (err < 0)
762                 return err;
763
764         sfp_hwmon_to_rx_power(value);
765
766         return 0;
767 }
768
769 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
770 {
771         u8 status;
772         int err;
773
774         switch (attr) {
775         case hwmon_temp_input:
776                 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
777
778         case hwmon_temp_lcrit:
779                 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
780                 sfp_hwmon_calibrate_temp(sfp, value);
781                 return 0;
782
783         case hwmon_temp_min:
784                 *value = be16_to_cpu(sfp->diag.temp_low_warn);
785                 sfp_hwmon_calibrate_temp(sfp, value);
786                 return 0;
787         case hwmon_temp_max:
788                 *value = be16_to_cpu(sfp->diag.temp_high_warn);
789                 sfp_hwmon_calibrate_temp(sfp, value);
790                 return 0;
791
792         case hwmon_temp_crit:
793                 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
794                 sfp_hwmon_calibrate_temp(sfp, value);
795                 return 0;
796
797         case hwmon_temp_lcrit_alarm:
798                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
799                 if (err < 0)
800                         return err;
801
802                 *value = !!(status & SFP_ALARM0_TEMP_LOW);
803                 return 0;
804
805         case hwmon_temp_min_alarm:
806                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
807                 if (err < 0)
808                         return err;
809
810                 *value = !!(status & SFP_WARN0_TEMP_LOW);
811                 return 0;
812
813         case hwmon_temp_max_alarm:
814                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
815                 if (err < 0)
816                         return err;
817
818                 *value = !!(status & SFP_WARN0_TEMP_HIGH);
819                 return 0;
820
821         case hwmon_temp_crit_alarm:
822                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
823                 if (err < 0)
824                         return err;
825
826                 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
827                 return 0;
828         default:
829                 return -EOPNOTSUPP;
830         }
831
832         return -EOPNOTSUPP;
833 }
834
835 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
836 {
837         u8 status;
838         int err;
839
840         switch (attr) {
841         case hwmon_in_input:
842                 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
843
844         case hwmon_in_lcrit:
845                 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
846                 sfp_hwmon_calibrate_vcc(sfp, value);
847                 return 0;
848
849         case hwmon_in_min:
850                 *value = be16_to_cpu(sfp->diag.volt_low_warn);
851                 sfp_hwmon_calibrate_vcc(sfp, value);
852                 return 0;
853
854         case hwmon_in_max:
855                 *value = be16_to_cpu(sfp->diag.volt_high_warn);
856                 sfp_hwmon_calibrate_vcc(sfp, value);
857                 return 0;
858
859         case hwmon_in_crit:
860                 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
861                 sfp_hwmon_calibrate_vcc(sfp, value);
862                 return 0;
863
864         case hwmon_in_lcrit_alarm:
865                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
866                 if (err < 0)
867                         return err;
868
869                 *value = !!(status & SFP_ALARM0_VCC_LOW);
870                 return 0;
871
872         case hwmon_in_min_alarm:
873                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
874                 if (err < 0)
875                         return err;
876
877                 *value = !!(status & SFP_WARN0_VCC_LOW);
878                 return 0;
879
880         case hwmon_in_max_alarm:
881                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
882                 if (err < 0)
883                         return err;
884
885                 *value = !!(status & SFP_WARN0_VCC_HIGH);
886                 return 0;
887
888         case hwmon_in_crit_alarm:
889                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
890                 if (err < 0)
891                         return err;
892
893                 *value = !!(status & SFP_ALARM0_VCC_HIGH);
894                 return 0;
895         default:
896                 return -EOPNOTSUPP;
897         }
898
899         return -EOPNOTSUPP;
900 }
901
902 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
903 {
904         u8 status;
905         int err;
906
907         switch (attr) {
908         case hwmon_curr_input:
909                 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
910
911         case hwmon_curr_lcrit:
912                 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
913                 sfp_hwmon_calibrate_bias(sfp, value);
914                 return 0;
915
916         case hwmon_curr_min:
917                 *value = be16_to_cpu(sfp->diag.bias_low_warn);
918                 sfp_hwmon_calibrate_bias(sfp, value);
919                 return 0;
920
921         case hwmon_curr_max:
922                 *value = be16_to_cpu(sfp->diag.bias_high_warn);
923                 sfp_hwmon_calibrate_bias(sfp, value);
924                 return 0;
925
926         case hwmon_curr_crit:
927                 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
928                 sfp_hwmon_calibrate_bias(sfp, value);
929                 return 0;
930
931         case hwmon_curr_lcrit_alarm:
932                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
933                 if (err < 0)
934                         return err;
935
936                 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
937                 return 0;
938
939         case hwmon_curr_min_alarm:
940                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
941                 if (err < 0)
942                         return err;
943
944                 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
945                 return 0;
946
947         case hwmon_curr_max_alarm:
948                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
949                 if (err < 0)
950                         return err;
951
952                 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
953                 return 0;
954
955         case hwmon_curr_crit_alarm:
956                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
957                 if (err < 0)
958                         return err;
959
960                 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
961                 return 0;
962         default:
963                 return -EOPNOTSUPP;
964         }
965
966         return -EOPNOTSUPP;
967 }
968
969 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
970 {
971         u8 status;
972         int err;
973
974         switch (attr) {
975         case hwmon_power_input:
976                 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
977
978         case hwmon_power_lcrit:
979                 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
980                 sfp_hwmon_calibrate_tx_power(sfp, value);
981                 return 0;
982
983         case hwmon_power_min:
984                 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
985                 sfp_hwmon_calibrate_tx_power(sfp, value);
986                 return 0;
987
988         case hwmon_power_max:
989                 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
990                 sfp_hwmon_calibrate_tx_power(sfp, value);
991                 return 0;
992
993         case hwmon_power_crit:
994                 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
995                 sfp_hwmon_calibrate_tx_power(sfp, value);
996                 return 0;
997
998         case hwmon_power_lcrit_alarm:
999                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1000                 if (err < 0)
1001                         return err;
1002
1003                 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1004                 return 0;
1005
1006         case hwmon_power_min_alarm:
1007                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1008                 if (err < 0)
1009                         return err;
1010
1011                 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1012                 return 0;
1013
1014         case hwmon_power_max_alarm:
1015                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1016                 if (err < 0)
1017                         return err;
1018
1019                 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1020                 return 0;
1021
1022         case hwmon_power_crit_alarm:
1023                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1024                 if (err < 0)
1025                         return err;
1026
1027                 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1028                 return 0;
1029         default:
1030                 return -EOPNOTSUPP;
1031         }
1032
1033         return -EOPNOTSUPP;
1034 }
1035
1036 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1037 {
1038         u8 status;
1039         int err;
1040
1041         switch (attr) {
1042         case hwmon_power_input:
1043                 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1044
1045         case hwmon_power_lcrit:
1046                 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1047                 sfp_hwmon_to_rx_power(value);
1048                 return 0;
1049
1050         case hwmon_power_min:
1051                 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1052                 sfp_hwmon_to_rx_power(value);
1053                 return 0;
1054
1055         case hwmon_power_max:
1056                 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1057                 sfp_hwmon_to_rx_power(value);
1058                 return 0;
1059
1060         case hwmon_power_crit:
1061                 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1062                 sfp_hwmon_to_rx_power(value);
1063                 return 0;
1064
1065         case hwmon_power_lcrit_alarm:
1066                 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1067                 if (err < 0)
1068                         return err;
1069
1070                 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1071                 return 0;
1072
1073         case hwmon_power_min_alarm:
1074                 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1075                 if (err < 0)
1076                         return err;
1077
1078                 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1079                 return 0;
1080
1081         case hwmon_power_max_alarm:
1082                 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1083                 if (err < 0)
1084                         return err;
1085
1086                 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1087                 return 0;
1088
1089         case hwmon_power_crit_alarm:
1090                 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1091                 if (err < 0)
1092                         return err;
1093
1094                 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1095                 return 0;
1096         default:
1097                 return -EOPNOTSUPP;
1098         }
1099
1100         return -EOPNOTSUPP;
1101 }
1102
1103 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1104                           u32 attr, int channel, long *value)
1105 {
1106         struct sfp *sfp = dev_get_drvdata(dev);
1107
1108         switch (type) {
1109         case hwmon_temp:
1110                 return sfp_hwmon_temp(sfp, attr, value);
1111         case hwmon_in:
1112                 return sfp_hwmon_vcc(sfp, attr, value);
1113         case hwmon_curr:
1114                 return sfp_hwmon_bias(sfp, attr, value);
1115         case hwmon_power:
1116                 switch (channel) {
1117                 case 0:
1118                         return sfp_hwmon_tx_power(sfp, attr, value);
1119                 case 1:
1120                         return sfp_hwmon_rx_power(sfp, attr, value);
1121                 default:
1122                         return -EOPNOTSUPP;
1123                 }
1124         default:
1125                 return -EOPNOTSUPP;
1126         }
1127 }
1128
1129 static const char *const sfp_hwmon_power_labels[] = {
1130         "TX_power",
1131         "RX_power",
1132 };
1133
1134 static int sfp_hwmon_read_string(struct device *dev,
1135                                  enum hwmon_sensor_types type,
1136                                  u32 attr, int channel, const char **str)
1137 {
1138         switch (type) {
1139         case hwmon_curr:
1140                 switch (attr) {
1141                 case hwmon_curr_label:
1142                         *str = "bias";
1143                         return 0;
1144                 default:
1145                         return -EOPNOTSUPP;
1146                 }
1147                 break;
1148         case hwmon_temp:
1149                 switch (attr) {
1150                 case hwmon_temp_label:
1151                         *str = "temperature";
1152                         return 0;
1153                 default:
1154                         return -EOPNOTSUPP;
1155                 }
1156                 break;
1157         case hwmon_in:
1158                 switch (attr) {
1159                 case hwmon_in_label:
1160                         *str = "VCC";
1161                         return 0;
1162                 default:
1163                         return -EOPNOTSUPP;
1164                 }
1165                 break;
1166         case hwmon_power:
1167                 switch (attr) {
1168                 case hwmon_power_label:
1169                         *str = sfp_hwmon_power_labels[channel];
1170                         return 0;
1171                 default:
1172                         return -EOPNOTSUPP;
1173                 }
1174                 break;
1175         default:
1176                 return -EOPNOTSUPP;
1177         }
1178
1179         return -EOPNOTSUPP;
1180 }
1181
1182 static const struct hwmon_ops sfp_hwmon_ops = {
1183         .is_visible = sfp_hwmon_is_visible,
1184         .read = sfp_hwmon_read,
1185         .read_string = sfp_hwmon_read_string,
1186 };
1187
1188 static u32 sfp_hwmon_chip_config[] = {
1189         HWMON_C_REGISTER_TZ,
1190         0,
1191 };
1192
1193 static const struct hwmon_channel_info sfp_hwmon_chip = {
1194         .type = hwmon_chip,
1195         .config = sfp_hwmon_chip_config,
1196 };
1197
1198 static u32 sfp_hwmon_temp_config[] = {
1199         HWMON_T_INPUT |
1200         HWMON_T_MAX | HWMON_T_MIN |
1201         HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1202         HWMON_T_CRIT | HWMON_T_LCRIT |
1203         HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1204         HWMON_T_LABEL,
1205         0,
1206 };
1207
1208 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1209         .type = hwmon_temp,
1210         .config = sfp_hwmon_temp_config,
1211 };
1212
1213 static u32 sfp_hwmon_vcc_config[] = {
1214         HWMON_I_INPUT |
1215         HWMON_I_MAX | HWMON_I_MIN |
1216         HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1217         HWMON_I_CRIT | HWMON_I_LCRIT |
1218         HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1219         HWMON_I_LABEL,
1220         0,
1221 };
1222
1223 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1224         .type = hwmon_in,
1225         .config = sfp_hwmon_vcc_config,
1226 };
1227
1228 static u32 sfp_hwmon_bias_config[] = {
1229         HWMON_C_INPUT |
1230         HWMON_C_MAX | HWMON_C_MIN |
1231         HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1232         HWMON_C_CRIT | HWMON_C_LCRIT |
1233         HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1234         HWMON_C_LABEL,
1235         0,
1236 };
1237
1238 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1239         .type = hwmon_curr,
1240         .config = sfp_hwmon_bias_config,
1241 };
1242
1243 static u32 sfp_hwmon_power_config[] = {
1244         /* Transmit power */
1245         HWMON_P_INPUT |
1246         HWMON_P_MAX | HWMON_P_MIN |
1247         HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1248         HWMON_P_CRIT | HWMON_P_LCRIT |
1249         HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1250         HWMON_P_LABEL,
1251         /* Receive power */
1252         HWMON_P_INPUT |
1253         HWMON_P_MAX | HWMON_P_MIN |
1254         HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1255         HWMON_P_CRIT | HWMON_P_LCRIT |
1256         HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1257         HWMON_P_LABEL,
1258         0,
1259 };
1260
1261 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1262         .type = hwmon_power,
1263         .config = sfp_hwmon_power_config,
1264 };
1265
1266 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1267         &sfp_hwmon_chip,
1268         &sfp_hwmon_vcc_channel_info,
1269         &sfp_hwmon_temp_channel_info,
1270         &sfp_hwmon_bias_channel_info,
1271         &sfp_hwmon_power_channel_info,
1272         NULL,
1273 };
1274
1275 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1276         .ops = &sfp_hwmon_ops,
1277         .info = sfp_hwmon_info,
1278 };
1279
1280 static void sfp_hwmon_probe(struct work_struct *work)
1281 {
1282         struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1283         int err, i;
1284
1285         err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1286         if (err < 0) {
1287                 if (sfp->hwmon_tries--) {
1288                         mod_delayed_work(system_wq, &sfp->hwmon_probe,
1289                                          T_PROBE_RETRY_SLOW);
1290                 } else {
1291                         dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1292                 }
1293                 return;
1294         }
1295
1296         sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1297         if (!sfp->hwmon_name) {
1298                 dev_err(sfp->dev, "out of memory for hwmon name\n");
1299                 return;
1300         }
1301
1302         for (i = 0; sfp->hwmon_name[i]; i++)
1303                 if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1304                         sfp->hwmon_name[i] = '_';
1305
1306         sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1307                                                          sfp->hwmon_name, sfp,
1308                                                          &sfp_hwmon_chip_info,
1309                                                          NULL);
1310         if (IS_ERR(sfp->hwmon_dev))
1311                 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1312                         PTR_ERR(sfp->hwmon_dev));
1313 }
1314
1315 static int sfp_hwmon_insert(struct sfp *sfp)
1316 {
1317         if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1318                 return 0;
1319
1320         if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1321                 return 0;
1322
1323         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1324                 /* This driver in general does not support address
1325                  * change.
1326                  */
1327                 return 0;
1328
1329         mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1330         sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1331
1332         return 0;
1333 }
1334
1335 static void sfp_hwmon_remove(struct sfp *sfp)
1336 {
1337         cancel_delayed_work_sync(&sfp->hwmon_probe);
1338         if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1339                 hwmon_device_unregister(sfp->hwmon_dev);
1340                 sfp->hwmon_dev = NULL;
1341                 kfree(sfp->hwmon_name);
1342         }
1343 }
1344
1345 static int sfp_hwmon_init(struct sfp *sfp)
1346 {
1347         INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1348
1349         return 0;
1350 }
1351
1352 static void sfp_hwmon_exit(struct sfp *sfp)
1353 {
1354         cancel_delayed_work_sync(&sfp->hwmon_probe);
1355 }
1356 #else
1357 static int sfp_hwmon_insert(struct sfp *sfp)
1358 {
1359         return 0;
1360 }
1361
1362 static void sfp_hwmon_remove(struct sfp *sfp)
1363 {
1364 }
1365
1366 static int sfp_hwmon_init(struct sfp *sfp)
1367 {
1368         return 0;
1369 }
1370
1371 static void sfp_hwmon_exit(struct sfp *sfp)
1372 {
1373 }
1374 #endif
1375
1376 /* Helpers */
1377 static void sfp_module_tx_disable(struct sfp *sfp)
1378 {
1379         dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1380                 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1381         sfp->state |= SFP_F_TX_DISABLE;
1382         sfp_set_state(sfp, sfp->state);
1383 }
1384
1385 static void sfp_module_tx_enable(struct sfp *sfp)
1386 {
1387         dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1388                 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1389         sfp->state &= ~SFP_F_TX_DISABLE;
1390         sfp_set_state(sfp, sfp->state);
1391 }
1392
1393 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1394 {
1395         unsigned int state = sfp->state;
1396
1397         if (state & SFP_F_TX_DISABLE)
1398                 return;
1399
1400         sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1401
1402         udelay(T_RESET_US);
1403
1404         sfp_set_state(sfp, state);
1405 }
1406
1407 /* SFP state machine */
1408 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1409 {
1410         if (timeout)
1411                 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1412                                  timeout);
1413         else
1414                 cancel_delayed_work(&sfp->timeout);
1415 }
1416
1417 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1418                         unsigned int timeout)
1419 {
1420         sfp->sm_state = state;
1421         sfp_sm_set_timer(sfp, timeout);
1422 }
1423
1424 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1425                             unsigned int timeout)
1426 {
1427         sfp->sm_mod_state = state;
1428         sfp_sm_set_timer(sfp, timeout);
1429 }
1430
1431 static void sfp_sm_phy_detach(struct sfp *sfp)
1432 {
1433         sfp_remove_phy(sfp->sfp_bus);
1434         phy_device_remove(sfp->mod_phy);
1435         phy_device_free(sfp->mod_phy);
1436         sfp->mod_phy = NULL;
1437 }
1438
1439 static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1440 {
1441         struct phy_device *phy;
1442         int err;
1443
1444         phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1445         if (phy == ERR_PTR(-ENODEV))
1446                 return PTR_ERR(phy);
1447         if (IS_ERR(phy)) {
1448                 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1449                 return PTR_ERR(phy);
1450         }
1451
1452         err = phy_device_register(phy);
1453         if (err) {
1454                 phy_device_free(phy);
1455                 dev_err(sfp->dev, "phy_device_register failed: %d\n", err);
1456                 return err;
1457         }
1458
1459         err = sfp_add_phy(sfp->sfp_bus, phy);
1460         if (err) {
1461                 phy_device_remove(phy);
1462                 phy_device_free(phy);
1463                 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1464                 return err;
1465         }
1466
1467         sfp->mod_phy = phy;
1468
1469         return 0;
1470 }
1471
1472 static void sfp_sm_link_up(struct sfp *sfp)
1473 {
1474         sfp_link_up(sfp->sfp_bus);
1475         sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1476 }
1477
1478 static void sfp_sm_link_down(struct sfp *sfp)
1479 {
1480         sfp_link_down(sfp->sfp_bus);
1481 }
1482
1483 static void sfp_sm_link_check_los(struct sfp *sfp)
1484 {
1485         unsigned int los = sfp->state & SFP_F_LOS;
1486
1487         /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1488          * are set, we assume that no LOS signal is available.
1489          */
1490         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED))
1491                 los ^= SFP_F_LOS;
1492         else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL)))
1493                 los = 0;
1494
1495         if (los)
1496                 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1497         else
1498                 sfp_sm_link_up(sfp);
1499 }
1500
1501 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1502 {
1503         return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1504                 event == SFP_E_LOS_LOW) ||
1505                (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1506                 event == SFP_E_LOS_HIGH);
1507 }
1508
1509 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1510 {
1511         return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1512                 event == SFP_E_LOS_HIGH) ||
1513                (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1514                 event == SFP_E_LOS_LOW);
1515 }
1516
1517 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1518 {
1519         if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1520                 dev_err(sfp->dev,
1521                         "module persistently indicates fault, disabling\n");
1522                 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1523         } else {
1524                 if (warn)
1525                         dev_err(sfp->dev, "module transmit fault indicated\n");
1526
1527                 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1528         }
1529 }
1530
1531 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1532  * normally sits at I2C bus address 0x56, and may either be a clause 22
1533  * or clause 45 PHY.
1534  *
1535  * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1536  * negotiation enabled, but some may be in 1000base-X - which is for the
1537  * PHY driver to determine.
1538  *
1539  * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1540  * mode according to the negotiated line speed.
1541  */
1542 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1543 {
1544         int err = 0;
1545
1546         switch (sfp->id.base.extended_cc) {
1547         case SFF8024_ECC_10GBASE_T_SFI:
1548         case SFF8024_ECC_10GBASE_T_SR:
1549         case SFF8024_ECC_5GBASE_T:
1550         case SFF8024_ECC_2_5GBASE_T:
1551                 err = sfp_sm_probe_phy(sfp, true);
1552                 break;
1553
1554         default:
1555                 if (sfp->id.base.e1000_base_t)
1556                         err = sfp_sm_probe_phy(sfp, false);
1557                 break;
1558         }
1559         return err;
1560 }
1561
1562 static int sfp_module_parse_power(struct sfp *sfp)
1563 {
1564         u32 power_mW = 1000;
1565
1566         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1567                 power_mW = 1500;
1568         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1569                 power_mW = 2000;
1570
1571         if (power_mW > sfp->max_power_mW) {
1572                 /* Module power specification exceeds the allowed maximum. */
1573                 if (sfp->id.ext.sff8472_compliance ==
1574                         SFP_SFF8472_COMPLIANCE_NONE &&
1575                     !(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) {
1576                         /* The module appears not to implement bus address
1577                          * 0xa2, so assume that the module powers up in the
1578                          * indicated mode.
1579                          */
1580                         dev_err(sfp->dev,
1581                                 "Host does not support %u.%uW modules\n",
1582                                 power_mW / 1000, (power_mW / 100) % 10);
1583                         return -EINVAL;
1584                 } else {
1585                         dev_warn(sfp->dev,
1586                                  "Host does not support %u.%uW modules, module left in power mode 1\n",
1587                                  power_mW / 1000, (power_mW / 100) % 10);
1588                         return 0;
1589                 }
1590         }
1591
1592         /* If the module requires a higher power mode, but also requires
1593          * an address change sequence, warn the user that the module may
1594          * not be functional.
1595          */
1596         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE && power_mW > 1000) {
1597                 dev_warn(sfp->dev,
1598                          "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1599                          power_mW / 1000, (power_mW / 100) % 10);
1600                 return 0;
1601         }
1602
1603         sfp->module_power_mW = power_mW;
1604
1605         return 0;
1606 }
1607
1608 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1609 {
1610         u8 val;
1611         int err;
1612
1613         err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1614         if (err != sizeof(val)) {
1615                 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1616                 return -EAGAIN;
1617         }
1618
1619         /* DM7052 reports as a high power module, responds to reads (with
1620          * all bytes 0xff) at 0x51 but does not accept writes.  In any case,
1621          * if the bit is already set, we're already in high power mode.
1622          */
1623         if (!!(val & BIT(0)) == enable)
1624                 return 0;
1625
1626         if (enable)
1627                 val |= BIT(0);
1628         else
1629                 val &= ~BIT(0);
1630
1631         err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1632         if (err != sizeof(val)) {
1633                 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1634                 return -EAGAIN;
1635         }
1636
1637         if (enable)
1638                 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1639                          sfp->module_power_mW / 1000,
1640                          (sfp->module_power_mW / 100) % 10);
1641
1642         return 0;
1643 }
1644
1645 /* Some modules (Nokia 3FE46541AA) lock up if byte 0x51 is read as a
1646  * single read. Switch back to reading 16 byte blocks unless we have
1647  * a CarlitoxxPro module (rebranded VSOL V2801F). Even more annoyingly,
1648  * some VSOL V2801F have the vendor name changed to OEM.
1649  */
1650 static int sfp_quirk_i2c_block_size(const struct sfp_eeprom_base *base)
1651 {
1652         if (!memcmp(base->vendor_name, "VSOL            ", 16))
1653                 return 1;
1654         if (!memcmp(base->vendor_name, "OEM             ", 16) &&
1655             !memcmp(base->vendor_pn,   "V2801F          ", 16))
1656                 return 1;
1657
1658         /* Some modules can't cope with long reads */
1659         return 16;
1660 }
1661
1662 static void sfp_quirks_base(struct sfp *sfp, const struct sfp_eeprom_base *base)
1663 {
1664         sfp->i2c_block_size = sfp_quirk_i2c_block_size(base);
1665 }
1666
1667 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1668 {
1669         u8 check;
1670         int err;
1671
1672         if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1673             id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1674             id->base.connector != SFF8024_CONNECTOR_LC) {
1675                 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1676                 id->base.phys_id = SFF8024_ID_SFF_8472;
1677                 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1678                 id->base.connector = SFF8024_CONNECTOR_LC;
1679                 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1680                 if (err != 3) {
1681                         dev_err(sfp->dev, "Failed to rewrite module EEPROM: %d\n", err);
1682                         return err;
1683                 }
1684
1685                 /* Cotsworks modules have been found to require a delay between write operations. */
1686                 mdelay(50);
1687
1688                 /* Update base structure checksum */
1689                 check = sfp_check(&id->base, sizeof(id->base) - 1);
1690                 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1691                 if (err != 1) {
1692                         dev_err(sfp->dev, "Failed to update base structure checksum in fiber module EEPROM: %d\n", err);
1693                         return err;
1694                 }
1695         }
1696         return 0;
1697 }
1698
1699 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1700 {
1701         /* SFP module inserted - read I2C data */
1702         struct sfp_eeprom_id id;
1703         bool cotsworks_sfbg;
1704         bool cotsworks;
1705         u8 check;
1706         int ret;
1707
1708         /* Some modules (CarlitoxxPro CPGOS03-0490) do not support multibyte
1709          * reads from the EEPROM, so start by reading the base identifying
1710          * information one byte at a time.
1711          */
1712         sfp->i2c_block_size = 1;
1713
1714         ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1715         if (ret < 0) {
1716                 if (report)
1717                         dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1718                 return -EAGAIN;
1719         }
1720
1721         if (ret != sizeof(id.base)) {
1722                 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1723                 return -EAGAIN;
1724         }
1725
1726         /* Cotsworks do not seem to update the checksums when they
1727          * do the final programming with the final module part number,
1728          * serial number and date code.
1729          */
1730         cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1731         cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1732
1733         /* Cotsworks SFF module EEPROM do not always have valid phys_id,
1734          * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
1735          * Cotsworks PN matches and bytes are not correct.
1736          */
1737         if (cotsworks && cotsworks_sfbg) {
1738                 ret = sfp_cotsworks_fixup_check(sfp, &id);
1739                 if (ret < 0)
1740                         return ret;
1741         }
1742
1743         /* Validate the checksum over the base structure */
1744         check = sfp_check(&id.base, sizeof(id.base) - 1);
1745         if (check != id.base.cc_base) {
1746                 if (cotsworks) {
1747                         dev_warn(sfp->dev,
1748                                  "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1749                                  check, id.base.cc_base);
1750                 } else {
1751                         dev_err(sfp->dev,
1752                                 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1753                                 check, id.base.cc_base);
1754                         print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1755                                        16, 1, &id, sizeof(id), true);
1756                         return -EINVAL;
1757                 }
1758         }
1759
1760         /* Apply any early module-specific quirks */
1761         sfp_quirks_base(sfp, &id.base);
1762
1763         ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
1764         if (ret < 0) {
1765                 if (report)
1766                         dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1767                 return -EAGAIN;
1768         }
1769
1770         if (ret != sizeof(id.ext)) {
1771                 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1772                 return -EAGAIN;
1773         }
1774
1775         check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1776         if (check != id.ext.cc_ext) {
1777                 if (cotsworks) {
1778                         dev_warn(sfp->dev,
1779                                  "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1780                                  check, id.ext.cc_ext);
1781                 } else {
1782                         dev_err(sfp->dev,
1783                                 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1784                                 check, id.ext.cc_ext);
1785                         print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1786                                        16, 1, &id, sizeof(id), true);
1787                         memset(&id.ext, 0, sizeof(id.ext));
1788                 }
1789         }
1790
1791         sfp->id = id;
1792
1793         dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1794                  (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1795                  (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1796                  (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1797                  (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1798                  (int)sizeof(id.ext.datecode), id.ext.datecode);
1799
1800         /* Check whether we support this module */
1801         if (!sfp->type->module_supported(&id)) {
1802                 dev_err(sfp->dev,
1803                         "module is not supported - phys id 0x%02x 0x%02x\n",
1804                         sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1805                 return -EINVAL;
1806         }
1807
1808         /* If the module requires address swap mode, warn about it */
1809         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1810                 dev_warn(sfp->dev,
1811                          "module address swap to access page 0xA2 is not supported.\n");
1812
1813         /* Parse the module power requirement */
1814         ret = sfp_module_parse_power(sfp);
1815         if (ret < 0)
1816                 return ret;
1817
1818         if (!memcmp(id.base.vendor_name, "ALCATELLUCENT   ", 16) &&
1819             !memcmp(id.base.vendor_pn, "3FE46541AA      ", 16))
1820                 sfp->module_t_start_up = T_START_UP_BAD_GPON;
1821         else
1822                 sfp->module_t_start_up = T_START_UP;
1823
1824         return 0;
1825 }
1826
1827 static void sfp_sm_mod_remove(struct sfp *sfp)
1828 {
1829         if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1830                 sfp_module_remove(sfp->sfp_bus);
1831
1832         sfp_hwmon_remove(sfp);
1833
1834         memset(&sfp->id, 0, sizeof(sfp->id));
1835         sfp->module_power_mW = 0;
1836
1837         dev_info(sfp->dev, "module removed\n");
1838 }
1839
1840 /* This state machine tracks the upstream's state */
1841 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1842 {
1843         switch (sfp->sm_dev_state) {
1844         default:
1845                 if (event == SFP_E_DEV_ATTACH)
1846                         sfp->sm_dev_state = SFP_DEV_DOWN;
1847                 break;
1848
1849         case SFP_DEV_DOWN:
1850                 if (event == SFP_E_DEV_DETACH)
1851                         sfp->sm_dev_state = SFP_DEV_DETACHED;
1852                 else if (event == SFP_E_DEV_UP)
1853                         sfp->sm_dev_state = SFP_DEV_UP;
1854                 break;
1855
1856         case SFP_DEV_UP:
1857                 if (event == SFP_E_DEV_DETACH)
1858                         sfp->sm_dev_state = SFP_DEV_DETACHED;
1859                 else if (event == SFP_E_DEV_DOWN)
1860                         sfp->sm_dev_state = SFP_DEV_DOWN;
1861                 break;
1862         }
1863 }
1864
1865 /* This state machine tracks the insert/remove state of the module, probes
1866  * the on-board EEPROM, and sets up the power level.
1867  */
1868 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
1869 {
1870         int err;
1871
1872         /* Handle remove event globally, it resets this state machine */
1873         if (event == SFP_E_REMOVE) {
1874                 if (sfp->sm_mod_state > SFP_MOD_PROBE)
1875                         sfp_sm_mod_remove(sfp);
1876                 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
1877                 return;
1878         }
1879
1880         /* Handle device detach globally */
1881         if (sfp->sm_dev_state < SFP_DEV_DOWN &&
1882             sfp->sm_mod_state > SFP_MOD_WAITDEV) {
1883                 if (sfp->module_power_mW > 1000 &&
1884                     sfp->sm_mod_state > SFP_MOD_HPOWER)
1885                         sfp_sm_mod_hpower(sfp, false);
1886                 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1887                 return;
1888         }
1889
1890         switch (sfp->sm_mod_state) {
1891         default:
1892                 if (event == SFP_E_INSERT) {
1893                         sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
1894                         sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
1895                         sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
1896                 }
1897                 break;
1898
1899         case SFP_MOD_PROBE:
1900                 /* Wait for T_PROBE_INIT to time out */
1901                 if (event != SFP_E_TIMEOUT)
1902                         break;
1903
1904                 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
1905                 if (err == -EAGAIN) {
1906                         if (sfp->sm_mod_tries_init &&
1907                            --sfp->sm_mod_tries_init) {
1908                                 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
1909                                 break;
1910                         } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
1911                                 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
1912                                         dev_warn(sfp->dev,
1913                                                  "please wait, module slow to respond\n");
1914                                 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
1915                                 break;
1916                         }
1917                 }
1918                 if (err < 0) {
1919                         sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1920                         break;
1921                 }
1922
1923                 err = sfp_hwmon_insert(sfp);
1924                 if (err)
1925                         dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1926
1927                 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1928                 fallthrough;
1929         case SFP_MOD_WAITDEV:
1930                 /* Ensure that the device is attached before proceeding */
1931                 if (sfp->sm_dev_state < SFP_DEV_DOWN)
1932                         break;
1933
1934                 /* Report the module insertion to the upstream device */
1935                 err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
1936                 if (err < 0) {
1937                         sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1938                         break;
1939                 }
1940
1941                 /* If this is a power level 1 module, we are done */
1942                 if (sfp->module_power_mW <= 1000)
1943                         goto insert;
1944
1945                 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
1946                 fallthrough;
1947         case SFP_MOD_HPOWER:
1948                 /* Enable high power mode */
1949                 err = sfp_sm_mod_hpower(sfp, true);
1950                 if (err < 0) {
1951                         if (err != -EAGAIN) {
1952                                 sfp_module_remove(sfp->sfp_bus);
1953                                 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1954                         } else {
1955                                 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
1956                         }
1957                         break;
1958                 }
1959
1960                 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
1961                 break;
1962
1963         case SFP_MOD_WAITPWR:
1964                 /* Wait for T_HPOWER_LEVEL to time out */
1965                 if (event != SFP_E_TIMEOUT)
1966                         break;
1967
1968         insert:
1969                 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
1970                 break;
1971
1972         case SFP_MOD_PRESENT:
1973         case SFP_MOD_ERROR:
1974                 break;
1975         }
1976 }
1977
1978 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
1979 {
1980         unsigned long timeout;
1981         int ret;
1982
1983         /* Some events are global */
1984         if (sfp->sm_state != SFP_S_DOWN &&
1985             (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1986              sfp->sm_dev_state != SFP_DEV_UP)) {
1987                 if (sfp->sm_state == SFP_S_LINK_UP &&
1988                     sfp->sm_dev_state == SFP_DEV_UP)
1989                         sfp_sm_link_down(sfp);
1990                 if (sfp->sm_state > SFP_S_INIT)
1991                         sfp_module_stop(sfp->sfp_bus);
1992                 if (sfp->mod_phy)
1993                         sfp_sm_phy_detach(sfp);
1994                 sfp_module_tx_disable(sfp);
1995                 sfp_soft_stop_poll(sfp);
1996                 sfp_sm_next(sfp, SFP_S_DOWN, 0);
1997                 return;
1998         }
1999
2000         /* The main state machine */
2001         switch (sfp->sm_state) {
2002         case SFP_S_DOWN:
2003                 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2004                     sfp->sm_dev_state != SFP_DEV_UP)
2005                         break;
2006
2007                 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2008                         sfp_soft_start_poll(sfp);
2009
2010                 sfp_module_tx_enable(sfp);
2011
2012                 /* Initialise the fault clearance retries */
2013                 sfp->sm_fault_retries = N_FAULT_INIT;
2014
2015                 /* We need to check the TX_FAULT state, which is not defined
2016                  * while TX_DISABLE is asserted. The earliest we want to do
2017                  * anything (such as probe for a PHY) is 50ms.
2018                  */
2019                 sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
2020                 break;
2021
2022         case SFP_S_WAIT:
2023                 if (event != SFP_E_TIMEOUT)
2024                         break;
2025
2026                 if (sfp->state & SFP_F_TX_FAULT) {
2027                         /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2028                          * from the TX_DISABLE deassertion for the module to
2029                          * initialise, which is indicated by TX_FAULT
2030                          * deasserting.
2031                          */
2032                         timeout = sfp->module_t_start_up;
2033                         if (timeout > T_WAIT)
2034                                 timeout -= T_WAIT;
2035                         else
2036                                 timeout = 1;
2037
2038                         sfp_sm_next(sfp, SFP_S_INIT, timeout);
2039                 } else {
2040                         /* TX_FAULT is not asserted, assume the module has
2041                          * finished initialising.
2042                          */
2043                         goto init_done;
2044                 }
2045                 break;
2046
2047         case SFP_S_INIT:
2048                 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2049                         /* TX_FAULT is still asserted after t_init or
2050                          * or t_start_up, so assume there is a fault.
2051                          */
2052                         sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2053                                      sfp->sm_fault_retries == N_FAULT_INIT);
2054                 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2055         init_done:
2056                         sfp->sm_phy_retries = R_PHY_RETRY;
2057                         goto phy_probe;
2058                 }
2059                 break;
2060
2061         case SFP_S_INIT_PHY:
2062                 if (event != SFP_E_TIMEOUT)
2063                         break;
2064         phy_probe:
2065                 /* TX_FAULT deasserted or we timed out with TX_FAULT
2066                  * clear.  Probe for the PHY and check the LOS state.
2067                  */
2068                 ret = sfp_sm_probe_for_phy(sfp);
2069                 if (ret == -ENODEV) {
2070                         if (--sfp->sm_phy_retries) {
2071                                 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2072                                 break;
2073                         } else {
2074                                 dev_info(sfp->dev, "no PHY detected\n");
2075                         }
2076                 } else if (ret) {
2077                         sfp_sm_next(sfp, SFP_S_FAIL, 0);
2078                         break;
2079                 }
2080                 if (sfp_module_start(sfp->sfp_bus)) {
2081                         sfp_sm_next(sfp, SFP_S_FAIL, 0);
2082                         break;
2083                 }
2084                 sfp_sm_link_check_los(sfp);
2085
2086                 /* Reset the fault retry count */
2087                 sfp->sm_fault_retries = N_FAULT;
2088                 break;
2089
2090         case SFP_S_INIT_TX_FAULT:
2091                 if (event == SFP_E_TIMEOUT) {
2092                         sfp_module_tx_fault_reset(sfp);
2093                         sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2094                 }
2095                 break;
2096
2097         case SFP_S_WAIT_LOS:
2098                 if (event == SFP_E_TX_FAULT)
2099                         sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2100                 else if (sfp_los_event_inactive(sfp, event))
2101                         sfp_sm_link_up(sfp);
2102                 break;
2103
2104         case SFP_S_LINK_UP:
2105                 if (event == SFP_E_TX_FAULT) {
2106                         sfp_sm_link_down(sfp);
2107                         sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2108                 } else if (sfp_los_event_active(sfp, event)) {
2109                         sfp_sm_link_down(sfp);
2110                         sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2111                 }
2112                 break;
2113
2114         case SFP_S_TX_FAULT:
2115                 if (event == SFP_E_TIMEOUT) {
2116                         sfp_module_tx_fault_reset(sfp);
2117                         sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2118                 }
2119                 break;
2120
2121         case SFP_S_REINIT:
2122                 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2123                         sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2124                 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2125                         dev_info(sfp->dev, "module transmit fault recovered\n");
2126                         sfp_sm_link_check_los(sfp);
2127                 }
2128                 break;
2129
2130         case SFP_S_TX_DISABLE:
2131                 break;
2132         }
2133 }
2134
2135 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2136 {
2137         mutex_lock(&sfp->sm_mutex);
2138
2139         dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2140                 mod_state_to_str(sfp->sm_mod_state),
2141                 dev_state_to_str(sfp->sm_dev_state),
2142                 sm_state_to_str(sfp->sm_state),
2143                 event_to_str(event));
2144
2145         sfp_sm_device(sfp, event);
2146         sfp_sm_module(sfp, event);
2147         sfp_sm_main(sfp, event);
2148
2149         dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2150                 mod_state_to_str(sfp->sm_mod_state),
2151                 dev_state_to_str(sfp->sm_dev_state),
2152                 sm_state_to_str(sfp->sm_state));
2153
2154         mutex_unlock(&sfp->sm_mutex);
2155 }
2156
2157 static void sfp_attach(struct sfp *sfp)
2158 {
2159         sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2160 }
2161
2162 static void sfp_detach(struct sfp *sfp)
2163 {
2164         sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2165 }
2166
2167 static void sfp_start(struct sfp *sfp)
2168 {
2169         sfp_sm_event(sfp, SFP_E_DEV_UP);
2170 }
2171
2172 static void sfp_stop(struct sfp *sfp)
2173 {
2174         sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2175 }
2176
2177 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2178 {
2179         /* locking... and check module is present */
2180
2181         if (sfp->id.ext.sff8472_compliance &&
2182             !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2183                 modinfo->type = ETH_MODULE_SFF_8472;
2184                 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2185         } else {
2186                 modinfo->type = ETH_MODULE_SFF_8079;
2187                 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2188         }
2189         return 0;
2190 }
2191
2192 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2193                              u8 *data)
2194 {
2195         unsigned int first, last, len;
2196         int ret;
2197
2198         if (ee->len == 0)
2199                 return -EINVAL;
2200
2201         first = ee->offset;
2202         last = ee->offset + ee->len;
2203         if (first < ETH_MODULE_SFF_8079_LEN) {
2204                 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2205                 len -= first;
2206
2207                 ret = sfp_read(sfp, false, first, data, len);
2208                 if (ret < 0)
2209                         return ret;
2210
2211                 first += len;
2212                 data += len;
2213         }
2214         if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2215                 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2216                 len -= first;
2217                 first -= ETH_MODULE_SFF_8079_LEN;
2218
2219                 ret = sfp_read(sfp, true, first, data, len);
2220                 if (ret < 0)
2221                         return ret;
2222         }
2223         return 0;
2224 }
2225
2226 static const struct sfp_socket_ops sfp_module_ops = {
2227         .attach = sfp_attach,
2228         .detach = sfp_detach,
2229         .start = sfp_start,
2230         .stop = sfp_stop,
2231         .module_info = sfp_module_info,
2232         .module_eeprom = sfp_module_eeprom,
2233 };
2234
2235 static void sfp_timeout(struct work_struct *work)
2236 {
2237         struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2238
2239         rtnl_lock();
2240         sfp_sm_event(sfp, SFP_E_TIMEOUT);
2241         rtnl_unlock();
2242 }
2243
2244 static void sfp_check_state(struct sfp *sfp)
2245 {
2246         unsigned int state, i, changed;
2247
2248         mutex_lock(&sfp->st_mutex);
2249         state = sfp_get_state(sfp);
2250         changed = state ^ sfp->state;
2251         changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2252
2253         for (i = 0; i < GPIO_MAX; i++)
2254                 if (changed & BIT(i))
2255                         dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2256                                 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2257
2258         state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2259         sfp->state = state;
2260
2261         rtnl_lock();
2262         if (changed & SFP_F_PRESENT)
2263                 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2264                                 SFP_E_INSERT : SFP_E_REMOVE);
2265
2266         if (changed & SFP_F_TX_FAULT)
2267                 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2268                                 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2269
2270         if (changed & SFP_F_LOS)
2271                 sfp_sm_event(sfp, state & SFP_F_LOS ?
2272                                 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2273         rtnl_unlock();
2274         mutex_unlock(&sfp->st_mutex);
2275 }
2276
2277 static irqreturn_t sfp_irq(int irq, void *data)
2278 {
2279         struct sfp *sfp = data;
2280
2281         sfp_check_state(sfp);
2282
2283         return IRQ_HANDLED;
2284 }
2285
2286 static void sfp_poll(struct work_struct *work)
2287 {
2288         struct sfp *sfp = container_of(work, struct sfp, poll.work);
2289
2290         sfp_check_state(sfp);
2291
2292         if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2293             sfp->need_poll)
2294                 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2295 }
2296
2297 static struct sfp *sfp_alloc(struct device *dev)
2298 {
2299         struct sfp *sfp;
2300
2301         sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2302         if (!sfp)
2303                 return ERR_PTR(-ENOMEM);
2304
2305         sfp->dev = dev;
2306
2307         mutex_init(&sfp->sm_mutex);
2308         mutex_init(&sfp->st_mutex);
2309         INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2310         INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2311
2312         sfp_hwmon_init(sfp);
2313
2314         return sfp;
2315 }
2316
2317 static void sfp_cleanup(void *data)
2318 {
2319         struct sfp *sfp = data;
2320
2321         sfp_hwmon_exit(sfp);
2322
2323         cancel_delayed_work_sync(&sfp->poll);
2324         cancel_delayed_work_sync(&sfp->timeout);
2325         if (sfp->i2c_mii) {
2326                 mdiobus_unregister(sfp->i2c_mii);
2327                 mdiobus_free(sfp->i2c_mii);
2328         }
2329         if (sfp->i2c)
2330                 i2c_put_adapter(sfp->i2c);
2331         kfree(sfp);
2332 }
2333
2334 static int sfp_probe(struct platform_device *pdev)
2335 {
2336         const struct sff_data *sff;
2337         struct i2c_adapter *i2c;
2338         char *sfp_irq_name;
2339         struct sfp *sfp;
2340         int err, i;
2341
2342         sfp = sfp_alloc(&pdev->dev);
2343         if (IS_ERR(sfp))
2344                 return PTR_ERR(sfp);
2345
2346         platform_set_drvdata(pdev, sfp);
2347
2348         err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
2349         if (err < 0)
2350                 return err;
2351
2352         sff = sfp->type = &sfp_data;
2353
2354         if (pdev->dev.of_node) {
2355                 struct device_node *node = pdev->dev.of_node;
2356                 const struct of_device_id *id;
2357                 struct device_node *np;
2358
2359                 id = of_match_node(sfp_of_match, node);
2360                 if (WARN_ON(!id))
2361                         return -EINVAL;
2362
2363                 sff = sfp->type = id->data;
2364
2365                 np = of_parse_phandle(node, "i2c-bus", 0);
2366                 if (!np) {
2367                         dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2368                         return -ENODEV;
2369                 }
2370
2371                 i2c = of_find_i2c_adapter_by_node(np);
2372                 of_node_put(np);
2373         } else if (has_acpi_companion(&pdev->dev)) {
2374                 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2375                 struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2376                 struct fwnode_reference_args args;
2377                 struct acpi_handle *acpi_handle;
2378                 int ret;
2379
2380                 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2381                 if (ret || !is_acpi_device_node(args.fwnode)) {
2382                         dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2383                         return -ENODEV;
2384                 }
2385
2386                 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2387                 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2388         } else {
2389                 return -EINVAL;
2390         }
2391
2392         if (!i2c)
2393                 return -EPROBE_DEFER;
2394
2395         err = sfp_i2c_configure(sfp, i2c);
2396         if (err < 0) {
2397                 i2c_put_adapter(i2c);
2398                 return err;
2399         }
2400
2401         for (i = 0; i < GPIO_MAX; i++)
2402                 if (sff->gpios & BIT(i)) {
2403                         sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2404                                            gpio_of_names[i], gpio_flags[i]);
2405                         if (IS_ERR(sfp->gpio[i]))
2406                                 return PTR_ERR(sfp->gpio[i]);
2407                 }
2408
2409         sfp->get_state = sfp_gpio_get_state;
2410         sfp->set_state = sfp_gpio_set_state;
2411
2412         /* Modules that have no detect signal are always present */
2413         if (!(sfp->gpio[GPIO_MODDEF0]))
2414                 sfp->get_state = sff_gpio_get_state;
2415
2416         device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2417                                  &sfp->max_power_mW);
2418         if (!sfp->max_power_mW)
2419                 sfp->max_power_mW = 1000;
2420
2421         dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2422                  sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2423
2424         /* Get the initial state, and always signal TX disable,
2425          * since the network interface will not be up.
2426          */
2427         sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2428
2429         if (sfp->gpio[GPIO_RATE_SELECT] &&
2430             gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2431                 sfp->state |= SFP_F_RATE_SELECT;
2432         sfp_set_state(sfp, sfp->state);
2433         sfp_module_tx_disable(sfp);
2434         if (sfp->state & SFP_F_PRESENT) {
2435                 rtnl_lock();
2436                 sfp_sm_event(sfp, SFP_E_INSERT);
2437                 rtnl_unlock();
2438         }
2439
2440         for (i = 0; i < GPIO_MAX; i++) {
2441                 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2442                         continue;
2443
2444                 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2445                 if (sfp->gpio_irq[i] < 0) {
2446                         sfp->gpio_irq[i] = 0;
2447                         sfp->need_poll = true;
2448                         continue;
2449                 }
2450
2451                 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2452                                               "%s-%s", dev_name(sfp->dev),
2453                                               gpio_of_names[i]);
2454
2455                 if (!sfp_irq_name)
2456                         return -ENOMEM;
2457
2458                 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2459                                                 NULL, sfp_irq,
2460                                                 IRQF_ONESHOT |
2461                                                 IRQF_TRIGGER_RISING |
2462                                                 IRQF_TRIGGER_FALLING,
2463                                                 sfp_irq_name, sfp);
2464                 if (err) {
2465                         sfp->gpio_irq[i] = 0;
2466                         sfp->need_poll = true;
2467                 }
2468         }
2469
2470         if (sfp->need_poll)
2471                 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2472
2473         /* We could have an issue in cases no Tx disable pin is available or
2474          * wired as modules using a laser as their light source will continue to
2475          * be active when the fiber is removed. This could be a safety issue and
2476          * we should at least warn the user about that.
2477          */
2478         if (!sfp->gpio[GPIO_TX_DISABLE])
2479                 dev_warn(sfp->dev,
2480                          "No tx_disable pin: SFP modules will always be emitting.\n");
2481
2482         sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2483         if (!sfp->sfp_bus)
2484                 return -ENOMEM;
2485
2486         return 0;
2487 }
2488
2489 static int sfp_remove(struct platform_device *pdev)
2490 {
2491         struct sfp *sfp = platform_get_drvdata(pdev);
2492
2493         sfp_unregister_socket(sfp->sfp_bus);
2494
2495         rtnl_lock();
2496         sfp_sm_event(sfp, SFP_E_REMOVE);
2497         rtnl_unlock();
2498
2499         return 0;
2500 }
2501
2502 static void sfp_shutdown(struct platform_device *pdev)
2503 {
2504         struct sfp *sfp = platform_get_drvdata(pdev);
2505         int i;
2506
2507         for (i = 0; i < GPIO_MAX; i++) {
2508                 if (!sfp->gpio_irq[i])
2509                         continue;
2510
2511                 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2512         }
2513
2514         cancel_delayed_work_sync(&sfp->poll);
2515         cancel_delayed_work_sync(&sfp->timeout);
2516 }
2517
2518 static struct platform_driver sfp_driver = {
2519         .probe = sfp_probe,
2520         .remove = sfp_remove,
2521         .shutdown = sfp_shutdown,
2522         .driver = {
2523                 .name = "sfp",
2524                 .of_match_table = sfp_of_match,
2525         },
2526 };
2527
2528 static int sfp_init(void)
2529 {
2530         poll_jiffies = msecs_to_jiffies(100);
2531
2532         return platform_driver_register(&sfp_driver);
2533 }
2534 module_init(sfp_init);
2535
2536 static void sfp_exit(void)
2537 {
2538         platform_driver_unregister(&sfp_driver);
2539 }
2540 module_exit(sfp_exit);
2541
2542 MODULE_ALIAS("platform:sfp");
2543 MODULE_AUTHOR("Russell King");
2544 MODULE_LICENSE("GPL v2");