scsi: core: Avoid that system resume triggers a kernel warning
[linux-2.6-microblaze.git] / drivers / net / phy / sfp.c
1 #include <linux/ctype.h>
2 #include <linux/delay.h>
3 #include <linux/gpio/consumer.h>
4 #include <linux/hwmon.h>
5 #include <linux/i2c.h>
6 #include <linux/interrupt.h>
7 #include <linux/jiffies.h>
8 #include <linux/module.h>
9 #include <linux/mutex.h>
10 #include <linux/of.h>
11 #include <linux/phy.h>
12 #include <linux/platform_device.h>
13 #include <linux/rtnetlink.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16
17 #include "mdio-i2c.h"
18 #include "sfp.h"
19 #include "swphy.h"
20
21 enum {
22         GPIO_MODDEF0,
23         GPIO_LOS,
24         GPIO_TX_FAULT,
25         GPIO_TX_DISABLE,
26         GPIO_RATE_SELECT,
27         GPIO_MAX,
28
29         SFP_F_PRESENT = BIT(GPIO_MODDEF0),
30         SFP_F_LOS = BIT(GPIO_LOS),
31         SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
32         SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
33         SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
34
35         SFP_E_INSERT = 0,
36         SFP_E_REMOVE,
37         SFP_E_DEV_DOWN,
38         SFP_E_DEV_UP,
39         SFP_E_TX_FAULT,
40         SFP_E_TX_CLEAR,
41         SFP_E_LOS_HIGH,
42         SFP_E_LOS_LOW,
43         SFP_E_TIMEOUT,
44
45         SFP_MOD_EMPTY = 0,
46         SFP_MOD_PROBE,
47         SFP_MOD_HPOWER,
48         SFP_MOD_PRESENT,
49         SFP_MOD_ERROR,
50
51         SFP_DEV_DOWN = 0,
52         SFP_DEV_UP,
53
54         SFP_S_DOWN = 0,
55         SFP_S_INIT,
56         SFP_S_WAIT_LOS,
57         SFP_S_LINK_UP,
58         SFP_S_TX_FAULT,
59         SFP_S_REINIT,
60         SFP_S_TX_DISABLE,
61 };
62
63 static const char  * const mod_state_strings[] = {
64         [SFP_MOD_EMPTY] = "empty",
65         [SFP_MOD_PROBE] = "probe",
66         [SFP_MOD_HPOWER] = "hpower",
67         [SFP_MOD_PRESENT] = "present",
68         [SFP_MOD_ERROR] = "error",
69 };
70
71 static const char *mod_state_to_str(unsigned short mod_state)
72 {
73         if (mod_state >= ARRAY_SIZE(mod_state_strings))
74                 return "Unknown module state";
75         return mod_state_strings[mod_state];
76 }
77
78 static const char * const dev_state_strings[] = {
79         [SFP_DEV_DOWN] = "down",
80         [SFP_DEV_UP] = "up",
81 };
82
83 static const char *dev_state_to_str(unsigned short dev_state)
84 {
85         if (dev_state >= ARRAY_SIZE(dev_state_strings))
86                 return "Unknown device state";
87         return dev_state_strings[dev_state];
88 }
89
90 static const char * const event_strings[] = {
91         [SFP_E_INSERT] = "insert",
92         [SFP_E_REMOVE] = "remove",
93         [SFP_E_DEV_DOWN] = "dev_down",
94         [SFP_E_DEV_UP] = "dev_up",
95         [SFP_E_TX_FAULT] = "tx_fault",
96         [SFP_E_TX_CLEAR] = "tx_clear",
97         [SFP_E_LOS_HIGH] = "los_high",
98         [SFP_E_LOS_LOW] = "los_low",
99         [SFP_E_TIMEOUT] = "timeout",
100 };
101
102 static const char *event_to_str(unsigned short event)
103 {
104         if (event >= ARRAY_SIZE(event_strings))
105                 return "Unknown event";
106         return event_strings[event];
107 }
108
109 static const char * const sm_state_strings[] = {
110         [SFP_S_DOWN] = "down",
111         [SFP_S_INIT] = "init",
112         [SFP_S_WAIT_LOS] = "wait_los",
113         [SFP_S_LINK_UP] = "link_up",
114         [SFP_S_TX_FAULT] = "tx_fault",
115         [SFP_S_REINIT] = "reinit",
116         [SFP_S_TX_DISABLE] = "rx_disable",
117 };
118
119 static const char *sm_state_to_str(unsigned short sm_state)
120 {
121         if (sm_state >= ARRAY_SIZE(sm_state_strings))
122                 return "Unknown state";
123         return sm_state_strings[sm_state];
124 }
125
126 static const char *gpio_of_names[] = {
127         "mod-def0",
128         "los",
129         "tx-fault",
130         "tx-disable",
131         "rate-select0",
132 };
133
134 static const enum gpiod_flags gpio_flags[] = {
135         GPIOD_IN,
136         GPIOD_IN,
137         GPIOD_IN,
138         GPIOD_ASIS,
139         GPIOD_ASIS,
140 };
141
142 #define T_INIT_JIFFIES  msecs_to_jiffies(300)
143 #define T_RESET_US      10
144 #define T_FAULT_RECOVER msecs_to_jiffies(1000)
145
146 /* SFP module presence detection is poor: the three MOD DEF signals are
147  * the same length on the PCB, which means it's possible for MOD DEF 0 to
148  * connect before the I2C bus on MOD DEF 1/2.
149  *
150  * The SFP MSA specifies 300ms as t_init (the time taken for TX_FAULT to
151  * be deasserted) but makes no mention of the earliest time before we can
152  * access the I2C EEPROM.  However, Avago modules require 300ms.
153  */
154 #define T_PROBE_INIT    msecs_to_jiffies(300)
155 #define T_HPOWER_LEVEL  msecs_to_jiffies(300)
156 #define T_PROBE_RETRY   msecs_to_jiffies(100)
157
158 /* SFP modules appear to always have their PHY configured for bus address
159  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
160  */
161 #define SFP_PHY_ADDR    22
162
163 /* Give this long for the PHY to reset. */
164 #define T_PHY_RESET_MS  50
165
166 struct sff_data {
167         unsigned int gpios;
168         bool (*module_supported)(const struct sfp_eeprom_id *id);
169 };
170
171 struct sfp {
172         struct device *dev;
173         struct i2c_adapter *i2c;
174         struct mii_bus *i2c_mii;
175         struct sfp_bus *sfp_bus;
176         struct phy_device *mod_phy;
177         const struct sff_data *type;
178         u32 max_power_mW;
179
180         unsigned int (*get_state)(struct sfp *);
181         void (*set_state)(struct sfp *, unsigned int);
182         int (*read)(struct sfp *, bool, u8, void *, size_t);
183         int (*write)(struct sfp *, bool, u8, void *, size_t);
184
185         struct gpio_desc *gpio[GPIO_MAX];
186
187         unsigned int state;
188         struct delayed_work poll;
189         struct delayed_work timeout;
190         struct mutex sm_mutex;
191         unsigned char sm_mod_state;
192         unsigned char sm_dev_state;
193         unsigned short sm_state;
194         unsigned int sm_retries;
195
196         struct sfp_eeprom_id id;
197 #if IS_ENABLED(CONFIG_HWMON)
198         struct sfp_diag diag;
199         struct device *hwmon_dev;
200         char *hwmon_name;
201 #endif
202
203 };
204
205 static bool sff_module_supported(const struct sfp_eeprom_id *id)
206 {
207         return id->base.phys_id == SFP_PHYS_ID_SFF &&
208                id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
209 }
210
211 static const struct sff_data sff_data = {
212         .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
213         .module_supported = sff_module_supported,
214 };
215
216 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
217 {
218         return id->base.phys_id == SFP_PHYS_ID_SFP &&
219                id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
220 }
221
222 static const struct sff_data sfp_data = {
223         .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
224                  SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
225         .module_supported = sfp_module_supported,
226 };
227
228 static const struct of_device_id sfp_of_match[] = {
229         { .compatible = "sff,sff", .data = &sff_data, },
230         { .compatible = "sff,sfp", .data = &sfp_data, },
231         { },
232 };
233 MODULE_DEVICE_TABLE(of, sfp_of_match);
234
235 static unsigned long poll_jiffies;
236
237 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
238 {
239         unsigned int i, state, v;
240
241         for (i = state = 0; i < GPIO_MAX; i++) {
242                 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
243                         continue;
244
245                 v = gpiod_get_value_cansleep(sfp->gpio[i]);
246                 if (v)
247                         state |= BIT(i);
248         }
249
250         return state;
251 }
252
253 static unsigned int sff_gpio_get_state(struct sfp *sfp)
254 {
255         return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
256 }
257
258 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
259 {
260         if (state & SFP_F_PRESENT) {
261                 /* If the module is present, drive the signals */
262                 if (sfp->gpio[GPIO_TX_DISABLE])
263                         gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
264                                                state & SFP_F_TX_DISABLE);
265                 if (state & SFP_F_RATE_SELECT)
266                         gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
267                                                state & SFP_F_RATE_SELECT);
268         } else {
269                 /* Otherwise, let them float to the pull-ups */
270                 if (sfp->gpio[GPIO_TX_DISABLE])
271                         gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
272                 if (state & SFP_F_RATE_SELECT)
273                         gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
274         }
275 }
276
277 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
278                         size_t len)
279 {
280         struct i2c_msg msgs[2];
281         u8 bus_addr = a2 ? 0x51 : 0x50;
282         int ret;
283
284         msgs[0].addr = bus_addr;
285         msgs[0].flags = 0;
286         msgs[0].len = 1;
287         msgs[0].buf = &dev_addr;
288         msgs[1].addr = bus_addr;
289         msgs[1].flags = I2C_M_RD;
290         msgs[1].len = len;
291         msgs[1].buf = buf;
292
293         ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
294         if (ret < 0)
295                 return ret;
296
297         return ret == ARRAY_SIZE(msgs) ? len : 0;
298 }
299
300 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
301         size_t len)
302 {
303         struct i2c_msg msgs[1];
304         u8 bus_addr = a2 ? 0x51 : 0x50;
305         int ret;
306
307         msgs[0].addr = bus_addr;
308         msgs[0].flags = 0;
309         msgs[0].len = 1 + len;
310         msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
311         if (!msgs[0].buf)
312                 return -ENOMEM;
313
314         msgs[0].buf[0] = dev_addr;
315         memcpy(&msgs[0].buf[1], buf, len);
316
317         ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
318
319         kfree(msgs[0].buf);
320
321         if (ret < 0)
322                 return ret;
323
324         return ret == ARRAY_SIZE(msgs) ? len : 0;
325 }
326
327 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
328 {
329         struct mii_bus *i2c_mii;
330         int ret;
331
332         if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
333                 return -EINVAL;
334
335         sfp->i2c = i2c;
336         sfp->read = sfp_i2c_read;
337         sfp->write = sfp_i2c_write;
338
339         i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
340         if (IS_ERR(i2c_mii))
341                 return PTR_ERR(i2c_mii);
342
343         i2c_mii->name = "SFP I2C Bus";
344         i2c_mii->phy_mask = ~0;
345
346         ret = mdiobus_register(i2c_mii);
347         if (ret < 0) {
348                 mdiobus_free(i2c_mii);
349                 return ret;
350         }
351
352         sfp->i2c_mii = i2c_mii;
353
354         return 0;
355 }
356
357 /* Interface */
358 static unsigned int sfp_get_state(struct sfp *sfp)
359 {
360         return sfp->get_state(sfp);
361 }
362
363 static void sfp_set_state(struct sfp *sfp, unsigned int state)
364 {
365         sfp->set_state(sfp, state);
366 }
367
368 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
369 {
370         return sfp->read(sfp, a2, addr, buf, len);
371 }
372
373 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
374 {
375         return sfp->write(sfp, a2, addr, buf, len);
376 }
377
378 static unsigned int sfp_check(void *buf, size_t len)
379 {
380         u8 *p, check;
381
382         for (p = buf, check = 0; len; p++, len--)
383                 check += *p;
384
385         return check;
386 }
387
388 /* hwmon */
389 #if IS_ENABLED(CONFIG_HWMON)
390 static umode_t sfp_hwmon_is_visible(const void *data,
391                                     enum hwmon_sensor_types type,
392                                     u32 attr, int channel)
393 {
394         const struct sfp *sfp = data;
395
396         switch (type) {
397         case hwmon_temp:
398                 switch (attr) {
399                 case hwmon_temp_min_alarm:
400                 case hwmon_temp_max_alarm:
401                 case hwmon_temp_lcrit_alarm:
402                 case hwmon_temp_crit_alarm:
403                 case hwmon_temp_min:
404                 case hwmon_temp_max:
405                 case hwmon_temp_lcrit:
406                 case hwmon_temp_crit:
407                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
408                                 return 0;
409                         /* fall through */
410                 case hwmon_temp_input:
411                         return 0444;
412                 default:
413                         return 0;
414                 }
415         case hwmon_in:
416                 switch (attr) {
417                 case hwmon_in_min_alarm:
418                 case hwmon_in_max_alarm:
419                 case hwmon_in_lcrit_alarm:
420                 case hwmon_in_crit_alarm:
421                 case hwmon_in_min:
422                 case hwmon_in_max:
423                 case hwmon_in_lcrit:
424                 case hwmon_in_crit:
425                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
426                                 return 0;
427                         /* fall through */
428                 case hwmon_in_input:
429                         return 0444;
430                 default:
431                         return 0;
432                 }
433         case hwmon_curr:
434                 switch (attr) {
435                 case hwmon_curr_min_alarm:
436                 case hwmon_curr_max_alarm:
437                 case hwmon_curr_lcrit_alarm:
438                 case hwmon_curr_crit_alarm:
439                 case hwmon_curr_min:
440                 case hwmon_curr_max:
441                 case hwmon_curr_lcrit:
442                 case hwmon_curr_crit:
443                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
444                                 return 0;
445                         /* fall through */
446                 case hwmon_curr_input:
447                         return 0444;
448                 default:
449                         return 0;
450                 }
451         case hwmon_power:
452                 /* External calibration of receive power requires
453                  * floating point arithmetic. Doing that in the kernel
454                  * is not easy, so just skip it. If the module does
455                  * not require external calibration, we can however
456                  * show receiver power, since FP is then not needed.
457                  */
458                 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
459                     channel == 1)
460                         return 0;
461                 switch (attr) {
462                 case hwmon_power_min_alarm:
463                 case hwmon_power_max_alarm:
464                 case hwmon_power_lcrit_alarm:
465                 case hwmon_power_crit_alarm:
466                 case hwmon_power_min:
467                 case hwmon_power_max:
468                 case hwmon_power_lcrit:
469                 case hwmon_power_crit:
470                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
471                                 return 0;
472                         /* fall through */
473                 case hwmon_power_input:
474                         return 0444;
475                 default:
476                         return 0;
477                 }
478         default:
479                 return 0;
480         }
481 }
482
483 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
484 {
485         __be16 val;
486         int err;
487
488         err = sfp_read(sfp, true, reg, &val, sizeof(val));
489         if (err < 0)
490                 return err;
491
492         *value = be16_to_cpu(val);
493
494         return 0;
495 }
496
497 static void sfp_hwmon_to_rx_power(long *value)
498 {
499         *value = DIV_ROUND_CLOSEST(*value, 100);
500 }
501
502 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
503                                 long *value)
504 {
505         if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
506                 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
507 }
508
509 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
510 {
511         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
512                             be16_to_cpu(sfp->diag.cal_t_offset), value);
513
514         if (*value >= 0x8000)
515                 *value -= 0x10000;
516
517         *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
518 }
519
520 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
521 {
522         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
523                             be16_to_cpu(sfp->diag.cal_v_offset), value);
524
525         *value = DIV_ROUND_CLOSEST(*value, 10);
526 }
527
528 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
529 {
530         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
531                             be16_to_cpu(sfp->diag.cal_txi_offset), value);
532
533         *value = DIV_ROUND_CLOSEST(*value, 500);
534 }
535
536 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
537 {
538         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
539                             be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
540
541         *value = DIV_ROUND_CLOSEST(*value, 10);
542 }
543
544 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
545 {
546         int err;
547
548         err = sfp_hwmon_read_sensor(sfp, reg, value);
549         if (err < 0)
550                 return err;
551
552         sfp_hwmon_calibrate_temp(sfp, value);
553
554         return 0;
555 }
556
557 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
558 {
559         int err;
560
561         err = sfp_hwmon_read_sensor(sfp, reg, value);
562         if (err < 0)
563                 return err;
564
565         sfp_hwmon_calibrate_vcc(sfp, value);
566
567         return 0;
568 }
569
570 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
571 {
572         int err;
573
574         err = sfp_hwmon_read_sensor(sfp, reg, value);
575         if (err < 0)
576                 return err;
577
578         sfp_hwmon_calibrate_bias(sfp, value);
579
580         return 0;
581 }
582
583 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
584 {
585         int err;
586
587         err = sfp_hwmon_read_sensor(sfp, reg, value);
588         if (err < 0)
589                 return err;
590
591         sfp_hwmon_calibrate_tx_power(sfp, value);
592
593         return 0;
594 }
595
596 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
597 {
598         int err;
599
600         err = sfp_hwmon_read_sensor(sfp, reg, value);
601         if (err < 0)
602                 return err;
603
604         sfp_hwmon_to_rx_power(value);
605
606         return 0;
607 }
608
609 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
610 {
611         u8 status;
612         int err;
613
614         switch (attr) {
615         case hwmon_temp_input:
616                 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
617
618         case hwmon_temp_lcrit:
619                 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
620                 sfp_hwmon_calibrate_temp(sfp, value);
621                 return 0;
622
623         case hwmon_temp_min:
624                 *value = be16_to_cpu(sfp->diag.temp_low_warn);
625                 sfp_hwmon_calibrate_temp(sfp, value);
626                 return 0;
627         case hwmon_temp_max:
628                 *value = be16_to_cpu(sfp->diag.temp_high_warn);
629                 sfp_hwmon_calibrate_temp(sfp, value);
630                 return 0;
631
632         case hwmon_temp_crit:
633                 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
634                 sfp_hwmon_calibrate_temp(sfp, value);
635                 return 0;
636
637         case hwmon_temp_lcrit_alarm:
638                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
639                 if (err < 0)
640                         return err;
641
642                 *value = !!(status & SFP_ALARM0_TEMP_LOW);
643                 return 0;
644
645         case hwmon_temp_min_alarm:
646                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
647                 if (err < 0)
648                         return err;
649
650                 *value = !!(status & SFP_WARN0_TEMP_LOW);
651                 return 0;
652
653         case hwmon_temp_max_alarm:
654                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
655                 if (err < 0)
656                         return err;
657
658                 *value = !!(status & SFP_WARN0_TEMP_HIGH);
659                 return 0;
660
661         case hwmon_temp_crit_alarm:
662                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
663                 if (err < 0)
664                         return err;
665
666                 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
667                 return 0;
668         default:
669                 return -EOPNOTSUPP;
670         }
671
672         return -EOPNOTSUPP;
673 }
674
675 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
676 {
677         u8 status;
678         int err;
679
680         switch (attr) {
681         case hwmon_in_input:
682                 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
683
684         case hwmon_in_lcrit:
685                 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
686                 sfp_hwmon_calibrate_vcc(sfp, value);
687                 return 0;
688
689         case hwmon_in_min:
690                 *value = be16_to_cpu(sfp->diag.volt_low_warn);
691                 sfp_hwmon_calibrate_vcc(sfp, value);
692                 return 0;
693
694         case hwmon_in_max:
695                 *value = be16_to_cpu(sfp->diag.volt_high_warn);
696                 sfp_hwmon_calibrate_vcc(sfp, value);
697                 return 0;
698
699         case hwmon_in_crit:
700                 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
701                 sfp_hwmon_calibrate_vcc(sfp, value);
702                 return 0;
703
704         case hwmon_in_lcrit_alarm:
705                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
706                 if (err < 0)
707                         return err;
708
709                 *value = !!(status & SFP_ALARM0_VCC_LOW);
710                 return 0;
711
712         case hwmon_in_min_alarm:
713                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
714                 if (err < 0)
715                         return err;
716
717                 *value = !!(status & SFP_WARN0_VCC_LOW);
718                 return 0;
719
720         case hwmon_in_max_alarm:
721                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
722                 if (err < 0)
723                         return err;
724
725                 *value = !!(status & SFP_WARN0_VCC_HIGH);
726                 return 0;
727
728         case hwmon_in_crit_alarm:
729                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
730                 if (err < 0)
731                         return err;
732
733                 *value = !!(status & SFP_ALARM0_VCC_HIGH);
734                 return 0;
735         default:
736                 return -EOPNOTSUPP;
737         }
738
739         return -EOPNOTSUPP;
740 }
741
742 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
743 {
744         u8 status;
745         int err;
746
747         switch (attr) {
748         case hwmon_curr_input:
749                 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
750
751         case hwmon_curr_lcrit:
752                 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
753                 sfp_hwmon_calibrate_bias(sfp, value);
754                 return 0;
755
756         case hwmon_curr_min:
757                 *value = be16_to_cpu(sfp->diag.bias_low_warn);
758                 sfp_hwmon_calibrate_bias(sfp, value);
759                 return 0;
760
761         case hwmon_curr_max:
762                 *value = be16_to_cpu(sfp->diag.bias_high_warn);
763                 sfp_hwmon_calibrate_bias(sfp, value);
764                 return 0;
765
766         case hwmon_curr_crit:
767                 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
768                 sfp_hwmon_calibrate_bias(sfp, value);
769                 return 0;
770
771         case hwmon_curr_lcrit_alarm:
772                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
773                 if (err < 0)
774                         return err;
775
776                 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
777                 return 0;
778
779         case hwmon_curr_min_alarm:
780                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
781                 if (err < 0)
782                         return err;
783
784                 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
785                 return 0;
786
787         case hwmon_curr_max_alarm:
788                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
789                 if (err < 0)
790                         return err;
791
792                 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
793                 return 0;
794
795         case hwmon_curr_crit_alarm:
796                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
797                 if (err < 0)
798                         return err;
799
800                 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
801                 return 0;
802         default:
803                 return -EOPNOTSUPP;
804         }
805
806         return -EOPNOTSUPP;
807 }
808
809 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
810 {
811         u8 status;
812         int err;
813
814         switch (attr) {
815         case hwmon_power_input:
816                 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
817
818         case hwmon_power_lcrit:
819                 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
820                 sfp_hwmon_calibrate_tx_power(sfp, value);
821                 return 0;
822
823         case hwmon_power_min:
824                 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
825                 sfp_hwmon_calibrate_tx_power(sfp, value);
826                 return 0;
827
828         case hwmon_power_max:
829                 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
830                 sfp_hwmon_calibrate_tx_power(sfp, value);
831                 return 0;
832
833         case hwmon_power_crit:
834                 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
835                 sfp_hwmon_calibrate_tx_power(sfp, value);
836                 return 0;
837
838         case hwmon_power_lcrit_alarm:
839                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
840                 if (err < 0)
841                         return err;
842
843                 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
844                 return 0;
845
846         case hwmon_power_min_alarm:
847                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
848                 if (err < 0)
849                         return err;
850
851                 *value = !!(status & SFP_WARN0_TXPWR_LOW);
852                 return 0;
853
854         case hwmon_power_max_alarm:
855                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
856                 if (err < 0)
857                         return err;
858
859                 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
860                 return 0;
861
862         case hwmon_power_crit_alarm:
863                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
864                 if (err < 0)
865                         return err;
866
867                 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
868                 return 0;
869         default:
870                 return -EOPNOTSUPP;
871         }
872
873         return -EOPNOTSUPP;
874 }
875
876 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
877 {
878         u8 status;
879         int err;
880
881         switch (attr) {
882         case hwmon_power_input:
883                 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
884
885         case hwmon_power_lcrit:
886                 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
887                 sfp_hwmon_to_rx_power(value);
888                 return 0;
889
890         case hwmon_power_min:
891                 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
892                 sfp_hwmon_to_rx_power(value);
893                 return 0;
894
895         case hwmon_power_max:
896                 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
897                 sfp_hwmon_to_rx_power(value);
898                 return 0;
899
900         case hwmon_power_crit:
901                 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
902                 sfp_hwmon_to_rx_power(value);
903                 return 0;
904
905         case hwmon_power_lcrit_alarm:
906                 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
907                 if (err < 0)
908                         return err;
909
910                 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
911                 return 0;
912
913         case hwmon_power_min_alarm:
914                 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
915                 if (err < 0)
916                         return err;
917
918                 *value = !!(status & SFP_WARN1_RXPWR_LOW);
919                 return 0;
920
921         case hwmon_power_max_alarm:
922                 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
923                 if (err < 0)
924                         return err;
925
926                 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
927                 return 0;
928
929         case hwmon_power_crit_alarm:
930                 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
931                 if (err < 0)
932                         return err;
933
934                 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
935                 return 0;
936         default:
937                 return -EOPNOTSUPP;
938         }
939
940         return -EOPNOTSUPP;
941 }
942
943 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
944                           u32 attr, int channel, long *value)
945 {
946         struct sfp *sfp = dev_get_drvdata(dev);
947
948         switch (type) {
949         case hwmon_temp:
950                 return sfp_hwmon_temp(sfp, attr, value);
951         case hwmon_in:
952                 return sfp_hwmon_vcc(sfp, attr, value);
953         case hwmon_curr:
954                 return sfp_hwmon_bias(sfp, attr, value);
955         case hwmon_power:
956                 switch (channel) {
957                 case 0:
958                         return sfp_hwmon_tx_power(sfp, attr, value);
959                 case 1:
960                         return sfp_hwmon_rx_power(sfp, attr, value);
961                 default:
962                         return -EOPNOTSUPP;
963                 }
964         default:
965                 return -EOPNOTSUPP;
966         }
967 }
968
969 static const struct hwmon_ops sfp_hwmon_ops = {
970         .is_visible = sfp_hwmon_is_visible,
971         .read = sfp_hwmon_read,
972 };
973
974 static u32 sfp_hwmon_chip_config[] = {
975         HWMON_C_REGISTER_TZ,
976         0,
977 };
978
979 static const struct hwmon_channel_info sfp_hwmon_chip = {
980         .type = hwmon_chip,
981         .config = sfp_hwmon_chip_config,
982 };
983
984 static u32 sfp_hwmon_temp_config[] = {
985         HWMON_T_INPUT |
986         HWMON_T_MAX | HWMON_T_MIN |
987         HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
988         HWMON_T_CRIT | HWMON_T_LCRIT |
989         HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM,
990         0,
991 };
992
993 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
994         .type = hwmon_temp,
995         .config = sfp_hwmon_temp_config,
996 };
997
998 static u32 sfp_hwmon_vcc_config[] = {
999         HWMON_I_INPUT |
1000         HWMON_I_MAX | HWMON_I_MIN |
1001         HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1002         HWMON_I_CRIT | HWMON_I_LCRIT |
1003         HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM,
1004         0,
1005 };
1006
1007 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1008         .type = hwmon_in,
1009         .config = sfp_hwmon_vcc_config,
1010 };
1011
1012 static u32 sfp_hwmon_bias_config[] = {
1013         HWMON_C_INPUT |
1014         HWMON_C_MAX | HWMON_C_MIN |
1015         HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1016         HWMON_C_CRIT | HWMON_C_LCRIT |
1017         HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM,
1018         0,
1019 };
1020
1021 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1022         .type = hwmon_curr,
1023         .config = sfp_hwmon_bias_config,
1024 };
1025
1026 static u32 sfp_hwmon_power_config[] = {
1027         /* Transmit power */
1028         HWMON_P_INPUT |
1029         HWMON_P_MAX | HWMON_P_MIN |
1030         HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1031         HWMON_P_CRIT | HWMON_P_LCRIT |
1032         HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM,
1033         /* Receive power */
1034         HWMON_P_INPUT |
1035         HWMON_P_MAX | HWMON_P_MIN |
1036         HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1037         HWMON_P_CRIT | HWMON_P_LCRIT |
1038         HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM,
1039         0,
1040 };
1041
1042 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1043         .type = hwmon_power,
1044         .config = sfp_hwmon_power_config,
1045 };
1046
1047 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1048         &sfp_hwmon_chip,
1049         &sfp_hwmon_vcc_channel_info,
1050         &sfp_hwmon_temp_channel_info,
1051         &sfp_hwmon_bias_channel_info,
1052         &sfp_hwmon_power_channel_info,
1053         NULL,
1054 };
1055
1056 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1057         .ops = &sfp_hwmon_ops,
1058         .info = sfp_hwmon_info,
1059 };
1060
1061 static int sfp_hwmon_insert(struct sfp *sfp)
1062 {
1063         int err, i;
1064
1065         if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1066                 return 0;
1067
1068         if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1069                 return 0;
1070
1071         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1072                 /* This driver in general does not support address
1073                  * change.
1074                  */
1075                 return 0;
1076
1077         err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1078         if (err < 0)
1079                 return err;
1080
1081         sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1082         if (!sfp->hwmon_name)
1083                 return -ENODEV;
1084
1085         for (i = 0; sfp->hwmon_name[i]; i++)
1086                 if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1087                         sfp->hwmon_name[i] = '_';
1088
1089         sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1090                                                          sfp->hwmon_name, sfp,
1091                                                          &sfp_hwmon_chip_info,
1092                                                          NULL);
1093
1094         return PTR_ERR_OR_ZERO(sfp->hwmon_dev);
1095 }
1096
1097 static void sfp_hwmon_remove(struct sfp *sfp)
1098 {
1099         if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1100                 hwmon_device_unregister(sfp->hwmon_dev);
1101                 sfp->hwmon_dev = NULL;
1102                 kfree(sfp->hwmon_name);
1103         }
1104 }
1105 #else
1106 static int sfp_hwmon_insert(struct sfp *sfp)
1107 {
1108         return 0;
1109 }
1110
1111 static void sfp_hwmon_remove(struct sfp *sfp)
1112 {
1113 }
1114 #endif
1115
1116 /* Helpers */
1117 static void sfp_module_tx_disable(struct sfp *sfp)
1118 {
1119         dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1120                 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1121         sfp->state |= SFP_F_TX_DISABLE;
1122         sfp_set_state(sfp, sfp->state);
1123 }
1124
1125 static void sfp_module_tx_enable(struct sfp *sfp)
1126 {
1127         dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1128                 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1129         sfp->state &= ~SFP_F_TX_DISABLE;
1130         sfp_set_state(sfp, sfp->state);
1131 }
1132
1133 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1134 {
1135         unsigned int state = sfp->state;
1136
1137         if (state & SFP_F_TX_DISABLE)
1138                 return;
1139
1140         sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1141
1142         udelay(T_RESET_US);
1143
1144         sfp_set_state(sfp, state);
1145 }
1146
1147 /* SFP state machine */
1148 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1149 {
1150         if (timeout)
1151                 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1152                                  timeout);
1153         else
1154                 cancel_delayed_work(&sfp->timeout);
1155 }
1156
1157 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1158                         unsigned int timeout)
1159 {
1160         sfp->sm_state = state;
1161         sfp_sm_set_timer(sfp, timeout);
1162 }
1163
1164 static void sfp_sm_ins_next(struct sfp *sfp, unsigned int state,
1165                             unsigned int timeout)
1166 {
1167         sfp->sm_mod_state = state;
1168         sfp_sm_set_timer(sfp, timeout);
1169 }
1170
1171 static void sfp_sm_phy_detach(struct sfp *sfp)
1172 {
1173         phy_stop(sfp->mod_phy);
1174         sfp_remove_phy(sfp->sfp_bus);
1175         phy_device_remove(sfp->mod_phy);
1176         phy_device_free(sfp->mod_phy);
1177         sfp->mod_phy = NULL;
1178 }
1179
1180 static void sfp_sm_probe_phy(struct sfp *sfp)
1181 {
1182         struct phy_device *phy;
1183         int err;
1184
1185         msleep(T_PHY_RESET_MS);
1186
1187         phy = mdiobus_scan(sfp->i2c_mii, SFP_PHY_ADDR);
1188         if (phy == ERR_PTR(-ENODEV)) {
1189                 dev_info(sfp->dev, "no PHY detected\n");
1190                 return;
1191         }
1192         if (IS_ERR(phy)) {
1193                 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1194                 return;
1195         }
1196
1197         err = sfp_add_phy(sfp->sfp_bus, phy);
1198         if (err) {
1199                 phy_device_remove(phy);
1200                 phy_device_free(phy);
1201                 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1202                 return;
1203         }
1204
1205         sfp->mod_phy = phy;
1206         phy_start(phy);
1207 }
1208
1209 static void sfp_sm_link_up(struct sfp *sfp)
1210 {
1211         sfp_link_up(sfp->sfp_bus);
1212         sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1213 }
1214
1215 static void sfp_sm_link_down(struct sfp *sfp)
1216 {
1217         sfp_link_down(sfp->sfp_bus);
1218 }
1219
1220 static void sfp_sm_link_check_los(struct sfp *sfp)
1221 {
1222         unsigned int los = sfp->state & SFP_F_LOS;
1223
1224         /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1225          * are set, we assume that no LOS signal is available.
1226          */
1227         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED))
1228                 los ^= SFP_F_LOS;
1229         else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL)))
1230                 los = 0;
1231
1232         if (los)
1233                 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1234         else
1235                 sfp_sm_link_up(sfp);
1236 }
1237
1238 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1239 {
1240         return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1241                 event == SFP_E_LOS_LOW) ||
1242                (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1243                 event == SFP_E_LOS_HIGH);
1244 }
1245
1246 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1247 {
1248         return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1249                 event == SFP_E_LOS_HIGH) ||
1250                (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1251                 event == SFP_E_LOS_LOW);
1252 }
1253
1254 static void sfp_sm_fault(struct sfp *sfp, bool warn)
1255 {
1256         if (sfp->sm_retries && !--sfp->sm_retries) {
1257                 dev_err(sfp->dev,
1258                         "module persistently indicates fault, disabling\n");
1259                 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1260         } else {
1261                 if (warn)
1262                         dev_err(sfp->dev, "module transmit fault indicated\n");
1263
1264                 sfp_sm_next(sfp, SFP_S_TX_FAULT, T_FAULT_RECOVER);
1265         }
1266 }
1267
1268 static void sfp_sm_mod_init(struct sfp *sfp)
1269 {
1270         sfp_module_tx_enable(sfp);
1271
1272         /* Wait t_init before indicating that the link is up, provided the
1273          * current state indicates no TX_FAULT.  If TX_FAULT clears before
1274          * this time, that's fine too.
1275          */
1276         sfp_sm_next(sfp, SFP_S_INIT, T_INIT_JIFFIES);
1277         sfp->sm_retries = 5;
1278
1279         /* Setting the serdes link mode is guesswork: there's no
1280          * field in the EEPROM which indicates what mode should
1281          * be used.
1282          *
1283          * If it's a gigabit-only fiber module, it probably does
1284          * not have a PHY, so switch to 802.3z negotiation mode.
1285          * Otherwise, switch to SGMII mode (which is required to
1286          * support non-gigabit speeds) and probe for a PHY.
1287          */
1288         if (sfp->id.base.e1000_base_t ||
1289             sfp->id.base.e100_base_lx ||
1290             sfp->id.base.e100_base_fx)
1291                 sfp_sm_probe_phy(sfp);
1292 }
1293
1294 static int sfp_sm_mod_hpower(struct sfp *sfp)
1295 {
1296         u32 power;
1297         u8 val;
1298         int err;
1299
1300         power = 1000;
1301         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1302                 power = 1500;
1303         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1304                 power = 2000;
1305
1306         if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE &&
1307             (sfp->id.ext.diagmon & (SFP_DIAGMON_DDM | SFP_DIAGMON_ADDRMODE)) !=
1308             SFP_DIAGMON_DDM) {
1309                 /* The module appears not to implement bus address 0xa2,
1310                  * or requires an address change sequence, so assume that
1311                  * the module powers up in the indicated power mode.
1312                  */
1313                 if (power > sfp->max_power_mW) {
1314                         dev_err(sfp->dev,
1315                                 "Host does not support %u.%uW modules\n",
1316                                 power / 1000, (power / 100) % 10);
1317                         return -EINVAL;
1318                 }
1319                 return 0;
1320         }
1321
1322         if (power > sfp->max_power_mW) {
1323                 dev_warn(sfp->dev,
1324                          "Host does not support %u.%uW modules, module left in power mode 1\n",
1325                          power / 1000, (power / 100) % 10);
1326                 return 0;
1327         }
1328
1329         if (power <= 1000)
1330                 return 0;
1331
1332         err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1333         if (err != sizeof(val)) {
1334                 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1335                 err = -EAGAIN;
1336                 goto err;
1337         }
1338
1339         val |= BIT(0);
1340
1341         err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1342         if (err != sizeof(val)) {
1343                 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1344                 err = -EAGAIN;
1345                 goto err;
1346         }
1347
1348         dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1349                  power / 1000, (power / 100) % 10);
1350         return T_HPOWER_LEVEL;
1351
1352 err:
1353         return err;
1354 }
1355
1356 static int sfp_sm_mod_probe(struct sfp *sfp)
1357 {
1358         /* SFP module inserted - read I2C data */
1359         struct sfp_eeprom_id id;
1360         bool cotsworks;
1361         u8 check;
1362         int ret;
1363
1364         ret = sfp_read(sfp, false, 0, &id, sizeof(id));
1365         if (ret < 0) {
1366                 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1367                 return -EAGAIN;
1368         }
1369
1370         if (ret != sizeof(id)) {
1371                 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1372                 return -EAGAIN;
1373         }
1374
1375         /* Cotsworks do not seem to update the checksums when they
1376          * do the final programming with the final module part number,
1377          * serial number and date code.
1378          */
1379         cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1380
1381         /* Validate the checksum over the base structure */
1382         check = sfp_check(&id.base, sizeof(id.base) - 1);
1383         if (check != id.base.cc_base) {
1384                 if (cotsworks) {
1385                         dev_warn(sfp->dev,
1386                                  "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1387                                  check, id.base.cc_base);
1388                 } else {
1389                         dev_err(sfp->dev,
1390                                 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1391                                 check, id.base.cc_base);
1392                         print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1393                                        16, 1, &id, sizeof(id), true);
1394                         return -EINVAL;
1395                 }
1396         }
1397
1398         check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1399         if (check != id.ext.cc_ext) {
1400                 if (cotsworks) {
1401                         dev_warn(sfp->dev,
1402                                  "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1403                                  check, id.ext.cc_ext);
1404                 } else {
1405                         dev_err(sfp->dev,
1406                                 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1407                                 check, id.ext.cc_ext);
1408                         print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1409                                        16, 1, &id, sizeof(id), true);
1410                         memset(&id.ext, 0, sizeof(id.ext));
1411                 }
1412         }
1413
1414         sfp->id = id;
1415
1416         dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1417                  (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1418                  (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1419                  (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1420                  (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1421                  (int)sizeof(id.ext.datecode), id.ext.datecode);
1422
1423         /* Check whether we support this module */
1424         if (!sfp->type->module_supported(&sfp->id)) {
1425                 dev_err(sfp->dev,
1426                         "module is not supported - phys id 0x%02x 0x%02x\n",
1427                         sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1428                 return -EINVAL;
1429         }
1430
1431         /* If the module requires address swap mode, warn about it */
1432         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1433                 dev_warn(sfp->dev,
1434                          "module address swap to access page 0xA2 is not supported.\n");
1435
1436         ret = sfp_hwmon_insert(sfp);
1437         if (ret < 0)
1438                 return ret;
1439
1440         ret = sfp_module_insert(sfp->sfp_bus, &sfp->id);
1441         if (ret < 0)
1442                 return ret;
1443
1444         return sfp_sm_mod_hpower(sfp);
1445 }
1446
1447 static void sfp_sm_mod_remove(struct sfp *sfp)
1448 {
1449         sfp_module_remove(sfp->sfp_bus);
1450
1451         sfp_hwmon_remove(sfp);
1452
1453         if (sfp->mod_phy)
1454                 sfp_sm_phy_detach(sfp);
1455
1456         sfp_module_tx_disable(sfp);
1457
1458         memset(&sfp->id, 0, sizeof(sfp->id));
1459
1460         dev_info(sfp->dev, "module removed\n");
1461 }
1462
1463 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
1464 {
1465         mutex_lock(&sfp->sm_mutex);
1466
1467         dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
1468                 mod_state_to_str(sfp->sm_mod_state),
1469                 dev_state_to_str(sfp->sm_dev_state),
1470                 sm_state_to_str(sfp->sm_state),
1471                 event_to_str(event));
1472
1473         /* This state machine tracks the insert/remove state of
1474          * the module, and handles probing the on-board EEPROM.
1475          */
1476         switch (sfp->sm_mod_state) {
1477         default:
1478                 if (event == SFP_E_INSERT) {
1479                         sfp_module_tx_disable(sfp);
1480                         sfp_sm_ins_next(sfp, SFP_MOD_PROBE, T_PROBE_INIT);
1481                 }
1482                 break;
1483
1484         case SFP_MOD_PROBE:
1485                 if (event == SFP_E_REMOVE) {
1486                         sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1487                 } else if (event == SFP_E_TIMEOUT) {
1488                         int val = sfp_sm_mod_probe(sfp);
1489
1490                         if (val == 0)
1491                                 sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1492                         else if (val > 0)
1493                                 sfp_sm_ins_next(sfp, SFP_MOD_HPOWER, val);
1494                         else if (val != -EAGAIN)
1495                                 sfp_sm_ins_next(sfp, SFP_MOD_ERROR, 0);
1496                         else
1497                                 sfp_sm_set_timer(sfp, T_PROBE_RETRY);
1498                 }
1499                 break;
1500
1501         case SFP_MOD_HPOWER:
1502                 if (event == SFP_E_TIMEOUT) {
1503                         sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1504                         break;
1505                 }
1506                 /* fallthrough */
1507         case SFP_MOD_PRESENT:
1508         case SFP_MOD_ERROR:
1509                 if (event == SFP_E_REMOVE) {
1510                         sfp_sm_mod_remove(sfp);
1511                         sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1512                 }
1513                 break;
1514         }
1515
1516         /* This state machine tracks the netdev up/down state */
1517         switch (sfp->sm_dev_state) {
1518         default:
1519                 if (event == SFP_E_DEV_UP)
1520                         sfp->sm_dev_state = SFP_DEV_UP;
1521                 break;
1522
1523         case SFP_DEV_UP:
1524                 if (event == SFP_E_DEV_DOWN) {
1525                         /* If the module has a PHY, avoid raising TX disable
1526                          * as this resets the PHY. Otherwise, raise it to
1527                          * turn the laser off.
1528                          */
1529                         if (!sfp->mod_phy)
1530                                 sfp_module_tx_disable(sfp);
1531                         sfp->sm_dev_state = SFP_DEV_DOWN;
1532                 }
1533                 break;
1534         }
1535
1536         /* Some events are global */
1537         if (sfp->sm_state != SFP_S_DOWN &&
1538             (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1539              sfp->sm_dev_state != SFP_DEV_UP)) {
1540                 if (sfp->sm_state == SFP_S_LINK_UP &&
1541                     sfp->sm_dev_state == SFP_DEV_UP)
1542                         sfp_sm_link_down(sfp);
1543                 if (sfp->mod_phy)
1544                         sfp_sm_phy_detach(sfp);
1545                 sfp_sm_next(sfp, SFP_S_DOWN, 0);
1546                 mutex_unlock(&sfp->sm_mutex);
1547                 return;
1548         }
1549
1550         /* The main state machine */
1551         switch (sfp->sm_state) {
1552         case SFP_S_DOWN:
1553                 if (sfp->sm_mod_state == SFP_MOD_PRESENT &&
1554                     sfp->sm_dev_state == SFP_DEV_UP)
1555                         sfp_sm_mod_init(sfp);
1556                 break;
1557
1558         case SFP_S_INIT:
1559                 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT)
1560                         sfp_sm_fault(sfp, true);
1561                 else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR)
1562                         sfp_sm_link_check_los(sfp);
1563                 break;
1564
1565         case SFP_S_WAIT_LOS:
1566                 if (event == SFP_E_TX_FAULT)
1567                         sfp_sm_fault(sfp, true);
1568                 else if (sfp_los_event_inactive(sfp, event))
1569                         sfp_sm_link_up(sfp);
1570                 break;
1571
1572         case SFP_S_LINK_UP:
1573                 if (event == SFP_E_TX_FAULT) {
1574                         sfp_sm_link_down(sfp);
1575                         sfp_sm_fault(sfp, true);
1576                 } else if (sfp_los_event_active(sfp, event)) {
1577                         sfp_sm_link_down(sfp);
1578                         sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1579                 }
1580                 break;
1581
1582         case SFP_S_TX_FAULT:
1583                 if (event == SFP_E_TIMEOUT) {
1584                         sfp_module_tx_fault_reset(sfp);
1585                         sfp_sm_next(sfp, SFP_S_REINIT, T_INIT_JIFFIES);
1586                 }
1587                 break;
1588
1589         case SFP_S_REINIT:
1590                 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
1591                         sfp_sm_fault(sfp, false);
1592                 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
1593                         dev_info(sfp->dev, "module transmit fault recovered\n");
1594                         sfp_sm_link_check_los(sfp);
1595                 }
1596                 break;
1597
1598         case SFP_S_TX_DISABLE:
1599                 break;
1600         }
1601
1602         dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
1603                 mod_state_to_str(sfp->sm_mod_state),
1604                 dev_state_to_str(sfp->sm_dev_state),
1605                 sm_state_to_str(sfp->sm_state));
1606
1607         mutex_unlock(&sfp->sm_mutex);
1608 }
1609
1610 static void sfp_start(struct sfp *sfp)
1611 {
1612         sfp_sm_event(sfp, SFP_E_DEV_UP);
1613 }
1614
1615 static void sfp_stop(struct sfp *sfp)
1616 {
1617         sfp_sm_event(sfp, SFP_E_DEV_DOWN);
1618 }
1619
1620 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
1621 {
1622         /* locking... and check module is present */
1623
1624         if (sfp->id.ext.sff8472_compliance &&
1625             !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
1626                 modinfo->type = ETH_MODULE_SFF_8472;
1627                 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
1628         } else {
1629                 modinfo->type = ETH_MODULE_SFF_8079;
1630                 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
1631         }
1632         return 0;
1633 }
1634
1635 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
1636                              u8 *data)
1637 {
1638         unsigned int first, last, len;
1639         int ret;
1640
1641         if (ee->len == 0)
1642                 return -EINVAL;
1643
1644         first = ee->offset;
1645         last = ee->offset + ee->len;
1646         if (first < ETH_MODULE_SFF_8079_LEN) {
1647                 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
1648                 len -= first;
1649
1650                 ret = sfp_read(sfp, false, first, data, len);
1651                 if (ret < 0)
1652                         return ret;
1653
1654                 first += len;
1655                 data += len;
1656         }
1657         if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
1658                 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
1659                 len -= first;
1660                 first -= ETH_MODULE_SFF_8079_LEN;
1661
1662                 ret = sfp_read(sfp, true, first, data, len);
1663                 if (ret < 0)
1664                         return ret;
1665         }
1666         return 0;
1667 }
1668
1669 static const struct sfp_socket_ops sfp_module_ops = {
1670         .start = sfp_start,
1671         .stop = sfp_stop,
1672         .module_info = sfp_module_info,
1673         .module_eeprom = sfp_module_eeprom,
1674 };
1675
1676 static void sfp_timeout(struct work_struct *work)
1677 {
1678         struct sfp *sfp = container_of(work, struct sfp, timeout.work);
1679
1680         rtnl_lock();
1681         sfp_sm_event(sfp, SFP_E_TIMEOUT);
1682         rtnl_unlock();
1683 }
1684
1685 static void sfp_check_state(struct sfp *sfp)
1686 {
1687         unsigned int state, i, changed;
1688
1689         state = sfp_get_state(sfp);
1690         changed = state ^ sfp->state;
1691         changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
1692
1693         for (i = 0; i < GPIO_MAX; i++)
1694                 if (changed & BIT(i))
1695                         dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
1696                                 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
1697
1698         state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
1699         sfp->state = state;
1700
1701         rtnl_lock();
1702         if (changed & SFP_F_PRESENT)
1703                 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
1704                                 SFP_E_INSERT : SFP_E_REMOVE);
1705
1706         if (changed & SFP_F_TX_FAULT)
1707                 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
1708                                 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
1709
1710         if (changed & SFP_F_LOS)
1711                 sfp_sm_event(sfp, state & SFP_F_LOS ?
1712                                 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
1713         rtnl_unlock();
1714 }
1715
1716 static irqreturn_t sfp_irq(int irq, void *data)
1717 {
1718         struct sfp *sfp = data;
1719
1720         sfp_check_state(sfp);
1721
1722         return IRQ_HANDLED;
1723 }
1724
1725 static void sfp_poll(struct work_struct *work)
1726 {
1727         struct sfp *sfp = container_of(work, struct sfp, poll.work);
1728
1729         sfp_check_state(sfp);
1730         mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1731 }
1732
1733 static struct sfp *sfp_alloc(struct device *dev)
1734 {
1735         struct sfp *sfp;
1736
1737         sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
1738         if (!sfp)
1739                 return ERR_PTR(-ENOMEM);
1740
1741         sfp->dev = dev;
1742
1743         mutex_init(&sfp->sm_mutex);
1744         INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
1745         INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
1746
1747         return sfp;
1748 }
1749
1750 static void sfp_cleanup(void *data)
1751 {
1752         struct sfp *sfp = data;
1753
1754         cancel_delayed_work_sync(&sfp->poll);
1755         cancel_delayed_work_sync(&sfp->timeout);
1756         if (sfp->i2c_mii) {
1757                 mdiobus_unregister(sfp->i2c_mii);
1758                 mdiobus_free(sfp->i2c_mii);
1759         }
1760         if (sfp->i2c)
1761                 i2c_put_adapter(sfp->i2c);
1762         kfree(sfp);
1763 }
1764
1765 static int sfp_probe(struct platform_device *pdev)
1766 {
1767         const struct sff_data *sff;
1768         struct sfp *sfp;
1769         bool poll = false;
1770         int irq, err, i;
1771
1772         sfp = sfp_alloc(&pdev->dev);
1773         if (IS_ERR(sfp))
1774                 return PTR_ERR(sfp);
1775
1776         platform_set_drvdata(pdev, sfp);
1777
1778         err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
1779         if (err < 0)
1780                 return err;
1781
1782         sff = sfp->type = &sfp_data;
1783
1784         if (pdev->dev.of_node) {
1785                 struct device_node *node = pdev->dev.of_node;
1786                 const struct of_device_id *id;
1787                 struct i2c_adapter *i2c;
1788                 struct device_node *np;
1789
1790                 id = of_match_node(sfp_of_match, node);
1791                 if (WARN_ON(!id))
1792                         return -EINVAL;
1793
1794                 sff = sfp->type = id->data;
1795
1796                 np = of_parse_phandle(node, "i2c-bus", 0);
1797                 if (!np) {
1798                         dev_err(sfp->dev, "missing 'i2c-bus' property\n");
1799                         return -ENODEV;
1800                 }
1801
1802                 i2c = of_find_i2c_adapter_by_node(np);
1803                 of_node_put(np);
1804                 if (!i2c)
1805                         return -EPROBE_DEFER;
1806
1807                 err = sfp_i2c_configure(sfp, i2c);
1808                 if (err < 0) {
1809                         i2c_put_adapter(i2c);
1810                         return err;
1811                 }
1812         }
1813
1814         for (i = 0; i < GPIO_MAX; i++)
1815                 if (sff->gpios & BIT(i)) {
1816                         sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
1817                                            gpio_of_names[i], gpio_flags[i]);
1818                         if (IS_ERR(sfp->gpio[i]))
1819                                 return PTR_ERR(sfp->gpio[i]);
1820                 }
1821
1822         sfp->get_state = sfp_gpio_get_state;
1823         sfp->set_state = sfp_gpio_set_state;
1824
1825         /* Modules that have no detect signal are always present */
1826         if (!(sfp->gpio[GPIO_MODDEF0]))
1827                 sfp->get_state = sff_gpio_get_state;
1828
1829         device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
1830                                  &sfp->max_power_mW);
1831         if (!sfp->max_power_mW)
1832                 sfp->max_power_mW = 1000;
1833
1834         dev_info(sfp->dev, "Host maximum power %u.%uW\n",
1835                  sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
1836
1837         sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
1838         if (!sfp->sfp_bus)
1839                 return -ENOMEM;
1840
1841         /* Get the initial state, and always signal TX disable,
1842          * since the network interface will not be up.
1843          */
1844         sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
1845
1846         if (sfp->gpio[GPIO_RATE_SELECT] &&
1847             gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
1848                 sfp->state |= SFP_F_RATE_SELECT;
1849         sfp_set_state(sfp, sfp->state);
1850         sfp_module_tx_disable(sfp);
1851         rtnl_lock();
1852         if (sfp->state & SFP_F_PRESENT)
1853                 sfp_sm_event(sfp, SFP_E_INSERT);
1854         rtnl_unlock();
1855
1856         for (i = 0; i < GPIO_MAX; i++) {
1857                 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
1858                         continue;
1859
1860                 irq = gpiod_to_irq(sfp->gpio[i]);
1861                 if (!irq) {
1862                         poll = true;
1863                         continue;
1864                 }
1865
1866                 err = devm_request_threaded_irq(sfp->dev, irq, NULL, sfp_irq,
1867                                                 IRQF_ONESHOT |
1868                                                 IRQF_TRIGGER_RISING |
1869                                                 IRQF_TRIGGER_FALLING,
1870                                                 dev_name(sfp->dev), sfp);
1871                 if (err)
1872                         poll = true;
1873         }
1874
1875         if (poll)
1876                 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1877
1878         /* We could have an issue in cases no Tx disable pin is available or
1879          * wired as modules using a laser as their light source will continue to
1880          * be active when the fiber is removed. This could be a safety issue and
1881          * we should at least warn the user about that.
1882          */
1883         if (!sfp->gpio[GPIO_TX_DISABLE])
1884                 dev_warn(sfp->dev,
1885                          "No tx_disable pin: SFP modules will always be emitting.\n");
1886
1887         return 0;
1888 }
1889
1890 static int sfp_remove(struct platform_device *pdev)
1891 {
1892         struct sfp *sfp = platform_get_drvdata(pdev);
1893
1894         sfp_unregister_socket(sfp->sfp_bus);
1895
1896         return 0;
1897 }
1898
1899 static struct platform_driver sfp_driver = {
1900         .probe = sfp_probe,
1901         .remove = sfp_remove,
1902         .driver = {
1903                 .name = "sfp",
1904                 .of_match_table = sfp_of_match,
1905         },
1906 };
1907
1908 static int sfp_init(void)
1909 {
1910         poll_jiffies = msecs_to_jiffies(100);
1911
1912         return platform_driver_register(&sfp_driver);
1913 }
1914 module_init(sfp_init);
1915
1916 static void sfp_exit(void)
1917 {
1918         platform_driver_unregister(&sfp_driver);
1919 }
1920 module_exit(sfp_exit);
1921
1922 MODULE_ALIAS("platform:sfp");
1923 MODULE_AUTHOR("Russell King");
1924 MODULE_LICENSE("GPL v2");