ACPI: sysfs: Fix BERT error region memory mapping
[linux-2.6-microblaze.git] / drivers / net / phy / sfp.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/acpi.h>
3 #include <linux/ctype.h>
4 #include <linux/debugfs.h>
5 #include <linux/delay.h>
6 #include <linux/gpio/consumer.h>
7 #include <linux/hwmon.h>
8 #include <linux/i2c.h>
9 #include <linux/interrupt.h>
10 #include <linux/jiffies.h>
11 #include <linux/mdio/mdio-i2c.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/of.h>
15 #include <linux/phy.h>
16 #include <linux/platform_device.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
20
21 #include "sfp.h"
22 #include "swphy.h"
23
24 enum {
25         GPIO_MODDEF0,
26         GPIO_LOS,
27         GPIO_TX_FAULT,
28         GPIO_TX_DISABLE,
29         GPIO_RATE_SELECT,
30         GPIO_MAX,
31
32         SFP_F_PRESENT = BIT(GPIO_MODDEF0),
33         SFP_F_LOS = BIT(GPIO_LOS),
34         SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
35         SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
36         SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
37
38         SFP_E_INSERT = 0,
39         SFP_E_REMOVE,
40         SFP_E_DEV_ATTACH,
41         SFP_E_DEV_DETACH,
42         SFP_E_DEV_DOWN,
43         SFP_E_DEV_UP,
44         SFP_E_TX_FAULT,
45         SFP_E_TX_CLEAR,
46         SFP_E_LOS_HIGH,
47         SFP_E_LOS_LOW,
48         SFP_E_TIMEOUT,
49
50         SFP_MOD_EMPTY = 0,
51         SFP_MOD_ERROR,
52         SFP_MOD_PROBE,
53         SFP_MOD_WAITDEV,
54         SFP_MOD_HPOWER,
55         SFP_MOD_WAITPWR,
56         SFP_MOD_PRESENT,
57
58         SFP_DEV_DETACHED = 0,
59         SFP_DEV_DOWN,
60         SFP_DEV_UP,
61
62         SFP_S_DOWN = 0,
63         SFP_S_FAIL,
64         SFP_S_WAIT,
65         SFP_S_INIT,
66         SFP_S_INIT_PHY,
67         SFP_S_INIT_TX_FAULT,
68         SFP_S_WAIT_LOS,
69         SFP_S_LINK_UP,
70         SFP_S_TX_FAULT,
71         SFP_S_REINIT,
72         SFP_S_TX_DISABLE,
73 };
74
75 static const char  * const mod_state_strings[] = {
76         [SFP_MOD_EMPTY] = "empty",
77         [SFP_MOD_ERROR] = "error",
78         [SFP_MOD_PROBE] = "probe",
79         [SFP_MOD_WAITDEV] = "waitdev",
80         [SFP_MOD_HPOWER] = "hpower",
81         [SFP_MOD_WAITPWR] = "waitpwr",
82         [SFP_MOD_PRESENT] = "present",
83 };
84
85 static const char *mod_state_to_str(unsigned short mod_state)
86 {
87         if (mod_state >= ARRAY_SIZE(mod_state_strings))
88                 return "Unknown module state";
89         return mod_state_strings[mod_state];
90 }
91
92 static const char * const dev_state_strings[] = {
93         [SFP_DEV_DETACHED] = "detached",
94         [SFP_DEV_DOWN] = "down",
95         [SFP_DEV_UP] = "up",
96 };
97
98 static const char *dev_state_to_str(unsigned short dev_state)
99 {
100         if (dev_state >= ARRAY_SIZE(dev_state_strings))
101                 return "Unknown device state";
102         return dev_state_strings[dev_state];
103 }
104
105 static const char * const event_strings[] = {
106         [SFP_E_INSERT] = "insert",
107         [SFP_E_REMOVE] = "remove",
108         [SFP_E_DEV_ATTACH] = "dev_attach",
109         [SFP_E_DEV_DETACH] = "dev_detach",
110         [SFP_E_DEV_DOWN] = "dev_down",
111         [SFP_E_DEV_UP] = "dev_up",
112         [SFP_E_TX_FAULT] = "tx_fault",
113         [SFP_E_TX_CLEAR] = "tx_clear",
114         [SFP_E_LOS_HIGH] = "los_high",
115         [SFP_E_LOS_LOW] = "los_low",
116         [SFP_E_TIMEOUT] = "timeout",
117 };
118
119 static const char *event_to_str(unsigned short event)
120 {
121         if (event >= ARRAY_SIZE(event_strings))
122                 return "Unknown event";
123         return event_strings[event];
124 }
125
126 static const char * const sm_state_strings[] = {
127         [SFP_S_DOWN] = "down",
128         [SFP_S_FAIL] = "fail",
129         [SFP_S_WAIT] = "wait",
130         [SFP_S_INIT] = "init",
131         [SFP_S_INIT_PHY] = "init_phy",
132         [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
133         [SFP_S_WAIT_LOS] = "wait_los",
134         [SFP_S_LINK_UP] = "link_up",
135         [SFP_S_TX_FAULT] = "tx_fault",
136         [SFP_S_REINIT] = "reinit",
137         [SFP_S_TX_DISABLE] = "tx_disable",
138 };
139
140 static const char *sm_state_to_str(unsigned short sm_state)
141 {
142         if (sm_state >= ARRAY_SIZE(sm_state_strings))
143                 return "Unknown state";
144         return sm_state_strings[sm_state];
145 }
146
147 static const char *gpio_of_names[] = {
148         "mod-def0",
149         "los",
150         "tx-fault",
151         "tx-disable",
152         "rate-select0",
153 };
154
155 static const enum gpiod_flags gpio_flags[] = {
156         GPIOD_IN,
157         GPIOD_IN,
158         GPIOD_IN,
159         GPIOD_ASIS,
160         GPIOD_ASIS,
161 };
162
163 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
164  * non-cooled module to initialise its laser safety circuitry. We wait
165  * an initial T_WAIT period before we check the tx fault to give any PHY
166  * on board (for a copper SFP) time to initialise.
167  */
168 #define T_WAIT                  msecs_to_jiffies(50)
169 #define T_START_UP              msecs_to_jiffies(300)
170 #define T_START_UP_BAD_GPON     msecs_to_jiffies(60000)
171
172 /* t_reset is the time required to assert the TX_DISABLE signal to reset
173  * an indicated TX_FAULT.
174  */
175 #define T_RESET_US              10
176 #define T_FAULT_RECOVER         msecs_to_jiffies(1000)
177
178 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
179  * time. If the TX_FAULT signal is not deasserted after this number of
180  * attempts at clearing it, we decide that the module is faulty.
181  * N_FAULT is the same but after the module has initialised.
182  */
183 #define N_FAULT_INIT            5
184 #define N_FAULT                 5
185
186 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
187  * R_PHY_RETRY is the number of attempts.
188  */
189 #define T_PHY_RETRY             msecs_to_jiffies(50)
190 #define R_PHY_RETRY             12
191
192 /* SFP module presence detection is poor: the three MOD DEF signals are
193  * the same length on the PCB, which means it's possible for MOD DEF 0 to
194  * connect before the I2C bus on MOD DEF 1/2.
195  *
196  * The SFF-8472 specifies t_serial ("Time from power on until module is
197  * ready for data transmission over the two wire serial bus.") as 300ms.
198  */
199 #define T_SERIAL                msecs_to_jiffies(300)
200 #define T_HPOWER_LEVEL          msecs_to_jiffies(300)
201 #define T_PROBE_RETRY_INIT      msecs_to_jiffies(100)
202 #define R_PROBE_RETRY_INIT      10
203 #define T_PROBE_RETRY_SLOW      msecs_to_jiffies(5000)
204 #define R_PROBE_RETRY_SLOW      12
205
206 /* SFP modules appear to always have their PHY configured for bus address
207  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
208  */
209 #define SFP_PHY_ADDR    22
210
211 struct sff_data {
212         unsigned int gpios;
213         bool (*module_supported)(const struct sfp_eeprom_id *id);
214 };
215
216 struct sfp {
217         struct device *dev;
218         struct i2c_adapter *i2c;
219         struct mii_bus *i2c_mii;
220         struct sfp_bus *sfp_bus;
221         struct phy_device *mod_phy;
222         const struct sff_data *type;
223         size_t i2c_block_size;
224         u32 max_power_mW;
225
226         unsigned int (*get_state)(struct sfp *);
227         void (*set_state)(struct sfp *, unsigned int);
228         int (*read)(struct sfp *, bool, u8, void *, size_t);
229         int (*write)(struct sfp *, bool, u8, void *, size_t);
230
231         struct gpio_desc *gpio[GPIO_MAX];
232         int gpio_irq[GPIO_MAX];
233
234         bool need_poll;
235
236         struct mutex st_mutex;                  /* Protects state */
237         unsigned int state_soft_mask;
238         unsigned int state;
239         struct delayed_work poll;
240         struct delayed_work timeout;
241         struct mutex sm_mutex;                  /* Protects state machine */
242         unsigned char sm_mod_state;
243         unsigned char sm_mod_tries_init;
244         unsigned char sm_mod_tries;
245         unsigned char sm_dev_state;
246         unsigned short sm_state;
247         unsigned char sm_fault_retries;
248         unsigned char sm_phy_retries;
249
250         struct sfp_eeprom_id id;
251         unsigned int module_power_mW;
252         unsigned int module_t_start_up;
253
254 #if IS_ENABLED(CONFIG_HWMON)
255         struct sfp_diag diag;
256         struct delayed_work hwmon_probe;
257         unsigned int hwmon_tries;
258         struct device *hwmon_dev;
259         char *hwmon_name;
260 #endif
261
262 #if IS_ENABLED(CONFIG_DEBUG_FS)
263         struct dentry *debugfs_dir;
264 #endif
265 };
266
267 static bool sff_module_supported(const struct sfp_eeprom_id *id)
268 {
269         return id->base.phys_id == SFF8024_ID_SFF_8472 &&
270                id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
271 }
272
273 static const struct sff_data sff_data = {
274         .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
275         .module_supported = sff_module_supported,
276 };
277
278 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
279 {
280         if (id->base.phys_id == SFF8024_ID_SFP &&
281             id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
282                 return true;
283
284         /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
285          * phys id SFF instead of SFP. Therefore mark this module explicitly
286          * as supported based on vendor name and pn match.
287          */
288         if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
289             id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
290             !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
291             !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
292                 return true;
293
294         return false;
295 }
296
297 static const struct sff_data sfp_data = {
298         .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
299                  SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
300         .module_supported = sfp_module_supported,
301 };
302
303 static const struct of_device_id sfp_of_match[] = {
304         { .compatible = "sff,sff", .data = &sff_data, },
305         { .compatible = "sff,sfp", .data = &sfp_data, },
306         { },
307 };
308 MODULE_DEVICE_TABLE(of, sfp_of_match);
309
310 static unsigned long poll_jiffies;
311
312 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
313 {
314         unsigned int i, state, v;
315
316         for (i = state = 0; i < GPIO_MAX; i++) {
317                 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
318                         continue;
319
320                 v = gpiod_get_value_cansleep(sfp->gpio[i]);
321                 if (v)
322                         state |= BIT(i);
323         }
324
325         return state;
326 }
327
328 static unsigned int sff_gpio_get_state(struct sfp *sfp)
329 {
330         return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
331 }
332
333 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
334 {
335         if (state & SFP_F_PRESENT) {
336                 /* If the module is present, drive the signals */
337                 if (sfp->gpio[GPIO_TX_DISABLE])
338                         gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
339                                                state & SFP_F_TX_DISABLE);
340                 if (state & SFP_F_RATE_SELECT)
341                         gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
342                                                state & SFP_F_RATE_SELECT);
343         } else {
344                 /* Otherwise, let them float to the pull-ups */
345                 if (sfp->gpio[GPIO_TX_DISABLE])
346                         gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
347                 if (state & SFP_F_RATE_SELECT)
348                         gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
349         }
350 }
351
352 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
353                         size_t len)
354 {
355         struct i2c_msg msgs[2];
356         u8 bus_addr = a2 ? 0x51 : 0x50;
357         size_t block_size = sfp->i2c_block_size;
358         size_t this_len;
359         int ret;
360
361         msgs[0].addr = bus_addr;
362         msgs[0].flags = 0;
363         msgs[0].len = 1;
364         msgs[0].buf = &dev_addr;
365         msgs[1].addr = bus_addr;
366         msgs[1].flags = I2C_M_RD;
367         msgs[1].len = len;
368         msgs[1].buf = buf;
369
370         while (len) {
371                 this_len = len;
372                 if (this_len > block_size)
373                         this_len = block_size;
374
375                 msgs[1].len = this_len;
376
377                 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
378                 if (ret < 0)
379                         return ret;
380
381                 if (ret != ARRAY_SIZE(msgs))
382                         break;
383
384                 msgs[1].buf += this_len;
385                 dev_addr += this_len;
386                 len -= this_len;
387         }
388
389         return msgs[1].buf - (u8 *)buf;
390 }
391
392 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
393         size_t len)
394 {
395         struct i2c_msg msgs[1];
396         u8 bus_addr = a2 ? 0x51 : 0x50;
397         int ret;
398
399         msgs[0].addr = bus_addr;
400         msgs[0].flags = 0;
401         msgs[0].len = 1 + len;
402         msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
403         if (!msgs[0].buf)
404                 return -ENOMEM;
405
406         msgs[0].buf[0] = dev_addr;
407         memcpy(&msgs[0].buf[1], buf, len);
408
409         ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
410
411         kfree(msgs[0].buf);
412
413         if (ret < 0)
414                 return ret;
415
416         return ret == ARRAY_SIZE(msgs) ? len : 0;
417 }
418
419 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
420 {
421         struct mii_bus *i2c_mii;
422         int ret;
423
424         if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
425                 return -EINVAL;
426
427         sfp->i2c = i2c;
428         sfp->read = sfp_i2c_read;
429         sfp->write = sfp_i2c_write;
430
431         i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
432         if (IS_ERR(i2c_mii))
433                 return PTR_ERR(i2c_mii);
434
435         i2c_mii->name = "SFP I2C Bus";
436         i2c_mii->phy_mask = ~0;
437
438         ret = mdiobus_register(i2c_mii);
439         if (ret < 0) {
440                 mdiobus_free(i2c_mii);
441                 return ret;
442         }
443
444         sfp->i2c_mii = i2c_mii;
445
446         return 0;
447 }
448
449 /* Interface */
450 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
451 {
452         return sfp->read(sfp, a2, addr, buf, len);
453 }
454
455 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
456 {
457         return sfp->write(sfp, a2, addr, buf, len);
458 }
459
460 static unsigned int sfp_soft_get_state(struct sfp *sfp)
461 {
462         unsigned int state = 0;
463         u8 status;
464         int ret;
465
466         ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
467         if (ret == sizeof(status)) {
468                 if (status & SFP_STATUS_RX_LOS)
469                         state |= SFP_F_LOS;
470                 if (status & SFP_STATUS_TX_FAULT)
471                         state |= SFP_F_TX_FAULT;
472         } else {
473                 dev_err_ratelimited(sfp->dev,
474                                     "failed to read SFP soft status: %pe\n",
475                                     ERR_PTR(ret));
476                 /* Preserve the current state */
477                 state = sfp->state;
478         }
479
480         return state & sfp->state_soft_mask;
481 }
482
483 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
484 {
485         u8 status;
486
487         if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
488                      sizeof(status)) {
489                 if (state & SFP_F_TX_DISABLE)
490                         status |= SFP_STATUS_TX_DISABLE_FORCE;
491                 else
492                         status &= ~SFP_STATUS_TX_DISABLE_FORCE;
493
494                 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
495         }
496 }
497
498 static void sfp_soft_start_poll(struct sfp *sfp)
499 {
500         const struct sfp_eeprom_id *id = &sfp->id;
501
502         sfp->state_soft_mask = 0;
503         if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
504             !sfp->gpio[GPIO_TX_DISABLE])
505                 sfp->state_soft_mask |= SFP_F_TX_DISABLE;
506         if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
507             !sfp->gpio[GPIO_TX_FAULT])
508                 sfp->state_soft_mask |= SFP_F_TX_FAULT;
509         if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
510             !sfp->gpio[GPIO_LOS])
511                 sfp->state_soft_mask |= SFP_F_LOS;
512
513         if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
514             !sfp->need_poll)
515                 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
516 }
517
518 static void sfp_soft_stop_poll(struct sfp *sfp)
519 {
520         sfp->state_soft_mask = 0;
521 }
522
523 static unsigned int sfp_get_state(struct sfp *sfp)
524 {
525         unsigned int state = sfp->get_state(sfp);
526
527         if (state & SFP_F_PRESENT &&
528             sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
529                 state |= sfp_soft_get_state(sfp);
530
531         return state;
532 }
533
534 static void sfp_set_state(struct sfp *sfp, unsigned int state)
535 {
536         sfp->set_state(sfp, state);
537
538         if (state & SFP_F_PRESENT &&
539             sfp->state_soft_mask & SFP_F_TX_DISABLE)
540                 sfp_soft_set_state(sfp, state);
541 }
542
543 static unsigned int sfp_check(void *buf, size_t len)
544 {
545         u8 *p, check;
546
547         for (p = buf, check = 0; len; p++, len--)
548                 check += *p;
549
550         return check;
551 }
552
553 /* hwmon */
554 #if IS_ENABLED(CONFIG_HWMON)
555 static umode_t sfp_hwmon_is_visible(const void *data,
556                                     enum hwmon_sensor_types type,
557                                     u32 attr, int channel)
558 {
559         const struct sfp *sfp = data;
560
561         switch (type) {
562         case hwmon_temp:
563                 switch (attr) {
564                 case hwmon_temp_min_alarm:
565                 case hwmon_temp_max_alarm:
566                 case hwmon_temp_lcrit_alarm:
567                 case hwmon_temp_crit_alarm:
568                 case hwmon_temp_min:
569                 case hwmon_temp_max:
570                 case hwmon_temp_lcrit:
571                 case hwmon_temp_crit:
572                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
573                                 return 0;
574                         fallthrough;
575                 case hwmon_temp_input:
576                 case hwmon_temp_label:
577                         return 0444;
578                 default:
579                         return 0;
580                 }
581         case hwmon_in:
582                 switch (attr) {
583                 case hwmon_in_min_alarm:
584                 case hwmon_in_max_alarm:
585                 case hwmon_in_lcrit_alarm:
586                 case hwmon_in_crit_alarm:
587                 case hwmon_in_min:
588                 case hwmon_in_max:
589                 case hwmon_in_lcrit:
590                 case hwmon_in_crit:
591                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
592                                 return 0;
593                         fallthrough;
594                 case hwmon_in_input:
595                 case hwmon_in_label:
596                         return 0444;
597                 default:
598                         return 0;
599                 }
600         case hwmon_curr:
601                 switch (attr) {
602                 case hwmon_curr_min_alarm:
603                 case hwmon_curr_max_alarm:
604                 case hwmon_curr_lcrit_alarm:
605                 case hwmon_curr_crit_alarm:
606                 case hwmon_curr_min:
607                 case hwmon_curr_max:
608                 case hwmon_curr_lcrit:
609                 case hwmon_curr_crit:
610                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
611                                 return 0;
612                         fallthrough;
613                 case hwmon_curr_input:
614                 case hwmon_curr_label:
615                         return 0444;
616                 default:
617                         return 0;
618                 }
619         case hwmon_power:
620                 /* External calibration of receive power requires
621                  * floating point arithmetic. Doing that in the kernel
622                  * is not easy, so just skip it. If the module does
623                  * not require external calibration, we can however
624                  * show receiver power, since FP is then not needed.
625                  */
626                 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
627                     channel == 1)
628                         return 0;
629                 switch (attr) {
630                 case hwmon_power_min_alarm:
631                 case hwmon_power_max_alarm:
632                 case hwmon_power_lcrit_alarm:
633                 case hwmon_power_crit_alarm:
634                 case hwmon_power_min:
635                 case hwmon_power_max:
636                 case hwmon_power_lcrit:
637                 case hwmon_power_crit:
638                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
639                                 return 0;
640                         fallthrough;
641                 case hwmon_power_input:
642                 case hwmon_power_label:
643                         return 0444;
644                 default:
645                         return 0;
646                 }
647         default:
648                 return 0;
649         }
650 }
651
652 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
653 {
654         __be16 val;
655         int err;
656
657         err = sfp_read(sfp, true, reg, &val, sizeof(val));
658         if (err < 0)
659                 return err;
660
661         *value = be16_to_cpu(val);
662
663         return 0;
664 }
665
666 static void sfp_hwmon_to_rx_power(long *value)
667 {
668         *value = DIV_ROUND_CLOSEST(*value, 10);
669 }
670
671 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
672                                 long *value)
673 {
674         if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
675                 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
676 }
677
678 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
679 {
680         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
681                             be16_to_cpu(sfp->diag.cal_t_offset), value);
682
683         if (*value >= 0x8000)
684                 *value -= 0x10000;
685
686         *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
687 }
688
689 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
690 {
691         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
692                             be16_to_cpu(sfp->diag.cal_v_offset), value);
693
694         *value = DIV_ROUND_CLOSEST(*value, 10);
695 }
696
697 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
698 {
699         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
700                             be16_to_cpu(sfp->diag.cal_txi_offset), value);
701
702         *value = DIV_ROUND_CLOSEST(*value, 500);
703 }
704
705 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
706 {
707         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
708                             be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
709
710         *value = DIV_ROUND_CLOSEST(*value, 10);
711 }
712
713 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
714 {
715         int err;
716
717         err = sfp_hwmon_read_sensor(sfp, reg, value);
718         if (err < 0)
719                 return err;
720
721         sfp_hwmon_calibrate_temp(sfp, value);
722
723         return 0;
724 }
725
726 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
727 {
728         int err;
729
730         err = sfp_hwmon_read_sensor(sfp, reg, value);
731         if (err < 0)
732                 return err;
733
734         sfp_hwmon_calibrate_vcc(sfp, value);
735
736         return 0;
737 }
738
739 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
740 {
741         int err;
742
743         err = sfp_hwmon_read_sensor(sfp, reg, value);
744         if (err < 0)
745                 return err;
746
747         sfp_hwmon_calibrate_bias(sfp, value);
748
749         return 0;
750 }
751
752 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
753 {
754         int err;
755
756         err = sfp_hwmon_read_sensor(sfp, reg, value);
757         if (err < 0)
758                 return err;
759
760         sfp_hwmon_calibrate_tx_power(sfp, value);
761
762         return 0;
763 }
764
765 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
766 {
767         int err;
768
769         err = sfp_hwmon_read_sensor(sfp, reg, value);
770         if (err < 0)
771                 return err;
772
773         sfp_hwmon_to_rx_power(value);
774
775         return 0;
776 }
777
778 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
779 {
780         u8 status;
781         int err;
782
783         switch (attr) {
784         case hwmon_temp_input:
785                 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
786
787         case hwmon_temp_lcrit:
788                 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
789                 sfp_hwmon_calibrate_temp(sfp, value);
790                 return 0;
791
792         case hwmon_temp_min:
793                 *value = be16_to_cpu(sfp->diag.temp_low_warn);
794                 sfp_hwmon_calibrate_temp(sfp, value);
795                 return 0;
796         case hwmon_temp_max:
797                 *value = be16_to_cpu(sfp->diag.temp_high_warn);
798                 sfp_hwmon_calibrate_temp(sfp, value);
799                 return 0;
800
801         case hwmon_temp_crit:
802                 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
803                 sfp_hwmon_calibrate_temp(sfp, value);
804                 return 0;
805
806         case hwmon_temp_lcrit_alarm:
807                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
808                 if (err < 0)
809                         return err;
810
811                 *value = !!(status & SFP_ALARM0_TEMP_LOW);
812                 return 0;
813
814         case hwmon_temp_min_alarm:
815                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
816                 if (err < 0)
817                         return err;
818
819                 *value = !!(status & SFP_WARN0_TEMP_LOW);
820                 return 0;
821
822         case hwmon_temp_max_alarm:
823                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
824                 if (err < 0)
825                         return err;
826
827                 *value = !!(status & SFP_WARN0_TEMP_HIGH);
828                 return 0;
829
830         case hwmon_temp_crit_alarm:
831                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
832                 if (err < 0)
833                         return err;
834
835                 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
836                 return 0;
837         default:
838                 return -EOPNOTSUPP;
839         }
840
841         return -EOPNOTSUPP;
842 }
843
844 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
845 {
846         u8 status;
847         int err;
848
849         switch (attr) {
850         case hwmon_in_input:
851                 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
852
853         case hwmon_in_lcrit:
854                 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
855                 sfp_hwmon_calibrate_vcc(sfp, value);
856                 return 0;
857
858         case hwmon_in_min:
859                 *value = be16_to_cpu(sfp->diag.volt_low_warn);
860                 sfp_hwmon_calibrate_vcc(sfp, value);
861                 return 0;
862
863         case hwmon_in_max:
864                 *value = be16_to_cpu(sfp->diag.volt_high_warn);
865                 sfp_hwmon_calibrate_vcc(sfp, value);
866                 return 0;
867
868         case hwmon_in_crit:
869                 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
870                 sfp_hwmon_calibrate_vcc(sfp, value);
871                 return 0;
872
873         case hwmon_in_lcrit_alarm:
874                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
875                 if (err < 0)
876                         return err;
877
878                 *value = !!(status & SFP_ALARM0_VCC_LOW);
879                 return 0;
880
881         case hwmon_in_min_alarm:
882                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
883                 if (err < 0)
884                         return err;
885
886                 *value = !!(status & SFP_WARN0_VCC_LOW);
887                 return 0;
888
889         case hwmon_in_max_alarm:
890                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
891                 if (err < 0)
892                         return err;
893
894                 *value = !!(status & SFP_WARN0_VCC_HIGH);
895                 return 0;
896
897         case hwmon_in_crit_alarm:
898                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
899                 if (err < 0)
900                         return err;
901
902                 *value = !!(status & SFP_ALARM0_VCC_HIGH);
903                 return 0;
904         default:
905                 return -EOPNOTSUPP;
906         }
907
908         return -EOPNOTSUPP;
909 }
910
911 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
912 {
913         u8 status;
914         int err;
915
916         switch (attr) {
917         case hwmon_curr_input:
918                 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
919
920         case hwmon_curr_lcrit:
921                 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
922                 sfp_hwmon_calibrate_bias(sfp, value);
923                 return 0;
924
925         case hwmon_curr_min:
926                 *value = be16_to_cpu(sfp->diag.bias_low_warn);
927                 sfp_hwmon_calibrate_bias(sfp, value);
928                 return 0;
929
930         case hwmon_curr_max:
931                 *value = be16_to_cpu(sfp->diag.bias_high_warn);
932                 sfp_hwmon_calibrate_bias(sfp, value);
933                 return 0;
934
935         case hwmon_curr_crit:
936                 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
937                 sfp_hwmon_calibrate_bias(sfp, value);
938                 return 0;
939
940         case hwmon_curr_lcrit_alarm:
941                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
942                 if (err < 0)
943                         return err;
944
945                 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
946                 return 0;
947
948         case hwmon_curr_min_alarm:
949                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
950                 if (err < 0)
951                         return err;
952
953                 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
954                 return 0;
955
956         case hwmon_curr_max_alarm:
957                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
958                 if (err < 0)
959                         return err;
960
961                 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
962                 return 0;
963
964         case hwmon_curr_crit_alarm:
965                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
966                 if (err < 0)
967                         return err;
968
969                 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
970                 return 0;
971         default:
972                 return -EOPNOTSUPP;
973         }
974
975         return -EOPNOTSUPP;
976 }
977
978 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
979 {
980         u8 status;
981         int err;
982
983         switch (attr) {
984         case hwmon_power_input:
985                 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
986
987         case hwmon_power_lcrit:
988                 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
989                 sfp_hwmon_calibrate_tx_power(sfp, value);
990                 return 0;
991
992         case hwmon_power_min:
993                 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
994                 sfp_hwmon_calibrate_tx_power(sfp, value);
995                 return 0;
996
997         case hwmon_power_max:
998                 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
999                 sfp_hwmon_calibrate_tx_power(sfp, value);
1000                 return 0;
1001
1002         case hwmon_power_crit:
1003                 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1004                 sfp_hwmon_calibrate_tx_power(sfp, value);
1005                 return 0;
1006
1007         case hwmon_power_lcrit_alarm:
1008                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1009                 if (err < 0)
1010                         return err;
1011
1012                 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1013                 return 0;
1014
1015         case hwmon_power_min_alarm:
1016                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1017                 if (err < 0)
1018                         return err;
1019
1020                 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1021                 return 0;
1022
1023         case hwmon_power_max_alarm:
1024                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1025                 if (err < 0)
1026                         return err;
1027
1028                 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1029                 return 0;
1030
1031         case hwmon_power_crit_alarm:
1032                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1033                 if (err < 0)
1034                         return err;
1035
1036                 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1037                 return 0;
1038         default:
1039                 return -EOPNOTSUPP;
1040         }
1041
1042         return -EOPNOTSUPP;
1043 }
1044
1045 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1046 {
1047         u8 status;
1048         int err;
1049
1050         switch (attr) {
1051         case hwmon_power_input:
1052                 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1053
1054         case hwmon_power_lcrit:
1055                 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1056                 sfp_hwmon_to_rx_power(value);
1057                 return 0;
1058
1059         case hwmon_power_min:
1060                 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1061                 sfp_hwmon_to_rx_power(value);
1062                 return 0;
1063
1064         case hwmon_power_max:
1065                 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1066                 sfp_hwmon_to_rx_power(value);
1067                 return 0;
1068
1069         case hwmon_power_crit:
1070                 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1071                 sfp_hwmon_to_rx_power(value);
1072                 return 0;
1073
1074         case hwmon_power_lcrit_alarm:
1075                 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1076                 if (err < 0)
1077                         return err;
1078
1079                 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1080                 return 0;
1081
1082         case hwmon_power_min_alarm:
1083                 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1084                 if (err < 0)
1085                         return err;
1086
1087                 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1088                 return 0;
1089
1090         case hwmon_power_max_alarm:
1091                 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1092                 if (err < 0)
1093                         return err;
1094
1095                 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1096                 return 0;
1097
1098         case hwmon_power_crit_alarm:
1099                 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1100                 if (err < 0)
1101                         return err;
1102
1103                 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1104                 return 0;
1105         default:
1106                 return -EOPNOTSUPP;
1107         }
1108
1109         return -EOPNOTSUPP;
1110 }
1111
1112 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1113                           u32 attr, int channel, long *value)
1114 {
1115         struct sfp *sfp = dev_get_drvdata(dev);
1116
1117         switch (type) {
1118         case hwmon_temp:
1119                 return sfp_hwmon_temp(sfp, attr, value);
1120         case hwmon_in:
1121                 return sfp_hwmon_vcc(sfp, attr, value);
1122         case hwmon_curr:
1123                 return sfp_hwmon_bias(sfp, attr, value);
1124         case hwmon_power:
1125                 switch (channel) {
1126                 case 0:
1127                         return sfp_hwmon_tx_power(sfp, attr, value);
1128                 case 1:
1129                         return sfp_hwmon_rx_power(sfp, attr, value);
1130                 default:
1131                         return -EOPNOTSUPP;
1132                 }
1133         default:
1134                 return -EOPNOTSUPP;
1135         }
1136 }
1137
1138 static const char *const sfp_hwmon_power_labels[] = {
1139         "TX_power",
1140         "RX_power",
1141 };
1142
1143 static int sfp_hwmon_read_string(struct device *dev,
1144                                  enum hwmon_sensor_types type,
1145                                  u32 attr, int channel, const char **str)
1146 {
1147         switch (type) {
1148         case hwmon_curr:
1149                 switch (attr) {
1150                 case hwmon_curr_label:
1151                         *str = "bias";
1152                         return 0;
1153                 default:
1154                         return -EOPNOTSUPP;
1155                 }
1156                 break;
1157         case hwmon_temp:
1158                 switch (attr) {
1159                 case hwmon_temp_label:
1160                         *str = "temperature";
1161                         return 0;
1162                 default:
1163                         return -EOPNOTSUPP;
1164                 }
1165                 break;
1166         case hwmon_in:
1167                 switch (attr) {
1168                 case hwmon_in_label:
1169                         *str = "VCC";
1170                         return 0;
1171                 default:
1172                         return -EOPNOTSUPP;
1173                 }
1174                 break;
1175         case hwmon_power:
1176                 switch (attr) {
1177                 case hwmon_power_label:
1178                         *str = sfp_hwmon_power_labels[channel];
1179                         return 0;
1180                 default:
1181                         return -EOPNOTSUPP;
1182                 }
1183                 break;
1184         default:
1185                 return -EOPNOTSUPP;
1186         }
1187
1188         return -EOPNOTSUPP;
1189 }
1190
1191 static const struct hwmon_ops sfp_hwmon_ops = {
1192         .is_visible = sfp_hwmon_is_visible,
1193         .read = sfp_hwmon_read,
1194         .read_string = sfp_hwmon_read_string,
1195 };
1196
1197 static u32 sfp_hwmon_chip_config[] = {
1198         HWMON_C_REGISTER_TZ,
1199         0,
1200 };
1201
1202 static const struct hwmon_channel_info sfp_hwmon_chip = {
1203         .type = hwmon_chip,
1204         .config = sfp_hwmon_chip_config,
1205 };
1206
1207 static u32 sfp_hwmon_temp_config[] = {
1208         HWMON_T_INPUT |
1209         HWMON_T_MAX | HWMON_T_MIN |
1210         HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1211         HWMON_T_CRIT | HWMON_T_LCRIT |
1212         HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1213         HWMON_T_LABEL,
1214         0,
1215 };
1216
1217 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1218         .type = hwmon_temp,
1219         .config = sfp_hwmon_temp_config,
1220 };
1221
1222 static u32 sfp_hwmon_vcc_config[] = {
1223         HWMON_I_INPUT |
1224         HWMON_I_MAX | HWMON_I_MIN |
1225         HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1226         HWMON_I_CRIT | HWMON_I_LCRIT |
1227         HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1228         HWMON_I_LABEL,
1229         0,
1230 };
1231
1232 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1233         .type = hwmon_in,
1234         .config = sfp_hwmon_vcc_config,
1235 };
1236
1237 static u32 sfp_hwmon_bias_config[] = {
1238         HWMON_C_INPUT |
1239         HWMON_C_MAX | HWMON_C_MIN |
1240         HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1241         HWMON_C_CRIT | HWMON_C_LCRIT |
1242         HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1243         HWMON_C_LABEL,
1244         0,
1245 };
1246
1247 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1248         .type = hwmon_curr,
1249         .config = sfp_hwmon_bias_config,
1250 };
1251
1252 static u32 sfp_hwmon_power_config[] = {
1253         /* Transmit power */
1254         HWMON_P_INPUT |
1255         HWMON_P_MAX | HWMON_P_MIN |
1256         HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1257         HWMON_P_CRIT | HWMON_P_LCRIT |
1258         HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1259         HWMON_P_LABEL,
1260         /* Receive power */
1261         HWMON_P_INPUT |
1262         HWMON_P_MAX | HWMON_P_MIN |
1263         HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1264         HWMON_P_CRIT | HWMON_P_LCRIT |
1265         HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1266         HWMON_P_LABEL,
1267         0,
1268 };
1269
1270 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1271         .type = hwmon_power,
1272         .config = sfp_hwmon_power_config,
1273 };
1274
1275 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1276         &sfp_hwmon_chip,
1277         &sfp_hwmon_vcc_channel_info,
1278         &sfp_hwmon_temp_channel_info,
1279         &sfp_hwmon_bias_channel_info,
1280         &sfp_hwmon_power_channel_info,
1281         NULL,
1282 };
1283
1284 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1285         .ops = &sfp_hwmon_ops,
1286         .info = sfp_hwmon_info,
1287 };
1288
1289 static void sfp_hwmon_probe(struct work_struct *work)
1290 {
1291         struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1292         int err, i;
1293
1294         /* hwmon interface needs to access 16bit registers in atomic way to
1295          * guarantee coherency of the diagnostic monitoring data. If it is not
1296          * possible to guarantee coherency because EEPROM is broken in such way
1297          * that does not support atomic 16bit read operation then we have to
1298          * skip registration of hwmon device.
1299          */
1300         if (sfp->i2c_block_size < 2) {
1301                 dev_info(sfp->dev,
1302                          "skipping hwmon device registration due to broken EEPROM\n");
1303                 dev_info(sfp->dev,
1304                          "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1305                 return;
1306         }
1307
1308         err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1309         if (err < 0) {
1310                 if (sfp->hwmon_tries--) {
1311                         mod_delayed_work(system_wq, &sfp->hwmon_probe,
1312                                          T_PROBE_RETRY_SLOW);
1313                 } else {
1314                         dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1315                                  ERR_PTR(err));
1316                 }
1317                 return;
1318         }
1319
1320         sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1321         if (!sfp->hwmon_name) {
1322                 dev_err(sfp->dev, "out of memory for hwmon name\n");
1323                 return;
1324         }
1325
1326         for (i = 0; sfp->hwmon_name[i]; i++)
1327                 if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1328                         sfp->hwmon_name[i] = '_';
1329
1330         sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1331                                                          sfp->hwmon_name, sfp,
1332                                                          &sfp_hwmon_chip_info,
1333                                                          NULL);
1334         if (IS_ERR(sfp->hwmon_dev))
1335                 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1336                         PTR_ERR(sfp->hwmon_dev));
1337 }
1338
1339 static int sfp_hwmon_insert(struct sfp *sfp)
1340 {
1341         if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1342                 return 0;
1343
1344         if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1345                 return 0;
1346
1347         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1348                 /* This driver in general does not support address
1349                  * change.
1350                  */
1351                 return 0;
1352
1353         mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1354         sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1355
1356         return 0;
1357 }
1358
1359 static void sfp_hwmon_remove(struct sfp *sfp)
1360 {
1361         cancel_delayed_work_sync(&sfp->hwmon_probe);
1362         if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1363                 hwmon_device_unregister(sfp->hwmon_dev);
1364                 sfp->hwmon_dev = NULL;
1365                 kfree(sfp->hwmon_name);
1366         }
1367 }
1368
1369 static int sfp_hwmon_init(struct sfp *sfp)
1370 {
1371         INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1372
1373         return 0;
1374 }
1375
1376 static void sfp_hwmon_exit(struct sfp *sfp)
1377 {
1378         cancel_delayed_work_sync(&sfp->hwmon_probe);
1379 }
1380 #else
1381 static int sfp_hwmon_insert(struct sfp *sfp)
1382 {
1383         return 0;
1384 }
1385
1386 static void sfp_hwmon_remove(struct sfp *sfp)
1387 {
1388 }
1389
1390 static int sfp_hwmon_init(struct sfp *sfp)
1391 {
1392         return 0;
1393 }
1394
1395 static void sfp_hwmon_exit(struct sfp *sfp)
1396 {
1397 }
1398 #endif
1399
1400 /* Helpers */
1401 static void sfp_module_tx_disable(struct sfp *sfp)
1402 {
1403         dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1404                 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1405         sfp->state |= SFP_F_TX_DISABLE;
1406         sfp_set_state(sfp, sfp->state);
1407 }
1408
1409 static void sfp_module_tx_enable(struct sfp *sfp)
1410 {
1411         dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1412                 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1413         sfp->state &= ~SFP_F_TX_DISABLE;
1414         sfp_set_state(sfp, sfp->state);
1415 }
1416
1417 #if IS_ENABLED(CONFIG_DEBUG_FS)
1418 static int sfp_debug_state_show(struct seq_file *s, void *data)
1419 {
1420         struct sfp *sfp = s->private;
1421
1422         seq_printf(s, "Module state: %s\n",
1423                    mod_state_to_str(sfp->sm_mod_state));
1424         seq_printf(s, "Module probe attempts: %d %d\n",
1425                    R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1426                    R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1427         seq_printf(s, "Device state: %s\n",
1428                    dev_state_to_str(sfp->sm_dev_state));
1429         seq_printf(s, "Main state: %s\n",
1430                    sm_state_to_str(sfp->sm_state));
1431         seq_printf(s, "Fault recovery remaining retries: %d\n",
1432                    sfp->sm_fault_retries);
1433         seq_printf(s, "PHY probe remaining retries: %d\n",
1434                    sfp->sm_phy_retries);
1435         seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1436         seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1437         seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1438         seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1439         return 0;
1440 }
1441 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1442
1443 static void sfp_debugfs_init(struct sfp *sfp)
1444 {
1445         sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1446
1447         debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1448                             &sfp_debug_state_fops);
1449 }
1450
1451 static void sfp_debugfs_exit(struct sfp *sfp)
1452 {
1453         debugfs_remove_recursive(sfp->debugfs_dir);
1454 }
1455 #else
1456 static void sfp_debugfs_init(struct sfp *sfp)
1457 {
1458 }
1459
1460 static void sfp_debugfs_exit(struct sfp *sfp)
1461 {
1462 }
1463 #endif
1464
1465 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1466 {
1467         unsigned int state = sfp->state;
1468
1469         if (state & SFP_F_TX_DISABLE)
1470                 return;
1471
1472         sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1473
1474         udelay(T_RESET_US);
1475
1476         sfp_set_state(sfp, state);
1477 }
1478
1479 /* SFP state machine */
1480 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1481 {
1482         if (timeout)
1483                 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1484                                  timeout);
1485         else
1486                 cancel_delayed_work(&sfp->timeout);
1487 }
1488
1489 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1490                         unsigned int timeout)
1491 {
1492         sfp->sm_state = state;
1493         sfp_sm_set_timer(sfp, timeout);
1494 }
1495
1496 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1497                             unsigned int timeout)
1498 {
1499         sfp->sm_mod_state = state;
1500         sfp_sm_set_timer(sfp, timeout);
1501 }
1502
1503 static void sfp_sm_phy_detach(struct sfp *sfp)
1504 {
1505         sfp_remove_phy(sfp->sfp_bus);
1506         phy_device_remove(sfp->mod_phy);
1507         phy_device_free(sfp->mod_phy);
1508         sfp->mod_phy = NULL;
1509 }
1510
1511 static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1512 {
1513         struct phy_device *phy;
1514         int err;
1515
1516         phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1517         if (phy == ERR_PTR(-ENODEV))
1518                 return PTR_ERR(phy);
1519         if (IS_ERR(phy)) {
1520                 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1521                 return PTR_ERR(phy);
1522         }
1523
1524         err = phy_device_register(phy);
1525         if (err) {
1526                 phy_device_free(phy);
1527                 dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1528                         ERR_PTR(err));
1529                 return err;
1530         }
1531
1532         err = sfp_add_phy(sfp->sfp_bus, phy);
1533         if (err) {
1534                 phy_device_remove(phy);
1535                 phy_device_free(phy);
1536                 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1537                 return err;
1538         }
1539
1540         sfp->mod_phy = phy;
1541
1542         return 0;
1543 }
1544
1545 static void sfp_sm_link_up(struct sfp *sfp)
1546 {
1547         sfp_link_up(sfp->sfp_bus);
1548         sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1549 }
1550
1551 static void sfp_sm_link_down(struct sfp *sfp)
1552 {
1553         sfp_link_down(sfp->sfp_bus);
1554 }
1555
1556 static void sfp_sm_link_check_los(struct sfp *sfp)
1557 {
1558         const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1559         const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1560         __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1561         bool los = false;
1562
1563         /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1564          * are set, we assume that no LOS signal is available. If both are
1565          * set, we assume LOS is not implemented (and is meaningless.)
1566          */
1567         if (los_options == los_inverted)
1568                 los = !(sfp->state & SFP_F_LOS);
1569         else if (los_options == los_normal)
1570                 los = !!(sfp->state & SFP_F_LOS);
1571
1572         if (los)
1573                 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1574         else
1575                 sfp_sm_link_up(sfp);
1576 }
1577
1578 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1579 {
1580         const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1581         const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1582         __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1583
1584         return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1585                (los_options == los_normal && event == SFP_E_LOS_HIGH);
1586 }
1587
1588 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1589 {
1590         const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1591         const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1592         __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1593
1594         return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1595                (los_options == los_normal && event == SFP_E_LOS_LOW);
1596 }
1597
1598 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1599 {
1600         if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1601                 dev_err(sfp->dev,
1602                         "module persistently indicates fault, disabling\n");
1603                 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1604         } else {
1605                 if (warn)
1606                         dev_err(sfp->dev, "module transmit fault indicated\n");
1607
1608                 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1609         }
1610 }
1611
1612 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1613  * normally sits at I2C bus address 0x56, and may either be a clause 22
1614  * or clause 45 PHY.
1615  *
1616  * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1617  * negotiation enabled, but some may be in 1000base-X - which is for the
1618  * PHY driver to determine.
1619  *
1620  * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1621  * mode according to the negotiated line speed.
1622  */
1623 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1624 {
1625         int err = 0;
1626
1627         switch (sfp->id.base.extended_cc) {
1628         case SFF8024_ECC_10GBASE_T_SFI:
1629         case SFF8024_ECC_10GBASE_T_SR:
1630         case SFF8024_ECC_5GBASE_T:
1631         case SFF8024_ECC_2_5GBASE_T:
1632                 err = sfp_sm_probe_phy(sfp, true);
1633                 break;
1634
1635         default:
1636                 if (sfp->id.base.e1000_base_t)
1637                         err = sfp_sm_probe_phy(sfp, false);
1638                 break;
1639         }
1640         return err;
1641 }
1642
1643 static int sfp_module_parse_power(struct sfp *sfp)
1644 {
1645         u32 power_mW = 1000;
1646         bool supports_a2;
1647
1648         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1649                 power_mW = 1500;
1650         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1651                 power_mW = 2000;
1652
1653         supports_a2 = sfp->id.ext.sff8472_compliance !=
1654                                 SFP_SFF8472_COMPLIANCE_NONE ||
1655                       sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1656
1657         if (power_mW > sfp->max_power_mW) {
1658                 /* Module power specification exceeds the allowed maximum. */
1659                 if (!supports_a2) {
1660                         /* The module appears not to implement bus address
1661                          * 0xa2, so assume that the module powers up in the
1662                          * indicated mode.
1663                          */
1664                         dev_err(sfp->dev,
1665                                 "Host does not support %u.%uW modules\n",
1666                                 power_mW / 1000, (power_mW / 100) % 10);
1667                         return -EINVAL;
1668                 } else {
1669                         dev_warn(sfp->dev,
1670                                  "Host does not support %u.%uW modules, module left in power mode 1\n",
1671                                  power_mW / 1000, (power_mW / 100) % 10);
1672                         return 0;
1673                 }
1674         }
1675
1676         if (power_mW <= 1000) {
1677                 /* Modules below 1W do not require a power change sequence */
1678                 sfp->module_power_mW = power_mW;
1679                 return 0;
1680         }
1681
1682         if (!supports_a2) {
1683                 /* The module power level is below the host maximum and the
1684                  * module appears not to implement bus address 0xa2, so assume
1685                  * that the module powers up in the indicated mode.
1686                  */
1687                 return 0;
1688         }
1689
1690         /* If the module requires a higher power mode, but also requires
1691          * an address change sequence, warn the user that the module may
1692          * not be functional.
1693          */
1694         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1695                 dev_warn(sfp->dev,
1696                          "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1697                          power_mW / 1000, (power_mW / 100) % 10);
1698                 return 0;
1699         }
1700
1701         sfp->module_power_mW = power_mW;
1702
1703         return 0;
1704 }
1705
1706 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1707 {
1708         u8 val;
1709         int err;
1710
1711         err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1712         if (err != sizeof(val)) {
1713                 dev_err(sfp->dev, "Failed to read EEPROM: %pe\n", ERR_PTR(err));
1714                 return -EAGAIN;
1715         }
1716
1717         /* DM7052 reports as a high power module, responds to reads (with
1718          * all bytes 0xff) at 0x51 but does not accept writes.  In any case,
1719          * if the bit is already set, we're already in high power mode.
1720          */
1721         if (!!(val & BIT(0)) == enable)
1722                 return 0;
1723
1724         if (enable)
1725                 val |= BIT(0);
1726         else
1727                 val &= ~BIT(0);
1728
1729         err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1730         if (err != sizeof(val)) {
1731                 dev_err(sfp->dev, "Failed to write EEPROM: %pe\n",
1732                         ERR_PTR(err));
1733                 return -EAGAIN;
1734         }
1735
1736         if (enable)
1737                 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1738                          sfp->module_power_mW / 1000,
1739                          (sfp->module_power_mW / 100) % 10);
1740
1741         return 0;
1742 }
1743
1744 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1745  * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1746  * not support multibyte reads from the EEPROM. Each multi-byte read
1747  * operation returns just one byte of EEPROM followed by zeros. There is
1748  * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1749  * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1750  * name and vendor id into EEPROM, so there is even no way to detect if
1751  * module is V-SOL V2801F. Therefore check for those zeros in the read
1752  * data and then based on check switch to reading EEPROM to one byte
1753  * at a time.
1754  */
1755 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1756 {
1757         size_t i, block_size = sfp->i2c_block_size;
1758
1759         /* Already using byte IO */
1760         if (block_size == 1)
1761                 return false;
1762
1763         for (i = 1; i < len; i += block_size) {
1764                 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1765                         return false;
1766         }
1767         return true;
1768 }
1769
1770 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1771 {
1772         u8 check;
1773         int err;
1774
1775         if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1776             id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1777             id->base.connector != SFF8024_CONNECTOR_LC) {
1778                 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1779                 id->base.phys_id = SFF8024_ID_SFF_8472;
1780                 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1781                 id->base.connector = SFF8024_CONNECTOR_LC;
1782                 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1783                 if (err != 3) {
1784                         dev_err(sfp->dev,
1785                                 "Failed to rewrite module EEPROM: %pe\n",
1786                                 ERR_PTR(err));
1787                         return err;
1788                 }
1789
1790                 /* Cotsworks modules have been found to require a delay between write operations. */
1791                 mdelay(50);
1792
1793                 /* Update base structure checksum */
1794                 check = sfp_check(&id->base, sizeof(id->base) - 1);
1795                 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1796                 if (err != 1) {
1797                         dev_err(sfp->dev,
1798                                 "Failed to update base structure checksum in fiber module EEPROM: %pe\n",
1799                                 ERR_PTR(err));
1800                         return err;
1801                 }
1802         }
1803         return 0;
1804 }
1805
1806 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1807 {
1808         /* SFP module inserted - read I2C data */
1809         struct sfp_eeprom_id id;
1810         bool cotsworks_sfbg;
1811         bool cotsworks;
1812         u8 check;
1813         int ret;
1814
1815         /* Some SFP modules and also some Linux I2C drivers do not like reads
1816          * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at
1817          * a time.
1818          */
1819         sfp->i2c_block_size = 16;
1820
1821         ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1822         if (ret < 0) {
1823                 if (report)
1824                         dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
1825                                 ERR_PTR(ret));
1826                 return -EAGAIN;
1827         }
1828
1829         if (ret != sizeof(id.base)) {
1830                 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
1831                 return -EAGAIN;
1832         }
1833
1834         /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1835          * address 0x51 is just one byte at a time. Also SFF-8472 requires
1836          * that EEPROM supports atomic 16bit read operation for diagnostic
1837          * fields, so do not switch to one byte reading at a time unless it
1838          * is really required and we have no other option.
1839          */
1840         if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1841                 dev_info(sfp->dev,
1842                          "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1843                 dev_info(sfp->dev,
1844                          "Switching to reading EEPROM to one byte at a time\n");
1845                 sfp->i2c_block_size = 1;
1846
1847                 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1848                 if (ret < 0) {
1849                         if (report)
1850                                 dev_err(sfp->dev,
1851                                         "failed to read EEPROM: %pe\n",
1852                                         ERR_PTR(ret));
1853                         return -EAGAIN;
1854                 }
1855
1856                 if (ret != sizeof(id.base)) {
1857                         dev_err(sfp->dev, "EEPROM short read: %pe\n",
1858                                 ERR_PTR(ret));
1859                         return -EAGAIN;
1860                 }
1861         }
1862
1863         /* Cotsworks do not seem to update the checksums when they
1864          * do the final programming with the final module part number,
1865          * serial number and date code.
1866          */
1867         cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1868         cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1869
1870         /* Cotsworks SFF module EEPROM do not always have valid phys_id,
1871          * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
1872          * Cotsworks PN matches and bytes are not correct.
1873          */
1874         if (cotsworks && cotsworks_sfbg) {
1875                 ret = sfp_cotsworks_fixup_check(sfp, &id);
1876                 if (ret < 0)
1877                         return ret;
1878         }
1879
1880         /* Validate the checksum over the base structure */
1881         check = sfp_check(&id.base, sizeof(id.base) - 1);
1882         if (check != id.base.cc_base) {
1883                 if (cotsworks) {
1884                         dev_warn(sfp->dev,
1885                                  "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1886                                  check, id.base.cc_base);
1887                 } else {
1888                         dev_err(sfp->dev,
1889                                 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1890                                 check, id.base.cc_base);
1891                         print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1892                                        16, 1, &id, sizeof(id), true);
1893                         return -EINVAL;
1894                 }
1895         }
1896
1897         ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
1898         if (ret < 0) {
1899                 if (report)
1900                         dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
1901                                 ERR_PTR(ret));
1902                 return -EAGAIN;
1903         }
1904
1905         if (ret != sizeof(id.ext)) {
1906                 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
1907                 return -EAGAIN;
1908         }
1909
1910         check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1911         if (check != id.ext.cc_ext) {
1912                 if (cotsworks) {
1913                         dev_warn(sfp->dev,
1914                                  "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1915                                  check, id.ext.cc_ext);
1916                 } else {
1917                         dev_err(sfp->dev,
1918                                 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1919                                 check, id.ext.cc_ext);
1920                         print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1921                                        16, 1, &id, sizeof(id), true);
1922                         memset(&id.ext, 0, sizeof(id.ext));
1923                 }
1924         }
1925
1926         sfp->id = id;
1927
1928         dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1929                  (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1930                  (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1931                  (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1932                  (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1933                  (int)sizeof(id.ext.datecode), id.ext.datecode);
1934
1935         /* Check whether we support this module */
1936         if (!sfp->type->module_supported(&id)) {
1937                 dev_err(sfp->dev,
1938                         "module is not supported - phys id 0x%02x 0x%02x\n",
1939                         sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1940                 return -EINVAL;
1941         }
1942
1943         /* If the module requires address swap mode, warn about it */
1944         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1945                 dev_warn(sfp->dev,
1946                          "module address swap to access page 0xA2 is not supported.\n");
1947
1948         /* Parse the module power requirement */
1949         ret = sfp_module_parse_power(sfp);
1950         if (ret < 0)
1951                 return ret;
1952
1953         if (!memcmp(id.base.vendor_name, "ALCATELLUCENT   ", 16) &&
1954             !memcmp(id.base.vendor_pn, "3FE46541AA      ", 16))
1955                 sfp->module_t_start_up = T_START_UP_BAD_GPON;
1956         else
1957                 sfp->module_t_start_up = T_START_UP;
1958
1959         return 0;
1960 }
1961
1962 static void sfp_sm_mod_remove(struct sfp *sfp)
1963 {
1964         if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1965                 sfp_module_remove(sfp->sfp_bus);
1966
1967         sfp_hwmon_remove(sfp);
1968
1969         memset(&sfp->id, 0, sizeof(sfp->id));
1970         sfp->module_power_mW = 0;
1971
1972         dev_info(sfp->dev, "module removed\n");
1973 }
1974
1975 /* This state machine tracks the upstream's state */
1976 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1977 {
1978         switch (sfp->sm_dev_state) {
1979         default:
1980                 if (event == SFP_E_DEV_ATTACH)
1981                         sfp->sm_dev_state = SFP_DEV_DOWN;
1982                 break;
1983
1984         case SFP_DEV_DOWN:
1985                 if (event == SFP_E_DEV_DETACH)
1986                         sfp->sm_dev_state = SFP_DEV_DETACHED;
1987                 else if (event == SFP_E_DEV_UP)
1988                         sfp->sm_dev_state = SFP_DEV_UP;
1989                 break;
1990
1991         case SFP_DEV_UP:
1992                 if (event == SFP_E_DEV_DETACH)
1993                         sfp->sm_dev_state = SFP_DEV_DETACHED;
1994                 else if (event == SFP_E_DEV_DOWN)
1995                         sfp->sm_dev_state = SFP_DEV_DOWN;
1996                 break;
1997         }
1998 }
1999
2000 /* This state machine tracks the insert/remove state of the module, probes
2001  * the on-board EEPROM, and sets up the power level.
2002  */
2003 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2004 {
2005         int err;
2006
2007         /* Handle remove event globally, it resets this state machine */
2008         if (event == SFP_E_REMOVE) {
2009                 if (sfp->sm_mod_state > SFP_MOD_PROBE)
2010                         sfp_sm_mod_remove(sfp);
2011                 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2012                 return;
2013         }
2014
2015         /* Handle device detach globally */
2016         if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2017             sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2018                 if (sfp->module_power_mW > 1000 &&
2019                     sfp->sm_mod_state > SFP_MOD_HPOWER)
2020                         sfp_sm_mod_hpower(sfp, false);
2021                 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2022                 return;
2023         }
2024
2025         switch (sfp->sm_mod_state) {
2026         default:
2027                 if (event == SFP_E_INSERT) {
2028                         sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2029                         sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2030                         sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2031                 }
2032                 break;
2033
2034         case SFP_MOD_PROBE:
2035                 /* Wait for T_PROBE_INIT to time out */
2036                 if (event != SFP_E_TIMEOUT)
2037                         break;
2038
2039                 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2040                 if (err == -EAGAIN) {
2041                         if (sfp->sm_mod_tries_init &&
2042                            --sfp->sm_mod_tries_init) {
2043                                 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2044                                 break;
2045                         } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2046                                 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2047                                         dev_warn(sfp->dev,
2048                                                  "please wait, module slow to respond\n");
2049                                 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2050                                 break;
2051                         }
2052                 }
2053                 if (err < 0) {
2054                         sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2055                         break;
2056                 }
2057
2058                 err = sfp_hwmon_insert(sfp);
2059                 if (err)
2060                         dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2061                                  ERR_PTR(err));
2062
2063                 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2064                 fallthrough;
2065         case SFP_MOD_WAITDEV:
2066                 /* Ensure that the device is attached before proceeding */
2067                 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2068                         break;
2069
2070                 /* Report the module insertion to the upstream device */
2071                 err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
2072                 if (err < 0) {
2073                         sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2074                         break;
2075                 }
2076
2077                 /* If this is a power level 1 module, we are done */
2078                 if (sfp->module_power_mW <= 1000)
2079                         goto insert;
2080
2081                 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2082                 fallthrough;
2083         case SFP_MOD_HPOWER:
2084                 /* Enable high power mode */
2085                 err = sfp_sm_mod_hpower(sfp, true);
2086                 if (err < 0) {
2087                         if (err != -EAGAIN) {
2088                                 sfp_module_remove(sfp->sfp_bus);
2089                                 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2090                         } else {
2091                                 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2092                         }
2093                         break;
2094                 }
2095
2096                 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2097                 break;
2098
2099         case SFP_MOD_WAITPWR:
2100                 /* Wait for T_HPOWER_LEVEL to time out */
2101                 if (event != SFP_E_TIMEOUT)
2102                         break;
2103
2104         insert:
2105                 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2106                 break;
2107
2108         case SFP_MOD_PRESENT:
2109         case SFP_MOD_ERROR:
2110                 break;
2111         }
2112 }
2113
2114 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2115 {
2116         unsigned long timeout;
2117         int ret;
2118
2119         /* Some events are global */
2120         if (sfp->sm_state != SFP_S_DOWN &&
2121             (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2122              sfp->sm_dev_state != SFP_DEV_UP)) {
2123                 if (sfp->sm_state == SFP_S_LINK_UP &&
2124                     sfp->sm_dev_state == SFP_DEV_UP)
2125                         sfp_sm_link_down(sfp);
2126                 if (sfp->sm_state > SFP_S_INIT)
2127                         sfp_module_stop(sfp->sfp_bus);
2128                 if (sfp->mod_phy)
2129                         sfp_sm_phy_detach(sfp);
2130                 sfp_module_tx_disable(sfp);
2131                 sfp_soft_stop_poll(sfp);
2132                 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2133                 return;
2134         }
2135
2136         /* The main state machine */
2137         switch (sfp->sm_state) {
2138         case SFP_S_DOWN:
2139                 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2140                     sfp->sm_dev_state != SFP_DEV_UP)
2141                         break;
2142
2143                 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2144                         sfp_soft_start_poll(sfp);
2145
2146                 sfp_module_tx_enable(sfp);
2147
2148                 /* Initialise the fault clearance retries */
2149                 sfp->sm_fault_retries = N_FAULT_INIT;
2150
2151                 /* We need to check the TX_FAULT state, which is not defined
2152                  * while TX_DISABLE is asserted. The earliest we want to do
2153                  * anything (such as probe for a PHY) is 50ms.
2154                  */
2155                 sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
2156                 break;
2157
2158         case SFP_S_WAIT:
2159                 if (event != SFP_E_TIMEOUT)
2160                         break;
2161
2162                 if (sfp->state & SFP_F_TX_FAULT) {
2163                         /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2164                          * from the TX_DISABLE deassertion for the module to
2165                          * initialise, which is indicated by TX_FAULT
2166                          * deasserting.
2167                          */
2168                         timeout = sfp->module_t_start_up;
2169                         if (timeout > T_WAIT)
2170                                 timeout -= T_WAIT;
2171                         else
2172                                 timeout = 1;
2173
2174                         sfp_sm_next(sfp, SFP_S_INIT, timeout);
2175                 } else {
2176                         /* TX_FAULT is not asserted, assume the module has
2177                          * finished initialising.
2178                          */
2179                         goto init_done;
2180                 }
2181                 break;
2182
2183         case SFP_S_INIT:
2184                 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2185                         /* TX_FAULT is still asserted after t_init
2186                          * or t_start_up, so assume there is a fault.
2187                          */
2188                         sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2189                                      sfp->sm_fault_retries == N_FAULT_INIT);
2190                 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2191         init_done:
2192                         sfp->sm_phy_retries = R_PHY_RETRY;
2193                         goto phy_probe;
2194                 }
2195                 break;
2196
2197         case SFP_S_INIT_PHY:
2198                 if (event != SFP_E_TIMEOUT)
2199                         break;
2200         phy_probe:
2201                 /* TX_FAULT deasserted or we timed out with TX_FAULT
2202                  * clear.  Probe for the PHY and check the LOS state.
2203                  */
2204                 ret = sfp_sm_probe_for_phy(sfp);
2205                 if (ret == -ENODEV) {
2206                         if (--sfp->sm_phy_retries) {
2207                                 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2208                                 break;
2209                         } else {
2210                                 dev_info(sfp->dev, "no PHY detected\n");
2211                         }
2212                 } else if (ret) {
2213                         sfp_sm_next(sfp, SFP_S_FAIL, 0);
2214                         break;
2215                 }
2216                 if (sfp_module_start(sfp->sfp_bus)) {
2217                         sfp_sm_next(sfp, SFP_S_FAIL, 0);
2218                         break;
2219                 }
2220                 sfp_sm_link_check_los(sfp);
2221
2222                 /* Reset the fault retry count */
2223                 sfp->sm_fault_retries = N_FAULT;
2224                 break;
2225
2226         case SFP_S_INIT_TX_FAULT:
2227                 if (event == SFP_E_TIMEOUT) {
2228                         sfp_module_tx_fault_reset(sfp);
2229                         sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2230                 }
2231                 break;
2232
2233         case SFP_S_WAIT_LOS:
2234                 if (event == SFP_E_TX_FAULT)
2235                         sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2236                 else if (sfp_los_event_inactive(sfp, event))
2237                         sfp_sm_link_up(sfp);
2238                 break;
2239
2240         case SFP_S_LINK_UP:
2241                 if (event == SFP_E_TX_FAULT) {
2242                         sfp_sm_link_down(sfp);
2243                         sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2244                 } else if (sfp_los_event_active(sfp, event)) {
2245                         sfp_sm_link_down(sfp);
2246                         sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2247                 }
2248                 break;
2249
2250         case SFP_S_TX_FAULT:
2251                 if (event == SFP_E_TIMEOUT) {
2252                         sfp_module_tx_fault_reset(sfp);
2253                         sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2254                 }
2255                 break;
2256
2257         case SFP_S_REINIT:
2258                 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2259                         sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2260                 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2261                         dev_info(sfp->dev, "module transmit fault recovered\n");
2262                         sfp_sm_link_check_los(sfp);
2263                 }
2264                 break;
2265
2266         case SFP_S_TX_DISABLE:
2267                 break;
2268         }
2269 }
2270
2271 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2272 {
2273         mutex_lock(&sfp->sm_mutex);
2274
2275         dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2276                 mod_state_to_str(sfp->sm_mod_state),
2277                 dev_state_to_str(sfp->sm_dev_state),
2278                 sm_state_to_str(sfp->sm_state),
2279                 event_to_str(event));
2280
2281         sfp_sm_device(sfp, event);
2282         sfp_sm_module(sfp, event);
2283         sfp_sm_main(sfp, event);
2284
2285         dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2286                 mod_state_to_str(sfp->sm_mod_state),
2287                 dev_state_to_str(sfp->sm_dev_state),
2288                 sm_state_to_str(sfp->sm_state));
2289
2290         mutex_unlock(&sfp->sm_mutex);
2291 }
2292
2293 static void sfp_attach(struct sfp *sfp)
2294 {
2295         sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2296 }
2297
2298 static void sfp_detach(struct sfp *sfp)
2299 {
2300         sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2301 }
2302
2303 static void sfp_start(struct sfp *sfp)
2304 {
2305         sfp_sm_event(sfp, SFP_E_DEV_UP);
2306 }
2307
2308 static void sfp_stop(struct sfp *sfp)
2309 {
2310         sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2311 }
2312
2313 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2314 {
2315         /* locking... and check module is present */
2316
2317         if (sfp->id.ext.sff8472_compliance &&
2318             !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2319                 modinfo->type = ETH_MODULE_SFF_8472;
2320                 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2321         } else {
2322                 modinfo->type = ETH_MODULE_SFF_8079;
2323                 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2324         }
2325         return 0;
2326 }
2327
2328 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2329                              u8 *data)
2330 {
2331         unsigned int first, last, len;
2332         int ret;
2333
2334         if (ee->len == 0)
2335                 return -EINVAL;
2336
2337         first = ee->offset;
2338         last = ee->offset + ee->len;
2339         if (first < ETH_MODULE_SFF_8079_LEN) {
2340                 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2341                 len -= first;
2342
2343                 ret = sfp_read(sfp, false, first, data, len);
2344                 if (ret < 0)
2345                         return ret;
2346
2347                 first += len;
2348                 data += len;
2349         }
2350         if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2351                 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2352                 len -= first;
2353                 first -= ETH_MODULE_SFF_8079_LEN;
2354
2355                 ret = sfp_read(sfp, true, first, data, len);
2356                 if (ret < 0)
2357                         return ret;
2358         }
2359         return 0;
2360 }
2361
2362 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2363                                      const struct ethtool_module_eeprom *page,
2364                                      struct netlink_ext_ack *extack)
2365 {
2366         if (page->bank) {
2367                 NL_SET_ERR_MSG(extack, "Banks not supported");
2368                 return -EOPNOTSUPP;
2369         }
2370
2371         if (page->page) {
2372                 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2373                 return -EOPNOTSUPP;
2374         }
2375
2376         if (page->i2c_address != 0x50 &&
2377             page->i2c_address != 0x51) {
2378                 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2379                 return -EOPNOTSUPP;
2380         }
2381
2382         return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2383                         page->data, page->length);
2384 };
2385
2386 static const struct sfp_socket_ops sfp_module_ops = {
2387         .attach = sfp_attach,
2388         .detach = sfp_detach,
2389         .start = sfp_start,
2390         .stop = sfp_stop,
2391         .module_info = sfp_module_info,
2392         .module_eeprom = sfp_module_eeprom,
2393         .module_eeprom_by_page = sfp_module_eeprom_by_page,
2394 };
2395
2396 static void sfp_timeout(struct work_struct *work)
2397 {
2398         struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2399
2400         rtnl_lock();
2401         sfp_sm_event(sfp, SFP_E_TIMEOUT);
2402         rtnl_unlock();
2403 }
2404
2405 static void sfp_check_state(struct sfp *sfp)
2406 {
2407         unsigned int state, i, changed;
2408
2409         mutex_lock(&sfp->st_mutex);
2410         state = sfp_get_state(sfp);
2411         changed = state ^ sfp->state;
2412         changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2413
2414         for (i = 0; i < GPIO_MAX; i++)
2415                 if (changed & BIT(i))
2416                         dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2417                                 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2418
2419         state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2420         sfp->state = state;
2421
2422         rtnl_lock();
2423         if (changed & SFP_F_PRESENT)
2424                 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2425                                 SFP_E_INSERT : SFP_E_REMOVE);
2426
2427         if (changed & SFP_F_TX_FAULT)
2428                 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2429                                 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2430
2431         if (changed & SFP_F_LOS)
2432                 sfp_sm_event(sfp, state & SFP_F_LOS ?
2433                                 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2434         rtnl_unlock();
2435         mutex_unlock(&sfp->st_mutex);
2436 }
2437
2438 static irqreturn_t sfp_irq(int irq, void *data)
2439 {
2440         struct sfp *sfp = data;
2441
2442         sfp_check_state(sfp);
2443
2444         return IRQ_HANDLED;
2445 }
2446
2447 static void sfp_poll(struct work_struct *work)
2448 {
2449         struct sfp *sfp = container_of(work, struct sfp, poll.work);
2450
2451         sfp_check_state(sfp);
2452
2453         if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2454             sfp->need_poll)
2455                 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2456 }
2457
2458 static struct sfp *sfp_alloc(struct device *dev)
2459 {
2460         struct sfp *sfp;
2461
2462         sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2463         if (!sfp)
2464                 return ERR_PTR(-ENOMEM);
2465
2466         sfp->dev = dev;
2467
2468         mutex_init(&sfp->sm_mutex);
2469         mutex_init(&sfp->st_mutex);
2470         INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2471         INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2472
2473         sfp_hwmon_init(sfp);
2474
2475         return sfp;
2476 }
2477
2478 static void sfp_cleanup(void *data)
2479 {
2480         struct sfp *sfp = data;
2481
2482         sfp_hwmon_exit(sfp);
2483
2484         cancel_delayed_work_sync(&sfp->poll);
2485         cancel_delayed_work_sync(&sfp->timeout);
2486         if (sfp->i2c_mii) {
2487                 mdiobus_unregister(sfp->i2c_mii);
2488                 mdiobus_free(sfp->i2c_mii);
2489         }
2490         if (sfp->i2c)
2491                 i2c_put_adapter(sfp->i2c);
2492         kfree(sfp);
2493 }
2494
2495 static int sfp_probe(struct platform_device *pdev)
2496 {
2497         const struct sff_data *sff;
2498         struct i2c_adapter *i2c;
2499         char *sfp_irq_name;
2500         struct sfp *sfp;
2501         int err, i;
2502
2503         sfp = sfp_alloc(&pdev->dev);
2504         if (IS_ERR(sfp))
2505                 return PTR_ERR(sfp);
2506
2507         platform_set_drvdata(pdev, sfp);
2508
2509         err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
2510         if (err < 0)
2511                 return err;
2512
2513         sff = sfp->type = &sfp_data;
2514
2515         if (pdev->dev.of_node) {
2516                 struct device_node *node = pdev->dev.of_node;
2517                 const struct of_device_id *id;
2518                 struct device_node *np;
2519
2520                 id = of_match_node(sfp_of_match, node);
2521                 if (WARN_ON(!id))
2522                         return -EINVAL;
2523
2524                 sff = sfp->type = id->data;
2525
2526                 np = of_parse_phandle(node, "i2c-bus", 0);
2527                 if (!np) {
2528                         dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2529                         return -ENODEV;
2530                 }
2531
2532                 i2c = of_find_i2c_adapter_by_node(np);
2533                 of_node_put(np);
2534         } else if (has_acpi_companion(&pdev->dev)) {
2535                 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2536                 struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2537                 struct fwnode_reference_args args;
2538                 struct acpi_handle *acpi_handle;
2539                 int ret;
2540
2541                 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2542                 if (ret || !is_acpi_device_node(args.fwnode)) {
2543                         dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2544                         return -ENODEV;
2545                 }
2546
2547                 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2548                 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2549         } else {
2550                 return -EINVAL;
2551         }
2552
2553         if (!i2c)
2554                 return -EPROBE_DEFER;
2555
2556         err = sfp_i2c_configure(sfp, i2c);
2557         if (err < 0) {
2558                 i2c_put_adapter(i2c);
2559                 return err;
2560         }
2561
2562         for (i = 0; i < GPIO_MAX; i++)
2563                 if (sff->gpios & BIT(i)) {
2564                         sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2565                                            gpio_of_names[i], gpio_flags[i]);
2566                         if (IS_ERR(sfp->gpio[i]))
2567                                 return PTR_ERR(sfp->gpio[i]);
2568                 }
2569
2570         sfp->get_state = sfp_gpio_get_state;
2571         sfp->set_state = sfp_gpio_set_state;
2572
2573         /* Modules that have no detect signal are always present */
2574         if (!(sfp->gpio[GPIO_MODDEF0]))
2575                 sfp->get_state = sff_gpio_get_state;
2576
2577         device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2578                                  &sfp->max_power_mW);
2579         if (!sfp->max_power_mW)
2580                 sfp->max_power_mW = 1000;
2581
2582         dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2583                  sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2584
2585         /* Get the initial state, and always signal TX disable,
2586          * since the network interface will not be up.
2587          */
2588         sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2589
2590         if (sfp->gpio[GPIO_RATE_SELECT] &&
2591             gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2592                 sfp->state |= SFP_F_RATE_SELECT;
2593         sfp_set_state(sfp, sfp->state);
2594         sfp_module_tx_disable(sfp);
2595         if (sfp->state & SFP_F_PRESENT) {
2596                 rtnl_lock();
2597                 sfp_sm_event(sfp, SFP_E_INSERT);
2598                 rtnl_unlock();
2599         }
2600
2601         for (i = 0; i < GPIO_MAX; i++) {
2602                 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2603                         continue;
2604
2605                 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2606                 if (sfp->gpio_irq[i] < 0) {
2607                         sfp->gpio_irq[i] = 0;
2608                         sfp->need_poll = true;
2609                         continue;
2610                 }
2611
2612                 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2613                                               "%s-%s", dev_name(sfp->dev),
2614                                               gpio_of_names[i]);
2615
2616                 if (!sfp_irq_name)
2617                         return -ENOMEM;
2618
2619                 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2620                                                 NULL, sfp_irq,
2621                                                 IRQF_ONESHOT |
2622                                                 IRQF_TRIGGER_RISING |
2623                                                 IRQF_TRIGGER_FALLING,
2624                                                 sfp_irq_name, sfp);
2625                 if (err) {
2626                         sfp->gpio_irq[i] = 0;
2627                         sfp->need_poll = true;
2628                 }
2629         }
2630
2631         if (sfp->need_poll)
2632                 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2633
2634         /* We could have an issue in cases no Tx disable pin is available or
2635          * wired as modules using a laser as their light source will continue to
2636          * be active when the fiber is removed. This could be a safety issue and
2637          * we should at least warn the user about that.
2638          */
2639         if (!sfp->gpio[GPIO_TX_DISABLE])
2640                 dev_warn(sfp->dev,
2641                          "No tx_disable pin: SFP modules will always be emitting.\n");
2642
2643         sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2644         if (!sfp->sfp_bus)
2645                 return -ENOMEM;
2646
2647         sfp_debugfs_init(sfp);
2648
2649         return 0;
2650 }
2651
2652 static int sfp_remove(struct platform_device *pdev)
2653 {
2654         struct sfp *sfp = platform_get_drvdata(pdev);
2655
2656         sfp_debugfs_exit(sfp);
2657         sfp_unregister_socket(sfp->sfp_bus);
2658
2659         rtnl_lock();
2660         sfp_sm_event(sfp, SFP_E_REMOVE);
2661         rtnl_unlock();
2662
2663         return 0;
2664 }
2665
2666 static void sfp_shutdown(struct platform_device *pdev)
2667 {
2668         struct sfp *sfp = platform_get_drvdata(pdev);
2669         int i;
2670
2671         for (i = 0; i < GPIO_MAX; i++) {
2672                 if (!sfp->gpio_irq[i])
2673                         continue;
2674
2675                 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2676         }
2677
2678         cancel_delayed_work_sync(&sfp->poll);
2679         cancel_delayed_work_sync(&sfp->timeout);
2680 }
2681
2682 static struct platform_driver sfp_driver = {
2683         .probe = sfp_probe,
2684         .remove = sfp_remove,
2685         .shutdown = sfp_shutdown,
2686         .driver = {
2687                 .name = "sfp",
2688                 .of_match_table = sfp_of_match,
2689         },
2690 };
2691
2692 static int sfp_init(void)
2693 {
2694         poll_jiffies = msecs_to_jiffies(100);
2695
2696         return platform_driver_register(&sfp_driver);
2697 }
2698 module_init(sfp_init);
2699
2700 static void sfp_exit(void)
2701 {
2702         platform_driver_unregister(&sfp_driver);
2703 }
2704 module_exit(sfp_exit);
2705
2706 MODULE_ALIAS("platform:sfp");
2707 MODULE_AUTHOR("Russell King");
2708 MODULE_LICENSE("GPL v2");