Merge tag 'kbuild-v5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[linux-2.6-microblaze.git] / drivers / net / phy / sfp.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/acpi.h>
3 #include <linux/ctype.h>
4 #include <linux/debugfs.h>
5 #include <linux/delay.h>
6 #include <linux/gpio/consumer.h>
7 #include <linux/hwmon.h>
8 #include <linux/i2c.h>
9 #include <linux/interrupt.h>
10 #include <linux/jiffies.h>
11 #include <linux/mdio/mdio-i2c.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/of.h>
15 #include <linux/phy.h>
16 #include <linux/platform_device.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
20
21 #include "sfp.h"
22 #include "swphy.h"
23
24 enum {
25         GPIO_MODDEF0,
26         GPIO_LOS,
27         GPIO_TX_FAULT,
28         GPIO_TX_DISABLE,
29         GPIO_RATE_SELECT,
30         GPIO_MAX,
31
32         SFP_F_PRESENT = BIT(GPIO_MODDEF0),
33         SFP_F_LOS = BIT(GPIO_LOS),
34         SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
35         SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
36         SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
37
38         SFP_E_INSERT = 0,
39         SFP_E_REMOVE,
40         SFP_E_DEV_ATTACH,
41         SFP_E_DEV_DETACH,
42         SFP_E_DEV_DOWN,
43         SFP_E_DEV_UP,
44         SFP_E_TX_FAULT,
45         SFP_E_TX_CLEAR,
46         SFP_E_LOS_HIGH,
47         SFP_E_LOS_LOW,
48         SFP_E_TIMEOUT,
49
50         SFP_MOD_EMPTY = 0,
51         SFP_MOD_ERROR,
52         SFP_MOD_PROBE,
53         SFP_MOD_WAITDEV,
54         SFP_MOD_HPOWER,
55         SFP_MOD_WAITPWR,
56         SFP_MOD_PRESENT,
57
58         SFP_DEV_DETACHED = 0,
59         SFP_DEV_DOWN,
60         SFP_DEV_UP,
61
62         SFP_S_DOWN = 0,
63         SFP_S_FAIL,
64         SFP_S_WAIT,
65         SFP_S_INIT,
66         SFP_S_INIT_PHY,
67         SFP_S_INIT_TX_FAULT,
68         SFP_S_WAIT_LOS,
69         SFP_S_LINK_UP,
70         SFP_S_TX_FAULT,
71         SFP_S_REINIT,
72         SFP_S_TX_DISABLE,
73 };
74
75 static const char  * const mod_state_strings[] = {
76         [SFP_MOD_EMPTY] = "empty",
77         [SFP_MOD_ERROR] = "error",
78         [SFP_MOD_PROBE] = "probe",
79         [SFP_MOD_WAITDEV] = "waitdev",
80         [SFP_MOD_HPOWER] = "hpower",
81         [SFP_MOD_WAITPWR] = "waitpwr",
82         [SFP_MOD_PRESENT] = "present",
83 };
84
85 static const char *mod_state_to_str(unsigned short mod_state)
86 {
87         if (mod_state >= ARRAY_SIZE(mod_state_strings))
88                 return "Unknown module state";
89         return mod_state_strings[mod_state];
90 }
91
92 static const char * const dev_state_strings[] = {
93         [SFP_DEV_DETACHED] = "detached",
94         [SFP_DEV_DOWN] = "down",
95         [SFP_DEV_UP] = "up",
96 };
97
98 static const char *dev_state_to_str(unsigned short dev_state)
99 {
100         if (dev_state >= ARRAY_SIZE(dev_state_strings))
101                 return "Unknown device state";
102         return dev_state_strings[dev_state];
103 }
104
105 static const char * const event_strings[] = {
106         [SFP_E_INSERT] = "insert",
107         [SFP_E_REMOVE] = "remove",
108         [SFP_E_DEV_ATTACH] = "dev_attach",
109         [SFP_E_DEV_DETACH] = "dev_detach",
110         [SFP_E_DEV_DOWN] = "dev_down",
111         [SFP_E_DEV_UP] = "dev_up",
112         [SFP_E_TX_FAULT] = "tx_fault",
113         [SFP_E_TX_CLEAR] = "tx_clear",
114         [SFP_E_LOS_HIGH] = "los_high",
115         [SFP_E_LOS_LOW] = "los_low",
116         [SFP_E_TIMEOUT] = "timeout",
117 };
118
119 static const char *event_to_str(unsigned short event)
120 {
121         if (event >= ARRAY_SIZE(event_strings))
122                 return "Unknown event";
123         return event_strings[event];
124 }
125
126 static const char * const sm_state_strings[] = {
127         [SFP_S_DOWN] = "down",
128         [SFP_S_FAIL] = "fail",
129         [SFP_S_WAIT] = "wait",
130         [SFP_S_INIT] = "init",
131         [SFP_S_INIT_PHY] = "init_phy",
132         [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
133         [SFP_S_WAIT_LOS] = "wait_los",
134         [SFP_S_LINK_UP] = "link_up",
135         [SFP_S_TX_FAULT] = "tx_fault",
136         [SFP_S_REINIT] = "reinit",
137         [SFP_S_TX_DISABLE] = "rx_disable",
138 };
139
140 static const char *sm_state_to_str(unsigned short sm_state)
141 {
142         if (sm_state >= ARRAY_SIZE(sm_state_strings))
143                 return "Unknown state";
144         return sm_state_strings[sm_state];
145 }
146
147 static const char *gpio_of_names[] = {
148         "mod-def0",
149         "los",
150         "tx-fault",
151         "tx-disable",
152         "rate-select0",
153 };
154
155 static const enum gpiod_flags gpio_flags[] = {
156         GPIOD_IN,
157         GPIOD_IN,
158         GPIOD_IN,
159         GPIOD_ASIS,
160         GPIOD_ASIS,
161 };
162
163 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
164  * non-cooled module to initialise its laser safety circuitry. We wait
165  * an initial T_WAIT period before we check the tx fault to give any PHY
166  * on board (for a copper SFP) time to initialise.
167  */
168 #define T_WAIT                  msecs_to_jiffies(50)
169 #define T_START_UP              msecs_to_jiffies(300)
170 #define T_START_UP_BAD_GPON     msecs_to_jiffies(60000)
171
172 /* t_reset is the time required to assert the TX_DISABLE signal to reset
173  * an indicated TX_FAULT.
174  */
175 #define T_RESET_US              10
176 #define T_FAULT_RECOVER         msecs_to_jiffies(1000)
177
178 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
179  * time. If the TX_FAULT signal is not deasserted after this number of
180  * attempts at clearing it, we decide that the module is faulty.
181  * N_FAULT is the same but after the module has initialised.
182  */
183 #define N_FAULT_INIT            5
184 #define N_FAULT                 5
185
186 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
187  * R_PHY_RETRY is the number of attempts.
188  */
189 #define T_PHY_RETRY             msecs_to_jiffies(50)
190 #define R_PHY_RETRY             12
191
192 /* SFP module presence detection is poor: the three MOD DEF signals are
193  * the same length on the PCB, which means it's possible for MOD DEF 0 to
194  * connect before the I2C bus on MOD DEF 1/2.
195  *
196  * The SFF-8472 specifies t_serial ("Time from power on until module is
197  * ready for data transmission over the two wire serial bus.") as 300ms.
198  */
199 #define T_SERIAL                msecs_to_jiffies(300)
200 #define T_HPOWER_LEVEL          msecs_to_jiffies(300)
201 #define T_PROBE_RETRY_INIT      msecs_to_jiffies(100)
202 #define R_PROBE_RETRY_INIT      10
203 #define T_PROBE_RETRY_SLOW      msecs_to_jiffies(5000)
204 #define R_PROBE_RETRY_SLOW      12
205
206 /* SFP modules appear to always have their PHY configured for bus address
207  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
208  */
209 #define SFP_PHY_ADDR    22
210
211 struct sff_data {
212         unsigned int gpios;
213         bool (*module_supported)(const struct sfp_eeprom_id *id);
214 };
215
216 struct sfp {
217         struct device *dev;
218         struct i2c_adapter *i2c;
219         struct mii_bus *i2c_mii;
220         struct sfp_bus *sfp_bus;
221         struct phy_device *mod_phy;
222         const struct sff_data *type;
223         size_t i2c_block_size;
224         u32 max_power_mW;
225
226         unsigned int (*get_state)(struct sfp *);
227         void (*set_state)(struct sfp *, unsigned int);
228         int (*read)(struct sfp *, bool, u8, void *, size_t);
229         int (*write)(struct sfp *, bool, u8, void *, size_t);
230
231         struct gpio_desc *gpio[GPIO_MAX];
232         int gpio_irq[GPIO_MAX];
233
234         bool need_poll;
235
236         struct mutex st_mutex;                  /* Protects state */
237         unsigned int state_soft_mask;
238         unsigned int state;
239         struct delayed_work poll;
240         struct delayed_work timeout;
241         struct mutex sm_mutex;                  /* Protects state machine */
242         unsigned char sm_mod_state;
243         unsigned char sm_mod_tries_init;
244         unsigned char sm_mod_tries;
245         unsigned char sm_dev_state;
246         unsigned short sm_state;
247         unsigned char sm_fault_retries;
248         unsigned char sm_phy_retries;
249
250         struct sfp_eeprom_id id;
251         unsigned int module_power_mW;
252         unsigned int module_t_start_up;
253
254 #if IS_ENABLED(CONFIG_HWMON)
255         struct sfp_diag diag;
256         struct delayed_work hwmon_probe;
257         unsigned int hwmon_tries;
258         struct device *hwmon_dev;
259         char *hwmon_name;
260 #endif
261
262 #if IS_ENABLED(CONFIG_DEBUG_FS)
263         struct dentry *debugfs_dir;
264 #endif
265 };
266
267 static bool sff_module_supported(const struct sfp_eeprom_id *id)
268 {
269         return id->base.phys_id == SFF8024_ID_SFF_8472 &&
270                id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
271 }
272
273 static const struct sff_data sff_data = {
274         .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
275         .module_supported = sff_module_supported,
276 };
277
278 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
279 {
280         if (id->base.phys_id == SFF8024_ID_SFP &&
281             id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
282                 return true;
283
284         /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
285          * phys id SFF instead of SFP. Therefore mark this module explicitly
286          * as supported based on vendor name and pn match.
287          */
288         if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
289             id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
290             !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
291             !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
292                 return true;
293
294         return false;
295 }
296
297 static const struct sff_data sfp_data = {
298         .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
299                  SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
300         .module_supported = sfp_module_supported,
301 };
302
303 static const struct of_device_id sfp_of_match[] = {
304         { .compatible = "sff,sff", .data = &sff_data, },
305         { .compatible = "sff,sfp", .data = &sfp_data, },
306         { },
307 };
308 MODULE_DEVICE_TABLE(of, sfp_of_match);
309
310 static unsigned long poll_jiffies;
311
312 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
313 {
314         unsigned int i, state, v;
315
316         for (i = state = 0; i < GPIO_MAX; i++) {
317                 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
318                         continue;
319
320                 v = gpiod_get_value_cansleep(sfp->gpio[i]);
321                 if (v)
322                         state |= BIT(i);
323         }
324
325         return state;
326 }
327
328 static unsigned int sff_gpio_get_state(struct sfp *sfp)
329 {
330         return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
331 }
332
333 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
334 {
335         if (state & SFP_F_PRESENT) {
336                 /* If the module is present, drive the signals */
337                 if (sfp->gpio[GPIO_TX_DISABLE])
338                         gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
339                                                state & SFP_F_TX_DISABLE);
340                 if (state & SFP_F_RATE_SELECT)
341                         gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
342                                                state & SFP_F_RATE_SELECT);
343         } else {
344                 /* Otherwise, let them float to the pull-ups */
345                 if (sfp->gpio[GPIO_TX_DISABLE])
346                         gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
347                 if (state & SFP_F_RATE_SELECT)
348                         gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
349         }
350 }
351
352 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
353                         size_t len)
354 {
355         struct i2c_msg msgs[2];
356         u8 bus_addr = a2 ? 0x51 : 0x50;
357         size_t block_size = sfp->i2c_block_size;
358         size_t this_len;
359         int ret;
360
361         msgs[0].addr = bus_addr;
362         msgs[0].flags = 0;
363         msgs[0].len = 1;
364         msgs[0].buf = &dev_addr;
365         msgs[1].addr = bus_addr;
366         msgs[1].flags = I2C_M_RD;
367         msgs[1].len = len;
368         msgs[1].buf = buf;
369
370         while (len) {
371                 this_len = len;
372                 if (this_len > block_size)
373                         this_len = block_size;
374
375                 msgs[1].len = this_len;
376
377                 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
378                 if (ret < 0)
379                         return ret;
380
381                 if (ret != ARRAY_SIZE(msgs))
382                         break;
383
384                 msgs[1].buf += this_len;
385                 dev_addr += this_len;
386                 len -= this_len;
387         }
388
389         return msgs[1].buf - (u8 *)buf;
390 }
391
392 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
393         size_t len)
394 {
395         struct i2c_msg msgs[1];
396         u8 bus_addr = a2 ? 0x51 : 0x50;
397         int ret;
398
399         msgs[0].addr = bus_addr;
400         msgs[0].flags = 0;
401         msgs[0].len = 1 + len;
402         msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
403         if (!msgs[0].buf)
404                 return -ENOMEM;
405
406         msgs[0].buf[0] = dev_addr;
407         memcpy(&msgs[0].buf[1], buf, len);
408
409         ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
410
411         kfree(msgs[0].buf);
412
413         if (ret < 0)
414                 return ret;
415
416         return ret == ARRAY_SIZE(msgs) ? len : 0;
417 }
418
419 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
420 {
421         struct mii_bus *i2c_mii;
422         int ret;
423
424         if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
425                 return -EINVAL;
426
427         sfp->i2c = i2c;
428         sfp->read = sfp_i2c_read;
429         sfp->write = sfp_i2c_write;
430
431         i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
432         if (IS_ERR(i2c_mii))
433                 return PTR_ERR(i2c_mii);
434
435         i2c_mii->name = "SFP I2C Bus";
436         i2c_mii->phy_mask = ~0;
437
438         ret = mdiobus_register(i2c_mii);
439         if (ret < 0) {
440                 mdiobus_free(i2c_mii);
441                 return ret;
442         }
443
444         sfp->i2c_mii = i2c_mii;
445
446         return 0;
447 }
448
449 /* Interface */
450 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
451 {
452         return sfp->read(sfp, a2, addr, buf, len);
453 }
454
455 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
456 {
457         return sfp->write(sfp, a2, addr, buf, len);
458 }
459
460 static unsigned int sfp_soft_get_state(struct sfp *sfp)
461 {
462         unsigned int state = 0;
463         u8 status;
464         int ret;
465
466         ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
467         if (ret == sizeof(status)) {
468                 if (status & SFP_STATUS_RX_LOS)
469                         state |= SFP_F_LOS;
470                 if (status & SFP_STATUS_TX_FAULT)
471                         state |= SFP_F_TX_FAULT;
472         } else {
473                 dev_err_ratelimited(sfp->dev,
474                                     "failed to read SFP soft status: %d\n",
475                                     ret);
476                 /* Preserve the current state */
477                 state = sfp->state;
478         }
479
480         return state & sfp->state_soft_mask;
481 }
482
483 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
484 {
485         u8 status;
486
487         if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
488                      sizeof(status)) {
489                 if (state & SFP_F_TX_DISABLE)
490                         status |= SFP_STATUS_TX_DISABLE_FORCE;
491                 else
492                         status &= ~SFP_STATUS_TX_DISABLE_FORCE;
493
494                 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
495         }
496 }
497
498 static void sfp_soft_start_poll(struct sfp *sfp)
499 {
500         const struct sfp_eeprom_id *id = &sfp->id;
501
502         sfp->state_soft_mask = 0;
503         if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
504             !sfp->gpio[GPIO_TX_DISABLE])
505                 sfp->state_soft_mask |= SFP_F_TX_DISABLE;
506         if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
507             !sfp->gpio[GPIO_TX_FAULT])
508                 sfp->state_soft_mask |= SFP_F_TX_FAULT;
509         if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
510             !sfp->gpio[GPIO_LOS])
511                 sfp->state_soft_mask |= SFP_F_LOS;
512
513         if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
514             !sfp->need_poll)
515                 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
516 }
517
518 static void sfp_soft_stop_poll(struct sfp *sfp)
519 {
520         sfp->state_soft_mask = 0;
521 }
522
523 static unsigned int sfp_get_state(struct sfp *sfp)
524 {
525         unsigned int state = sfp->get_state(sfp);
526
527         if (state & SFP_F_PRESENT &&
528             sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
529                 state |= sfp_soft_get_state(sfp);
530
531         return state;
532 }
533
534 static void sfp_set_state(struct sfp *sfp, unsigned int state)
535 {
536         sfp->set_state(sfp, state);
537
538         if (state & SFP_F_PRESENT &&
539             sfp->state_soft_mask & SFP_F_TX_DISABLE)
540                 sfp_soft_set_state(sfp, state);
541 }
542
543 static unsigned int sfp_check(void *buf, size_t len)
544 {
545         u8 *p, check;
546
547         for (p = buf, check = 0; len; p++, len--)
548                 check += *p;
549
550         return check;
551 }
552
553 /* hwmon */
554 #if IS_ENABLED(CONFIG_HWMON)
555 static umode_t sfp_hwmon_is_visible(const void *data,
556                                     enum hwmon_sensor_types type,
557                                     u32 attr, int channel)
558 {
559         const struct sfp *sfp = data;
560
561         switch (type) {
562         case hwmon_temp:
563                 switch (attr) {
564                 case hwmon_temp_min_alarm:
565                 case hwmon_temp_max_alarm:
566                 case hwmon_temp_lcrit_alarm:
567                 case hwmon_temp_crit_alarm:
568                 case hwmon_temp_min:
569                 case hwmon_temp_max:
570                 case hwmon_temp_lcrit:
571                 case hwmon_temp_crit:
572                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
573                                 return 0;
574                         fallthrough;
575                 case hwmon_temp_input:
576                 case hwmon_temp_label:
577                         return 0444;
578                 default:
579                         return 0;
580                 }
581         case hwmon_in:
582                 switch (attr) {
583                 case hwmon_in_min_alarm:
584                 case hwmon_in_max_alarm:
585                 case hwmon_in_lcrit_alarm:
586                 case hwmon_in_crit_alarm:
587                 case hwmon_in_min:
588                 case hwmon_in_max:
589                 case hwmon_in_lcrit:
590                 case hwmon_in_crit:
591                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
592                                 return 0;
593                         fallthrough;
594                 case hwmon_in_input:
595                 case hwmon_in_label:
596                         return 0444;
597                 default:
598                         return 0;
599                 }
600         case hwmon_curr:
601                 switch (attr) {
602                 case hwmon_curr_min_alarm:
603                 case hwmon_curr_max_alarm:
604                 case hwmon_curr_lcrit_alarm:
605                 case hwmon_curr_crit_alarm:
606                 case hwmon_curr_min:
607                 case hwmon_curr_max:
608                 case hwmon_curr_lcrit:
609                 case hwmon_curr_crit:
610                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
611                                 return 0;
612                         fallthrough;
613                 case hwmon_curr_input:
614                 case hwmon_curr_label:
615                         return 0444;
616                 default:
617                         return 0;
618                 }
619         case hwmon_power:
620                 /* External calibration of receive power requires
621                  * floating point arithmetic. Doing that in the kernel
622                  * is not easy, so just skip it. If the module does
623                  * not require external calibration, we can however
624                  * show receiver power, since FP is then not needed.
625                  */
626                 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
627                     channel == 1)
628                         return 0;
629                 switch (attr) {
630                 case hwmon_power_min_alarm:
631                 case hwmon_power_max_alarm:
632                 case hwmon_power_lcrit_alarm:
633                 case hwmon_power_crit_alarm:
634                 case hwmon_power_min:
635                 case hwmon_power_max:
636                 case hwmon_power_lcrit:
637                 case hwmon_power_crit:
638                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
639                                 return 0;
640                         fallthrough;
641                 case hwmon_power_input:
642                 case hwmon_power_label:
643                         return 0444;
644                 default:
645                         return 0;
646                 }
647         default:
648                 return 0;
649         }
650 }
651
652 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
653 {
654         __be16 val;
655         int err;
656
657         err = sfp_read(sfp, true, reg, &val, sizeof(val));
658         if (err < 0)
659                 return err;
660
661         *value = be16_to_cpu(val);
662
663         return 0;
664 }
665
666 static void sfp_hwmon_to_rx_power(long *value)
667 {
668         *value = DIV_ROUND_CLOSEST(*value, 10);
669 }
670
671 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
672                                 long *value)
673 {
674         if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
675                 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
676 }
677
678 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
679 {
680         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
681                             be16_to_cpu(sfp->diag.cal_t_offset), value);
682
683         if (*value >= 0x8000)
684                 *value -= 0x10000;
685
686         *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
687 }
688
689 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
690 {
691         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
692                             be16_to_cpu(sfp->diag.cal_v_offset), value);
693
694         *value = DIV_ROUND_CLOSEST(*value, 10);
695 }
696
697 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
698 {
699         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
700                             be16_to_cpu(sfp->diag.cal_txi_offset), value);
701
702         *value = DIV_ROUND_CLOSEST(*value, 500);
703 }
704
705 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
706 {
707         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
708                             be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
709
710         *value = DIV_ROUND_CLOSEST(*value, 10);
711 }
712
713 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
714 {
715         int err;
716
717         err = sfp_hwmon_read_sensor(sfp, reg, value);
718         if (err < 0)
719                 return err;
720
721         sfp_hwmon_calibrate_temp(sfp, value);
722
723         return 0;
724 }
725
726 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
727 {
728         int err;
729
730         err = sfp_hwmon_read_sensor(sfp, reg, value);
731         if (err < 0)
732                 return err;
733
734         sfp_hwmon_calibrate_vcc(sfp, value);
735
736         return 0;
737 }
738
739 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
740 {
741         int err;
742
743         err = sfp_hwmon_read_sensor(sfp, reg, value);
744         if (err < 0)
745                 return err;
746
747         sfp_hwmon_calibrate_bias(sfp, value);
748
749         return 0;
750 }
751
752 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
753 {
754         int err;
755
756         err = sfp_hwmon_read_sensor(sfp, reg, value);
757         if (err < 0)
758                 return err;
759
760         sfp_hwmon_calibrate_tx_power(sfp, value);
761
762         return 0;
763 }
764
765 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
766 {
767         int err;
768
769         err = sfp_hwmon_read_sensor(sfp, reg, value);
770         if (err < 0)
771                 return err;
772
773         sfp_hwmon_to_rx_power(value);
774
775         return 0;
776 }
777
778 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
779 {
780         u8 status;
781         int err;
782
783         switch (attr) {
784         case hwmon_temp_input:
785                 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
786
787         case hwmon_temp_lcrit:
788                 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
789                 sfp_hwmon_calibrate_temp(sfp, value);
790                 return 0;
791
792         case hwmon_temp_min:
793                 *value = be16_to_cpu(sfp->diag.temp_low_warn);
794                 sfp_hwmon_calibrate_temp(sfp, value);
795                 return 0;
796         case hwmon_temp_max:
797                 *value = be16_to_cpu(sfp->diag.temp_high_warn);
798                 sfp_hwmon_calibrate_temp(sfp, value);
799                 return 0;
800
801         case hwmon_temp_crit:
802                 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
803                 sfp_hwmon_calibrate_temp(sfp, value);
804                 return 0;
805
806         case hwmon_temp_lcrit_alarm:
807                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
808                 if (err < 0)
809                         return err;
810
811                 *value = !!(status & SFP_ALARM0_TEMP_LOW);
812                 return 0;
813
814         case hwmon_temp_min_alarm:
815                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
816                 if (err < 0)
817                         return err;
818
819                 *value = !!(status & SFP_WARN0_TEMP_LOW);
820                 return 0;
821
822         case hwmon_temp_max_alarm:
823                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
824                 if (err < 0)
825                         return err;
826
827                 *value = !!(status & SFP_WARN0_TEMP_HIGH);
828                 return 0;
829
830         case hwmon_temp_crit_alarm:
831                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
832                 if (err < 0)
833                         return err;
834
835                 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
836                 return 0;
837         default:
838                 return -EOPNOTSUPP;
839         }
840
841         return -EOPNOTSUPP;
842 }
843
844 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
845 {
846         u8 status;
847         int err;
848
849         switch (attr) {
850         case hwmon_in_input:
851                 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
852
853         case hwmon_in_lcrit:
854                 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
855                 sfp_hwmon_calibrate_vcc(sfp, value);
856                 return 0;
857
858         case hwmon_in_min:
859                 *value = be16_to_cpu(sfp->diag.volt_low_warn);
860                 sfp_hwmon_calibrate_vcc(sfp, value);
861                 return 0;
862
863         case hwmon_in_max:
864                 *value = be16_to_cpu(sfp->diag.volt_high_warn);
865                 sfp_hwmon_calibrate_vcc(sfp, value);
866                 return 0;
867
868         case hwmon_in_crit:
869                 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
870                 sfp_hwmon_calibrate_vcc(sfp, value);
871                 return 0;
872
873         case hwmon_in_lcrit_alarm:
874                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
875                 if (err < 0)
876                         return err;
877
878                 *value = !!(status & SFP_ALARM0_VCC_LOW);
879                 return 0;
880
881         case hwmon_in_min_alarm:
882                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
883                 if (err < 0)
884                         return err;
885
886                 *value = !!(status & SFP_WARN0_VCC_LOW);
887                 return 0;
888
889         case hwmon_in_max_alarm:
890                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
891                 if (err < 0)
892                         return err;
893
894                 *value = !!(status & SFP_WARN0_VCC_HIGH);
895                 return 0;
896
897         case hwmon_in_crit_alarm:
898                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
899                 if (err < 0)
900                         return err;
901
902                 *value = !!(status & SFP_ALARM0_VCC_HIGH);
903                 return 0;
904         default:
905                 return -EOPNOTSUPP;
906         }
907
908         return -EOPNOTSUPP;
909 }
910
911 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
912 {
913         u8 status;
914         int err;
915
916         switch (attr) {
917         case hwmon_curr_input:
918                 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
919
920         case hwmon_curr_lcrit:
921                 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
922                 sfp_hwmon_calibrate_bias(sfp, value);
923                 return 0;
924
925         case hwmon_curr_min:
926                 *value = be16_to_cpu(sfp->diag.bias_low_warn);
927                 sfp_hwmon_calibrate_bias(sfp, value);
928                 return 0;
929
930         case hwmon_curr_max:
931                 *value = be16_to_cpu(sfp->diag.bias_high_warn);
932                 sfp_hwmon_calibrate_bias(sfp, value);
933                 return 0;
934
935         case hwmon_curr_crit:
936                 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
937                 sfp_hwmon_calibrate_bias(sfp, value);
938                 return 0;
939
940         case hwmon_curr_lcrit_alarm:
941                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
942                 if (err < 0)
943                         return err;
944
945                 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
946                 return 0;
947
948         case hwmon_curr_min_alarm:
949                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
950                 if (err < 0)
951                         return err;
952
953                 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
954                 return 0;
955
956         case hwmon_curr_max_alarm:
957                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
958                 if (err < 0)
959                         return err;
960
961                 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
962                 return 0;
963
964         case hwmon_curr_crit_alarm:
965                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
966                 if (err < 0)
967                         return err;
968
969                 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
970                 return 0;
971         default:
972                 return -EOPNOTSUPP;
973         }
974
975         return -EOPNOTSUPP;
976 }
977
978 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
979 {
980         u8 status;
981         int err;
982
983         switch (attr) {
984         case hwmon_power_input:
985                 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
986
987         case hwmon_power_lcrit:
988                 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
989                 sfp_hwmon_calibrate_tx_power(sfp, value);
990                 return 0;
991
992         case hwmon_power_min:
993                 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
994                 sfp_hwmon_calibrate_tx_power(sfp, value);
995                 return 0;
996
997         case hwmon_power_max:
998                 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
999                 sfp_hwmon_calibrate_tx_power(sfp, value);
1000                 return 0;
1001
1002         case hwmon_power_crit:
1003                 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1004                 sfp_hwmon_calibrate_tx_power(sfp, value);
1005                 return 0;
1006
1007         case hwmon_power_lcrit_alarm:
1008                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1009                 if (err < 0)
1010                         return err;
1011
1012                 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1013                 return 0;
1014
1015         case hwmon_power_min_alarm:
1016                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1017                 if (err < 0)
1018                         return err;
1019
1020                 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1021                 return 0;
1022
1023         case hwmon_power_max_alarm:
1024                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1025                 if (err < 0)
1026                         return err;
1027
1028                 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1029                 return 0;
1030
1031         case hwmon_power_crit_alarm:
1032                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1033                 if (err < 0)
1034                         return err;
1035
1036                 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1037                 return 0;
1038         default:
1039                 return -EOPNOTSUPP;
1040         }
1041
1042         return -EOPNOTSUPP;
1043 }
1044
1045 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1046 {
1047         u8 status;
1048         int err;
1049
1050         switch (attr) {
1051         case hwmon_power_input:
1052                 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1053
1054         case hwmon_power_lcrit:
1055                 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1056                 sfp_hwmon_to_rx_power(value);
1057                 return 0;
1058
1059         case hwmon_power_min:
1060                 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1061                 sfp_hwmon_to_rx_power(value);
1062                 return 0;
1063
1064         case hwmon_power_max:
1065                 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1066                 sfp_hwmon_to_rx_power(value);
1067                 return 0;
1068
1069         case hwmon_power_crit:
1070                 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1071                 sfp_hwmon_to_rx_power(value);
1072                 return 0;
1073
1074         case hwmon_power_lcrit_alarm:
1075                 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1076                 if (err < 0)
1077                         return err;
1078
1079                 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1080                 return 0;
1081
1082         case hwmon_power_min_alarm:
1083                 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1084                 if (err < 0)
1085                         return err;
1086
1087                 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1088                 return 0;
1089
1090         case hwmon_power_max_alarm:
1091                 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1092                 if (err < 0)
1093                         return err;
1094
1095                 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1096                 return 0;
1097
1098         case hwmon_power_crit_alarm:
1099                 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1100                 if (err < 0)
1101                         return err;
1102
1103                 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1104                 return 0;
1105         default:
1106                 return -EOPNOTSUPP;
1107         }
1108
1109         return -EOPNOTSUPP;
1110 }
1111
1112 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1113                           u32 attr, int channel, long *value)
1114 {
1115         struct sfp *sfp = dev_get_drvdata(dev);
1116
1117         switch (type) {
1118         case hwmon_temp:
1119                 return sfp_hwmon_temp(sfp, attr, value);
1120         case hwmon_in:
1121                 return sfp_hwmon_vcc(sfp, attr, value);
1122         case hwmon_curr:
1123                 return sfp_hwmon_bias(sfp, attr, value);
1124         case hwmon_power:
1125                 switch (channel) {
1126                 case 0:
1127                         return sfp_hwmon_tx_power(sfp, attr, value);
1128                 case 1:
1129                         return sfp_hwmon_rx_power(sfp, attr, value);
1130                 default:
1131                         return -EOPNOTSUPP;
1132                 }
1133         default:
1134                 return -EOPNOTSUPP;
1135         }
1136 }
1137
1138 static const char *const sfp_hwmon_power_labels[] = {
1139         "TX_power",
1140         "RX_power",
1141 };
1142
1143 static int sfp_hwmon_read_string(struct device *dev,
1144                                  enum hwmon_sensor_types type,
1145                                  u32 attr, int channel, const char **str)
1146 {
1147         switch (type) {
1148         case hwmon_curr:
1149                 switch (attr) {
1150                 case hwmon_curr_label:
1151                         *str = "bias";
1152                         return 0;
1153                 default:
1154                         return -EOPNOTSUPP;
1155                 }
1156                 break;
1157         case hwmon_temp:
1158                 switch (attr) {
1159                 case hwmon_temp_label:
1160                         *str = "temperature";
1161                         return 0;
1162                 default:
1163                         return -EOPNOTSUPP;
1164                 }
1165                 break;
1166         case hwmon_in:
1167                 switch (attr) {
1168                 case hwmon_in_label:
1169                         *str = "VCC";
1170                         return 0;
1171                 default:
1172                         return -EOPNOTSUPP;
1173                 }
1174                 break;
1175         case hwmon_power:
1176                 switch (attr) {
1177                 case hwmon_power_label:
1178                         *str = sfp_hwmon_power_labels[channel];
1179                         return 0;
1180                 default:
1181                         return -EOPNOTSUPP;
1182                 }
1183                 break;
1184         default:
1185                 return -EOPNOTSUPP;
1186         }
1187
1188         return -EOPNOTSUPP;
1189 }
1190
1191 static const struct hwmon_ops sfp_hwmon_ops = {
1192         .is_visible = sfp_hwmon_is_visible,
1193         .read = sfp_hwmon_read,
1194         .read_string = sfp_hwmon_read_string,
1195 };
1196
1197 static u32 sfp_hwmon_chip_config[] = {
1198         HWMON_C_REGISTER_TZ,
1199         0,
1200 };
1201
1202 static const struct hwmon_channel_info sfp_hwmon_chip = {
1203         .type = hwmon_chip,
1204         .config = sfp_hwmon_chip_config,
1205 };
1206
1207 static u32 sfp_hwmon_temp_config[] = {
1208         HWMON_T_INPUT |
1209         HWMON_T_MAX | HWMON_T_MIN |
1210         HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1211         HWMON_T_CRIT | HWMON_T_LCRIT |
1212         HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1213         HWMON_T_LABEL,
1214         0,
1215 };
1216
1217 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1218         .type = hwmon_temp,
1219         .config = sfp_hwmon_temp_config,
1220 };
1221
1222 static u32 sfp_hwmon_vcc_config[] = {
1223         HWMON_I_INPUT |
1224         HWMON_I_MAX | HWMON_I_MIN |
1225         HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1226         HWMON_I_CRIT | HWMON_I_LCRIT |
1227         HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1228         HWMON_I_LABEL,
1229         0,
1230 };
1231
1232 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1233         .type = hwmon_in,
1234         .config = sfp_hwmon_vcc_config,
1235 };
1236
1237 static u32 sfp_hwmon_bias_config[] = {
1238         HWMON_C_INPUT |
1239         HWMON_C_MAX | HWMON_C_MIN |
1240         HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1241         HWMON_C_CRIT | HWMON_C_LCRIT |
1242         HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1243         HWMON_C_LABEL,
1244         0,
1245 };
1246
1247 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1248         .type = hwmon_curr,
1249         .config = sfp_hwmon_bias_config,
1250 };
1251
1252 static u32 sfp_hwmon_power_config[] = {
1253         /* Transmit power */
1254         HWMON_P_INPUT |
1255         HWMON_P_MAX | HWMON_P_MIN |
1256         HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1257         HWMON_P_CRIT | HWMON_P_LCRIT |
1258         HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1259         HWMON_P_LABEL,
1260         /* Receive power */
1261         HWMON_P_INPUT |
1262         HWMON_P_MAX | HWMON_P_MIN |
1263         HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1264         HWMON_P_CRIT | HWMON_P_LCRIT |
1265         HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1266         HWMON_P_LABEL,
1267         0,
1268 };
1269
1270 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1271         .type = hwmon_power,
1272         .config = sfp_hwmon_power_config,
1273 };
1274
1275 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1276         &sfp_hwmon_chip,
1277         &sfp_hwmon_vcc_channel_info,
1278         &sfp_hwmon_temp_channel_info,
1279         &sfp_hwmon_bias_channel_info,
1280         &sfp_hwmon_power_channel_info,
1281         NULL,
1282 };
1283
1284 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1285         .ops = &sfp_hwmon_ops,
1286         .info = sfp_hwmon_info,
1287 };
1288
1289 static void sfp_hwmon_probe(struct work_struct *work)
1290 {
1291         struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1292         int err, i;
1293
1294         /* hwmon interface needs to access 16bit registers in atomic way to
1295          * guarantee coherency of the diagnostic monitoring data. If it is not
1296          * possible to guarantee coherency because EEPROM is broken in such way
1297          * that does not support atomic 16bit read operation then we have to
1298          * skip registration of hwmon device.
1299          */
1300         if (sfp->i2c_block_size < 2) {
1301                 dev_info(sfp->dev,
1302                          "skipping hwmon device registration due to broken EEPROM\n");
1303                 dev_info(sfp->dev,
1304                          "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1305                 return;
1306         }
1307
1308         err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1309         if (err < 0) {
1310                 if (sfp->hwmon_tries--) {
1311                         mod_delayed_work(system_wq, &sfp->hwmon_probe,
1312                                          T_PROBE_RETRY_SLOW);
1313                 } else {
1314                         dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1315                 }
1316                 return;
1317         }
1318
1319         sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1320         if (!sfp->hwmon_name) {
1321                 dev_err(sfp->dev, "out of memory for hwmon name\n");
1322                 return;
1323         }
1324
1325         for (i = 0; sfp->hwmon_name[i]; i++)
1326                 if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1327                         sfp->hwmon_name[i] = '_';
1328
1329         sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1330                                                          sfp->hwmon_name, sfp,
1331                                                          &sfp_hwmon_chip_info,
1332                                                          NULL);
1333         if (IS_ERR(sfp->hwmon_dev))
1334                 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1335                         PTR_ERR(sfp->hwmon_dev));
1336 }
1337
1338 static int sfp_hwmon_insert(struct sfp *sfp)
1339 {
1340         if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1341                 return 0;
1342
1343         if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1344                 return 0;
1345
1346         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1347                 /* This driver in general does not support address
1348                  * change.
1349                  */
1350                 return 0;
1351
1352         mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1353         sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1354
1355         return 0;
1356 }
1357
1358 static void sfp_hwmon_remove(struct sfp *sfp)
1359 {
1360         cancel_delayed_work_sync(&sfp->hwmon_probe);
1361         if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1362                 hwmon_device_unregister(sfp->hwmon_dev);
1363                 sfp->hwmon_dev = NULL;
1364                 kfree(sfp->hwmon_name);
1365         }
1366 }
1367
1368 static int sfp_hwmon_init(struct sfp *sfp)
1369 {
1370         INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1371
1372         return 0;
1373 }
1374
1375 static void sfp_hwmon_exit(struct sfp *sfp)
1376 {
1377         cancel_delayed_work_sync(&sfp->hwmon_probe);
1378 }
1379 #else
1380 static int sfp_hwmon_insert(struct sfp *sfp)
1381 {
1382         return 0;
1383 }
1384
1385 static void sfp_hwmon_remove(struct sfp *sfp)
1386 {
1387 }
1388
1389 static int sfp_hwmon_init(struct sfp *sfp)
1390 {
1391         return 0;
1392 }
1393
1394 static void sfp_hwmon_exit(struct sfp *sfp)
1395 {
1396 }
1397 #endif
1398
1399 /* Helpers */
1400 static void sfp_module_tx_disable(struct sfp *sfp)
1401 {
1402         dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1403                 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1404         sfp->state |= SFP_F_TX_DISABLE;
1405         sfp_set_state(sfp, sfp->state);
1406 }
1407
1408 static void sfp_module_tx_enable(struct sfp *sfp)
1409 {
1410         dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1411                 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1412         sfp->state &= ~SFP_F_TX_DISABLE;
1413         sfp_set_state(sfp, sfp->state);
1414 }
1415
1416 #if IS_ENABLED(CONFIG_DEBUG_FS)
1417 static int sfp_debug_state_show(struct seq_file *s, void *data)
1418 {
1419         struct sfp *sfp = s->private;
1420
1421         seq_printf(s, "Module state: %s\n",
1422                    mod_state_to_str(sfp->sm_mod_state));
1423         seq_printf(s, "Module probe attempts: %d %d\n",
1424                    R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1425                    R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1426         seq_printf(s, "Device state: %s\n",
1427                    dev_state_to_str(sfp->sm_dev_state));
1428         seq_printf(s, "Main state: %s\n",
1429                    sm_state_to_str(sfp->sm_state));
1430         seq_printf(s, "Fault recovery remaining retries: %d\n",
1431                    sfp->sm_fault_retries);
1432         seq_printf(s, "PHY probe remaining retries: %d\n",
1433                    sfp->sm_phy_retries);
1434         seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1435         seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1436         seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1437         seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1438         return 0;
1439 }
1440 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1441
1442 static void sfp_debugfs_init(struct sfp *sfp)
1443 {
1444         sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1445
1446         debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1447                             &sfp_debug_state_fops);
1448 }
1449
1450 static void sfp_debugfs_exit(struct sfp *sfp)
1451 {
1452         debugfs_remove_recursive(sfp->debugfs_dir);
1453 }
1454 #else
1455 static void sfp_debugfs_init(struct sfp *sfp)
1456 {
1457 }
1458
1459 static void sfp_debugfs_exit(struct sfp *sfp)
1460 {
1461 }
1462 #endif
1463
1464 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1465 {
1466         unsigned int state = sfp->state;
1467
1468         if (state & SFP_F_TX_DISABLE)
1469                 return;
1470
1471         sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1472
1473         udelay(T_RESET_US);
1474
1475         sfp_set_state(sfp, state);
1476 }
1477
1478 /* SFP state machine */
1479 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1480 {
1481         if (timeout)
1482                 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1483                                  timeout);
1484         else
1485                 cancel_delayed_work(&sfp->timeout);
1486 }
1487
1488 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1489                         unsigned int timeout)
1490 {
1491         sfp->sm_state = state;
1492         sfp_sm_set_timer(sfp, timeout);
1493 }
1494
1495 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1496                             unsigned int timeout)
1497 {
1498         sfp->sm_mod_state = state;
1499         sfp_sm_set_timer(sfp, timeout);
1500 }
1501
1502 static void sfp_sm_phy_detach(struct sfp *sfp)
1503 {
1504         sfp_remove_phy(sfp->sfp_bus);
1505         phy_device_remove(sfp->mod_phy);
1506         phy_device_free(sfp->mod_phy);
1507         sfp->mod_phy = NULL;
1508 }
1509
1510 static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1511 {
1512         struct phy_device *phy;
1513         int err;
1514
1515         phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1516         if (phy == ERR_PTR(-ENODEV))
1517                 return PTR_ERR(phy);
1518         if (IS_ERR(phy)) {
1519                 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1520                 return PTR_ERR(phy);
1521         }
1522
1523         err = phy_device_register(phy);
1524         if (err) {
1525                 phy_device_free(phy);
1526                 dev_err(sfp->dev, "phy_device_register failed: %d\n", err);
1527                 return err;
1528         }
1529
1530         err = sfp_add_phy(sfp->sfp_bus, phy);
1531         if (err) {
1532                 phy_device_remove(phy);
1533                 phy_device_free(phy);
1534                 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1535                 return err;
1536         }
1537
1538         sfp->mod_phy = phy;
1539
1540         return 0;
1541 }
1542
1543 static void sfp_sm_link_up(struct sfp *sfp)
1544 {
1545         sfp_link_up(sfp->sfp_bus);
1546         sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1547 }
1548
1549 static void sfp_sm_link_down(struct sfp *sfp)
1550 {
1551         sfp_link_down(sfp->sfp_bus);
1552 }
1553
1554 static void sfp_sm_link_check_los(struct sfp *sfp)
1555 {
1556         const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1557         const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1558         __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1559         bool los = false;
1560
1561         /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1562          * are set, we assume that no LOS signal is available. If both are
1563          * set, we assume LOS is not implemented (and is meaningless.)
1564          */
1565         if (los_options == los_inverted)
1566                 los = !(sfp->state & SFP_F_LOS);
1567         else if (los_options == los_normal)
1568                 los = !!(sfp->state & SFP_F_LOS);
1569
1570         if (los)
1571                 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1572         else
1573                 sfp_sm_link_up(sfp);
1574 }
1575
1576 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1577 {
1578         const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1579         const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1580         __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1581
1582         return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1583                (los_options == los_normal && event == SFP_E_LOS_HIGH);
1584 }
1585
1586 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1587 {
1588         const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1589         const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1590         __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1591
1592         return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1593                (los_options == los_normal && event == SFP_E_LOS_LOW);
1594 }
1595
1596 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1597 {
1598         if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1599                 dev_err(sfp->dev,
1600                         "module persistently indicates fault, disabling\n");
1601                 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1602         } else {
1603                 if (warn)
1604                         dev_err(sfp->dev, "module transmit fault indicated\n");
1605
1606                 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1607         }
1608 }
1609
1610 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1611  * normally sits at I2C bus address 0x56, and may either be a clause 22
1612  * or clause 45 PHY.
1613  *
1614  * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1615  * negotiation enabled, but some may be in 1000base-X - which is for the
1616  * PHY driver to determine.
1617  *
1618  * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1619  * mode according to the negotiated line speed.
1620  */
1621 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1622 {
1623         int err = 0;
1624
1625         switch (sfp->id.base.extended_cc) {
1626         case SFF8024_ECC_10GBASE_T_SFI:
1627         case SFF8024_ECC_10GBASE_T_SR:
1628         case SFF8024_ECC_5GBASE_T:
1629         case SFF8024_ECC_2_5GBASE_T:
1630                 err = sfp_sm_probe_phy(sfp, true);
1631                 break;
1632
1633         default:
1634                 if (sfp->id.base.e1000_base_t)
1635                         err = sfp_sm_probe_phy(sfp, false);
1636                 break;
1637         }
1638         return err;
1639 }
1640
1641 static int sfp_module_parse_power(struct sfp *sfp)
1642 {
1643         u32 power_mW = 1000;
1644
1645         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1646                 power_mW = 1500;
1647         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1648                 power_mW = 2000;
1649
1650         if (power_mW > sfp->max_power_mW) {
1651                 /* Module power specification exceeds the allowed maximum. */
1652                 if (sfp->id.ext.sff8472_compliance ==
1653                         SFP_SFF8472_COMPLIANCE_NONE &&
1654                     !(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) {
1655                         /* The module appears not to implement bus address
1656                          * 0xa2, so assume that the module powers up in the
1657                          * indicated mode.
1658                          */
1659                         dev_err(sfp->dev,
1660                                 "Host does not support %u.%uW modules\n",
1661                                 power_mW / 1000, (power_mW / 100) % 10);
1662                         return -EINVAL;
1663                 } else {
1664                         dev_warn(sfp->dev,
1665                                  "Host does not support %u.%uW modules, module left in power mode 1\n",
1666                                  power_mW / 1000, (power_mW / 100) % 10);
1667                         return 0;
1668                 }
1669         }
1670
1671         /* If the module requires a higher power mode, but also requires
1672          * an address change sequence, warn the user that the module may
1673          * not be functional.
1674          */
1675         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE && power_mW > 1000) {
1676                 dev_warn(sfp->dev,
1677                          "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1678                          power_mW / 1000, (power_mW / 100) % 10);
1679                 return 0;
1680         }
1681
1682         sfp->module_power_mW = power_mW;
1683
1684         return 0;
1685 }
1686
1687 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1688 {
1689         u8 val;
1690         int err;
1691
1692         err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1693         if (err != sizeof(val)) {
1694                 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1695                 return -EAGAIN;
1696         }
1697
1698         /* DM7052 reports as a high power module, responds to reads (with
1699          * all bytes 0xff) at 0x51 but does not accept writes.  In any case,
1700          * if the bit is already set, we're already in high power mode.
1701          */
1702         if (!!(val & BIT(0)) == enable)
1703                 return 0;
1704
1705         if (enable)
1706                 val |= BIT(0);
1707         else
1708                 val &= ~BIT(0);
1709
1710         err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1711         if (err != sizeof(val)) {
1712                 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1713                 return -EAGAIN;
1714         }
1715
1716         if (enable)
1717                 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1718                          sfp->module_power_mW / 1000,
1719                          (sfp->module_power_mW / 100) % 10);
1720
1721         return 0;
1722 }
1723
1724 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1725  * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1726  * not support multibyte reads from the EEPROM. Each multi-byte read
1727  * operation returns just one byte of EEPROM followed by zeros. There is
1728  * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1729  * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1730  * name and vendor id into EEPROM, so there is even no way to detect if
1731  * module is V-SOL V2801F. Therefore check for those zeros in the read
1732  * data and then based on check switch to reading EEPROM to one byte
1733  * at a time.
1734  */
1735 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1736 {
1737         size_t i, block_size = sfp->i2c_block_size;
1738
1739         /* Already using byte IO */
1740         if (block_size == 1)
1741                 return false;
1742
1743         for (i = 1; i < len; i += block_size) {
1744                 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1745                         return false;
1746         }
1747         return true;
1748 }
1749
1750 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1751 {
1752         u8 check;
1753         int err;
1754
1755         if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1756             id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1757             id->base.connector != SFF8024_CONNECTOR_LC) {
1758                 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1759                 id->base.phys_id = SFF8024_ID_SFF_8472;
1760                 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1761                 id->base.connector = SFF8024_CONNECTOR_LC;
1762                 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1763                 if (err != 3) {
1764                         dev_err(sfp->dev, "Failed to rewrite module EEPROM: %d\n", err);
1765                         return err;
1766                 }
1767
1768                 /* Cotsworks modules have been found to require a delay between write operations. */
1769                 mdelay(50);
1770
1771                 /* Update base structure checksum */
1772                 check = sfp_check(&id->base, sizeof(id->base) - 1);
1773                 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1774                 if (err != 1) {
1775                         dev_err(sfp->dev, "Failed to update base structure checksum in fiber module EEPROM: %d\n", err);
1776                         return err;
1777                 }
1778         }
1779         return 0;
1780 }
1781
1782 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1783 {
1784         /* SFP module inserted - read I2C data */
1785         struct sfp_eeprom_id id;
1786         bool cotsworks_sfbg;
1787         bool cotsworks;
1788         u8 check;
1789         int ret;
1790
1791         /* Some SFP modules and also some Linux I2C drivers do not like reads
1792          * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at
1793          * a time.
1794          */
1795         sfp->i2c_block_size = 16;
1796
1797         ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1798         if (ret < 0) {
1799                 if (report)
1800                         dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1801                 return -EAGAIN;
1802         }
1803
1804         if (ret != sizeof(id.base)) {
1805                 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1806                 return -EAGAIN;
1807         }
1808
1809         /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1810          * address 0x51 is just one byte at a time. Also SFF-8472 requires
1811          * that EEPROM supports atomic 16bit read operation for diagnostic
1812          * fields, so do not switch to one byte reading at a time unless it
1813          * is really required and we have no other option.
1814          */
1815         if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1816                 dev_info(sfp->dev,
1817                          "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1818                 dev_info(sfp->dev,
1819                          "Switching to reading EEPROM to one byte at a time\n");
1820                 sfp->i2c_block_size = 1;
1821
1822                 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1823                 if (ret < 0) {
1824                         if (report)
1825                                 dev_err(sfp->dev, "failed to read EEPROM: %d\n",
1826                                         ret);
1827                         return -EAGAIN;
1828                 }
1829
1830                 if (ret != sizeof(id.base)) {
1831                         dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1832                         return -EAGAIN;
1833                 }
1834         }
1835
1836         /* Cotsworks do not seem to update the checksums when they
1837          * do the final programming with the final module part number,
1838          * serial number and date code.
1839          */
1840         cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1841         cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1842
1843         /* Cotsworks SFF module EEPROM do not always have valid phys_id,
1844          * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
1845          * Cotsworks PN matches and bytes are not correct.
1846          */
1847         if (cotsworks && cotsworks_sfbg) {
1848                 ret = sfp_cotsworks_fixup_check(sfp, &id);
1849                 if (ret < 0)
1850                         return ret;
1851         }
1852
1853         /* Validate the checksum over the base structure */
1854         check = sfp_check(&id.base, sizeof(id.base) - 1);
1855         if (check != id.base.cc_base) {
1856                 if (cotsworks) {
1857                         dev_warn(sfp->dev,
1858                                  "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1859                                  check, id.base.cc_base);
1860                 } else {
1861                         dev_err(sfp->dev,
1862                                 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1863                                 check, id.base.cc_base);
1864                         print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1865                                        16, 1, &id, sizeof(id), true);
1866                         return -EINVAL;
1867                 }
1868         }
1869
1870         ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
1871         if (ret < 0) {
1872                 if (report)
1873                         dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1874                 return -EAGAIN;
1875         }
1876
1877         if (ret != sizeof(id.ext)) {
1878                 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1879                 return -EAGAIN;
1880         }
1881
1882         check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1883         if (check != id.ext.cc_ext) {
1884                 if (cotsworks) {
1885                         dev_warn(sfp->dev,
1886                                  "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1887                                  check, id.ext.cc_ext);
1888                 } else {
1889                         dev_err(sfp->dev,
1890                                 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1891                                 check, id.ext.cc_ext);
1892                         print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1893                                        16, 1, &id, sizeof(id), true);
1894                         memset(&id.ext, 0, sizeof(id.ext));
1895                 }
1896         }
1897
1898         sfp->id = id;
1899
1900         dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1901                  (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1902                  (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1903                  (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1904                  (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1905                  (int)sizeof(id.ext.datecode), id.ext.datecode);
1906
1907         /* Check whether we support this module */
1908         if (!sfp->type->module_supported(&id)) {
1909                 dev_err(sfp->dev,
1910                         "module is not supported - phys id 0x%02x 0x%02x\n",
1911                         sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1912                 return -EINVAL;
1913         }
1914
1915         /* If the module requires address swap mode, warn about it */
1916         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1917                 dev_warn(sfp->dev,
1918                          "module address swap to access page 0xA2 is not supported.\n");
1919
1920         /* Parse the module power requirement */
1921         ret = sfp_module_parse_power(sfp);
1922         if (ret < 0)
1923                 return ret;
1924
1925         if (!memcmp(id.base.vendor_name, "ALCATELLUCENT   ", 16) &&
1926             !memcmp(id.base.vendor_pn, "3FE46541AA      ", 16))
1927                 sfp->module_t_start_up = T_START_UP_BAD_GPON;
1928         else
1929                 sfp->module_t_start_up = T_START_UP;
1930
1931         return 0;
1932 }
1933
1934 static void sfp_sm_mod_remove(struct sfp *sfp)
1935 {
1936         if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1937                 sfp_module_remove(sfp->sfp_bus);
1938
1939         sfp_hwmon_remove(sfp);
1940
1941         memset(&sfp->id, 0, sizeof(sfp->id));
1942         sfp->module_power_mW = 0;
1943
1944         dev_info(sfp->dev, "module removed\n");
1945 }
1946
1947 /* This state machine tracks the upstream's state */
1948 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1949 {
1950         switch (sfp->sm_dev_state) {
1951         default:
1952                 if (event == SFP_E_DEV_ATTACH)
1953                         sfp->sm_dev_state = SFP_DEV_DOWN;
1954                 break;
1955
1956         case SFP_DEV_DOWN:
1957                 if (event == SFP_E_DEV_DETACH)
1958                         sfp->sm_dev_state = SFP_DEV_DETACHED;
1959                 else if (event == SFP_E_DEV_UP)
1960                         sfp->sm_dev_state = SFP_DEV_UP;
1961                 break;
1962
1963         case SFP_DEV_UP:
1964                 if (event == SFP_E_DEV_DETACH)
1965                         sfp->sm_dev_state = SFP_DEV_DETACHED;
1966                 else if (event == SFP_E_DEV_DOWN)
1967                         sfp->sm_dev_state = SFP_DEV_DOWN;
1968                 break;
1969         }
1970 }
1971
1972 /* This state machine tracks the insert/remove state of the module, probes
1973  * the on-board EEPROM, and sets up the power level.
1974  */
1975 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
1976 {
1977         int err;
1978
1979         /* Handle remove event globally, it resets this state machine */
1980         if (event == SFP_E_REMOVE) {
1981                 if (sfp->sm_mod_state > SFP_MOD_PROBE)
1982                         sfp_sm_mod_remove(sfp);
1983                 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
1984                 return;
1985         }
1986
1987         /* Handle device detach globally */
1988         if (sfp->sm_dev_state < SFP_DEV_DOWN &&
1989             sfp->sm_mod_state > SFP_MOD_WAITDEV) {
1990                 if (sfp->module_power_mW > 1000 &&
1991                     sfp->sm_mod_state > SFP_MOD_HPOWER)
1992                         sfp_sm_mod_hpower(sfp, false);
1993                 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1994                 return;
1995         }
1996
1997         switch (sfp->sm_mod_state) {
1998         default:
1999                 if (event == SFP_E_INSERT) {
2000                         sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2001                         sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2002                         sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2003                 }
2004                 break;
2005
2006         case SFP_MOD_PROBE:
2007                 /* Wait for T_PROBE_INIT to time out */
2008                 if (event != SFP_E_TIMEOUT)
2009                         break;
2010
2011                 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2012                 if (err == -EAGAIN) {
2013                         if (sfp->sm_mod_tries_init &&
2014                            --sfp->sm_mod_tries_init) {
2015                                 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2016                                 break;
2017                         } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2018                                 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2019                                         dev_warn(sfp->dev,
2020                                                  "please wait, module slow to respond\n");
2021                                 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2022                                 break;
2023                         }
2024                 }
2025                 if (err < 0) {
2026                         sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2027                         break;
2028                 }
2029
2030                 err = sfp_hwmon_insert(sfp);
2031                 if (err)
2032                         dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
2033
2034                 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2035                 fallthrough;
2036         case SFP_MOD_WAITDEV:
2037                 /* Ensure that the device is attached before proceeding */
2038                 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2039                         break;
2040
2041                 /* Report the module insertion to the upstream device */
2042                 err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
2043                 if (err < 0) {
2044                         sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2045                         break;
2046                 }
2047
2048                 /* If this is a power level 1 module, we are done */
2049                 if (sfp->module_power_mW <= 1000)
2050                         goto insert;
2051
2052                 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2053                 fallthrough;
2054         case SFP_MOD_HPOWER:
2055                 /* Enable high power mode */
2056                 err = sfp_sm_mod_hpower(sfp, true);
2057                 if (err < 0) {
2058                         if (err != -EAGAIN) {
2059                                 sfp_module_remove(sfp->sfp_bus);
2060                                 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2061                         } else {
2062                                 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2063                         }
2064                         break;
2065                 }
2066
2067                 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2068                 break;
2069
2070         case SFP_MOD_WAITPWR:
2071                 /* Wait for T_HPOWER_LEVEL to time out */
2072                 if (event != SFP_E_TIMEOUT)
2073                         break;
2074
2075         insert:
2076                 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2077                 break;
2078
2079         case SFP_MOD_PRESENT:
2080         case SFP_MOD_ERROR:
2081                 break;
2082         }
2083 }
2084
2085 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2086 {
2087         unsigned long timeout;
2088         int ret;
2089
2090         /* Some events are global */
2091         if (sfp->sm_state != SFP_S_DOWN &&
2092             (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2093              sfp->sm_dev_state != SFP_DEV_UP)) {
2094                 if (sfp->sm_state == SFP_S_LINK_UP &&
2095                     sfp->sm_dev_state == SFP_DEV_UP)
2096                         sfp_sm_link_down(sfp);
2097                 if (sfp->sm_state > SFP_S_INIT)
2098                         sfp_module_stop(sfp->sfp_bus);
2099                 if (sfp->mod_phy)
2100                         sfp_sm_phy_detach(sfp);
2101                 sfp_module_tx_disable(sfp);
2102                 sfp_soft_stop_poll(sfp);
2103                 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2104                 return;
2105         }
2106
2107         /* The main state machine */
2108         switch (sfp->sm_state) {
2109         case SFP_S_DOWN:
2110                 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2111                     sfp->sm_dev_state != SFP_DEV_UP)
2112                         break;
2113
2114                 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2115                         sfp_soft_start_poll(sfp);
2116
2117                 sfp_module_tx_enable(sfp);
2118
2119                 /* Initialise the fault clearance retries */
2120                 sfp->sm_fault_retries = N_FAULT_INIT;
2121
2122                 /* We need to check the TX_FAULT state, which is not defined
2123                  * while TX_DISABLE is asserted. The earliest we want to do
2124                  * anything (such as probe for a PHY) is 50ms.
2125                  */
2126                 sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
2127                 break;
2128
2129         case SFP_S_WAIT:
2130                 if (event != SFP_E_TIMEOUT)
2131                         break;
2132
2133                 if (sfp->state & SFP_F_TX_FAULT) {
2134                         /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2135                          * from the TX_DISABLE deassertion for the module to
2136                          * initialise, which is indicated by TX_FAULT
2137                          * deasserting.
2138                          */
2139                         timeout = sfp->module_t_start_up;
2140                         if (timeout > T_WAIT)
2141                                 timeout -= T_WAIT;
2142                         else
2143                                 timeout = 1;
2144
2145                         sfp_sm_next(sfp, SFP_S_INIT, timeout);
2146                 } else {
2147                         /* TX_FAULT is not asserted, assume the module has
2148                          * finished initialising.
2149                          */
2150                         goto init_done;
2151                 }
2152                 break;
2153
2154         case SFP_S_INIT:
2155                 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2156                         /* TX_FAULT is still asserted after t_init
2157                          * or t_start_up, so assume there is a fault.
2158                          */
2159                         sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2160                                      sfp->sm_fault_retries == N_FAULT_INIT);
2161                 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2162         init_done:
2163                         sfp->sm_phy_retries = R_PHY_RETRY;
2164                         goto phy_probe;
2165                 }
2166                 break;
2167
2168         case SFP_S_INIT_PHY:
2169                 if (event != SFP_E_TIMEOUT)
2170                         break;
2171         phy_probe:
2172                 /* TX_FAULT deasserted or we timed out with TX_FAULT
2173                  * clear.  Probe for the PHY and check the LOS state.
2174                  */
2175                 ret = sfp_sm_probe_for_phy(sfp);
2176                 if (ret == -ENODEV) {
2177                         if (--sfp->sm_phy_retries) {
2178                                 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2179                                 break;
2180                         } else {
2181                                 dev_info(sfp->dev, "no PHY detected\n");
2182                         }
2183                 } else if (ret) {
2184                         sfp_sm_next(sfp, SFP_S_FAIL, 0);
2185                         break;
2186                 }
2187                 if (sfp_module_start(sfp->sfp_bus)) {
2188                         sfp_sm_next(sfp, SFP_S_FAIL, 0);
2189                         break;
2190                 }
2191                 sfp_sm_link_check_los(sfp);
2192
2193                 /* Reset the fault retry count */
2194                 sfp->sm_fault_retries = N_FAULT;
2195                 break;
2196
2197         case SFP_S_INIT_TX_FAULT:
2198                 if (event == SFP_E_TIMEOUT) {
2199                         sfp_module_tx_fault_reset(sfp);
2200                         sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2201                 }
2202                 break;
2203
2204         case SFP_S_WAIT_LOS:
2205                 if (event == SFP_E_TX_FAULT)
2206                         sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2207                 else if (sfp_los_event_inactive(sfp, event))
2208                         sfp_sm_link_up(sfp);
2209                 break;
2210
2211         case SFP_S_LINK_UP:
2212                 if (event == SFP_E_TX_FAULT) {
2213                         sfp_sm_link_down(sfp);
2214                         sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2215                 } else if (sfp_los_event_active(sfp, event)) {
2216                         sfp_sm_link_down(sfp);
2217                         sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2218                 }
2219                 break;
2220
2221         case SFP_S_TX_FAULT:
2222                 if (event == SFP_E_TIMEOUT) {
2223                         sfp_module_tx_fault_reset(sfp);
2224                         sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2225                 }
2226                 break;
2227
2228         case SFP_S_REINIT:
2229                 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2230                         sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2231                 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2232                         dev_info(sfp->dev, "module transmit fault recovered\n");
2233                         sfp_sm_link_check_los(sfp);
2234                 }
2235                 break;
2236
2237         case SFP_S_TX_DISABLE:
2238                 break;
2239         }
2240 }
2241
2242 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2243 {
2244         mutex_lock(&sfp->sm_mutex);
2245
2246         dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2247                 mod_state_to_str(sfp->sm_mod_state),
2248                 dev_state_to_str(sfp->sm_dev_state),
2249                 sm_state_to_str(sfp->sm_state),
2250                 event_to_str(event));
2251
2252         sfp_sm_device(sfp, event);
2253         sfp_sm_module(sfp, event);
2254         sfp_sm_main(sfp, event);
2255
2256         dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2257                 mod_state_to_str(sfp->sm_mod_state),
2258                 dev_state_to_str(sfp->sm_dev_state),
2259                 sm_state_to_str(sfp->sm_state));
2260
2261         mutex_unlock(&sfp->sm_mutex);
2262 }
2263
2264 static void sfp_attach(struct sfp *sfp)
2265 {
2266         sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2267 }
2268
2269 static void sfp_detach(struct sfp *sfp)
2270 {
2271         sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2272 }
2273
2274 static void sfp_start(struct sfp *sfp)
2275 {
2276         sfp_sm_event(sfp, SFP_E_DEV_UP);
2277 }
2278
2279 static void sfp_stop(struct sfp *sfp)
2280 {
2281         sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2282 }
2283
2284 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2285 {
2286         /* locking... and check module is present */
2287
2288         if (sfp->id.ext.sff8472_compliance &&
2289             !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2290                 modinfo->type = ETH_MODULE_SFF_8472;
2291                 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2292         } else {
2293                 modinfo->type = ETH_MODULE_SFF_8079;
2294                 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2295         }
2296         return 0;
2297 }
2298
2299 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2300                              u8 *data)
2301 {
2302         unsigned int first, last, len;
2303         int ret;
2304
2305         if (ee->len == 0)
2306                 return -EINVAL;
2307
2308         first = ee->offset;
2309         last = ee->offset + ee->len;
2310         if (first < ETH_MODULE_SFF_8079_LEN) {
2311                 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2312                 len -= first;
2313
2314                 ret = sfp_read(sfp, false, first, data, len);
2315                 if (ret < 0)
2316                         return ret;
2317
2318                 first += len;
2319                 data += len;
2320         }
2321         if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2322                 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2323                 len -= first;
2324                 first -= ETH_MODULE_SFF_8079_LEN;
2325
2326                 ret = sfp_read(sfp, true, first, data, len);
2327                 if (ret < 0)
2328                         return ret;
2329         }
2330         return 0;
2331 }
2332
2333 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2334                                      const struct ethtool_module_eeprom *page,
2335                                      struct netlink_ext_ack *extack)
2336 {
2337         if (page->bank) {
2338                 NL_SET_ERR_MSG(extack, "Banks not supported");
2339                 return -EOPNOTSUPP;
2340         }
2341
2342         if (page->page) {
2343                 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2344                 return -EOPNOTSUPP;
2345         }
2346
2347         if (page->i2c_address != 0x50 &&
2348             page->i2c_address != 0x51) {
2349                 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2350                 return -EOPNOTSUPP;
2351         }
2352
2353         return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2354                         page->data, page->length);
2355 };
2356
2357 static const struct sfp_socket_ops sfp_module_ops = {
2358         .attach = sfp_attach,
2359         .detach = sfp_detach,
2360         .start = sfp_start,
2361         .stop = sfp_stop,
2362         .module_info = sfp_module_info,
2363         .module_eeprom = sfp_module_eeprom,
2364         .module_eeprom_by_page = sfp_module_eeprom_by_page,
2365 };
2366
2367 static void sfp_timeout(struct work_struct *work)
2368 {
2369         struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2370
2371         rtnl_lock();
2372         sfp_sm_event(sfp, SFP_E_TIMEOUT);
2373         rtnl_unlock();
2374 }
2375
2376 static void sfp_check_state(struct sfp *sfp)
2377 {
2378         unsigned int state, i, changed;
2379
2380         mutex_lock(&sfp->st_mutex);
2381         state = sfp_get_state(sfp);
2382         changed = state ^ sfp->state;
2383         changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2384
2385         for (i = 0; i < GPIO_MAX; i++)
2386                 if (changed & BIT(i))
2387                         dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2388                                 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2389
2390         state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2391         sfp->state = state;
2392
2393         rtnl_lock();
2394         if (changed & SFP_F_PRESENT)
2395                 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2396                                 SFP_E_INSERT : SFP_E_REMOVE);
2397
2398         if (changed & SFP_F_TX_FAULT)
2399                 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2400                                 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2401
2402         if (changed & SFP_F_LOS)
2403                 sfp_sm_event(sfp, state & SFP_F_LOS ?
2404                                 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2405         rtnl_unlock();
2406         mutex_unlock(&sfp->st_mutex);
2407 }
2408
2409 static irqreturn_t sfp_irq(int irq, void *data)
2410 {
2411         struct sfp *sfp = data;
2412
2413         sfp_check_state(sfp);
2414
2415         return IRQ_HANDLED;
2416 }
2417
2418 static void sfp_poll(struct work_struct *work)
2419 {
2420         struct sfp *sfp = container_of(work, struct sfp, poll.work);
2421
2422         sfp_check_state(sfp);
2423
2424         if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2425             sfp->need_poll)
2426                 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2427 }
2428
2429 static struct sfp *sfp_alloc(struct device *dev)
2430 {
2431         struct sfp *sfp;
2432
2433         sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2434         if (!sfp)
2435                 return ERR_PTR(-ENOMEM);
2436
2437         sfp->dev = dev;
2438
2439         mutex_init(&sfp->sm_mutex);
2440         mutex_init(&sfp->st_mutex);
2441         INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2442         INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2443
2444         sfp_hwmon_init(sfp);
2445
2446         return sfp;
2447 }
2448
2449 static void sfp_cleanup(void *data)
2450 {
2451         struct sfp *sfp = data;
2452
2453         sfp_hwmon_exit(sfp);
2454
2455         cancel_delayed_work_sync(&sfp->poll);
2456         cancel_delayed_work_sync(&sfp->timeout);
2457         if (sfp->i2c_mii) {
2458                 mdiobus_unregister(sfp->i2c_mii);
2459                 mdiobus_free(sfp->i2c_mii);
2460         }
2461         if (sfp->i2c)
2462                 i2c_put_adapter(sfp->i2c);
2463         kfree(sfp);
2464 }
2465
2466 static int sfp_probe(struct platform_device *pdev)
2467 {
2468         const struct sff_data *sff;
2469         struct i2c_adapter *i2c;
2470         char *sfp_irq_name;
2471         struct sfp *sfp;
2472         int err, i;
2473
2474         sfp = sfp_alloc(&pdev->dev);
2475         if (IS_ERR(sfp))
2476                 return PTR_ERR(sfp);
2477
2478         platform_set_drvdata(pdev, sfp);
2479
2480         err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
2481         if (err < 0)
2482                 return err;
2483
2484         sff = sfp->type = &sfp_data;
2485
2486         if (pdev->dev.of_node) {
2487                 struct device_node *node = pdev->dev.of_node;
2488                 const struct of_device_id *id;
2489                 struct device_node *np;
2490
2491                 id = of_match_node(sfp_of_match, node);
2492                 if (WARN_ON(!id))
2493                         return -EINVAL;
2494
2495                 sff = sfp->type = id->data;
2496
2497                 np = of_parse_phandle(node, "i2c-bus", 0);
2498                 if (!np) {
2499                         dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2500                         return -ENODEV;
2501                 }
2502
2503                 i2c = of_find_i2c_adapter_by_node(np);
2504                 of_node_put(np);
2505         } else if (has_acpi_companion(&pdev->dev)) {
2506                 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2507                 struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2508                 struct fwnode_reference_args args;
2509                 struct acpi_handle *acpi_handle;
2510                 int ret;
2511
2512                 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2513                 if (ret || !is_acpi_device_node(args.fwnode)) {
2514                         dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2515                         return -ENODEV;
2516                 }
2517
2518                 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2519                 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2520         } else {
2521                 return -EINVAL;
2522         }
2523
2524         if (!i2c)
2525                 return -EPROBE_DEFER;
2526
2527         err = sfp_i2c_configure(sfp, i2c);
2528         if (err < 0) {
2529                 i2c_put_adapter(i2c);
2530                 return err;
2531         }
2532
2533         for (i = 0; i < GPIO_MAX; i++)
2534                 if (sff->gpios & BIT(i)) {
2535                         sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2536                                            gpio_of_names[i], gpio_flags[i]);
2537                         if (IS_ERR(sfp->gpio[i]))
2538                                 return PTR_ERR(sfp->gpio[i]);
2539                 }
2540
2541         sfp->get_state = sfp_gpio_get_state;
2542         sfp->set_state = sfp_gpio_set_state;
2543
2544         /* Modules that have no detect signal are always present */
2545         if (!(sfp->gpio[GPIO_MODDEF0]))
2546                 sfp->get_state = sff_gpio_get_state;
2547
2548         device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2549                                  &sfp->max_power_mW);
2550         if (!sfp->max_power_mW)
2551                 sfp->max_power_mW = 1000;
2552
2553         dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2554                  sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2555
2556         /* Get the initial state, and always signal TX disable,
2557          * since the network interface will not be up.
2558          */
2559         sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2560
2561         if (sfp->gpio[GPIO_RATE_SELECT] &&
2562             gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2563                 sfp->state |= SFP_F_RATE_SELECT;
2564         sfp_set_state(sfp, sfp->state);
2565         sfp_module_tx_disable(sfp);
2566         if (sfp->state & SFP_F_PRESENT) {
2567                 rtnl_lock();
2568                 sfp_sm_event(sfp, SFP_E_INSERT);
2569                 rtnl_unlock();
2570         }
2571
2572         for (i = 0; i < GPIO_MAX; i++) {
2573                 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2574                         continue;
2575
2576                 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2577                 if (sfp->gpio_irq[i] < 0) {
2578                         sfp->gpio_irq[i] = 0;
2579                         sfp->need_poll = true;
2580                         continue;
2581                 }
2582
2583                 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2584                                               "%s-%s", dev_name(sfp->dev),
2585                                               gpio_of_names[i]);
2586
2587                 if (!sfp_irq_name)
2588                         return -ENOMEM;
2589
2590                 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2591                                                 NULL, sfp_irq,
2592                                                 IRQF_ONESHOT |
2593                                                 IRQF_TRIGGER_RISING |
2594                                                 IRQF_TRIGGER_FALLING,
2595                                                 sfp_irq_name, sfp);
2596                 if (err) {
2597                         sfp->gpio_irq[i] = 0;
2598                         sfp->need_poll = true;
2599                 }
2600         }
2601
2602         if (sfp->need_poll)
2603                 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2604
2605         /* We could have an issue in cases no Tx disable pin is available or
2606          * wired as modules using a laser as their light source will continue to
2607          * be active when the fiber is removed. This could be a safety issue and
2608          * we should at least warn the user about that.
2609          */
2610         if (!sfp->gpio[GPIO_TX_DISABLE])
2611                 dev_warn(sfp->dev,
2612                          "No tx_disable pin: SFP modules will always be emitting.\n");
2613
2614         sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2615         if (!sfp->sfp_bus)
2616                 return -ENOMEM;
2617
2618         sfp_debugfs_init(sfp);
2619
2620         return 0;
2621 }
2622
2623 static int sfp_remove(struct platform_device *pdev)
2624 {
2625         struct sfp *sfp = platform_get_drvdata(pdev);
2626
2627         sfp_debugfs_exit(sfp);
2628         sfp_unregister_socket(sfp->sfp_bus);
2629
2630         rtnl_lock();
2631         sfp_sm_event(sfp, SFP_E_REMOVE);
2632         rtnl_unlock();
2633
2634         return 0;
2635 }
2636
2637 static void sfp_shutdown(struct platform_device *pdev)
2638 {
2639         struct sfp *sfp = platform_get_drvdata(pdev);
2640         int i;
2641
2642         for (i = 0; i < GPIO_MAX; i++) {
2643                 if (!sfp->gpio_irq[i])
2644                         continue;
2645
2646                 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2647         }
2648
2649         cancel_delayed_work_sync(&sfp->poll);
2650         cancel_delayed_work_sync(&sfp->timeout);
2651 }
2652
2653 static struct platform_driver sfp_driver = {
2654         .probe = sfp_probe,
2655         .remove = sfp_remove,
2656         .shutdown = sfp_shutdown,
2657         .driver = {
2658                 .name = "sfp",
2659                 .of_match_table = sfp_of_match,
2660         },
2661 };
2662
2663 static int sfp_init(void)
2664 {
2665         poll_jiffies = msecs_to_jiffies(100);
2666
2667         return platform_driver_register(&sfp_driver);
2668 }
2669 module_init(sfp_init);
2670
2671 static void sfp_exit(void)
2672 {
2673         platform_driver_unregister(&sfp_driver);
2674 }
2675 module_exit(sfp_exit);
2676
2677 MODULE_ALIAS("platform:sfp");
2678 MODULE_AUTHOR("Russell King");
2679 MODULE_LICENSE("GPL v2");