eff8fef4f775f185dc459e0fb87c51f2f0e4d7f8
[linux-2.6-microblaze.git] / drivers / net / hyperv / netvsc_drv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/atomic.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/delay.h>
18 #include <linux/netdevice.h>
19 #include <linux/inetdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/pci.h>
22 #include <linux/skbuff.h>
23 #include <linux/if_vlan.h>
24 #include <linux/in.h>
25 #include <linux/slab.h>
26 #include <linux/rtnetlink.h>
27 #include <linux/netpoll.h>
28
29 #include <net/arp.h>
30 #include <net/route.h>
31 #include <net/sock.h>
32 #include <net/pkt_sched.h>
33 #include <net/checksum.h>
34 #include <net/ip6_checksum.h>
35
36 #include "hyperv_net.h"
37
38 #define RING_SIZE_MIN   64
39 #define RETRY_US_LO     5000
40 #define RETRY_US_HI     10000
41 #define RETRY_MAX       2000    /* >10 sec */
42
43 #define LINKCHANGE_INT (2 * HZ)
44 #define VF_TAKEOVER_INT (HZ / 10)
45
46 static unsigned int ring_size __ro_after_init = 128;
47 module_param(ring_size, uint, 0444);
48 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
49 unsigned int netvsc_ring_bytes __ro_after_init;
50
51 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
52                                 NETIF_MSG_LINK | NETIF_MSG_IFUP |
53                                 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
54                                 NETIF_MSG_TX_ERR;
55
56 static int debug = -1;
57 module_param(debug, int, 0444);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60 static LIST_HEAD(netvsc_dev_list);
61
62 static void netvsc_change_rx_flags(struct net_device *net, int change)
63 {
64         struct net_device_context *ndev_ctx = netdev_priv(net);
65         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
66         int inc;
67
68         if (!vf_netdev)
69                 return;
70
71         if (change & IFF_PROMISC) {
72                 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
73                 dev_set_promiscuity(vf_netdev, inc);
74         }
75
76         if (change & IFF_ALLMULTI) {
77                 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
78                 dev_set_allmulti(vf_netdev, inc);
79         }
80 }
81
82 static void netvsc_set_rx_mode(struct net_device *net)
83 {
84         struct net_device_context *ndev_ctx = netdev_priv(net);
85         struct net_device *vf_netdev;
86         struct netvsc_device *nvdev;
87
88         rcu_read_lock();
89         vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
90         if (vf_netdev) {
91                 dev_uc_sync(vf_netdev, net);
92                 dev_mc_sync(vf_netdev, net);
93         }
94
95         nvdev = rcu_dereference(ndev_ctx->nvdev);
96         if (nvdev)
97                 rndis_filter_update(nvdev);
98         rcu_read_unlock();
99 }
100
101 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
102                              struct net_device *ndev)
103 {
104         nvscdev->tx_disable = false;
105         virt_wmb(); /* ensure queue wake up mechanism is on */
106
107         netif_tx_wake_all_queues(ndev);
108 }
109
110 static int netvsc_open(struct net_device *net)
111 {
112         struct net_device_context *ndev_ctx = netdev_priv(net);
113         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
114         struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
115         struct rndis_device *rdev;
116         int ret = 0;
117
118         netif_carrier_off(net);
119
120         /* Open up the device */
121         ret = rndis_filter_open(nvdev);
122         if (ret != 0) {
123                 netdev_err(net, "unable to open device (ret %d).\n", ret);
124                 return ret;
125         }
126
127         rdev = nvdev->extension;
128         if (!rdev->link_state) {
129                 netif_carrier_on(net);
130                 netvsc_tx_enable(nvdev, net);
131         }
132
133         if (vf_netdev) {
134                 /* Setting synthetic device up transparently sets
135                  * slave as up. If open fails, then slave will be
136                  * still be offline (and not used).
137                  */
138                 ret = dev_open(vf_netdev, NULL);
139                 if (ret)
140                         netdev_warn(net,
141                                     "unable to open slave: %s: %d\n",
142                                     vf_netdev->name, ret);
143         }
144         return 0;
145 }
146
147 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
148 {
149         unsigned int retry = 0;
150         int i;
151
152         /* Ensure pending bytes in ring are read */
153         for (;;) {
154                 u32 aread = 0;
155
156                 for (i = 0; i < nvdev->num_chn; i++) {
157                         struct vmbus_channel *chn
158                                 = nvdev->chan_table[i].channel;
159
160                         if (!chn)
161                                 continue;
162
163                         /* make sure receive not running now */
164                         napi_synchronize(&nvdev->chan_table[i].napi);
165
166                         aread = hv_get_bytes_to_read(&chn->inbound);
167                         if (aread)
168                                 break;
169
170                         aread = hv_get_bytes_to_read(&chn->outbound);
171                         if (aread)
172                                 break;
173                 }
174
175                 if (aread == 0)
176                         return 0;
177
178                 if (++retry > RETRY_MAX)
179                         return -ETIMEDOUT;
180
181                 usleep_range(RETRY_US_LO, RETRY_US_HI);
182         }
183 }
184
185 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
186                               struct net_device *ndev)
187 {
188         if (nvscdev) {
189                 nvscdev->tx_disable = true;
190                 virt_wmb(); /* ensure txq will not wake up after stop */
191         }
192
193         netif_tx_disable(ndev);
194 }
195
196 static int netvsc_close(struct net_device *net)
197 {
198         struct net_device_context *net_device_ctx = netdev_priv(net);
199         struct net_device *vf_netdev
200                 = rtnl_dereference(net_device_ctx->vf_netdev);
201         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
202         int ret;
203
204         netvsc_tx_disable(nvdev, net);
205
206         /* No need to close rndis filter if it is removed already */
207         if (!nvdev)
208                 return 0;
209
210         ret = rndis_filter_close(nvdev);
211         if (ret != 0) {
212                 netdev_err(net, "unable to close device (ret %d).\n", ret);
213                 return ret;
214         }
215
216         ret = netvsc_wait_until_empty(nvdev);
217         if (ret)
218                 netdev_err(net, "Ring buffer not empty after closing rndis\n");
219
220         if (vf_netdev)
221                 dev_close(vf_netdev);
222
223         return ret;
224 }
225
226 static inline void *init_ppi_data(struct rndis_message *msg,
227                                   u32 ppi_size, u32 pkt_type)
228 {
229         struct rndis_packet *rndis_pkt = &msg->msg.pkt;
230         struct rndis_per_packet_info *ppi;
231
232         rndis_pkt->data_offset += ppi_size;
233         ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
234                 + rndis_pkt->per_pkt_info_len;
235
236         ppi->size = ppi_size;
237         ppi->type = pkt_type;
238         ppi->internal = 0;
239         ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
240
241         rndis_pkt->per_pkt_info_len += ppi_size;
242
243         return ppi + 1;
244 }
245
246 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
247  * packets. We can use ethtool to change UDP hash level when necessary.
248  */
249 static inline u32 netvsc_get_hash(
250         struct sk_buff *skb,
251         const struct net_device_context *ndc)
252 {
253         struct flow_keys flow;
254         u32 hash, pkt_proto = 0;
255         static u32 hashrnd __read_mostly;
256
257         net_get_random_once(&hashrnd, sizeof(hashrnd));
258
259         if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
260                 return 0;
261
262         switch (flow.basic.ip_proto) {
263         case IPPROTO_TCP:
264                 if (flow.basic.n_proto == htons(ETH_P_IP))
265                         pkt_proto = HV_TCP4_L4HASH;
266                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
267                         pkt_proto = HV_TCP6_L4HASH;
268
269                 break;
270
271         case IPPROTO_UDP:
272                 if (flow.basic.n_proto == htons(ETH_P_IP))
273                         pkt_proto = HV_UDP4_L4HASH;
274                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
275                         pkt_proto = HV_UDP6_L4HASH;
276
277                 break;
278         }
279
280         if (pkt_proto & ndc->l4_hash) {
281                 return skb_get_hash(skb);
282         } else {
283                 if (flow.basic.n_proto == htons(ETH_P_IP))
284                         hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
285                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
286                         hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
287                 else
288                         return 0;
289
290                 __skb_set_sw_hash(skb, hash, false);
291         }
292
293         return hash;
294 }
295
296 static inline int netvsc_get_tx_queue(struct net_device *ndev,
297                                       struct sk_buff *skb, int old_idx)
298 {
299         const struct net_device_context *ndc = netdev_priv(ndev);
300         struct sock *sk = skb->sk;
301         int q_idx;
302
303         q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
304                               (VRSS_SEND_TAB_SIZE - 1)];
305
306         /* If queue index changed record the new value */
307         if (q_idx != old_idx &&
308             sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
309                 sk_tx_queue_set(sk, q_idx);
310
311         return q_idx;
312 }
313
314 /*
315  * Select queue for transmit.
316  *
317  * If a valid queue has already been assigned, then use that.
318  * Otherwise compute tx queue based on hash and the send table.
319  *
320  * This is basically similar to default (netdev_pick_tx) with the added step
321  * of using the host send_table when no other queue has been assigned.
322  *
323  * TODO support XPS - but get_xps_queue not exported
324  */
325 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
326 {
327         int q_idx = sk_tx_queue_get(skb->sk);
328
329         if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
330                 /* If forwarding a packet, we use the recorded queue when
331                  * available for better cache locality.
332                  */
333                 if (skb_rx_queue_recorded(skb))
334                         q_idx = skb_get_rx_queue(skb);
335                 else
336                         q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
337         }
338
339         return q_idx;
340 }
341
342 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
343                                struct net_device *sb_dev)
344 {
345         struct net_device_context *ndc = netdev_priv(ndev);
346         struct net_device *vf_netdev;
347         u16 txq;
348
349         rcu_read_lock();
350         vf_netdev = rcu_dereference(ndc->vf_netdev);
351         if (vf_netdev) {
352                 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
353
354                 if (vf_ops->ndo_select_queue)
355                         txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
356                 else
357                         txq = netdev_pick_tx(vf_netdev, skb, NULL);
358
359                 /* Record the queue selected by VF so that it can be
360                  * used for common case where VF has more queues than
361                  * the synthetic device.
362                  */
363                 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
364         } else {
365                 txq = netvsc_pick_tx(ndev, skb);
366         }
367         rcu_read_unlock();
368
369         while (unlikely(txq >= ndev->real_num_tx_queues))
370                 txq -= ndev->real_num_tx_queues;
371
372         return txq;
373 }
374
375 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
376                        struct hv_page_buffer *pb)
377 {
378         int j = 0;
379
380         /* Deal with compound pages by ignoring unused part
381          * of the page.
382          */
383         page += (offset >> PAGE_SHIFT);
384         offset &= ~PAGE_MASK;
385
386         while (len > 0) {
387                 unsigned long bytes;
388
389                 bytes = PAGE_SIZE - offset;
390                 if (bytes > len)
391                         bytes = len;
392                 pb[j].pfn = page_to_pfn(page);
393                 pb[j].offset = offset;
394                 pb[j].len = bytes;
395
396                 offset += bytes;
397                 len -= bytes;
398
399                 if (offset == PAGE_SIZE && len) {
400                         page++;
401                         offset = 0;
402                         j++;
403                 }
404         }
405
406         return j + 1;
407 }
408
409 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
410                            struct hv_netvsc_packet *packet,
411                            struct hv_page_buffer *pb)
412 {
413         u32 slots_used = 0;
414         char *data = skb->data;
415         int frags = skb_shinfo(skb)->nr_frags;
416         int i;
417
418         /* The packet is laid out thus:
419          * 1. hdr: RNDIS header and PPI
420          * 2. skb linear data
421          * 3. skb fragment data
422          */
423         slots_used += fill_pg_buf(virt_to_page(hdr),
424                                   offset_in_page(hdr),
425                                   len, &pb[slots_used]);
426
427         packet->rmsg_size = len;
428         packet->rmsg_pgcnt = slots_used;
429
430         slots_used += fill_pg_buf(virt_to_page(data),
431                                 offset_in_page(data),
432                                 skb_headlen(skb), &pb[slots_used]);
433
434         for (i = 0; i < frags; i++) {
435                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
436
437                 slots_used += fill_pg_buf(skb_frag_page(frag),
438                                         skb_frag_off(frag),
439                                         skb_frag_size(frag), &pb[slots_used]);
440         }
441         return slots_used;
442 }
443
444 static int count_skb_frag_slots(struct sk_buff *skb)
445 {
446         int i, frags = skb_shinfo(skb)->nr_frags;
447         int pages = 0;
448
449         for (i = 0; i < frags; i++) {
450                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
451                 unsigned long size = skb_frag_size(frag);
452                 unsigned long offset = skb_frag_off(frag);
453
454                 /* Skip unused frames from start of page */
455                 offset &= ~PAGE_MASK;
456                 pages += PFN_UP(offset + size);
457         }
458         return pages;
459 }
460
461 static int netvsc_get_slots(struct sk_buff *skb)
462 {
463         char *data = skb->data;
464         unsigned int offset = offset_in_page(data);
465         unsigned int len = skb_headlen(skb);
466         int slots;
467         int frag_slots;
468
469         slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
470         frag_slots = count_skb_frag_slots(skb);
471         return slots + frag_slots;
472 }
473
474 static u32 net_checksum_info(struct sk_buff *skb)
475 {
476         if (skb->protocol == htons(ETH_P_IP)) {
477                 struct iphdr *ip = ip_hdr(skb);
478
479                 if (ip->protocol == IPPROTO_TCP)
480                         return TRANSPORT_INFO_IPV4_TCP;
481                 else if (ip->protocol == IPPROTO_UDP)
482                         return TRANSPORT_INFO_IPV4_UDP;
483         } else {
484                 struct ipv6hdr *ip6 = ipv6_hdr(skb);
485
486                 if (ip6->nexthdr == IPPROTO_TCP)
487                         return TRANSPORT_INFO_IPV6_TCP;
488                 else if (ip6->nexthdr == IPPROTO_UDP)
489                         return TRANSPORT_INFO_IPV6_UDP;
490         }
491
492         return TRANSPORT_INFO_NOT_IP;
493 }
494
495 /* Send skb on the slave VF device. */
496 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
497                           struct sk_buff *skb)
498 {
499         struct net_device_context *ndev_ctx = netdev_priv(net);
500         unsigned int len = skb->len;
501         int rc;
502
503         skb->dev = vf_netdev;
504         skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
505
506         rc = dev_queue_xmit(skb);
507         if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
508                 struct netvsc_vf_pcpu_stats *pcpu_stats
509                         = this_cpu_ptr(ndev_ctx->vf_stats);
510
511                 u64_stats_update_begin(&pcpu_stats->syncp);
512                 pcpu_stats->tx_packets++;
513                 pcpu_stats->tx_bytes += len;
514                 u64_stats_update_end(&pcpu_stats->syncp);
515         } else {
516                 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
517         }
518
519         return rc;
520 }
521
522 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
523 {
524         struct net_device_context *net_device_ctx = netdev_priv(net);
525         struct hv_netvsc_packet *packet = NULL;
526         int ret;
527         unsigned int num_data_pgs;
528         struct rndis_message *rndis_msg;
529         struct net_device *vf_netdev;
530         u32 rndis_msg_size;
531         u32 hash;
532         struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
533
534         /* if VF is present and up then redirect packets
535          * already called with rcu_read_lock_bh
536          */
537         vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
538         if (vf_netdev && netif_running(vf_netdev) &&
539             !netpoll_tx_running(net))
540                 return netvsc_vf_xmit(net, vf_netdev, skb);
541
542         /* We will atmost need two pages to describe the rndis
543          * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
544          * of pages in a single packet. If skb is scattered around
545          * more pages we try linearizing it.
546          */
547
548         num_data_pgs = netvsc_get_slots(skb) + 2;
549
550         if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
551                 ++net_device_ctx->eth_stats.tx_scattered;
552
553                 if (skb_linearize(skb))
554                         goto no_memory;
555
556                 num_data_pgs = netvsc_get_slots(skb) + 2;
557                 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
558                         ++net_device_ctx->eth_stats.tx_too_big;
559                         goto drop;
560                 }
561         }
562
563         /*
564          * Place the rndis header in the skb head room and
565          * the skb->cb will be used for hv_netvsc_packet
566          * structure.
567          */
568         ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
569         if (ret)
570                 goto no_memory;
571
572         /* Use the skb control buffer for building up the packet */
573         BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
574                         FIELD_SIZEOF(struct sk_buff, cb));
575         packet = (struct hv_netvsc_packet *)skb->cb;
576
577         packet->q_idx = skb_get_queue_mapping(skb);
578
579         packet->total_data_buflen = skb->len;
580         packet->total_bytes = skb->len;
581         packet->total_packets = 1;
582
583         rndis_msg = (struct rndis_message *)skb->head;
584
585         /* Add the rndis header */
586         rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
587         rndis_msg->msg_len = packet->total_data_buflen;
588
589         rndis_msg->msg.pkt = (struct rndis_packet) {
590                 .data_offset = sizeof(struct rndis_packet),
591                 .data_len = packet->total_data_buflen,
592                 .per_pkt_info_offset = sizeof(struct rndis_packet),
593         };
594
595         rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
596
597         hash = skb_get_hash_raw(skb);
598         if (hash != 0 && net->real_num_tx_queues > 1) {
599                 u32 *hash_info;
600
601                 rndis_msg_size += NDIS_HASH_PPI_SIZE;
602                 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
603                                           NBL_HASH_VALUE);
604                 *hash_info = hash;
605         }
606
607         if (skb_vlan_tag_present(skb)) {
608                 struct ndis_pkt_8021q_info *vlan;
609
610                 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
611                 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
612                                      IEEE_8021Q_INFO);
613
614                 vlan->value = 0;
615                 vlan->vlanid = skb_vlan_tag_get_id(skb);
616                 vlan->cfi = skb_vlan_tag_get_cfi(skb);
617                 vlan->pri = skb_vlan_tag_get_prio(skb);
618         }
619
620         if (skb_is_gso(skb)) {
621                 struct ndis_tcp_lso_info *lso_info;
622
623                 rndis_msg_size += NDIS_LSO_PPI_SIZE;
624                 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
625                                          TCP_LARGESEND_PKTINFO);
626
627                 lso_info->value = 0;
628                 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
629                 if (skb->protocol == htons(ETH_P_IP)) {
630                         lso_info->lso_v2_transmit.ip_version =
631                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
632                         ip_hdr(skb)->tot_len = 0;
633                         ip_hdr(skb)->check = 0;
634                         tcp_hdr(skb)->check =
635                                 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
636                                                    ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
637                 } else {
638                         lso_info->lso_v2_transmit.ip_version =
639                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
640                         ipv6_hdr(skb)->payload_len = 0;
641                         tcp_hdr(skb)->check =
642                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
643                                                  &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
644                 }
645                 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
646                 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
647         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
648                 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
649                         struct ndis_tcp_ip_checksum_info *csum_info;
650
651                         rndis_msg_size += NDIS_CSUM_PPI_SIZE;
652                         csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
653                                                   TCPIP_CHKSUM_PKTINFO);
654
655                         csum_info->value = 0;
656                         csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
657
658                         if (skb->protocol == htons(ETH_P_IP)) {
659                                 csum_info->transmit.is_ipv4 = 1;
660
661                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
662                                         csum_info->transmit.tcp_checksum = 1;
663                                 else
664                                         csum_info->transmit.udp_checksum = 1;
665                         } else {
666                                 csum_info->transmit.is_ipv6 = 1;
667
668                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
669                                         csum_info->transmit.tcp_checksum = 1;
670                                 else
671                                         csum_info->transmit.udp_checksum = 1;
672                         }
673                 } else {
674                         /* Can't do offload of this type of checksum */
675                         if (skb_checksum_help(skb))
676                                 goto drop;
677                 }
678         }
679
680         /* Start filling in the page buffers with the rndis hdr */
681         rndis_msg->msg_len += rndis_msg_size;
682         packet->total_data_buflen = rndis_msg->msg_len;
683         packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
684                                                skb, packet, pb);
685
686         /* timestamp packet in software */
687         skb_tx_timestamp(skb);
688
689         ret = netvsc_send(net, packet, rndis_msg, pb, skb);
690         if (likely(ret == 0))
691                 return NETDEV_TX_OK;
692
693         if (ret == -EAGAIN) {
694                 ++net_device_ctx->eth_stats.tx_busy;
695                 return NETDEV_TX_BUSY;
696         }
697
698         if (ret == -ENOSPC)
699                 ++net_device_ctx->eth_stats.tx_no_space;
700
701 drop:
702         dev_kfree_skb_any(skb);
703         net->stats.tx_dropped++;
704
705         return NETDEV_TX_OK;
706
707 no_memory:
708         ++net_device_ctx->eth_stats.tx_no_memory;
709         goto drop;
710 }
711
712 /*
713  * netvsc_linkstatus_callback - Link up/down notification
714  */
715 void netvsc_linkstatus_callback(struct net_device *net,
716                                 struct rndis_message *resp)
717 {
718         struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
719         struct net_device_context *ndev_ctx = netdev_priv(net);
720         struct netvsc_reconfig *event;
721         unsigned long flags;
722
723         /* Update the physical link speed when changing to another vSwitch */
724         if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
725                 u32 speed;
726
727                 speed = *(u32 *)((void *)indicate
728                                  + indicate->status_buf_offset) / 10000;
729                 ndev_ctx->speed = speed;
730                 return;
731         }
732
733         /* Handle these link change statuses below */
734         if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
735             indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
736             indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
737                 return;
738
739         if (net->reg_state != NETREG_REGISTERED)
740                 return;
741
742         event = kzalloc(sizeof(*event), GFP_ATOMIC);
743         if (!event)
744                 return;
745         event->event = indicate->status;
746
747         spin_lock_irqsave(&ndev_ctx->lock, flags);
748         list_add_tail(&event->list, &ndev_ctx->reconfig_events);
749         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
750
751         schedule_delayed_work(&ndev_ctx->dwork, 0);
752 }
753
754 static void netvsc_comp_ipcsum(struct sk_buff *skb)
755 {
756         struct iphdr *iph = (struct iphdr *)skb->data;
757
758         iph->check = 0;
759         iph->check = ip_fast_csum(iph, iph->ihl);
760 }
761
762 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
763                                              struct netvsc_channel *nvchan)
764 {
765         struct napi_struct *napi = &nvchan->napi;
766         const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
767         const struct ndis_tcp_ip_checksum_info *csum_info =
768                                                 nvchan->rsc.csum_info;
769         const u32 *hash_info = nvchan->rsc.hash_info;
770         struct sk_buff *skb;
771         int i;
772
773         skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
774         if (!skb)
775                 return skb;
776
777         /*
778          * Copy to skb. This copy is needed here since the memory pointed by
779          * hv_netvsc_packet cannot be deallocated
780          */
781         for (i = 0; i < nvchan->rsc.cnt; i++)
782                 skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]);
783
784         skb->protocol = eth_type_trans(skb, net);
785
786         /* skb is already created with CHECKSUM_NONE */
787         skb_checksum_none_assert(skb);
788
789         /* Incoming packets may have IP header checksum verified by the host.
790          * They may not have IP header checksum computed after coalescing.
791          * We compute it here if the flags are set, because on Linux, the IP
792          * checksum is always checked.
793          */
794         if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
795             csum_info->receive.ip_checksum_succeeded &&
796             skb->protocol == htons(ETH_P_IP))
797                 netvsc_comp_ipcsum(skb);
798
799         /* Do L4 checksum offload if enabled and present. */
800         if (csum_info && (net->features & NETIF_F_RXCSUM)) {
801                 if (csum_info->receive.tcp_checksum_succeeded ||
802                     csum_info->receive.udp_checksum_succeeded)
803                         skb->ip_summed = CHECKSUM_UNNECESSARY;
804         }
805
806         if (hash_info && (net->features & NETIF_F_RXHASH))
807                 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
808
809         if (vlan) {
810                 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
811                         (vlan->cfi ? VLAN_CFI_MASK : 0);
812
813                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
814                                        vlan_tci);
815         }
816
817         return skb;
818 }
819
820 /*
821  * netvsc_recv_callback -  Callback when we receive a packet from the
822  * "wire" on the specified device.
823  */
824 int netvsc_recv_callback(struct net_device *net,
825                          struct netvsc_device *net_device,
826                          struct netvsc_channel *nvchan)
827 {
828         struct net_device_context *net_device_ctx = netdev_priv(net);
829         struct vmbus_channel *channel = nvchan->channel;
830         u16 q_idx = channel->offermsg.offer.sub_channel_index;
831         struct sk_buff *skb;
832         struct netvsc_stats *rx_stats;
833
834         if (net->reg_state != NETREG_REGISTERED)
835                 return NVSP_STAT_FAIL;
836
837         /* Allocate a skb - TODO direct I/O to pages? */
838         skb = netvsc_alloc_recv_skb(net, nvchan);
839
840         if (unlikely(!skb)) {
841                 ++net_device_ctx->eth_stats.rx_no_memory;
842                 return NVSP_STAT_FAIL;
843         }
844
845         skb_record_rx_queue(skb, q_idx);
846
847         /*
848          * Even if injecting the packet, record the statistics
849          * on the synthetic device because modifying the VF device
850          * statistics will not work correctly.
851          */
852         rx_stats = &nvchan->rx_stats;
853         u64_stats_update_begin(&rx_stats->syncp);
854         rx_stats->packets++;
855         rx_stats->bytes += nvchan->rsc.pktlen;
856
857         if (skb->pkt_type == PACKET_BROADCAST)
858                 ++rx_stats->broadcast;
859         else if (skb->pkt_type == PACKET_MULTICAST)
860                 ++rx_stats->multicast;
861         u64_stats_update_end(&rx_stats->syncp);
862
863         napi_gro_receive(&nvchan->napi, skb);
864         return NVSP_STAT_SUCCESS;
865 }
866
867 static void netvsc_get_drvinfo(struct net_device *net,
868                                struct ethtool_drvinfo *info)
869 {
870         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
871         strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
872 }
873
874 static void netvsc_get_channels(struct net_device *net,
875                                 struct ethtool_channels *channel)
876 {
877         struct net_device_context *net_device_ctx = netdev_priv(net);
878         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
879
880         if (nvdev) {
881                 channel->max_combined   = nvdev->max_chn;
882                 channel->combined_count = nvdev->num_chn;
883         }
884 }
885
886 /* Alloc struct netvsc_device_info, and initialize it from either existing
887  * struct netvsc_device, or from default values.
888  */
889 static struct netvsc_device_info *netvsc_devinfo_get
890                         (struct netvsc_device *nvdev)
891 {
892         struct netvsc_device_info *dev_info;
893
894         dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
895
896         if (!dev_info)
897                 return NULL;
898
899         if (nvdev) {
900                 dev_info->num_chn = nvdev->num_chn;
901                 dev_info->send_sections = nvdev->send_section_cnt;
902                 dev_info->send_section_size = nvdev->send_section_size;
903                 dev_info->recv_sections = nvdev->recv_section_cnt;
904                 dev_info->recv_section_size = nvdev->recv_section_size;
905
906                 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
907                        NETVSC_HASH_KEYLEN);
908         } else {
909                 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
910                 dev_info->send_sections = NETVSC_DEFAULT_TX;
911                 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
912                 dev_info->recv_sections = NETVSC_DEFAULT_RX;
913                 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
914         }
915
916         return dev_info;
917 }
918
919 static int netvsc_detach(struct net_device *ndev,
920                          struct netvsc_device *nvdev)
921 {
922         struct net_device_context *ndev_ctx = netdev_priv(ndev);
923         struct hv_device *hdev = ndev_ctx->device_ctx;
924         int ret;
925
926         /* Don't try continuing to try and setup sub channels */
927         if (cancel_work_sync(&nvdev->subchan_work))
928                 nvdev->num_chn = 1;
929
930         /* If device was up (receiving) then shutdown */
931         if (netif_running(ndev)) {
932                 netvsc_tx_disable(nvdev, ndev);
933
934                 ret = rndis_filter_close(nvdev);
935                 if (ret) {
936                         netdev_err(ndev,
937                                    "unable to close device (ret %d).\n", ret);
938                         return ret;
939                 }
940
941                 ret = netvsc_wait_until_empty(nvdev);
942                 if (ret) {
943                         netdev_err(ndev,
944                                    "Ring buffer not empty after closing rndis\n");
945                         return ret;
946                 }
947         }
948
949         netif_device_detach(ndev);
950
951         rndis_filter_device_remove(hdev, nvdev);
952
953         return 0;
954 }
955
956 static int netvsc_attach(struct net_device *ndev,
957                          struct netvsc_device_info *dev_info)
958 {
959         struct net_device_context *ndev_ctx = netdev_priv(ndev);
960         struct hv_device *hdev = ndev_ctx->device_ctx;
961         struct netvsc_device *nvdev;
962         struct rndis_device *rdev;
963         int ret;
964
965         nvdev = rndis_filter_device_add(hdev, dev_info);
966         if (IS_ERR(nvdev))
967                 return PTR_ERR(nvdev);
968
969         if (nvdev->num_chn > 1) {
970                 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
971
972                 /* if unavailable, just proceed with one queue */
973                 if (ret) {
974                         nvdev->max_chn = 1;
975                         nvdev->num_chn = 1;
976                 }
977         }
978
979         /* In any case device is now ready */
980         netif_device_attach(ndev);
981
982         /* Note: enable and attach happen when sub-channels setup */
983         netif_carrier_off(ndev);
984
985         if (netif_running(ndev)) {
986                 ret = rndis_filter_open(nvdev);
987                 if (ret)
988                         goto err;
989
990                 rdev = nvdev->extension;
991                 if (!rdev->link_state)
992                         netif_carrier_on(ndev);
993         }
994
995         return 0;
996
997 err:
998         netif_device_detach(ndev);
999
1000         rndis_filter_device_remove(hdev, nvdev);
1001
1002         return ret;
1003 }
1004
1005 static int netvsc_set_channels(struct net_device *net,
1006                                struct ethtool_channels *channels)
1007 {
1008         struct net_device_context *net_device_ctx = netdev_priv(net);
1009         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1010         unsigned int orig, count = channels->combined_count;
1011         struct netvsc_device_info *device_info;
1012         int ret;
1013
1014         /* We do not support separate count for rx, tx, or other */
1015         if (count == 0 ||
1016             channels->rx_count || channels->tx_count || channels->other_count)
1017                 return -EINVAL;
1018
1019         if (!nvdev || nvdev->destroy)
1020                 return -ENODEV;
1021
1022         if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1023                 return -EINVAL;
1024
1025         if (count > nvdev->max_chn)
1026                 return -EINVAL;
1027
1028         orig = nvdev->num_chn;
1029
1030         device_info = netvsc_devinfo_get(nvdev);
1031
1032         if (!device_info)
1033                 return -ENOMEM;
1034
1035         device_info->num_chn = count;
1036
1037         ret = netvsc_detach(net, nvdev);
1038         if (ret)
1039                 goto out;
1040
1041         ret = netvsc_attach(net, device_info);
1042         if (ret) {
1043                 device_info->num_chn = orig;
1044                 if (netvsc_attach(net, device_info))
1045                         netdev_err(net, "restoring channel setting failed\n");
1046         }
1047
1048 out:
1049         kfree(device_info);
1050         return ret;
1051 }
1052
1053 static bool
1054 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
1055 {
1056         struct ethtool_link_ksettings diff1 = *cmd;
1057         struct ethtool_link_ksettings diff2 = {};
1058
1059         diff1.base.speed = 0;
1060         diff1.base.duplex = 0;
1061         /* advertising and cmd are usually set */
1062         ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
1063         diff1.base.cmd = 0;
1064         /* We set port to PORT_OTHER */
1065         diff2.base.port = PORT_OTHER;
1066
1067         return !memcmp(&diff1, &diff2, sizeof(diff1));
1068 }
1069
1070 static void netvsc_init_settings(struct net_device *dev)
1071 {
1072         struct net_device_context *ndc = netdev_priv(dev);
1073
1074         ndc->l4_hash = HV_DEFAULT_L4HASH;
1075
1076         ndc->speed = SPEED_UNKNOWN;
1077         ndc->duplex = DUPLEX_FULL;
1078
1079         dev->features = NETIF_F_LRO;
1080 }
1081
1082 static int netvsc_get_link_ksettings(struct net_device *dev,
1083                                      struct ethtool_link_ksettings *cmd)
1084 {
1085         struct net_device_context *ndc = netdev_priv(dev);
1086
1087         cmd->base.speed = ndc->speed;
1088         cmd->base.duplex = ndc->duplex;
1089         cmd->base.port = PORT_OTHER;
1090
1091         return 0;
1092 }
1093
1094 static int netvsc_set_link_ksettings(struct net_device *dev,
1095                                      const struct ethtool_link_ksettings *cmd)
1096 {
1097         struct net_device_context *ndc = netdev_priv(dev);
1098         u32 speed;
1099
1100         speed = cmd->base.speed;
1101         if (!ethtool_validate_speed(speed) ||
1102             !ethtool_validate_duplex(cmd->base.duplex) ||
1103             !netvsc_validate_ethtool_ss_cmd(cmd))
1104                 return -EINVAL;
1105
1106         ndc->speed = speed;
1107         ndc->duplex = cmd->base.duplex;
1108
1109         return 0;
1110 }
1111
1112 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1113 {
1114         struct net_device_context *ndevctx = netdev_priv(ndev);
1115         struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1116         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1117         int orig_mtu = ndev->mtu;
1118         struct netvsc_device_info *device_info;
1119         int ret = 0;
1120
1121         if (!nvdev || nvdev->destroy)
1122                 return -ENODEV;
1123
1124         device_info = netvsc_devinfo_get(nvdev);
1125
1126         if (!device_info)
1127                 return -ENOMEM;
1128
1129         /* Change MTU of underlying VF netdev first. */
1130         if (vf_netdev) {
1131                 ret = dev_set_mtu(vf_netdev, mtu);
1132                 if (ret)
1133                         goto out;
1134         }
1135
1136         ret = netvsc_detach(ndev, nvdev);
1137         if (ret)
1138                 goto rollback_vf;
1139
1140         ndev->mtu = mtu;
1141
1142         ret = netvsc_attach(ndev, device_info);
1143         if (!ret)
1144                 goto out;
1145
1146         /* Attempt rollback to original MTU */
1147         ndev->mtu = orig_mtu;
1148
1149         if (netvsc_attach(ndev, device_info))
1150                 netdev_err(ndev, "restoring mtu failed\n");
1151 rollback_vf:
1152         if (vf_netdev)
1153                 dev_set_mtu(vf_netdev, orig_mtu);
1154
1155 out:
1156         kfree(device_info);
1157         return ret;
1158 }
1159
1160 static void netvsc_get_vf_stats(struct net_device *net,
1161                                 struct netvsc_vf_pcpu_stats *tot)
1162 {
1163         struct net_device_context *ndev_ctx = netdev_priv(net);
1164         int i;
1165
1166         memset(tot, 0, sizeof(*tot));
1167
1168         for_each_possible_cpu(i) {
1169                 const struct netvsc_vf_pcpu_stats *stats
1170                         = per_cpu_ptr(ndev_ctx->vf_stats, i);
1171                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1172                 unsigned int start;
1173
1174                 do {
1175                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1176                         rx_packets = stats->rx_packets;
1177                         tx_packets = stats->tx_packets;
1178                         rx_bytes = stats->rx_bytes;
1179                         tx_bytes = stats->tx_bytes;
1180                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1181
1182                 tot->rx_packets += rx_packets;
1183                 tot->tx_packets += tx_packets;
1184                 tot->rx_bytes   += rx_bytes;
1185                 tot->tx_bytes   += tx_bytes;
1186                 tot->tx_dropped += stats->tx_dropped;
1187         }
1188 }
1189
1190 static void netvsc_get_pcpu_stats(struct net_device *net,
1191                                   struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1192 {
1193         struct net_device_context *ndev_ctx = netdev_priv(net);
1194         struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1195         int i;
1196
1197         /* fetch percpu stats of vf */
1198         for_each_possible_cpu(i) {
1199                 const struct netvsc_vf_pcpu_stats *stats =
1200                         per_cpu_ptr(ndev_ctx->vf_stats, i);
1201                 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1202                 unsigned int start;
1203
1204                 do {
1205                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1206                         this_tot->vf_rx_packets = stats->rx_packets;
1207                         this_tot->vf_tx_packets = stats->tx_packets;
1208                         this_tot->vf_rx_bytes = stats->rx_bytes;
1209                         this_tot->vf_tx_bytes = stats->tx_bytes;
1210                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1211                 this_tot->rx_packets = this_tot->vf_rx_packets;
1212                 this_tot->tx_packets = this_tot->vf_tx_packets;
1213                 this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1214                 this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1215         }
1216
1217         /* fetch percpu stats of netvsc */
1218         for (i = 0; i < nvdev->num_chn; i++) {
1219                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1220                 const struct netvsc_stats *stats;
1221                 struct netvsc_ethtool_pcpu_stats *this_tot =
1222                         &pcpu_tot[nvchan->channel->target_cpu];
1223                 u64 packets, bytes;
1224                 unsigned int start;
1225
1226                 stats = &nvchan->tx_stats;
1227                 do {
1228                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1229                         packets = stats->packets;
1230                         bytes = stats->bytes;
1231                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1232
1233                 this_tot->tx_bytes      += bytes;
1234                 this_tot->tx_packets    += packets;
1235
1236                 stats = &nvchan->rx_stats;
1237                 do {
1238                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1239                         packets = stats->packets;
1240                         bytes = stats->bytes;
1241                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1242
1243                 this_tot->rx_bytes      += bytes;
1244                 this_tot->rx_packets    += packets;
1245         }
1246 }
1247
1248 static void netvsc_get_stats64(struct net_device *net,
1249                                struct rtnl_link_stats64 *t)
1250 {
1251         struct net_device_context *ndev_ctx = netdev_priv(net);
1252         struct netvsc_device *nvdev;
1253         struct netvsc_vf_pcpu_stats vf_tot;
1254         int i;
1255
1256         rcu_read_lock();
1257
1258         nvdev = rcu_dereference(ndev_ctx->nvdev);
1259         if (!nvdev)
1260                 goto out;
1261
1262         netdev_stats_to_stats64(t, &net->stats);
1263
1264         netvsc_get_vf_stats(net, &vf_tot);
1265         t->rx_packets += vf_tot.rx_packets;
1266         t->tx_packets += vf_tot.tx_packets;
1267         t->rx_bytes   += vf_tot.rx_bytes;
1268         t->tx_bytes   += vf_tot.tx_bytes;
1269         t->tx_dropped += vf_tot.tx_dropped;
1270
1271         for (i = 0; i < nvdev->num_chn; i++) {
1272                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1273                 const struct netvsc_stats *stats;
1274                 u64 packets, bytes, multicast;
1275                 unsigned int start;
1276
1277                 stats = &nvchan->tx_stats;
1278                 do {
1279                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1280                         packets = stats->packets;
1281                         bytes = stats->bytes;
1282                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1283
1284                 t->tx_bytes     += bytes;
1285                 t->tx_packets   += packets;
1286
1287                 stats = &nvchan->rx_stats;
1288                 do {
1289                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1290                         packets = stats->packets;
1291                         bytes = stats->bytes;
1292                         multicast = stats->multicast + stats->broadcast;
1293                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1294
1295                 t->rx_bytes     += bytes;
1296                 t->rx_packets   += packets;
1297                 t->multicast    += multicast;
1298         }
1299 out:
1300         rcu_read_unlock();
1301 }
1302
1303 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1304 {
1305         struct net_device_context *ndc = netdev_priv(ndev);
1306         struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1307         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1308         struct sockaddr *addr = p;
1309         int err;
1310
1311         err = eth_prepare_mac_addr_change(ndev, p);
1312         if (err)
1313                 return err;
1314
1315         if (!nvdev)
1316                 return -ENODEV;
1317
1318         if (vf_netdev) {
1319                 err = dev_set_mac_address(vf_netdev, addr, NULL);
1320                 if (err)
1321                         return err;
1322         }
1323
1324         err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1325         if (!err) {
1326                 eth_commit_mac_addr_change(ndev, p);
1327         } else if (vf_netdev) {
1328                 /* rollback change on VF */
1329                 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1330                 dev_set_mac_address(vf_netdev, addr, NULL);
1331         }
1332
1333         return err;
1334 }
1335
1336 static const struct {
1337         char name[ETH_GSTRING_LEN];
1338         u16 offset;
1339 } netvsc_stats[] = {
1340         { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1341         { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1342         { "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1343         { "tx_too_big",   offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1344         { "tx_busy",      offsetof(struct netvsc_ethtool_stats, tx_busy) },
1345         { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1346         { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1347         { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1348         { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1349         { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1350 }, pcpu_stats[] = {
1351         { "cpu%u_rx_packets",
1352                 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1353         { "cpu%u_rx_bytes",
1354                 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1355         { "cpu%u_tx_packets",
1356                 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1357         { "cpu%u_tx_bytes",
1358                 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1359         { "cpu%u_vf_rx_packets",
1360                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1361         { "cpu%u_vf_rx_bytes",
1362                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1363         { "cpu%u_vf_tx_packets",
1364                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1365         { "cpu%u_vf_tx_bytes",
1366                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1367 }, vf_stats[] = {
1368         { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1369         { "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1370         { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1371         { "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1372         { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1373 };
1374
1375 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1376 #define NETVSC_VF_STATS_LEN     ARRAY_SIZE(vf_stats)
1377
1378 /* statistics per queue (rx/tx packets/bytes) */
1379 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1380
1381 /* 4 statistics per queue (rx/tx packets/bytes) */
1382 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1383
1384 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1385 {
1386         struct net_device_context *ndc = netdev_priv(dev);
1387         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1388
1389         if (!nvdev)
1390                 return -ENODEV;
1391
1392         switch (string_set) {
1393         case ETH_SS_STATS:
1394                 return NETVSC_GLOBAL_STATS_LEN
1395                         + NETVSC_VF_STATS_LEN
1396                         + NETVSC_QUEUE_STATS_LEN(nvdev)
1397                         + NETVSC_PCPU_STATS_LEN;
1398         default:
1399                 return -EINVAL;
1400         }
1401 }
1402
1403 static void netvsc_get_ethtool_stats(struct net_device *dev,
1404                                      struct ethtool_stats *stats, u64 *data)
1405 {
1406         struct net_device_context *ndc = netdev_priv(dev);
1407         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1408         const void *nds = &ndc->eth_stats;
1409         const struct netvsc_stats *qstats;
1410         struct netvsc_vf_pcpu_stats sum;
1411         struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1412         unsigned int start;
1413         u64 packets, bytes;
1414         int i, j, cpu;
1415
1416         if (!nvdev)
1417                 return;
1418
1419         for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1420                 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1421
1422         netvsc_get_vf_stats(dev, &sum);
1423         for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1424                 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1425
1426         for (j = 0; j < nvdev->num_chn; j++) {
1427                 qstats = &nvdev->chan_table[j].tx_stats;
1428
1429                 do {
1430                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1431                         packets = qstats->packets;
1432                         bytes = qstats->bytes;
1433                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1434                 data[i++] = packets;
1435                 data[i++] = bytes;
1436
1437                 qstats = &nvdev->chan_table[j].rx_stats;
1438                 do {
1439                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1440                         packets = qstats->packets;
1441                         bytes = qstats->bytes;
1442                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1443                 data[i++] = packets;
1444                 data[i++] = bytes;
1445         }
1446
1447         pcpu_sum = kvmalloc_array(num_possible_cpus(),
1448                                   sizeof(struct netvsc_ethtool_pcpu_stats),
1449                                   GFP_KERNEL);
1450         netvsc_get_pcpu_stats(dev, pcpu_sum);
1451         for_each_present_cpu(cpu) {
1452                 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1453
1454                 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1455                         data[i++] = *(u64 *)((void *)this_sum
1456                                              + pcpu_stats[j].offset);
1457         }
1458         kvfree(pcpu_sum);
1459 }
1460
1461 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1462 {
1463         struct net_device_context *ndc = netdev_priv(dev);
1464         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1465         u8 *p = data;
1466         int i, cpu;
1467
1468         if (!nvdev)
1469                 return;
1470
1471         switch (stringset) {
1472         case ETH_SS_STATS:
1473                 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1474                         memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1475                         p += ETH_GSTRING_LEN;
1476                 }
1477
1478                 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1479                         memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1480                         p += ETH_GSTRING_LEN;
1481                 }
1482
1483                 for (i = 0; i < nvdev->num_chn; i++) {
1484                         sprintf(p, "tx_queue_%u_packets", i);
1485                         p += ETH_GSTRING_LEN;
1486                         sprintf(p, "tx_queue_%u_bytes", i);
1487                         p += ETH_GSTRING_LEN;
1488                         sprintf(p, "rx_queue_%u_packets", i);
1489                         p += ETH_GSTRING_LEN;
1490                         sprintf(p, "rx_queue_%u_bytes", i);
1491                         p += ETH_GSTRING_LEN;
1492                 }
1493
1494                 for_each_present_cpu(cpu) {
1495                         for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1496                                 sprintf(p, pcpu_stats[i].name, cpu);
1497                                 p += ETH_GSTRING_LEN;
1498                         }
1499                 }
1500
1501                 break;
1502         }
1503 }
1504
1505 static int
1506 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1507                          struct ethtool_rxnfc *info)
1508 {
1509         const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1510
1511         info->data = RXH_IP_SRC | RXH_IP_DST;
1512
1513         switch (info->flow_type) {
1514         case TCP_V4_FLOW:
1515                 if (ndc->l4_hash & HV_TCP4_L4HASH)
1516                         info->data |= l4_flag;
1517
1518                 break;
1519
1520         case TCP_V6_FLOW:
1521                 if (ndc->l4_hash & HV_TCP6_L4HASH)
1522                         info->data |= l4_flag;
1523
1524                 break;
1525
1526         case UDP_V4_FLOW:
1527                 if (ndc->l4_hash & HV_UDP4_L4HASH)
1528                         info->data |= l4_flag;
1529
1530                 break;
1531
1532         case UDP_V6_FLOW:
1533                 if (ndc->l4_hash & HV_UDP6_L4HASH)
1534                         info->data |= l4_flag;
1535
1536                 break;
1537
1538         case IPV4_FLOW:
1539         case IPV6_FLOW:
1540                 break;
1541         default:
1542                 info->data = 0;
1543                 break;
1544         }
1545
1546         return 0;
1547 }
1548
1549 static int
1550 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1551                  u32 *rules)
1552 {
1553         struct net_device_context *ndc = netdev_priv(dev);
1554         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1555
1556         if (!nvdev)
1557                 return -ENODEV;
1558
1559         switch (info->cmd) {
1560         case ETHTOOL_GRXRINGS:
1561                 info->data = nvdev->num_chn;
1562                 return 0;
1563
1564         case ETHTOOL_GRXFH:
1565                 return netvsc_get_rss_hash_opts(ndc, info);
1566         }
1567         return -EOPNOTSUPP;
1568 }
1569
1570 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1571                                     struct ethtool_rxnfc *info)
1572 {
1573         if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1574                            RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1575                 switch (info->flow_type) {
1576                 case TCP_V4_FLOW:
1577                         ndc->l4_hash |= HV_TCP4_L4HASH;
1578                         break;
1579
1580                 case TCP_V6_FLOW:
1581                         ndc->l4_hash |= HV_TCP6_L4HASH;
1582                         break;
1583
1584                 case UDP_V4_FLOW:
1585                         ndc->l4_hash |= HV_UDP4_L4HASH;
1586                         break;
1587
1588                 case UDP_V6_FLOW:
1589                         ndc->l4_hash |= HV_UDP6_L4HASH;
1590                         break;
1591
1592                 default:
1593                         return -EOPNOTSUPP;
1594                 }
1595
1596                 return 0;
1597         }
1598
1599         if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1600                 switch (info->flow_type) {
1601                 case TCP_V4_FLOW:
1602                         ndc->l4_hash &= ~HV_TCP4_L4HASH;
1603                         break;
1604
1605                 case TCP_V6_FLOW:
1606                         ndc->l4_hash &= ~HV_TCP6_L4HASH;
1607                         break;
1608
1609                 case UDP_V4_FLOW:
1610                         ndc->l4_hash &= ~HV_UDP4_L4HASH;
1611                         break;
1612
1613                 case UDP_V6_FLOW:
1614                         ndc->l4_hash &= ~HV_UDP6_L4HASH;
1615                         break;
1616
1617                 default:
1618                         return -EOPNOTSUPP;
1619                 }
1620
1621                 return 0;
1622         }
1623
1624         return -EOPNOTSUPP;
1625 }
1626
1627 static int
1628 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1629 {
1630         struct net_device_context *ndc = netdev_priv(ndev);
1631
1632         if (info->cmd == ETHTOOL_SRXFH)
1633                 return netvsc_set_rss_hash_opts(ndc, info);
1634
1635         return -EOPNOTSUPP;
1636 }
1637
1638 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1639 {
1640         return NETVSC_HASH_KEYLEN;
1641 }
1642
1643 static u32 netvsc_rss_indir_size(struct net_device *dev)
1644 {
1645         return ITAB_NUM;
1646 }
1647
1648 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1649                            u8 *hfunc)
1650 {
1651         struct net_device_context *ndc = netdev_priv(dev);
1652         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1653         struct rndis_device *rndis_dev;
1654         int i;
1655
1656         if (!ndev)
1657                 return -ENODEV;
1658
1659         if (hfunc)
1660                 *hfunc = ETH_RSS_HASH_TOP;      /* Toeplitz */
1661
1662         rndis_dev = ndev->extension;
1663         if (indir) {
1664                 for (i = 0; i < ITAB_NUM; i++)
1665                         indir[i] = rndis_dev->rx_table[i];
1666         }
1667
1668         if (key)
1669                 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1670
1671         return 0;
1672 }
1673
1674 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1675                            const u8 *key, const u8 hfunc)
1676 {
1677         struct net_device_context *ndc = netdev_priv(dev);
1678         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1679         struct rndis_device *rndis_dev;
1680         int i;
1681
1682         if (!ndev)
1683                 return -ENODEV;
1684
1685         if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1686                 return -EOPNOTSUPP;
1687
1688         rndis_dev = ndev->extension;
1689         if (indir) {
1690                 for (i = 0; i < ITAB_NUM; i++)
1691                         if (indir[i] >= ndev->num_chn)
1692                                 return -EINVAL;
1693
1694                 for (i = 0; i < ITAB_NUM; i++)
1695                         rndis_dev->rx_table[i] = indir[i];
1696         }
1697
1698         if (!key) {
1699                 if (!indir)
1700                         return 0;
1701
1702                 key = rndis_dev->rss_key;
1703         }
1704
1705         return rndis_filter_set_rss_param(rndis_dev, key);
1706 }
1707
1708 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1709  * It does have pre-allocated receive area which is divided into sections.
1710  */
1711 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1712                                    struct ethtool_ringparam *ring)
1713 {
1714         u32 max_buf_size;
1715
1716         ring->rx_pending = nvdev->recv_section_cnt;
1717         ring->tx_pending = nvdev->send_section_cnt;
1718
1719         if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1720                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1721         else
1722                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1723
1724         ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1725         ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1726                 / nvdev->send_section_size;
1727 }
1728
1729 static void netvsc_get_ringparam(struct net_device *ndev,
1730                                  struct ethtool_ringparam *ring)
1731 {
1732         struct net_device_context *ndevctx = netdev_priv(ndev);
1733         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1734
1735         if (!nvdev)
1736                 return;
1737
1738         __netvsc_get_ringparam(nvdev, ring);
1739 }
1740
1741 static int netvsc_set_ringparam(struct net_device *ndev,
1742                                 struct ethtool_ringparam *ring)
1743 {
1744         struct net_device_context *ndevctx = netdev_priv(ndev);
1745         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1746         struct netvsc_device_info *device_info;
1747         struct ethtool_ringparam orig;
1748         u32 new_tx, new_rx;
1749         int ret = 0;
1750
1751         if (!nvdev || nvdev->destroy)
1752                 return -ENODEV;
1753
1754         memset(&orig, 0, sizeof(orig));
1755         __netvsc_get_ringparam(nvdev, &orig);
1756
1757         new_tx = clamp_t(u32, ring->tx_pending,
1758                          NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1759         new_rx = clamp_t(u32, ring->rx_pending,
1760                          NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1761
1762         if (new_tx == orig.tx_pending &&
1763             new_rx == orig.rx_pending)
1764                 return 0;        /* no change */
1765
1766         device_info = netvsc_devinfo_get(nvdev);
1767
1768         if (!device_info)
1769                 return -ENOMEM;
1770
1771         device_info->send_sections = new_tx;
1772         device_info->recv_sections = new_rx;
1773
1774         ret = netvsc_detach(ndev, nvdev);
1775         if (ret)
1776                 goto out;
1777
1778         ret = netvsc_attach(ndev, device_info);
1779         if (ret) {
1780                 device_info->send_sections = orig.tx_pending;
1781                 device_info->recv_sections = orig.rx_pending;
1782
1783                 if (netvsc_attach(ndev, device_info))
1784                         netdev_err(ndev, "restoring ringparam failed");
1785         }
1786
1787 out:
1788         kfree(device_info);
1789         return ret;
1790 }
1791
1792 static int netvsc_set_features(struct net_device *ndev,
1793                                netdev_features_t features)
1794 {
1795         netdev_features_t change = features ^ ndev->features;
1796         struct net_device_context *ndevctx = netdev_priv(ndev);
1797         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1798         struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1799         struct ndis_offload_params offloads;
1800         int ret = 0;
1801
1802         if (!nvdev || nvdev->destroy)
1803                 return -ENODEV;
1804
1805         if (!(change & NETIF_F_LRO))
1806                 goto syncvf;
1807
1808         memset(&offloads, 0, sizeof(struct ndis_offload_params));
1809
1810         if (features & NETIF_F_LRO) {
1811                 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1812                 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1813         } else {
1814                 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1815                 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1816         }
1817
1818         ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1819
1820         if (ret) {
1821                 features ^= NETIF_F_LRO;
1822                 ndev->features = features;
1823         }
1824
1825 syncvf:
1826         if (!vf_netdev)
1827                 return ret;
1828
1829         vf_netdev->wanted_features = features;
1830         netdev_update_features(vf_netdev);
1831
1832         return ret;
1833 }
1834
1835 static u32 netvsc_get_msglevel(struct net_device *ndev)
1836 {
1837         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1838
1839         return ndev_ctx->msg_enable;
1840 }
1841
1842 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1843 {
1844         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1845
1846         ndev_ctx->msg_enable = val;
1847 }
1848
1849 static const struct ethtool_ops ethtool_ops = {
1850         .get_drvinfo    = netvsc_get_drvinfo,
1851         .get_msglevel   = netvsc_get_msglevel,
1852         .set_msglevel   = netvsc_set_msglevel,
1853         .get_link       = ethtool_op_get_link,
1854         .get_ethtool_stats = netvsc_get_ethtool_stats,
1855         .get_sset_count = netvsc_get_sset_count,
1856         .get_strings    = netvsc_get_strings,
1857         .get_channels   = netvsc_get_channels,
1858         .set_channels   = netvsc_set_channels,
1859         .get_ts_info    = ethtool_op_get_ts_info,
1860         .get_rxnfc      = netvsc_get_rxnfc,
1861         .set_rxnfc      = netvsc_set_rxnfc,
1862         .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1863         .get_rxfh_indir_size = netvsc_rss_indir_size,
1864         .get_rxfh       = netvsc_get_rxfh,
1865         .set_rxfh       = netvsc_set_rxfh,
1866         .get_link_ksettings = netvsc_get_link_ksettings,
1867         .set_link_ksettings = netvsc_set_link_ksettings,
1868         .get_ringparam  = netvsc_get_ringparam,
1869         .set_ringparam  = netvsc_set_ringparam,
1870 };
1871
1872 static const struct net_device_ops device_ops = {
1873         .ndo_open =                     netvsc_open,
1874         .ndo_stop =                     netvsc_close,
1875         .ndo_start_xmit =               netvsc_start_xmit,
1876         .ndo_change_rx_flags =          netvsc_change_rx_flags,
1877         .ndo_set_rx_mode =              netvsc_set_rx_mode,
1878         .ndo_set_features =             netvsc_set_features,
1879         .ndo_change_mtu =               netvsc_change_mtu,
1880         .ndo_validate_addr =            eth_validate_addr,
1881         .ndo_set_mac_address =          netvsc_set_mac_addr,
1882         .ndo_select_queue =             netvsc_select_queue,
1883         .ndo_get_stats64 =              netvsc_get_stats64,
1884 };
1885
1886 /*
1887  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1888  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1889  * present send GARP packet to network peers with netif_notify_peers().
1890  */
1891 static void netvsc_link_change(struct work_struct *w)
1892 {
1893         struct net_device_context *ndev_ctx =
1894                 container_of(w, struct net_device_context, dwork.work);
1895         struct hv_device *device_obj = ndev_ctx->device_ctx;
1896         struct net_device *net = hv_get_drvdata(device_obj);
1897         struct netvsc_device *net_device;
1898         struct rndis_device *rdev;
1899         struct netvsc_reconfig *event = NULL;
1900         bool notify = false, reschedule = false;
1901         unsigned long flags, next_reconfig, delay;
1902
1903         /* if changes are happening, comeback later */
1904         if (!rtnl_trylock()) {
1905                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1906                 return;
1907         }
1908
1909         net_device = rtnl_dereference(ndev_ctx->nvdev);
1910         if (!net_device)
1911                 goto out_unlock;
1912
1913         rdev = net_device->extension;
1914
1915         next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1916         if (time_is_after_jiffies(next_reconfig)) {
1917                 /* link_watch only sends one notification with current state
1918                  * per second, avoid doing reconfig more frequently. Handle
1919                  * wrap around.
1920                  */
1921                 delay = next_reconfig - jiffies;
1922                 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1923                 schedule_delayed_work(&ndev_ctx->dwork, delay);
1924                 goto out_unlock;
1925         }
1926         ndev_ctx->last_reconfig = jiffies;
1927
1928         spin_lock_irqsave(&ndev_ctx->lock, flags);
1929         if (!list_empty(&ndev_ctx->reconfig_events)) {
1930                 event = list_first_entry(&ndev_ctx->reconfig_events,
1931                                          struct netvsc_reconfig, list);
1932                 list_del(&event->list);
1933                 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1934         }
1935         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1936
1937         if (!event)
1938                 goto out_unlock;
1939
1940         switch (event->event) {
1941                 /* Only the following events are possible due to the check in
1942                  * netvsc_linkstatus_callback()
1943                  */
1944         case RNDIS_STATUS_MEDIA_CONNECT:
1945                 if (rdev->link_state) {
1946                         rdev->link_state = false;
1947                         netif_carrier_on(net);
1948                         netvsc_tx_enable(net_device, net);
1949                 } else {
1950                         notify = true;
1951                 }
1952                 kfree(event);
1953                 break;
1954         case RNDIS_STATUS_MEDIA_DISCONNECT:
1955                 if (!rdev->link_state) {
1956                         rdev->link_state = true;
1957                         netif_carrier_off(net);
1958                         netvsc_tx_disable(net_device, net);
1959                 }
1960                 kfree(event);
1961                 break;
1962         case RNDIS_STATUS_NETWORK_CHANGE:
1963                 /* Only makes sense if carrier is present */
1964                 if (!rdev->link_state) {
1965                         rdev->link_state = true;
1966                         netif_carrier_off(net);
1967                         netvsc_tx_disable(net_device, net);
1968                         event->event = RNDIS_STATUS_MEDIA_CONNECT;
1969                         spin_lock_irqsave(&ndev_ctx->lock, flags);
1970                         list_add(&event->list, &ndev_ctx->reconfig_events);
1971                         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1972                         reschedule = true;
1973                 }
1974                 break;
1975         }
1976
1977         rtnl_unlock();
1978
1979         if (notify)
1980                 netdev_notify_peers(net);
1981
1982         /* link_watch only sends one notification with current state per
1983          * second, handle next reconfig event in 2 seconds.
1984          */
1985         if (reschedule)
1986                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1987
1988         return;
1989
1990 out_unlock:
1991         rtnl_unlock();
1992 }
1993
1994 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1995 {
1996         struct net_device_context *net_device_ctx;
1997         struct net_device *dev;
1998
1999         dev = netdev_master_upper_dev_get(vf_netdev);
2000         if (!dev || dev->netdev_ops != &device_ops)
2001                 return NULL;    /* not a netvsc device */
2002
2003         net_device_ctx = netdev_priv(dev);
2004         if (!rtnl_dereference(net_device_ctx->nvdev))
2005                 return NULL;    /* device is removed */
2006
2007         return dev;
2008 }
2009
2010 /* Called when VF is injecting data into network stack.
2011  * Change the associated network device from VF to netvsc.
2012  * note: already called with rcu_read_lock
2013  */
2014 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2015 {
2016         struct sk_buff *skb = *pskb;
2017         struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2018         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2019         struct netvsc_vf_pcpu_stats *pcpu_stats
2020                  = this_cpu_ptr(ndev_ctx->vf_stats);
2021
2022         skb = skb_share_check(skb, GFP_ATOMIC);
2023         if (unlikely(!skb))
2024                 return RX_HANDLER_CONSUMED;
2025
2026         *pskb = skb;
2027
2028         skb->dev = ndev;
2029
2030         u64_stats_update_begin(&pcpu_stats->syncp);
2031         pcpu_stats->rx_packets++;
2032         pcpu_stats->rx_bytes += skb->len;
2033         u64_stats_update_end(&pcpu_stats->syncp);
2034
2035         return RX_HANDLER_ANOTHER;
2036 }
2037
2038 static int netvsc_vf_join(struct net_device *vf_netdev,
2039                           struct net_device *ndev)
2040 {
2041         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2042         int ret;
2043
2044         ret = netdev_rx_handler_register(vf_netdev,
2045                                          netvsc_vf_handle_frame, ndev);
2046         if (ret != 0) {
2047                 netdev_err(vf_netdev,
2048                            "can not register netvsc VF receive handler (err = %d)\n",
2049                            ret);
2050                 goto rx_handler_failed;
2051         }
2052
2053         ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2054                                            NULL, NULL, NULL);
2055         if (ret != 0) {
2056                 netdev_err(vf_netdev,
2057                            "can not set master device %s (err = %d)\n",
2058                            ndev->name, ret);
2059                 goto upper_link_failed;
2060         }
2061
2062         /* set slave flag before open to prevent IPv6 addrconf */
2063         vf_netdev->flags |= IFF_SLAVE;
2064
2065         schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2066
2067         call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2068
2069         netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2070         return 0;
2071
2072 upper_link_failed:
2073         netdev_rx_handler_unregister(vf_netdev);
2074 rx_handler_failed:
2075         return ret;
2076 }
2077
2078 static void __netvsc_vf_setup(struct net_device *ndev,
2079                               struct net_device *vf_netdev)
2080 {
2081         int ret;
2082
2083         /* Align MTU of VF with master */
2084         ret = dev_set_mtu(vf_netdev, ndev->mtu);
2085         if (ret)
2086                 netdev_warn(vf_netdev,
2087                             "unable to change mtu to %u\n", ndev->mtu);
2088
2089         /* set multicast etc flags on VF */
2090         dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2091
2092         /* sync address list from ndev to VF */
2093         netif_addr_lock_bh(ndev);
2094         dev_uc_sync(vf_netdev, ndev);
2095         dev_mc_sync(vf_netdev, ndev);
2096         netif_addr_unlock_bh(ndev);
2097
2098         if (netif_running(ndev)) {
2099                 ret = dev_open(vf_netdev, NULL);
2100                 if (ret)
2101                         netdev_warn(vf_netdev,
2102                                     "unable to open: %d\n", ret);
2103         }
2104 }
2105
2106 /* Setup VF as slave of the synthetic device.
2107  * Runs in workqueue to avoid recursion in netlink callbacks.
2108  */
2109 static void netvsc_vf_setup(struct work_struct *w)
2110 {
2111         struct net_device_context *ndev_ctx
2112                 = container_of(w, struct net_device_context, vf_takeover.work);
2113         struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2114         struct net_device *vf_netdev;
2115
2116         if (!rtnl_trylock()) {
2117                 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2118                 return;
2119         }
2120
2121         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2122         if (vf_netdev)
2123                 __netvsc_vf_setup(ndev, vf_netdev);
2124
2125         rtnl_unlock();
2126 }
2127
2128 /* Find netvsc by VF serial number.
2129  * The PCI hyperv controller records the serial number as the slot kobj name.
2130  */
2131 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2132 {
2133         struct device *parent = vf_netdev->dev.parent;
2134         struct net_device_context *ndev_ctx;
2135         struct pci_dev *pdev;
2136         u32 serial;
2137
2138         if (!parent || !dev_is_pci(parent))
2139                 return NULL; /* not a PCI device */
2140
2141         pdev = to_pci_dev(parent);
2142         if (!pdev->slot) {
2143                 netdev_notice(vf_netdev, "no PCI slot information\n");
2144                 return NULL;
2145         }
2146
2147         if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2148                 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2149                               pci_slot_name(pdev->slot));
2150                 return NULL;
2151         }
2152
2153         list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2154                 if (!ndev_ctx->vf_alloc)
2155                         continue;
2156
2157                 if (ndev_ctx->vf_serial == serial)
2158                         return hv_get_drvdata(ndev_ctx->device_ctx);
2159         }
2160
2161         netdev_notice(vf_netdev,
2162                       "no netdev found for vf serial:%u\n", serial);
2163         return NULL;
2164 }
2165
2166 static int netvsc_register_vf(struct net_device *vf_netdev)
2167 {
2168         struct net_device_context *net_device_ctx;
2169         struct netvsc_device *netvsc_dev;
2170         struct net_device *ndev;
2171         int ret;
2172
2173         if (vf_netdev->addr_len != ETH_ALEN)
2174                 return NOTIFY_DONE;
2175
2176         ndev = get_netvsc_byslot(vf_netdev);
2177         if (!ndev)
2178                 return NOTIFY_DONE;
2179
2180         net_device_ctx = netdev_priv(ndev);
2181         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2182         if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2183                 return NOTIFY_DONE;
2184
2185         /* if synthetic interface is a different namespace,
2186          * then move the VF to that namespace; join will be
2187          * done again in that context.
2188          */
2189         if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2190                 ret = dev_change_net_namespace(vf_netdev,
2191                                                dev_net(ndev), "eth%d");
2192                 if (ret)
2193                         netdev_err(vf_netdev,
2194                                    "could not move to same namespace as %s: %d\n",
2195                                    ndev->name, ret);
2196                 else
2197                         netdev_info(vf_netdev,
2198                                     "VF moved to namespace with: %s\n",
2199                                     ndev->name);
2200                 return NOTIFY_DONE;
2201         }
2202
2203         netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2204
2205         if (netvsc_vf_join(vf_netdev, ndev) != 0)
2206                 return NOTIFY_DONE;
2207
2208         dev_hold(vf_netdev);
2209         rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2210
2211         vf_netdev->wanted_features = ndev->features;
2212         netdev_update_features(vf_netdev);
2213
2214         return NOTIFY_OK;
2215 }
2216
2217 /* VF up/down change detected, schedule to change data path */
2218 static int netvsc_vf_changed(struct net_device *vf_netdev)
2219 {
2220         struct net_device_context *net_device_ctx;
2221         struct netvsc_device *netvsc_dev;
2222         struct net_device *ndev;
2223         bool vf_is_up = netif_running(vf_netdev);
2224
2225         ndev = get_netvsc_byref(vf_netdev);
2226         if (!ndev)
2227                 return NOTIFY_DONE;
2228
2229         net_device_ctx = netdev_priv(ndev);
2230         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2231         if (!netvsc_dev)
2232                 return NOTIFY_DONE;
2233
2234         netvsc_switch_datapath(ndev, vf_is_up);
2235         netdev_info(ndev, "Data path switched %s VF: %s\n",
2236                     vf_is_up ? "to" : "from", vf_netdev->name);
2237
2238         return NOTIFY_OK;
2239 }
2240
2241 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2242 {
2243         struct net_device *ndev;
2244         struct net_device_context *net_device_ctx;
2245
2246         ndev = get_netvsc_byref(vf_netdev);
2247         if (!ndev)
2248                 return NOTIFY_DONE;
2249
2250         net_device_ctx = netdev_priv(ndev);
2251         cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2252
2253         netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2254
2255         netdev_rx_handler_unregister(vf_netdev);
2256         netdev_upper_dev_unlink(vf_netdev, ndev);
2257         RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2258         dev_put(vf_netdev);
2259
2260         return NOTIFY_OK;
2261 }
2262
2263 static int netvsc_probe(struct hv_device *dev,
2264                         const struct hv_vmbus_device_id *dev_id)
2265 {
2266         struct net_device *net = NULL;
2267         struct net_device_context *net_device_ctx;
2268         struct netvsc_device_info *device_info = NULL;
2269         struct netvsc_device *nvdev;
2270         int ret = -ENOMEM;
2271
2272         net = alloc_etherdev_mq(sizeof(struct net_device_context),
2273                                 VRSS_CHANNEL_MAX);
2274         if (!net)
2275                 goto no_net;
2276
2277         netif_carrier_off(net);
2278
2279         netvsc_init_settings(net);
2280
2281         net_device_ctx = netdev_priv(net);
2282         net_device_ctx->device_ctx = dev;
2283         net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2284         if (netif_msg_probe(net_device_ctx))
2285                 netdev_dbg(net, "netvsc msg_enable: %d\n",
2286                            net_device_ctx->msg_enable);
2287
2288         hv_set_drvdata(dev, net);
2289
2290         INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2291
2292         spin_lock_init(&net_device_ctx->lock);
2293         INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2294         INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2295
2296         net_device_ctx->vf_stats
2297                 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2298         if (!net_device_ctx->vf_stats)
2299                 goto no_stats;
2300
2301         net->netdev_ops = &device_ops;
2302         net->ethtool_ops = &ethtool_ops;
2303         SET_NETDEV_DEV(net, &dev->device);
2304
2305         /* We always need headroom for rndis header */
2306         net->needed_headroom = RNDIS_AND_PPI_SIZE;
2307
2308         /* Initialize the number of queues to be 1, we may change it if more
2309          * channels are offered later.
2310          */
2311         netif_set_real_num_tx_queues(net, 1);
2312         netif_set_real_num_rx_queues(net, 1);
2313
2314         /* Notify the netvsc driver of the new device */
2315         device_info = netvsc_devinfo_get(NULL);
2316
2317         if (!device_info) {
2318                 ret = -ENOMEM;
2319                 goto devinfo_failed;
2320         }
2321
2322         nvdev = rndis_filter_device_add(dev, device_info);
2323         if (IS_ERR(nvdev)) {
2324                 ret = PTR_ERR(nvdev);
2325                 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2326                 goto rndis_failed;
2327         }
2328
2329         memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2330
2331         /* We must get rtnl lock before scheduling nvdev->subchan_work,
2332          * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2333          * all subchannels to show up, but that may not happen because
2334          * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2335          * -> ... -> device_add() -> ... -> __device_attach() can't get
2336          * the device lock, so all the subchannels can't be processed --
2337          * finally netvsc_subchan_work() hangs forever.
2338          */
2339         rtnl_lock();
2340
2341         if (nvdev->num_chn > 1)
2342                 schedule_work(&nvdev->subchan_work);
2343
2344         /* hw_features computed in rndis_netdev_set_hwcaps() */
2345         net->features = net->hw_features |
2346                 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2347                 NETIF_F_HW_VLAN_CTAG_RX;
2348         net->vlan_features = net->features;
2349
2350         /* MTU range: 68 - 1500 or 65521 */
2351         net->min_mtu = NETVSC_MTU_MIN;
2352         if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2353                 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2354         else
2355                 net->max_mtu = ETH_DATA_LEN;
2356
2357         ret = register_netdevice(net);
2358         if (ret != 0) {
2359                 pr_err("Unable to register netdev.\n");
2360                 goto register_failed;
2361         }
2362
2363         list_add(&net_device_ctx->list, &netvsc_dev_list);
2364         rtnl_unlock();
2365
2366         kfree(device_info);
2367         return 0;
2368
2369 register_failed:
2370         rtnl_unlock();
2371         rndis_filter_device_remove(dev, nvdev);
2372 rndis_failed:
2373         kfree(device_info);
2374 devinfo_failed:
2375         free_percpu(net_device_ctx->vf_stats);
2376 no_stats:
2377         hv_set_drvdata(dev, NULL);
2378         free_netdev(net);
2379 no_net:
2380         return ret;
2381 }
2382
2383 static int netvsc_remove(struct hv_device *dev)
2384 {
2385         struct net_device_context *ndev_ctx;
2386         struct net_device *vf_netdev, *net;
2387         struct netvsc_device *nvdev;
2388
2389         net = hv_get_drvdata(dev);
2390         if (net == NULL) {
2391                 dev_err(&dev->device, "No net device to remove\n");
2392                 return 0;
2393         }
2394
2395         ndev_ctx = netdev_priv(net);
2396
2397         cancel_delayed_work_sync(&ndev_ctx->dwork);
2398
2399         rtnl_lock();
2400         nvdev = rtnl_dereference(ndev_ctx->nvdev);
2401         if (nvdev)
2402                 cancel_work_sync(&nvdev->subchan_work);
2403
2404         /*
2405          * Call to the vsc driver to let it know that the device is being
2406          * removed. Also blocks mtu and channel changes.
2407          */
2408         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2409         if (vf_netdev)
2410                 netvsc_unregister_vf(vf_netdev);
2411
2412         if (nvdev)
2413                 rndis_filter_device_remove(dev, nvdev);
2414
2415         unregister_netdevice(net);
2416         list_del(&ndev_ctx->list);
2417
2418         rtnl_unlock();
2419
2420         hv_set_drvdata(dev, NULL);
2421
2422         free_percpu(ndev_ctx->vf_stats);
2423         free_netdev(net);
2424         return 0;
2425 }
2426
2427 static int netvsc_suspend(struct hv_device *dev)
2428 {
2429         struct net_device_context *ndev_ctx;
2430         struct net_device *vf_netdev, *net;
2431         struct netvsc_device *nvdev;
2432         int ret;
2433
2434         net = hv_get_drvdata(dev);
2435
2436         ndev_ctx = netdev_priv(net);
2437         cancel_delayed_work_sync(&ndev_ctx->dwork);
2438
2439         rtnl_lock();
2440
2441         nvdev = rtnl_dereference(ndev_ctx->nvdev);
2442         if (nvdev == NULL) {
2443                 ret = -ENODEV;
2444                 goto out;
2445         }
2446
2447         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2448         if (vf_netdev)
2449                 netvsc_unregister_vf(vf_netdev);
2450
2451         /* Save the current config info */
2452         ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2453
2454         ret = netvsc_detach(net, nvdev);
2455 out:
2456         rtnl_unlock();
2457
2458         return ret;
2459 }
2460
2461 static int netvsc_resume(struct hv_device *dev)
2462 {
2463         struct net_device *net = hv_get_drvdata(dev);
2464         struct net_device_context *net_device_ctx;
2465         struct netvsc_device_info *device_info;
2466         int ret;
2467
2468         rtnl_lock();
2469
2470         net_device_ctx = netdev_priv(net);
2471         device_info = net_device_ctx->saved_netvsc_dev_info;
2472
2473         ret = netvsc_attach(net, device_info);
2474
2475         rtnl_unlock();
2476
2477         kfree(device_info);
2478         net_device_ctx->saved_netvsc_dev_info = NULL;
2479
2480         return ret;
2481 }
2482 static const struct hv_vmbus_device_id id_table[] = {
2483         /* Network guid */
2484         { HV_NIC_GUID, },
2485         { },
2486 };
2487
2488 MODULE_DEVICE_TABLE(vmbus, id_table);
2489
2490 /* The one and only one */
2491 static struct  hv_driver netvsc_drv = {
2492         .name = KBUILD_MODNAME,
2493         .id_table = id_table,
2494         .probe = netvsc_probe,
2495         .remove = netvsc_remove,
2496         .suspend = netvsc_suspend,
2497         .resume = netvsc_resume,
2498         .driver = {
2499                 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2500         },
2501 };
2502
2503 /*
2504  * On Hyper-V, every VF interface is matched with a corresponding
2505  * synthetic interface. The synthetic interface is presented first
2506  * to the guest. When the corresponding VF instance is registered,
2507  * we will take care of switching the data path.
2508  */
2509 static int netvsc_netdev_event(struct notifier_block *this,
2510                                unsigned long event, void *ptr)
2511 {
2512         struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2513
2514         /* Skip our own events */
2515         if (event_dev->netdev_ops == &device_ops)
2516                 return NOTIFY_DONE;
2517
2518         /* Avoid non-Ethernet type devices */
2519         if (event_dev->type != ARPHRD_ETHER)
2520                 return NOTIFY_DONE;
2521
2522         /* Avoid Vlan dev with same MAC registering as VF */
2523         if (is_vlan_dev(event_dev))
2524                 return NOTIFY_DONE;
2525
2526         /* Avoid Bonding master dev with same MAC registering as VF */
2527         if ((event_dev->priv_flags & IFF_BONDING) &&
2528             (event_dev->flags & IFF_MASTER))
2529                 return NOTIFY_DONE;
2530
2531         switch (event) {
2532         case NETDEV_REGISTER:
2533                 return netvsc_register_vf(event_dev);
2534         case NETDEV_UNREGISTER:
2535                 return netvsc_unregister_vf(event_dev);
2536         case NETDEV_UP:
2537         case NETDEV_DOWN:
2538                 return netvsc_vf_changed(event_dev);
2539         default:
2540                 return NOTIFY_DONE;
2541         }
2542 }
2543
2544 static struct notifier_block netvsc_netdev_notifier = {
2545         .notifier_call = netvsc_netdev_event,
2546 };
2547
2548 static void __exit netvsc_drv_exit(void)
2549 {
2550         unregister_netdevice_notifier(&netvsc_netdev_notifier);
2551         vmbus_driver_unregister(&netvsc_drv);
2552 }
2553
2554 static int __init netvsc_drv_init(void)
2555 {
2556         int ret;
2557
2558         if (ring_size < RING_SIZE_MIN) {
2559                 ring_size = RING_SIZE_MIN;
2560                 pr_info("Increased ring_size to %u (min allowed)\n",
2561                         ring_size);
2562         }
2563         netvsc_ring_bytes = ring_size * PAGE_SIZE;
2564
2565         ret = vmbus_driver_register(&netvsc_drv);
2566         if (ret)
2567                 return ret;
2568
2569         register_netdevice_notifier(&netvsc_netdev_notifier);
2570         return 0;
2571 }
2572
2573 MODULE_LICENSE("GPL");
2574 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2575
2576 module_init(netvsc_drv_init);
2577 module_exit(netvsc_drv_exit);