Merge branch 'sched/rt' into sched/core, to pick up completed topic tree
[linux-2.6-microblaze.git] / drivers / net / hyperv / netvsc_drv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/atomic.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/delay.h>
18 #include <linux/netdevice.h>
19 #include <linux/inetdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/pci.h>
22 #include <linux/skbuff.h>
23 #include <linux/if_vlan.h>
24 #include <linux/in.h>
25 #include <linux/slab.h>
26 #include <linux/rtnetlink.h>
27 #include <linux/netpoll.h>
28 #include <linux/bpf.h>
29
30 #include <net/arp.h>
31 #include <net/route.h>
32 #include <net/sock.h>
33 #include <net/pkt_sched.h>
34 #include <net/checksum.h>
35 #include <net/ip6_checksum.h>
36
37 #include "hyperv_net.h"
38
39 #define RING_SIZE_MIN   64
40 #define RETRY_US_LO     5000
41 #define RETRY_US_HI     10000
42 #define RETRY_MAX       2000    /* >10 sec */
43
44 #define LINKCHANGE_INT (2 * HZ)
45 #define VF_TAKEOVER_INT (HZ / 10)
46
47 static unsigned int ring_size __ro_after_init = 128;
48 module_param(ring_size, uint, 0444);
49 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
50 unsigned int netvsc_ring_bytes __ro_after_init;
51
52 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
53                                 NETIF_MSG_LINK | NETIF_MSG_IFUP |
54                                 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
55                                 NETIF_MSG_TX_ERR;
56
57 static int debug = -1;
58 module_param(debug, int, 0444);
59 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
60
61 static LIST_HEAD(netvsc_dev_list);
62
63 static void netvsc_change_rx_flags(struct net_device *net, int change)
64 {
65         struct net_device_context *ndev_ctx = netdev_priv(net);
66         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
67         int inc;
68
69         if (!vf_netdev)
70                 return;
71
72         if (change & IFF_PROMISC) {
73                 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
74                 dev_set_promiscuity(vf_netdev, inc);
75         }
76
77         if (change & IFF_ALLMULTI) {
78                 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
79                 dev_set_allmulti(vf_netdev, inc);
80         }
81 }
82
83 static void netvsc_set_rx_mode(struct net_device *net)
84 {
85         struct net_device_context *ndev_ctx = netdev_priv(net);
86         struct net_device *vf_netdev;
87         struct netvsc_device *nvdev;
88
89         rcu_read_lock();
90         vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
91         if (vf_netdev) {
92                 dev_uc_sync(vf_netdev, net);
93                 dev_mc_sync(vf_netdev, net);
94         }
95
96         nvdev = rcu_dereference(ndev_ctx->nvdev);
97         if (nvdev)
98                 rndis_filter_update(nvdev);
99         rcu_read_unlock();
100 }
101
102 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
103                              struct net_device *ndev)
104 {
105         nvscdev->tx_disable = false;
106         virt_wmb(); /* ensure queue wake up mechanism is on */
107
108         netif_tx_wake_all_queues(ndev);
109 }
110
111 static int netvsc_open(struct net_device *net)
112 {
113         struct net_device_context *ndev_ctx = netdev_priv(net);
114         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
115         struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
116         struct rndis_device *rdev;
117         int ret = 0;
118
119         netif_carrier_off(net);
120
121         /* Open up the device */
122         ret = rndis_filter_open(nvdev);
123         if (ret != 0) {
124                 netdev_err(net, "unable to open device (ret %d).\n", ret);
125                 return ret;
126         }
127
128         rdev = nvdev->extension;
129         if (!rdev->link_state) {
130                 netif_carrier_on(net);
131                 netvsc_tx_enable(nvdev, net);
132         }
133
134         if (vf_netdev) {
135                 /* Setting synthetic device up transparently sets
136                  * slave as up. If open fails, then slave will be
137                  * still be offline (and not used).
138                  */
139                 ret = dev_open(vf_netdev, NULL);
140                 if (ret)
141                         netdev_warn(net,
142                                     "unable to open slave: %s: %d\n",
143                                     vf_netdev->name, ret);
144         }
145         return 0;
146 }
147
148 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
149 {
150         unsigned int retry = 0;
151         int i;
152
153         /* Ensure pending bytes in ring are read */
154         for (;;) {
155                 u32 aread = 0;
156
157                 for (i = 0; i < nvdev->num_chn; i++) {
158                         struct vmbus_channel *chn
159                                 = nvdev->chan_table[i].channel;
160
161                         if (!chn)
162                                 continue;
163
164                         /* make sure receive not running now */
165                         napi_synchronize(&nvdev->chan_table[i].napi);
166
167                         aread = hv_get_bytes_to_read(&chn->inbound);
168                         if (aread)
169                                 break;
170
171                         aread = hv_get_bytes_to_read(&chn->outbound);
172                         if (aread)
173                                 break;
174                 }
175
176                 if (aread == 0)
177                         return 0;
178
179                 if (++retry > RETRY_MAX)
180                         return -ETIMEDOUT;
181
182                 usleep_range(RETRY_US_LO, RETRY_US_HI);
183         }
184 }
185
186 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
187                               struct net_device *ndev)
188 {
189         if (nvscdev) {
190                 nvscdev->tx_disable = true;
191                 virt_wmb(); /* ensure txq will not wake up after stop */
192         }
193
194         netif_tx_disable(ndev);
195 }
196
197 static int netvsc_close(struct net_device *net)
198 {
199         struct net_device_context *net_device_ctx = netdev_priv(net);
200         struct net_device *vf_netdev
201                 = rtnl_dereference(net_device_ctx->vf_netdev);
202         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
203         int ret;
204
205         netvsc_tx_disable(nvdev, net);
206
207         /* No need to close rndis filter if it is removed already */
208         if (!nvdev)
209                 return 0;
210
211         ret = rndis_filter_close(nvdev);
212         if (ret != 0) {
213                 netdev_err(net, "unable to close device (ret %d).\n", ret);
214                 return ret;
215         }
216
217         ret = netvsc_wait_until_empty(nvdev);
218         if (ret)
219                 netdev_err(net, "Ring buffer not empty after closing rndis\n");
220
221         if (vf_netdev)
222                 dev_close(vf_netdev);
223
224         return ret;
225 }
226
227 static inline void *init_ppi_data(struct rndis_message *msg,
228                                   u32 ppi_size, u32 pkt_type)
229 {
230         struct rndis_packet *rndis_pkt = &msg->msg.pkt;
231         struct rndis_per_packet_info *ppi;
232
233         rndis_pkt->data_offset += ppi_size;
234         ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
235                 + rndis_pkt->per_pkt_info_len;
236
237         ppi->size = ppi_size;
238         ppi->type = pkt_type;
239         ppi->internal = 0;
240         ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
241
242         rndis_pkt->per_pkt_info_len += ppi_size;
243
244         return ppi + 1;
245 }
246
247 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
248  * packets. We can use ethtool to change UDP hash level when necessary.
249  */
250 static inline u32 netvsc_get_hash(
251         struct sk_buff *skb,
252         const struct net_device_context *ndc)
253 {
254         struct flow_keys flow;
255         u32 hash, pkt_proto = 0;
256         static u32 hashrnd __read_mostly;
257
258         net_get_random_once(&hashrnd, sizeof(hashrnd));
259
260         if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
261                 return 0;
262
263         switch (flow.basic.ip_proto) {
264         case IPPROTO_TCP:
265                 if (flow.basic.n_proto == htons(ETH_P_IP))
266                         pkt_proto = HV_TCP4_L4HASH;
267                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
268                         pkt_proto = HV_TCP6_L4HASH;
269
270                 break;
271
272         case IPPROTO_UDP:
273                 if (flow.basic.n_proto == htons(ETH_P_IP))
274                         pkt_proto = HV_UDP4_L4HASH;
275                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
276                         pkt_proto = HV_UDP6_L4HASH;
277
278                 break;
279         }
280
281         if (pkt_proto & ndc->l4_hash) {
282                 return skb_get_hash(skb);
283         } else {
284                 if (flow.basic.n_proto == htons(ETH_P_IP))
285                         hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
286                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
287                         hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
288                 else
289                         return 0;
290
291                 __skb_set_sw_hash(skb, hash, false);
292         }
293
294         return hash;
295 }
296
297 static inline int netvsc_get_tx_queue(struct net_device *ndev,
298                                       struct sk_buff *skb, int old_idx)
299 {
300         const struct net_device_context *ndc = netdev_priv(ndev);
301         struct sock *sk = skb->sk;
302         int q_idx;
303
304         q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
305                               (VRSS_SEND_TAB_SIZE - 1)];
306
307         /* If queue index changed record the new value */
308         if (q_idx != old_idx &&
309             sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
310                 sk_tx_queue_set(sk, q_idx);
311
312         return q_idx;
313 }
314
315 /*
316  * Select queue for transmit.
317  *
318  * If a valid queue has already been assigned, then use that.
319  * Otherwise compute tx queue based on hash and the send table.
320  *
321  * This is basically similar to default (netdev_pick_tx) with the added step
322  * of using the host send_table when no other queue has been assigned.
323  *
324  * TODO support XPS - but get_xps_queue not exported
325  */
326 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
327 {
328         int q_idx = sk_tx_queue_get(skb->sk);
329
330         if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
331                 /* If forwarding a packet, we use the recorded queue when
332                  * available for better cache locality.
333                  */
334                 if (skb_rx_queue_recorded(skb))
335                         q_idx = skb_get_rx_queue(skb);
336                 else
337                         q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
338         }
339
340         return q_idx;
341 }
342
343 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
344                                struct net_device *sb_dev)
345 {
346         struct net_device_context *ndc = netdev_priv(ndev);
347         struct net_device *vf_netdev;
348         u16 txq;
349
350         rcu_read_lock();
351         vf_netdev = rcu_dereference(ndc->vf_netdev);
352         if (vf_netdev) {
353                 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
354
355                 if (vf_ops->ndo_select_queue)
356                         txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
357                 else
358                         txq = netdev_pick_tx(vf_netdev, skb, NULL);
359
360                 /* Record the queue selected by VF so that it can be
361                  * used for common case where VF has more queues than
362                  * the synthetic device.
363                  */
364                 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
365         } else {
366                 txq = netvsc_pick_tx(ndev, skb);
367         }
368         rcu_read_unlock();
369
370         while (unlikely(txq >= ndev->real_num_tx_queues))
371                 txq -= ndev->real_num_tx_queues;
372
373         return txq;
374 }
375
376 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
377                        struct hv_page_buffer *pb)
378 {
379         int j = 0;
380
381         /* Deal with compound pages by ignoring unused part
382          * of the page.
383          */
384         page += (offset >> PAGE_SHIFT);
385         offset &= ~PAGE_MASK;
386
387         while (len > 0) {
388                 unsigned long bytes;
389
390                 bytes = PAGE_SIZE - offset;
391                 if (bytes > len)
392                         bytes = len;
393                 pb[j].pfn = page_to_pfn(page);
394                 pb[j].offset = offset;
395                 pb[j].len = bytes;
396
397                 offset += bytes;
398                 len -= bytes;
399
400                 if (offset == PAGE_SIZE && len) {
401                         page++;
402                         offset = 0;
403                         j++;
404                 }
405         }
406
407         return j + 1;
408 }
409
410 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
411                            struct hv_netvsc_packet *packet,
412                            struct hv_page_buffer *pb)
413 {
414         u32 slots_used = 0;
415         char *data = skb->data;
416         int frags = skb_shinfo(skb)->nr_frags;
417         int i;
418
419         /* The packet is laid out thus:
420          * 1. hdr: RNDIS header and PPI
421          * 2. skb linear data
422          * 3. skb fragment data
423          */
424         slots_used += fill_pg_buf(virt_to_page(hdr),
425                                   offset_in_page(hdr),
426                                   len, &pb[slots_used]);
427
428         packet->rmsg_size = len;
429         packet->rmsg_pgcnt = slots_used;
430
431         slots_used += fill_pg_buf(virt_to_page(data),
432                                 offset_in_page(data),
433                                 skb_headlen(skb), &pb[slots_used]);
434
435         for (i = 0; i < frags; i++) {
436                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
437
438                 slots_used += fill_pg_buf(skb_frag_page(frag),
439                                         skb_frag_off(frag),
440                                         skb_frag_size(frag), &pb[slots_used]);
441         }
442         return slots_used;
443 }
444
445 static int count_skb_frag_slots(struct sk_buff *skb)
446 {
447         int i, frags = skb_shinfo(skb)->nr_frags;
448         int pages = 0;
449
450         for (i = 0; i < frags; i++) {
451                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
452                 unsigned long size = skb_frag_size(frag);
453                 unsigned long offset = skb_frag_off(frag);
454
455                 /* Skip unused frames from start of page */
456                 offset &= ~PAGE_MASK;
457                 pages += PFN_UP(offset + size);
458         }
459         return pages;
460 }
461
462 static int netvsc_get_slots(struct sk_buff *skb)
463 {
464         char *data = skb->data;
465         unsigned int offset = offset_in_page(data);
466         unsigned int len = skb_headlen(skb);
467         int slots;
468         int frag_slots;
469
470         slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
471         frag_slots = count_skb_frag_slots(skb);
472         return slots + frag_slots;
473 }
474
475 static u32 net_checksum_info(struct sk_buff *skb)
476 {
477         if (skb->protocol == htons(ETH_P_IP)) {
478                 struct iphdr *ip = ip_hdr(skb);
479
480                 if (ip->protocol == IPPROTO_TCP)
481                         return TRANSPORT_INFO_IPV4_TCP;
482                 else if (ip->protocol == IPPROTO_UDP)
483                         return TRANSPORT_INFO_IPV4_UDP;
484         } else {
485                 struct ipv6hdr *ip6 = ipv6_hdr(skb);
486
487                 if (ip6->nexthdr == IPPROTO_TCP)
488                         return TRANSPORT_INFO_IPV6_TCP;
489                 else if (ip6->nexthdr == IPPROTO_UDP)
490                         return TRANSPORT_INFO_IPV6_UDP;
491         }
492
493         return TRANSPORT_INFO_NOT_IP;
494 }
495
496 /* Send skb on the slave VF device. */
497 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
498                           struct sk_buff *skb)
499 {
500         struct net_device_context *ndev_ctx = netdev_priv(net);
501         unsigned int len = skb->len;
502         int rc;
503
504         skb->dev = vf_netdev;
505         skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
506
507         rc = dev_queue_xmit(skb);
508         if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
509                 struct netvsc_vf_pcpu_stats *pcpu_stats
510                         = this_cpu_ptr(ndev_ctx->vf_stats);
511
512                 u64_stats_update_begin(&pcpu_stats->syncp);
513                 pcpu_stats->tx_packets++;
514                 pcpu_stats->tx_bytes += len;
515                 u64_stats_update_end(&pcpu_stats->syncp);
516         } else {
517                 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
518         }
519
520         return rc;
521 }
522
523 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
524 {
525         struct net_device_context *net_device_ctx = netdev_priv(net);
526         struct hv_netvsc_packet *packet = NULL;
527         int ret;
528         unsigned int num_data_pgs;
529         struct rndis_message *rndis_msg;
530         struct net_device *vf_netdev;
531         u32 rndis_msg_size;
532         u32 hash;
533         struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
534
535         /* if VF is present and up then redirect packets
536          * already called with rcu_read_lock_bh
537          */
538         vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
539         if (vf_netdev && netif_running(vf_netdev) &&
540             !netpoll_tx_running(net))
541                 return netvsc_vf_xmit(net, vf_netdev, skb);
542
543         /* We will atmost need two pages to describe the rndis
544          * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
545          * of pages in a single packet. If skb is scattered around
546          * more pages we try linearizing it.
547          */
548
549         num_data_pgs = netvsc_get_slots(skb) + 2;
550
551         if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
552                 ++net_device_ctx->eth_stats.tx_scattered;
553
554                 if (skb_linearize(skb))
555                         goto no_memory;
556
557                 num_data_pgs = netvsc_get_slots(skb) + 2;
558                 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
559                         ++net_device_ctx->eth_stats.tx_too_big;
560                         goto drop;
561                 }
562         }
563
564         /*
565          * Place the rndis header in the skb head room and
566          * the skb->cb will be used for hv_netvsc_packet
567          * structure.
568          */
569         ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
570         if (ret)
571                 goto no_memory;
572
573         /* Use the skb control buffer for building up the packet */
574         BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
575                         sizeof_field(struct sk_buff, cb));
576         packet = (struct hv_netvsc_packet *)skb->cb;
577
578         packet->q_idx = skb_get_queue_mapping(skb);
579
580         packet->total_data_buflen = skb->len;
581         packet->total_bytes = skb->len;
582         packet->total_packets = 1;
583
584         rndis_msg = (struct rndis_message *)skb->head;
585
586         /* Add the rndis header */
587         rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
588         rndis_msg->msg_len = packet->total_data_buflen;
589
590         rndis_msg->msg.pkt = (struct rndis_packet) {
591                 .data_offset = sizeof(struct rndis_packet),
592                 .data_len = packet->total_data_buflen,
593                 .per_pkt_info_offset = sizeof(struct rndis_packet),
594         };
595
596         rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
597
598         hash = skb_get_hash_raw(skb);
599         if (hash != 0 && net->real_num_tx_queues > 1) {
600                 u32 *hash_info;
601
602                 rndis_msg_size += NDIS_HASH_PPI_SIZE;
603                 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
604                                           NBL_HASH_VALUE);
605                 *hash_info = hash;
606         }
607
608         if (skb_vlan_tag_present(skb)) {
609                 struct ndis_pkt_8021q_info *vlan;
610
611                 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
612                 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
613                                      IEEE_8021Q_INFO);
614
615                 vlan->value = 0;
616                 vlan->vlanid = skb_vlan_tag_get_id(skb);
617                 vlan->cfi = skb_vlan_tag_get_cfi(skb);
618                 vlan->pri = skb_vlan_tag_get_prio(skb);
619         }
620
621         if (skb_is_gso(skb)) {
622                 struct ndis_tcp_lso_info *lso_info;
623
624                 rndis_msg_size += NDIS_LSO_PPI_SIZE;
625                 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
626                                          TCP_LARGESEND_PKTINFO);
627
628                 lso_info->value = 0;
629                 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
630                 if (skb->protocol == htons(ETH_P_IP)) {
631                         lso_info->lso_v2_transmit.ip_version =
632                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
633                         ip_hdr(skb)->tot_len = 0;
634                         ip_hdr(skb)->check = 0;
635                         tcp_hdr(skb)->check =
636                                 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
637                                                    ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
638                 } else {
639                         lso_info->lso_v2_transmit.ip_version =
640                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
641                         ipv6_hdr(skb)->payload_len = 0;
642                         tcp_hdr(skb)->check =
643                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
644                                                  &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
645                 }
646                 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
647                 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
648         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
649                 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
650                         struct ndis_tcp_ip_checksum_info *csum_info;
651
652                         rndis_msg_size += NDIS_CSUM_PPI_SIZE;
653                         csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
654                                                   TCPIP_CHKSUM_PKTINFO);
655
656                         csum_info->value = 0;
657                         csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
658
659                         if (skb->protocol == htons(ETH_P_IP)) {
660                                 csum_info->transmit.is_ipv4 = 1;
661
662                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
663                                         csum_info->transmit.tcp_checksum = 1;
664                                 else
665                                         csum_info->transmit.udp_checksum = 1;
666                         } else {
667                                 csum_info->transmit.is_ipv6 = 1;
668
669                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
670                                         csum_info->transmit.tcp_checksum = 1;
671                                 else
672                                         csum_info->transmit.udp_checksum = 1;
673                         }
674                 } else {
675                         /* Can't do offload of this type of checksum */
676                         if (skb_checksum_help(skb))
677                                 goto drop;
678                 }
679         }
680
681         /* Start filling in the page buffers with the rndis hdr */
682         rndis_msg->msg_len += rndis_msg_size;
683         packet->total_data_buflen = rndis_msg->msg_len;
684         packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
685                                                skb, packet, pb);
686
687         /* timestamp packet in software */
688         skb_tx_timestamp(skb);
689
690         ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
691         if (likely(ret == 0))
692                 return NETDEV_TX_OK;
693
694         if (ret == -EAGAIN) {
695                 ++net_device_ctx->eth_stats.tx_busy;
696                 return NETDEV_TX_BUSY;
697         }
698
699         if (ret == -ENOSPC)
700                 ++net_device_ctx->eth_stats.tx_no_space;
701
702 drop:
703         dev_kfree_skb_any(skb);
704         net->stats.tx_dropped++;
705
706         return NETDEV_TX_OK;
707
708 no_memory:
709         ++net_device_ctx->eth_stats.tx_no_memory;
710         goto drop;
711 }
712
713 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *ndev)
714 {
715         return netvsc_xmit(skb, ndev, false);
716 }
717
718 /*
719  * netvsc_linkstatus_callback - Link up/down notification
720  */
721 void netvsc_linkstatus_callback(struct net_device *net,
722                                 struct rndis_message *resp)
723 {
724         struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
725         struct net_device_context *ndev_ctx = netdev_priv(net);
726         struct netvsc_reconfig *event;
727         unsigned long flags;
728
729         /* Update the physical link speed when changing to another vSwitch */
730         if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
731                 u32 speed;
732
733                 speed = *(u32 *)((void *)indicate
734                                  + indicate->status_buf_offset) / 10000;
735                 ndev_ctx->speed = speed;
736                 return;
737         }
738
739         /* Handle these link change statuses below */
740         if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
741             indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
742             indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
743                 return;
744
745         if (net->reg_state != NETREG_REGISTERED)
746                 return;
747
748         event = kzalloc(sizeof(*event), GFP_ATOMIC);
749         if (!event)
750                 return;
751         event->event = indicate->status;
752
753         spin_lock_irqsave(&ndev_ctx->lock, flags);
754         list_add_tail(&event->list, &ndev_ctx->reconfig_events);
755         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
756
757         schedule_delayed_work(&ndev_ctx->dwork, 0);
758 }
759
760 static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
761 {
762         int rc;
763
764         skb->queue_mapping = skb_get_rx_queue(skb);
765         __skb_push(skb, ETH_HLEN);
766
767         rc = netvsc_xmit(skb, ndev, true);
768
769         if (dev_xmit_complete(rc))
770                 return;
771
772         dev_kfree_skb_any(skb);
773         ndev->stats.tx_dropped++;
774 }
775
776 static void netvsc_comp_ipcsum(struct sk_buff *skb)
777 {
778         struct iphdr *iph = (struct iphdr *)skb->data;
779
780         iph->check = 0;
781         iph->check = ip_fast_csum(iph, iph->ihl);
782 }
783
784 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
785                                              struct netvsc_channel *nvchan,
786                                              struct xdp_buff *xdp)
787 {
788         struct napi_struct *napi = &nvchan->napi;
789         const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
790         const struct ndis_tcp_ip_checksum_info *csum_info =
791                                                 nvchan->rsc.csum_info;
792         const u32 *hash_info = nvchan->rsc.hash_info;
793         struct sk_buff *skb;
794         void *xbuf = xdp->data_hard_start;
795         int i;
796
797         if (xbuf) {
798                 unsigned int hdroom = xdp->data - xdp->data_hard_start;
799                 unsigned int xlen = xdp->data_end - xdp->data;
800                 unsigned int frag_size = netvsc_xdp_fraglen(hdroom + xlen);
801
802                 skb = build_skb(xbuf, frag_size);
803
804                 if (!skb) {
805                         __free_page(virt_to_page(xbuf));
806                         return NULL;
807                 }
808
809                 skb_reserve(skb, hdroom);
810                 skb_put(skb, xlen);
811                 skb->dev = napi->dev;
812         } else {
813                 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
814
815                 if (!skb)
816                         return NULL;
817
818                 /* Copy to skb. This copy is needed here since the memory
819                  * pointed by hv_netvsc_packet cannot be deallocated.
820                  */
821                 for (i = 0; i < nvchan->rsc.cnt; i++)
822                         skb_put_data(skb, nvchan->rsc.data[i],
823                                      nvchan->rsc.len[i]);
824         }
825
826         skb->protocol = eth_type_trans(skb, net);
827
828         /* skb is already created with CHECKSUM_NONE */
829         skb_checksum_none_assert(skb);
830
831         /* Incoming packets may have IP header checksum verified by the host.
832          * They may not have IP header checksum computed after coalescing.
833          * We compute it here if the flags are set, because on Linux, the IP
834          * checksum is always checked.
835          */
836         if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
837             csum_info->receive.ip_checksum_succeeded &&
838             skb->protocol == htons(ETH_P_IP))
839                 netvsc_comp_ipcsum(skb);
840
841         /* Do L4 checksum offload if enabled and present. */
842         if (csum_info && (net->features & NETIF_F_RXCSUM)) {
843                 if (csum_info->receive.tcp_checksum_succeeded ||
844                     csum_info->receive.udp_checksum_succeeded)
845                         skb->ip_summed = CHECKSUM_UNNECESSARY;
846         }
847
848         if (hash_info && (net->features & NETIF_F_RXHASH))
849                 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
850
851         if (vlan) {
852                 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
853                         (vlan->cfi ? VLAN_CFI_MASK : 0);
854
855                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
856                                        vlan_tci);
857         }
858
859         return skb;
860 }
861
862 /*
863  * netvsc_recv_callback -  Callback when we receive a packet from the
864  * "wire" on the specified device.
865  */
866 int netvsc_recv_callback(struct net_device *net,
867                          struct netvsc_device *net_device,
868                          struct netvsc_channel *nvchan)
869 {
870         struct net_device_context *net_device_ctx = netdev_priv(net);
871         struct vmbus_channel *channel = nvchan->channel;
872         u16 q_idx = channel->offermsg.offer.sub_channel_index;
873         struct sk_buff *skb;
874         struct netvsc_stats *rx_stats = &nvchan->rx_stats;
875         struct xdp_buff xdp;
876         u32 act;
877
878         if (net->reg_state != NETREG_REGISTERED)
879                 return NVSP_STAT_FAIL;
880
881         act = netvsc_run_xdp(net, nvchan, &xdp);
882
883         if (act != XDP_PASS && act != XDP_TX) {
884                 u64_stats_update_begin(&rx_stats->syncp);
885                 rx_stats->xdp_drop++;
886                 u64_stats_update_end(&rx_stats->syncp);
887
888                 return NVSP_STAT_SUCCESS; /* consumed by XDP */
889         }
890
891         /* Allocate a skb - TODO direct I/O to pages? */
892         skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
893
894         if (unlikely(!skb)) {
895                 ++net_device_ctx->eth_stats.rx_no_memory;
896                 return NVSP_STAT_FAIL;
897         }
898
899         skb_record_rx_queue(skb, q_idx);
900
901         /*
902          * Even if injecting the packet, record the statistics
903          * on the synthetic device because modifying the VF device
904          * statistics will not work correctly.
905          */
906         u64_stats_update_begin(&rx_stats->syncp);
907         rx_stats->packets++;
908         rx_stats->bytes += nvchan->rsc.pktlen;
909
910         if (skb->pkt_type == PACKET_BROADCAST)
911                 ++rx_stats->broadcast;
912         else if (skb->pkt_type == PACKET_MULTICAST)
913                 ++rx_stats->multicast;
914         u64_stats_update_end(&rx_stats->syncp);
915
916         if (act == XDP_TX) {
917                 netvsc_xdp_xmit(skb, net);
918                 return NVSP_STAT_SUCCESS;
919         }
920
921         napi_gro_receive(&nvchan->napi, skb);
922         return NVSP_STAT_SUCCESS;
923 }
924
925 static void netvsc_get_drvinfo(struct net_device *net,
926                                struct ethtool_drvinfo *info)
927 {
928         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
929         strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
930 }
931
932 static void netvsc_get_channels(struct net_device *net,
933                                 struct ethtool_channels *channel)
934 {
935         struct net_device_context *net_device_ctx = netdev_priv(net);
936         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
937
938         if (nvdev) {
939                 channel->max_combined   = nvdev->max_chn;
940                 channel->combined_count = nvdev->num_chn;
941         }
942 }
943
944 /* Alloc struct netvsc_device_info, and initialize it from either existing
945  * struct netvsc_device, or from default values.
946  */
947 static
948 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
949 {
950         struct netvsc_device_info *dev_info;
951         struct bpf_prog *prog;
952
953         dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
954
955         if (!dev_info)
956                 return NULL;
957
958         if (nvdev) {
959                 ASSERT_RTNL();
960
961                 dev_info->num_chn = nvdev->num_chn;
962                 dev_info->send_sections = nvdev->send_section_cnt;
963                 dev_info->send_section_size = nvdev->send_section_size;
964                 dev_info->recv_sections = nvdev->recv_section_cnt;
965                 dev_info->recv_section_size = nvdev->recv_section_size;
966
967                 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
968                        NETVSC_HASH_KEYLEN);
969
970                 prog = netvsc_xdp_get(nvdev);
971                 if (prog) {
972                         bpf_prog_inc(prog);
973                         dev_info->bprog = prog;
974                 }
975         } else {
976                 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
977                 dev_info->send_sections = NETVSC_DEFAULT_TX;
978                 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
979                 dev_info->recv_sections = NETVSC_DEFAULT_RX;
980                 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
981         }
982
983         return dev_info;
984 }
985
986 /* Free struct netvsc_device_info */
987 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
988 {
989         if (dev_info->bprog) {
990                 ASSERT_RTNL();
991                 bpf_prog_put(dev_info->bprog);
992         }
993
994         kfree(dev_info);
995 }
996
997 static int netvsc_detach(struct net_device *ndev,
998                          struct netvsc_device *nvdev)
999 {
1000         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1001         struct hv_device *hdev = ndev_ctx->device_ctx;
1002         int ret;
1003
1004         /* Don't try continuing to try and setup sub channels */
1005         if (cancel_work_sync(&nvdev->subchan_work))
1006                 nvdev->num_chn = 1;
1007
1008         netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1009
1010         /* If device was up (receiving) then shutdown */
1011         if (netif_running(ndev)) {
1012                 netvsc_tx_disable(nvdev, ndev);
1013
1014                 ret = rndis_filter_close(nvdev);
1015                 if (ret) {
1016                         netdev_err(ndev,
1017                                    "unable to close device (ret %d).\n", ret);
1018                         return ret;
1019                 }
1020
1021                 ret = netvsc_wait_until_empty(nvdev);
1022                 if (ret) {
1023                         netdev_err(ndev,
1024                                    "Ring buffer not empty after closing rndis\n");
1025                         return ret;
1026                 }
1027         }
1028
1029         netif_device_detach(ndev);
1030
1031         rndis_filter_device_remove(hdev, nvdev);
1032
1033         return 0;
1034 }
1035
1036 static int netvsc_attach(struct net_device *ndev,
1037                          struct netvsc_device_info *dev_info)
1038 {
1039         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1040         struct hv_device *hdev = ndev_ctx->device_ctx;
1041         struct netvsc_device *nvdev;
1042         struct rndis_device *rdev;
1043         struct bpf_prog *prog;
1044         int ret = 0;
1045
1046         nvdev = rndis_filter_device_add(hdev, dev_info);
1047         if (IS_ERR(nvdev))
1048                 return PTR_ERR(nvdev);
1049
1050         if (nvdev->num_chn > 1) {
1051                 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1052
1053                 /* if unavailable, just proceed with one queue */
1054                 if (ret) {
1055                         nvdev->max_chn = 1;
1056                         nvdev->num_chn = 1;
1057                 }
1058         }
1059
1060         prog = dev_info->bprog;
1061         if (prog) {
1062                 bpf_prog_inc(prog);
1063                 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1064                 if (ret) {
1065                         bpf_prog_put(prog);
1066                         goto err1;
1067                 }
1068         }
1069
1070         /* In any case device is now ready */
1071         nvdev->tx_disable = false;
1072         netif_device_attach(ndev);
1073
1074         /* Note: enable and attach happen when sub-channels setup */
1075         netif_carrier_off(ndev);
1076
1077         if (netif_running(ndev)) {
1078                 ret = rndis_filter_open(nvdev);
1079                 if (ret)
1080                         goto err2;
1081
1082                 rdev = nvdev->extension;
1083                 if (!rdev->link_state)
1084                         netif_carrier_on(ndev);
1085         }
1086
1087         return 0;
1088
1089 err2:
1090         netif_device_detach(ndev);
1091
1092 err1:
1093         rndis_filter_device_remove(hdev, nvdev);
1094
1095         return ret;
1096 }
1097
1098 static int netvsc_set_channels(struct net_device *net,
1099                                struct ethtool_channels *channels)
1100 {
1101         struct net_device_context *net_device_ctx = netdev_priv(net);
1102         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1103         unsigned int orig, count = channels->combined_count;
1104         struct netvsc_device_info *device_info;
1105         int ret;
1106
1107         /* We do not support separate count for rx, tx, or other */
1108         if (count == 0 ||
1109             channels->rx_count || channels->tx_count || channels->other_count)
1110                 return -EINVAL;
1111
1112         if (!nvdev || nvdev->destroy)
1113                 return -ENODEV;
1114
1115         if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1116                 return -EINVAL;
1117
1118         if (count > nvdev->max_chn)
1119                 return -EINVAL;
1120
1121         orig = nvdev->num_chn;
1122
1123         device_info = netvsc_devinfo_get(nvdev);
1124
1125         if (!device_info)
1126                 return -ENOMEM;
1127
1128         device_info->num_chn = count;
1129
1130         ret = netvsc_detach(net, nvdev);
1131         if (ret)
1132                 goto out;
1133
1134         ret = netvsc_attach(net, device_info);
1135         if (ret) {
1136                 device_info->num_chn = orig;
1137                 if (netvsc_attach(net, device_info))
1138                         netdev_err(net, "restoring channel setting failed\n");
1139         }
1140
1141 out:
1142         netvsc_devinfo_put(device_info);
1143         return ret;
1144 }
1145
1146 static bool
1147 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
1148 {
1149         struct ethtool_link_ksettings diff1 = *cmd;
1150         struct ethtool_link_ksettings diff2 = {};
1151
1152         diff1.base.speed = 0;
1153         diff1.base.duplex = 0;
1154         /* advertising and cmd are usually set */
1155         ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
1156         diff1.base.cmd = 0;
1157         /* We set port to PORT_OTHER */
1158         diff2.base.port = PORT_OTHER;
1159
1160         return !memcmp(&diff1, &diff2, sizeof(diff1));
1161 }
1162
1163 static void netvsc_init_settings(struct net_device *dev)
1164 {
1165         struct net_device_context *ndc = netdev_priv(dev);
1166
1167         ndc->l4_hash = HV_DEFAULT_L4HASH;
1168
1169         ndc->speed = SPEED_UNKNOWN;
1170         ndc->duplex = DUPLEX_FULL;
1171
1172         dev->features = NETIF_F_LRO;
1173 }
1174
1175 static int netvsc_get_link_ksettings(struct net_device *dev,
1176                                      struct ethtool_link_ksettings *cmd)
1177 {
1178         struct net_device_context *ndc = netdev_priv(dev);
1179
1180         cmd->base.speed = ndc->speed;
1181         cmd->base.duplex = ndc->duplex;
1182         cmd->base.port = PORT_OTHER;
1183
1184         return 0;
1185 }
1186
1187 static int netvsc_set_link_ksettings(struct net_device *dev,
1188                                      const struct ethtool_link_ksettings *cmd)
1189 {
1190         struct net_device_context *ndc = netdev_priv(dev);
1191         u32 speed;
1192
1193         speed = cmd->base.speed;
1194         if (!ethtool_validate_speed(speed) ||
1195             !ethtool_validate_duplex(cmd->base.duplex) ||
1196             !netvsc_validate_ethtool_ss_cmd(cmd))
1197                 return -EINVAL;
1198
1199         ndc->speed = speed;
1200         ndc->duplex = cmd->base.duplex;
1201
1202         return 0;
1203 }
1204
1205 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1206 {
1207         struct net_device_context *ndevctx = netdev_priv(ndev);
1208         struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1209         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1210         int orig_mtu = ndev->mtu;
1211         struct netvsc_device_info *device_info;
1212         int ret = 0;
1213
1214         if (!nvdev || nvdev->destroy)
1215                 return -ENODEV;
1216
1217         device_info = netvsc_devinfo_get(nvdev);
1218
1219         if (!device_info)
1220                 return -ENOMEM;
1221
1222         /* Change MTU of underlying VF netdev first. */
1223         if (vf_netdev) {
1224                 ret = dev_set_mtu(vf_netdev, mtu);
1225                 if (ret)
1226                         goto out;
1227         }
1228
1229         ret = netvsc_detach(ndev, nvdev);
1230         if (ret)
1231                 goto rollback_vf;
1232
1233         ndev->mtu = mtu;
1234
1235         ret = netvsc_attach(ndev, device_info);
1236         if (!ret)
1237                 goto out;
1238
1239         /* Attempt rollback to original MTU */
1240         ndev->mtu = orig_mtu;
1241
1242         if (netvsc_attach(ndev, device_info))
1243                 netdev_err(ndev, "restoring mtu failed\n");
1244 rollback_vf:
1245         if (vf_netdev)
1246                 dev_set_mtu(vf_netdev, orig_mtu);
1247
1248 out:
1249         netvsc_devinfo_put(device_info);
1250         return ret;
1251 }
1252
1253 static void netvsc_get_vf_stats(struct net_device *net,
1254                                 struct netvsc_vf_pcpu_stats *tot)
1255 {
1256         struct net_device_context *ndev_ctx = netdev_priv(net);
1257         int i;
1258
1259         memset(tot, 0, sizeof(*tot));
1260
1261         for_each_possible_cpu(i) {
1262                 const struct netvsc_vf_pcpu_stats *stats
1263                         = per_cpu_ptr(ndev_ctx->vf_stats, i);
1264                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1265                 unsigned int start;
1266
1267                 do {
1268                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1269                         rx_packets = stats->rx_packets;
1270                         tx_packets = stats->tx_packets;
1271                         rx_bytes = stats->rx_bytes;
1272                         tx_bytes = stats->tx_bytes;
1273                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1274
1275                 tot->rx_packets += rx_packets;
1276                 tot->tx_packets += tx_packets;
1277                 tot->rx_bytes   += rx_bytes;
1278                 tot->tx_bytes   += tx_bytes;
1279                 tot->tx_dropped += stats->tx_dropped;
1280         }
1281 }
1282
1283 static void netvsc_get_pcpu_stats(struct net_device *net,
1284                                   struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1285 {
1286         struct net_device_context *ndev_ctx = netdev_priv(net);
1287         struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1288         int i;
1289
1290         /* fetch percpu stats of vf */
1291         for_each_possible_cpu(i) {
1292                 const struct netvsc_vf_pcpu_stats *stats =
1293                         per_cpu_ptr(ndev_ctx->vf_stats, i);
1294                 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1295                 unsigned int start;
1296
1297                 do {
1298                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1299                         this_tot->vf_rx_packets = stats->rx_packets;
1300                         this_tot->vf_tx_packets = stats->tx_packets;
1301                         this_tot->vf_rx_bytes = stats->rx_bytes;
1302                         this_tot->vf_tx_bytes = stats->tx_bytes;
1303                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1304                 this_tot->rx_packets = this_tot->vf_rx_packets;
1305                 this_tot->tx_packets = this_tot->vf_tx_packets;
1306                 this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1307                 this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1308         }
1309
1310         /* fetch percpu stats of netvsc */
1311         for (i = 0; i < nvdev->num_chn; i++) {
1312                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1313                 const struct netvsc_stats *stats;
1314                 struct netvsc_ethtool_pcpu_stats *this_tot =
1315                         &pcpu_tot[nvchan->channel->target_cpu];
1316                 u64 packets, bytes;
1317                 unsigned int start;
1318
1319                 stats = &nvchan->tx_stats;
1320                 do {
1321                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1322                         packets = stats->packets;
1323                         bytes = stats->bytes;
1324                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1325
1326                 this_tot->tx_bytes      += bytes;
1327                 this_tot->tx_packets    += packets;
1328
1329                 stats = &nvchan->rx_stats;
1330                 do {
1331                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1332                         packets = stats->packets;
1333                         bytes = stats->bytes;
1334                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1335
1336                 this_tot->rx_bytes      += bytes;
1337                 this_tot->rx_packets    += packets;
1338         }
1339 }
1340
1341 static void netvsc_get_stats64(struct net_device *net,
1342                                struct rtnl_link_stats64 *t)
1343 {
1344         struct net_device_context *ndev_ctx = netdev_priv(net);
1345         struct netvsc_device *nvdev;
1346         struct netvsc_vf_pcpu_stats vf_tot;
1347         int i;
1348
1349         rcu_read_lock();
1350
1351         nvdev = rcu_dereference(ndev_ctx->nvdev);
1352         if (!nvdev)
1353                 goto out;
1354
1355         netdev_stats_to_stats64(t, &net->stats);
1356
1357         netvsc_get_vf_stats(net, &vf_tot);
1358         t->rx_packets += vf_tot.rx_packets;
1359         t->tx_packets += vf_tot.tx_packets;
1360         t->rx_bytes   += vf_tot.rx_bytes;
1361         t->tx_bytes   += vf_tot.tx_bytes;
1362         t->tx_dropped += vf_tot.tx_dropped;
1363
1364         for (i = 0; i < nvdev->num_chn; i++) {
1365                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1366                 const struct netvsc_stats *stats;
1367                 u64 packets, bytes, multicast;
1368                 unsigned int start;
1369
1370                 stats = &nvchan->tx_stats;
1371                 do {
1372                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1373                         packets = stats->packets;
1374                         bytes = stats->bytes;
1375                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1376
1377                 t->tx_bytes     += bytes;
1378                 t->tx_packets   += packets;
1379
1380                 stats = &nvchan->rx_stats;
1381                 do {
1382                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1383                         packets = stats->packets;
1384                         bytes = stats->bytes;
1385                         multicast = stats->multicast + stats->broadcast;
1386                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1387
1388                 t->rx_bytes     += bytes;
1389                 t->rx_packets   += packets;
1390                 t->multicast    += multicast;
1391         }
1392 out:
1393         rcu_read_unlock();
1394 }
1395
1396 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1397 {
1398         struct net_device_context *ndc = netdev_priv(ndev);
1399         struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1400         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1401         struct sockaddr *addr = p;
1402         int err;
1403
1404         err = eth_prepare_mac_addr_change(ndev, p);
1405         if (err)
1406                 return err;
1407
1408         if (!nvdev)
1409                 return -ENODEV;
1410
1411         if (vf_netdev) {
1412                 err = dev_set_mac_address(vf_netdev, addr, NULL);
1413                 if (err)
1414                         return err;
1415         }
1416
1417         err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1418         if (!err) {
1419                 eth_commit_mac_addr_change(ndev, p);
1420         } else if (vf_netdev) {
1421                 /* rollback change on VF */
1422                 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1423                 dev_set_mac_address(vf_netdev, addr, NULL);
1424         }
1425
1426         return err;
1427 }
1428
1429 static const struct {
1430         char name[ETH_GSTRING_LEN];
1431         u16 offset;
1432 } netvsc_stats[] = {
1433         { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1434         { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1435         { "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1436         { "tx_too_big",   offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1437         { "tx_busy",      offsetof(struct netvsc_ethtool_stats, tx_busy) },
1438         { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1439         { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1440         { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1441         { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1442         { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1443 }, pcpu_stats[] = {
1444         { "cpu%u_rx_packets",
1445                 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1446         { "cpu%u_rx_bytes",
1447                 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1448         { "cpu%u_tx_packets",
1449                 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1450         { "cpu%u_tx_bytes",
1451                 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1452         { "cpu%u_vf_rx_packets",
1453                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1454         { "cpu%u_vf_rx_bytes",
1455                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1456         { "cpu%u_vf_tx_packets",
1457                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1458         { "cpu%u_vf_tx_bytes",
1459                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1460 }, vf_stats[] = {
1461         { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1462         { "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1463         { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1464         { "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1465         { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1466 };
1467
1468 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1469 #define NETVSC_VF_STATS_LEN     ARRAY_SIZE(vf_stats)
1470
1471 /* statistics per queue (rx/tx packets/bytes) */
1472 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1473
1474 /* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */
1475 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5)
1476
1477 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1478 {
1479         struct net_device_context *ndc = netdev_priv(dev);
1480         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1481
1482         if (!nvdev)
1483                 return -ENODEV;
1484
1485         switch (string_set) {
1486         case ETH_SS_STATS:
1487                 return NETVSC_GLOBAL_STATS_LEN
1488                         + NETVSC_VF_STATS_LEN
1489                         + NETVSC_QUEUE_STATS_LEN(nvdev)
1490                         + NETVSC_PCPU_STATS_LEN;
1491         default:
1492                 return -EINVAL;
1493         }
1494 }
1495
1496 static void netvsc_get_ethtool_stats(struct net_device *dev,
1497                                      struct ethtool_stats *stats, u64 *data)
1498 {
1499         struct net_device_context *ndc = netdev_priv(dev);
1500         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1501         const void *nds = &ndc->eth_stats;
1502         const struct netvsc_stats *qstats;
1503         struct netvsc_vf_pcpu_stats sum;
1504         struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1505         unsigned int start;
1506         u64 packets, bytes;
1507         u64 xdp_drop;
1508         int i, j, cpu;
1509
1510         if (!nvdev)
1511                 return;
1512
1513         for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1514                 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1515
1516         netvsc_get_vf_stats(dev, &sum);
1517         for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1518                 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1519
1520         for (j = 0; j < nvdev->num_chn; j++) {
1521                 qstats = &nvdev->chan_table[j].tx_stats;
1522
1523                 do {
1524                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1525                         packets = qstats->packets;
1526                         bytes = qstats->bytes;
1527                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1528                 data[i++] = packets;
1529                 data[i++] = bytes;
1530
1531                 qstats = &nvdev->chan_table[j].rx_stats;
1532                 do {
1533                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1534                         packets = qstats->packets;
1535                         bytes = qstats->bytes;
1536                         xdp_drop = qstats->xdp_drop;
1537                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1538                 data[i++] = packets;
1539                 data[i++] = bytes;
1540                 data[i++] = xdp_drop;
1541         }
1542
1543         pcpu_sum = kvmalloc_array(num_possible_cpus(),
1544                                   sizeof(struct netvsc_ethtool_pcpu_stats),
1545                                   GFP_KERNEL);
1546         netvsc_get_pcpu_stats(dev, pcpu_sum);
1547         for_each_present_cpu(cpu) {
1548                 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1549
1550                 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1551                         data[i++] = *(u64 *)((void *)this_sum
1552                                              + pcpu_stats[j].offset);
1553         }
1554         kvfree(pcpu_sum);
1555 }
1556
1557 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1558 {
1559         struct net_device_context *ndc = netdev_priv(dev);
1560         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1561         u8 *p = data;
1562         int i, cpu;
1563
1564         if (!nvdev)
1565                 return;
1566
1567         switch (stringset) {
1568         case ETH_SS_STATS:
1569                 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1570                         memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1571                         p += ETH_GSTRING_LEN;
1572                 }
1573
1574                 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1575                         memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1576                         p += ETH_GSTRING_LEN;
1577                 }
1578
1579                 for (i = 0; i < nvdev->num_chn; i++) {
1580                         sprintf(p, "tx_queue_%u_packets", i);
1581                         p += ETH_GSTRING_LEN;
1582                         sprintf(p, "tx_queue_%u_bytes", i);
1583                         p += ETH_GSTRING_LEN;
1584                         sprintf(p, "rx_queue_%u_packets", i);
1585                         p += ETH_GSTRING_LEN;
1586                         sprintf(p, "rx_queue_%u_bytes", i);
1587                         p += ETH_GSTRING_LEN;
1588                         sprintf(p, "rx_queue_%u_xdp_drop", i);
1589                         p += ETH_GSTRING_LEN;
1590                 }
1591
1592                 for_each_present_cpu(cpu) {
1593                         for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1594                                 sprintf(p, pcpu_stats[i].name, cpu);
1595                                 p += ETH_GSTRING_LEN;
1596                         }
1597                 }
1598
1599                 break;
1600         }
1601 }
1602
1603 static int
1604 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1605                          struct ethtool_rxnfc *info)
1606 {
1607         const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1608
1609         info->data = RXH_IP_SRC | RXH_IP_DST;
1610
1611         switch (info->flow_type) {
1612         case TCP_V4_FLOW:
1613                 if (ndc->l4_hash & HV_TCP4_L4HASH)
1614                         info->data |= l4_flag;
1615
1616                 break;
1617
1618         case TCP_V6_FLOW:
1619                 if (ndc->l4_hash & HV_TCP6_L4HASH)
1620                         info->data |= l4_flag;
1621
1622                 break;
1623
1624         case UDP_V4_FLOW:
1625                 if (ndc->l4_hash & HV_UDP4_L4HASH)
1626                         info->data |= l4_flag;
1627
1628                 break;
1629
1630         case UDP_V6_FLOW:
1631                 if (ndc->l4_hash & HV_UDP6_L4HASH)
1632                         info->data |= l4_flag;
1633
1634                 break;
1635
1636         case IPV4_FLOW:
1637         case IPV6_FLOW:
1638                 break;
1639         default:
1640                 info->data = 0;
1641                 break;
1642         }
1643
1644         return 0;
1645 }
1646
1647 static int
1648 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1649                  u32 *rules)
1650 {
1651         struct net_device_context *ndc = netdev_priv(dev);
1652         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1653
1654         if (!nvdev)
1655                 return -ENODEV;
1656
1657         switch (info->cmd) {
1658         case ETHTOOL_GRXRINGS:
1659                 info->data = nvdev->num_chn;
1660                 return 0;
1661
1662         case ETHTOOL_GRXFH:
1663                 return netvsc_get_rss_hash_opts(ndc, info);
1664         }
1665         return -EOPNOTSUPP;
1666 }
1667
1668 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1669                                     struct ethtool_rxnfc *info)
1670 {
1671         if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1672                            RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1673                 switch (info->flow_type) {
1674                 case TCP_V4_FLOW:
1675                         ndc->l4_hash |= HV_TCP4_L4HASH;
1676                         break;
1677
1678                 case TCP_V6_FLOW:
1679                         ndc->l4_hash |= HV_TCP6_L4HASH;
1680                         break;
1681
1682                 case UDP_V4_FLOW:
1683                         ndc->l4_hash |= HV_UDP4_L4HASH;
1684                         break;
1685
1686                 case UDP_V6_FLOW:
1687                         ndc->l4_hash |= HV_UDP6_L4HASH;
1688                         break;
1689
1690                 default:
1691                         return -EOPNOTSUPP;
1692                 }
1693
1694                 return 0;
1695         }
1696
1697         if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1698                 switch (info->flow_type) {
1699                 case TCP_V4_FLOW:
1700                         ndc->l4_hash &= ~HV_TCP4_L4HASH;
1701                         break;
1702
1703                 case TCP_V6_FLOW:
1704                         ndc->l4_hash &= ~HV_TCP6_L4HASH;
1705                         break;
1706
1707                 case UDP_V4_FLOW:
1708                         ndc->l4_hash &= ~HV_UDP4_L4HASH;
1709                         break;
1710
1711                 case UDP_V6_FLOW:
1712                         ndc->l4_hash &= ~HV_UDP6_L4HASH;
1713                         break;
1714
1715                 default:
1716                         return -EOPNOTSUPP;
1717                 }
1718
1719                 return 0;
1720         }
1721
1722         return -EOPNOTSUPP;
1723 }
1724
1725 static int
1726 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1727 {
1728         struct net_device_context *ndc = netdev_priv(ndev);
1729
1730         if (info->cmd == ETHTOOL_SRXFH)
1731                 return netvsc_set_rss_hash_opts(ndc, info);
1732
1733         return -EOPNOTSUPP;
1734 }
1735
1736 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1737 {
1738         return NETVSC_HASH_KEYLEN;
1739 }
1740
1741 static u32 netvsc_rss_indir_size(struct net_device *dev)
1742 {
1743         return ITAB_NUM;
1744 }
1745
1746 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1747                            u8 *hfunc)
1748 {
1749         struct net_device_context *ndc = netdev_priv(dev);
1750         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1751         struct rndis_device *rndis_dev;
1752         int i;
1753
1754         if (!ndev)
1755                 return -ENODEV;
1756
1757         if (hfunc)
1758                 *hfunc = ETH_RSS_HASH_TOP;      /* Toeplitz */
1759
1760         rndis_dev = ndev->extension;
1761         if (indir) {
1762                 for (i = 0; i < ITAB_NUM; i++)
1763                         indir[i] = ndc->rx_table[i];
1764         }
1765
1766         if (key)
1767                 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1768
1769         return 0;
1770 }
1771
1772 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1773                            const u8 *key, const u8 hfunc)
1774 {
1775         struct net_device_context *ndc = netdev_priv(dev);
1776         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1777         struct rndis_device *rndis_dev;
1778         int i;
1779
1780         if (!ndev)
1781                 return -ENODEV;
1782
1783         if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1784                 return -EOPNOTSUPP;
1785
1786         rndis_dev = ndev->extension;
1787         if (indir) {
1788                 for (i = 0; i < ITAB_NUM; i++)
1789                         if (indir[i] >= ndev->num_chn)
1790                                 return -EINVAL;
1791
1792                 for (i = 0; i < ITAB_NUM; i++)
1793                         ndc->rx_table[i] = indir[i];
1794         }
1795
1796         if (!key) {
1797                 if (!indir)
1798                         return 0;
1799
1800                 key = rndis_dev->rss_key;
1801         }
1802
1803         return rndis_filter_set_rss_param(rndis_dev, key);
1804 }
1805
1806 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1807  * It does have pre-allocated receive area which is divided into sections.
1808  */
1809 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1810                                    struct ethtool_ringparam *ring)
1811 {
1812         u32 max_buf_size;
1813
1814         ring->rx_pending = nvdev->recv_section_cnt;
1815         ring->tx_pending = nvdev->send_section_cnt;
1816
1817         if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1818                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1819         else
1820                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1821
1822         ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1823         ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1824                 / nvdev->send_section_size;
1825 }
1826
1827 static void netvsc_get_ringparam(struct net_device *ndev,
1828                                  struct ethtool_ringparam *ring)
1829 {
1830         struct net_device_context *ndevctx = netdev_priv(ndev);
1831         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1832
1833         if (!nvdev)
1834                 return;
1835
1836         __netvsc_get_ringparam(nvdev, ring);
1837 }
1838
1839 static int netvsc_set_ringparam(struct net_device *ndev,
1840                                 struct ethtool_ringparam *ring)
1841 {
1842         struct net_device_context *ndevctx = netdev_priv(ndev);
1843         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1844         struct netvsc_device_info *device_info;
1845         struct ethtool_ringparam orig;
1846         u32 new_tx, new_rx;
1847         int ret = 0;
1848
1849         if (!nvdev || nvdev->destroy)
1850                 return -ENODEV;
1851
1852         memset(&orig, 0, sizeof(orig));
1853         __netvsc_get_ringparam(nvdev, &orig);
1854
1855         new_tx = clamp_t(u32, ring->tx_pending,
1856                          NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1857         new_rx = clamp_t(u32, ring->rx_pending,
1858                          NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1859
1860         if (new_tx == orig.tx_pending &&
1861             new_rx == orig.rx_pending)
1862                 return 0;        /* no change */
1863
1864         device_info = netvsc_devinfo_get(nvdev);
1865
1866         if (!device_info)
1867                 return -ENOMEM;
1868
1869         device_info->send_sections = new_tx;
1870         device_info->recv_sections = new_rx;
1871
1872         ret = netvsc_detach(ndev, nvdev);
1873         if (ret)
1874                 goto out;
1875
1876         ret = netvsc_attach(ndev, device_info);
1877         if (ret) {
1878                 device_info->send_sections = orig.tx_pending;
1879                 device_info->recv_sections = orig.rx_pending;
1880
1881                 if (netvsc_attach(ndev, device_info))
1882                         netdev_err(ndev, "restoring ringparam failed");
1883         }
1884
1885 out:
1886         netvsc_devinfo_put(device_info);
1887         return ret;
1888 }
1889
1890 static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1891                                              netdev_features_t features)
1892 {
1893         struct net_device_context *ndevctx = netdev_priv(ndev);
1894         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1895
1896         if (!nvdev || nvdev->destroy)
1897                 return features;
1898
1899         if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1900                 features ^= NETIF_F_LRO;
1901                 netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1902         }
1903
1904         return features;
1905 }
1906
1907 static int netvsc_set_features(struct net_device *ndev,
1908                                netdev_features_t features)
1909 {
1910         netdev_features_t change = features ^ ndev->features;
1911         struct net_device_context *ndevctx = netdev_priv(ndev);
1912         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1913         struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1914         struct ndis_offload_params offloads;
1915         int ret = 0;
1916
1917         if (!nvdev || nvdev->destroy)
1918                 return -ENODEV;
1919
1920         if (!(change & NETIF_F_LRO))
1921                 goto syncvf;
1922
1923         memset(&offloads, 0, sizeof(struct ndis_offload_params));
1924
1925         if (features & NETIF_F_LRO) {
1926                 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1927                 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1928         } else {
1929                 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1930                 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1931         }
1932
1933         ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1934
1935         if (ret) {
1936                 features ^= NETIF_F_LRO;
1937                 ndev->features = features;
1938         }
1939
1940 syncvf:
1941         if (!vf_netdev)
1942                 return ret;
1943
1944         vf_netdev->wanted_features = features;
1945         netdev_update_features(vf_netdev);
1946
1947         return ret;
1948 }
1949
1950 static u32 netvsc_get_msglevel(struct net_device *ndev)
1951 {
1952         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1953
1954         return ndev_ctx->msg_enable;
1955 }
1956
1957 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1958 {
1959         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1960
1961         ndev_ctx->msg_enable = val;
1962 }
1963
1964 static const struct ethtool_ops ethtool_ops = {
1965         .get_drvinfo    = netvsc_get_drvinfo,
1966         .get_msglevel   = netvsc_get_msglevel,
1967         .set_msglevel   = netvsc_set_msglevel,
1968         .get_link       = ethtool_op_get_link,
1969         .get_ethtool_stats = netvsc_get_ethtool_stats,
1970         .get_sset_count = netvsc_get_sset_count,
1971         .get_strings    = netvsc_get_strings,
1972         .get_channels   = netvsc_get_channels,
1973         .set_channels   = netvsc_set_channels,
1974         .get_ts_info    = ethtool_op_get_ts_info,
1975         .get_rxnfc      = netvsc_get_rxnfc,
1976         .set_rxnfc      = netvsc_set_rxnfc,
1977         .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1978         .get_rxfh_indir_size = netvsc_rss_indir_size,
1979         .get_rxfh       = netvsc_get_rxfh,
1980         .set_rxfh       = netvsc_set_rxfh,
1981         .get_link_ksettings = netvsc_get_link_ksettings,
1982         .set_link_ksettings = netvsc_set_link_ksettings,
1983         .get_ringparam  = netvsc_get_ringparam,
1984         .set_ringparam  = netvsc_set_ringparam,
1985 };
1986
1987 static const struct net_device_ops device_ops = {
1988         .ndo_open =                     netvsc_open,
1989         .ndo_stop =                     netvsc_close,
1990         .ndo_start_xmit =               netvsc_start_xmit,
1991         .ndo_change_rx_flags =          netvsc_change_rx_flags,
1992         .ndo_set_rx_mode =              netvsc_set_rx_mode,
1993         .ndo_fix_features =             netvsc_fix_features,
1994         .ndo_set_features =             netvsc_set_features,
1995         .ndo_change_mtu =               netvsc_change_mtu,
1996         .ndo_validate_addr =            eth_validate_addr,
1997         .ndo_set_mac_address =          netvsc_set_mac_addr,
1998         .ndo_select_queue =             netvsc_select_queue,
1999         .ndo_get_stats64 =              netvsc_get_stats64,
2000         .ndo_bpf =                      netvsc_bpf,
2001 };
2002
2003 /*
2004  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2005  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2006  * present send GARP packet to network peers with netif_notify_peers().
2007  */
2008 static void netvsc_link_change(struct work_struct *w)
2009 {
2010         struct net_device_context *ndev_ctx =
2011                 container_of(w, struct net_device_context, dwork.work);
2012         struct hv_device *device_obj = ndev_ctx->device_ctx;
2013         struct net_device *net = hv_get_drvdata(device_obj);
2014         struct netvsc_device *net_device;
2015         struct rndis_device *rdev;
2016         struct netvsc_reconfig *event = NULL;
2017         bool notify = false, reschedule = false;
2018         unsigned long flags, next_reconfig, delay;
2019
2020         /* if changes are happening, comeback later */
2021         if (!rtnl_trylock()) {
2022                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2023                 return;
2024         }
2025
2026         net_device = rtnl_dereference(ndev_ctx->nvdev);
2027         if (!net_device)
2028                 goto out_unlock;
2029
2030         rdev = net_device->extension;
2031
2032         next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2033         if (time_is_after_jiffies(next_reconfig)) {
2034                 /* link_watch only sends one notification with current state
2035                  * per second, avoid doing reconfig more frequently. Handle
2036                  * wrap around.
2037                  */
2038                 delay = next_reconfig - jiffies;
2039                 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2040                 schedule_delayed_work(&ndev_ctx->dwork, delay);
2041                 goto out_unlock;
2042         }
2043         ndev_ctx->last_reconfig = jiffies;
2044
2045         spin_lock_irqsave(&ndev_ctx->lock, flags);
2046         if (!list_empty(&ndev_ctx->reconfig_events)) {
2047                 event = list_first_entry(&ndev_ctx->reconfig_events,
2048                                          struct netvsc_reconfig, list);
2049                 list_del(&event->list);
2050                 reschedule = !list_empty(&ndev_ctx->reconfig_events);
2051         }
2052         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2053
2054         if (!event)
2055                 goto out_unlock;
2056
2057         switch (event->event) {
2058                 /* Only the following events are possible due to the check in
2059                  * netvsc_linkstatus_callback()
2060                  */
2061         case RNDIS_STATUS_MEDIA_CONNECT:
2062                 if (rdev->link_state) {
2063                         rdev->link_state = false;
2064                         netif_carrier_on(net);
2065                         netvsc_tx_enable(net_device, net);
2066                 } else {
2067                         notify = true;
2068                 }
2069                 kfree(event);
2070                 break;
2071         case RNDIS_STATUS_MEDIA_DISCONNECT:
2072                 if (!rdev->link_state) {
2073                         rdev->link_state = true;
2074                         netif_carrier_off(net);
2075                         netvsc_tx_disable(net_device, net);
2076                 }
2077                 kfree(event);
2078                 break;
2079         case RNDIS_STATUS_NETWORK_CHANGE:
2080                 /* Only makes sense if carrier is present */
2081                 if (!rdev->link_state) {
2082                         rdev->link_state = true;
2083                         netif_carrier_off(net);
2084                         netvsc_tx_disable(net_device, net);
2085                         event->event = RNDIS_STATUS_MEDIA_CONNECT;
2086                         spin_lock_irqsave(&ndev_ctx->lock, flags);
2087                         list_add(&event->list, &ndev_ctx->reconfig_events);
2088                         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2089                         reschedule = true;
2090                 }
2091                 break;
2092         }
2093
2094         rtnl_unlock();
2095
2096         if (notify)
2097                 netdev_notify_peers(net);
2098
2099         /* link_watch only sends one notification with current state per
2100          * second, handle next reconfig event in 2 seconds.
2101          */
2102         if (reschedule)
2103                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2104
2105         return;
2106
2107 out_unlock:
2108         rtnl_unlock();
2109 }
2110
2111 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2112 {
2113         struct net_device_context *net_device_ctx;
2114         struct net_device *dev;
2115
2116         dev = netdev_master_upper_dev_get(vf_netdev);
2117         if (!dev || dev->netdev_ops != &device_ops)
2118                 return NULL;    /* not a netvsc device */
2119
2120         net_device_ctx = netdev_priv(dev);
2121         if (!rtnl_dereference(net_device_ctx->nvdev))
2122                 return NULL;    /* device is removed */
2123
2124         return dev;
2125 }
2126
2127 /* Called when VF is injecting data into network stack.
2128  * Change the associated network device from VF to netvsc.
2129  * note: already called with rcu_read_lock
2130  */
2131 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2132 {
2133         struct sk_buff *skb = *pskb;
2134         struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2135         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2136         struct netvsc_vf_pcpu_stats *pcpu_stats
2137                  = this_cpu_ptr(ndev_ctx->vf_stats);
2138
2139         skb = skb_share_check(skb, GFP_ATOMIC);
2140         if (unlikely(!skb))
2141                 return RX_HANDLER_CONSUMED;
2142
2143         *pskb = skb;
2144
2145         skb->dev = ndev;
2146
2147         u64_stats_update_begin(&pcpu_stats->syncp);
2148         pcpu_stats->rx_packets++;
2149         pcpu_stats->rx_bytes += skb->len;
2150         u64_stats_update_end(&pcpu_stats->syncp);
2151
2152         return RX_HANDLER_ANOTHER;
2153 }
2154
2155 static int netvsc_vf_join(struct net_device *vf_netdev,
2156                           struct net_device *ndev)
2157 {
2158         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2159         int ret;
2160
2161         ret = netdev_rx_handler_register(vf_netdev,
2162                                          netvsc_vf_handle_frame, ndev);
2163         if (ret != 0) {
2164                 netdev_err(vf_netdev,
2165                            "can not register netvsc VF receive handler (err = %d)\n",
2166                            ret);
2167                 goto rx_handler_failed;
2168         }
2169
2170         ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2171                                            NULL, NULL, NULL);
2172         if (ret != 0) {
2173                 netdev_err(vf_netdev,
2174                            "can not set master device %s (err = %d)\n",
2175                            ndev->name, ret);
2176                 goto upper_link_failed;
2177         }
2178
2179         /* set slave flag before open to prevent IPv6 addrconf */
2180         vf_netdev->flags |= IFF_SLAVE;
2181
2182         schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2183
2184         call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2185
2186         netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2187         return 0;
2188
2189 upper_link_failed:
2190         netdev_rx_handler_unregister(vf_netdev);
2191 rx_handler_failed:
2192         return ret;
2193 }
2194
2195 static void __netvsc_vf_setup(struct net_device *ndev,
2196                               struct net_device *vf_netdev)
2197 {
2198         int ret;
2199
2200         /* Align MTU of VF with master */
2201         ret = dev_set_mtu(vf_netdev, ndev->mtu);
2202         if (ret)
2203                 netdev_warn(vf_netdev,
2204                             "unable to change mtu to %u\n", ndev->mtu);
2205
2206         /* set multicast etc flags on VF */
2207         dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2208
2209         /* sync address list from ndev to VF */
2210         netif_addr_lock_bh(ndev);
2211         dev_uc_sync(vf_netdev, ndev);
2212         dev_mc_sync(vf_netdev, ndev);
2213         netif_addr_unlock_bh(ndev);
2214
2215         if (netif_running(ndev)) {
2216                 ret = dev_open(vf_netdev, NULL);
2217                 if (ret)
2218                         netdev_warn(vf_netdev,
2219                                     "unable to open: %d\n", ret);
2220         }
2221 }
2222
2223 /* Setup VF as slave of the synthetic device.
2224  * Runs in workqueue to avoid recursion in netlink callbacks.
2225  */
2226 static void netvsc_vf_setup(struct work_struct *w)
2227 {
2228         struct net_device_context *ndev_ctx
2229                 = container_of(w, struct net_device_context, vf_takeover.work);
2230         struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2231         struct net_device *vf_netdev;
2232
2233         if (!rtnl_trylock()) {
2234                 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2235                 return;
2236         }
2237
2238         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2239         if (vf_netdev)
2240                 __netvsc_vf_setup(ndev, vf_netdev);
2241
2242         rtnl_unlock();
2243 }
2244
2245 /* Find netvsc by VF serial number.
2246  * The PCI hyperv controller records the serial number as the slot kobj name.
2247  */
2248 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2249 {
2250         struct device *parent = vf_netdev->dev.parent;
2251         struct net_device_context *ndev_ctx;
2252         struct pci_dev *pdev;
2253         u32 serial;
2254
2255         if (!parent || !dev_is_pci(parent))
2256                 return NULL; /* not a PCI device */
2257
2258         pdev = to_pci_dev(parent);
2259         if (!pdev->slot) {
2260                 netdev_notice(vf_netdev, "no PCI slot information\n");
2261                 return NULL;
2262         }
2263
2264         if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2265                 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2266                               pci_slot_name(pdev->slot));
2267                 return NULL;
2268         }
2269
2270         list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2271                 if (!ndev_ctx->vf_alloc)
2272                         continue;
2273
2274                 if (ndev_ctx->vf_serial == serial)
2275                         return hv_get_drvdata(ndev_ctx->device_ctx);
2276         }
2277
2278         netdev_notice(vf_netdev,
2279                       "no netdev found for vf serial:%u\n", serial);
2280         return NULL;
2281 }
2282
2283 static int netvsc_register_vf(struct net_device *vf_netdev)
2284 {
2285         struct net_device_context *net_device_ctx;
2286         struct netvsc_device *netvsc_dev;
2287         struct bpf_prog *prog;
2288         struct net_device *ndev;
2289         int ret;
2290
2291         if (vf_netdev->addr_len != ETH_ALEN)
2292                 return NOTIFY_DONE;
2293
2294         ndev = get_netvsc_byslot(vf_netdev);
2295         if (!ndev)
2296                 return NOTIFY_DONE;
2297
2298         net_device_ctx = netdev_priv(ndev);
2299         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2300         if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2301                 return NOTIFY_DONE;
2302
2303         /* if synthetic interface is a different namespace,
2304          * then move the VF to that namespace; join will be
2305          * done again in that context.
2306          */
2307         if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2308                 ret = dev_change_net_namespace(vf_netdev,
2309                                                dev_net(ndev), "eth%d");
2310                 if (ret)
2311                         netdev_err(vf_netdev,
2312                                    "could not move to same namespace as %s: %d\n",
2313                                    ndev->name, ret);
2314                 else
2315                         netdev_info(vf_netdev,
2316                                     "VF moved to namespace with: %s\n",
2317                                     ndev->name);
2318                 return NOTIFY_DONE;
2319         }
2320
2321         netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2322
2323         if (netvsc_vf_join(vf_netdev, ndev) != 0)
2324                 return NOTIFY_DONE;
2325
2326         dev_hold(vf_netdev);
2327         rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2328
2329         vf_netdev->wanted_features = ndev->features;
2330         netdev_update_features(vf_netdev);
2331
2332         prog = netvsc_xdp_get(netvsc_dev);
2333         netvsc_vf_setxdp(vf_netdev, prog);
2334
2335         return NOTIFY_OK;
2336 }
2337
2338 /* VF up/down change detected, schedule to change data path */
2339 static int netvsc_vf_changed(struct net_device *vf_netdev)
2340 {
2341         struct net_device_context *net_device_ctx;
2342         struct netvsc_device *netvsc_dev;
2343         struct net_device *ndev;
2344         bool vf_is_up = netif_running(vf_netdev);
2345
2346         ndev = get_netvsc_byref(vf_netdev);
2347         if (!ndev)
2348                 return NOTIFY_DONE;
2349
2350         net_device_ctx = netdev_priv(ndev);
2351         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2352         if (!netvsc_dev)
2353                 return NOTIFY_DONE;
2354
2355         netvsc_switch_datapath(ndev, vf_is_up);
2356         netdev_info(ndev, "Data path switched %s VF: %s\n",
2357                     vf_is_up ? "to" : "from", vf_netdev->name);
2358
2359         return NOTIFY_OK;
2360 }
2361
2362 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2363 {
2364         struct net_device *ndev;
2365         struct net_device_context *net_device_ctx;
2366
2367         ndev = get_netvsc_byref(vf_netdev);
2368         if (!ndev)
2369                 return NOTIFY_DONE;
2370
2371         net_device_ctx = netdev_priv(ndev);
2372         cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2373
2374         netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2375
2376         netvsc_vf_setxdp(vf_netdev, NULL);
2377
2378         netdev_rx_handler_unregister(vf_netdev);
2379         netdev_upper_dev_unlink(vf_netdev, ndev);
2380         RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2381         dev_put(vf_netdev);
2382
2383         return NOTIFY_OK;
2384 }
2385
2386 static int netvsc_probe(struct hv_device *dev,
2387                         const struct hv_vmbus_device_id *dev_id)
2388 {
2389         struct net_device *net = NULL;
2390         struct net_device_context *net_device_ctx;
2391         struct netvsc_device_info *device_info = NULL;
2392         struct netvsc_device *nvdev;
2393         int ret = -ENOMEM;
2394
2395         net = alloc_etherdev_mq(sizeof(struct net_device_context),
2396                                 VRSS_CHANNEL_MAX);
2397         if (!net)
2398                 goto no_net;
2399
2400         netif_carrier_off(net);
2401
2402         netvsc_init_settings(net);
2403
2404         net_device_ctx = netdev_priv(net);
2405         net_device_ctx->device_ctx = dev;
2406         net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2407         if (netif_msg_probe(net_device_ctx))
2408                 netdev_dbg(net, "netvsc msg_enable: %d\n",
2409                            net_device_ctx->msg_enable);
2410
2411         hv_set_drvdata(dev, net);
2412
2413         INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2414
2415         spin_lock_init(&net_device_ctx->lock);
2416         INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2417         INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2418
2419         net_device_ctx->vf_stats
2420                 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2421         if (!net_device_ctx->vf_stats)
2422                 goto no_stats;
2423
2424         net->netdev_ops = &device_ops;
2425         net->ethtool_ops = &ethtool_ops;
2426         SET_NETDEV_DEV(net, &dev->device);
2427
2428         /* We always need headroom for rndis header */
2429         net->needed_headroom = RNDIS_AND_PPI_SIZE;
2430
2431         /* Initialize the number of queues to be 1, we may change it if more
2432          * channels are offered later.
2433          */
2434         netif_set_real_num_tx_queues(net, 1);
2435         netif_set_real_num_rx_queues(net, 1);
2436
2437         /* Notify the netvsc driver of the new device */
2438         device_info = netvsc_devinfo_get(NULL);
2439
2440         if (!device_info) {
2441                 ret = -ENOMEM;
2442                 goto devinfo_failed;
2443         }
2444
2445         nvdev = rndis_filter_device_add(dev, device_info);
2446         if (IS_ERR(nvdev)) {
2447                 ret = PTR_ERR(nvdev);
2448                 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2449                 goto rndis_failed;
2450         }
2451
2452         memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2453
2454         /* We must get rtnl lock before scheduling nvdev->subchan_work,
2455          * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2456          * all subchannels to show up, but that may not happen because
2457          * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2458          * -> ... -> device_add() -> ... -> __device_attach() can't get
2459          * the device lock, so all the subchannels can't be processed --
2460          * finally netvsc_subchan_work() hangs forever.
2461          */
2462         rtnl_lock();
2463
2464         if (nvdev->num_chn > 1)
2465                 schedule_work(&nvdev->subchan_work);
2466
2467         /* hw_features computed in rndis_netdev_set_hwcaps() */
2468         net->features = net->hw_features |
2469                 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2470                 NETIF_F_HW_VLAN_CTAG_RX;
2471         net->vlan_features = net->features;
2472
2473         /* MTU range: 68 - 1500 or 65521 */
2474         net->min_mtu = NETVSC_MTU_MIN;
2475         if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2476                 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2477         else
2478                 net->max_mtu = ETH_DATA_LEN;
2479
2480         nvdev->tx_disable = false;
2481
2482         ret = register_netdevice(net);
2483         if (ret != 0) {
2484                 pr_err("Unable to register netdev.\n");
2485                 goto register_failed;
2486         }
2487
2488         list_add(&net_device_ctx->list, &netvsc_dev_list);
2489         rtnl_unlock();
2490
2491         netvsc_devinfo_put(device_info);
2492         return 0;
2493
2494 register_failed:
2495         rtnl_unlock();
2496         rndis_filter_device_remove(dev, nvdev);
2497 rndis_failed:
2498         netvsc_devinfo_put(device_info);
2499 devinfo_failed:
2500         free_percpu(net_device_ctx->vf_stats);
2501 no_stats:
2502         hv_set_drvdata(dev, NULL);
2503         free_netdev(net);
2504 no_net:
2505         return ret;
2506 }
2507
2508 static int netvsc_remove(struct hv_device *dev)
2509 {
2510         struct net_device_context *ndev_ctx;
2511         struct net_device *vf_netdev, *net;
2512         struct netvsc_device *nvdev;
2513
2514         net = hv_get_drvdata(dev);
2515         if (net == NULL) {
2516                 dev_err(&dev->device, "No net device to remove\n");
2517                 return 0;
2518         }
2519
2520         ndev_ctx = netdev_priv(net);
2521
2522         cancel_delayed_work_sync(&ndev_ctx->dwork);
2523
2524         rtnl_lock();
2525         nvdev = rtnl_dereference(ndev_ctx->nvdev);
2526         if (nvdev) {
2527                 cancel_work_sync(&nvdev->subchan_work);
2528                 netvsc_xdp_set(net, NULL, NULL, nvdev);
2529         }
2530
2531         /*
2532          * Call to the vsc driver to let it know that the device is being
2533          * removed. Also blocks mtu and channel changes.
2534          */
2535         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2536         if (vf_netdev)
2537                 netvsc_unregister_vf(vf_netdev);
2538
2539         if (nvdev)
2540                 rndis_filter_device_remove(dev, nvdev);
2541
2542         unregister_netdevice(net);
2543         list_del(&ndev_ctx->list);
2544
2545         rtnl_unlock();
2546
2547         hv_set_drvdata(dev, NULL);
2548
2549         free_percpu(ndev_ctx->vf_stats);
2550         free_netdev(net);
2551         return 0;
2552 }
2553
2554 static int netvsc_suspend(struct hv_device *dev)
2555 {
2556         struct net_device_context *ndev_ctx;
2557         struct net_device *vf_netdev, *net;
2558         struct netvsc_device *nvdev;
2559         int ret;
2560
2561         net = hv_get_drvdata(dev);
2562
2563         ndev_ctx = netdev_priv(net);
2564         cancel_delayed_work_sync(&ndev_ctx->dwork);
2565
2566         rtnl_lock();
2567
2568         nvdev = rtnl_dereference(ndev_ctx->nvdev);
2569         if (nvdev == NULL) {
2570                 ret = -ENODEV;
2571                 goto out;
2572         }
2573
2574         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2575         if (vf_netdev)
2576                 netvsc_unregister_vf(vf_netdev);
2577
2578         /* Save the current config info */
2579         ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2580
2581         ret = netvsc_detach(net, nvdev);
2582 out:
2583         rtnl_unlock();
2584
2585         return ret;
2586 }
2587
2588 static int netvsc_resume(struct hv_device *dev)
2589 {
2590         struct net_device *net = hv_get_drvdata(dev);
2591         struct net_device_context *net_device_ctx;
2592         struct netvsc_device_info *device_info;
2593         int ret;
2594
2595         rtnl_lock();
2596
2597         net_device_ctx = netdev_priv(net);
2598         device_info = net_device_ctx->saved_netvsc_dev_info;
2599
2600         ret = netvsc_attach(net, device_info);
2601
2602         netvsc_devinfo_put(device_info);
2603         net_device_ctx->saved_netvsc_dev_info = NULL;
2604
2605         rtnl_unlock();
2606
2607         return ret;
2608 }
2609 static const struct hv_vmbus_device_id id_table[] = {
2610         /* Network guid */
2611         { HV_NIC_GUID, },
2612         { },
2613 };
2614
2615 MODULE_DEVICE_TABLE(vmbus, id_table);
2616
2617 /* The one and only one */
2618 static struct  hv_driver netvsc_drv = {
2619         .name = KBUILD_MODNAME,
2620         .id_table = id_table,
2621         .probe = netvsc_probe,
2622         .remove = netvsc_remove,
2623         .suspend = netvsc_suspend,
2624         .resume = netvsc_resume,
2625         .driver = {
2626                 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2627         },
2628 };
2629
2630 /*
2631  * On Hyper-V, every VF interface is matched with a corresponding
2632  * synthetic interface. The synthetic interface is presented first
2633  * to the guest. When the corresponding VF instance is registered,
2634  * we will take care of switching the data path.
2635  */
2636 static int netvsc_netdev_event(struct notifier_block *this,
2637                                unsigned long event, void *ptr)
2638 {
2639         struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2640
2641         /* Skip our own events */
2642         if (event_dev->netdev_ops == &device_ops)
2643                 return NOTIFY_DONE;
2644
2645         /* Avoid non-Ethernet type devices */
2646         if (event_dev->type != ARPHRD_ETHER)
2647                 return NOTIFY_DONE;
2648
2649         /* Avoid Vlan dev with same MAC registering as VF */
2650         if (is_vlan_dev(event_dev))
2651                 return NOTIFY_DONE;
2652
2653         /* Avoid Bonding master dev with same MAC registering as VF */
2654         if ((event_dev->priv_flags & IFF_BONDING) &&
2655             (event_dev->flags & IFF_MASTER))
2656                 return NOTIFY_DONE;
2657
2658         switch (event) {
2659         case NETDEV_REGISTER:
2660                 return netvsc_register_vf(event_dev);
2661         case NETDEV_UNREGISTER:
2662                 return netvsc_unregister_vf(event_dev);
2663         case NETDEV_UP:
2664         case NETDEV_DOWN:
2665                 return netvsc_vf_changed(event_dev);
2666         default:
2667                 return NOTIFY_DONE;
2668         }
2669 }
2670
2671 static struct notifier_block netvsc_netdev_notifier = {
2672         .notifier_call = netvsc_netdev_event,
2673 };
2674
2675 static void __exit netvsc_drv_exit(void)
2676 {
2677         unregister_netdevice_notifier(&netvsc_netdev_notifier);
2678         vmbus_driver_unregister(&netvsc_drv);
2679 }
2680
2681 static int __init netvsc_drv_init(void)
2682 {
2683         int ret;
2684
2685         if (ring_size < RING_SIZE_MIN) {
2686                 ring_size = RING_SIZE_MIN;
2687                 pr_info("Increased ring_size to %u (min allowed)\n",
2688                         ring_size);
2689         }
2690         netvsc_ring_bytes = ring_size * PAGE_SIZE;
2691
2692         ret = vmbus_driver_register(&netvsc_drv);
2693         if (ret)
2694                 return ret;
2695
2696         register_netdevice_notifier(&netvsc_netdev_notifier);
2697         return 0;
2698 }
2699
2700 MODULE_LICENSE("GPL");
2701 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2702
2703 module_init(netvsc_drv_init);
2704 module_exit(netvsc_drv_exit);