Merge tag 'm68k-for-v6.8-tag1' of git://git.kernel.org/pub/scm/linux/kernel/git/geert...
[linux-2.6-microblaze.git] / drivers / net / ethernet / wangxun / libwx / wx_lib.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 - 2022 Beijing WangXun Technology Co., Ltd. */
3
4 #include <linux/etherdevice.h>
5 #include <net/ip6_checksum.h>
6 #include <net/page_pool/helpers.h>
7 #include <net/inet_ecn.h>
8 #include <linux/iopoll.h>
9 #include <linux/sctp.h>
10 #include <linux/pci.h>
11 #include <net/tcp.h>
12 #include <net/ip.h>
13
14 #include "wx_type.h"
15 #include "wx_lib.h"
16 #include "wx_hw.h"
17
18 /* Lookup table mapping the HW PTYPE to the bit field for decoding */
19 static struct wx_dec_ptype wx_ptype_lookup[256] = {
20         /* L2: mac */
21         [0x11] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
22         [0x12] = WX_PTT(L2, NONE, NONE, NONE, TS,   PAY2),
23         [0x13] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
24         [0x14] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
25         [0x15] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
26         [0x16] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
27         [0x17] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
28
29         /* L2: ethertype filter */
30         [0x18 ... 0x1F] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
31
32         /* L3: ip non-tunnel */
33         [0x21] = WX_PTT(IP, FGV4, NONE, NONE, NONE, PAY3),
34         [0x22] = WX_PTT(IP, IPV4, NONE, NONE, NONE, PAY3),
35         [0x23] = WX_PTT(IP, IPV4, NONE, NONE, UDP,  PAY4),
36         [0x24] = WX_PTT(IP, IPV4, NONE, NONE, TCP,  PAY4),
37         [0x25] = WX_PTT(IP, IPV4, NONE, NONE, SCTP, PAY4),
38         [0x29] = WX_PTT(IP, FGV6, NONE, NONE, NONE, PAY3),
39         [0x2A] = WX_PTT(IP, IPV6, NONE, NONE, NONE, PAY3),
40         [0x2B] = WX_PTT(IP, IPV6, NONE, NONE, UDP,  PAY3),
41         [0x2C] = WX_PTT(IP, IPV6, NONE, NONE, TCP,  PAY4),
42         [0x2D] = WX_PTT(IP, IPV6, NONE, NONE, SCTP, PAY4),
43
44         /* L2: fcoe */
45         [0x30 ... 0x34] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
46         [0x38 ... 0x3C] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
47
48         /* IPv4 --> IPv4/IPv6 */
49         [0x81] = WX_PTT(IP, IPV4, IPIP, FGV4, NONE, PAY3),
50         [0x82] = WX_PTT(IP, IPV4, IPIP, IPV4, NONE, PAY3),
51         [0x83] = WX_PTT(IP, IPV4, IPIP, IPV4, UDP,  PAY4),
52         [0x84] = WX_PTT(IP, IPV4, IPIP, IPV4, TCP,  PAY4),
53         [0x85] = WX_PTT(IP, IPV4, IPIP, IPV4, SCTP, PAY4),
54         [0x89] = WX_PTT(IP, IPV4, IPIP, FGV6, NONE, PAY3),
55         [0x8A] = WX_PTT(IP, IPV4, IPIP, IPV6, NONE, PAY3),
56         [0x8B] = WX_PTT(IP, IPV4, IPIP, IPV6, UDP,  PAY4),
57         [0x8C] = WX_PTT(IP, IPV4, IPIP, IPV6, TCP,  PAY4),
58         [0x8D] = WX_PTT(IP, IPV4, IPIP, IPV6, SCTP, PAY4),
59
60         /* IPv4 --> GRE/NAT --> NONE/IPv4/IPv6 */
61         [0x90] = WX_PTT(IP, IPV4, IG, NONE, NONE, PAY3),
62         [0x91] = WX_PTT(IP, IPV4, IG, FGV4, NONE, PAY3),
63         [0x92] = WX_PTT(IP, IPV4, IG, IPV4, NONE, PAY3),
64         [0x93] = WX_PTT(IP, IPV4, IG, IPV4, UDP,  PAY4),
65         [0x94] = WX_PTT(IP, IPV4, IG, IPV4, TCP,  PAY4),
66         [0x95] = WX_PTT(IP, IPV4, IG, IPV4, SCTP, PAY4),
67         [0x99] = WX_PTT(IP, IPV4, IG, FGV6, NONE, PAY3),
68         [0x9A] = WX_PTT(IP, IPV4, IG, IPV6, NONE, PAY3),
69         [0x9B] = WX_PTT(IP, IPV4, IG, IPV6, UDP,  PAY4),
70         [0x9C] = WX_PTT(IP, IPV4, IG, IPV6, TCP,  PAY4),
71         [0x9D] = WX_PTT(IP, IPV4, IG, IPV6, SCTP, PAY4),
72
73         /* IPv4 --> GRE/NAT --> MAC --> NONE/IPv4/IPv6 */
74         [0xA0] = WX_PTT(IP, IPV4, IGM, NONE, NONE, PAY3),
75         [0xA1] = WX_PTT(IP, IPV4, IGM, FGV4, NONE, PAY3),
76         [0xA2] = WX_PTT(IP, IPV4, IGM, IPV4, NONE, PAY3),
77         [0xA3] = WX_PTT(IP, IPV4, IGM, IPV4, UDP,  PAY4),
78         [0xA4] = WX_PTT(IP, IPV4, IGM, IPV4, TCP,  PAY4),
79         [0xA5] = WX_PTT(IP, IPV4, IGM, IPV4, SCTP, PAY4),
80         [0xA9] = WX_PTT(IP, IPV4, IGM, FGV6, NONE, PAY3),
81         [0xAA] = WX_PTT(IP, IPV4, IGM, IPV6, NONE, PAY3),
82         [0xAB] = WX_PTT(IP, IPV4, IGM, IPV6, UDP,  PAY4),
83         [0xAC] = WX_PTT(IP, IPV4, IGM, IPV6, TCP,  PAY4),
84         [0xAD] = WX_PTT(IP, IPV4, IGM, IPV6, SCTP, PAY4),
85
86         /* IPv4 --> GRE/NAT --> MAC+VLAN --> NONE/IPv4/IPv6 */
87         [0xB0] = WX_PTT(IP, IPV4, IGMV, NONE, NONE, PAY3),
88         [0xB1] = WX_PTT(IP, IPV4, IGMV, FGV4, NONE, PAY3),
89         [0xB2] = WX_PTT(IP, IPV4, IGMV, IPV4, NONE, PAY3),
90         [0xB3] = WX_PTT(IP, IPV4, IGMV, IPV4, UDP,  PAY4),
91         [0xB4] = WX_PTT(IP, IPV4, IGMV, IPV4, TCP,  PAY4),
92         [0xB5] = WX_PTT(IP, IPV4, IGMV, IPV4, SCTP, PAY4),
93         [0xB9] = WX_PTT(IP, IPV4, IGMV, FGV6, NONE, PAY3),
94         [0xBA] = WX_PTT(IP, IPV4, IGMV, IPV6, NONE, PAY3),
95         [0xBB] = WX_PTT(IP, IPV4, IGMV, IPV6, UDP,  PAY4),
96         [0xBC] = WX_PTT(IP, IPV4, IGMV, IPV6, TCP,  PAY4),
97         [0xBD] = WX_PTT(IP, IPV4, IGMV, IPV6, SCTP, PAY4),
98
99         /* IPv6 --> IPv4/IPv6 */
100         [0xC1] = WX_PTT(IP, IPV6, IPIP, FGV4, NONE, PAY3),
101         [0xC2] = WX_PTT(IP, IPV6, IPIP, IPV4, NONE, PAY3),
102         [0xC3] = WX_PTT(IP, IPV6, IPIP, IPV4, UDP,  PAY4),
103         [0xC4] = WX_PTT(IP, IPV6, IPIP, IPV4, TCP,  PAY4),
104         [0xC5] = WX_PTT(IP, IPV6, IPIP, IPV4, SCTP, PAY4),
105         [0xC9] = WX_PTT(IP, IPV6, IPIP, FGV6, NONE, PAY3),
106         [0xCA] = WX_PTT(IP, IPV6, IPIP, IPV6, NONE, PAY3),
107         [0xCB] = WX_PTT(IP, IPV6, IPIP, IPV6, UDP,  PAY4),
108         [0xCC] = WX_PTT(IP, IPV6, IPIP, IPV6, TCP,  PAY4),
109         [0xCD] = WX_PTT(IP, IPV6, IPIP, IPV6, SCTP, PAY4),
110
111         /* IPv6 --> GRE/NAT -> NONE/IPv4/IPv6 */
112         [0xD0] = WX_PTT(IP, IPV6, IG, NONE, NONE, PAY3),
113         [0xD1] = WX_PTT(IP, IPV6, IG, FGV4, NONE, PAY3),
114         [0xD2] = WX_PTT(IP, IPV6, IG, IPV4, NONE, PAY3),
115         [0xD3] = WX_PTT(IP, IPV6, IG, IPV4, UDP,  PAY4),
116         [0xD4] = WX_PTT(IP, IPV6, IG, IPV4, TCP,  PAY4),
117         [0xD5] = WX_PTT(IP, IPV6, IG, IPV4, SCTP, PAY4),
118         [0xD9] = WX_PTT(IP, IPV6, IG, FGV6, NONE, PAY3),
119         [0xDA] = WX_PTT(IP, IPV6, IG, IPV6, NONE, PAY3),
120         [0xDB] = WX_PTT(IP, IPV6, IG, IPV6, UDP,  PAY4),
121         [0xDC] = WX_PTT(IP, IPV6, IG, IPV6, TCP,  PAY4),
122         [0xDD] = WX_PTT(IP, IPV6, IG, IPV6, SCTP, PAY4),
123
124         /* IPv6 --> GRE/NAT -> MAC -> NONE/IPv4/IPv6 */
125         [0xE0] = WX_PTT(IP, IPV6, IGM, NONE, NONE, PAY3),
126         [0xE1] = WX_PTT(IP, IPV6, IGM, FGV4, NONE, PAY3),
127         [0xE2] = WX_PTT(IP, IPV6, IGM, IPV4, NONE, PAY3),
128         [0xE3] = WX_PTT(IP, IPV6, IGM, IPV4, UDP,  PAY4),
129         [0xE4] = WX_PTT(IP, IPV6, IGM, IPV4, TCP,  PAY4),
130         [0xE5] = WX_PTT(IP, IPV6, IGM, IPV4, SCTP, PAY4),
131         [0xE9] = WX_PTT(IP, IPV6, IGM, FGV6, NONE, PAY3),
132         [0xEA] = WX_PTT(IP, IPV6, IGM, IPV6, NONE, PAY3),
133         [0xEB] = WX_PTT(IP, IPV6, IGM, IPV6, UDP,  PAY4),
134         [0xEC] = WX_PTT(IP, IPV6, IGM, IPV6, TCP,  PAY4),
135         [0xED] = WX_PTT(IP, IPV6, IGM, IPV6, SCTP, PAY4),
136
137         /* IPv6 --> GRE/NAT -> MAC--> NONE/IPv */
138         [0xF0] = WX_PTT(IP, IPV6, IGMV, NONE, NONE, PAY3),
139         [0xF1] = WX_PTT(IP, IPV6, IGMV, FGV4, NONE, PAY3),
140         [0xF2] = WX_PTT(IP, IPV6, IGMV, IPV4, NONE, PAY3),
141         [0xF3] = WX_PTT(IP, IPV6, IGMV, IPV4, UDP,  PAY4),
142         [0xF4] = WX_PTT(IP, IPV6, IGMV, IPV4, TCP,  PAY4),
143         [0xF5] = WX_PTT(IP, IPV6, IGMV, IPV4, SCTP, PAY4),
144         [0xF9] = WX_PTT(IP, IPV6, IGMV, FGV6, NONE, PAY3),
145         [0xFA] = WX_PTT(IP, IPV6, IGMV, IPV6, NONE, PAY3),
146         [0xFB] = WX_PTT(IP, IPV6, IGMV, IPV6, UDP,  PAY4),
147         [0xFC] = WX_PTT(IP, IPV6, IGMV, IPV6, TCP,  PAY4),
148         [0xFD] = WX_PTT(IP, IPV6, IGMV, IPV6, SCTP, PAY4),
149 };
150
151 static struct wx_dec_ptype wx_decode_ptype(const u8 ptype)
152 {
153         return wx_ptype_lookup[ptype];
154 }
155
156 /* wx_test_staterr - tests bits in Rx descriptor status and error fields */
157 static __le32 wx_test_staterr(union wx_rx_desc *rx_desc,
158                               const u32 stat_err_bits)
159 {
160         return rx_desc->wb.upper.status_error & cpu_to_le32(stat_err_bits);
161 }
162
163 static void wx_dma_sync_frag(struct wx_ring *rx_ring,
164                              struct wx_rx_buffer *rx_buffer)
165 {
166         struct sk_buff *skb = rx_buffer->skb;
167         skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
168
169         dma_sync_single_range_for_cpu(rx_ring->dev,
170                                       WX_CB(skb)->dma,
171                                       skb_frag_off(frag),
172                                       skb_frag_size(frag),
173                                       DMA_FROM_DEVICE);
174
175         /* If the page was released, just unmap it. */
176         if (unlikely(WX_CB(skb)->page_released))
177                 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
178 }
179
180 static struct wx_rx_buffer *wx_get_rx_buffer(struct wx_ring *rx_ring,
181                                              union wx_rx_desc *rx_desc,
182                                              struct sk_buff **skb,
183                                              int *rx_buffer_pgcnt)
184 {
185         struct wx_rx_buffer *rx_buffer;
186         unsigned int size;
187
188         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
189         size = le16_to_cpu(rx_desc->wb.upper.length);
190
191 #if (PAGE_SIZE < 8192)
192         *rx_buffer_pgcnt = page_count(rx_buffer->page);
193 #else
194         *rx_buffer_pgcnt = 0;
195 #endif
196
197         prefetchw(rx_buffer->page);
198         *skb = rx_buffer->skb;
199
200         /* Delay unmapping of the first packet. It carries the header
201          * information, HW may still access the header after the writeback.
202          * Only unmap it when EOP is reached
203          */
204         if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) {
205                 if (!*skb)
206                         goto skip_sync;
207         } else {
208                 if (*skb)
209                         wx_dma_sync_frag(rx_ring, rx_buffer);
210         }
211
212         /* we are reusing so sync this buffer for CPU use */
213         dma_sync_single_range_for_cpu(rx_ring->dev,
214                                       rx_buffer->dma,
215                                       rx_buffer->page_offset,
216                                       size,
217                                       DMA_FROM_DEVICE);
218 skip_sync:
219         return rx_buffer;
220 }
221
222 static void wx_put_rx_buffer(struct wx_ring *rx_ring,
223                              struct wx_rx_buffer *rx_buffer,
224                              struct sk_buff *skb,
225                              int rx_buffer_pgcnt)
226 {
227         if (!IS_ERR(skb) && WX_CB(skb)->dma == rx_buffer->dma)
228                 /* the page has been released from the ring */
229                 WX_CB(skb)->page_released = true;
230
231         /* clear contents of rx_buffer */
232         rx_buffer->page = NULL;
233         rx_buffer->skb = NULL;
234 }
235
236 static struct sk_buff *wx_build_skb(struct wx_ring *rx_ring,
237                                     struct wx_rx_buffer *rx_buffer,
238                                     union wx_rx_desc *rx_desc)
239 {
240         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
241 #if (PAGE_SIZE < 8192)
242         unsigned int truesize = WX_RX_BUFSZ;
243 #else
244         unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
245 #endif
246         struct sk_buff *skb = rx_buffer->skb;
247
248         if (!skb) {
249                 void *page_addr = page_address(rx_buffer->page) +
250                                   rx_buffer->page_offset;
251
252                 /* prefetch first cache line of first page */
253                 prefetch(page_addr);
254 #if L1_CACHE_BYTES < 128
255                 prefetch(page_addr + L1_CACHE_BYTES);
256 #endif
257
258                 /* allocate a skb to store the frags */
259                 skb = napi_alloc_skb(&rx_ring->q_vector->napi, WX_RXBUFFER_256);
260                 if (unlikely(!skb))
261                         return NULL;
262
263                 /* we will be copying header into skb->data in
264                  * pskb_may_pull so it is in our interest to prefetch
265                  * it now to avoid a possible cache miss
266                  */
267                 prefetchw(skb->data);
268
269                 if (size <= WX_RXBUFFER_256) {
270                         memcpy(__skb_put(skb, size), page_addr,
271                                ALIGN(size, sizeof(long)));
272                         page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, true);
273                         return skb;
274                 }
275
276                 skb_mark_for_recycle(skb);
277
278                 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP))
279                         WX_CB(skb)->dma = rx_buffer->dma;
280
281                 skb_add_rx_frag(skb, 0, rx_buffer->page,
282                                 rx_buffer->page_offset,
283                                 size, truesize);
284                 goto out;
285
286         } else {
287                 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
288                                 rx_buffer->page_offset, size, truesize);
289         }
290
291 out:
292 #if (PAGE_SIZE < 8192)
293         /* flip page offset to other buffer */
294         rx_buffer->page_offset ^= truesize;
295 #else
296         /* move offset up to the next cache line */
297         rx_buffer->page_offset += truesize;
298 #endif
299
300         return skb;
301 }
302
303 static bool wx_alloc_mapped_page(struct wx_ring *rx_ring,
304                                  struct wx_rx_buffer *bi)
305 {
306         struct page *page = bi->page;
307         dma_addr_t dma;
308
309         /* since we are recycling buffers we should seldom need to alloc */
310         if (likely(page))
311                 return true;
312
313         page = page_pool_dev_alloc_pages(rx_ring->page_pool);
314         WARN_ON(!page);
315         dma = page_pool_get_dma_addr(page);
316
317         bi->page_dma = dma;
318         bi->page = page;
319         bi->page_offset = 0;
320
321         return true;
322 }
323
324 /**
325  * wx_alloc_rx_buffers - Replace used receive buffers
326  * @rx_ring: ring to place buffers on
327  * @cleaned_count: number of buffers to replace
328  **/
329 void wx_alloc_rx_buffers(struct wx_ring *rx_ring, u16 cleaned_count)
330 {
331         u16 i = rx_ring->next_to_use;
332         union wx_rx_desc *rx_desc;
333         struct wx_rx_buffer *bi;
334
335         /* nothing to do */
336         if (!cleaned_count)
337                 return;
338
339         rx_desc = WX_RX_DESC(rx_ring, i);
340         bi = &rx_ring->rx_buffer_info[i];
341         i -= rx_ring->count;
342
343         do {
344                 if (!wx_alloc_mapped_page(rx_ring, bi))
345                         break;
346
347                 /* sync the buffer for use by the device */
348                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
349                                                  bi->page_offset,
350                                                  WX_RX_BUFSZ,
351                                                  DMA_FROM_DEVICE);
352
353                 rx_desc->read.pkt_addr =
354                         cpu_to_le64(bi->page_dma + bi->page_offset);
355
356                 rx_desc++;
357                 bi++;
358                 i++;
359                 if (unlikely(!i)) {
360                         rx_desc = WX_RX_DESC(rx_ring, 0);
361                         bi = rx_ring->rx_buffer_info;
362                         i -= rx_ring->count;
363                 }
364
365                 /* clear the status bits for the next_to_use descriptor */
366                 rx_desc->wb.upper.status_error = 0;
367
368                 cleaned_count--;
369         } while (cleaned_count);
370
371         i += rx_ring->count;
372
373         if (rx_ring->next_to_use != i) {
374                 rx_ring->next_to_use = i;
375                 /* update next to alloc since we have filled the ring */
376                 rx_ring->next_to_alloc = i;
377
378                 /* Force memory writes to complete before letting h/w
379                  * know there are new descriptors to fetch.  (Only
380                  * applicable for weak-ordered memory model archs,
381                  * such as IA-64).
382                  */
383                 wmb();
384                 writel(i, rx_ring->tail);
385         }
386 }
387
388 u16 wx_desc_unused(struct wx_ring *ring)
389 {
390         u16 ntc = ring->next_to_clean;
391         u16 ntu = ring->next_to_use;
392
393         return ((ntc > ntu) ? 0 : ring->count) + ntc - ntu - 1;
394 }
395
396 /**
397  * wx_is_non_eop - process handling of non-EOP buffers
398  * @rx_ring: Rx ring being processed
399  * @rx_desc: Rx descriptor for current buffer
400  * @skb: Current socket buffer containing buffer in progress
401  *
402  * This function updates next to clean. If the buffer is an EOP buffer
403  * this function exits returning false, otherwise it will place the
404  * sk_buff in the next buffer to be chained and return true indicating
405  * that this is in fact a non-EOP buffer.
406  **/
407 static bool wx_is_non_eop(struct wx_ring *rx_ring,
408                           union wx_rx_desc *rx_desc,
409                           struct sk_buff *skb)
410 {
411         u32 ntc = rx_ring->next_to_clean + 1;
412
413         /* fetch, update, and store next to clean */
414         ntc = (ntc < rx_ring->count) ? ntc : 0;
415         rx_ring->next_to_clean = ntc;
416
417         prefetch(WX_RX_DESC(rx_ring, ntc));
418
419         /* if we are the last buffer then there is nothing else to do */
420         if (likely(wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)))
421                 return false;
422
423         rx_ring->rx_buffer_info[ntc].skb = skb;
424         rx_ring->rx_stats.non_eop_descs++;
425
426         return true;
427 }
428
429 static void wx_pull_tail(struct sk_buff *skb)
430 {
431         skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
432         unsigned int pull_len;
433         unsigned char *va;
434
435         /* it is valid to use page_address instead of kmap since we are
436          * working with pages allocated out of the lomem pool per
437          * alloc_page(GFP_ATOMIC)
438          */
439         va = skb_frag_address(frag);
440
441         /* we need the header to contain the greater of either ETH_HLEN or
442          * 60 bytes if the skb->len is less than 60 for skb_pad.
443          */
444         pull_len = eth_get_headlen(skb->dev, va, WX_RXBUFFER_256);
445
446         /* align pull length to size of long to optimize memcpy performance */
447         skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
448
449         /* update all of the pointers */
450         skb_frag_size_sub(frag, pull_len);
451         skb_frag_off_add(frag, pull_len);
452         skb->data_len -= pull_len;
453         skb->tail += pull_len;
454 }
455
456 /**
457  * wx_cleanup_headers - Correct corrupted or empty headers
458  * @rx_ring: rx descriptor ring packet is being transacted on
459  * @rx_desc: pointer to the EOP Rx descriptor
460  * @skb: pointer to current skb being fixed
461  *
462  * Check for corrupted packet headers caused by senders on the local L2
463  * embedded NIC switch not setting up their Tx Descriptors right.  These
464  * should be very rare.
465  *
466  * Also address the case where we are pulling data in on pages only
467  * and as such no data is present in the skb header.
468  *
469  * In addition if skb is not at least 60 bytes we need to pad it so that
470  * it is large enough to qualify as a valid Ethernet frame.
471  *
472  * Returns true if an error was encountered and skb was freed.
473  **/
474 static bool wx_cleanup_headers(struct wx_ring *rx_ring,
475                                union wx_rx_desc *rx_desc,
476                                struct sk_buff *skb)
477 {
478         struct net_device *netdev = rx_ring->netdev;
479
480         /* verify that the packet does not have any known errors */
481         if (!netdev ||
482             unlikely(wx_test_staterr(rx_desc, WX_RXD_ERR_RXE) &&
483                      !(netdev->features & NETIF_F_RXALL))) {
484                 dev_kfree_skb_any(skb);
485                 return true;
486         }
487
488         /* place header in linear portion of buffer */
489         if (!skb_headlen(skb))
490                 wx_pull_tail(skb);
491
492         /* if eth_skb_pad returns an error the skb was freed */
493         if (eth_skb_pad(skb))
494                 return true;
495
496         return false;
497 }
498
499 static void wx_rx_hash(struct wx_ring *ring,
500                        union wx_rx_desc *rx_desc,
501                        struct sk_buff *skb)
502 {
503         u16 rss_type;
504
505         if (!(ring->netdev->features & NETIF_F_RXHASH))
506                 return;
507
508         rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
509                                WX_RXD_RSSTYPE_MASK;
510
511         if (!rss_type)
512                 return;
513
514         skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
515                      (WX_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
516                      PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
517 }
518
519 /**
520  * wx_rx_checksum - indicate in skb if hw indicated a good cksum
521  * @ring: structure containing ring specific data
522  * @rx_desc: current Rx descriptor being processed
523  * @skb: skb currently being received and modified
524  **/
525 static void wx_rx_checksum(struct wx_ring *ring,
526                            union wx_rx_desc *rx_desc,
527                            struct sk_buff *skb)
528 {
529         struct wx_dec_ptype dptype = wx_decode_ptype(WX_RXD_PKTTYPE(rx_desc));
530
531         skb_checksum_none_assert(skb);
532         /* Rx csum disabled */
533         if (!(ring->netdev->features & NETIF_F_RXCSUM))
534                 return;
535
536         /* if IPv4 header checksum error */
537         if ((wx_test_staterr(rx_desc, WX_RXD_STAT_IPCS) &&
538              wx_test_staterr(rx_desc, WX_RXD_ERR_IPE)) ||
539             (wx_test_staterr(rx_desc, WX_RXD_STAT_OUTERIPCS) &&
540              wx_test_staterr(rx_desc, WX_RXD_ERR_OUTERIPER))) {
541                 ring->rx_stats.csum_err++;
542                 return;
543         }
544
545         /* L4 checksum offload flag must set for the below code to work */
546         if (!wx_test_staterr(rx_desc, WX_RXD_STAT_L4CS))
547                 return;
548
549         /* Hardware can't guarantee csum if IPv6 Dest Header found */
550         if (dptype.prot != WX_DEC_PTYPE_PROT_SCTP && WX_RXD_IPV6EX(rx_desc))
551                 return;
552
553         /* if L4 checksum error */
554         if (wx_test_staterr(rx_desc, WX_RXD_ERR_TCPE)) {
555                 ring->rx_stats.csum_err++;
556                 return;
557         }
558
559         /* It must be a TCP or UDP or SCTP packet with a valid checksum */
560         skb->ip_summed = CHECKSUM_UNNECESSARY;
561
562         /* If there is an outer header present that might contain a checksum
563          * we need to bump the checksum level by 1 to reflect the fact that
564          * we are indicating we validated the inner checksum.
565          */
566         if (dptype.etype >= WX_DEC_PTYPE_ETYPE_IG)
567                 __skb_incr_checksum_unnecessary(skb);
568         ring->rx_stats.csum_good_cnt++;
569 }
570
571 static void wx_rx_vlan(struct wx_ring *ring, union wx_rx_desc *rx_desc,
572                        struct sk_buff *skb)
573 {
574         u16 ethertype;
575         u8 idx = 0;
576
577         if ((ring->netdev->features &
578              (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) &&
579             wx_test_staterr(rx_desc, WX_RXD_STAT_VP)) {
580                 idx = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
581                        0x1c0) >> 6;
582                 ethertype = ring->q_vector->wx->tpid[idx];
583                 __vlan_hwaccel_put_tag(skb, htons(ethertype),
584                                        le16_to_cpu(rx_desc->wb.upper.vlan));
585         }
586 }
587
588 /**
589  * wx_process_skb_fields - Populate skb header fields from Rx descriptor
590  * @rx_ring: rx descriptor ring packet is being transacted on
591  * @rx_desc: pointer to the EOP Rx descriptor
592  * @skb: pointer to current skb being populated
593  *
594  * This function checks the ring, descriptor, and packet information in
595  * order to populate the hash, checksum, protocol, and
596  * other fields within the skb.
597  **/
598 static void wx_process_skb_fields(struct wx_ring *rx_ring,
599                                   union wx_rx_desc *rx_desc,
600                                   struct sk_buff *skb)
601 {
602         wx_rx_hash(rx_ring, rx_desc, skb);
603         wx_rx_checksum(rx_ring, rx_desc, skb);
604         wx_rx_vlan(rx_ring, rx_desc, skb);
605         skb_record_rx_queue(skb, rx_ring->queue_index);
606         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
607 }
608
609 /**
610  * wx_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
611  * @q_vector: structure containing interrupt and ring information
612  * @rx_ring: rx descriptor ring to transact packets on
613  * @budget: Total limit on number of packets to process
614  *
615  * This function provides a "bounce buffer" approach to Rx interrupt
616  * processing.  The advantage to this is that on systems that have
617  * expensive overhead for IOMMU access this provides a means of avoiding
618  * it by maintaining the mapping of the page to the system.
619  *
620  * Returns amount of work completed.
621  **/
622 static int wx_clean_rx_irq(struct wx_q_vector *q_vector,
623                            struct wx_ring *rx_ring,
624                            int budget)
625 {
626         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
627         u16 cleaned_count = wx_desc_unused(rx_ring);
628
629         do {
630                 struct wx_rx_buffer *rx_buffer;
631                 union wx_rx_desc *rx_desc;
632                 struct sk_buff *skb;
633                 int rx_buffer_pgcnt;
634
635                 /* return some buffers to hardware, one at a time is too slow */
636                 if (cleaned_count >= WX_RX_BUFFER_WRITE) {
637                         wx_alloc_rx_buffers(rx_ring, cleaned_count);
638                         cleaned_count = 0;
639                 }
640
641                 rx_desc = WX_RX_DESC(rx_ring, rx_ring->next_to_clean);
642                 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_DD))
643                         break;
644
645                 /* This memory barrier is needed to keep us from reading
646                  * any other fields out of the rx_desc until we know the
647                  * descriptor has been written back
648                  */
649                 dma_rmb();
650
651                 rx_buffer = wx_get_rx_buffer(rx_ring, rx_desc, &skb, &rx_buffer_pgcnt);
652
653                 /* retrieve a buffer from the ring */
654                 skb = wx_build_skb(rx_ring, rx_buffer, rx_desc);
655
656                 /* exit if we failed to retrieve a buffer */
657                 if (!skb) {
658                         rx_ring->rx_stats.alloc_rx_buff_failed++;
659                         break;
660                 }
661
662                 wx_put_rx_buffer(rx_ring, rx_buffer, skb, rx_buffer_pgcnt);
663                 cleaned_count++;
664
665                 /* place incomplete frames back on ring for completion */
666                 if (wx_is_non_eop(rx_ring, rx_desc, skb))
667                         continue;
668
669                 /* verify the packet layout is correct */
670                 if (wx_cleanup_headers(rx_ring, rx_desc, skb))
671                         continue;
672
673                 /* probably a little skewed due to removing CRC */
674                 total_rx_bytes += skb->len;
675
676                 /* populate checksum, timestamp, VLAN, and protocol */
677                 wx_process_skb_fields(rx_ring, rx_desc, skb);
678                 napi_gro_receive(&q_vector->napi, skb);
679
680                 /* update budget accounting */
681                 total_rx_packets++;
682         } while (likely(total_rx_packets < budget));
683
684         u64_stats_update_begin(&rx_ring->syncp);
685         rx_ring->stats.packets += total_rx_packets;
686         rx_ring->stats.bytes += total_rx_bytes;
687         u64_stats_update_end(&rx_ring->syncp);
688         q_vector->rx.total_packets += total_rx_packets;
689         q_vector->rx.total_bytes += total_rx_bytes;
690
691         return total_rx_packets;
692 }
693
694 static struct netdev_queue *wx_txring_txq(const struct wx_ring *ring)
695 {
696         return netdev_get_tx_queue(ring->netdev, ring->queue_index);
697 }
698
699 /**
700  * wx_clean_tx_irq - Reclaim resources after transmit completes
701  * @q_vector: structure containing interrupt and ring information
702  * @tx_ring: tx ring to clean
703  * @napi_budget: Used to determine if we are in netpoll
704  **/
705 static bool wx_clean_tx_irq(struct wx_q_vector *q_vector,
706                             struct wx_ring *tx_ring, int napi_budget)
707 {
708         unsigned int budget = q_vector->wx->tx_work_limit;
709         unsigned int total_bytes = 0, total_packets = 0;
710         unsigned int i = tx_ring->next_to_clean;
711         struct wx_tx_buffer *tx_buffer;
712         union wx_tx_desc *tx_desc;
713
714         if (!netif_carrier_ok(tx_ring->netdev))
715                 return true;
716
717         tx_buffer = &tx_ring->tx_buffer_info[i];
718         tx_desc = WX_TX_DESC(tx_ring, i);
719         i -= tx_ring->count;
720
721         do {
722                 union wx_tx_desc *eop_desc = tx_buffer->next_to_watch;
723
724                 /* if next_to_watch is not set then there is no work pending */
725                 if (!eop_desc)
726                         break;
727
728                 /* prevent any other reads prior to eop_desc */
729                 smp_rmb();
730
731                 /* if DD is not set pending work has not been completed */
732                 if (!(eop_desc->wb.status & cpu_to_le32(WX_TXD_STAT_DD)))
733                         break;
734
735                 /* clear next_to_watch to prevent false hangs */
736                 tx_buffer->next_to_watch = NULL;
737
738                 /* update the statistics for this packet */
739                 total_bytes += tx_buffer->bytecount;
740                 total_packets += tx_buffer->gso_segs;
741
742                 /* free the skb */
743                 napi_consume_skb(tx_buffer->skb, napi_budget);
744
745                 /* unmap skb header data */
746                 dma_unmap_single(tx_ring->dev,
747                                  dma_unmap_addr(tx_buffer, dma),
748                                  dma_unmap_len(tx_buffer, len),
749                                  DMA_TO_DEVICE);
750
751                 /* clear tx_buffer data */
752                 dma_unmap_len_set(tx_buffer, len, 0);
753
754                 /* unmap remaining buffers */
755                 while (tx_desc != eop_desc) {
756                         tx_buffer++;
757                         tx_desc++;
758                         i++;
759                         if (unlikely(!i)) {
760                                 i -= tx_ring->count;
761                                 tx_buffer = tx_ring->tx_buffer_info;
762                                 tx_desc = WX_TX_DESC(tx_ring, 0);
763                         }
764
765                         /* unmap any remaining paged data */
766                         if (dma_unmap_len(tx_buffer, len)) {
767                                 dma_unmap_page(tx_ring->dev,
768                                                dma_unmap_addr(tx_buffer, dma),
769                                                dma_unmap_len(tx_buffer, len),
770                                                DMA_TO_DEVICE);
771                                 dma_unmap_len_set(tx_buffer, len, 0);
772                         }
773                 }
774
775                 /* move us one more past the eop_desc for start of next pkt */
776                 tx_buffer++;
777                 tx_desc++;
778                 i++;
779                 if (unlikely(!i)) {
780                         i -= tx_ring->count;
781                         tx_buffer = tx_ring->tx_buffer_info;
782                         tx_desc = WX_TX_DESC(tx_ring, 0);
783                 }
784
785                 /* issue prefetch for next Tx descriptor */
786                 prefetch(tx_desc);
787
788                 /* update budget accounting */
789                 budget--;
790         } while (likely(budget));
791
792         i += tx_ring->count;
793         tx_ring->next_to_clean = i;
794         u64_stats_update_begin(&tx_ring->syncp);
795         tx_ring->stats.bytes += total_bytes;
796         tx_ring->stats.packets += total_packets;
797         u64_stats_update_end(&tx_ring->syncp);
798         q_vector->tx.total_bytes += total_bytes;
799         q_vector->tx.total_packets += total_packets;
800
801         netdev_tx_completed_queue(wx_txring_txq(tx_ring),
802                                   total_packets, total_bytes);
803
804 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
805         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
806                      (wx_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
807                 /* Make sure that anybody stopping the queue after this
808                  * sees the new next_to_clean.
809                  */
810                 smp_mb();
811
812                 if (__netif_subqueue_stopped(tx_ring->netdev,
813                                              tx_ring->queue_index) &&
814                     netif_running(tx_ring->netdev)) {
815                         netif_wake_subqueue(tx_ring->netdev,
816                                             tx_ring->queue_index);
817                         ++tx_ring->tx_stats.restart_queue;
818                 }
819         }
820
821         return !!budget;
822 }
823
824 /**
825  * wx_poll - NAPI polling RX/TX cleanup routine
826  * @napi: napi struct with our devices info in it
827  * @budget: amount of work driver is allowed to do this pass, in packets
828  *
829  * This function will clean all queues associated with a q_vector.
830  **/
831 static int wx_poll(struct napi_struct *napi, int budget)
832 {
833         struct wx_q_vector *q_vector = container_of(napi, struct wx_q_vector, napi);
834         int per_ring_budget, work_done = 0;
835         struct wx *wx = q_vector->wx;
836         bool clean_complete = true;
837         struct wx_ring *ring;
838
839         wx_for_each_ring(ring, q_vector->tx) {
840                 if (!wx_clean_tx_irq(q_vector, ring, budget))
841                         clean_complete = false;
842         }
843
844         /* Exit if we are called by netpoll */
845         if (budget <= 0)
846                 return budget;
847
848         /* attempt to distribute budget to each queue fairly, but don't allow
849          * the budget to go below 1 because we'll exit polling
850          */
851         if (q_vector->rx.count > 1)
852                 per_ring_budget = max(budget / q_vector->rx.count, 1);
853         else
854                 per_ring_budget = budget;
855
856         wx_for_each_ring(ring, q_vector->rx) {
857                 int cleaned = wx_clean_rx_irq(q_vector, ring, per_ring_budget);
858
859                 work_done += cleaned;
860                 if (cleaned >= per_ring_budget)
861                         clean_complete = false;
862         }
863
864         /* If all work not completed, return budget and keep polling */
865         if (!clean_complete)
866                 return budget;
867
868         /* all work done, exit the polling mode */
869         if (likely(napi_complete_done(napi, work_done))) {
870                 if (netif_running(wx->netdev))
871                         wx_intr_enable(wx, WX_INTR_Q(q_vector->v_idx));
872         }
873
874         return min(work_done, budget - 1);
875 }
876
877 static int wx_maybe_stop_tx(struct wx_ring *tx_ring, u16 size)
878 {
879         if (likely(wx_desc_unused(tx_ring) >= size))
880                 return 0;
881
882         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
883
884         /* For the next check */
885         smp_mb();
886
887         /* We need to check again in a case another CPU has just
888          * made room available.
889          */
890         if (likely(wx_desc_unused(tx_ring) < size))
891                 return -EBUSY;
892
893         /* A reprieve! - use start_queue because it doesn't call schedule */
894         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
895         ++tx_ring->tx_stats.restart_queue;
896
897         return 0;
898 }
899
900 static u32 wx_tx_cmd_type(u32 tx_flags)
901 {
902         /* set type for advanced descriptor with frame checksum insertion */
903         u32 cmd_type = WX_TXD_DTYP_DATA | WX_TXD_IFCS;
904
905         /* set HW vlan bit if vlan is present */
906         cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_HW_VLAN, WX_TXD_VLE);
907         /* set segmentation enable bits for TSO/FSO */
908         cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSO, WX_TXD_TSE);
909         /* set timestamp bit if present */
910         cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSTAMP, WX_TXD_MAC_TSTAMP);
911         cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_LINKSEC, WX_TXD_LINKSEC);
912
913         return cmd_type;
914 }
915
916 static void wx_tx_olinfo_status(union wx_tx_desc *tx_desc,
917                                 u32 tx_flags, unsigned int paylen)
918 {
919         u32 olinfo_status = paylen << WX_TXD_PAYLEN_SHIFT;
920
921         /* enable L4 checksum for TSO and TX checksum offload */
922         olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CSUM, WX_TXD_L4CS);
923         /* enable IPv4 checksum for TSO */
924         olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPV4, WX_TXD_IIPCS);
925         /* enable outer IPv4 checksum for TSO */
926         olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_OUTER_IPV4,
927                                      WX_TXD_EIPCS);
928         /* Check Context must be set if Tx switch is enabled, which it
929          * always is for case where virtual functions are running
930          */
931         olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CC, WX_TXD_CC);
932         olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPSEC,
933                                      WX_TXD_IPSEC);
934         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
935 }
936
937 static void wx_tx_map(struct wx_ring *tx_ring,
938                       struct wx_tx_buffer *first,
939                       const u8 hdr_len)
940 {
941         struct sk_buff *skb = first->skb;
942         struct wx_tx_buffer *tx_buffer;
943         u32 tx_flags = first->tx_flags;
944         u16 i = tx_ring->next_to_use;
945         unsigned int data_len, size;
946         union wx_tx_desc *tx_desc;
947         skb_frag_t *frag;
948         dma_addr_t dma;
949         u32 cmd_type;
950
951         cmd_type = wx_tx_cmd_type(tx_flags);
952         tx_desc = WX_TX_DESC(tx_ring, i);
953         wx_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len);
954
955         size = skb_headlen(skb);
956         data_len = skb->data_len;
957         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
958
959         tx_buffer = first;
960
961         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
962                 if (dma_mapping_error(tx_ring->dev, dma))
963                         goto dma_error;
964
965                 /* record length, and DMA address */
966                 dma_unmap_len_set(tx_buffer, len, size);
967                 dma_unmap_addr_set(tx_buffer, dma, dma);
968
969                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
970
971                 while (unlikely(size > WX_MAX_DATA_PER_TXD)) {
972                         tx_desc->read.cmd_type_len =
973                                 cpu_to_le32(cmd_type ^ WX_MAX_DATA_PER_TXD);
974
975                         i++;
976                         tx_desc++;
977                         if (i == tx_ring->count) {
978                                 tx_desc = WX_TX_DESC(tx_ring, 0);
979                                 i = 0;
980                         }
981                         tx_desc->read.olinfo_status = 0;
982
983                         dma += WX_MAX_DATA_PER_TXD;
984                         size -= WX_MAX_DATA_PER_TXD;
985
986                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
987                 }
988
989                 if (likely(!data_len))
990                         break;
991
992                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
993
994                 i++;
995                 tx_desc++;
996                 if (i == tx_ring->count) {
997                         tx_desc = WX_TX_DESC(tx_ring, 0);
998                         i = 0;
999                 }
1000                 tx_desc->read.olinfo_status = 0;
1001
1002                 size = skb_frag_size(frag);
1003
1004                 data_len -= size;
1005
1006                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1007                                        DMA_TO_DEVICE);
1008
1009                 tx_buffer = &tx_ring->tx_buffer_info[i];
1010         }
1011
1012         /* write last descriptor with RS and EOP bits */
1013         cmd_type |= size | WX_TXD_EOP | WX_TXD_RS;
1014         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1015
1016         netdev_tx_sent_queue(wx_txring_txq(tx_ring), first->bytecount);
1017
1018         skb_tx_timestamp(skb);
1019
1020         /* Force memory writes to complete before letting h/w know there
1021          * are new descriptors to fetch.  (Only applicable for weak-ordered
1022          * memory model archs, such as IA-64).
1023          *
1024          * We also need this memory barrier to make certain all of the
1025          * status bits have been updated before next_to_watch is written.
1026          */
1027         wmb();
1028
1029         /* set next_to_watch value indicating a packet is present */
1030         first->next_to_watch = tx_desc;
1031
1032         i++;
1033         if (i == tx_ring->count)
1034                 i = 0;
1035
1036         tx_ring->next_to_use = i;
1037
1038         wx_maybe_stop_tx(tx_ring, DESC_NEEDED);
1039
1040         if (netif_xmit_stopped(wx_txring_txq(tx_ring)) || !netdev_xmit_more())
1041                 writel(i, tx_ring->tail);
1042
1043         return;
1044 dma_error:
1045         dev_err(tx_ring->dev, "TX DMA map failed\n");
1046
1047         /* clear dma mappings for failed tx_buffer_info map */
1048         for (;;) {
1049                 tx_buffer = &tx_ring->tx_buffer_info[i];
1050                 if (dma_unmap_len(tx_buffer, len))
1051                         dma_unmap_page(tx_ring->dev,
1052                                        dma_unmap_addr(tx_buffer, dma),
1053                                        dma_unmap_len(tx_buffer, len),
1054                                        DMA_TO_DEVICE);
1055                 dma_unmap_len_set(tx_buffer, len, 0);
1056                 if (tx_buffer == first)
1057                         break;
1058                 if (i == 0)
1059                         i += tx_ring->count;
1060                 i--;
1061         }
1062
1063         dev_kfree_skb_any(first->skb);
1064         first->skb = NULL;
1065
1066         tx_ring->next_to_use = i;
1067 }
1068
1069 static void wx_tx_ctxtdesc(struct wx_ring *tx_ring, u32 vlan_macip_lens,
1070                            u32 fcoe_sof_eof, u32 type_tucmd, u32 mss_l4len_idx)
1071 {
1072         struct wx_tx_context_desc *context_desc;
1073         u16 i = tx_ring->next_to_use;
1074
1075         context_desc = WX_TX_CTXTDESC(tx_ring, i);
1076         i++;
1077         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1078
1079         /* set bits to identify this as an advanced context descriptor */
1080         type_tucmd |= WX_TXD_DTYP_CTXT;
1081         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
1082         context_desc->seqnum_seed       = cpu_to_le32(fcoe_sof_eof);
1083         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
1084         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
1085 }
1086
1087 static void wx_get_ipv6_proto(struct sk_buff *skb, int offset, u8 *nexthdr)
1088 {
1089         struct ipv6hdr *hdr = (struct ipv6hdr *)(skb->data + offset);
1090
1091         *nexthdr = hdr->nexthdr;
1092         offset += sizeof(struct ipv6hdr);
1093         while (ipv6_ext_hdr(*nexthdr)) {
1094                 struct ipv6_opt_hdr _hdr, *hp;
1095
1096                 if (*nexthdr == NEXTHDR_NONE)
1097                         return;
1098                 hp = skb_header_pointer(skb, offset, sizeof(_hdr), &_hdr);
1099                 if (!hp)
1100                         return;
1101                 if (*nexthdr == NEXTHDR_FRAGMENT)
1102                         break;
1103                 *nexthdr = hp->nexthdr;
1104         }
1105 }
1106
1107 union network_header {
1108         struct iphdr *ipv4;
1109         struct ipv6hdr *ipv6;
1110         void *raw;
1111 };
1112
1113 static u8 wx_encode_tx_desc_ptype(const struct wx_tx_buffer *first)
1114 {
1115         u8 tun_prot = 0, l4_prot = 0, ptype = 0;
1116         struct sk_buff *skb = first->skb;
1117
1118         if (skb->encapsulation) {
1119                 union network_header hdr;
1120
1121                 switch (first->protocol) {
1122                 case htons(ETH_P_IP):
1123                         tun_prot = ip_hdr(skb)->protocol;
1124                         ptype = WX_PTYPE_TUN_IPV4;
1125                         break;
1126                 case htons(ETH_P_IPV6):
1127                         wx_get_ipv6_proto(skb, skb_network_offset(skb), &tun_prot);
1128                         ptype = WX_PTYPE_TUN_IPV6;
1129                         break;
1130                 default:
1131                         return ptype;
1132                 }
1133
1134                 if (tun_prot == IPPROTO_IPIP) {
1135                         hdr.raw = (void *)inner_ip_hdr(skb);
1136                         ptype |= WX_PTYPE_PKT_IPIP;
1137                 } else if (tun_prot == IPPROTO_UDP) {
1138                         hdr.raw = (void *)inner_ip_hdr(skb);
1139                         if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1140                             skb->inner_protocol != htons(ETH_P_TEB)) {
1141                                 ptype |= WX_PTYPE_PKT_IG;
1142                         } else {
1143                                 if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
1144                                      == htons(ETH_P_8021Q))
1145                                         ptype |= WX_PTYPE_PKT_IGMV;
1146                                 else
1147                                         ptype |= WX_PTYPE_PKT_IGM;
1148                         }
1149
1150                 } else if (tun_prot == IPPROTO_GRE) {
1151                         hdr.raw = (void *)inner_ip_hdr(skb);
1152                         if (skb->inner_protocol ==  htons(ETH_P_IP) ||
1153                             skb->inner_protocol ==  htons(ETH_P_IPV6)) {
1154                                 ptype |= WX_PTYPE_PKT_IG;
1155                         } else {
1156                                 if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
1157                                     == htons(ETH_P_8021Q))
1158                                         ptype |= WX_PTYPE_PKT_IGMV;
1159                                 else
1160                                         ptype |= WX_PTYPE_PKT_IGM;
1161                         }
1162                 } else {
1163                         return ptype;
1164                 }
1165
1166                 switch (hdr.ipv4->version) {
1167                 case IPVERSION:
1168                         l4_prot = hdr.ipv4->protocol;
1169                         break;
1170                 case 6:
1171                         wx_get_ipv6_proto(skb, skb_inner_network_offset(skb), &l4_prot);
1172                         ptype |= WX_PTYPE_PKT_IPV6;
1173                         break;
1174                 default:
1175                         return ptype;
1176                 }
1177         } else {
1178                 switch (first->protocol) {
1179                 case htons(ETH_P_IP):
1180                         l4_prot = ip_hdr(skb)->protocol;
1181                         ptype = WX_PTYPE_PKT_IP;
1182                         break;
1183                 case htons(ETH_P_IPV6):
1184                         wx_get_ipv6_proto(skb, skb_network_offset(skb), &l4_prot);
1185                         ptype = WX_PTYPE_PKT_IP | WX_PTYPE_PKT_IPV6;
1186                         break;
1187                 default:
1188                         return WX_PTYPE_PKT_MAC | WX_PTYPE_TYP_MAC;
1189                 }
1190         }
1191         switch (l4_prot) {
1192         case IPPROTO_TCP:
1193                 ptype |= WX_PTYPE_TYP_TCP;
1194                 break;
1195         case IPPROTO_UDP:
1196                 ptype |= WX_PTYPE_TYP_UDP;
1197                 break;
1198         case IPPROTO_SCTP:
1199                 ptype |= WX_PTYPE_TYP_SCTP;
1200                 break;
1201         default:
1202                 ptype |= WX_PTYPE_TYP_IP;
1203                 break;
1204         }
1205
1206         return ptype;
1207 }
1208
1209 static int wx_tso(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
1210                   u8 *hdr_len, u8 ptype)
1211 {
1212         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1213         struct net_device *netdev = tx_ring->netdev;
1214         u32 l4len, tunhdr_eiplen_tunlen = 0;
1215         struct sk_buff *skb = first->skb;
1216         bool enc = skb->encapsulation;
1217         struct ipv6hdr *ipv6h;
1218         struct tcphdr *tcph;
1219         struct iphdr *iph;
1220         u8 tun_prot = 0;
1221         int err;
1222
1223         if (skb->ip_summed != CHECKSUM_PARTIAL)
1224                 return 0;
1225
1226         if (!skb_is_gso(skb))
1227                 return 0;
1228
1229         err = skb_cow_head(skb, 0);
1230         if (err < 0)
1231                 return err;
1232
1233         /* indicates the inner headers in the skbuff are valid. */
1234         iph = enc ? inner_ip_hdr(skb) : ip_hdr(skb);
1235         if (iph->version == 4) {
1236                 tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1237                 iph->tot_len = 0;
1238                 iph->check = 0;
1239                 tcph->check = ~csum_tcpudp_magic(iph->saddr,
1240                                                  iph->daddr, 0,
1241                                                  IPPROTO_TCP, 0);
1242                 first->tx_flags |= WX_TX_FLAGS_TSO |
1243                                    WX_TX_FLAGS_CSUM |
1244                                    WX_TX_FLAGS_IPV4 |
1245                                    WX_TX_FLAGS_CC;
1246         } else if (iph->version == 6 && skb_is_gso_v6(skb)) {
1247                 ipv6h = enc ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1248                 tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1249                 ipv6h->payload_len = 0;
1250                 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr,
1251                                                &ipv6h->daddr, 0,
1252                                                IPPROTO_TCP, 0);
1253                 first->tx_flags |= WX_TX_FLAGS_TSO |
1254                                    WX_TX_FLAGS_CSUM |
1255                                    WX_TX_FLAGS_CC;
1256         }
1257
1258         /* compute header lengths */
1259         l4len = enc ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1260         *hdr_len = enc ? (skb_inner_transport_header(skb) - skb->data) :
1261                          skb_transport_offset(skb);
1262         *hdr_len += l4len;
1263
1264         /* update gso size and bytecount with header size */
1265         first->gso_segs = skb_shinfo(skb)->gso_segs;
1266         first->bytecount += (first->gso_segs - 1) * *hdr_len;
1267
1268         /* mss_l4len_id: use 0 as index for TSO */
1269         mss_l4len_idx = l4len << WX_TXD_L4LEN_SHIFT;
1270         mss_l4len_idx |= skb_shinfo(skb)->gso_size << WX_TXD_MSS_SHIFT;
1271
1272         /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
1273         if (enc) {
1274                 switch (first->protocol) {
1275                 case htons(ETH_P_IP):
1276                         tun_prot = ip_hdr(skb)->protocol;
1277                         first->tx_flags |= WX_TX_FLAGS_OUTER_IPV4;
1278                         break;
1279                 case htons(ETH_P_IPV6):
1280                         tun_prot = ipv6_hdr(skb)->nexthdr;
1281                         break;
1282                 default:
1283                         break;
1284                 }
1285                 switch (tun_prot) {
1286                 case IPPROTO_UDP:
1287                         tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
1288                         tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1289                                                  WX_TXD_OUTER_IPLEN_SHIFT) |
1290                                                 (((skb_inner_mac_header(skb) -
1291                                                 skb_transport_header(skb)) >> 1) <<
1292                                                 WX_TXD_TUNNEL_LEN_SHIFT);
1293                         break;
1294                 case IPPROTO_GRE:
1295                         tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
1296                         tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1297                                                  WX_TXD_OUTER_IPLEN_SHIFT) |
1298                                                 (((skb_inner_mac_header(skb) -
1299                                                 skb_transport_header(skb)) >> 1) <<
1300                                                 WX_TXD_TUNNEL_LEN_SHIFT);
1301                         break;
1302                 case IPPROTO_IPIP:
1303                         tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
1304                                                 (char *)ip_hdr(skb)) >> 2) <<
1305                                                 WX_TXD_OUTER_IPLEN_SHIFT;
1306                         break;
1307                 default:
1308                         break;
1309                 }
1310                 vlan_macip_lens = skb_inner_network_header_len(skb) >> 1;
1311         } else {
1312                 vlan_macip_lens = skb_network_header_len(skb) >> 1;
1313         }
1314
1315         vlan_macip_lens |= skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT;
1316         vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
1317
1318         type_tucmd = ptype << 24;
1319         if (skb->vlan_proto == htons(ETH_P_8021AD) &&
1320             netdev->features & NETIF_F_HW_VLAN_STAG_TX)
1321                 type_tucmd |= WX_SET_FLAG(first->tx_flags,
1322                                           WX_TX_FLAGS_HW_VLAN,
1323                                           0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
1324         wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen,
1325                        type_tucmd, mss_l4len_idx);
1326
1327         return 1;
1328 }
1329
1330 static void wx_tx_csum(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
1331                        u8 ptype)
1332 {
1333         u32 tunhdr_eiplen_tunlen = 0, vlan_macip_lens = 0;
1334         struct net_device *netdev = tx_ring->netdev;
1335         u32 mss_l4len_idx = 0, type_tucmd;
1336         struct sk_buff *skb = first->skb;
1337         u8 tun_prot = 0;
1338
1339         if (skb->ip_summed != CHECKSUM_PARTIAL) {
1340                 if (!(first->tx_flags & WX_TX_FLAGS_HW_VLAN) &&
1341                     !(first->tx_flags & WX_TX_FLAGS_CC))
1342                         return;
1343                 vlan_macip_lens = skb_network_offset(skb) <<
1344                                   WX_TXD_MACLEN_SHIFT;
1345         } else {
1346                 u8 l4_prot = 0;
1347                 union {
1348                         struct iphdr *ipv4;
1349                         struct ipv6hdr *ipv6;
1350                         u8 *raw;
1351                 } network_hdr;
1352                 union {
1353                         struct tcphdr *tcphdr;
1354                         u8 *raw;
1355                 } transport_hdr;
1356
1357                 if (skb->encapsulation) {
1358                         network_hdr.raw = skb_inner_network_header(skb);
1359                         transport_hdr.raw = skb_inner_transport_header(skb);
1360                         vlan_macip_lens = skb_network_offset(skb) <<
1361                                           WX_TXD_MACLEN_SHIFT;
1362                         switch (first->protocol) {
1363                         case htons(ETH_P_IP):
1364                                 tun_prot = ip_hdr(skb)->protocol;
1365                                 break;
1366                         case htons(ETH_P_IPV6):
1367                                 tun_prot = ipv6_hdr(skb)->nexthdr;
1368                                 break;
1369                         default:
1370                                 return;
1371                         }
1372                         switch (tun_prot) {
1373                         case IPPROTO_UDP:
1374                                 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
1375                                 tunhdr_eiplen_tunlen |=
1376                                         ((skb_network_header_len(skb) >> 2) <<
1377                                         WX_TXD_OUTER_IPLEN_SHIFT) |
1378                                         (((skb_inner_mac_header(skb) -
1379                                         skb_transport_header(skb)) >> 1) <<
1380                                         WX_TXD_TUNNEL_LEN_SHIFT);
1381                                 break;
1382                         case IPPROTO_GRE:
1383                                 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
1384                                 tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1385                                                          WX_TXD_OUTER_IPLEN_SHIFT) |
1386                                                          (((skb_inner_mac_header(skb) -
1387                                                             skb_transport_header(skb)) >> 1) <<
1388                                                           WX_TXD_TUNNEL_LEN_SHIFT);
1389                                 break;
1390                         case IPPROTO_IPIP:
1391                                 tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
1392                                                         (char *)ip_hdr(skb)) >> 2) <<
1393                                                         WX_TXD_OUTER_IPLEN_SHIFT;
1394                                 break;
1395                         default:
1396                                 break;
1397                         }
1398
1399                 } else {
1400                         network_hdr.raw = skb_network_header(skb);
1401                         transport_hdr.raw = skb_transport_header(skb);
1402                         vlan_macip_lens = skb_network_offset(skb) <<
1403                                           WX_TXD_MACLEN_SHIFT;
1404                 }
1405
1406                 switch (network_hdr.ipv4->version) {
1407                 case IPVERSION:
1408                         vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
1409                         l4_prot = network_hdr.ipv4->protocol;
1410                         break;
1411                 case 6:
1412                         vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
1413                         l4_prot = network_hdr.ipv6->nexthdr;
1414                         break;
1415                 default:
1416                         break;
1417                 }
1418
1419                 switch (l4_prot) {
1420                 case IPPROTO_TCP:
1421                 mss_l4len_idx = (transport_hdr.tcphdr->doff * 4) <<
1422                                 WX_TXD_L4LEN_SHIFT;
1423                         break;
1424                 case IPPROTO_SCTP:
1425                         mss_l4len_idx = sizeof(struct sctphdr) <<
1426                                         WX_TXD_L4LEN_SHIFT;
1427                         break;
1428                 case IPPROTO_UDP:
1429                         mss_l4len_idx = sizeof(struct udphdr) <<
1430                                         WX_TXD_L4LEN_SHIFT;
1431                         break;
1432                 default:
1433                         break;
1434                 }
1435
1436                 /* update TX checksum flag */
1437                 first->tx_flags |= WX_TX_FLAGS_CSUM;
1438         }
1439         first->tx_flags |= WX_TX_FLAGS_CC;
1440         /* vlan_macip_lens: MACLEN, VLAN tag */
1441         vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
1442
1443         type_tucmd = ptype << 24;
1444         if (skb->vlan_proto == htons(ETH_P_8021AD) &&
1445             netdev->features & NETIF_F_HW_VLAN_STAG_TX)
1446                 type_tucmd |= WX_SET_FLAG(first->tx_flags,
1447                                           WX_TX_FLAGS_HW_VLAN,
1448                                           0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
1449         wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen,
1450                        type_tucmd, mss_l4len_idx);
1451 }
1452
1453 static netdev_tx_t wx_xmit_frame_ring(struct sk_buff *skb,
1454                                       struct wx_ring *tx_ring)
1455 {
1456         u16 count = TXD_USE_COUNT(skb_headlen(skb));
1457         struct wx_tx_buffer *first;
1458         u8 hdr_len = 0, ptype;
1459         unsigned short f;
1460         u32 tx_flags = 0;
1461         int tso;
1462
1463         /* need: 1 descriptor per page * PAGE_SIZE/WX_MAX_DATA_PER_TXD,
1464          *       + 1 desc for skb_headlen/WX_MAX_DATA_PER_TXD,
1465          *       + 2 desc gap to keep tail from touching head,
1466          *       + 1 desc for context descriptor,
1467          * otherwise try next time
1468          */
1469         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1470                 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->
1471                                                      frags[f]));
1472
1473         if (wx_maybe_stop_tx(tx_ring, count + 3)) {
1474                 tx_ring->tx_stats.tx_busy++;
1475                 return NETDEV_TX_BUSY;
1476         }
1477
1478         /* record the location of the first descriptor for this packet */
1479         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1480         first->skb = skb;
1481         first->bytecount = skb->len;
1482         first->gso_segs = 1;
1483
1484         /* if we have a HW VLAN tag being added default to the HW one */
1485         if (skb_vlan_tag_present(skb)) {
1486                 tx_flags |= skb_vlan_tag_get(skb) << WX_TX_FLAGS_VLAN_SHIFT;
1487                 tx_flags |= WX_TX_FLAGS_HW_VLAN;
1488         }
1489
1490         /* record initial flags and protocol */
1491         first->tx_flags = tx_flags;
1492         first->protocol = vlan_get_protocol(skb);
1493
1494         ptype = wx_encode_tx_desc_ptype(first);
1495
1496         tso = wx_tso(tx_ring, first, &hdr_len, ptype);
1497         if (tso < 0)
1498                 goto out_drop;
1499         else if (!tso)
1500                 wx_tx_csum(tx_ring, first, ptype);
1501         wx_tx_map(tx_ring, first, hdr_len);
1502
1503         return NETDEV_TX_OK;
1504 out_drop:
1505         dev_kfree_skb_any(first->skb);
1506         first->skb = NULL;
1507
1508         return NETDEV_TX_OK;
1509 }
1510
1511 netdev_tx_t wx_xmit_frame(struct sk_buff *skb,
1512                           struct net_device *netdev)
1513 {
1514         unsigned int r_idx = skb->queue_mapping;
1515         struct wx *wx = netdev_priv(netdev);
1516         struct wx_ring *tx_ring;
1517
1518         if (!netif_carrier_ok(netdev)) {
1519                 dev_kfree_skb_any(skb);
1520                 return NETDEV_TX_OK;
1521         }
1522
1523         /* The minimum packet size for olinfo paylen is 17 so pad the skb
1524          * in order to meet this minimum size requirement.
1525          */
1526         if (skb_put_padto(skb, 17))
1527                 return NETDEV_TX_OK;
1528
1529         if (r_idx >= wx->num_tx_queues)
1530                 r_idx = r_idx % wx->num_tx_queues;
1531         tx_ring = wx->tx_ring[r_idx];
1532
1533         return wx_xmit_frame_ring(skb, tx_ring);
1534 }
1535 EXPORT_SYMBOL(wx_xmit_frame);
1536
1537 void wx_napi_enable_all(struct wx *wx)
1538 {
1539         struct wx_q_vector *q_vector;
1540         int q_idx;
1541
1542         for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
1543                 q_vector = wx->q_vector[q_idx];
1544                 napi_enable(&q_vector->napi);
1545         }
1546 }
1547 EXPORT_SYMBOL(wx_napi_enable_all);
1548
1549 void wx_napi_disable_all(struct wx *wx)
1550 {
1551         struct wx_q_vector *q_vector;
1552         int q_idx;
1553
1554         for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
1555                 q_vector = wx->q_vector[q_idx];
1556                 napi_disable(&q_vector->napi);
1557         }
1558 }
1559 EXPORT_SYMBOL(wx_napi_disable_all);
1560
1561 /**
1562  * wx_set_rss_queues: Allocate queues for RSS
1563  * @wx: board private structure to initialize
1564  *
1565  * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1566  * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1567  *
1568  **/
1569 static void wx_set_rss_queues(struct wx *wx)
1570 {
1571         wx->num_rx_queues = wx->mac.max_rx_queues;
1572         wx->num_tx_queues = wx->mac.max_tx_queues;
1573 }
1574
1575 static void wx_set_num_queues(struct wx *wx)
1576 {
1577         /* Start with base case */
1578         wx->num_rx_queues = 1;
1579         wx->num_tx_queues = 1;
1580         wx->queues_per_pool = 1;
1581
1582         wx_set_rss_queues(wx);
1583 }
1584
1585 /**
1586  * wx_acquire_msix_vectors - acquire MSI-X vectors
1587  * @wx: board private structure
1588  *
1589  * Attempts to acquire a suitable range of MSI-X vector interrupts. Will
1590  * return a negative error code if unable to acquire MSI-X vectors for any
1591  * reason.
1592  */
1593 static int wx_acquire_msix_vectors(struct wx *wx)
1594 {
1595         struct irq_affinity affd = {0, };
1596         int nvecs, i;
1597
1598         nvecs = min_t(int, num_online_cpus(), wx->mac.max_msix_vectors);
1599
1600         wx->msix_entries = kcalloc(nvecs,
1601                                    sizeof(struct msix_entry),
1602                                    GFP_KERNEL);
1603         if (!wx->msix_entries)
1604                 return -ENOMEM;
1605
1606         nvecs = pci_alloc_irq_vectors_affinity(wx->pdev, nvecs,
1607                                                nvecs,
1608                                                PCI_IRQ_MSIX | PCI_IRQ_AFFINITY,
1609                                                &affd);
1610         if (nvecs < 0) {
1611                 wx_err(wx, "Failed to allocate MSI-X interrupts. Err: %d\n", nvecs);
1612                 kfree(wx->msix_entries);
1613                 wx->msix_entries = NULL;
1614                 return nvecs;
1615         }
1616
1617         for (i = 0; i < nvecs; i++) {
1618                 wx->msix_entries[i].entry = i;
1619                 wx->msix_entries[i].vector = pci_irq_vector(wx->pdev, i);
1620         }
1621
1622         /* one for msix_other */
1623         nvecs -= 1;
1624         wx->num_q_vectors = nvecs;
1625         wx->num_rx_queues = nvecs;
1626         wx->num_tx_queues = nvecs;
1627
1628         return 0;
1629 }
1630
1631 /**
1632  * wx_set_interrupt_capability - set MSI-X or MSI if supported
1633  * @wx: board private structure to initialize
1634  *
1635  * Attempt to configure the interrupts using the best available
1636  * capabilities of the hardware and the kernel.
1637  **/
1638 static int wx_set_interrupt_capability(struct wx *wx)
1639 {
1640         struct pci_dev *pdev = wx->pdev;
1641         int nvecs, ret;
1642
1643         /* We will try to get MSI-X interrupts first */
1644         ret = wx_acquire_msix_vectors(wx);
1645         if (ret == 0 || (ret == -ENOMEM))
1646                 return ret;
1647
1648         wx->num_rx_queues = 1;
1649         wx->num_tx_queues = 1;
1650         wx->num_q_vectors = 1;
1651
1652         /* minmum one for queue, one for misc*/
1653         nvecs = 1;
1654         nvecs = pci_alloc_irq_vectors(pdev, nvecs,
1655                                       nvecs, PCI_IRQ_MSI | PCI_IRQ_LEGACY);
1656         if (nvecs == 1) {
1657                 if (pdev->msi_enabled)
1658                         wx_err(wx, "Fallback to MSI.\n");
1659                 else
1660                         wx_err(wx, "Fallback to LEGACY.\n");
1661         } else {
1662                 wx_err(wx, "Failed to allocate MSI/LEGACY interrupts. Error: %d\n", nvecs);
1663                 return nvecs;
1664         }
1665
1666         pdev->irq = pci_irq_vector(pdev, 0);
1667
1668         return 0;
1669 }
1670
1671 /**
1672  * wx_cache_ring_rss - Descriptor ring to register mapping for RSS
1673  * @wx: board private structure to initialize
1674  *
1675  * Cache the descriptor ring offsets for RSS, ATR, FCoE, and SR-IOV.
1676  *
1677  **/
1678 static void wx_cache_ring_rss(struct wx *wx)
1679 {
1680         u16 i;
1681
1682         for (i = 0; i < wx->num_rx_queues; i++)
1683                 wx->rx_ring[i]->reg_idx = i;
1684
1685         for (i = 0; i < wx->num_tx_queues; i++)
1686                 wx->tx_ring[i]->reg_idx = i;
1687 }
1688
1689 static void wx_add_ring(struct wx_ring *ring, struct wx_ring_container *head)
1690 {
1691         ring->next = head->ring;
1692         head->ring = ring;
1693         head->count++;
1694 }
1695
1696 /**
1697  * wx_alloc_q_vector - Allocate memory for a single interrupt vector
1698  * @wx: board private structure to initialize
1699  * @v_count: q_vectors allocated on wx, used for ring interleaving
1700  * @v_idx: index of vector in wx struct
1701  * @txr_count: total number of Tx rings to allocate
1702  * @txr_idx: index of first Tx ring to allocate
1703  * @rxr_count: total number of Rx rings to allocate
1704  * @rxr_idx: index of first Rx ring to allocate
1705  *
1706  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1707  **/
1708 static int wx_alloc_q_vector(struct wx *wx,
1709                              unsigned int v_count, unsigned int v_idx,
1710                              unsigned int txr_count, unsigned int txr_idx,
1711                              unsigned int rxr_count, unsigned int rxr_idx)
1712 {
1713         struct wx_q_vector *q_vector;
1714         int ring_count, default_itr;
1715         struct wx_ring *ring;
1716
1717         /* note this will allocate space for the ring structure as well! */
1718         ring_count = txr_count + rxr_count;
1719
1720         q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
1721                            GFP_KERNEL);
1722         if (!q_vector)
1723                 return -ENOMEM;
1724
1725         /* initialize NAPI */
1726         netif_napi_add(wx->netdev, &q_vector->napi,
1727                        wx_poll);
1728
1729         /* tie q_vector and wx together */
1730         wx->q_vector[v_idx] = q_vector;
1731         q_vector->wx = wx;
1732         q_vector->v_idx = v_idx;
1733         if (cpu_online(v_idx))
1734                 q_vector->numa_node = cpu_to_node(v_idx);
1735
1736         /* initialize pointer to rings */
1737         ring = q_vector->ring;
1738
1739         if (wx->mac.type == wx_mac_sp)
1740                 default_itr = WX_12K_ITR;
1741         else
1742                 default_itr = WX_7K_ITR;
1743         /* initialize ITR */
1744         if (txr_count && !rxr_count)
1745                 /* tx only vector */
1746                 q_vector->itr = wx->tx_itr_setting ?
1747                                 default_itr : wx->tx_itr_setting;
1748         else
1749                 /* rx or rx/tx vector */
1750                 q_vector->itr = wx->rx_itr_setting ?
1751                                 default_itr : wx->rx_itr_setting;
1752
1753         while (txr_count) {
1754                 /* assign generic ring traits */
1755                 ring->dev = &wx->pdev->dev;
1756                 ring->netdev = wx->netdev;
1757
1758                 /* configure backlink on ring */
1759                 ring->q_vector = q_vector;
1760
1761                 /* update q_vector Tx values */
1762                 wx_add_ring(ring, &q_vector->tx);
1763
1764                 /* apply Tx specific ring traits */
1765                 ring->count = wx->tx_ring_count;
1766
1767                 ring->queue_index = txr_idx;
1768
1769                 /* assign ring to wx */
1770                 wx->tx_ring[txr_idx] = ring;
1771
1772                 /* update count and index */
1773                 txr_count--;
1774                 txr_idx += v_count;
1775
1776                 /* push pointer to next ring */
1777                 ring++;
1778         }
1779
1780         while (rxr_count) {
1781                 /* assign generic ring traits */
1782                 ring->dev = &wx->pdev->dev;
1783                 ring->netdev = wx->netdev;
1784
1785                 /* configure backlink on ring */
1786                 ring->q_vector = q_vector;
1787
1788                 /* update q_vector Rx values */
1789                 wx_add_ring(ring, &q_vector->rx);
1790
1791                 /* apply Rx specific ring traits */
1792                 ring->count = wx->rx_ring_count;
1793                 ring->queue_index = rxr_idx;
1794
1795                 /* assign ring to wx */
1796                 wx->rx_ring[rxr_idx] = ring;
1797
1798                 /* update count and index */
1799                 rxr_count--;
1800                 rxr_idx += v_count;
1801
1802                 /* push pointer to next ring */
1803                 ring++;
1804         }
1805
1806         return 0;
1807 }
1808
1809 /**
1810  * wx_free_q_vector - Free memory allocated for specific interrupt vector
1811  * @wx: board private structure to initialize
1812  * @v_idx: Index of vector to be freed
1813  *
1814  * This function frees the memory allocated to the q_vector.  In addition if
1815  * NAPI is enabled it will delete any references to the NAPI struct prior
1816  * to freeing the q_vector.
1817  **/
1818 static void wx_free_q_vector(struct wx *wx, int v_idx)
1819 {
1820         struct wx_q_vector *q_vector = wx->q_vector[v_idx];
1821         struct wx_ring *ring;
1822
1823         wx_for_each_ring(ring, q_vector->tx)
1824                 wx->tx_ring[ring->queue_index] = NULL;
1825
1826         wx_for_each_ring(ring, q_vector->rx)
1827                 wx->rx_ring[ring->queue_index] = NULL;
1828
1829         wx->q_vector[v_idx] = NULL;
1830         netif_napi_del(&q_vector->napi);
1831         kfree_rcu(q_vector, rcu);
1832 }
1833
1834 /**
1835  * wx_alloc_q_vectors - Allocate memory for interrupt vectors
1836  * @wx: board private structure to initialize
1837  *
1838  * We allocate one q_vector per queue interrupt.  If allocation fails we
1839  * return -ENOMEM.
1840  **/
1841 static int wx_alloc_q_vectors(struct wx *wx)
1842 {
1843         unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1844         unsigned int rxr_remaining = wx->num_rx_queues;
1845         unsigned int txr_remaining = wx->num_tx_queues;
1846         unsigned int q_vectors = wx->num_q_vectors;
1847         int rqpv, tqpv;
1848         int err;
1849
1850         for (; v_idx < q_vectors; v_idx++) {
1851                 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1852                 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1853                 err = wx_alloc_q_vector(wx, q_vectors, v_idx,
1854                                         tqpv, txr_idx,
1855                                         rqpv, rxr_idx);
1856
1857                 if (err)
1858                         goto err_out;
1859
1860                 /* update counts and index */
1861                 rxr_remaining -= rqpv;
1862                 txr_remaining -= tqpv;
1863                 rxr_idx++;
1864                 txr_idx++;
1865         }
1866
1867         return 0;
1868
1869 err_out:
1870         wx->num_tx_queues = 0;
1871         wx->num_rx_queues = 0;
1872         wx->num_q_vectors = 0;
1873
1874         while (v_idx--)
1875                 wx_free_q_vector(wx, v_idx);
1876
1877         return -ENOMEM;
1878 }
1879
1880 /**
1881  * wx_free_q_vectors - Free memory allocated for interrupt vectors
1882  * @wx: board private structure to initialize
1883  *
1884  * This function frees the memory allocated to the q_vectors.  In addition if
1885  * NAPI is enabled it will delete any references to the NAPI struct prior
1886  * to freeing the q_vector.
1887  **/
1888 static void wx_free_q_vectors(struct wx *wx)
1889 {
1890         int v_idx = wx->num_q_vectors;
1891
1892         wx->num_tx_queues = 0;
1893         wx->num_rx_queues = 0;
1894         wx->num_q_vectors = 0;
1895
1896         while (v_idx--)
1897                 wx_free_q_vector(wx, v_idx);
1898 }
1899
1900 void wx_reset_interrupt_capability(struct wx *wx)
1901 {
1902         struct pci_dev *pdev = wx->pdev;
1903
1904         if (!pdev->msi_enabled && !pdev->msix_enabled)
1905                 return;
1906
1907         if (pdev->msix_enabled) {
1908                 kfree(wx->msix_entries);
1909                 wx->msix_entries = NULL;
1910         }
1911         pci_free_irq_vectors(wx->pdev);
1912 }
1913 EXPORT_SYMBOL(wx_reset_interrupt_capability);
1914
1915 /**
1916  * wx_clear_interrupt_scheme - Clear the current interrupt scheme settings
1917  * @wx: board private structure to clear interrupt scheme on
1918  *
1919  * We go through and clear interrupt specific resources and reset the structure
1920  * to pre-load conditions
1921  **/
1922 void wx_clear_interrupt_scheme(struct wx *wx)
1923 {
1924         wx_free_q_vectors(wx);
1925         wx_reset_interrupt_capability(wx);
1926 }
1927 EXPORT_SYMBOL(wx_clear_interrupt_scheme);
1928
1929 int wx_init_interrupt_scheme(struct wx *wx)
1930 {
1931         int ret;
1932
1933         /* Number of supported queues */
1934         wx_set_num_queues(wx);
1935
1936         /* Set interrupt mode */
1937         ret = wx_set_interrupt_capability(wx);
1938         if (ret) {
1939                 wx_err(wx, "Allocate irq vectors for failed.\n");
1940                 return ret;
1941         }
1942
1943         /* Allocate memory for queues */
1944         ret = wx_alloc_q_vectors(wx);
1945         if (ret) {
1946                 wx_err(wx, "Unable to allocate memory for queue vectors.\n");
1947                 wx_reset_interrupt_capability(wx);
1948                 return ret;
1949         }
1950
1951         wx_cache_ring_rss(wx);
1952
1953         return 0;
1954 }
1955 EXPORT_SYMBOL(wx_init_interrupt_scheme);
1956
1957 irqreturn_t wx_msix_clean_rings(int __always_unused irq, void *data)
1958 {
1959         struct wx_q_vector *q_vector = data;
1960
1961         /* EIAM disabled interrupts (on this vector) for us */
1962         if (q_vector->rx.ring || q_vector->tx.ring)
1963                 napi_schedule_irqoff(&q_vector->napi);
1964
1965         return IRQ_HANDLED;
1966 }
1967 EXPORT_SYMBOL(wx_msix_clean_rings);
1968
1969 void wx_free_irq(struct wx *wx)
1970 {
1971         struct pci_dev *pdev = wx->pdev;
1972         int vector;
1973
1974         if (!(pdev->msix_enabled)) {
1975                 free_irq(pdev->irq, wx);
1976                 return;
1977         }
1978
1979         for (vector = 0; vector < wx->num_q_vectors; vector++) {
1980                 struct wx_q_vector *q_vector = wx->q_vector[vector];
1981                 struct msix_entry *entry = &wx->msix_entries[vector];
1982
1983                 /* free only the irqs that were actually requested */
1984                 if (!q_vector->rx.ring && !q_vector->tx.ring)
1985                         continue;
1986
1987                 free_irq(entry->vector, q_vector);
1988         }
1989
1990         if (wx->mac.type == wx_mac_em)
1991                 free_irq(wx->msix_entries[vector].vector, wx);
1992 }
1993 EXPORT_SYMBOL(wx_free_irq);
1994
1995 /**
1996  * wx_setup_isb_resources - allocate interrupt status resources
1997  * @wx: board private structure
1998  *
1999  * Return 0 on success, negative on failure
2000  **/
2001 int wx_setup_isb_resources(struct wx *wx)
2002 {
2003         struct pci_dev *pdev = wx->pdev;
2004
2005         wx->isb_mem = dma_alloc_coherent(&pdev->dev,
2006                                          sizeof(u32) * 4,
2007                                          &wx->isb_dma,
2008                                          GFP_KERNEL);
2009         if (!wx->isb_mem) {
2010                 wx_err(wx, "Alloc isb_mem failed\n");
2011                 return -ENOMEM;
2012         }
2013
2014         return 0;
2015 }
2016 EXPORT_SYMBOL(wx_setup_isb_resources);
2017
2018 /**
2019  * wx_free_isb_resources - allocate all queues Rx resources
2020  * @wx: board private structure
2021  *
2022  * Return 0 on success, negative on failure
2023  **/
2024 void wx_free_isb_resources(struct wx *wx)
2025 {
2026         struct pci_dev *pdev = wx->pdev;
2027
2028         dma_free_coherent(&pdev->dev, sizeof(u32) * 4,
2029                           wx->isb_mem, wx->isb_dma);
2030         wx->isb_mem = NULL;
2031 }
2032 EXPORT_SYMBOL(wx_free_isb_resources);
2033
2034 u32 wx_misc_isb(struct wx *wx, enum wx_isb_idx idx)
2035 {
2036         u32 cur_tag = 0;
2037
2038         cur_tag = wx->isb_mem[WX_ISB_HEADER];
2039         wx->isb_tag[idx] = cur_tag;
2040
2041         return (__force u32)cpu_to_le32(wx->isb_mem[idx]);
2042 }
2043 EXPORT_SYMBOL(wx_misc_isb);
2044
2045 /**
2046  * wx_set_ivar - set the IVAR registers, mapping interrupt causes to vectors
2047  * @wx: pointer to wx struct
2048  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
2049  * @queue: queue to map the corresponding interrupt to
2050  * @msix_vector: the vector to map to the corresponding queue
2051  *
2052  **/
2053 static void wx_set_ivar(struct wx *wx, s8 direction,
2054                         u16 queue, u16 msix_vector)
2055 {
2056         u32 ivar, index;
2057
2058         if (direction == -1) {
2059                 /* other causes */
2060                 msix_vector |= WX_PX_IVAR_ALLOC_VAL;
2061                 index = 0;
2062                 ivar = rd32(wx, WX_PX_MISC_IVAR);
2063                 ivar &= ~(0xFF << index);
2064                 ivar |= (msix_vector << index);
2065                 wr32(wx, WX_PX_MISC_IVAR, ivar);
2066         } else {
2067                 /* tx or rx causes */
2068                 msix_vector |= WX_PX_IVAR_ALLOC_VAL;
2069                 index = ((16 * (queue & 1)) + (8 * direction));
2070                 ivar = rd32(wx, WX_PX_IVAR(queue >> 1));
2071                 ivar &= ~(0xFF << index);
2072                 ivar |= (msix_vector << index);
2073                 wr32(wx, WX_PX_IVAR(queue >> 1), ivar);
2074         }
2075 }
2076
2077 /**
2078  * wx_write_eitr - write EITR register in hardware specific way
2079  * @q_vector: structure containing interrupt and ring information
2080  *
2081  * This function is made to be called by ethtool and by the driver
2082  * when it needs to update EITR registers at runtime.  Hardware
2083  * specific quirks/differences are taken care of here.
2084  */
2085 static void wx_write_eitr(struct wx_q_vector *q_vector)
2086 {
2087         struct wx *wx = q_vector->wx;
2088         int v_idx = q_vector->v_idx;
2089         u32 itr_reg;
2090
2091         if (wx->mac.type == wx_mac_sp)
2092                 itr_reg = q_vector->itr & WX_SP_MAX_EITR;
2093         else
2094                 itr_reg = q_vector->itr & WX_EM_MAX_EITR;
2095
2096         itr_reg |= WX_PX_ITR_CNT_WDIS;
2097
2098         wr32(wx, WX_PX_ITR(v_idx), itr_reg);
2099 }
2100
2101 /**
2102  * wx_configure_vectors - Configure vectors for hardware
2103  * @wx: board private structure
2104  *
2105  * wx_configure_vectors sets up the hardware to properly generate MSI-X/MSI/LEGACY
2106  * interrupts.
2107  **/
2108 void wx_configure_vectors(struct wx *wx)
2109 {
2110         struct pci_dev *pdev = wx->pdev;
2111         u32 eitrsel = 0;
2112         u16 v_idx;
2113
2114         if (pdev->msix_enabled) {
2115                 /* Populate MSIX to EITR Select */
2116                 wr32(wx, WX_PX_ITRSEL, eitrsel);
2117                 /* use EIAM to auto-mask when MSI-X interrupt is asserted
2118                  * this saves a register write for every interrupt
2119                  */
2120                 wr32(wx, WX_PX_GPIE, WX_PX_GPIE_MODEL);
2121         } else {
2122                 /* legacy interrupts, use EIAM to auto-mask when reading EICR,
2123                  * specifically only auto mask tx and rx interrupts.
2124                  */
2125                 wr32(wx, WX_PX_GPIE, 0);
2126         }
2127
2128         /* Populate the IVAR table and set the ITR values to the
2129          * corresponding register.
2130          */
2131         for (v_idx = 0; v_idx < wx->num_q_vectors; v_idx++) {
2132                 struct wx_q_vector *q_vector = wx->q_vector[v_idx];
2133                 struct wx_ring *ring;
2134
2135                 wx_for_each_ring(ring, q_vector->rx)
2136                         wx_set_ivar(wx, 0, ring->reg_idx, v_idx);
2137
2138                 wx_for_each_ring(ring, q_vector->tx)
2139                         wx_set_ivar(wx, 1, ring->reg_idx, v_idx);
2140
2141                 wx_write_eitr(q_vector);
2142         }
2143
2144         wx_set_ivar(wx, -1, 0, v_idx);
2145         if (pdev->msix_enabled)
2146                 wr32(wx, WX_PX_ITR(v_idx), 1950);
2147 }
2148 EXPORT_SYMBOL(wx_configure_vectors);
2149
2150 /**
2151  * wx_clean_rx_ring - Free Rx Buffers per Queue
2152  * @rx_ring: ring to free buffers from
2153  **/
2154 static void wx_clean_rx_ring(struct wx_ring *rx_ring)
2155 {
2156         struct wx_rx_buffer *rx_buffer;
2157         u16 i = rx_ring->next_to_clean;
2158
2159         rx_buffer = &rx_ring->rx_buffer_info[i];
2160
2161         /* Free all the Rx ring sk_buffs */
2162         while (i != rx_ring->next_to_alloc) {
2163                 if (rx_buffer->skb) {
2164                         struct sk_buff *skb = rx_buffer->skb;
2165
2166                         if (WX_CB(skb)->page_released)
2167                                 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
2168
2169                         dev_kfree_skb(skb);
2170                 }
2171
2172                 /* Invalidate cache lines that may have been written to by
2173                  * device so that we avoid corrupting memory.
2174                  */
2175                 dma_sync_single_range_for_cpu(rx_ring->dev,
2176                                               rx_buffer->dma,
2177                                               rx_buffer->page_offset,
2178                                               WX_RX_BUFSZ,
2179                                               DMA_FROM_DEVICE);
2180
2181                 /* free resources associated with mapping */
2182                 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
2183
2184                 i++;
2185                 rx_buffer++;
2186                 if (i == rx_ring->count) {
2187                         i = 0;
2188                         rx_buffer = rx_ring->rx_buffer_info;
2189                 }
2190         }
2191
2192         rx_ring->next_to_alloc = 0;
2193         rx_ring->next_to_clean = 0;
2194         rx_ring->next_to_use = 0;
2195 }
2196
2197 /**
2198  * wx_clean_all_rx_rings - Free Rx Buffers for all queues
2199  * @wx: board private structure
2200  **/
2201 void wx_clean_all_rx_rings(struct wx *wx)
2202 {
2203         int i;
2204
2205         for (i = 0; i < wx->num_rx_queues; i++)
2206                 wx_clean_rx_ring(wx->rx_ring[i]);
2207 }
2208 EXPORT_SYMBOL(wx_clean_all_rx_rings);
2209
2210 /**
2211  * wx_free_rx_resources - Free Rx Resources
2212  * @rx_ring: ring to clean the resources from
2213  *
2214  * Free all receive software resources
2215  **/
2216 static void wx_free_rx_resources(struct wx_ring *rx_ring)
2217 {
2218         wx_clean_rx_ring(rx_ring);
2219         kvfree(rx_ring->rx_buffer_info);
2220         rx_ring->rx_buffer_info = NULL;
2221
2222         /* if not set, then don't free */
2223         if (!rx_ring->desc)
2224                 return;
2225
2226         dma_free_coherent(rx_ring->dev, rx_ring->size,
2227                           rx_ring->desc, rx_ring->dma);
2228
2229         rx_ring->desc = NULL;
2230
2231         if (rx_ring->page_pool) {
2232                 page_pool_destroy(rx_ring->page_pool);
2233                 rx_ring->page_pool = NULL;
2234         }
2235 }
2236
2237 /**
2238  * wx_free_all_rx_resources - Free Rx Resources for All Queues
2239  * @wx: pointer to hardware structure
2240  *
2241  * Free all receive software resources
2242  **/
2243 static void wx_free_all_rx_resources(struct wx *wx)
2244 {
2245         int i;
2246
2247         for (i = 0; i < wx->num_rx_queues; i++)
2248                 wx_free_rx_resources(wx->rx_ring[i]);
2249 }
2250
2251 /**
2252  * wx_clean_tx_ring - Free Tx Buffers
2253  * @tx_ring: ring to be cleaned
2254  **/
2255 static void wx_clean_tx_ring(struct wx_ring *tx_ring)
2256 {
2257         struct wx_tx_buffer *tx_buffer;
2258         u16 i = tx_ring->next_to_clean;
2259
2260         tx_buffer = &tx_ring->tx_buffer_info[i];
2261
2262         while (i != tx_ring->next_to_use) {
2263                 union wx_tx_desc *eop_desc, *tx_desc;
2264
2265                 /* Free all the Tx ring sk_buffs */
2266                 dev_kfree_skb_any(tx_buffer->skb);
2267
2268                 /* unmap skb header data */
2269                 dma_unmap_single(tx_ring->dev,
2270                                  dma_unmap_addr(tx_buffer, dma),
2271                                  dma_unmap_len(tx_buffer, len),
2272                                  DMA_TO_DEVICE);
2273
2274                 /* check for eop_desc to determine the end of the packet */
2275                 eop_desc = tx_buffer->next_to_watch;
2276                 tx_desc = WX_TX_DESC(tx_ring, i);
2277
2278                 /* unmap remaining buffers */
2279                 while (tx_desc != eop_desc) {
2280                         tx_buffer++;
2281                         tx_desc++;
2282                         i++;
2283                         if (unlikely(i == tx_ring->count)) {
2284                                 i = 0;
2285                                 tx_buffer = tx_ring->tx_buffer_info;
2286                                 tx_desc = WX_TX_DESC(tx_ring, 0);
2287                         }
2288
2289                         /* unmap any remaining paged data */
2290                         if (dma_unmap_len(tx_buffer, len))
2291                                 dma_unmap_page(tx_ring->dev,
2292                                                dma_unmap_addr(tx_buffer, dma),
2293                                                dma_unmap_len(tx_buffer, len),
2294                                                DMA_TO_DEVICE);
2295                 }
2296
2297                 /* move us one more past the eop_desc for start of next pkt */
2298                 tx_buffer++;
2299                 i++;
2300                 if (unlikely(i == tx_ring->count)) {
2301                         i = 0;
2302                         tx_buffer = tx_ring->tx_buffer_info;
2303                 }
2304         }
2305
2306         netdev_tx_reset_queue(wx_txring_txq(tx_ring));
2307
2308         /* reset next_to_use and next_to_clean */
2309         tx_ring->next_to_use = 0;
2310         tx_ring->next_to_clean = 0;
2311 }
2312
2313 /**
2314  * wx_clean_all_tx_rings - Free Tx Buffers for all queues
2315  * @wx: board private structure
2316  **/
2317 void wx_clean_all_tx_rings(struct wx *wx)
2318 {
2319         int i;
2320
2321         for (i = 0; i < wx->num_tx_queues; i++)
2322                 wx_clean_tx_ring(wx->tx_ring[i]);
2323 }
2324 EXPORT_SYMBOL(wx_clean_all_tx_rings);
2325
2326 /**
2327  * wx_free_tx_resources - Free Tx Resources per Queue
2328  * @tx_ring: Tx descriptor ring for a specific queue
2329  *
2330  * Free all transmit software resources
2331  **/
2332 static void wx_free_tx_resources(struct wx_ring *tx_ring)
2333 {
2334         wx_clean_tx_ring(tx_ring);
2335         kvfree(tx_ring->tx_buffer_info);
2336         tx_ring->tx_buffer_info = NULL;
2337
2338         /* if not set, then don't free */
2339         if (!tx_ring->desc)
2340                 return;
2341
2342         dma_free_coherent(tx_ring->dev, tx_ring->size,
2343                           tx_ring->desc, tx_ring->dma);
2344         tx_ring->desc = NULL;
2345 }
2346
2347 /**
2348  * wx_free_all_tx_resources - Free Tx Resources for All Queues
2349  * @wx: pointer to hardware structure
2350  *
2351  * Free all transmit software resources
2352  **/
2353 static void wx_free_all_tx_resources(struct wx *wx)
2354 {
2355         int i;
2356
2357         for (i = 0; i < wx->num_tx_queues; i++)
2358                 wx_free_tx_resources(wx->tx_ring[i]);
2359 }
2360
2361 void wx_free_resources(struct wx *wx)
2362 {
2363         wx_free_isb_resources(wx);
2364         wx_free_all_rx_resources(wx);
2365         wx_free_all_tx_resources(wx);
2366 }
2367 EXPORT_SYMBOL(wx_free_resources);
2368
2369 static int wx_alloc_page_pool(struct wx_ring *rx_ring)
2370 {
2371         int ret = 0;
2372
2373         struct page_pool_params pp_params = {
2374                 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
2375                 .order = 0,
2376                 .pool_size = rx_ring->size,
2377                 .nid = dev_to_node(rx_ring->dev),
2378                 .dev = rx_ring->dev,
2379                 .dma_dir = DMA_FROM_DEVICE,
2380                 .offset = 0,
2381                 .max_len = PAGE_SIZE,
2382         };
2383
2384         rx_ring->page_pool = page_pool_create(&pp_params);
2385         if (IS_ERR(rx_ring->page_pool)) {
2386                 ret = PTR_ERR(rx_ring->page_pool);
2387                 rx_ring->page_pool = NULL;
2388         }
2389
2390         return ret;
2391 }
2392
2393 /**
2394  * wx_setup_rx_resources - allocate Rx resources (Descriptors)
2395  * @rx_ring: rx descriptor ring (for a specific queue) to setup
2396  *
2397  * Returns 0 on success, negative on failure
2398  **/
2399 static int wx_setup_rx_resources(struct wx_ring *rx_ring)
2400 {
2401         struct device *dev = rx_ring->dev;
2402         int orig_node = dev_to_node(dev);
2403         int numa_node = NUMA_NO_NODE;
2404         int size, ret;
2405
2406         size = sizeof(struct wx_rx_buffer) * rx_ring->count;
2407
2408         if (rx_ring->q_vector)
2409                 numa_node = rx_ring->q_vector->numa_node;
2410
2411         rx_ring->rx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node);
2412         if (!rx_ring->rx_buffer_info)
2413                 rx_ring->rx_buffer_info = kvmalloc(size, GFP_KERNEL);
2414         if (!rx_ring->rx_buffer_info)
2415                 goto err;
2416
2417         /* Round up to nearest 4K */
2418         rx_ring->size = rx_ring->count * sizeof(union wx_rx_desc);
2419         rx_ring->size = ALIGN(rx_ring->size, 4096);
2420
2421         set_dev_node(dev, numa_node);
2422         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
2423                                            &rx_ring->dma, GFP_KERNEL);
2424         if (!rx_ring->desc) {
2425                 set_dev_node(dev, orig_node);
2426                 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
2427                                                    &rx_ring->dma, GFP_KERNEL);
2428         }
2429
2430         if (!rx_ring->desc)
2431                 goto err;
2432
2433         rx_ring->next_to_clean = 0;
2434         rx_ring->next_to_use = 0;
2435
2436         ret = wx_alloc_page_pool(rx_ring);
2437         if (ret < 0) {
2438                 dev_err(rx_ring->dev, "Page pool creation failed: %d\n", ret);
2439                 goto err_desc;
2440         }
2441
2442         return 0;
2443
2444 err_desc:
2445         dma_free_coherent(dev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2446 err:
2447         kvfree(rx_ring->rx_buffer_info);
2448         rx_ring->rx_buffer_info = NULL;
2449         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
2450         return -ENOMEM;
2451 }
2452
2453 /**
2454  * wx_setup_all_rx_resources - allocate all queues Rx resources
2455  * @wx: pointer to hardware structure
2456  *
2457  * If this function returns with an error, then it's possible one or
2458  * more of the rings is populated (while the rest are not).  It is the
2459  * callers duty to clean those orphaned rings.
2460  *
2461  * Return 0 on success, negative on failure
2462  **/
2463 static int wx_setup_all_rx_resources(struct wx *wx)
2464 {
2465         int i, err = 0;
2466
2467         for (i = 0; i < wx->num_rx_queues; i++) {
2468                 err = wx_setup_rx_resources(wx->rx_ring[i]);
2469                 if (!err)
2470                         continue;
2471
2472                 wx_err(wx, "Allocation for Rx Queue %u failed\n", i);
2473                 goto err_setup_rx;
2474         }
2475
2476         return 0;
2477 err_setup_rx:
2478         /* rewind the index freeing the rings as we go */
2479         while (i--)
2480                 wx_free_rx_resources(wx->rx_ring[i]);
2481         return err;
2482 }
2483
2484 /**
2485  * wx_setup_tx_resources - allocate Tx resources (Descriptors)
2486  * @tx_ring: tx descriptor ring (for a specific queue) to setup
2487  *
2488  * Return 0 on success, negative on failure
2489  **/
2490 static int wx_setup_tx_resources(struct wx_ring *tx_ring)
2491 {
2492         struct device *dev = tx_ring->dev;
2493         int orig_node = dev_to_node(dev);
2494         int numa_node = NUMA_NO_NODE;
2495         int size;
2496
2497         size = sizeof(struct wx_tx_buffer) * tx_ring->count;
2498
2499         if (tx_ring->q_vector)
2500                 numa_node = tx_ring->q_vector->numa_node;
2501
2502         tx_ring->tx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node);
2503         if (!tx_ring->tx_buffer_info)
2504                 tx_ring->tx_buffer_info = kvmalloc(size, GFP_KERNEL);
2505         if (!tx_ring->tx_buffer_info)
2506                 goto err;
2507
2508         /* round up to nearest 4K */
2509         tx_ring->size = tx_ring->count * sizeof(union wx_tx_desc);
2510         tx_ring->size = ALIGN(tx_ring->size, 4096);
2511
2512         set_dev_node(dev, numa_node);
2513         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2514                                            &tx_ring->dma, GFP_KERNEL);
2515         if (!tx_ring->desc) {
2516                 set_dev_node(dev, orig_node);
2517                 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2518                                                    &tx_ring->dma, GFP_KERNEL);
2519         }
2520
2521         if (!tx_ring->desc)
2522                 goto err;
2523
2524         tx_ring->next_to_use = 0;
2525         tx_ring->next_to_clean = 0;
2526
2527         return 0;
2528
2529 err:
2530         kvfree(tx_ring->tx_buffer_info);
2531         tx_ring->tx_buffer_info = NULL;
2532         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2533         return -ENOMEM;
2534 }
2535
2536 /**
2537  * wx_setup_all_tx_resources - allocate all queues Tx resources
2538  * @wx: pointer to private structure
2539  *
2540  * If this function returns with an error, then it's possible one or
2541  * more of the rings is populated (while the rest are not).  It is the
2542  * callers duty to clean those orphaned rings.
2543  *
2544  * Return 0 on success, negative on failure
2545  **/
2546 static int wx_setup_all_tx_resources(struct wx *wx)
2547 {
2548         int i, err = 0;
2549
2550         for (i = 0; i < wx->num_tx_queues; i++) {
2551                 err = wx_setup_tx_resources(wx->tx_ring[i]);
2552                 if (!err)
2553                         continue;
2554
2555                 wx_err(wx, "Allocation for Tx Queue %u failed\n", i);
2556                 goto err_setup_tx;
2557         }
2558
2559         return 0;
2560 err_setup_tx:
2561         /* rewind the index freeing the rings as we go */
2562         while (i--)
2563                 wx_free_tx_resources(wx->tx_ring[i]);
2564         return err;
2565 }
2566
2567 int wx_setup_resources(struct wx *wx)
2568 {
2569         int err;
2570
2571         /* allocate transmit descriptors */
2572         err = wx_setup_all_tx_resources(wx);
2573         if (err)
2574                 return err;
2575
2576         /* allocate receive descriptors */
2577         err = wx_setup_all_rx_resources(wx);
2578         if (err)
2579                 goto err_free_tx;
2580
2581         err = wx_setup_isb_resources(wx);
2582         if (err)
2583                 goto err_free_rx;
2584
2585         return 0;
2586
2587 err_free_rx:
2588         wx_free_all_rx_resources(wx);
2589 err_free_tx:
2590         wx_free_all_tx_resources(wx);
2591
2592         return err;
2593 }
2594 EXPORT_SYMBOL(wx_setup_resources);
2595
2596 /**
2597  * wx_get_stats64 - Get System Network Statistics
2598  * @netdev: network interface device structure
2599  * @stats: storage space for 64bit statistics
2600  */
2601 void wx_get_stats64(struct net_device *netdev,
2602                     struct rtnl_link_stats64 *stats)
2603 {
2604         struct wx *wx = netdev_priv(netdev);
2605         struct wx_hw_stats *hwstats;
2606         int i;
2607
2608         wx_update_stats(wx);
2609
2610         rcu_read_lock();
2611         for (i = 0; i < wx->num_rx_queues; i++) {
2612                 struct wx_ring *ring = READ_ONCE(wx->rx_ring[i]);
2613                 u64 bytes, packets;
2614                 unsigned int start;
2615
2616                 if (ring) {
2617                         do {
2618                                 start = u64_stats_fetch_begin(&ring->syncp);
2619                                 packets = ring->stats.packets;
2620                                 bytes   = ring->stats.bytes;
2621                         } while (u64_stats_fetch_retry(&ring->syncp, start));
2622                         stats->rx_packets += packets;
2623                         stats->rx_bytes   += bytes;
2624                 }
2625         }
2626
2627         for (i = 0; i < wx->num_tx_queues; i++) {
2628                 struct wx_ring *ring = READ_ONCE(wx->tx_ring[i]);
2629                 u64 bytes, packets;
2630                 unsigned int start;
2631
2632                 if (ring) {
2633                         do {
2634                                 start = u64_stats_fetch_begin(&ring->syncp);
2635                                 packets = ring->stats.packets;
2636                                 bytes   = ring->stats.bytes;
2637                         } while (u64_stats_fetch_retry(&ring->syncp,
2638                                                            start));
2639                         stats->tx_packets += packets;
2640                         stats->tx_bytes   += bytes;
2641                 }
2642         }
2643
2644         rcu_read_unlock();
2645
2646         hwstats = &wx->stats;
2647         stats->rx_errors = hwstats->crcerrs + hwstats->rlec;
2648         stats->multicast = hwstats->qmprc;
2649         stats->rx_length_errors = hwstats->rlec;
2650         stats->rx_crc_errors = hwstats->crcerrs;
2651 }
2652 EXPORT_SYMBOL(wx_get_stats64);
2653
2654 int wx_set_features(struct net_device *netdev, netdev_features_t features)
2655 {
2656         netdev_features_t changed = netdev->features ^ features;
2657         struct wx *wx = netdev_priv(netdev);
2658
2659         if (changed & NETIF_F_RXHASH)
2660                 wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN,
2661                       WX_RDB_RA_CTL_RSS_EN);
2662         else
2663                 wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, 0);
2664
2665         if (changed &
2666             (NETIF_F_HW_VLAN_CTAG_RX |
2667              NETIF_F_HW_VLAN_STAG_RX))
2668                 wx_set_rx_mode(netdev);
2669
2670         return 1;
2671 }
2672 EXPORT_SYMBOL(wx_set_features);
2673
2674 MODULE_LICENSE("GPL");