1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2015 - 2022 Beijing WangXun Technology Co., Ltd. */
4 #include <linux/etherdevice.h>
5 #include <linux/netdevice.h>
6 #include <linux/if_ether.h>
7 #include <linux/if_vlan.h>
8 #include <linux/iopoll.h>
15 static int wx_phy_read_reg_mdi(struct mii_bus *bus, int phy_addr, int devnum, int regnum)
17 struct wx *wx = bus->priv;
21 /* setup and write the address cycle command */
22 command = WX_MSCA_RA(regnum) |
23 WX_MSCA_PA(phy_addr) |
25 wr32(wx, WX_MSCA, command);
27 command = WX_MSCC_CMD(WX_MSCA_CMD_READ) | WX_MSCC_BUSY;
28 if (wx->mac.type == wx_mac_em)
29 command |= WX_MDIO_CLK(6);
30 wr32(wx, WX_MSCC, command);
32 /* wait to complete */
33 ret = read_poll_timeout(rd32, val, !(val & WX_MSCC_BUSY), 1000,
34 100000, false, wx, WX_MSCC);
36 wx_err(wx, "Mdio read c22 command did not complete.\n");
40 return (u16)rd32(wx, WX_MSCC);
43 static int wx_phy_write_reg_mdi(struct mii_bus *bus, int phy_addr,
44 int devnum, int regnum, u16 value)
46 struct wx *wx = bus->priv;
50 /* setup and write the address cycle command */
51 command = WX_MSCA_RA(regnum) |
52 WX_MSCA_PA(phy_addr) |
54 wr32(wx, WX_MSCA, command);
56 command = value | WX_MSCC_CMD(WX_MSCA_CMD_WRITE) | WX_MSCC_BUSY;
57 if (wx->mac.type == wx_mac_em)
58 command |= WX_MDIO_CLK(6);
59 wr32(wx, WX_MSCC, command);
61 /* wait to complete */
62 ret = read_poll_timeout(rd32, val, !(val & WX_MSCC_BUSY), 1000,
63 100000, false, wx, WX_MSCC);
65 wx_err(wx, "Mdio write c22 command did not complete.\n");
70 int wx_phy_read_reg_mdi_c22(struct mii_bus *bus, int phy_addr, int regnum)
72 struct wx *wx = bus->priv;
74 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0xF);
75 return wx_phy_read_reg_mdi(bus, phy_addr, 0, regnum);
77 EXPORT_SYMBOL(wx_phy_read_reg_mdi_c22);
79 int wx_phy_write_reg_mdi_c22(struct mii_bus *bus, int phy_addr, int regnum, u16 value)
81 struct wx *wx = bus->priv;
83 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0xF);
84 return wx_phy_write_reg_mdi(bus, phy_addr, 0, regnum, value);
86 EXPORT_SYMBOL(wx_phy_write_reg_mdi_c22);
88 int wx_phy_read_reg_mdi_c45(struct mii_bus *bus, int phy_addr, int devnum, int regnum)
90 struct wx *wx = bus->priv;
92 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0);
93 return wx_phy_read_reg_mdi(bus, phy_addr, devnum, regnum);
95 EXPORT_SYMBOL(wx_phy_read_reg_mdi_c45);
97 int wx_phy_write_reg_mdi_c45(struct mii_bus *bus, int phy_addr,
98 int devnum, int regnum, u16 value)
100 struct wx *wx = bus->priv;
102 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0);
103 return wx_phy_write_reg_mdi(bus, phy_addr, devnum, regnum, value);
105 EXPORT_SYMBOL(wx_phy_write_reg_mdi_c45);
107 static void wx_intr_disable(struct wx *wx, u64 qmask)
111 mask = (qmask & U32_MAX);
113 wr32(wx, WX_PX_IMS(0), mask);
115 if (wx->mac.type == wx_mac_sp) {
116 mask = (qmask >> 32);
118 wr32(wx, WX_PX_IMS(1), mask);
122 void wx_intr_enable(struct wx *wx, u64 qmask)
126 mask = (qmask & U32_MAX);
128 wr32(wx, WX_PX_IMC(0), mask);
129 if (wx->mac.type == wx_mac_sp) {
130 mask = (qmask >> 32);
132 wr32(wx, WX_PX_IMC(1), mask);
135 EXPORT_SYMBOL(wx_intr_enable);
138 * wx_irq_disable - Mask off interrupt generation on the NIC
139 * @wx: board private structure
141 void wx_irq_disable(struct wx *wx)
143 struct pci_dev *pdev = wx->pdev;
145 wr32(wx, WX_PX_MISC_IEN, 0);
146 wx_intr_disable(wx, WX_INTR_ALL);
148 if (pdev->msix_enabled) {
151 for (vector = 0; vector < wx->num_q_vectors; vector++)
152 synchronize_irq(wx->msix_entries[vector].vector);
154 synchronize_irq(wx->msix_entries[vector].vector);
156 synchronize_irq(pdev->irq);
159 EXPORT_SYMBOL(wx_irq_disable);
161 /* cmd_addr is used for some special command:
162 * 1. to be sector address, when implemented erase sector command
163 * 2. to be flash address when implemented read, write flash address
165 static int wx_fmgr_cmd_op(struct wx *wx, u32 cmd, u32 cmd_addr)
167 u32 cmd_val = 0, val = 0;
169 cmd_val = WX_SPI_CMD_CMD(cmd) |
170 WX_SPI_CMD_CLK(WX_SPI_CLK_DIV) |
172 wr32(wx, WX_SPI_CMD, cmd_val);
174 return read_poll_timeout(rd32, val, (val & 0x1), 10, 100000,
175 false, wx, WX_SPI_STATUS);
178 static int wx_flash_read_dword(struct wx *wx, u32 addr, u32 *data)
182 ret = wx_fmgr_cmd_op(wx, WX_SPI_CMD_READ_DWORD, addr);
186 *data = rd32(wx, WX_SPI_DATA);
191 int wx_check_flash_load(struct wx *hw, u32 check_bit)
196 /* if there's flash existing */
197 if (!(rd32(hw, WX_SPI_STATUS) &
198 WX_SPI_STATUS_FLASH_BYPASS)) {
199 /* wait hw load flash done */
200 err = read_poll_timeout(rd32, reg, !(reg & check_bit), 20000, 2000000,
201 false, hw, WX_SPI_ILDR_STATUS);
203 wx_err(hw, "Check flash load timeout.\n");
208 EXPORT_SYMBOL(wx_check_flash_load);
210 void wx_control_hw(struct wx *wx, bool drv)
212 /* True : Let firmware know the driver has taken over
213 * False : Let firmware take over control of hw
215 wr32m(wx, WX_CFG_PORT_CTL, WX_CFG_PORT_CTL_DRV_LOAD,
216 drv ? WX_CFG_PORT_CTL_DRV_LOAD : 0);
218 EXPORT_SYMBOL(wx_control_hw);
221 * wx_mng_present - returns 0 when management capability is present
222 * @wx: pointer to hardware structure
224 int wx_mng_present(struct wx *wx)
228 fwsm = rd32(wx, WX_MIS_ST);
229 if (fwsm & WX_MIS_ST_MNG_INIT_DN)
234 EXPORT_SYMBOL(wx_mng_present);
236 /* Software lock to be held while software semaphore is being accessed. */
237 static DEFINE_MUTEX(wx_sw_sync_lock);
240 * wx_release_sw_sync - Release SW semaphore
241 * @wx: pointer to hardware structure
242 * @mask: Mask to specify which semaphore to release
244 * Releases the SW semaphore for the specified
245 * function (CSR, PHY0, PHY1, EEPROM, Flash)
247 static void wx_release_sw_sync(struct wx *wx, u32 mask)
249 mutex_lock(&wx_sw_sync_lock);
250 wr32m(wx, WX_MNG_SWFW_SYNC, mask, 0);
251 mutex_unlock(&wx_sw_sync_lock);
255 * wx_acquire_sw_sync - Acquire SW semaphore
256 * @wx: pointer to hardware structure
257 * @mask: Mask to specify which semaphore to acquire
259 * Acquires the SW semaphore for the specified
260 * function (CSR, PHY0, PHY1, EEPROM, Flash)
262 static int wx_acquire_sw_sync(struct wx *wx, u32 mask)
267 mutex_lock(&wx_sw_sync_lock);
268 ret = read_poll_timeout(rd32, sem, !(sem & mask),
269 5000, 2000000, false, wx, WX_MNG_SWFW_SYNC);
272 wr32(wx, WX_MNG_SWFW_SYNC, sem);
274 wx_err(wx, "SW Semaphore not granted: 0x%x.\n", sem);
276 mutex_unlock(&wx_sw_sync_lock);
282 * wx_host_interface_command - Issue command to manageability block
283 * @wx: pointer to the HW structure
284 * @buffer: contains the command to write and where the return status will
286 * @length: length of buffer, must be multiple of 4 bytes
287 * @timeout: time in ms to wait for command completion
288 * @return_data: read and return data from the buffer (true) or not (false)
289 * Needed because FW structures are big endian and decoding of
290 * these fields can be 8 bit or 16 bit based on command. Decoding
291 * is not easily understood without making a table of commands.
292 * So we will leave this up to the caller to read back the data
295 int wx_host_interface_command(struct wx *wx, u32 *buffer,
296 u32 length, u32 timeout, bool return_data)
298 u32 hdr_size = sizeof(struct wx_hic_hdr);
299 u32 hicr, i, bi, buf[64] = {};
304 if (length == 0 || length > WX_HI_MAX_BLOCK_BYTE_LENGTH) {
305 wx_err(wx, "Buffer length failure buffersize=%d.\n", length);
309 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
313 /* Calculate length in DWORDs. We must be DWORD aligned */
314 if ((length % (sizeof(u32))) != 0) {
315 wx_err(wx, "Buffer length failure, not aligned to dword");
320 dword_len = length >> 2;
322 /* The device driver writes the relevant command block
325 for (i = 0; i < dword_len; i++) {
326 wr32a(wx, WX_MNG_MBOX, i, (__force u32)cpu_to_le32(buffer[i]));
328 buf[i] = rd32a(wx, WX_MNG_MBOX, i);
330 /* Setting this bit tells the ARC that a new command is pending. */
331 wr32m(wx, WX_MNG_MBOX_CTL,
332 WX_MNG_MBOX_CTL_SWRDY, WX_MNG_MBOX_CTL_SWRDY);
334 status = read_poll_timeout(rd32, hicr, hicr & WX_MNG_MBOX_CTL_FWRDY, 1000,
335 timeout * 1000, false, wx, WX_MNG_MBOX_CTL);
337 /* Check command completion */
339 wx_dbg(wx, "Command has failed with no status valid.\n");
341 buf[0] = rd32(wx, WX_MNG_MBOX);
342 if ((buffer[0] & 0xff) != (~buf[0] >> 24)) {
346 if ((buf[0] & 0xff0000) >> 16 == 0x80) {
347 wx_dbg(wx, "It's unknown cmd.\n");
352 wx_dbg(wx, "write value:\n");
353 for (i = 0; i < dword_len; i++)
354 wx_dbg(wx, "%x ", buffer[i]);
355 wx_dbg(wx, "read value:\n");
356 for (i = 0; i < dword_len; i++)
357 wx_dbg(wx, "%x ", buf[i]);
363 /* Calculate length in DWORDs */
364 dword_len = hdr_size >> 2;
366 /* first pull in the header so we know the buffer length */
367 for (bi = 0; bi < dword_len; bi++) {
368 buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
369 le32_to_cpus(&buffer[bi]);
372 /* If there is any thing in data position pull it in */
373 buf_len = ((struct wx_hic_hdr *)buffer)->buf_len;
377 if (length < buf_len + hdr_size) {
378 wx_err(wx, "Buffer not large enough for reply message.\n");
383 /* Calculate length in DWORDs, add 3 for odd lengths */
384 dword_len = (buf_len + 3) >> 2;
386 /* Pull in the rest of the buffer (bi is where we left off) */
387 for (; bi <= dword_len; bi++) {
388 buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
389 le32_to_cpus(&buffer[bi]);
393 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
396 EXPORT_SYMBOL(wx_host_interface_command);
399 * wx_read_ee_hostif_data - Read EEPROM word using a host interface cmd
400 * assuming that the semaphore is already obtained.
401 * @wx: pointer to hardware structure
402 * @offset: offset of word in the EEPROM to read
403 * @data: word read from the EEPROM
405 * Reads a 16 bit word from the EEPROM using the hostif.
407 static int wx_read_ee_hostif_data(struct wx *wx, u16 offset, u16 *data)
409 struct wx_hic_read_shadow_ram buffer;
412 buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
413 buffer.hdr.req.buf_lenh = 0;
414 buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
415 buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
417 /* convert offset from words to bytes */
418 buffer.address = (__force u32)cpu_to_be32(offset * 2);
420 buffer.length = (__force u16)cpu_to_be16(sizeof(u16));
422 status = wx_host_interface_command(wx, (u32 *)&buffer, sizeof(buffer),
423 WX_HI_COMMAND_TIMEOUT, false);
428 *data = (u16)rd32a(wx, WX_MNG_MBOX, FW_NVM_DATA_OFFSET);
434 * wx_read_ee_hostif - Read EEPROM word using a host interface cmd
435 * @wx: pointer to hardware structure
436 * @offset: offset of word in the EEPROM to read
437 * @data: word read from the EEPROM
439 * Reads a 16 bit word from the EEPROM using the hostif.
441 int wx_read_ee_hostif(struct wx *wx, u16 offset, u16 *data)
445 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
447 status = wx_read_ee_hostif_data(wx, offset, data);
448 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
453 EXPORT_SYMBOL(wx_read_ee_hostif);
456 * wx_read_ee_hostif_buffer- Read EEPROM word(s) using hostif
457 * @wx: pointer to hardware structure
458 * @offset: offset of word in the EEPROM to read
459 * @words: number of words
460 * @data: word(s) read from the EEPROM
462 * Reads a 16 bit word(s) from the EEPROM using the hostif.
464 int wx_read_ee_hostif_buffer(struct wx *wx,
465 u16 offset, u16 words, u16 *data)
467 struct wx_hic_read_shadow_ram buffer;
468 u32 current_word = 0;
474 /* Take semaphore for the entire operation. */
475 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
480 if (words > FW_MAX_READ_BUFFER_SIZE / 2)
481 words_to_read = FW_MAX_READ_BUFFER_SIZE / 2;
483 words_to_read = words;
485 buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
486 buffer.hdr.req.buf_lenh = 0;
487 buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
488 buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
490 /* convert offset from words to bytes */
491 buffer.address = (__force u32)cpu_to_be32((offset + current_word) * 2);
492 buffer.length = (__force u16)cpu_to_be16(words_to_read * 2);
494 status = wx_host_interface_command(wx, (u32 *)&buffer,
496 WX_HI_COMMAND_TIMEOUT,
500 wx_err(wx, "Host interface command failed\n");
504 for (i = 0; i < words_to_read; i++) {
505 u32 reg = WX_MNG_MBOX + (FW_NVM_DATA_OFFSET << 2) + 2 * i;
507 value = rd32(wx, reg);
508 data[current_word] = (u16)(value & 0xffff);
511 if (i < words_to_read) {
513 data[current_word] = (u16)(value & 0xffff);
517 words -= words_to_read;
521 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
524 EXPORT_SYMBOL(wx_read_ee_hostif_buffer);
527 * wx_init_eeprom_params - Initialize EEPROM params
528 * @wx: pointer to hardware structure
530 * Initializes the EEPROM parameters wx_eeprom_info within the
531 * wx_hw struct in order to set up EEPROM access.
533 void wx_init_eeprom_params(struct wx *wx)
535 struct wx_eeprom_info *eeprom = &wx->eeprom;
539 if (eeprom->type == wx_eeprom_uninitialized) {
540 eeprom->semaphore_delay = 10;
541 eeprom->type = wx_eeprom_none;
543 if (!(rd32(wx, WX_SPI_STATUS) &
544 WX_SPI_STATUS_FLASH_BYPASS)) {
545 eeprom->type = wx_flash;
548 eeprom->word_size = eeprom_size >> 1;
550 wx_dbg(wx, "Eeprom params: type = %d, size = %d\n",
551 eeprom->type, eeprom->word_size);
555 if (wx->mac.type == wx_mac_sp) {
556 if (wx_read_ee_hostif(wx, WX_SW_REGION_PTR, &data)) {
557 wx_err(wx, "NVM Read Error\n");
563 eeprom->sw_region_offset = data;
565 EXPORT_SYMBOL(wx_init_eeprom_params);
568 * wx_get_mac_addr - Generic get MAC address
569 * @wx: pointer to hardware structure
570 * @mac_addr: Adapter MAC address
572 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
573 * A reset of the adapter must be performed prior to calling this function
574 * in order for the MAC address to have been loaded from the EEPROM into RAR0
576 void wx_get_mac_addr(struct wx *wx, u8 *mac_addr)
582 wr32(wx, WX_PSR_MAC_SWC_IDX, 0);
583 rar_high = rd32(wx, WX_PSR_MAC_SWC_AD_H);
584 rar_low = rd32(wx, WX_PSR_MAC_SWC_AD_L);
586 for (i = 0; i < 2; i++)
587 mac_addr[i] = (u8)(rar_high >> (1 - i) * 8);
589 for (i = 0; i < 4; i++)
590 mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8);
592 EXPORT_SYMBOL(wx_get_mac_addr);
595 * wx_set_rar - Set Rx address register
596 * @wx: pointer to hardware structure
597 * @index: Receive address register to write
598 * @addr: Address to put into receive address register
599 * @pools: VMDq "set" or "pool" index
600 * @enable_addr: set flag that address is active
602 * Puts an ethernet address into a receive address register.
604 static int wx_set_rar(struct wx *wx, u32 index, u8 *addr, u64 pools,
607 u32 rar_entries = wx->mac.num_rar_entries;
608 u32 rar_low, rar_high;
610 /* Make sure we are using a valid rar index range */
611 if (index >= rar_entries) {
612 wx_err(wx, "RAR index %d is out of range.\n", index);
616 /* select the MAC address */
617 wr32(wx, WX_PSR_MAC_SWC_IDX, index);
619 /* setup VMDq pool mapping */
620 wr32(wx, WX_PSR_MAC_SWC_VM_L, pools & 0xFFFFFFFF);
621 if (wx->mac.type == wx_mac_sp)
622 wr32(wx, WX_PSR_MAC_SWC_VM_H, pools >> 32);
624 /* HW expects these in little endian so we reverse the byte
625 * order from network order (big endian) to little endian
627 * Some parts put the VMDq setting in the extra RAH bits,
628 * so save everything except the lower 16 bits that hold part
629 * of the address and the address valid bit.
631 rar_low = ((u32)addr[5] |
632 ((u32)addr[4] << 8) |
633 ((u32)addr[3] << 16) |
634 ((u32)addr[2] << 24));
635 rar_high = ((u32)addr[1] |
636 ((u32)addr[0] << 8));
637 if (enable_addr != 0)
638 rar_high |= WX_PSR_MAC_SWC_AD_H_AV;
640 wr32(wx, WX_PSR_MAC_SWC_AD_L, rar_low);
641 wr32m(wx, WX_PSR_MAC_SWC_AD_H,
642 (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
643 WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
644 WX_PSR_MAC_SWC_AD_H_AV),
651 * wx_clear_rar - Remove Rx address register
652 * @wx: pointer to hardware structure
653 * @index: Receive address register to write
655 * Clears an ethernet address from a receive address register.
657 static int wx_clear_rar(struct wx *wx, u32 index)
659 u32 rar_entries = wx->mac.num_rar_entries;
661 /* Make sure we are using a valid rar index range */
662 if (index >= rar_entries) {
663 wx_err(wx, "RAR index %d is out of range.\n", index);
667 /* Some parts put the VMDq setting in the extra RAH bits,
668 * so save everything except the lower 16 bits that hold part
669 * of the address and the address valid bit.
671 wr32(wx, WX_PSR_MAC_SWC_IDX, index);
673 wr32(wx, WX_PSR_MAC_SWC_VM_L, 0);
674 wr32(wx, WX_PSR_MAC_SWC_VM_H, 0);
676 wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
677 wr32m(wx, WX_PSR_MAC_SWC_AD_H,
678 (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
679 WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
680 WX_PSR_MAC_SWC_AD_H_AV),
687 * wx_clear_vmdq - Disassociate a VMDq pool index from a rx address
688 * @wx: pointer to hardware struct
689 * @rar: receive address register index to disassociate
690 * @vmdq: VMDq pool index to remove from the rar
692 static int wx_clear_vmdq(struct wx *wx, u32 rar, u32 __maybe_unused vmdq)
694 u32 rar_entries = wx->mac.num_rar_entries;
695 u32 mpsar_lo, mpsar_hi;
697 /* Make sure we are using a valid rar index range */
698 if (rar >= rar_entries) {
699 wx_err(wx, "RAR index %d is out of range.\n", rar);
703 wr32(wx, WX_PSR_MAC_SWC_IDX, rar);
704 mpsar_lo = rd32(wx, WX_PSR_MAC_SWC_VM_L);
705 mpsar_hi = rd32(wx, WX_PSR_MAC_SWC_VM_H);
707 if (!mpsar_lo && !mpsar_hi)
710 /* was that the last pool using this rar? */
711 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
712 wx_clear_rar(wx, rar);
718 * wx_init_uta_tables - Initialize the Unicast Table Array
719 * @wx: pointer to hardware structure
721 static void wx_init_uta_tables(struct wx *wx)
725 wx_dbg(wx, " Clearing UTA\n");
727 for (i = 0; i < 128; i++)
728 wr32(wx, WX_PSR_UC_TBL(i), 0);
732 * wx_init_rx_addrs - Initializes receive address filters.
733 * @wx: pointer to hardware structure
735 * Places the MAC address in receive address register 0 and clears the rest
736 * of the receive address registers. Clears the multicast table. Assumes
737 * the receiver is in reset when the routine is called.
739 void wx_init_rx_addrs(struct wx *wx)
741 u32 rar_entries = wx->mac.num_rar_entries;
745 /* If the current mac address is valid, assume it is a software override
746 * to the permanent address.
747 * Otherwise, use the permanent address from the eeprom.
749 if (!is_valid_ether_addr(wx->mac.addr)) {
750 /* Get the MAC address from the RAR0 for later reference */
751 wx_get_mac_addr(wx, wx->mac.addr);
752 wx_dbg(wx, "Keeping Current RAR0 Addr = %pM\n", wx->mac.addr);
754 /* Setup the receive address. */
755 wx_dbg(wx, "Overriding MAC Address in RAR[0]\n");
756 wx_dbg(wx, "New MAC Addr = %pM\n", wx->mac.addr);
758 wx_set_rar(wx, 0, wx->mac.addr, 0, WX_PSR_MAC_SWC_AD_H_AV);
760 if (wx->mac.type == wx_mac_sp) {
761 /* clear VMDq pool/queue selection for RAR 0 */
762 wx_clear_vmdq(wx, 0, WX_CLEAR_VMDQ_ALL);
766 /* Zero out the other receive addresses. */
767 wx_dbg(wx, "Clearing RAR[1-%d]\n", rar_entries - 1);
768 for (i = 1; i < rar_entries; i++) {
769 wr32(wx, WX_PSR_MAC_SWC_IDX, i);
770 wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
771 wr32(wx, WX_PSR_MAC_SWC_AD_H, 0);
775 wx->addr_ctrl.mta_in_use = 0;
776 psrctl = rd32(wx, WX_PSR_CTL);
777 psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
778 psrctl |= wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT;
779 wr32(wx, WX_PSR_CTL, psrctl);
780 wx_dbg(wx, " Clearing MTA\n");
781 for (i = 0; i < wx->mac.mcft_size; i++)
782 wr32(wx, WX_PSR_MC_TBL(i), 0);
784 wx_init_uta_tables(wx);
786 EXPORT_SYMBOL(wx_init_rx_addrs);
788 static void wx_sync_mac_table(struct wx *wx)
792 for (i = 0; i < wx->mac.num_rar_entries; i++) {
793 if (wx->mac_table[i].state & WX_MAC_STATE_MODIFIED) {
794 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
796 wx->mac_table[i].addr,
797 wx->mac_table[i].pools,
798 WX_PSR_MAC_SWC_AD_H_AV);
802 wx->mac_table[i].state &= ~(WX_MAC_STATE_MODIFIED);
807 /* this function destroys the first RAR entry */
808 void wx_mac_set_default_filter(struct wx *wx, u8 *addr)
810 memcpy(&wx->mac_table[0].addr, addr, ETH_ALEN);
811 wx->mac_table[0].pools = 1ULL;
812 wx->mac_table[0].state = (WX_MAC_STATE_DEFAULT | WX_MAC_STATE_IN_USE);
813 wx_set_rar(wx, 0, wx->mac_table[0].addr,
814 wx->mac_table[0].pools,
815 WX_PSR_MAC_SWC_AD_H_AV);
817 EXPORT_SYMBOL(wx_mac_set_default_filter);
819 void wx_flush_sw_mac_table(struct wx *wx)
823 for (i = 0; i < wx->mac.num_rar_entries; i++) {
824 if (!(wx->mac_table[i].state & WX_MAC_STATE_IN_USE))
827 wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
828 wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
829 memset(wx->mac_table[i].addr, 0, ETH_ALEN);
830 wx->mac_table[i].pools = 0;
832 wx_sync_mac_table(wx);
834 EXPORT_SYMBOL(wx_flush_sw_mac_table);
836 static int wx_add_mac_filter(struct wx *wx, u8 *addr, u16 pool)
840 if (is_zero_ether_addr(addr))
843 for (i = 0; i < wx->mac.num_rar_entries; i++) {
844 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
845 if (ether_addr_equal(addr, wx->mac_table[i].addr)) {
846 if (wx->mac_table[i].pools != (1ULL << pool)) {
847 memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
848 wx->mac_table[i].pools |= (1ULL << pool);
849 wx_sync_mac_table(wx);
855 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE)
857 wx->mac_table[i].state |= (WX_MAC_STATE_MODIFIED |
858 WX_MAC_STATE_IN_USE);
859 memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
860 wx->mac_table[i].pools |= (1ULL << pool);
861 wx_sync_mac_table(wx);
867 static int wx_del_mac_filter(struct wx *wx, u8 *addr, u16 pool)
871 if (is_zero_ether_addr(addr))
874 /* search table for addr, if found, set to 0 and sync */
875 for (i = 0; i < wx->mac.num_rar_entries; i++) {
876 if (!ether_addr_equal(addr, wx->mac_table[i].addr))
879 wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
880 wx->mac_table[i].pools &= ~(1ULL << pool);
881 if (!wx->mac_table[i].pools) {
882 wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
883 memset(wx->mac_table[i].addr, 0, ETH_ALEN);
885 wx_sync_mac_table(wx);
891 static int wx_available_rars(struct wx *wx)
895 for (i = 0; i < wx->mac.num_rar_entries; i++) {
896 if (wx->mac_table[i].state == 0)
904 * wx_write_uc_addr_list - write unicast addresses to RAR table
905 * @netdev: network interface device structure
906 * @pool: index for mac table
908 * Writes unicast address list to the RAR table.
909 * Returns: -ENOMEM on failure/insufficient address space
910 * 0 on no addresses written
911 * X on writing X addresses to the RAR table
913 static int wx_write_uc_addr_list(struct net_device *netdev, int pool)
915 struct wx *wx = netdev_priv(netdev);
918 /* return ENOMEM indicating insufficient memory for addresses */
919 if (netdev_uc_count(netdev) > wx_available_rars(wx))
922 if (!netdev_uc_empty(netdev)) {
923 struct netdev_hw_addr *ha;
925 netdev_for_each_uc_addr(ha, netdev) {
926 wx_del_mac_filter(wx, ha->addr, pool);
927 wx_add_mac_filter(wx, ha->addr, pool);
935 * wx_mta_vector - Determines bit-vector in multicast table to set
936 * @wx: pointer to private structure
937 * @mc_addr: the multicast address
939 * Extracts the 12 bits, from a multicast address, to determine which
940 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
941 * incoming rx multicast addresses, to determine the bit-vector to check in
942 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
943 * by the MO field of the MCSTCTRL. The MO field is set during initialization
946 static u32 wx_mta_vector(struct wx *wx, u8 *mc_addr)
950 switch (wx->mac.mc_filter_type) {
951 case 0: /* use bits [47:36] of the address */
952 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
954 case 1: /* use bits [46:35] of the address */
955 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
957 case 2: /* use bits [45:34] of the address */
958 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
960 case 3: /* use bits [43:32] of the address */
961 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
963 default: /* Invalid mc_filter_type */
964 wx_err(wx, "MC filter type param set incorrectly\n");
968 /* vector can only be 12-bits or boundary will be exceeded */
974 * wx_set_mta - Set bit-vector in multicast table
975 * @wx: pointer to private structure
976 * @mc_addr: Multicast address
978 * Sets the bit-vector in the multicast table.
980 static void wx_set_mta(struct wx *wx, u8 *mc_addr)
982 u32 vector, vector_bit, vector_reg;
984 wx->addr_ctrl.mta_in_use++;
986 vector = wx_mta_vector(wx, mc_addr);
987 wx_dbg(wx, " bit-vector = 0x%03X\n", vector);
989 /* The MTA is a register array of 128 32-bit registers. It is treated
990 * like an array of 4096 bits. We want to set bit
991 * BitArray[vector_value]. So we figure out what register the bit is
992 * in, read it, OR in the new bit, then write back the new value. The
993 * register is determined by the upper 7 bits of the vector value and
994 * the bit within that register are determined by the lower 5 bits of
997 vector_reg = (vector >> 5) & 0x7F;
998 vector_bit = vector & 0x1F;
999 wx->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1003 * wx_update_mc_addr_list - Updates MAC list of multicast addresses
1004 * @wx: pointer to private structure
1005 * @netdev: pointer to net device structure
1007 * The given list replaces any existing list. Clears the MC addrs from receive
1008 * address registers and the multicast table. Uses unused receive address
1009 * registers for the first multicast addresses, and hashes the rest into the
1012 static void wx_update_mc_addr_list(struct wx *wx, struct net_device *netdev)
1014 struct netdev_hw_addr *ha;
1017 /* Set the new number of MC addresses that we are being requested to
1020 wx->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
1021 wx->addr_ctrl.mta_in_use = 0;
1023 /* Clear mta_shadow */
1024 wx_dbg(wx, " Clearing MTA\n");
1025 memset(&wx->mac.mta_shadow, 0, sizeof(wx->mac.mta_shadow));
1027 /* Update mta_shadow */
1028 netdev_for_each_mc_addr(ha, netdev) {
1029 wx_dbg(wx, " Adding the multicast addresses:\n");
1030 wx_set_mta(wx, ha->addr);
1034 for (i = 0; i < wx->mac.mcft_size; i++)
1035 wr32a(wx, WX_PSR_MC_TBL(0), i,
1036 wx->mac.mta_shadow[i]);
1038 if (wx->addr_ctrl.mta_in_use > 0) {
1039 psrctl = rd32(wx, WX_PSR_CTL);
1040 psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
1041 psrctl |= WX_PSR_CTL_MFE |
1042 (wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT);
1043 wr32(wx, WX_PSR_CTL, psrctl);
1046 wx_dbg(wx, "Update mc addr list Complete\n");
1050 * wx_write_mc_addr_list - write multicast addresses to MTA
1051 * @netdev: network interface device structure
1053 * Writes multicast address list to the MTA hash table.
1054 * Returns: 0 on no addresses written
1055 * X on writing X addresses to MTA
1057 static int wx_write_mc_addr_list(struct net_device *netdev)
1059 struct wx *wx = netdev_priv(netdev);
1061 if (!netif_running(netdev))
1064 wx_update_mc_addr_list(wx, netdev);
1066 return netdev_mc_count(netdev);
1070 * wx_set_mac - Change the Ethernet Address of the NIC
1071 * @netdev: network interface device structure
1072 * @p: pointer to an address structure
1074 * Returns 0 on success, negative on failure
1076 int wx_set_mac(struct net_device *netdev, void *p)
1078 struct wx *wx = netdev_priv(netdev);
1079 struct sockaddr *addr = p;
1082 retval = eth_prepare_mac_addr_change(netdev, addr);
1086 wx_del_mac_filter(wx, wx->mac.addr, 0);
1087 eth_hw_addr_set(netdev, addr->sa_data);
1088 memcpy(wx->mac.addr, addr->sa_data, netdev->addr_len);
1090 wx_mac_set_default_filter(wx, wx->mac.addr);
1094 EXPORT_SYMBOL(wx_set_mac);
1096 void wx_disable_rx(struct wx *wx)
1101 rxctrl = rd32(wx, WX_RDB_PB_CTL);
1102 if (rxctrl & WX_RDB_PB_CTL_RXEN) {
1103 pfdtxgswc = rd32(wx, WX_PSR_CTL);
1104 if (pfdtxgswc & WX_PSR_CTL_SW_EN) {
1105 pfdtxgswc &= ~WX_PSR_CTL_SW_EN;
1106 wr32(wx, WX_PSR_CTL, pfdtxgswc);
1107 wx->mac.set_lben = true;
1109 wx->mac.set_lben = false;
1111 rxctrl &= ~WX_RDB_PB_CTL_RXEN;
1112 wr32(wx, WX_RDB_PB_CTL, rxctrl);
1114 if (!(((wx->subsystem_device_id & WX_NCSI_MASK) == WX_NCSI_SUP) ||
1115 ((wx->subsystem_device_id & WX_WOL_MASK) == WX_WOL_SUP))) {
1116 /* disable mac receiver */
1117 wr32m(wx, WX_MAC_RX_CFG,
1118 WX_MAC_RX_CFG_RE, 0);
1122 EXPORT_SYMBOL(wx_disable_rx);
1124 static void wx_enable_rx(struct wx *wx)
1128 /* enable mac receiver */
1129 wr32m(wx, WX_MAC_RX_CFG,
1130 WX_MAC_RX_CFG_RE, WX_MAC_RX_CFG_RE);
1132 wr32m(wx, WX_RDB_PB_CTL,
1133 WX_RDB_PB_CTL_RXEN, WX_RDB_PB_CTL_RXEN);
1135 if (wx->mac.set_lben) {
1136 psrctl = rd32(wx, WX_PSR_CTL);
1137 psrctl |= WX_PSR_CTL_SW_EN;
1138 wr32(wx, WX_PSR_CTL, psrctl);
1139 wx->mac.set_lben = false;
1144 * wx_set_rxpba - Initialize Rx packet buffer
1145 * @wx: pointer to private structure
1147 static void wx_set_rxpba(struct wx *wx)
1149 u32 rxpktsize, txpktsize, txpbthresh;
1151 rxpktsize = wx->mac.rx_pb_size << WX_RDB_PB_SZ_SHIFT;
1152 wr32(wx, WX_RDB_PB_SZ(0), rxpktsize);
1154 /* Only support an equally distributed Tx packet buffer strategy. */
1155 txpktsize = wx->mac.tx_pb_size;
1156 txpbthresh = (txpktsize / 1024) - WX_TXPKT_SIZE_MAX;
1157 wr32(wx, WX_TDB_PB_SZ(0), txpktsize);
1158 wr32(wx, WX_TDM_PB_THRE(0), txpbthresh);
1161 static void wx_configure_port(struct wx *wx)
1165 value = WX_CFG_PORT_CTL_D_VLAN | WX_CFG_PORT_CTL_QINQ;
1166 wr32m(wx, WX_CFG_PORT_CTL,
1167 WX_CFG_PORT_CTL_D_VLAN |
1168 WX_CFG_PORT_CTL_QINQ,
1171 wr32(wx, WX_CFG_TAG_TPID(0),
1172 ETH_P_8021Q | ETH_P_8021AD << 16);
1173 wx->tpid[0] = ETH_P_8021Q;
1174 wx->tpid[1] = ETH_P_8021AD;
1175 for (i = 1; i < 4; i++)
1176 wr32(wx, WX_CFG_TAG_TPID(i),
1177 ETH_P_8021Q | ETH_P_8021Q << 16);
1178 for (i = 2; i < 8; i++)
1179 wx->tpid[i] = ETH_P_8021Q;
1183 * wx_disable_sec_rx_path - Stops the receive data path
1184 * @wx: pointer to private structure
1186 * Stops the receive data path and waits for the HW to internally empty
1187 * the Rx security block
1189 static int wx_disable_sec_rx_path(struct wx *wx)
1193 wr32m(wx, WX_RSC_CTL,
1194 WX_RSC_CTL_RX_DIS, WX_RSC_CTL_RX_DIS);
1196 return read_poll_timeout(rd32, secrx, secrx & WX_RSC_ST_RSEC_RDY,
1197 1000, 40000, false, wx, WX_RSC_ST);
1201 * wx_enable_sec_rx_path - Enables the receive data path
1202 * @wx: pointer to private structure
1204 * Enables the receive data path.
1206 static void wx_enable_sec_rx_path(struct wx *wx)
1208 wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_RX_DIS, 0);
1212 static void wx_vlan_strip_control(struct wx *wx, bool enable)
1216 for (i = 0; i < wx->num_rx_queues; i++) {
1217 struct wx_ring *ring = wx->rx_ring[i];
1220 wr32m(wx, WX_PX_RR_CFG(j), WX_PX_RR_CFG_VLAN,
1221 enable ? WX_PX_RR_CFG_VLAN : 0);
1225 void wx_set_rx_mode(struct net_device *netdev)
1227 struct wx *wx = netdev_priv(netdev);
1228 netdev_features_t features;
1229 u32 fctrl, vmolr, vlnctrl;
1232 features = netdev->features;
1234 /* Check for Promiscuous and All Multicast modes */
1235 fctrl = rd32(wx, WX_PSR_CTL);
1236 fctrl &= ~(WX_PSR_CTL_UPE | WX_PSR_CTL_MPE);
1237 vmolr = rd32(wx, WX_PSR_VM_L2CTL(0));
1238 vmolr &= ~(WX_PSR_VM_L2CTL_UPE |
1239 WX_PSR_VM_L2CTL_MPE |
1240 WX_PSR_VM_L2CTL_ROPE |
1241 WX_PSR_VM_L2CTL_ROMPE);
1242 vlnctrl = rd32(wx, WX_PSR_VLAN_CTL);
1243 vlnctrl &= ~(WX_PSR_VLAN_CTL_VFE | WX_PSR_VLAN_CTL_CFIEN);
1245 /* set all bits that we expect to always be set */
1246 fctrl |= WX_PSR_CTL_BAM | WX_PSR_CTL_MFE;
1247 vmolr |= WX_PSR_VM_L2CTL_BAM |
1248 WX_PSR_VM_L2CTL_AUPE |
1249 WX_PSR_VM_L2CTL_VACC;
1250 vlnctrl |= WX_PSR_VLAN_CTL_VFE;
1252 wx->addr_ctrl.user_set_promisc = false;
1253 if (netdev->flags & IFF_PROMISC) {
1254 wx->addr_ctrl.user_set_promisc = true;
1255 fctrl |= WX_PSR_CTL_UPE | WX_PSR_CTL_MPE;
1256 /* pf don't want packets routing to vf, so clear UPE */
1257 vmolr |= WX_PSR_VM_L2CTL_MPE;
1258 vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
1261 if (netdev->flags & IFF_ALLMULTI) {
1262 fctrl |= WX_PSR_CTL_MPE;
1263 vmolr |= WX_PSR_VM_L2CTL_MPE;
1266 if (netdev->features & NETIF_F_RXALL) {
1267 vmolr |= (WX_PSR_VM_L2CTL_UPE | WX_PSR_VM_L2CTL_MPE);
1268 vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
1269 /* receive bad packets */
1270 wr32m(wx, WX_RSC_CTL,
1271 WX_RSC_CTL_SAVE_MAC_ERR,
1272 WX_RSC_CTL_SAVE_MAC_ERR);
1274 vmolr |= WX_PSR_VM_L2CTL_ROPE | WX_PSR_VM_L2CTL_ROMPE;
1277 /* Write addresses to available RAR registers, if there is not
1278 * sufficient space to store all the addresses then enable
1279 * unicast promiscuous mode
1281 count = wx_write_uc_addr_list(netdev, 0);
1283 vmolr &= ~WX_PSR_VM_L2CTL_ROPE;
1284 vmolr |= WX_PSR_VM_L2CTL_UPE;
1287 /* Write addresses to the MTA, if the attempt fails
1288 * then we should just turn on promiscuous mode so
1289 * that we can at least receive multicast traffic
1291 count = wx_write_mc_addr_list(netdev);
1293 vmolr &= ~WX_PSR_VM_L2CTL_ROMPE;
1294 vmolr |= WX_PSR_VM_L2CTL_MPE;
1297 wr32(wx, WX_PSR_VLAN_CTL, vlnctrl);
1298 wr32(wx, WX_PSR_CTL, fctrl);
1299 wr32(wx, WX_PSR_VM_L2CTL(0), vmolr);
1301 if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1302 (features & NETIF_F_HW_VLAN_STAG_RX))
1303 wx_vlan_strip_control(wx, true);
1305 wx_vlan_strip_control(wx, false);
1308 EXPORT_SYMBOL(wx_set_rx_mode);
1310 static void wx_set_rx_buffer_len(struct wx *wx)
1312 struct net_device *netdev = wx->netdev;
1313 u32 mhadd, max_frame;
1315 max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
1316 /* adjust max frame to be at least the size of a standard frame */
1317 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
1318 max_frame = (ETH_FRAME_LEN + ETH_FCS_LEN);
1320 mhadd = rd32(wx, WX_PSR_MAX_SZ);
1321 if (max_frame != mhadd)
1322 wr32(wx, WX_PSR_MAX_SZ, max_frame);
1326 * wx_change_mtu - Change the Maximum Transfer Unit
1327 * @netdev: network interface device structure
1328 * @new_mtu: new value for maximum frame size
1330 * Returns 0 on success, negative on failure
1332 int wx_change_mtu(struct net_device *netdev, int new_mtu)
1334 struct wx *wx = netdev_priv(netdev);
1336 netdev->mtu = new_mtu;
1337 wx_set_rx_buffer_len(wx);
1341 EXPORT_SYMBOL(wx_change_mtu);
1343 /* Disable the specified rx queue */
1344 void wx_disable_rx_queue(struct wx *wx, struct wx_ring *ring)
1346 u8 reg_idx = ring->reg_idx;
1350 /* write value back with RRCFG.EN bit cleared */
1351 wr32m(wx, WX_PX_RR_CFG(reg_idx),
1352 WX_PX_RR_CFG_RR_EN, 0);
1354 /* the hardware may take up to 100us to really disable the rx queue */
1355 ret = read_poll_timeout(rd32, rxdctl, !(rxdctl & WX_PX_RR_CFG_RR_EN),
1356 10, 100, true, wx, WX_PX_RR_CFG(reg_idx));
1358 if (ret == -ETIMEDOUT) {
1359 /* Just for information */
1361 "RRCFG.EN on Rx queue %d not cleared within the polling period\n",
1365 EXPORT_SYMBOL(wx_disable_rx_queue);
1367 static void wx_enable_rx_queue(struct wx *wx, struct wx_ring *ring)
1369 u8 reg_idx = ring->reg_idx;
1373 ret = read_poll_timeout(rd32, rxdctl, rxdctl & WX_PX_RR_CFG_RR_EN,
1374 1000, 10000, true, wx, WX_PX_RR_CFG(reg_idx));
1376 if (ret == -ETIMEDOUT) {
1377 /* Just for information */
1379 "RRCFG.EN on Rx queue %d not set within the polling period\n",
1384 static void wx_configure_srrctl(struct wx *wx,
1385 struct wx_ring *rx_ring)
1387 u16 reg_idx = rx_ring->reg_idx;
1390 srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
1391 srrctl &= ~(WX_PX_RR_CFG_RR_HDR_SZ |
1392 WX_PX_RR_CFG_RR_BUF_SZ |
1393 WX_PX_RR_CFG_SPLIT_MODE);
1394 /* configure header buffer length, needed for RSC */
1395 srrctl |= WX_RXBUFFER_256 << WX_PX_RR_CFG_BHDRSIZE_SHIFT;
1397 /* configure the packet buffer length */
1398 srrctl |= WX_RX_BUFSZ >> WX_PX_RR_CFG_BSIZEPKT_SHIFT;
1400 wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
1403 static void wx_configure_tx_ring(struct wx *wx,
1404 struct wx_ring *ring)
1406 u32 txdctl = WX_PX_TR_CFG_ENABLE;
1407 u8 reg_idx = ring->reg_idx;
1408 u64 tdba = ring->dma;
1411 /* disable queue to avoid issues while updating state */
1412 wr32(wx, WX_PX_TR_CFG(reg_idx), WX_PX_TR_CFG_SWFLSH);
1415 wr32(wx, WX_PX_TR_BAL(reg_idx), tdba & DMA_BIT_MASK(32));
1416 wr32(wx, WX_PX_TR_BAH(reg_idx), upper_32_bits(tdba));
1418 /* reset head and tail pointers */
1419 wr32(wx, WX_PX_TR_RP(reg_idx), 0);
1420 wr32(wx, WX_PX_TR_WP(reg_idx), 0);
1421 ring->tail = wx->hw_addr + WX_PX_TR_WP(reg_idx);
1423 if (ring->count < WX_MAX_TXD)
1424 txdctl |= ring->count / 128 << WX_PX_TR_CFG_TR_SIZE_SHIFT;
1425 txdctl |= 0x20 << WX_PX_TR_CFG_WTHRESH_SHIFT;
1427 /* reinitialize tx_buffer_info */
1428 memset(ring->tx_buffer_info, 0,
1429 sizeof(struct wx_tx_buffer) * ring->count);
1432 wr32(wx, WX_PX_TR_CFG(reg_idx), txdctl);
1434 /* poll to verify queue is enabled */
1435 ret = read_poll_timeout(rd32, txdctl, txdctl & WX_PX_TR_CFG_ENABLE,
1436 1000, 10000, true, wx, WX_PX_TR_CFG(reg_idx));
1437 if (ret == -ETIMEDOUT)
1438 wx_err(wx, "Could not enable Tx Queue %d\n", reg_idx);
1441 static void wx_configure_rx_ring(struct wx *wx,
1442 struct wx_ring *ring)
1444 u16 reg_idx = ring->reg_idx;
1445 union wx_rx_desc *rx_desc;
1446 u64 rdba = ring->dma;
1449 /* disable queue to avoid issues while updating state */
1450 rxdctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
1451 wx_disable_rx_queue(wx, ring);
1453 wr32(wx, WX_PX_RR_BAL(reg_idx), rdba & DMA_BIT_MASK(32));
1454 wr32(wx, WX_PX_RR_BAH(reg_idx), upper_32_bits(rdba));
1456 if (ring->count == WX_MAX_RXD)
1457 rxdctl |= 0 << WX_PX_RR_CFG_RR_SIZE_SHIFT;
1459 rxdctl |= (ring->count / 128) << WX_PX_RR_CFG_RR_SIZE_SHIFT;
1461 rxdctl |= 0x1 << WX_PX_RR_CFG_RR_THER_SHIFT;
1462 wr32(wx, WX_PX_RR_CFG(reg_idx), rxdctl);
1464 /* reset head and tail pointers */
1465 wr32(wx, WX_PX_RR_RP(reg_idx), 0);
1466 wr32(wx, WX_PX_RR_WP(reg_idx), 0);
1467 ring->tail = wx->hw_addr + WX_PX_RR_WP(reg_idx);
1469 wx_configure_srrctl(wx, ring);
1471 /* initialize rx_buffer_info */
1472 memset(ring->rx_buffer_info, 0,
1473 sizeof(struct wx_rx_buffer) * ring->count);
1475 /* initialize Rx descriptor 0 */
1476 rx_desc = WX_RX_DESC(ring, 0);
1477 rx_desc->wb.upper.length = 0;
1479 /* enable receive descriptor ring */
1480 wr32m(wx, WX_PX_RR_CFG(reg_idx),
1481 WX_PX_RR_CFG_RR_EN, WX_PX_RR_CFG_RR_EN);
1483 wx_enable_rx_queue(wx, ring);
1484 wx_alloc_rx_buffers(ring, wx_desc_unused(ring));
1488 * wx_configure_tx - Configure Transmit Unit after Reset
1489 * @wx: pointer to private structure
1491 * Configure the Tx unit of the MAC after a reset.
1493 static void wx_configure_tx(struct wx *wx)
1497 /* TDM_CTL.TE must be before Tx queues are enabled */
1498 wr32m(wx, WX_TDM_CTL,
1499 WX_TDM_CTL_TE, WX_TDM_CTL_TE);
1501 /* Setup the HW Tx Head and Tail descriptor pointers */
1502 for (i = 0; i < wx->num_tx_queues; i++)
1503 wx_configure_tx_ring(wx, wx->tx_ring[i]);
1505 wr32m(wx, WX_TSC_BUF_AE, WX_TSC_BUF_AE_THR, 0x10);
1507 if (wx->mac.type == wx_mac_em)
1508 wr32m(wx, WX_TSC_CTL, WX_TSC_CTL_TX_DIS | WX_TSC_CTL_TSEC_DIS, 0x1);
1510 /* enable mac transmitter */
1511 wr32m(wx, WX_MAC_TX_CFG,
1512 WX_MAC_TX_CFG_TE, WX_MAC_TX_CFG_TE);
1515 static void wx_restore_vlan(struct wx *wx)
1519 wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), 0);
1521 for_each_set_bit_from(vid, wx->active_vlans, VLAN_N_VID)
1522 wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), vid);
1526 * wx_configure_rx - Configure Receive Unit after Reset
1527 * @wx: pointer to private structure
1529 * Configure the Rx unit of the MAC after a reset.
1531 void wx_configure_rx(struct wx *wx)
1538 psrtype = WX_RDB_PL_CFG_L4HDR |
1539 WX_RDB_PL_CFG_L3HDR |
1540 WX_RDB_PL_CFG_L2HDR |
1541 WX_RDB_PL_CFG_TUN_TUNHDR;
1542 wr32(wx, WX_RDB_PL_CFG(0), psrtype);
1544 /* enable hw crc stripping */
1545 wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_CRC_STRIP, WX_RSC_CTL_CRC_STRIP);
1547 if (wx->mac.type == wx_mac_sp) {
1551 psrctl = rd32(wx, WX_PSR_CTL);
1552 psrctl |= WX_PSR_CTL_RSC_ACK; /* Disable RSC for ACK packets */
1553 psrctl |= WX_PSR_CTL_RSC_DIS;
1554 wr32(wx, WX_PSR_CTL, psrctl);
1557 /* set_rx_buffer_len must be called before ring initialization */
1558 wx_set_rx_buffer_len(wx);
1560 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1561 * the Base and Length of the Rx Descriptor Ring
1563 for (i = 0; i < wx->num_rx_queues; i++)
1564 wx_configure_rx_ring(wx, wx->rx_ring[i]);
1566 /* Enable all receives, disable security engine prior to block traffic */
1567 ret = wx_disable_sec_rx_path(wx);
1569 wx_err(wx, "The register status is abnormal, please check device.");
1572 wx_enable_sec_rx_path(wx);
1574 EXPORT_SYMBOL(wx_configure_rx);
1576 static void wx_configure_isb(struct wx *wx)
1578 /* set ISB Address */
1579 wr32(wx, WX_PX_ISB_ADDR_L, wx->isb_dma & DMA_BIT_MASK(32));
1580 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
1581 wr32(wx, WX_PX_ISB_ADDR_H, upper_32_bits(wx->isb_dma));
1584 void wx_configure(struct wx *wx)
1587 wx_configure_port(wx);
1589 wx_set_rx_mode(wx->netdev);
1590 wx_restore_vlan(wx);
1591 wx_enable_sec_rx_path(wx);
1593 wx_configure_tx(wx);
1594 wx_configure_rx(wx);
1595 wx_configure_isb(wx);
1597 EXPORT_SYMBOL(wx_configure);
1600 * wx_disable_pcie_master - Disable PCI-express master access
1601 * @wx: pointer to hardware structure
1603 * Disables PCI-Express master access and verifies there are no pending
1606 int wx_disable_pcie_master(struct wx *wx)
1611 /* Always set this bit to ensure any future transactions are blocked */
1612 pci_clear_master(wx->pdev);
1614 /* Exit if master requests are blocked */
1615 if (!(rd32(wx, WX_PX_TRANSACTION_PENDING)))
1618 /* Poll for master request bit to clear */
1619 status = read_poll_timeout(rd32, val, !val, 100, WX_PCI_MASTER_DISABLE_TIMEOUT,
1620 false, wx, WX_PX_TRANSACTION_PENDING);
1622 wx_err(wx, "PCIe transaction pending bit did not clear.\n");
1626 EXPORT_SYMBOL(wx_disable_pcie_master);
1629 * wx_stop_adapter - Generic stop Tx/Rx units
1630 * @wx: pointer to hardware structure
1632 * Sets the adapter_stopped flag within wx_hw struct. Clears interrupts,
1633 * disables transmit and receive units. The adapter_stopped flag is used by
1634 * the shared code and drivers to determine if the adapter is in a stopped
1635 * state and should not touch the hardware.
1637 int wx_stop_adapter(struct wx *wx)
1641 /* Set the adapter_stopped flag so other driver functions stop touching
1644 wx->adapter_stopped = true;
1646 /* Disable the receive unit */
1649 /* Set interrupt mask to stop interrupts from being generated */
1650 wx_intr_disable(wx, WX_INTR_ALL);
1652 /* Clear any pending interrupts, flush previous writes */
1653 wr32(wx, WX_PX_MISC_IC, 0xffffffff);
1654 wr32(wx, WX_BME_CTL, 0x3);
1656 /* Disable the transmit unit. Each queue must be disabled. */
1657 for (i = 0; i < wx->mac.max_tx_queues; i++) {
1658 wr32m(wx, WX_PX_TR_CFG(i),
1659 WX_PX_TR_CFG_SWFLSH | WX_PX_TR_CFG_ENABLE,
1660 WX_PX_TR_CFG_SWFLSH);
1663 /* Disable the receive unit by stopping each queue */
1664 for (i = 0; i < wx->mac.max_rx_queues; i++) {
1665 wr32m(wx, WX_PX_RR_CFG(i),
1666 WX_PX_RR_CFG_RR_EN, 0);
1669 /* flush all queues disables */
1672 /* Prevent the PCI-E bus from hanging by disabling PCI-E master
1673 * access and verify no pending requests
1675 return wx_disable_pcie_master(wx);
1677 EXPORT_SYMBOL(wx_stop_adapter);
1679 void wx_reset_misc(struct wx *wx)
1683 /* receive packets that size > 2048 */
1684 wr32m(wx, WX_MAC_RX_CFG, WX_MAC_RX_CFG_JE, WX_MAC_RX_CFG_JE);
1686 /* clear counters on read */
1687 wr32m(wx, WX_MMC_CONTROL,
1688 WX_MMC_CONTROL_RSTONRD, WX_MMC_CONTROL_RSTONRD);
1690 wr32m(wx, WX_MAC_RX_FLOW_CTRL,
1691 WX_MAC_RX_FLOW_CTRL_RFE, WX_MAC_RX_FLOW_CTRL_RFE);
1693 wr32(wx, WX_MAC_PKT_FLT, WX_MAC_PKT_FLT_PR);
1695 wr32m(wx, WX_MIS_RST_ST,
1696 WX_MIS_RST_ST_RST_INIT, 0x1E00);
1698 /* errata 4: initialize mng flex tbl and wakeup flex tbl*/
1699 wr32(wx, WX_PSR_MNG_FLEX_SEL, 0);
1700 for (i = 0; i < 16; i++) {
1701 wr32(wx, WX_PSR_MNG_FLEX_DW_L(i), 0);
1702 wr32(wx, WX_PSR_MNG_FLEX_DW_H(i), 0);
1703 wr32(wx, WX_PSR_MNG_FLEX_MSK(i), 0);
1705 wr32(wx, WX_PSR_LAN_FLEX_SEL, 0);
1706 for (i = 0; i < 16; i++) {
1707 wr32(wx, WX_PSR_LAN_FLEX_DW_L(i), 0);
1708 wr32(wx, WX_PSR_LAN_FLEX_DW_H(i), 0);
1709 wr32(wx, WX_PSR_LAN_FLEX_MSK(i), 0);
1712 /* set pause frame dst mac addr */
1713 wr32(wx, WX_RDB_PFCMACDAL, 0xC2000001);
1714 wr32(wx, WX_RDB_PFCMACDAH, 0x0180);
1716 EXPORT_SYMBOL(wx_reset_misc);
1719 * wx_get_pcie_msix_counts - Gets MSI-X vector count
1720 * @wx: pointer to hardware structure
1721 * @msix_count: number of MSI interrupts that can be obtained
1722 * @max_msix_count: number of MSI interrupts that mac need
1724 * Read PCIe configuration space, and get the MSI-X vector count from
1725 * the capabilities table.
1727 int wx_get_pcie_msix_counts(struct wx *wx, u16 *msix_count, u16 max_msix_count)
1729 struct pci_dev *pdev = wx->pdev;
1730 struct device *dev = &pdev->dev;
1734 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
1736 dev_err(dev, "Unable to find MSI-X Capabilities\n");
1739 pci_read_config_word(pdev,
1740 pos + PCI_MSIX_FLAGS,
1742 *msix_count &= WX_PCIE_MSIX_TBL_SZ_MASK;
1743 /* MSI-X count is zero-based in HW */
1746 if (*msix_count > max_msix_count)
1747 *msix_count = max_msix_count;
1751 EXPORT_SYMBOL(wx_get_pcie_msix_counts);
1753 int wx_sw_init(struct wx *wx)
1755 struct pci_dev *pdev = wx->pdev;
1759 wx->vendor_id = pdev->vendor;
1760 wx->device_id = pdev->device;
1761 wx->revision_id = pdev->revision;
1762 wx->oem_svid = pdev->subsystem_vendor;
1763 wx->oem_ssid = pdev->subsystem_device;
1764 wx->bus.device = PCI_SLOT(pdev->devfn);
1765 wx->bus.func = PCI_FUNC(pdev->devfn);
1767 if (wx->oem_svid == PCI_VENDOR_ID_WANGXUN) {
1768 wx->subsystem_vendor_id = pdev->subsystem_vendor;
1769 wx->subsystem_device_id = pdev->subsystem_device;
1771 err = wx_flash_read_dword(wx, 0xfffdc, &ssid);
1773 wx_err(wx, "read of internal subsystem device id failed\n");
1777 wx->subsystem_device_id = swab16((u16)ssid);
1780 wx->mac_table = kcalloc(wx->mac.num_rar_entries,
1781 sizeof(struct wx_mac_addr),
1783 if (!wx->mac_table) {
1784 wx_err(wx, "mac_table allocation failed\n");
1790 EXPORT_SYMBOL(wx_sw_init);
1793 * wx_find_vlvf_slot - find the vlanid or the first empty slot
1794 * @wx: pointer to hardware structure
1795 * @vlan: VLAN id to write to VLAN filter
1797 * return the VLVF index where this VLAN id should be placed
1800 static int wx_find_vlvf_slot(struct wx *wx, u32 vlan)
1802 u32 bits = 0, first_empty_slot = 0;
1805 /* short cut the special case */
1809 /* Search for the vlan id in the VLVF entries. Save off the first empty
1810 * slot found along the way
1812 for (regindex = 1; regindex < WX_PSR_VLAN_SWC_ENTRIES; regindex++) {
1813 wr32(wx, WX_PSR_VLAN_SWC_IDX, regindex);
1814 bits = rd32(wx, WX_PSR_VLAN_SWC);
1815 if (!bits && !(first_empty_slot))
1816 first_empty_slot = regindex;
1817 else if ((bits & 0x0FFF) == vlan)
1821 if (regindex >= WX_PSR_VLAN_SWC_ENTRIES) {
1822 if (first_empty_slot)
1823 regindex = first_empty_slot;
1832 * wx_set_vlvf - Set VLAN Pool Filter
1833 * @wx: pointer to hardware structure
1834 * @vlan: VLAN id to write to VLAN filter
1835 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
1836 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
1837 * @vfta_changed: pointer to boolean flag which indicates whether VFTA
1840 * Turn on/off specified bit in VLVF table.
1842 static int wx_set_vlvf(struct wx *wx, u32 vlan, u32 vind, bool vlan_on,
1848 /* If VT Mode is set
1850 * make sure the vlan is in VLVF
1851 * set the vind bit in the matching VLVFB
1853 * clear the pool bit and possibly the vind
1855 vt = rd32(wx, WX_CFG_PORT_CTL);
1856 if (!(vt & WX_CFG_PORT_CTL_NUM_VT_MASK))
1859 vlvf_index = wx_find_vlvf_slot(wx, vlan);
1863 wr32(wx, WX_PSR_VLAN_SWC_IDX, vlvf_index);
1865 /* set the pool bit */
1867 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L);
1868 bits |= (1 << vind);
1869 wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits);
1871 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H);
1872 bits |= (1 << (vind - 32));
1873 wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits);
1876 /* clear the pool bit */
1878 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L);
1879 bits &= ~(1 << vind);
1880 wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits);
1881 bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_H);
1883 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H);
1884 bits &= ~(1 << (vind - 32));
1885 wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits);
1886 bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_L);
1891 wr32(wx, WX_PSR_VLAN_SWC, (WX_PSR_VLAN_SWC_VIEN | vlan));
1892 if (!vlan_on && vfta_changed)
1893 *vfta_changed = false;
1895 wr32(wx, WX_PSR_VLAN_SWC, 0);
1902 * wx_set_vfta - Set VLAN filter table
1903 * @wx: pointer to hardware structure
1904 * @vlan: VLAN id to write to VLAN filter
1905 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
1906 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
1908 * Turn on/off specified VLAN in the VLAN filter table.
1910 static int wx_set_vfta(struct wx *wx, u32 vlan, u32 vind, bool vlan_on)
1912 u32 bitindex, vfta, targetbit;
1913 bool vfta_changed = false;
1916 /* this is a 2 part operation - first the VFTA, then the
1917 * VLVF and VLVFB if VT Mode is set
1918 * We don't write the VFTA until we know the VLVF part succeeded.
1922 * The VFTA is a bitstring made up of 128 32-bit registers
1923 * that enable the particular VLAN id, much like the MTA:
1924 * bits[11-5]: which register
1925 * bits[4-0]: which bit in the register
1927 regindex = (vlan >> 5) & 0x7F;
1928 bitindex = vlan & 0x1F;
1929 targetbit = (1 << bitindex);
1931 vfta = wx->mac.vft_shadow[regindex];
1933 if (!(vfta & targetbit)) {
1935 vfta_changed = true;
1938 if ((vfta & targetbit)) {
1940 vfta_changed = true;
1944 * Call wx_set_vlvf to set VLVFB and VLVF
1946 ret = wx_set_vlvf(wx, vlan, vind, vlan_on, &vfta_changed);
1951 wr32(wx, WX_PSR_VLAN_TBL(regindex), vfta);
1952 wx->mac.vft_shadow[regindex] = vfta;
1958 * wx_clear_vfta - Clear VLAN filter table
1959 * @wx: pointer to hardware structure
1961 * Clears the VLAN filer table, and the VMDq index associated with the filter
1963 static void wx_clear_vfta(struct wx *wx)
1967 for (offset = 0; offset < wx->mac.vft_size; offset++) {
1968 wr32(wx, WX_PSR_VLAN_TBL(offset), 0);
1969 wx->mac.vft_shadow[offset] = 0;
1972 for (offset = 0; offset < WX_PSR_VLAN_SWC_ENTRIES; offset++) {
1973 wr32(wx, WX_PSR_VLAN_SWC_IDX, offset);
1974 wr32(wx, WX_PSR_VLAN_SWC, 0);
1975 wr32(wx, WX_PSR_VLAN_SWC_VM_L, 0);
1976 wr32(wx, WX_PSR_VLAN_SWC_VM_H, 0);
1980 int wx_vlan_rx_add_vid(struct net_device *netdev,
1981 __be16 proto, u16 vid)
1983 struct wx *wx = netdev_priv(netdev);
1985 /* add VID to filter table */
1986 wx_set_vfta(wx, vid, VMDQ_P(0), true);
1987 set_bit(vid, wx->active_vlans);
1991 EXPORT_SYMBOL(wx_vlan_rx_add_vid);
1993 int wx_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
1995 struct wx *wx = netdev_priv(netdev);
1997 /* remove VID from filter table */
1999 wx_set_vfta(wx, vid, VMDQ_P(0), false);
2000 clear_bit(vid, wx->active_vlans);
2004 EXPORT_SYMBOL(wx_vlan_rx_kill_vid);
2007 * wx_update_stats - Update the board statistics counters.
2008 * @wx: board private structure
2010 void wx_update_stats(struct wx *wx)
2012 struct wx_hw_stats *hwstats = &wx->stats;
2014 u64 non_eop_descs = 0, alloc_rx_buff_failed = 0;
2015 u64 hw_csum_rx_good = 0, hw_csum_rx_error = 0;
2016 u64 restart_queue = 0, tx_busy = 0;
2019 /* gather some stats to the wx struct that are per queue */
2020 for (i = 0; i < wx->num_rx_queues; i++) {
2021 struct wx_ring *rx_ring = wx->rx_ring[i];
2023 non_eop_descs += rx_ring->rx_stats.non_eop_descs;
2024 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed;
2025 hw_csum_rx_good += rx_ring->rx_stats.csum_good_cnt;
2026 hw_csum_rx_error += rx_ring->rx_stats.csum_err;
2028 wx->non_eop_descs = non_eop_descs;
2029 wx->alloc_rx_buff_failed = alloc_rx_buff_failed;
2030 wx->hw_csum_rx_error = hw_csum_rx_error;
2031 wx->hw_csum_rx_good = hw_csum_rx_good;
2033 for (i = 0; i < wx->num_tx_queues; i++) {
2034 struct wx_ring *tx_ring = wx->tx_ring[i];
2036 restart_queue += tx_ring->tx_stats.restart_queue;
2037 tx_busy += tx_ring->tx_stats.tx_busy;
2039 wx->restart_queue = restart_queue;
2040 wx->tx_busy = tx_busy;
2042 hwstats->gprc += rd32(wx, WX_RDM_PKT_CNT);
2043 hwstats->gptc += rd32(wx, WX_TDM_PKT_CNT);
2044 hwstats->gorc += rd64(wx, WX_RDM_BYTE_CNT_LSB);
2045 hwstats->gotc += rd64(wx, WX_TDM_BYTE_CNT_LSB);
2046 hwstats->tpr += rd64(wx, WX_RX_FRAME_CNT_GOOD_BAD_L);
2047 hwstats->tpt += rd64(wx, WX_TX_FRAME_CNT_GOOD_BAD_L);
2048 hwstats->crcerrs += rd64(wx, WX_RX_CRC_ERROR_FRAMES_L);
2049 hwstats->rlec += rd64(wx, WX_RX_LEN_ERROR_FRAMES_L);
2050 hwstats->bprc += rd64(wx, WX_RX_BC_FRAMES_GOOD_L);
2051 hwstats->bptc += rd64(wx, WX_TX_BC_FRAMES_GOOD_L);
2052 hwstats->mprc += rd64(wx, WX_RX_MC_FRAMES_GOOD_L);
2053 hwstats->mptc += rd64(wx, WX_TX_MC_FRAMES_GOOD_L);
2054 hwstats->roc += rd32(wx, WX_RX_OVERSIZE_FRAMES_GOOD);
2055 hwstats->ruc += rd32(wx, WX_RX_UNDERSIZE_FRAMES_GOOD);
2056 hwstats->lxonoffrxc += rd32(wx, WX_MAC_LXONOFFRXC);
2057 hwstats->lxontxc += rd32(wx, WX_RDB_LXONTXC);
2058 hwstats->lxofftxc += rd32(wx, WX_RDB_LXOFFTXC);
2059 hwstats->o2bgptc += rd32(wx, WX_TDM_OS2BMC_CNT);
2060 hwstats->b2ospc += rd32(wx, WX_MNG_BMC2OS_CNT);
2061 hwstats->o2bspc += rd32(wx, WX_MNG_OS2BMC_CNT);
2062 hwstats->b2ogprc += rd32(wx, WX_RDM_BMC2OS_CNT);
2063 hwstats->rdmdrop += rd32(wx, WX_RDM_DRP_PKT);
2065 for (i = 0; i < wx->mac.max_rx_queues; i++)
2066 hwstats->qmprc += rd32(wx, WX_PX_MPRC(i));
2068 EXPORT_SYMBOL(wx_update_stats);
2071 * wx_clear_hw_cntrs - Generic clear hardware counters
2072 * @wx: board private structure
2074 * Clears all hardware statistics counters by reading them from the hardware
2075 * Statistics counters are clear on read.
2077 void wx_clear_hw_cntrs(struct wx *wx)
2081 for (i = 0; i < wx->mac.max_rx_queues; i++)
2082 wr32(wx, WX_PX_MPRC(i), 0);
2084 rd32(wx, WX_RDM_PKT_CNT);
2085 rd32(wx, WX_TDM_PKT_CNT);
2086 rd64(wx, WX_RDM_BYTE_CNT_LSB);
2087 rd32(wx, WX_TDM_BYTE_CNT_LSB);
2088 rd32(wx, WX_RDM_DRP_PKT);
2089 rd32(wx, WX_RX_UNDERSIZE_FRAMES_GOOD);
2090 rd32(wx, WX_RX_OVERSIZE_FRAMES_GOOD);
2091 rd64(wx, WX_RX_FRAME_CNT_GOOD_BAD_L);
2092 rd64(wx, WX_TX_FRAME_CNT_GOOD_BAD_L);
2093 rd64(wx, WX_RX_MC_FRAMES_GOOD_L);
2094 rd64(wx, WX_TX_MC_FRAMES_GOOD_L);
2095 rd64(wx, WX_RX_BC_FRAMES_GOOD_L);
2096 rd64(wx, WX_TX_BC_FRAMES_GOOD_L);
2097 rd64(wx, WX_RX_CRC_ERROR_FRAMES_L);
2098 rd64(wx, WX_RX_LEN_ERROR_FRAMES_L);
2099 rd32(wx, WX_RDB_LXONTXC);
2100 rd32(wx, WX_RDB_LXOFFTXC);
2101 rd32(wx, WX_MAC_LXONOFFRXC);
2103 EXPORT_SYMBOL(wx_clear_hw_cntrs);
2106 * wx_start_hw - Prepare hardware for Tx/Rx
2107 * @wx: pointer to hardware structure
2109 * Starts the hardware using the generic start_hw function
2110 * and the generation start_hw function.
2111 * Then performs revision-specific operations, if any.
2113 void wx_start_hw(struct wx *wx)
2117 /* Clear the VLAN filter table */
2120 /* Clear the rate limiters */
2121 for (i = 0; i < wx->mac.max_tx_queues; i++) {
2122 wr32(wx, WX_TDM_RP_IDX, i);
2123 wr32(wx, WX_TDM_RP_RATE, 0);
2126 EXPORT_SYMBOL(wx_start_hw);
2128 MODULE_LICENSE("GPL");