clk: Drop the rate range on clk_put()
[linux-2.6-microblaze.git] / drivers / net / ethernet / tundra / tsi108_eth.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
3
4   Copyright(c) 2006 Tundra Semiconductor Corporation.
5
6
7 *******************************************************************************/
8
9 /* This driver is based on the driver code originally developed
10  * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
11  * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
12  *
13  * Currently changes from original version are:
14  * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
15  * - modifications to handle two ports independently and support for
16  *   additional PHY devices (alexandre.bounine@tundra.com)
17  * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
18  *
19  */
20
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/interrupt.h>
24 #include <linux/net.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/ethtool.h>
28 #include <linux/skbuff.h>
29 #include <linux/spinlock.h>
30 #include <linux/delay.h>
31 #include <linux/crc32.h>
32 #include <linux/mii.h>
33 #include <linux/device.h>
34 #include <linux/pci.h>
35 #include <linux/rtnetlink.h>
36 #include <linux/timer.h>
37 #include <linux/platform_device.h>
38 #include <linux/gfp.h>
39
40 #include <asm/io.h>
41 #include <asm/tsi108.h>
42
43 #include "tsi108_eth.h"
44
45 #define MII_READ_DELAY 10000    /* max link wait time in msec */
46
47 #define TSI108_RXRING_LEN     256
48
49 /* NOTE: The driver currently does not support receiving packets
50  * larger than the buffer size, so don't decrease this (unless you
51  * want to add such support).
52  */
53 #define TSI108_RXBUF_SIZE     1536
54
55 #define TSI108_TXRING_LEN     256
56
57 #define TSI108_TX_INT_FREQ    64
58
59 /* Check the phy status every half a second. */
60 #define CHECK_PHY_INTERVAL (HZ/2)
61
62 static int tsi108_init_one(struct platform_device *pdev);
63 static int tsi108_ether_remove(struct platform_device *pdev);
64
65 struct tsi108_prv_data {
66         void  __iomem *regs;    /* Base of normal regs */
67         void  __iomem *phyregs; /* Base of register bank used for PHY access */
68
69         struct net_device *dev;
70         struct napi_struct napi;
71
72         unsigned int phy;               /* Index of PHY for this interface */
73         unsigned int irq_num;
74         unsigned int id;
75         unsigned int phy_type;
76
77         struct timer_list timer;/* Timer that triggers the check phy function */
78         unsigned int rxtail;    /* Next entry in rxring to read */
79         unsigned int rxhead;    /* Next entry in rxring to give a new buffer */
80         unsigned int rxfree;    /* Number of free, allocated RX buffers */
81
82         unsigned int rxpending; /* Non-zero if there are still descriptors
83                                  * to be processed from a previous descriptor
84                                  * interrupt condition that has been cleared */
85
86         unsigned int txtail;    /* Next TX descriptor to check status on */
87         unsigned int txhead;    /* Next TX descriptor to use */
88
89         /* Number of free TX descriptors.  This could be calculated from
90          * rxhead and rxtail if one descriptor were left unused to disambiguate
91          * full and empty conditions, but it's simpler to just keep track
92          * explicitly. */
93
94         unsigned int txfree;
95
96         unsigned int phy_ok;            /* The PHY is currently powered on. */
97
98         /* PHY status (duplex is 1 for half, 2 for full,
99          * so that the default 0 indicates that neither has
100          * yet been configured). */
101
102         unsigned int link_up;
103         unsigned int speed;
104         unsigned int duplex;
105
106         tx_desc *txring;
107         rx_desc *rxring;
108         struct sk_buff *txskbs[TSI108_TXRING_LEN];
109         struct sk_buff *rxskbs[TSI108_RXRING_LEN];
110
111         dma_addr_t txdma, rxdma;
112
113         /* txlock nests in misclock and phy_lock */
114
115         spinlock_t txlock, misclock;
116
117         /* stats is used to hold the upper bits of each hardware counter,
118          * and tmpstats is used to hold the full values for returning
119          * to the caller of get_stats().  They must be separate in case
120          * an overflow interrupt occurs before the stats are consumed.
121          */
122
123         struct net_device_stats stats;
124         struct net_device_stats tmpstats;
125
126         /* These stats are kept separate in hardware, thus require individual
127          * fields for handling carry.  They are combined in get_stats.
128          */
129
130         unsigned long rx_fcs;   /* Add to rx_frame_errors */
131         unsigned long rx_short_fcs;     /* Add to rx_frame_errors */
132         unsigned long rx_long_fcs;      /* Add to rx_frame_errors */
133         unsigned long rx_underruns;     /* Add to rx_length_errors */
134         unsigned long rx_overruns;      /* Add to rx_length_errors */
135
136         unsigned long tx_coll_abort;    /* Add to tx_aborted_errors/collisions */
137         unsigned long tx_pause_drop;    /* Add to tx_aborted_errors */
138
139         unsigned long mc_hash[16];
140         u32 msg_enable;                 /* debug message level */
141         struct mii_if_info mii_if;
142         unsigned int init_media;
143
144         struct platform_device *pdev;
145 };
146
147 /* Structure for a device driver */
148
149 static struct platform_driver tsi_eth_driver = {
150         .probe = tsi108_init_one,
151         .remove = tsi108_ether_remove,
152         .driver = {
153                 .name = "tsi-ethernet",
154         },
155 };
156
157 static void tsi108_timed_checker(struct timer_list *t);
158
159 #ifdef DEBUG
160 static void dump_eth_one(struct net_device *dev)
161 {
162         struct tsi108_prv_data *data = netdev_priv(dev);
163
164         printk("Dumping %s...\n", dev->name);
165         printk("intstat %x intmask %x phy_ok %d"
166                " link %d speed %d duplex %d\n",
167                TSI_READ(TSI108_EC_INTSTAT),
168                TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
169                data->link_up, data->speed, data->duplex);
170
171         printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
172                data->txhead, data->txtail, data->txfree,
173                TSI_READ(TSI108_EC_TXSTAT),
174                TSI_READ(TSI108_EC_TXESTAT),
175                TSI_READ(TSI108_EC_TXERR));
176
177         printk("RX: head %d, tail %d, free %d, stat %x,"
178                " estat %x, err %x, pending %d\n\n",
179                data->rxhead, data->rxtail, data->rxfree,
180                TSI_READ(TSI108_EC_RXSTAT),
181                TSI_READ(TSI108_EC_RXESTAT),
182                TSI_READ(TSI108_EC_RXERR), data->rxpending);
183 }
184 #endif
185
186 /* Synchronization is needed between the thread and up/down events.
187  * Note that the PHY is accessed through the same registers for both
188  * interfaces, so this can't be made interface-specific.
189  */
190
191 static DEFINE_SPINLOCK(phy_lock);
192
193 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
194 {
195         unsigned i;
196
197         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
198                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
199                                 (reg << TSI108_MAC_MII_ADDR_REG));
200         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
201         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
202         for (i = 0; i < 100; i++) {
203                 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
204                       (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
205                         break;
206                 udelay(10);
207         }
208
209         if (i == 100)
210                 return 0xffff;
211         else
212                 return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
213 }
214
215 static void tsi108_write_mii(struct tsi108_prv_data *data,
216                                 int reg, u16 val)
217 {
218         unsigned i = 100;
219         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
220                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
221                                 (reg << TSI108_MAC_MII_ADDR_REG));
222         TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
223         while (i--) {
224                 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
225                         TSI108_MAC_MII_IND_BUSY))
226                         break;
227                 udelay(10);
228         }
229 }
230
231 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
232 {
233         struct tsi108_prv_data *data = netdev_priv(dev);
234         return tsi108_read_mii(data, reg);
235 }
236
237 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
238 {
239         struct tsi108_prv_data *data = netdev_priv(dev);
240         tsi108_write_mii(data, reg, val);
241 }
242
243 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
244                                         int reg, u16 val)
245 {
246         unsigned i = 1000;
247         TSI_WRITE(TSI108_MAC_MII_ADDR,
248                              (0x1e << TSI108_MAC_MII_ADDR_PHY)
249                              | (reg << TSI108_MAC_MII_ADDR_REG));
250         TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
251         while(i--) {
252                 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
253                         return;
254                 udelay(10);
255         }
256         printk(KERN_ERR "%s function time out\n", __func__);
257 }
258
259 static int mii_speed(struct mii_if_info *mii)
260 {
261         int advert, lpa, val, media;
262         int lpa2 = 0;
263         int speed;
264
265         if (!mii_link_ok(mii))
266                 return 0;
267
268         val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
269         if ((val & BMSR_ANEGCOMPLETE) == 0)
270                 return 0;
271
272         advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
273         lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
274         media = mii_nway_result(advert & lpa);
275
276         if (mii->supports_gmii)
277                 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
278
279         speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
280                         (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
281         return speed;
282 }
283
284 static void tsi108_check_phy(struct net_device *dev)
285 {
286         struct tsi108_prv_data *data = netdev_priv(dev);
287         u32 mac_cfg2_reg, portctrl_reg;
288         u32 duplex;
289         u32 speed;
290         unsigned long flags;
291
292         spin_lock_irqsave(&phy_lock, flags);
293
294         if (!data->phy_ok)
295                 goto out;
296
297         duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
298         data->init_media = 0;
299
300         if (netif_carrier_ok(dev)) {
301
302                 speed = mii_speed(&data->mii_if);
303
304                 if ((speed != data->speed) || duplex) {
305
306                         mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
307                         portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
308
309                         mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
310
311                         if (speed == 1000) {
312                                 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
313                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
314                         } else {
315                                 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
316                                 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
317                         }
318
319                         data->speed = speed;
320
321                         if (data->mii_if.full_duplex) {
322                                 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
323                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
324                                 data->duplex = 2;
325                         } else {
326                                 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
327                                 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
328                                 data->duplex = 1;
329                         }
330
331                         TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
332                         TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
333                 }
334
335                 if (data->link_up == 0) {
336                         /* The manual says it can take 3-4 usecs for the speed change
337                          * to take effect.
338                          */
339                         udelay(5);
340
341                         spin_lock(&data->txlock);
342                         if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
343                                 netif_wake_queue(dev);
344
345                         data->link_up = 1;
346                         spin_unlock(&data->txlock);
347                 }
348         } else {
349                 if (data->link_up == 1) {
350                         netif_stop_queue(dev);
351                         data->link_up = 0;
352                         printk(KERN_NOTICE "%s : link is down\n", dev->name);
353                 }
354
355                 goto out;
356         }
357
358
359 out:
360         spin_unlock_irqrestore(&phy_lock, flags);
361 }
362
363 static inline void
364 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
365                       unsigned long *upper)
366 {
367         if (carry & carry_bit)
368                 *upper += carry_shift;
369 }
370
371 static void tsi108_stat_carry(struct net_device *dev)
372 {
373         struct tsi108_prv_data *data = netdev_priv(dev);
374         unsigned long flags;
375         u32 carry1, carry2;
376
377         spin_lock_irqsave(&data->misclock, flags);
378
379         carry1 = TSI_READ(TSI108_STAT_CARRY1);
380         carry2 = TSI_READ(TSI108_STAT_CARRY2);
381
382         TSI_WRITE(TSI108_STAT_CARRY1, carry1);
383         TSI_WRITE(TSI108_STAT_CARRY2, carry2);
384
385         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
386                               TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
387
388         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
389                               TSI108_STAT_RXPKTS_CARRY,
390                               &data->stats.rx_packets);
391
392         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
393                               TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
394
395         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
396                               TSI108_STAT_RXMCAST_CARRY,
397                               &data->stats.multicast);
398
399         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
400                               TSI108_STAT_RXALIGN_CARRY,
401                               &data->stats.rx_frame_errors);
402
403         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
404                               TSI108_STAT_RXLENGTH_CARRY,
405                               &data->stats.rx_length_errors);
406
407         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
408                               TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
409
410         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
411                               TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
412
413         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
414                               TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
415
416         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
417                               TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
418
419         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
420                               TSI108_STAT_RXDROP_CARRY,
421                               &data->stats.rx_missed_errors);
422
423         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
424                               TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
425
426         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
427                               TSI108_STAT_TXPKTS_CARRY,
428                               &data->stats.tx_packets);
429
430         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
431                               TSI108_STAT_TXEXDEF_CARRY,
432                               &data->stats.tx_aborted_errors);
433
434         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
435                               TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
436
437         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
438                               TSI108_STAT_TXTCOL_CARRY,
439                               &data->stats.collisions);
440
441         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
442                               TSI108_STAT_TXPAUSEDROP_CARRY,
443                               &data->tx_pause_drop);
444
445         spin_unlock_irqrestore(&data->misclock, flags);
446 }
447
448 /* Read a stat counter atomically with respect to carries.
449  * data->misclock must be held.
450  */
451 static inline unsigned long
452 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
453                  int carry_shift, unsigned long *upper)
454 {
455         int carryreg;
456         unsigned long val;
457
458         if (reg < 0xb0)
459                 carryreg = TSI108_STAT_CARRY1;
460         else
461                 carryreg = TSI108_STAT_CARRY2;
462
463       again:
464         val = TSI_READ(reg) | *upper;
465
466         /* Check to see if it overflowed, but the interrupt hasn't
467          * been serviced yet.  If so, handle the carry here, and
468          * try again.
469          */
470
471         if (unlikely(TSI_READ(carryreg) & carry_bit)) {
472                 *upper += carry_shift;
473                 TSI_WRITE(carryreg, carry_bit);
474                 goto again;
475         }
476
477         return val;
478 }
479
480 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
481 {
482         unsigned long excol;
483
484         struct tsi108_prv_data *data = netdev_priv(dev);
485         spin_lock_irq(&data->misclock);
486
487         data->tmpstats.rx_packets =
488             tsi108_read_stat(data, TSI108_STAT_RXPKTS,
489                              TSI108_STAT_CARRY1_RXPKTS,
490                              TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
491
492         data->tmpstats.tx_packets =
493             tsi108_read_stat(data, TSI108_STAT_TXPKTS,
494                              TSI108_STAT_CARRY2_TXPKTS,
495                              TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
496
497         data->tmpstats.rx_bytes =
498             tsi108_read_stat(data, TSI108_STAT_RXBYTES,
499                              TSI108_STAT_CARRY1_RXBYTES,
500                              TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
501
502         data->tmpstats.tx_bytes =
503             tsi108_read_stat(data, TSI108_STAT_TXBYTES,
504                              TSI108_STAT_CARRY2_TXBYTES,
505                              TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
506
507         data->tmpstats.multicast =
508             tsi108_read_stat(data, TSI108_STAT_RXMCAST,
509                              TSI108_STAT_CARRY1_RXMCAST,
510                              TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
511
512         excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
513                                  TSI108_STAT_CARRY2_TXEXCOL,
514                                  TSI108_STAT_TXEXCOL_CARRY,
515                                  &data->tx_coll_abort);
516
517         data->tmpstats.collisions =
518             tsi108_read_stat(data, TSI108_STAT_TXTCOL,
519                              TSI108_STAT_CARRY2_TXTCOL,
520                              TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
521
522         data->tmpstats.collisions += excol;
523
524         data->tmpstats.rx_length_errors =
525             tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
526                              TSI108_STAT_CARRY1_RXLENGTH,
527                              TSI108_STAT_RXLENGTH_CARRY,
528                              &data->stats.rx_length_errors);
529
530         data->tmpstats.rx_length_errors +=
531             tsi108_read_stat(data, TSI108_STAT_RXRUNT,
532                              TSI108_STAT_CARRY1_RXRUNT,
533                              TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
534
535         data->tmpstats.rx_length_errors +=
536             tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
537                              TSI108_STAT_CARRY1_RXJUMBO,
538                              TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
539
540         data->tmpstats.rx_frame_errors =
541             tsi108_read_stat(data, TSI108_STAT_RXALIGN,
542                              TSI108_STAT_CARRY1_RXALIGN,
543                              TSI108_STAT_RXALIGN_CARRY,
544                              &data->stats.rx_frame_errors);
545
546         data->tmpstats.rx_frame_errors +=
547             tsi108_read_stat(data, TSI108_STAT_RXFCS,
548                              TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
549                              &data->rx_fcs);
550
551         data->tmpstats.rx_frame_errors +=
552             tsi108_read_stat(data, TSI108_STAT_RXFRAG,
553                              TSI108_STAT_CARRY1_RXFRAG,
554                              TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
555
556         data->tmpstats.rx_missed_errors =
557             tsi108_read_stat(data, TSI108_STAT_RXDROP,
558                              TSI108_STAT_CARRY1_RXDROP,
559                              TSI108_STAT_RXDROP_CARRY,
560                              &data->stats.rx_missed_errors);
561
562         /* These three are maintained by software. */
563         data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
564         data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
565
566         data->tmpstats.tx_aborted_errors =
567             tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
568                              TSI108_STAT_CARRY2_TXEXDEF,
569                              TSI108_STAT_TXEXDEF_CARRY,
570                              &data->stats.tx_aborted_errors);
571
572         data->tmpstats.tx_aborted_errors +=
573             tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
574                              TSI108_STAT_CARRY2_TXPAUSE,
575                              TSI108_STAT_TXPAUSEDROP_CARRY,
576                              &data->tx_pause_drop);
577
578         data->tmpstats.tx_aborted_errors += excol;
579
580         data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
581         data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
582             data->tmpstats.rx_crc_errors +
583             data->tmpstats.rx_frame_errors +
584             data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
585
586         spin_unlock_irq(&data->misclock);
587         return &data->tmpstats;
588 }
589
590 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
591 {
592         TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
593                              TSI108_EC_RXQ_PTRHIGH_VALID);
594
595         TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
596                              | TSI108_EC_RXCTRL_QUEUE0);
597 }
598
599 static void tsi108_restart_tx(struct tsi108_prv_data * data)
600 {
601         TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
602                              TSI108_EC_TXQ_PTRHIGH_VALID);
603
604         TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
605                              TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
606 }
607
608 /* txlock must be held by caller, with IRQs disabled, and
609  * with permission to re-enable them when the lock is dropped.
610  */
611 static void tsi108_complete_tx(struct net_device *dev)
612 {
613         struct tsi108_prv_data *data = netdev_priv(dev);
614         int tx;
615         struct sk_buff *skb;
616         int release = 0;
617
618         while (!data->txfree || data->txhead != data->txtail) {
619                 tx = data->txtail;
620
621                 if (data->txring[tx].misc & TSI108_TX_OWN)
622                         break;
623
624                 skb = data->txskbs[tx];
625
626                 if (!(data->txring[tx].misc & TSI108_TX_OK))
627                         printk("%s: bad tx packet, misc %x\n",
628                                dev->name, data->txring[tx].misc);
629
630                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
631                 data->txfree++;
632
633                 if (data->txring[tx].misc & TSI108_TX_EOF) {
634                         dev_kfree_skb_any(skb);
635                         release++;
636                 }
637         }
638
639         if (release) {
640                 if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
641                         netif_wake_queue(dev);
642         }
643 }
644
645 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
646 {
647         struct tsi108_prv_data *data = netdev_priv(dev);
648         int frags = skb_shinfo(skb)->nr_frags + 1;
649         int i;
650
651         if (!data->phy_ok && net_ratelimit())
652                 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
653
654         if (!data->link_up) {
655                 printk(KERN_ERR "%s: Transmit while link is down!\n",
656                        dev->name);
657                 netif_stop_queue(dev);
658                 return NETDEV_TX_BUSY;
659         }
660
661         if (data->txfree < MAX_SKB_FRAGS + 1) {
662                 netif_stop_queue(dev);
663
664                 if (net_ratelimit())
665                         printk(KERN_ERR "%s: Transmit with full tx ring!\n",
666                                dev->name);
667                 return NETDEV_TX_BUSY;
668         }
669
670         if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
671                 netif_stop_queue(dev);
672         }
673
674         spin_lock_irq(&data->txlock);
675
676         for (i = 0; i < frags; i++) {
677                 int misc = 0;
678                 int tx = data->txhead;
679
680                 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
681                  * the interrupt bit.  TX descriptor-complete interrupts are
682                  * enabled when the queue fills up, and masked when there is
683                  * still free space.  This way, when saturating the outbound
684                  * link, the tx interrupts are kept to a reasonable level.
685                  * When the queue is not full, reclamation of skbs still occurs
686                  * as new packets are transmitted, or on a queue-empty
687                  * interrupt.
688                  */
689
690                 if ((tx % TSI108_TX_INT_FREQ == 0) &&
691                     ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
692                         misc = TSI108_TX_INT;
693
694                 data->txskbs[tx] = skb;
695
696                 if (i == 0) {
697                         data->txring[tx].buf0 = dma_map_single(&data->pdev->dev,
698                                         skb->data, skb_headlen(skb),
699                                         DMA_TO_DEVICE);
700                         data->txring[tx].len = skb_headlen(skb);
701                         misc |= TSI108_TX_SOF;
702                 } else {
703                         const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
704
705                         data->txring[tx].buf0 =
706                                 skb_frag_dma_map(&data->pdev->dev, frag,
707                                                 0, skb_frag_size(frag),
708                                                 DMA_TO_DEVICE);
709                         data->txring[tx].len = skb_frag_size(frag);
710                 }
711
712                 if (i == frags - 1)
713                         misc |= TSI108_TX_EOF;
714
715                 if (netif_msg_pktdata(data)) {
716                         int i;
717                         printk("%s: Tx Frame contents (%d)\n", dev->name,
718                                skb->len);
719                         for (i = 0; i < skb->len; i++)
720                                 printk(" %2.2x", skb->data[i]);
721                         printk(".\n");
722                 }
723                 data->txring[tx].misc = misc | TSI108_TX_OWN;
724
725                 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
726                 data->txfree--;
727         }
728
729         tsi108_complete_tx(dev);
730
731         /* This must be done after the check for completed tx descriptors,
732          * so that the tail pointer is correct.
733          */
734
735         if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
736                 tsi108_restart_tx(data);
737
738         spin_unlock_irq(&data->txlock);
739         return NETDEV_TX_OK;
740 }
741
742 static int tsi108_complete_rx(struct net_device *dev, int budget)
743 {
744         struct tsi108_prv_data *data = netdev_priv(dev);
745         int done = 0;
746
747         while (data->rxfree && done != budget) {
748                 int rx = data->rxtail;
749                 struct sk_buff *skb;
750
751                 if (data->rxring[rx].misc & TSI108_RX_OWN)
752                         break;
753
754                 skb = data->rxskbs[rx];
755                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
756                 data->rxfree--;
757                 done++;
758
759                 if (data->rxring[rx].misc & TSI108_RX_BAD) {
760                         spin_lock_irq(&data->misclock);
761
762                         if (data->rxring[rx].misc & TSI108_RX_CRC)
763                                 data->stats.rx_crc_errors++;
764                         if (data->rxring[rx].misc & TSI108_RX_OVER)
765                                 data->stats.rx_fifo_errors++;
766
767                         spin_unlock_irq(&data->misclock);
768
769                         dev_kfree_skb_any(skb);
770                         continue;
771                 }
772                 if (netif_msg_pktdata(data)) {
773                         int i;
774                         printk("%s: Rx Frame contents (%d)\n",
775                                dev->name, data->rxring[rx].len);
776                         for (i = 0; i < data->rxring[rx].len; i++)
777                                 printk(" %2.2x", skb->data[i]);
778                         printk(".\n");
779                 }
780
781                 skb_put(skb, data->rxring[rx].len);
782                 skb->protocol = eth_type_trans(skb, dev);
783                 netif_receive_skb(skb);
784         }
785
786         return done;
787 }
788
789 static int tsi108_refill_rx(struct net_device *dev, int budget)
790 {
791         struct tsi108_prv_data *data = netdev_priv(dev);
792         int done = 0;
793
794         while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
795                 int rx = data->rxhead;
796                 struct sk_buff *skb;
797
798                 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
799                 data->rxskbs[rx] = skb;
800                 if (!skb)
801                         break;
802
803                 data->rxring[rx].buf0 = dma_map_single(&data->pdev->dev,
804                                 skb->data, TSI108_RX_SKB_SIZE,
805                                 DMA_FROM_DEVICE);
806
807                 /* Sometimes the hardware sets blen to zero after packet
808                  * reception, even though the manual says that it's only ever
809                  * modified by the driver.
810                  */
811
812                 data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
813                 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
814
815                 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
816                 data->rxfree++;
817                 done++;
818         }
819
820         if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
821                            TSI108_EC_RXSTAT_QUEUE0))
822                 tsi108_restart_rx(data, dev);
823
824         return done;
825 }
826
827 static int tsi108_poll(struct napi_struct *napi, int budget)
828 {
829         struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
830         struct net_device *dev = data->dev;
831         u32 estat = TSI_READ(TSI108_EC_RXESTAT);
832         u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
833         int num_received = 0, num_filled = 0;
834
835         intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
836             TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
837
838         TSI_WRITE(TSI108_EC_RXESTAT, estat);
839         TSI_WRITE(TSI108_EC_INTSTAT, intstat);
840
841         if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
842                 num_received = tsi108_complete_rx(dev, budget);
843
844         /* This should normally fill no more slots than the number of
845          * packets received in tsi108_complete_rx().  The exception
846          * is when we previously ran out of memory for RX SKBs.  In that
847          * case, it's helpful to obey the budget, not only so that the
848          * CPU isn't hogged, but so that memory (which may still be low)
849          * is not hogged by one device.
850          *
851          * A work unit is considered to be two SKBs to allow us to catch
852          * up when the ring has shrunk due to out-of-memory but we're
853          * still removing the full budget's worth of packets each time.
854          */
855
856         if (data->rxfree < TSI108_RXRING_LEN)
857                 num_filled = tsi108_refill_rx(dev, budget * 2);
858
859         if (intstat & TSI108_INT_RXERROR) {
860                 u32 err = TSI_READ(TSI108_EC_RXERR);
861                 TSI_WRITE(TSI108_EC_RXERR, err);
862
863                 if (err) {
864                         if (net_ratelimit())
865                                 printk(KERN_DEBUG "%s: RX error %x\n",
866                                        dev->name, err);
867
868                         if (!(TSI_READ(TSI108_EC_RXSTAT) &
869                               TSI108_EC_RXSTAT_QUEUE0))
870                                 tsi108_restart_rx(data, dev);
871                 }
872         }
873
874         if (intstat & TSI108_INT_RXOVERRUN) {
875                 spin_lock_irq(&data->misclock);
876                 data->stats.rx_fifo_errors++;
877                 spin_unlock_irq(&data->misclock);
878         }
879
880         if (num_received < budget) {
881                 data->rxpending = 0;
882                 napi_complete_done(napi, num_received);
883
884                 TSI_WRITE(TSI108_EC_INTMASK,
885                                      TSI_READ(TSI108_EC_INTMASK)
886                                      & ~(TSI108_INT_RXQUEUE0
887                                          | TSI108_INT_RXTHRESH |
888                                          TSI108_INT_RXOVERRUN |
889                                          TSI108_INT_RXERROR |
890                                          TSI108_INT_RXWAIT));
891         } else {
892                 data->rxpending = 1;
893         }
894
895         return num_received;
896 }
897
898 static void tsi108_rx_int(struct net_device *dev)
899 {
900         struct tsi108_prv_data *data = netdev_priv(dev);
901
902         /* A race could cause dev to already be scheduled, so it's not an
903          * error if that happens (and interrupts shouldn't be re-masked,
904          * because that can cause harmful races, if poll has already
905          * unmasked them but not cleared LINK_STATE_SCHED).
906          *
907          * This can happen if this code races with tsi108_poll(), which masks
908          * the interrupts after tsi108_irq_one() read the mask, but before
909          * napi_schedule is called.  It could also happen due to calls
910          * from tsi108_check_rxring().
911          */
912
913         if (napi_schedule_prep(&data->napi)) {
914                 /* Mask, rather than ack, the receive interrupts.  The ack
915                  * will happen in tsi108_poll().
916                  */
917
918                 TSI_WRITE(TSI108_EC_INTMASK,
919                                      TSI_READ(TSI108_EC_INTMASK) |
920                                      TSI108_INT_RXQUEUE0
921                                      | TSI108_INT_RXTHRESH |
922                                      TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
923                                      TSI108_INT_RXWAIT);
924                 __napi_schedule(&data->napi);
925         } else {
926                 if (!netif_running(dev)) {
927                         /* This can happen if an interrupt occurs while the
928                          * interface is being brought down, as the START
929                          * bit is cleared before the stop function is called.
930                          *
931                          * In this case, the interrupts must be masked, or
932                          * they will continue indefinitely.
933                          *
934                          * There's a race here if the interface is brought down
935                          * and then up in rapid succession, as the device could
936                          * be made running after the above check and before
937                          * the masking below.  This will only happen if the IRQ
938                          * thread has a lower priority than the task brining
939                          * up the interface.  Fixing this race would likely
940                          * require changes in generic code.
941                          */
942
943                         TSI_WRITE(TSI108_EC_INTMASK,
944                                              TSI_READ
945                                              (TSI108_EC_INTMASK) |
946                                              TSI108_INT_RXQUEUE0 |
947                                              TSI108_INT_RXTHRESH |
948                                              TSI108_INT_RXOVERRUN |
949                                              TSI108_INT_RXERROR |
950                                              TSI108_INT_RXWAIT);
951                 }
952         }
953 }
954
955 /* If the RX ring has run out of memory, try periodically
956  * to allocate some more, as otherwise poll would never
957  * get called (apart from the initial end-of-queue condition).
958  *
959  * This is called once per second (by default) from the thread.
960  */
961
962 static void tsi108_check_rxring(struct net_device *dev)
963 {
964         struct tsi108_prv_data *data = netdev_priv(dev);
965
966         /* A poll is scheduled, as opposed to caling tsi108_refill_rx
967          * directly, so as to keep the receive path single-threaded
968          * (and thus not needing a lock).
969          */
970
971         if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
972                 tsi108_rx_int(dev);
973 }
974
975 static void tsi108_tx_int(struct net_device *dev)
976 {
977         struct tsi108_prv_data *data = netdev_priv(dev);
978         u32 estat = TSI_READ(TSI108_EC_TXESTAT);
979
980         TSI_WRITE(TSI108_EC_TXESTAT, estat);
981         TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
982                              TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
983         if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
984                 u32 err = TSI_READ(TSI108_EC_TXERR);
985                 TSI_WRITE(TSI108_EC_TXERR, err);
986
987                 if (err && net_ratelimit())
988                         printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
989         }
990
991         if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
992                 spin_lock(&data->txlock);
993                 tsi108_complete_tx(dev);
994                 spin_unlock(&data->txlock);
995         }
996 }
997
998
999 static irqreturn_t tsi108_irq(int irq, void *dev_id)
1000 {
1001         struct net_device *dev = dev_id;
1002         struct tsi108_prv_data *data = netdev_priv(dev);
1003         u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1004
1005         if (!(stat & TSI108_INT_ANY))
1006                 return IRQ_NONE;        /* Not our interrupt */
1007
1008         stat &= ~TSI_READ(TSI108_EC_INTMASK);
1009
1010         if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1011                     TSI108_INT_TXERROR))
1012                 tsi108_tx_int(dev);
1013         if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1014                     TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1015                     TSI108_INT_RXERROR))
1016                 tsi108_rx_int(dev);
1017
1018         if (stat & TSI108_INT_SFN) {
1019                 if (net_ratelimit())
1020                         printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1021                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1022         }
1023
1024         if (stat & TSI108_INT_STATCARRY) {
1025                 tsi108_stat_carry(dev);
1026                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1027         }
1028
1029         return IRQ_HANDLED;
1030 }
1031
1032 static void tsi108_stop_ethernet(struct net_device *dev)
1033 {
1034         struct tsi108_prv_data *data = netdev_priv(dev);
1035         int i = 1000;
1036         /* Disable all TX and RX queues ... */
1037         TSI_WRITE(TSI108_EC_TXCTRL, 0);
1038         TSI_WRITE(TSI108_EC_RXCTRL, 0);
1039
1040         /* ...and wait for them to become idle */
1041         while(i--) {
1042                 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1043                         break;
1044                 udelay(10);
1045         }
1046         i = 1000;
1047         while(i--){
1048                 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1049                         return;
1050                 udelay(10);
1051         }
1052         printk(KERN_ERR "%s function time out\n", __func__);
1053 }
1054
1055 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1056 {
1057         TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1058         udelay(100);
1059         TSI_WRITE(TSI108_MAC_CFG1, 0);
1060
1061         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1062         udelay(100);
1063         TSI_WRITE(TSI108_EC_PORTCTRL,
1064                              TSI_READ(TSI108_EC_PORTCTRL) &
1065                              ~TSI108_EC_PORTCTRL_STATRST);
1066
1067         TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1068         udelay(100);
1069         TSI_WRITE(TSI108_EC_TXCFG,
1070                              TSI_READ(TSI108_EC_TXCFG) &
1071                              ~TSI108_EC_TXCFG_RST);
1072
1073         TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1074         udelay(100);
1075         TSI_WRITE(TSI108_EC_RXCFG,
1076                              TSI_READ(TSI108_EC_RXCFG) &
1077                              ~TSI108_EC_RXCFG_RST);
1078
1079         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1080                              TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1081                              TSI108_MAC_MII_MGMT_RST);
1082         udelay(100);
1083         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1084                              (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1085                              ~(TSI108_MAC_MII_MGMT_RST |
1086                                TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1087 }
1088
1089 static int tsi108_get_mac(struct net_device *dev)
1090 {
1091         struct tsi108_prv_data *data = netdev_priv(dev);
1092         u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1093         u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1094
1095         /* Note that the octets are reversed from what the manual says,
1096          * producing an even weirder ordering...
1097          */
1098         if (word2 == 0 && word1 == 0) {
1099                 dev->dev_addr[0] = 0x00;
1100                 dev->dev_addr[1] = 0x06;
1101                 dev->dev_addr[2] = 0xd2;
1102                 dev->dev_addr[3] = 0x00;
1103                 dev->dev_addr[4] = 0x00;
1104                 if (0x8 == data->phy)
1105                         dev->dev_addr[5] = 0x01;
1106                 else
1107                         dev->dev_addr[5] = 0x02;
1108
1109                 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1110
1111                 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1112                     (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1113
1114                 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1115                 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1116         } else {
1117                 dev->dev_addr[0] = (word2 >> 16) & 0xff;
1118                 dev->dev_addr[1] = (word2 >> 24) & 0xff;
1119                 dev->dev_addr[2] = (word1 >> 0) & 0xff;
1120                 dev->dev_addr[3] = (word1 >> 8) & 0xff;
1121                 dev->dev_addr[4] = (word1 >> 16) & 0xff;
1122                 dev->dev_addr[5] = (word1 >> 24) & 0xff;
1123         }
1124
1125         if (!is_valid_ether_addr(dev->dev_addr)) {
1126                 printk(KERN_ERR
1127                        "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1128                        dev->name, word1, word2);
1129                 return -EINVAL;
1130         }
1131
1132         return 0;
1133 }
1134
1135 static int tsi108_set_mac(struct net_device *dev, void *addr)
1136 {
1137         struct tsi108_prv_data *data = netdev_priv(dev);
1138         u32 word1, word2;
1139         int i;
1140
1141         if (!is_valid_ether_addr(addr))
1142                 return -EADDRNOTAVAIL;
1143
1144         for (i = 0; i < 6; i++)
1145                 /* +2 is for the offset of the HW addr type */
1146                 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1147
1148         word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1149
1150         word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1151             (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1152
1153         spin_lock_irq(&data->misclock);
1154         TSI_WRITE(TSI108_MAC_ADDR1, word1);
1155         TSI_WRITE(TSI108_MAC_ADDR2, word2);
1156         spin_lock(&data->txlock);
1157
1158         if (data->txfree && data->link_up)
1159                 netif_wake_queue(dev);
1160
1161         spin_unlock(&data->txlock);
1162         spin_unlock_irq(&data->misclock);
1163         return 0;
1164 }
1165
1166 /* Protected by dev->xmit_lock. */
1167 static void tsi108_set_rx_mode(struct net_device *dev)
1168 {
1169         struct tsi108_prv_data *data = netdev_priv(dev);
1170         u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1171
1172         if (dev->flags & IFF_PROMISC) {
1173                 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1174                 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1175                 goto out;
1176         }
1177
1178         rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1179
1180         if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
1181                 int i;
1182                 struct netdev_hw_addr *ha;
1183                 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1184
1185                 memset(data->mc_hash, 0, sizeof(data->mc_hash));
1186
1187                 netdev_for_each_mc_addr(ha, dev) {
1188                         u32 hash, crc;
1189
1190                         crc = ether_crc(6, ha->addr);
1191                         hash = crc >> 23;
1192                         __set_bit(hash, &data->mc_hash[0]);
1193                 }
1194
1195                 TSI_WRITE(TSI108_EC_HASHADDR,
1196                                      TSI108_EC_HASHADDR_AUTOINC |
1197                                      TSI108_EC_HASHADDR_MCAST);
1198
1199                 for (i = 0; i < 16; i++) {
1200                         /* The manual says that the hardware may drop
1201                          * back-to-back writes to the data register.
1202                          */
1203                         udelay(1);
1204                         TSI_WRITE(TSI108_EC_HASHDATA,
1205                                              data->mc_hash[i]);
1206                 }
1207         }
1208
1209       out:
1210         TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1211 }
1212
1213 static void tsi108_init_phy(struct net_device *dev)
1214 {
1215         struct tsi108_prv_data *data = netdev_priv(dev);
1216         u32 i = 0;
1217         u16 phyval = 0;
1218         unsigned long flags;
1219
1220         spin_lock_irqsave(&phy_lock, flags);
1221
1222         tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1223         while (--i) {
1224                 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1225                         break;
1226                 udelay(10);
1227         }
1228         if (i == 0)
1229                 printk(KERN_ERR "%s function time out\n", __func__);
1230
1231         if (data->phy_type == TSI108_PHY_BCM54XX) {
1232                 tsi108_write_mii(data, 0x09, 0x0300);
1233                 tsi108_write_mii(data, 0x10, 0x1020);
1234                 tsi108_write_mii(data, 0x1c, 0x8c00);
1235         }
1236
1237         tsi108_write_mii(data,
1238                          MII_BMCR,
1239                          BMCR_ANENABLE | BMCR_ANRESTART);
1240         while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1241                 cpu_relax();
1242
1243         /* Set G/MII mode and receive clock select in TBI control #2.  The
1244          * second port won't work if this isn't done, even though we don't
1245          * use TBI mode.
1246          */
1247
1248         tsi108_write_tbi(data, 0x11, 0x30);
1249
1250         /* FIXME: It seems to take more than 2 back-to-back reads to the
1251          * PHY_STAT register before the link up status bit is set.
1252          */
1253
1254         data->link_up = 0;
1255
1256         while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1257                  BMSR_LSTATUS)) {
1258                 if (i++ > (MII_READ_DELAY / 10)) {
1259                         break;
1260                 }
1261                 spin_unlock_irqrestore(&phy_lock, flags);
1262                 msleep(10);
1263                 spin_lock_irqsave(&phy_lock, flags);
1264         }
1265
1266         data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1267         printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1268         data->phy_ok = 1;
1269         data->init_media = 1;
1270         spin_unlock_irqrestore(&phy_lock, flags);
1271 }
1272
1273 static void tsi108_kill_phy(struct net_device *dev)
1274 {
1275         struct tsi108_prv_data *data = netdev_priv(dev);
1276         unsigned long flags;
1277
1278         spin_lock_irqsave(&phy_lock, flags);
1279         tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1280         data->phy_ok = 0;
1281         spin_unlock_irqrestore(&phy_lock, flags);
1282 }
1283
1284 static int tsi108_open(struct net_device *dev)
1285 {
1286         int i;
1287         struct tsi108_prv_data *data = netdev_priv(dev);
1288         unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1289         unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1290
1291         i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1292         if (i != 0) {
1293                 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1294                        data->id, data->irq_num);
1295                 return i;
1296         } else {
1297                 dev->irq = data->irq_num;
1298                 printk(KERN_NOTICE
1299                        "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1300                        data->id, dev->irq, dev->name);
1301         }
1302
1303         data->rxring = dma_alloc_coherent(&data->pdev->dev, rxring_size,
1304                                           &data->rxdma, GFP_KERNEL);
1305         if (!data->rxring)
1306                 return -ENOMEM;
1307
1308         data->txring = dma_alloc_coherent(&data->pdev->dev, txring_size,
1309                                           &data->txdma, GFP_KERNEL);
1310         if (!data->txring) {
1311                 dma_free_coherent(&data->pdev->dev, rxring_size, data->rxring,
1312                                     data->rxdma);
1313                 return -ENOMEM;
1314         }
1315
1316         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1317                 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1318                 data->rxring[i].blen = TSI108_RXBUF_SIZE;
1319                 data->rxring[i].vlan = 0;
1320         }
1321
1322         data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1323
1324         data->rxtail = 0;
1325         data->rxhead = 0;
1326
1327         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1328                 struct sk_buff *skb;
1329
1330                 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
1331                 if (!skb) {
1332                         /* Bah.  No memory for now, but maybe we'll get
1333                          * some more later.
1334                          * For now, we'll live with the smaller ring.
1335                          */
1336                         printk(KERN_WARNING
1337                                "%s: Could only allocate %d receive skb(s).\n",
1338                                dev->name, i);
1339                         data->rxhead = i;
1340                         break;
1341                 }
1342
1343                 data->rxskbs[i] = skb;
1344                 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1345                 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1346         }
1347
1348         data->rxfree = i;
1349         TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1350
1351         for (i = 0; i < TSI108_TXRING_LEN; i++) {
1352                 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1353                 data->txring[i].misc = 0;
1354         }
1355
1356         data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1357         data->txtail = 0;
1358         data->txhead = 0;
1359         data->txfree = TSI108_TXRING_LEN;
1360         TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1361         tsi108_init_phy(dev);
1362
1363         napi_enable(&data->napi);
1364
1365         timer_setup(&data->timer, tsi108_timed_checker, 0);
1366         mod_timer(&data->timer, jiffies + 1);
1367
1368         tsi108_restart_rx(data, dev);
1369
1370         TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1371
1372         TSI_WRITE(TSI108_EC_INTMASK,
1373                              ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1374                                TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1375                                TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1376                                TSI108_INT_SFN | TSI108_INT_STATCARRY));
1377
1378         TSI_WRITE(TSI108_MAC_CFG1,
1379                              TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1380         netif_start_queue(dev);
1381         return 0;
1382 }
1383
1384 static int tsi108_close(struct net_device *dev)
1385 {
1386         struct tsi108_prv_data *data = netdev_priv(dev);
1387
1388         netif_stop_queue(dev);
1389         napi_disable(&data->napi);
1390
1391         del_timer_sync(&data->timer);
1392
1393         tsi108_stop_ethernet(dev);
1394         tsi108_kill_phy(dev);
1395         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1396         TSI_WRITE(TSI108_MAC_CFG1, 0);
1397
1398         /* Check for any pending TX packets, and drop them. */
1399
1400         while (!data->txfree || data->txhead != data->txtail) {
1401                 int tx = data->txtail;
1402                 struct sk_buff *skb;
1403                 skb = data->txskbs[tx];
1404                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1405                 data->txfree++;
1406                 dev_kfree_skb(skb);
1407         }
1408
1409         free_irq(data->irq_num, dev);
1410
1411         /* Discard the RX ring. */
1412
1413         while (data->rxfree) {
1414                 int rx = data->rxtail;
1415                 struct sk_buff *skb;
1416
1417                 skb = data->rxskbs[rx];
1418                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1419                 data->rxfree--;
1420                 dev_kfree_skb(skb);
1421         }
1422
1423         dma_free_coherent(&data->pdev->dev,
1424                             TSI108_RXRING_LEN * sizeof(rx_desc),
1425                             data->rxring, data->rxdma);
1426         dma_free_coherent(&data->pdev->dev,
1427                             TSI108_TXRING_LEN * sizeof(tx_desc),
1428                             data->txring, data->txdma);
1429
1430         return 0;
1431 }
1432
1433 static void tsi108_init_mac(struct net_device *dev)
1434 {
1435         struct tsi108_prv_data *data = netdev_priv(dev);
1436
1437         TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1438                              TSI108_MAC_CFG2_PADCRC);
1439
1440         TSI_WRITE(TSI108_EC_TXTHRESH,
1441                              (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1442                              (192 << TSI108_EC_TXTHRESH_STOPFILL));
1443
1444         TSI_WRITE(TSI108_STAT_CARRYMASK1,
1445                              ~(TSI108_STAT_CARRY1_RXBYTES |
1446                                TSI108_STAT_CARRY1_RXPKTS |
1447                                TSI108_STAT_CARRY1_RXFCS |
1448                                TSI108_STAT_CARRY1_RXMCAST |
1449                                TSI108_STAT_CARRY1_RXALIGN |
1450                                TSI108_STAT_CARRY1_RXLENGTH |
1451                                TSI108_STAT_CARRY1_RXRUNT |
1452                                TSI108_STAT_CARRY1_RXJUMBO |
1453                                TSI108_STAT_CARRY1_RXFRAG |
1454                                TSI108_STAT_CARRY1_RXJABBER |
1455                                TSI108_STAT_CARRY1_RXDROP));
1456
1457         TSI_WRITE(TSI108_STAT_CARRYMASK2,
1458                              ~(TSI108_STAT_CARRY2_TXBYTES |
1459                                TSI108_STAT_CARRY2_TXPKTS |
1460                                TSI108_STAT_CARRY2_TXEXDEF |
1461                                TSI108_STAT_CARRY2_TXEXCOL |
1462                                TSI108_STAT_CARRY2_TXTCOL |
1463                                TSI108_STAT_CARRY2_TXPAUSE));
1464
1465         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1466         TSI_WRITE(TSI108_MAC_CFG1, 0);
1467
1468         TSI_WRITE(TSI108_EC_RXCFG,
1469                              TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1470
1471         TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1472                              TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1473                              TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1474                                                 TSI108_EC_TXQ_CFG_SFNPORT));
1475
1476         TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1477                              TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1478                              TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1479                                                 TSI108_EC_RXQ_CFG_SFNPORT));
1480
1481         TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1482                              TSI108_EC_TXQ_BUFCFG_BURST256 |
1483                              TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1484                                                 TSI108_EC_TXQ_BUFCFG_SFNPORT));
1485
1486         TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1487                              TSI108_EC_RXQ_BUFCFG_BURST256 |
1488                              TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1489                                                 TSI108_EC_RXQ_BUFCFG_SFNPORT));
1490
1491         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1492 }
1493
1494 static int tsi108_get_link_ksettings(struct net_device *dev,
1495                                      struct ethtool_link_ksettings *cmd)
1496 {
1497         struct tsi108_prv_data *data = netdev_priv(dev);
1498         unsigned long flags;
1499
1500         spin_lock_irqsave(&data->txlock, flags);
1501         mii_ethtool_get_link_ksettings(&data->mii_if, cmd);
1502         spin_unlock_irqrestore(&data->txlock, flags);
1503
1504         return 0;
1505 }
1506
1507 static int tsi108_set_link_ksettings(struct net_device *dev,
1508                                      const struct ethtool_link_ksettings *cmd)
1509 {
1510         struct tsi108_prv_data *data = netdev_priv(dev);
1511         unsigned long flags;
1512         int rc;
1513
1514         spin_lock_irqsave(&data->txlock, flags);
1515         rc = mii_ethtool_set_link_ksettings(&data->mii_if, cmd);
1516         spin_unlock_irqrestore(&data->txlock, flags);
1517
1518         return rc;
1519 }
1520
1521 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1522 {
1523         struct tsi108_prv_data *data = netdev_priv(dev);
1524         if (!netif_running(dev))
1525                 return -EINVAL;
1526         return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1527 }
1528
1529 static const struct ethtool_ops tsi108_ethtool_ops = {
1530         .get_link       = ethtool_op_get_link,
1531         .get_link_ksettings     = tsi108_get_link_ksettings,
1532         .set_link_ksettings     = tsi108_set_link_ksettings,
1533 };
1534
1535 static const struct net_device_ops tsi108_netdev_ops = {
1536         .ndo_open               = tsi108_open,
1537         .ndo_stop               = tsi108_close,
1538         .ndo_start_xmit         = tsi108_send_packet,
1539         .ndo_set_rx_mode        = tsi108_set_rx_mode,
1540         .ndo_get_stats          = tsi108_get_stats,
1541         .ndo_eth_ioctl          = tsi108_do_ioctl,
1542         .ndo_set_mac_address    = tsi108_set_mac,
1543         .ndo_validate_addr      = eth_validate_addr,
1544 };
1545
1546 static int
1547 tsi108_init_one(struct platform_device *pdev)
1548 {
1549         struct net_device *dev = NULL;
1550         struct tsi108_prv_data *data = NULL;
1551         hw_info *einfo;
1552         int err = 0;
1553
1554         einfo = dev_get_platdata(&pdev->dev);
1555
1556         if (NULL == einfo) {
1557                 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1558                        pdev->id);
1559                 return -ENODEV;
1560         }
1561
1562         /* Create an ethernet device instance */
1563
1564         dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1565         if (!dev)
1566                 return -ENOMEM;
1567
1568         printk("tsi108_eth%d: probe...\n", pdev->id);
1569         data = netdev_priv(dev);
1570         data->dev = dev;
1571         data->pdev = pdev;
1572
1573         pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1574                         pdev->id, einfo->regs, einfo->phyregs,
1575                         einfo->phy, einfo->irq_num);
1576
1577         data->regs = ioremap(einfo->regs, 0x400);
1578         if (NULL == data->regs) {
1579                 err = -ENOMEM;
1580                 goto regs_fail;
1581         }
1582
1583         data->phyregs = ioremap(einfo->phyregs, 0x400);
1584         if (NULL == data->phyregs) {
1585                 err = -ENOMEM;
1586                 goto phyregs_fail;
1587         }
1588 /* MII setup */
1589         data->mii_if.dev = dev;
1590         data->mii_if.mdio_read = tsi108_mdio_read;
1591         data->mii_if.mdio_write = tsi108_mdio_write;
1592         data->mii_if.phy_id = einfo->phy;
1593         data->mii_if.phy_id_mask = 0x1f;
1594         data->mii_if.reg_num_mask = 0x1f;
1595
1596         data->phy = einfo->phy;
1597         data->phy_type = einfo->phy_type;
1598         data->irq_num = einfo->irq_num;
1599         data->id = pdev->id;
1600         netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1601         dev->netdev_ops = &tsi108_netdev_ops;
1602         dev->ethtool_ops = &tsi108_ethtool_ops;
1603
1604         /* Apparently, the Linux networking code won't use scatter-gather
1605          * if the hardware doesn't do checksums.  However, it's faster
1606          * to checksum in place and use SG, as (among other reasons)
1607          * the cache won't be dirtied (which then has to be flushed
1608          * before DMA).  The checksumming is done by the driver (via
1609          * a new function skb_csum_dev() in net/core/skbuff.c).
1610          */
1611
1612         dev->features = NETIF_F_HIGHDMA;
1613
1614         spin_lock_init(&data->txlock);
1615         spin_lock_init(&data->misclock);
1616
1617         tsi108_reset_ether(data);
1618         tsi108_kill_phy(dev);
1619
1620         if ((err = tsi108_get_mac(dev)) != 0) {
1621                 printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1622                        dev->name);
1623                 goto register_fail;
1624         }
1625
1626         tsi108_init_mac(dev);
1627         err = register_netdev(dev);
1628         if (err) {
1629                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1630                                 dev->name);
1631                 goto register_fail;
1632         }
1633
1634         platform_set_drvdata(pdev, dev);
1635         printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1636                dev->name, dev->dev_addr);
1637 #ifdef DEBUG
1638         data->msg_enable = DEBUG;
1639         dump_eth_one(dev);
1640 #endif
1641
1642         return 0;
1643
1644 register_fail:
1645         iounmap(data->phyregs);
1646
1647 phyregs_fail:
1648         iounmap(data->regs);
1649
1650 regs_fail:
1651         free_netdev(dev);
1652         return err;
1653 }
1654
1655 /* There's no way to either get interrupts from the PHY when
1656  * something changes, or to have the Tsi108 automatically communicate
1657  * with the PHY to reconfigure itself.
1658  *
1659  * Thus, we have to do it using a timer.
1660  */
1661
1662 static void tsi108_timed_checker(struct timer_list *t)
1663 {
1664         struct tsi108_prv_data *data = from_timer(data, t, timer);
1665         struct net_device *dev = data->dev;
1666
1667         tsi108_check_phy(dev);
1668         tsi108_check_rxring(dev);
1669         mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1670 }
1671
1672 static int tsi108_ether_remove(struct platform_device *pdev)
1673 {
1674         struct net_device *dev = platform_get_drvdata(pdev);
1675         struct tsi108_prv_data *priv = netdev_priv(dev);
1676
1677         unregister_netdev(dev);
1678         tsi108_stop_ethernet(dev);
1679         iounmap(priv->regs);
1680         iounmap(priv->phyregs);
1681         free_netdev(dev);
1682
1683         return 0;
1684 }
1685 module_platform_driver(tsi_eth_driver);
1686
1687 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1688 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1689 MODULE_LICENSE("GPL");
1690 MODULE_ALIAS("platform:tsi-ethernet");