net: ethernet: ti: cpts: move tc mult update in cpts_fifo_read()
[linux-2.6-microblaze.git] / drivers / net / ethernet / ti / cpts.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * TI Common Platform Time Sync
4  *
5  * Copyright (C) 2012 Richard Cochran <richardcochran@gmail.com>
6  *
7  */
8 #include <linux/clk-provider.h>
9 #include <linux/err.h>
10 #include <linux/if.h>
11 #include <linux/hrtimer.h>
12 #include <linux/module.h>
13 #include <linux/net_tstamp.h>
14 #include <linux/ptp_classify.h>
15 #include <linux/time.h>
16 #include <linux/uaccess.h>
17 #include <linux/workqueue.h>
18 #include <linux/if_ether.h>
19 #include <linux/if_vlan.h>
20
21 #include "cpts.h"
22
23 #define CPTS_SKB_TX_WORK_TIMEOUT 1 /* jiffies */
24
25 struct cpts_skb_cb_data {
26         unsigned long tmo;
27 };
28
29 #define cpts_read32(c, r)       readl_relaxed(&c->reg->r)
30 #define cpts_write32(c, v, r)   writel_relaxed(v, &c->reg->r)
31
32 static int cpts_match(struct sk_buff *skb, unsigned int ptp_class,
33                       u16 ts_seqid, u8 ts_msgtype);
34
35 static int event_expired(struct cpts_event *event)
36 {
37         return time_after(jiffies, event->tmo);
38 }
39
40 static int event_type(struct cpts_event *event)
41 {
42         return (event->high >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
43 }
44
45 static int cpts_fifo_pop(struct cpts *cpts, u32 *high, u32 *low)
46 {
47         u32 r = cpts_read32(cpts, intstat_raw);
48
49         if (r & TS_PEND_RAW) {
50                 *high = cpts_read32(cpts, event_high);
51                 *low  = cpts_read32(cpts, event_low);
52                 cpts_write32(cpts, EVENT_POP, event_pop);
53                 return 0;
54         }
55         return -1;
56 }
57
58 static int cpts_purge_events(struct cpts *cpts)
59 {
60         struct list_head *this, *next;
61         struct cpts_event *event;
62         int removed = 0;
63
64         list_for_each_safe(this, next, &cpts->events) {
65                 event = list_entry(this, struct cpts_event, list);
66                 if (event_expired(event)) {
67                         list_del_init(&event->list);
68                         list_add(&event->list, &cpts->pool);
69                         ++removed;
70                 }
71         }
72
73         if (removed)
74                 dev_dbg(cpts->dev, "cpts: event pool cleaned up %d\n", removed);
75         return removed ? 0 : -1;
76 }
77
78 static void cpts_purge_txq(struct cpts *cpts)
79 {
80         struct cpts_skb_cb_data *skb_cb;
81         struct sk_buff *skb, *tmp;
82         int removed = 0;
83
84         skb_queue_walk_safe(&cpts->txq, skb, tmp) {
85                 skb_cb = (struct cpts_skb_cb_data *)skb->cb;
86                 if (time_after(jiffies, skb_cb->tmo)) {
87                         __skb_unlink(skb, &cpts->txq);
88                         dev_consume_skb_any(skb);
89                         ++removed;
90                 }
91         }
92
93         if (removed)
94                 dev_dbg(cpts->dev, "txq cleaned up %d\n", removed);
95 }
96
97 static bool cpts_match_tx_ts(struct cpts *cpts, struct cpts_event *event)
98 {
99         struct sk_buff *skb, *tmp;
100         u16 seqid;
101         u8 mtype;
102         bool found = false;
103
104         mtype = (event->high >> MESSAGE_TYPE_SHIFT) & MESSAGE_TYPE_MASK;
105         seqid = (event->high >> SEQUENCE_ID_SHIFT) & SEQUENCE_ID_MASK;
106
107         /* no need to grab txq.lock as access is always done under cpts->lock */
108         skb_queue_walk_safe(&cpts->txq, skb, tmp) {
109                 struct skb_shared_hwtstamps ssh;
110                 unsigned int class = ptp_classify_raw(skb);
111                 struct cpts_skb_cb_data *skb_cb =
112                                         (struct cpts_skb_cb_data *)skb->cb;
113
114                 if (cpts_match(skb, class, seqid, mtype)) {
115                         memset(&ssh, 0, sizeof(ssh));
116                         ssh.hwtstamp = ns_to_ktime(event->timestamp);
117                         skb_tstamp_tx(skb, &ssh);
118                         found = true;
119                         __skb_unlink(skb, &cpts->txq);
120                         dev_consume_skb_any(skb);
121                         dev_dbg(cpts->dev, "match tx timestamp mtype %u seqid %04x\n",
122                                 mtype, seqid);
123                         break;
124                 }
125
126                 if (time_after(jiffies, skb_cb->tmo)) {
127                         /* timeout any expired skbs over 1s */
128                         dev_dbg(cpts->dev, "expiring tx timestamp from txq\n");
129                         __skb_unlink(skb, &cpts->txq);
130                         dev_consume_skb_any(skb);
131                 }
132         }
133
134         return found;
135 }
136
137 /*
138  * Returns zero if matching event type was found.
139  */
140 static int cpts_fifo_read(struct cpts *cpts, int match)
141 {
142         int i, type = -1;
143         u32 hi, lo;
144         struct cpts_event *event;
145
146         for (i = 0; i < CPTS_FIFO_DEPTH; i++) {
147                 if (cpts_fifo_pop(cpts, &hi, &lo))
148                         break;
149
150                 if (list_empty(&cpts->pool) && cpts_purge_events(cpts)) {
151                         dev_warn(cpts->dev, "cpts: event pool empty\n");
152                         return -1;
153                 }
154
155                 event = list_first_entry(&cpts->pool, struct cpts_event, list);
156                 event->tmo = jiffies + 2;
157                 event->high = hi;
158                 event->low = lo;
159                 event->timestamp = timecounter_cyc2time(&cpts->tc, event->low);
160                 type = event_type(event);
161
162                 dev_dbg(cpts->dev, "CPTS_EV: %d high:%08X low:%08x\n",
163                         type, event->high, event->low);
164                 switch (type) {
165                 case CPTS_EV_PUSH:
166                         WRITE_ONCE(cpts->cur_timestamp, lo);
167                         timecounter_read(&cpts->tc);
168                         if (cpts->mult_new) {
169                                 cpts->cc.mult = cpts->mult_new;
170                                 cpts->mult_new = 0;
171                         }
172                         break;
173                 case CPTS_EV_TX:
174                         if (cpts_match_tx_ts(cpts, event)) {
175                                 /* if the new event matches an existing skb,
176                                  * then don't queue it
177                                  */
178                                 break;
179                         }
180                         /* fall through */
181                 case CPTS_EV_RX:
182                         list_del_init(&event->list);
183                         list_add_tail(&event->list, &cpts->events);
184                         break;
185                 case CPTS_EV_ROLL:
186                 case CPTS_EV_HALF:
187                 case CPTS_EV_HW:
188                         break;
189                 default:
190                         dev_err(cpts->dev, "cpts: unknown event type\n");
191                         break;
192                 }
193                 if (type == match)
194                         break;
195         }
196         return type == match ? 0 : -1;
197 }
198
199 static u64 cpts_systim_read(const struct cyclecounter *cc)
200 {
201         struct cpts *cpts = container_of(cc, struct cpts, cc);
202
203         return READ_ONCE(cpts->cur_timestamp);
204 }
205
206 static void cpts_update_cur_time(struct cpts *cpts, int match)
207 {
208         cpts_write32(cpts, TS_PUSH, ts_push);
209
210         if (cpts_fifo_read(cpts, match) && match != -1)
211                 dev_err(cpts->dev, "cpts: unable to obtain a time stamp\n");
212 }
213
214 /* PTP clock operations */
215
216 static int cpts_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
217 {
218         u64 adj;
219         u32 diff, mult;
220         int neg_adj = 0;
221         unsigned long flags;
222         struct cpts *cpts = container_of(ptp, struct cpts, info);
223
224         if (ppb < 0) {
225                 neg_adj = 1;
226                 ppb = -ppb;
227         }
228         mult = cpts->cc_mult;
229         adj = mult;
230         adj *= ppb;
231         diff = div_u64(adj, 1000000000ULL);
232
233         spin_lock_irqsave(&cpts->lock, flags);
234
235         cpts->mult_new = neg_adj ? mult - diff : mult + diff;
236
237         cpts_update_cur_time(cpts, CPTS_EV_PUSH);
238
239         spin_unlock_irqrestore(&cpts->lock, flags);
240
241         return 0;
242 }
243
244 static int cpts_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
245 {
246         unsigned long flags;
247         struct cpts *cpts = container_of(ptp, struct cpts, info);
248
249         spin_lock_irqsave(&cpts->lock, flags);
250         timecounter_adjtime(&cpts->tc, delta);
251         spin_unlock_irqrestore(&cpts->lock, flags);
252
253         return 0;
254 }
255
256 static int cpts_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
257 {
258         u64 ns;
259         unsigned long flags;
260         struct cpts *cpts = container_of(ptp, struct cpts, info);
261
262         spin_lock_irqsave(&cpts->lock, flags);
263
264         cpts_update_cur_time(cpts, CPTS_EV_PUSH);
265
266         ns = timecounter_read(&cpts->tc);
267         spin_unlock_irqrestore(&cpts->lock, flags);
268
269         *ts = ns_to_timespec64(ns);
270
271         return 0;
272 }
273
274 static int cpts_ptp_settime(struct ptp_clock_info *ptp,
275                             const struct timespec64 *ts)
276 {
277         u64 ns;
278         unsigned long flags;
279         struct cpts *cpts = container_of(ptp, struct cpts, info);
280
281         ns = timespec64_to_ns(ts);
282
283         spin_lock_irqsave(&cpts->lock, flags);
284         timecounter_init(&cpts->tc, &cpts->cc, ns);
285         spin_unlock_irqrestore(&cpts->lock, flags);
286
287         return 0;
288 }
289
290 static int cpts_ptp_enable(struct ptp_clock_info *ptp,
291                            struct ptp_clock_request *rq, int on)
292 {
293         return -EOPNOTSUPP;
294 }
295
296 static long cpts_overflow_check(struct ptp_clock_info *ptp)
297 {
298         struct cpts *cpts = container_of(ptp, struct cpts, info);
299         unsigned long delay = cpts->ov_check_period;
300         unsigned long flags;
301         u64 ns;
302
303         spin_lock_irqsave(&cpts->lock, flags);
304
305         cpts_update_cur_time(cpts, -1);
306
307         ns = timecounter_read(&cpts->tc);
308
309         if (!skb_queue_empty(&cpts->txq)) {
310                 cpts_purge_txq(cpts);
311                 if (!skb_queue_empty(&cpts->txq))
312                         delay = CPTS_SKB_TX_WORK_TIMEOUT;
313         }
314         spin_unlock_irqrestore(&cpts->lock, flags);
315
316         dev_dbg(cpts->dev, "cpts overflow check at %lld\n", ns);
317         return (long)delay;
318 }
319
320 static const struct ptp_clock_info cpts_info = {
321         .owner          = THIS_MODULE,
322         .name           = "CTPS timer",
323         .max_adj        = 1000000,
324         .n_ext_ts       = 0,
325         .n_pins         = 0,
326         .pps            = 0,
327         .adjfreq        = cpts_ptp_adjfreq,
328         .adjtime        = cpts_ptp_adjtime,
329         .gettime64      = cpts_ptp_gettime,
330         .settime64      = cpts_ptp_settime,
331         .enable         = cpts_ptp_enable,
332         .do_aux_work    = cpts_overflow_check,
333 };
334
335 static int cpts_match(struct sk_buff *skb, unsigned int ptp_class,
336                       u16 ts_seqid, u8 ts_msgtype)
337 {
338         u16 *seqid;
339         unsigned int offset = 0;
340         u8 *msgtype, *data = skb->data;
341
342         if (ptp_class & PTP_CLASS_VLAN)
343                 offset += VLAN_HLEN;
344
345         switch (ptp_class & PTP_CLASS_PMASK) {
346         case PTP_CLASS_IPV4:
347                 offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
348                 break;
349         case PTP_CLASS_IPV6:
350                 offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
351                 break;
352         case PTP_CLASS_L2:
353                 offset += ETH_HLEN;
354                 break;
355         default:
356                 return 0;
357         }
358
359         if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
360                 return 0;
361
362         if (unlikely(ptp_class & PTP_CLASS_V1))
363                 msgtype = data + offset + OFF_PTP_CONTROL;
364         else
365                 msgtype = data + offset;
366
367         seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
368
369         return (ts_msgtype == (*msgtype & 0xf) && ts_seqid == ntohs(*seqid));
370 }
371
372 static u64 cpts_find_ts(struct cpts *cpts, struct sk_buff *skb, int ev_type)
373 {
374         u64 ns = 0;
375         struct cpts_event *event;
376         struct list_head *this, *next;
377         unsigned int class = ptp_classify_raw(skb);
378         unsigned long flags;
379         u16 seqid;
380         u8 mtype;
381
382         if (class == PTP_CLASS_NONE)
383                 return 0;
384
385         spin_lock_irqsave(&cpts->lock, flags);
386         cpts_fifo_read(cpts, -1);
387         list_for_each_safe(this, next, &cpts->events) {
388                 event = list_entry(this, struct cpts_event, list);
389                 if (event_expired(event)) {
390                         list_del_init(&event->list);
391                         list_add(&event->list, &cpts->pool);
392                         continue;
393                 }
394                 mtype = (event->high >> MESSAGE_TYPE_SHIFT) & MESSAGE_TYPE_MASK;
395                 seqid = (event->high >> SEQUENCE_ID_SHIFT) & SEQUENCE_ID_MASK;
396                 if (ev_type == event_type(event) &&
397                     cpts_match(skb, class, seqid, mtype)) {
398                         ns = event->timestamp;
399                         list_del_init(&event->list);
400                         list_add(&event->list, &cpts->pool);
401                         break;
402                 }
403         }
404
405         if (ev_type == CPTS_EV_TX && !ns) {
406                 struct cpts_skb_cb_data *skb_cb =
407                                 (struct cpts_skb_cb_data *)skb->cb;
408                 /* Not found, add frame to queue for processing later.
409                  * The periodic FIFO check will handle this.
410                  */
411                 skb_get(skb);
412                 /* get the timestamp for timeouts */
413                 skb_cb->tmo = jiffies + msecs_to_jiffies(100);
414                 __skb_queue_tail(&cpts->txq, skb);
415                 ptp_schedule_worker(cpts->clock, 0);
416         }
417         spin_unlock_irqrestore(&cpts->lock, flags);
418
419         return ns;
420 }
421
422 void cpts_rx_timestamp(struct cpts *cpts, struct sk_buff *skb)
423 {
424         u64 ns;
425         struct skb_shared_hwtstamps *ssh;
426
427         ns = cpts_find_ts(cpts, skb, CPTS_EV_RX);
428         if (!ns)
429                 return;
430         ssh = skb_hwtstamps(skb);
431         memset(ssh, 0, sizeof(*ssh));
432         ssh->hwtstamp = ns_to_ktime(ns);
433 }
434 EXPORT_SYMBOL_GPL(cpts_rx_timestamp);
435
436 void cpts_tx_timestamp(struct cpts *cpts, struct sk_buff *skb)
437 {
438         u64 ns;
439         struct skb_shared_hwtstamps ssh;
440
441         if (!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
442                 return;
443         ns = cpts_find_ts(cpts, skb, CPTS_EV_TX);
444         if (!ns)
445                 return;
446         memset(&ssh, 0, sizeof(ssh));
447         ssh.hwtstamp = ns_to_ktime(ns);
448         skb_tstamp_tx(skb, &ssh);
449 }
450 EXPORT_SYMBOL_GPL(cpts_tx_timestamp);
451
452 int cpts_register(struct cpts *cpts)
453 {
454         int err, i;
455
456         skb_queue_head_init(&cpts->txq);
457         INIT_LIST_HEAD(&cpts->events);
458         INIT_LIST_HEAD(&cpts->pool);
459         for (i = 0; i < CPTS_MAX_EVENTS; i++)
460                 list_add(&cpts->pool_data[i].list, &cpts->pool);
461
462         clk_enable(cpts->refclk);
463
464         cpts_write32(cpts, CPTS_EN, control);
465         cpts_write32(cpts, TS_PEND_EN, int_enable);
466
467         timecounter_init(&cpts->tc, &cpts->cc, ktime_get_real_ns());
468
469         cpts->clock = ptp_clock_register(&cpts->info, cpts->dev);
470         if (IS_ERR(cpts->clock)) {
471                 err = PTR_ERR(cpts->clock);
472                 cpts->clock = NULL;
473                 goto err_ptp;
474         }
475         cpts->phc_index = ptp_clock_index(cpts->clock);
476
477         ptp_schedule_worker(cpts->clock, cpts->ov_check_period);
478         return 0;
479
480 err_ptp:
481         clk_disable(cpts->refclk);
482         return err;
483 }
484 EXPORT_SYMBOL_GPL(cpts_register);
485
486 void cpts_unregister(struct cpts *cpts)
487 {
488         if (WARN_ON(!cpts->clock))
489                 return;
490
491         ptp_clock_unregister(cpts->clock);
492         cpts->clock = NULL;
493
494         cpts_write32(cpts, 0, int_enable);
495         cpts_write32(cpts, 0, control);
496
497         /* Drop all packet */
498         skb_queue_purge(&cpts->txq);
499
500         clk_disable(cpts->refclk);
501 }
502 EXPORT_SYMBOL_GPL(cpts_unregister);
503
504 static void cpts_calc_mult_shift(struct cpts *cpts)
505 {
506         u64 frac, maxsec, ns;
507         u32 freq;
508
509         freq = clk_get_rate(cpts->refclk);
510
511         /* Calc the maximum number of seconds which we can run before
512          * wrapping around.
513          */
514         maxsec = cpts->cc.mask;
515         do_div(maxsec, freq);
516         /* limit conversation rate to 10 sec as higher values will produce
517          * too small mult factors and so reduce the conversion accuracy
518          */
519         if (maxsec > 10)
520                 maxsec = 10;
521
522         /* Calc overflow check period (maxsec / 2) */
523         cpts->ov_check_period = (HZ * maxsec) / 2;
524         dev_info(cpts->dev, "cpts: overflow check period %lu (jiffies)\n",
525                  cpts->ov_check_period);
526
527         if (cpts->cc.mult || cpts->cc.shift)
528                 return;
529
530         clocks_calc_mult_shift(&cpts->cc.mult, &cpts->cc.shift,
531                                freq, NSEC_PER_SEC, maxsec);
532
533         frac = 0;
534         ns = cyclecounter_cyc2ns(&cpts->cc, freq, cpts->cc.mask, &frac);
535
536         dev_info(cpts->dev,
537                  "CPTS: ref_clk_freq:%u calc_mult:%u calc_shift:%u error:%lld nsec/sec\n",
538                  freq, cpts->cc.mult, cpts->cc.shift, (ns - NSEC_PER_SEC));
539 }
540
541 static int cpts_of_mux_clk_setup(struct cpts *cpts, struct device_node *node)
542 {
543         struct device_node *refclk_np;
544         const char **parent_names;
545         unsigned int num_parents;
546         struct clk_hw *clk_hw;
547         int ret = -EINVAL;
548         u32 *mux_table;
549
550         refclk_np = of_get_child_by_name(node, "cpts-refclk-mux");
551         if (!refclk_np)
552                 /* refclk selection supported not for all SoCs */
553                 return 0;
554
555         num_parents = of_clk_get_parent_count(refclk_np);
556         if (num_parents < 1) {
557                 dev_err(cpts->dev, "mux-clock %s must have parents\n",
558                         refclk_np->name);
559                 goto mux_fail;
560         }
561
562         parent_names = devm_kzalloc(cpts->dev, (sizeof(char *) * num_parents),
563                                     GFP_KERNEL);
564
565         mux_table = devm_kzalloc(cpts->dev, sizeof(*mux_table) * num_parents,
566                                  GFP_KERNEL);
567         if (!mux_table || !parent_names) {
568                 ret = -ENOMEM;
569                 goto mux_fail;
570         }
571
572         of_clk_parent_fill(refclk_np, parent_names, num_parents);
573
574         ret = of_property_read_variable_u32_array(refclk_np, "ti,mux-tbl",
575                                                   mux_table,
576                                                   num_parents, num_parents);
577         if (ret < 0)
578                 goto mux_fail;
579
580         clk_hw = clk_hw_register_mux_table(cpts->dev, refclk_np->name,
581                                            parent_names, num_parents,
582                                            0,
583                                            &cpts->reg->rftclk_sel, 0, 0x1F,
584                                            0, mux_table, NULL);
585         if (IS_ERR(clk_hw)) {
586                 ret = PTR_ERR(clk_hw);
587                 goto mux_fail;
588         }
589
590         ret = devm_add_action_or_reset(cpts->dev,
591                                        (void(*)(void *))clk_hw_unregister_mux,
592                                        clk_hw);
593         if (ret) {
594                 dev_err(cpts->dev, "add clkmux unreg action %d", ret);
595                 goto mux_fail;
596         }
597
598         ret = of_clk_add_hw_provider(refclk_np, of_clk_hw_simple_get, clk_hw);
599         if (ret)
600                 goto mux_fail;
601
602         ret = devm_add_action_or_reset(cpts->dev,
603                                        (void(*)(void *))of_clk_del_provider,
604                                        refclk_np);
605         if (ret) {
606                 dev_err(cpts->dev, "add clkmux provider unreg action %d", ret);
607                 goto mux_fail;
608         }
609
610         return ret;
611
612 mux_fail:
613         of_node_put(refclk_np);
614         return ret;
615 }
616
617 static int cpts_of_parse(struct cpts *cpts, struct device_node *node)
618 {
619         int ret = -EINVAL;
620         u32 prop;
621
622         if (!of_property_read_u32(node, "cpts_clock_mult", &prop))
623                 cpts->cc.mult = prop;
624
625         if (!of_property_read_u32(node, "cpts_clock_shift", &prop))
626                 cpts->cc.shift = prop;
627
628         if ((cpts->cc.mult && !cpts->cc.shift) ||
629             (!cpts->cc.mult && cpts->cc.shift))
630                 goto of_error;
631
632         return cpts_of_mux_clk_setup(cpts, node);
633
634 of_error:
635         dev_err(cpts->dev, "CPTS: Missing property in the DT.\n");
636         return ret;
637 }
638
639 struct cpts *cpts_create(struct device *dev, void __iomem *regs,
640                          struct device_node *node)
641 {
642         struct cpts *cpts;
643         int ret;
644
645         cpts = devm_kzalloc(dev, sizeof(*cpts), GFP_KERNEL);
646         if (!cpts)
647                 return ERR_PTR(-ENOMEM);
648
649         cpts->dev = dev;
650         cpts->reg = (struct cpsw_cpts __iomem *)regs;
651         spin_lock_init(&cpts->lock);
652
653         ret = cpts_of_parse(cpts, node);
654         if (ret)
655                 return ERR_PTR(ret);
656
657         cpts->refclk = devm_get_clk_from_child(dev, node, "cpts");
658         if (IS_ERR(cpts->refclk))
659                 /* try get clk from dev node for compatibility */
660                 cpts->refclk = devm_clk_get(dev, "cpts");
661
662         if (IS_ERR(cpts->refclk)) {
663                 dev_err(dev, "Failed to get cpts refclk %ld\n",
664                         PTR_ERR(cpts->refclk));
665                 return ERR_CAST(cpts->refclk);
666         }
667
668         ret = clk_prepare(cpts->refclk);
669         if (ret)
670                 return ERR_PTR(ret);
671
672         cpts->cc.read = cpts_systim_read;
673         cpts->cc.mask = CLOCKSOURCE_MASK(32);
674         cpts->info = cpts_info;
675
676         cpts_calc_mult_shift(cpts);
677         /* save cc.mult original value as it can be modified
678          * by cpts_ptp_adjfreq().
679          */
680         cpts->cc_mult = cpts->cc.mult;
681
682         return cpts;
683 }
684 EXPORT_SYMBOL_GPL(cpts_create);
685
686 void cpts_release(struct cpts *cpts)
687 {
688         if (!cpts)
689                 return;
690
691         if (WARN_ON(!cpts->refclk))
692                 return;
693
694         clk_unprepare(cpts->refclk);
695 }
696 EXPORT_SYMBOL_GPL(cpts_release);
697
698 MODULE_LICENSE("GPL v2");
699 MODULE_DESCRIPTION("TI CPTS driver");
700 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");