Merge tag 'for-5.3/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/devic...
[linux-2.6-microblaze.git] / drivers / net / ethernet / ti / cpsw.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Texas Instruments Ethernet Switch Driver
4  *
5  * Copyright (C) 2012 Texas Instruments
6  *
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/io.h>
11 #include <linux/clk.h>
12 #include <linux/timer.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/irqreturn.h>
16 #include <linux/interrupt.h>
17 #include <linux/if_ether.h>
18 #include <linux/etherdevice.h>
19 #include <linux/netdevice.h>
20 #include <linux/net_tstamp.h>
21 #include <linux/phy.h>
22 #include <linux/phy/phy.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/gpio/consumer.h>
27 #include <linux/of.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/of_device.h>
31 #include <linux/if_vlan.h>
32 #include <linux/kmemleak.h>
33 #include <linux/sys_soc.h>
34 #include <net/page_pool.h>
35 #include <linux/bpf.h>
36 #include <linux/bpf_trace.h>
37 #include <linux/filter.h>
38
39 #include <linux/pinctrl/consumer.h>
40 #include <net/pkt_cls.h>
41
42 #include "cpsw.h"
43 #include "cpsw_ale.h"
44 #include "cpsw_priv.h"
45 #include "cpsw_sl.h"
46 #include "cpts.h"
47 #include "davinci_cpdma.h"
48
49 #include <net/pkt_sched.h>
50
51 static int debug_level;
52 module_param(debug_level, int, 0);
53 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
54
55 static int ale_ageout = 10;
56 module_param(ale_ageout, int, 0);
57 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
58
59 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
60 module_param(rx_packet_max, int, 0);
61 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
62
63 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
64 module_param(descs_pool_size, int, 0444);
65 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
66
67 /* The buf includes headroom compatible with both skb and xdpf */
68 #define CPSW_HEADROOM_NA (max(XDP_PACKET_HEADROOM, NET_SKB_PAD) + NET_IP_ALIGN)
69 #define CPSW_HEADROOM  ALIGN(CPSW_HEADROOM_NA, sizeof(long))
70
71 #define for_each_slave(priv, func, arg...)                              \
72         do {                                                            \
73                 struct cpsw_slave *slave;                               \
74                 struct cpsw_common *cpsw = (priv)->cpsw;                \
75                 int n;                                                  \
76                 if (cpsw->data.dual_emac)                               \
77                         (func)((cpsw)->slaves + priv->emac_port, ##arg);\
78                 else                                                    \
79                         for (n = cpsw->data.slaves,                     \
80                                         slave = cpsw->slaves;           \
81                                         n; n--)                         \
82                                 (func)(slave++, ##arg);                 \
83         } while (0)
84
85 #define CPSW_XMETA_OFFSET       ALIGN(sizeof(struct xdp_frame), sizeof(long))
86
87 #define CPSW_XDP_CONSUMED               1
88 #define CPSW_XDP_PASS                   0
89
90 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
91                                     __be16 proto, u16 vid);
92
93 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
94 {
95         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
96         struct cpsw_ale *ale = cpsw->ale;
97         int i;
98
99         if (cpsw->data.dual_emac) {
100                 bool flag = false;
101
102                 /* Enabling promiscuous mode for one interface will be
103                  * common for both the interface as the interface shares
104                  * the same hardware resource.
105                  */
106                 for (i = 0; i < cpsw->data.slaves; i++)
107                         if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
108                                 flag = true;
109
110                 if (!enable && flag) {
111                         enable = true;
112                         dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
113                 }
114
115                 if (enable) {
116                         /* Enable Bypass */
117                         cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
118
119                         dev_dbg(&ndev->dev, "promiscuity enabled\n");
120                 } else {
121                         /* Disable Bypass */
122                         cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
123                         dev_dbg(&ndev->dev, "promiscuity disabled\n");
124                 }
125         } else {
126                 if (enable) {
127                         unsigned long timeout = jiffies + HZ;
128
129                         /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
130                         for (i = 0; i <= cpsw->data.slaves; i++) {
131                                 cpsw_ale_control_set(ale, i,
132                                                      ALE_PORT_NOLEARN, 1);
133                                 cpsw_ale_control_set(ale, i,
134                                                      ALE_PORT_NO_SA_UPDATE, 1);
135                         }
136
137                         /* Clear All Untouched entries */
138                         cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
139                         do {
140                                 cpu_relax();
141                                 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
142                                         break;
143                         } while (time_after(timeout, jiffies));
144                         cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
145
146                         /* Clear all mcast from ALE */
147                         cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
148                         __hw_addr_ref_unsync_dev(&ndev->mc, ndev, NULL);
149
150                         /* Flood All Unicast Packets to Host port */
151                         cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
152                         dev_dbg(&ndev->dev, "promiscuity enabled\n");
153                 } else {
154                         /* Don't Flood All Unicast Packets to Host port */
155                         cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
156
157                         /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
158                         for (i = 0; i <= cpsw->data.slaves; i++) {
159                                 cpsw_ale_control_set(ale, i,
160                                                      ALE_PORT_NOLEARN, 0);
161                                 cpsw_ale_control_set(ale, i,
162                                                      ALE_PORT_NO_SA_UPDATE, 0);
163                         }
164                         dev_dbg(&ndev->dev, "promiscuity disabled\n");
165                 }
166         }
167 }
168
169 /**
170  * cpsw_set_mc - adds multicast entry to the table if it's not added or deletes
171  * if it's not deleted
172  * @ndev: device to sync
173  * @addr: address to be added or deleted
174  * @vid: vlan id, if vid < 0 set/unset address for real device
175  * @add: add address if the flag is set or remove otherwise
176  */
177 static int cpsw_set_mc(struct net_device *ndev, const u8 *addr,
178                        int vid, int add)
179 {
180         struct cpsw_priv *priv = netdev_priv(ndev);
181         struct cpsw_common *cpsw = priv->cpsw;
182         int mask, flags, ret;
183
184         if (vid < 0) {
185                 if (cpsw->data.dual_emac)
186                         vid = cpsw->slaves[priv->emac_port].port_vlan;
187                 else
188                         vid = 0;
189         }
190
191         mask = cpsw->data.dual_emac ? ALE_PORT_HOST : ALE_ALL_PORTS;
192         flags = vid ? ALE_VLAN : 0;
193
194         if (add)
195                 ret = cpsw_ale_add_mcast(cpsw->ale, addr, mask, flags, vid, 0);
196         else
197                 ret = cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid);
198
199         return ret;
200 }
201
202 static int cpsw_update_vlan_mc(struct net_device *vdev, int vid, void *ctx)
203 {
204         struct addr_sync_ctx *sync_ctx = ctx;
205         struct netdev_hw_addr *ha;
206         int found = 0, ret = 0;
207
208         if (!vdev || !(vdev->flags & IFF_UP))
209                 return 0;
210
211         /* vlan address is relevant if its sync_cnt != 0 */
212         netdev_for_each_mc_addr(ha, vdev) {
213                 if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
214                         found = ha->sync_cnt;
215                         break;
216                 }
217         }
218
219         if (found)
220                 sync_ctx->consumed++;
221
222         if (sync_ctx->flush) {
223                 if (!found)
224                         cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
225                 return 0;
226         }
227
228         if (found)
229                 ret = cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 1);
230
231         return ret;
232 }
233
234 static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr, int num)
235 {
236         struct addr_sync_ctx sync_ctx;
237         int ret;
238
239         sync_ctx.consumed = 0;
240         sync_ctx.addr = addr;
241         sync_ctx.ndev = ndev;
242         sync_ctx.flush = 0;
243
244         ret = vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
245         if (sync_ctx.consumed < num && !ret)
246                 ret = cpsw_set_mc(ndev, addr, -1, 1);
247
248         return ret;
249 }
250
251 static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr, int num)
252 {
253         struct addr_sync_ctx sync_ctx;
254
255         sync_ctx.consumed = 0;
256         sync_ctx.addr = addr;
257         sync_ctx.ndev = ndev;
258         sync_ctx.flush = 1;
259
260         vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
261         if (sync_ctx.consumed == num)
262                 cpsw_set_mc(ndev, addr, -1, 0);
263
264         return 0;
265 }
266
267 static int cpsw_purge_vlan_mc(struct net_device *vdev, int vid, void *ctx)
268 {
269         struct addr_sync_ctx *sync_ctx = ctx;
270         struct netdev_hw_addr *ha;
271         int found = 0;
272
273         if (!vdev || !(vdev->flags & IFF_UP))
274                 return 0;
275
276         /* vlan address is relevant if its sync_cnt != 0 */
277         netdev_for_each_mc_addr(ha, vdev) {
278                 if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
279                         found = ha->sync_cnt;
280                         break;
281                 }
282         }
283
284         if (!found)
285                 return 0;
286
287         sync_ctx->consumed++;
288         cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
289         return 0;
290 }
291
292 static int cpsw_purge_all_mc(struct net_device *ndev, const u8 *addr, int num)
293 {
294         struct addr_sync_ctx sync_ctx;
295
296         sync_ctx.addr = addr;
297         sync_ctx.ndev = ndev;
298         sync_ctx.consumed = 0;
299
300         vlan_for_each(ndev, cpsw_purge_vlan_mc, &sync_ctx);
301         if (sync_ctx.consumed < num)
302                 cpsw_set_mc(ndev, addr, -1, 0);
303
304         return 0;
305 }
306
307 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
308 {
309         struct cpsw_priv *priv = netdev_priv(ndev);
310         struct cpsw_common *cpsw = priv->cpsw;
311         int slave_port = -1;
312
313         if (cpsw->data.dual_emac)
314                 slave_port = priv->emac_port + 1;
315
316         if (ndev->flags & IFF_PROMISC) {
317                 /* Enable promiscuous mode */
318                 cpsw_set_promiscious(ndev, true);
319                 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI, slave_port);
320                 return;
321         } else {
322                 /* Disable promiscuous mode */
323                 cpsw_set_promiscious(ndev, false);
324         }
325
326         /* Restore allmulti on vlans if necessary */
327         cpsw_ale_set_allmulti(cpsw->ale,
328                               ndev->flags & IFF_ALLMULTI, slave_port);
329
330         /* add/remove mcast address either for real netdev or for vlan */
331         __hw_addr_ref_sync_dev(&ndev->mc, ndev, cpsw_add_mc_addr,
332                                cpsw_del_mc_addr);
333 }
334
335 void cpsw_intr_enable(struct cpsw_common *cpsw)
336 {
337         writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
338         writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
339
340         cpdma_ctlr_int_ctrl(cpsw->dma, true);
341         return;
342 }
343
344 void cpsw_intr_disable(struct cpsw_common *cpsw)
345 {
346         writel_relaxed(0, &cpsw->wr_regs->tx_en);
347         writel_relaxed(0, &cpsw->wr_regs->rx_en);
348
349         cpdma_ctlr_int_ctrl(cpsw->dma, false);
350         return;
351 }
352
353 static int cpsw_is_xdpf_handle(void *handle)
354 {
355         return (unsigned long)handle & BIT(0);
356 }
357
358 static void *cpsw_xdpf_to_handle(struct xdp_frame *xdpf)
359 {
360         return (void *)((unsigned long)xdpf | BIT(0));
361 }
362
363 static struct xdp_frame *cpsw_handle_to_xdpf(void *handle)
364 {
365         return (struct xdp_frame *)((unsigned long)handle & ~BIT(0));
366 }
367
368 struct __aligned(sizeof(long)) cpsw_meta_xdp {
369         struct net_device *ndev;
370         int ch;
371 };
372
373 void cpsw_tx_handler(void *token, int len, int status)
374 {
375         struct cpsw_meta_xdp    *xmeta;
376         struct xdp_frame        *xdpf;
377         struct net_device       *ndev;
378         struct netdev_queue     *txq;
379         struct sk_buff          *skb;
380         int                     ch;
381
382         if (cpsw_is_xdpf_handle(token)) {
383                 xdpf = cpsw_handle_to_xdpf(token);
384                 xmeta = (void *)xdpf + CPSW_XMETA_OFFSET;
385                 ndev = xmeta->ndev;
386                 ch = xmeta->ch;
387                 xdp_return_frame(xdpf);
388         } else {
389                 skb = token;
390                 ndev = skb->dev;
391                 ch = skb_get_queue_mapping(skb);
392                 cpts_tx_timestamp(ndev_to_cpsw(ndev)->cpts, skb);
393                 dev_kfree_skb_any(skb);
394         }
395
396         /* Check whether the queue is stopped due to stalled tx dma, if the
397          * queue is stopped then start the queue as we have free desc for tx
398          */
399         txq = netdev_get_tx_queue(ndev, ch);
400         if (unlikely(netif_tx_queue_stopped(txq)))
401                 netif_tx_wake_queue(txq);
402
403         ndev->stats.tx_packets++;
404         ndev->stats.tx_bytes += len;
405 }
406
407 static void cpsw_rx_vlan_encap(struct sk_buff *skb)
408 {
409         struct cpsw_priv *priv = netdev_priv(skb->dev);
410         struct cpsw_common *cpsw = priv->cpsw;
411         u32 rx_vlan_encap_hdr = *((u32 *)skb->data);
412         u16 vtag, vid, prio, pkt_type;
413
414         /* Remove VLAN header encapsulation word */
415         skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE);
416
417         pkt_type = (rx_vlan_encap_hdr >>
418                     CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) &
419                     CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK;
420         /* Ignore unknown & Priority-tagged packets*/
421         if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV ||
422             pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG)
423                 return;
424
425         vid = (rx_vlan_encap_hdr >>
426                CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) &
427                VLAN_VID_MASK;
428         /* Ignore vid 0 and pass packet as is */
429         if (!vid)
430                 return;
431         /* Ignore default vlans in dual mac mode */
432         if (cpsw->data.dual_emac &&
433             vid == cpsw->slaves[priv->emac_port].port_vlan)
434                 return;
435
436         prio = (rx_vlan_encap_hdr >>
437                 CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) &
438                 CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK;
439
440         vtag = (prio << VLAN_PRIO_SHIFT) | vid;
441         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
442
443         /* strip vlan tag for VLAN-tagged packet */
444         if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) {
445                 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
446                 skb_pull(skb, VLAN_HLEN);
447         }
448 }
449
450 static int cpsw_xdp_tx_frame(struct cpsw_priv *priv, struct xdp_frame *xdpf,
451                              struct page *page)
452 {
453         struct cpsw_common *cpsw = priv->cpsw;
454         struct cpsw_meta_xdp *xmeta;
455         struct cpdma_chan *txch;
456         dma_addr_t dma;
457         int ret, port;
458
459         xmeta = (void *)xdpf + CPSW_XMETA_OFFSET;
460         xmeta->ndev = priv->ndev;
461         xmeta->ch = 0;
462         txch = cpsw->txv[0].ch;
463
464         port = priv->emac_port + cpsw->data.dual_emac;
465         if (page) {
466                 dma = page_pool_get_dma_addr(page);
467                 dma += xdpf->headroom + sizeof(struct xdp_frame);
468                 ret = cpdma_chan_submit_mapped(txch, cpsw_xdpf_to_handle(xdpf),
469                                                dma, xdpf->len, port);
470         } else {
471                 if (sizeof(*xmeta) > xdpf->headroom) {
472                         xdp_return_frame_rx_napi(xdpf);
473                         return -EINVAL;
474                 }
475
476                 ret = cpdma_chan_submit(txch, cpsw_xdpf_to_handle(xdpf),
477                                         xdpf->data, xdpf->len, port);
478         }
479
480         if (ret) {
481                 priv->ndev->stats.tx_dropped++;
482                 xdp_return_frame_rx_napi(xdpf);
483         }
484
485         return ret;
486 }
487
488 static int cpsw_run_xdp(struct cpsw_priv *priv, int ch, struct xdp_buff *xdp,
489                         struct page *page)
490 {
491         struct cpsw_common *cpsw = priv->cpsw;
492         struct net_device *ndev = priv->ndev;
493         int ret = CPSW_XDP_CONSUMED;
494         struct xdp_frame *xdpf;
495         struct bpf_prog *prog;
496         u32 act;
497
498         rcu_read_lock();
499
500         prog = READ_ONCE(priv->xdp_prog);
501         if (!prog) {
502                 ret = CPSW_XDP_PASS;
503                 goto out;
504         }
505
506         act = bpf_prog_run_xdp(prog, xdp);
507         switch (act) {
508         case XDP_PASS:
509                 ret = CPSW_XDP_PASS;
510                 break;
511         case XDP_TX:
512                 xdpf = convert_to_xdp_frame(xdp);
513                 if (unlikely(!xdpf))
514                         goto drop;
515
516                 cpsw_xdp_tx_frame(priv, xdpf, page);
517                 break;
518         case XDP_REDIRECT:
519                 if (xdp_do_redirect(ndev, xdp, prog))
520                         goto drop;
521
522                 /*  Have to flush here, per packet, instead of doing it in bulk
523                  *  at the end of the napi handler. The RX devices on this
524                  *  particular hardware is sharing a common queue, so the
525                  *  incoming device might change per packet.
526                  */
527                 xdp_do_flush_map();
528                 break;
529         default:
530                 bpf_warn_invalid_xdp_action(act);
531                 /* fall through */
532         case XDP_ABORTED:
533                 trace_xdp_exception(ndev, prog, act);
534                 /* fall through -- handle aborts by dropping packet */
535         case XDP_DROP:
536                 goto drop;
537         }
538 out:
539         rcu_read_unlock();
540         return ret;
541 drop:
542         rcu_read_unlock();
543         page_pool_recycle_direct(cpsw->page_pool[ch], page);
544         return ret;
545 }
546
547 static unsigned int cpsw_rxbuf_total_len(unsigned int len)
548 {
549         len += CPSW_HEADROOM;
550         len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
551
552         return SKB_DATA_ALIGN(len);
553 }
554
555 static struct page_pool *cpsw_create_page_pool(struct cpsw_common *cpsw,
556                                                int size)
557 {
558         struct page_pool_params pp_params;
559         struct page_pool *pool;
560
561         pp_params.order = 0;
562         pp_params.flags = PP_FLAG_DMA_MAP;
563         pp_params.pool_size = size;
564         pp_params.nid = NUMA_NO_NODE;
565         pp_params.dma_dir = DMA_BIDIRECTIONAL;
566         pp_params.dev = cpsw->dev;
567
568         pool = page_pool_create(&pp_params);
569         if (IS_ERR(pool))
570                 dev_err(cpsw->dev, "cannot create rx page pool\n");
571
572         return pool;
573 }
574
575 static int cpsw_ndev_create_xdp_rxq(struct cpsw_priv *priv, int ch)
576 {
577         struct cpsw_common *cpsw = priv->cpsw;
578         struct xdp_rxq_info *rxq;
579         struct page_pool *pool;
580         int ret;
581
582         pool = cpsw->page_pool[ch];
583         rxq = &priv->xdp_rxq[ch];
584
585         ret = xdp_rxq_info_reg(rxq, priv->ndev, ch);
586         if (ret)
587                 return ret;
588
589         ret = xdp_rxq_info_reg_mem_model(rxq, MEM_TYPE_PAGE_POOL, pool);
590         if (ret)
591                 xdp_rxq_info_unreg(rxq);
592
593         return ret;
594 }
595
596 static void cpsw_ndev_destroy_xdp_rxq(struct cpsw_priv *priv, int ch)
597 {
598         struct xdp_rxq_info *rxq = &priv->xdp_rxq[ch];
599
600         if (!xdp_rxq_info_is_reg(rxq))
601                 return;
602
603         xdp_rxq_info_unreg(rxq);
604 }
605
606 static int cpsw_create_rx_pool(struct cpsw_common *cpsw, int ch)
607 {
608         struct page_pool *pool;
609         int ret = 0, pool_size;
610
611         pool_size = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
612         pool = cpsw_create_page_pool(cpsw, pool_size);
613         if (IS_ERR(pool))
614                 ret = PTR_ERR(pool);
615         else
616                 cpsw->page_pool[ch] = pool;
617
618         return ret;
619 }
620
621 void cpsw_destroy_xdp_rxqs(struct cpsw_common *cpsw)
622 {
623         struct net_device *ndev;
624         int i, ch;
625
626         for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
627                 for (i = 0; i < cpsw->data.slaves; i++) {
628                         ndev = cpsw->slaves[i].ndev;
629                         if (!ndev)
630                                 continue;
631
632                         cpsw_ndev_destroy_xdp_rxq(netdev_priv(ndev), ch);
633                 }
634
635                 page_pool_destroy(cpsw->page_pool[ch]);
636                 cpsw->page_pool[ch] = NULL;
637         }
638 }
639
640 int cpsw_create_xdp_rxqs(struct cpsw_common *cpsw)
641 {
642         struct net_device *ndev;
643         int i, ch, ret;
644
645         for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
646                 ret = cpsw_create_rx_pool(cpsw, ch);
647                 if (ret)
648                         goto err_cleanup;
649
650                 /* using same page pool is allowed as no running rx handlers
651                  * simultaneously for both ndevs
652                  */
653                 for (i = 0; i < cpsw->data.slaves; i++) {
654                         ndev = cpsw->slaves[i].ndev;
655                         if (!ndev)
656                                 continue;
657
658                         ret = cpsw_ndev_create_xdp_rxq(netdev_priv(ndev), ch);
659                         if (ret)
660                                 goto err_cleanup;
661                 }
662         }
663
664         return 0;
665
666 err_cleanup:
667         cpsw_destroy_xdp_rxqs(cpsw);
668
669         return ret;
670 }
671
672 static void cpsw_rx_handler(void *token, int len, int status)
673 {
674         struct page             *new_page, *page = token;
675         void                    *pa = page_address(page);
676         struct cpsw_meta_xdp    *xmeta = pa + CPSW_XMETA_OFFSET;
677         struct cpsw_common      *cpsw = ndev_to_cpsw(xmeta->ndev);
678         int                     pkt_size = cpsw->rx_packet_max;
679         int                     ret = 0, port, ch = xmeta->ch;
680         int                     headroom = CPSW_HEADROOM;
681         struct net_device       *ndev = xmeta->ndev;
682         struct cpsw_priv        *priv;
683         struct page_pool        *pool;
684         struct sk_buff          *skb;
685         struct xdp_buff         xdp;
686         dma_addr_t              dma;
687
688         if (cpsw->data.dual_emac && status >= 0) {
689                 port = CPDMA_RX_SOURCE_PORT(status);
690                 if (port)
691                         ndev = cpsw->slaves[--port].ndev;
692         }
693
694         priv = netdev_priv(ndev);
695         pool = cpsw->page_pool[ch];
696         if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
697                 /* In dual emac mode check for all interfaces */
698                 if (cpsw->data.dual_emac && cpsw->usage_count &&
699                     (status >= 0)) {
700                         /* The packet received is for the interface which
701                          * is already down and the other interface is up
702                          * and running, instead of freeing which results
703                          * in reducing of the number of rx descriptor in
704                          * DMA engine, requeue page back to cpdma.
705                          */
706                         new_page = page;
707                         goto requeue;
708                 }
709
710                 /* the interface is going down, pages are purged */
711                 page_pool_recycle_direct(pool, page);
712                 return;
713         }
714
715         new_page = page_pool_dev_alloc_pages(pool);
716         if (unlikely(!new_page)) {
717                 new_page = page;
718                 ndev->stats.rx_dropped++;
719                 goto requeue;
720         }
721
722         if (priv->xdp_prog) {
723                 if (status & CPDMA_RX_VLAN_ENCAP) {
724                         xdp.data = pa + CPSW_HEADROOM +
725                                    CPSW_RX_VLAN_ENCAP_HDR_SIZE;
726                         xdp.data_end = xdp.data + len -
727                                        CPSW_RX_VLAN_ENCAP_HDR_SIZE;
728                 } else {
729                         xdp.data = pa + CPSW_HEADROOM;
730                         xdp.data_end = xdp.data + len;
731                 }
732
733                 xdp_set_data_meta_invalid(&xdp);
734
735                 xdp.data_hard_start = pa;
736                 xdp.rxq = &priv->xdp_rxq[ch];
737
738                 ret = cpsw_run_xdp(priv, ch, &xdp, page);
739                 if (ret != CPSW_XDP_PASS)
740                         goto requeue;
741
742                 /* XDP prog might have changed packet data and boundaries */
743                 len = xdp.data_end - xdp.data;
744                 headroom = xdp.data - xdp.data_hard_start;
745
746                 /* XDP prog can modify vlan tag, so can't use encap header */
747                 status &= ~CPDMA_RX_VLAN_ENCAP;
748         }
749
750         /* pass skb to netstack if no XDP prog or returned XDP_PASS */
751         skb = build_skb(pa, cpsw_rxbuf_total_len(pkt_size));
752         if (!skb) {
753                 ndev->stats.rx_dropped++;
754                 page_pool_recycle_direct(pool, page);
755                 goto requeue;
756         }
757
758         skb_reserve(skb, headroom);
759         skb_put(skb, len);
760         skb->dev = ndev;
761         if (status & CPDMA_RX_VLAN_ENCAP)
762                 cpsw_rx_vlan_encap(skb);
763         if (priv->rx_ts_enabled)
764                 cpts_rx_timestamp(cpsw->cpts, skb);
765         skb->protocol = eth_type_trans(skb, ndev);
766
767         /* unmap page as no netstack skb page recycling */
768         page_pool_release_page(pool, page);
769         netif_receive_skb(skb);
770
771         ndev->stats.rx_bytes += len;
772         ndev->stats.rx_packets++;
773
774 requeue:
775         xmeta = page_address(new_page) + CPSW_XMETA_OFFSET;
776         xmeta->ndev = ndev;
777         xmeta->ch = ch;
778
779         dma = page_pool_get_dma_addr(new_page) + CPSW_HEADROOM;
780         ret = cpdma_chan_submit_mapped(cpsw->rxv[ch].ch, new_page, dma,
781                                        pkt_size, 0);
782         if (ret < 0) {
783                 WARN_ON(ret == -ENOMEM);
784                 page_pool_recycle_direct(pool, new_page);
785         }
786 }
787
788 void cpsw_split_res(struct cpsw_common *cpsw)
789 {
790         u32 consumed_rate = 0, bigest_rate = 0;
791         struct cpsw_vector *txv = cpsw->txv;
792         int i, ch_weight, rlim_ch_num = 0;
793         int budget, bigest_rate_ch = 0;
794         u32 ch_rate, max_rate;
795         int ch_budget = 0;
796
797         for (i = 0; i < cpsw->tx_ch_num; i++) {
798                 ch_rate = cpdma_chan_get_rate(txv[i].ch);
799                 if (!ch_rate)
800                         continue;
801
802                 rlim_ch_num++;
803                 consumed_rate += ch_rate;
804         }
805
806         if (cpsw->tx_ch_num == rlim_ch_num) {
807                 max_rate = consumed_rate;
808         } else if (!rlim_ch_num) {
809                 ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
810                 bigest_rate = 0;
811                 max_rate = consumed_rate;
812         } else {
813                 max_rate = cpsw->speed * 1000;
814
815                 /* if max_rate is less then expected due to reduced link speed,
816                  * split proportionally according next potential max speed
817                  */
818                 if (max_rate < consumed_rate)
819                         max_rate *= 10;
820
821                 if (max_rate < consumed_rate)
822                         max_rate *= 10;
823
824                 ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
825                 ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
826                             (cpsw->tx_ch_num - rlim_ch_num);
827                 bigest_rate = (max_rate - consumed_rate) /
828                               (cpsw->tx_ch_num - rlim_ch_num);
829         }
830
831         /* split tx weight/budget */
832         budget = CPSW_POLL_WEIGHT;
833         for (i = 0; i < cpsw->tx_ch_num; i++) {
834                 ch_rate = cpdma_chan_get_rate(txv[i].ch);
835                 if (ch_rate) {
836                         txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
837                         if (!txv[i].budget)
838                                 txv[i].budget++;
839                         if (ch_rate > bigest_rate) {
840                                 bigest_rate_ch = i;
841                                 bigest_rate = ch_rate;
842                         }
843
844                         ch_weight = (ch_rate * 100) / max_rate;
845                         if (!ch_weight)
846                                 ch_weight++;
847                         cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
848                 } else {
849                         txv[i].budget = ch_budget;
850                         if (!bigest_rate_ch)
851                                 bigest_rate_ch = i;
852                         cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
853                 }
854
855                 budget -= txv[i].budget;
856         }
857
858         if (budget)
859                 txv[bigest_rate_ch].budget += budget;
860
861         /* split rx budget */
862         budget = CPSW_POLL_WEIGHT;
863         ch_budget = budget / cpsw->rx_ch_num;
864         for (i = 0; i < cpsw->rx_ch_num; i++) {
865                 cpsw->rxv[i].budget = ch_budget;
866                 budget -= ch_budget;
867         }
868
869         if (budget)
870                 cpsw->rxv[0].budget += budget;
871 }
872
873 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
874 {
875         struct cpsw_common *cpsw = dev_id;
876
877         writel(0, &cpsw->wr_regs->tx_en);
878         cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
879
880         if (cpsw->quirk_irq) {
881                 disable_irq_nosync(cpsw->irqs_table[1]);
882                 cpsw->tx_irq_disabled = true;
883         }
884
885         napi_schedule(&cpsw->napi_tx);
886         return IRQ_HANDLED;
887 }
888
889 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
890 {
891         struct cpsw_common *cpsw = dev_id;
892
893         cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
894         writel(0, &cpsw->wr_regs->rx_en);
895
896         if (cpsw->quirk_irq) {
897                 disable_irq_nosync(cpsw->irqs_table[0]);
898                 cpsw->rx_irq_disabled = true;
899         }
900
901         napi_schedule(&cpsw->napi_rx);
902         return IRQ_HANDLED;
903 }
904
905 static int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget)
906 {
907         u32                     ch_map;
908         int                     num_tx, cur_budget, ch;
909         struct cpsw_common      *cpsw = napi_to_cpsw(napi_tx);
910         struct cpsw_vector      *txv;
911
912         /* process every unprocessed channel */
913         ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
914         for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) {
915                 if (!(ch_map & 0x80))
916                         continue;
917
918                 txv = &cpsw->txv[ch];
919                 if (unlikely(txv->budget > budget - num_tx))
920                         cur_budget = budget - num_tx;
921                 else
922                         cur_budget = txv->budget;
923
924                 num_tx += cpdma_chan_process(txv->ch, cur_budget);
925                 if (num_tx >= budget)
926                         break;
927         }
928
929         if (num_tx < budget) {
930                 napi_complete(napi_tx);
931                 writel(0xff, &cpsw->wr_regs->tx_en);
932         }
933
934         return num_tx;
935 }
936
937 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
938 {
939         struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
940         int num_tx;
941
942         num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget);
943         if (num_tx < budget) {
944                 napi_complete(napi_tx);
945                 writel(0xff, &cpsw->wr_regs->tx_en);
946                 if (cpsw->tx_irq_disabled) {
947                         cpsw->tx_irq_disabled = false;
948                         enable_irq(cpsw->irqs_table[1]);
949                 }
950         }
951
952         return num_tx;
953 }
954
955 static int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget)
956 {
957         u32                     ch_map;
958         int                     num_rx, cur_budget, ch;
959         struct cpsw_common      *cpsw = napi_to_cpsw(napi_rx);
960         struct cpsw_vector      *rxv;
961
962         /* process every unprocessed channel */
963         ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
964         for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
965                 if (!(ch_map & 0x01))
966                         continue;
967
968                 rxv = &cpsw->rxv[ch];
969                 if (unlikely(rxv->budget > budget - num_rx))
970                         cur_budget = budget - num_rx;
971                 else
972                         cur_budget = rxv->budget;
973
974                 num_rx += cpdma_chan_process(rxv->ch, cur_budget);
975                 if (num_rx >= budget)
976                         break;
977         }
978
979         if (num_rx < budget) {
980                 napi_complete_done(napi_rx, num_rx);
981                 writel(0xff, &cpsw->wr_regs->rx_en);
982         }
983
984         return num_rx;
985 }
986
987 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
988 {
989         struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
990         int num_rx;
991
992         num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget);
993         if (num_rx < budget) {
994                 napi_complete_done(napi_rx, num_rx);
995                 writel(0xff, &cpsw->wr_regs->rx_en);
996                 if (cpsw->rx_irq_disabled) {
997                         cpsw->rx_irq_disabled = false;
998                         enable_irq(cpsw->irqs_table[0]);
999                 }
1000         }
1001
1002         return num_rx;
1003 }
1004
1005 static inline void soft_reset(const char *module, void __iomem *reg)
1006 {
1007         unsigned long timeout = jiffies + HZ;
1008
1009         writel_relaxed(1, reg);
1010         do {
1011                 cpu_relax();
1012         } while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
1013
1014         WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
1015 }
1016
1017 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
1018                                struct cpsw_priv *priv)
1019 {
1020         slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
1021         slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
1022 }
1023
1024 static bool cpsw_shp_is_off(struct cpsw_priv *priv)
1025 {
1026         struct cpsw_common *cpsw = priv->cpsw;
1027         struct cpsw_slave *slave;
1028         u32 shift, mask, val;
1029
1030         val = readl_relaxed(&cpsw->regs->ptype);
1031
1032         slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1033         shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
1034         mask = 7 << shift;
1035         val = val & mask;
1036
1037         return !val;
1038 }
1039
1040 static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on)
1041 {
1042         struct cpsw_common *cpsw = priv->cpsw;
1043         struct cpsw_slave *slave;
1044         u32 shift, mask, val;
1045
1046         val = readl_relaxed(&cpsw->regs->ptype);
1047
1048         slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1049         shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
1050         mask = (1 << --fifo) << shift;
1051         val = on ? val | mask : val & ~mask;
1052
1053         writel_relaxed(val, &cpsw->regs->ptype);
1054 }
1055
1056 static void _cpsw_adjust_link(struct cpsw_slave *slave,
1057                               struct cpsw_priv *priv, bool *link)
1058 {
1059         struct phy_device       *phy = slave->phy;
1060         u32                     mac_control = 0;
1061         u32                     slave_port;
1062         struct cpsw_common *cpsw = priv->cpsw;
1063
1064         if (!phy)
1065                 return;
1066
1067         slave_port = cpsw_get_slave_port(slave->slave_num);
1068
1069         if (phy->link) {
1070                 mac_control = CPSW_SL_CTL_GMII_EN;
1071
1072                 if (phy->speed == 1000)
1073                         mac_control |= CPSW_SL_CTL_GIG;
1074                 if (phy->duplex)
1075                         mac_control |= CPSW_SL_CTL_FULLDUPLEX;
1076
1077                 /* set speed_in input in case RMII mode is used in 100Mbps */
1078                 if (phy->speed == 100)
1079                         mac_control |= CPSW_SL_CTL_IFCTL_A;
1080                 /* in band mode only works in 10Mbps RGMII mode */
1081                 else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
1082                         mac_control |= CPSW_SL_CTL_EXT_EN; /* In Band mode */
1083
1084                 if (priv->rx_pause)
1085                         mac_control |= CPSW_SL_CTL_RX_FLOW_EN;
1086
1087                 if (priv->tx_pause)
1088                         mac_control |= CPSW_SL_CTL_TX_FLOW_EN;
1089
1090                 if (mac_control != slave->mac_control)
1091                         cpsw_sl_ctl_set(slave->mac_sl, mac_control);
1092
1093                 /* enable forwarding */
1094                 cpsw_ale_control_set(cpsw->ale, slave_port,
1095                                      ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1096
1097                 *link = true;
1098
1099                 if (priv->shp_cfg_speed &&
1100                     priv->shp_cfg_speed != slave->phy->speed &&
1101                     !cpsw_shp_is_off(priv))
1102                         dev_warn(priv->dev,
1103                                  "Speed was changed, CBS shaper speeds are changed!");
1104         } else {
1105                 mac_control = 0;
1106                 /* disable forwarding */
1107                 cpsw_ale_control_set(cpsw->ale, slave_port,
1108                                      ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1109
1110                 cpsw_sl_wait_for_idle(slave->mac_sl, 100);
1111
1112                 cpsw_sl_ctl_reset(slave->mac_sl);
1113         }
1114
1115         if (mac_control != slave->mac_control)
1116                 phy_print_status(phy);
1117
1118         slave->mac_control = mac_control;
1119 }
1120
1121 static int cpsw_get_common_speed(struct cpsw_common *cpsw)
1122 {
1123         int i, speed;
1124
1125         for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
1126                 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
1127                         speed += cpsw->slaves[i].phy->speed;
1128
1129         return speed;
1130 }
1131
1132 static int cpsw_need_resplit(struct cpsw_common *cpsw)
1133 {
1134         int i, rlim_ch_num;
1135         int speed, ch_rate;
1136
1137         /* re-split resources only in case speed was changed */
1138         speed = cpsw_get_common_speed(cpsw);
1139         if (speed == cpsw->speed || !speed)
1140                 return 0;
1141
1142         cpsw->speed = speed;
1143
1144         for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
1145                 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
1146                 if (!ch_rate)
1147                         break;
1148
1149                 rlim_ch_num++;
1150         }
1151
1152         /* cases not dependent on speed */
1153         if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
1154                 return 0;
1155
1156         return 1;
1157 }
1158
1159 static void cpsw_adjust_link(struct net_device *ndev)
1160 {
1161         struct cpsw_priv        *priv = netdev_priv(ndev);
1162         struct cpsw_common      *cpsw = priv->cpsw;
1163         bool                    link = false;
1164
1165         for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1166
1167         if (link) {
1168                 if (cpsw_need_resplit(cpsw))
1169                         cpsw_split_res(cpsw);
1170
1171                 netif_carrier_on(ndev);
1172                 if (netif_running(ndev))
1173                         netif_tx_wake_all_queues(ndev);
1174         } else {
1175                 netif_carrier_off(ndev);
1176                 netif_tx_stop_all_queues(ndev);
1177         }
1178 }
1179
1180 static inline void cpsw_add_dual_emac_def_ale_entries(
1181                 struct cpsw_priv *priv, struct cpsw_slave *slave,
1182                 u32 slave_port)
1183 {
1184         struct cpsw_common *cpsw = priv->cpsw;
1185         u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1186
1187         if (cpsw->version == CPSW_VERSION_1)
1188                 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1189         else
1190                 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1191         cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1192                           port_mask, port_mask, 0);
1193         cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1194                            ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 0);
1195         cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1196                            HOST_PORT_NUM, ALE_VLAN |
1197                            ALE_SECURE, slave->port_vlan);
1198         cpsw_ale_control_set(cpsw->ale, slave_port,
1199                              ALE_PORT_DROP_UNKNOWN_VLAN, 1);
1200 }
1201
1202 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1203 {
1204         u32 slave_port;
1205         struct phy_device *phy;
1206         struct cpsw_common *cpsw = priv->cpsw;
1207
1208         cpsw_sl_reset(slave->mac_sl, 100);
1209         cpsw_sl_ctl_reset(slave->mac_sl);
1210
1211         /* setup priority mapping */
1212         cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_PRI_MAP,
1213                           RX_PRIORITY_MAPPING);
1214
1215         switch (cpsw->version) {
1216         case CPSW_VERSION_1:
1217                 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1218                 /* Increase RX FIFO size to 5 for supporting fullduplex
1219                  * flow control mode
1220                  */
1221                 slave_write(slave,
1222                             (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1223                             CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
1224                 break;
1225         case CPSW_VERSION_2:
1226         case CPSW_VERSION_3:
1227         case CPSW_VERSION_4:
1228                 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1229                 /* Increase RX FIFO size to 5 for supporting fullduplex
1230                  * flow control mode
1231                  */
1232                 slave_write(slave,
1233                             (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1234                             CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
1235                 break;
1236         }
1237
1238         /* setup max packet size, and mac address */
1239         cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_MAXLEN,
1240                           cpsw->rx_packet_max);
1241         cpsw_set_slave_mac(slave, priv);
1242
1243         slave->mac_control = 0; /* no link yet */
1244
1245         slave_port = cpsw_get_slave_port(slave->slave_num);
1246
1247         if (cpsw->data.dual_emac)
1248                 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1249         else
1250                 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1251                                    1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1252
1253         if (slave->data->phy_node) {
1254                 phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1255                                  &cpsw_adjust_link, 0, slave->data->phy_if);
1256                 if (!phy) {
1257                         dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
1258                                 slave->data->phy_node,
1259                                 slave->slave_num);
1260                         return;
1261                 }
1262         } else {
1263                 phy = phy_connect(priv->ndev, slave->data->phy_id,
1264                                  &cpsw_adjust_link, slave->data->phy_if);
1265                 if (IS_ERR(phy)) {
1266                         dev_err(priv->dev,
1267                                 "phy \"%s\" not found on slave %d, err %ld\n",
1268                                 slave->data->phy_id, slave->slave_num,
1269                                 PTR_ERR(phy));
1270                         return;
1271                 }
1272         }
1273
1274         slave->phy = phy;
1275
1276         phy_attached_info(slave->phy);
1277
1278         phy_start(slave->phy);
1279
1280         /* Configure GMII_SEL register */
1281         if (!IS_ERR(slave->data->ifphy))
1282                 phy_set_mode_ext(slave->data->ifphy, PHY_MODE_ETHERNET,
1283                                  slave->data->phy_if);
1284         else
1285                 cpsw_phy_sel(cpsw->dev, slave->phy->interface,
1286                              slave->slave_num);
1287 }
1288
1289 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1290 {
1291         struct cpsw_common *cpsw = priv->cpsw;
1292         const int vlan = cpsw->data.default_vlan;
1293         u32 reg;
1294         int i;
1295         int unreg_mcast_mask;
1296
1297         reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1298                CPSW2_PORT_VLAN;
1299
1300         writel(vlan, &cpsw->host_port_regs->port_vlan);
1301
1302         for (i = 0; i < cpsw->data.slaves; i++)
1303                 slave_write(cpsw->slaves + i, vlan, reg);
1304
1305         if (priv->ndev->flags & IFF_ALLMULTI)
1306                 unreg_mcast_mask = ALE_ALL_PORTS;
1307         else
1308                 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1309
1310         cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1311                           ALE_ALL_PORTS, ALE_ALL_PORTS,
1312                           unreg_mcast_mask);
1313 }
1314
1315 static void cpsw_init_host_port(struct cpsw_priv *priv)
1316 {
1317         u32 fifo_mode;
1318         u32 control_reg;
1319         struct cpsw_common *cpsw = priv->cpsw;
1320
1321         /* soft reset the controller and initialize ale */
1322         soft_reset("cpsw", &cpsw->regs->soft_reset);
1323         cpsw_ale_start(cpsw->ale);
1324
1325         /* switch to vlan unaware mode */
1326         cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1327                              CPSW_ALE_VLAN_AWARE);
1328         control_reg = readl(&cpsw->regs->control);
1329         control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
1330         writel(control_reg, &cpsw->regs->control);
1331         fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1332                      CPSW_FIFO_NORMAL_MODE;
1333         writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1334
1335         /* setup host port priority mapping */
1336         writel_relaxed(CPDMA_TX_PRIORITY_MAP,
1337                        &cpsw->host_port_regs->cpdma_tx_pri_map);
1338         writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1339
1340         cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1341                              ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1342
1343         if (!cpsw->data.dual_emac) {
1344                 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1345                                    0, 0);
1346                 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1347                                    ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1348         }
1349 }
1350
1351 int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1352 {
1353         struct cpsw_common *cpsw = priv->cpsw;
1354         struct cpsw_meta_xdp *xmeta;
1355         struct page_pool *pool;
1356         struct page *page;
1357         int ch_buf_num;
1358         int ch, i, ret;
1359         dma_addr_t dma;
1360
1361         for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1362                 pool = cpsw->page_pool[ch];
1363                 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1364                 for (i = 0; i < ch_buf_num; i++) {
1365                         page = page_pool_dev_alloc_pages(pool);
1366                         if (!page) {
1367                                 cpsw_err(priv, ifup, "allocate rx page err\n");
1368                                 return -ENOMEM;
1369                         }
1370
1371                         xmeta = page_address(page) + CPSW_XMETA_OFFSET;
1372                         xmeta->ndev = priv->ndev;
1373                         xmeta->ch = ch;
1374
1375                         dma = page_pool_get_dma_addr(page) + CPSW_HEADROOM;
1376                         ret = cpdma_chan_idle_submit_mapped(cpsw->rxv[ch].ch,
1377                                                             page, dma,
1378                                                             cpsw->rx_packet_max,
1379                                                             0);
1380                         if (ret < 0) {
1381                                 cpsw_err(priv, ifup,
1382                                          "cannot submit page to channel %d rx, error %d\n",
1383                                          ch, ret);
1384                                 page_pool_recycle_direct(pool, page);
1385                                 return ret;
1386                         }
1387                 }
1388
1389                 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1390                           ch, ch_buf_num);
1391         }
1392
1393         return 0;
1394 }
1395
1396 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1397 {
1398         u32 slave_port;
1399
1400         slave_port = cpsw_get_slave_port(slave->slave_num);
1401
1402         if (!slave->phy)
1403                 return;
1404         phy_stop(slave->phy);
1405         phy_disconnect(slave->phy);
1406         slave->phy = NULL;
1407         cpsw_ale_control_set(cpsw->ale, slave_port,
1408                              ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1409         cpsw_sl_reset(slave->mac_sl, 100);
1410         cpsw_sl_ctl_reset(slave->mac_sl);
1411 }
1412
1413 static int cpsw_tc_to_fifo(int tc, int num_tc)
1414 {
1415         if (tc == num_tc - 1)
1416                 return 0;
1417
1418         return CPSW_FIFO_SHAPERS_NUM - tc;
1419 }
1420
1421 static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw)
1422 {
1423         struct cpsw_common *cpsw = priv->cpsw;
1424         u32 val = 0, send_pct, shift;
1425         struct cpsw_slave *slave;
1426         int pct = 0, i;
1427
1428         if (bw > priv->shp_cfg_speed * 1000)
1429                 goto err;
1430
1431         /* shaping has to stay enabled for highest fifos linearly
1432          * and fifo bw no more then interface can allow
1433          */
1434         slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1435         send_pct = slave_read(slave, SEND_PERCENT);
1436         for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) {
1437                 if (!bw) {
1438                         if (i >= fifo || !priv->fifo_bw[i])
1439                                 continue;
1440
1441                         dev_warn(priv->dev, "Prev FIFO%d is shaped", i);
1442                         continue;
1443                 }
1444
1445                 if (!priv->fifo_bw[i] && i > fifo) {
1446                         dev_err(priv->dev, "Upper FIFO%d is not shaped", i);
1447                         return -EINVAL;
1448                 }
1449
1450                 shift = (i - 1) * 8;
1451                 if (i == fifo) {
1452                         send_pct &= ~(CPSW_PCT_MASK << shift);
1453                         val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10);
1454                         if (!val)
1455                                 val = 1;
1456
1457                         send_pct |= val << shift;
1458                         pct += val;
1459                         continue;
1460                 }
1461
1462                 if (priv->fifo_bw[i])
1463                         pct += (send_pct >> shift) & CPSW_PCT_MASK;
1464         }
1465
1466         if (pct >= 100)
1467                 goto err;
1468
1469         slave_write(slave, send_pct, SEND_PERCENT);
1470         priv->fifo_bw[fifo] = bw;
1471
1472         dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo,
1473                  DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100));
1474
1475         return 0;
1476 err:
1477         dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration");
1478         return -EINVAL;
1479 }
1480
1481 static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw)
1482 {
1483         struct cpsw_common *cpsw = priv->cpsw;
1484         struct cpsw_slave *slave;
1485         u32 tx_in_ctl_rg, val;
1486         int ret;
1487
1488         ret = cpsw_set_fifo_bw(priv, fifo, bw);
1489         if (ret)
1490                 return ret;
1491
1492         slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1493         tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ?
1494                        CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL;
1495
1496         if (!bw)
1497                 cpsw_fifo_shp_on(priv, fifo, bw);
1498
1499         val = slave_read(slave, tx_in_ctl_rg);
1500         if (cpsw_shp_is_off(priv)) {
1501                 /* disable FIFOs rate limited queues */
1502                 val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT);
1503
1504                 /* set type of FIFO queues to normal priority mode */
1505                 val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT);
1506
1507                 /* set type of FIFO queues to be rate limited */
1508                 if (bw)
1509                         val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT;
1510                 else
1511                         priv->shp_cfg_speed = 0;
1512         }
1513
1514         /* toggle a FIFO rate limited queue */
1515         if (bw)
1516                 val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
1517         else
1518                 val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
1519         slave_write(slave, val, tx_in_ctl_rg);
1520
1521         /* FIFO transmit shape enable */
1522         cpsw_fifo_shp_on(priv, fifo, bw);
1523         return 0;
1524 }
1525
1526 /* Defaults:
1527  * class A - prio 3
1528  * class B - prio 2
1529  * shaping for class A should be set first
1530  */
1531 static int cpsw_set_cbs(struct net_device *ndev,
1532                         struct tc_cbs_qopt_offload *qopt)
1533 {
1534         struct cpsw_priv *priv = netdev_priv(ndev);
1535         struct cpsw_common *cpsw = priv->cpsw;
1536         struct cpsw_slave *slave;
1537         int prev_speed = 0;
1538         int tc, ret, fifo;
1539         u32 bw = 0;
1540
1541         tc = netdev_txq_to_tc(priv->ndev, qopt->queue);
1542
1543         /* enable channels in backward order, as highest FIFOs must be rate
1544          * limited first and for compliance with CPDMA rate limited channels
1545          * that also used in bacward order. FIFO0 cannot be rate limited.
1546          */
1547         fifo = cpsw_tc_to_fifo(tc, ndev->num_tc);
1548         if (!fifo) {
1549                 dev_err(priv->dev, "Last tc%d can't be rate limited", tc);
1550                 return -EINVAL;
1551         }
1552
1553         /* do nothing, it's disabled anyway */
1554         if (!qopt->enable && !priv->fifo_bw[fifo])
1555                 return 0;
1556
1557         /* shapers can be set if link speed is known */
1558         slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1559         if (slave->phy && slave->phy->link) {
1560                 if (priv->shp_cfg_speed &&
1561                     priv->shp_cfg_speed != slave->phy->speed)
1562                         prev_speed = priv->shp_cfg_speed;
1563
1564                 priv->shp_cfg_speed = slave->phy->speed;
1565         }
1566
1567         if (!priv->shp_cfg_speed) {
1568                 dev_err(priv->dev, "Link speed is not known");
1569                 return -1;
1570         }
1571
1572         ret = pm_runtime_get_sync(cpsw->dev);
1573         if (ret < 0) {
1574                 pm_runtime_put_noidle(cpsw->dev);
1575                 return ret;
1576         }
1577
1578         bw = qopt->enable ? qopt->idleslope : 0;
1579         ret = cpsw_set_fifo_rlimit(priv, fifo, bw);
1580         if (ret) {
1581                 priv->shp_cfg_speed = prev_speed;
1582                 prev_speed = 0;
1583         }
1584
1585         if (bw && prev_speed)
1586                 dev_warn(priv->dev,
1587                          "Speed was changed, CBS shaper speeds are changed!");
1588
1589         pm_runtime_put_sync(cpsw->dev);
1590         return ret;
1591 }
1592
1593 static void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
1594 {
1595         int fifo, bw;
1596
1597         for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) {
1598                 bw = priv->fifo_bw[fifo];
1599                 if (!bw)
1600                         continue;
1601
1602                 cpsw_set_fifo_rlimit(priv, fifo, bw);
1603         }
1604 }
1605
1606 static void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
1607 {
1608         struct cpsw_common *cpsw = priv->cpsw;
1609         u32 tx_prio_map = 0;
1610         int i, tc, fifo;
1611         u32 tx_prio_rg;
1612
1613         if (!priv->mqprio_hw)
1614                 return;
1615
1616         for (i = 0; i < 8; i++) {
1617                 tc = netdev_get_prio_tc_map(priv->ndev, i);
1618                 fifo = CPSW_FIFO_SHAPERS_NUM - tc;
1619                 tx_prio_map |= fifo << (4 * i);
1620         }
1621
1622         tx_prio_rg = cpsw->version == CPSW_VERSION_1 ?
1623                      CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;
1624
1625         slave_write(slave, tx_prio_map, tx_prio_rg);
1626 }
1627
1628 static int cpsw_restore_vlans(struct net_device *vdev, int vid, void *arg)
1629 {
1630         struct cpsw_priv *priv = arg;
1631
1632         if (!vdev)
1633                 return 0;
1634
1635         cpsw_ndo_vlan_rx_add_vid(priv->ndev, 0, vid);
1636         return 0;
1637 }
1638
1639 /* restore resources after port reset */
1640 static void cpsw_restore(struct cpsw_priv *priv)
1641 {
1642         /* restore vlan configurations */
1643         vlan_for_each(priv->ndev, cpsw_restore_vlans, priv);
1644
1645         /* restore MQPRIO offload */
1646         for_each_slave(priv, cpsw_mqprio_resume, priv);
1647
1648         /* restore CBS offload */
1649         for_each_slave(priv, cpsw_cbs_resume, priv);
1650 }
1651
1652 static int cpsw_ndo_open(struct net_device *ndev)
1653 {
1654         struct cpsw_priv *priv = netdev_priv(ndev);
1655         struct cpsw_common *cpsw = priv->cpsw;
1656         int ret;
1657         u32 reg;
1658
1659         ret = pm_runtime_get_sync(cpsw->dev);
1660         if (ret < 0) {
1661                 pm_runtime_put_noidle(cpsw->dev);
1662                 return ret;
1663         }
1664
1665         netif_carrier_off(ndev);
1666
1667         /* Notify the stack of the actual queue counts. */
1668         ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
1669         if (ret) {
1670                 dev_err(priv->dev, "cannot set real number of tx queues\n");
1671                 goto err_cleanup;
1672         }
1673
1674         ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
1675         if (ret) {
1676                 dev_err(priv->dev, "cannot set real number of rx queues\n");
1677                 goto err_cleanup;
1678         }
1679
1680         reg = cpsw->version;
1681
1682         dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1683                  CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1684                  CPSW_RTL_VERSION(reg));
1685
1686         /* Initialize host and slave ports */
1687         if (!cpsw->usage_count)
1688                 cpsw_init_host_port(priv);
1689         for_each_slave(priv, cpsw_slave_open, priv);
1690
1691         /* Add default VLAN */
1692         if (!cpsw->data.dual_emac)
1693                 cpsw_add_default_vlan(priv);
1694         else
1695                 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1696                                   ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1697
1698         /* initialize shared resources for every ndev */
1699         if (!cpsw->usage_count) {
1700                 /* disable priority elevation */
1701                 writel_relaxed(0, &cpsw->regs->ptype);
1702
1703                 /* enable statistics collection only on all ports */
1704                 writel_relaxed(0x7, &cpsw->regs->stat_port_en);
1705
1706                 /* Enable internal fifo flow control */
1707                 writel(0x7, &cpsw->regs->flow_control);
1708
1709                 napi_enable(&cpsw->napi_rx);
1710                 napi_enable(&cpsw->napi_tx);
1711
1712                 if (cpsw->tx_irq_disabled) {
1713                         cpsw->tx_irq_disabled = false;
1714                         enable_irq(cpsw->irqs_table[1]);
1715                 }
1716
1717                 if (cpsw->rx_irq_disabled) {
1718                         cpsw->rx_irq_disabled = false;
1719                         enable_irq(cpsw->irqs_table[0]);
1720                 }
1721
1722                 /* create rxqs for both infs in dual mac as they use same pool
1723                  * and must be destroyed together when no users.
1724                  */
1725                 ret = cpsw_create_xdp_rxqs(cpsw);
1726                 if (ret < 0)
1727                         goto err_cleanup;
1728
1729                 ret = cpsw_fill_rx_channels(priv);
1730                 if (ret < 0)
1731                         goto err_cleanup;
1732
1733                 if (cpts_register(cpsw->cpts))
1734                         dev_err(priv->dev, "error registering cpts device\n");
1735
1736         }
1737
1738         cpsw_restore(priv);
1739
1740         /* Enable Interrupt pacing if configured */
1741         if (cpsw->coal_intvl != 0) {
1742                 struct ethtool_coalesce coal;
1743
1744                 coal.rx_coalesce_usecs = cpsw->coal_intvl;
1745                 cpsw_set_coalesce(ndev, &coal);
1746         }
1747
1748         cpdma_ctlr_start(cpsw->dma);
1749         cpsw_intr_enable(cpsw);
1750         cpsw->usage_count++;
1751
1752         return 0;
1753
1754 err_cleanup:
1755         if (!cpsw->usage_count) {
1756                 cpdma_ctlr_stop(cpsw->dma);
1757                 cpsw_destroy_xdp_rxqs(cpsw);
1758         }
1759
1760         for_each_slave(priv, cpsw_slave_stop, cpsw);
1761         pm_runtime_put_sync(cpsw->dev);
1762         netif_carrier_off(priv->ndev);
1763         return ret;
1764 }
1765
1766 static int cpsw_ndo_stop(struct net_device *ndev)
1767 {
1768         struct cpsw_priv *priv = netdev_priv(ndev);
1769         struct cpsw_common *cpsw = priv->cpsw;
1770
1771         cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1772         __hw_addr_ref_unsync_dev(&ndev->mc, ndev, cpsw_purge_all_mc);
1773         netif_tx_stop_all_queues(priv->ndev);
1774         netif_carrier_off(priv->ndev);
1775
1776         if (cpsw->usage_count <= 1) {
1777                 napi_disable(&cpsw->napi_rx);
1778                 napi_disable(&cpsw->napi_tx);
1779                 cpts_unregister(cpsw->cpts);
1780                 cpsw_intr_disable(cpsw);
1781                 cpdma_ctlr_stop(cpsw->dma);
1782                 cpsw_ale_stop(cpsw->ale);
1783                 cpsw_destroy_xdp_rxqs(cpsw);
1784         }
1785         for_each_slave(priv, cpsw_slave_stop, cpsw);
1786
1787         if (cpsw_need_resplit(cpsw))
1788                 cpsw_split_res(cpsw);
1789
1790         cpsw->usage_count--;
1791         pm_runtime_put_sync(cpsw->dev);
1792         return 0;
1793 }
1794
1795 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1796                                        struct net_device *ndev)
1797 {
1798         struct cpsw_priv *priv = netdev_priv(ndev);
1799         struct cpsw_common *cpsw = priv->cpsw;
1800         struct cpts *cpts = cpsw->cpts;
1801         struct netdev_queue *txq;
1802         struct cpdma_chan *txch;
1803         int ret, q_idx;
1804
1805         if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1806                 cpsw_err(priv, tx_err, "packet pad failed\n");
1807                 ndev->stats.tx_dropped++;
1808                 return NET_XMIT_DROP;
1809         }
1810
1811         if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1812             priv->tx_ts_enabled && cpts_can_timestamp(cpts, skb))
1813                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1814
1815         q_idx = skb_get_queue_mapping(skb);
1816         if (q_idx >= cpsw->tx_ch_num)
1817                 q_idx = q_idx % cpsw->tx_ch_num;
1818
1819         txch = cpsw->txv[q_idx].ch;
1820         txq = netdev_get_tx_queue(ndev, q_idx);
1821         skb_tx_timestamp(skb);
1822         ret = cpdma_chan_submit(txch, skb, skb->data, skb->len,
1823                                 priv->emac_port + cpsw->data.dual_emac);
1824         if (unlikely(ret != 0)) {
1825                 cpsw_err(priv, tx_err, "desc submit failed\n");
1826                 goto fail;
1827         }
1828
1829         /* If there is no more tx desc left free then we need to
1830          * tell the kernel to stop sending us tx frames.
1831          */
1832         if (unlikely(!cpdma_check_free_tx_desc(txch))) {
1833                 netif_tx_stop_queue(txq);
1834
1835                 /* Barrier, so that stop_queue visible to other cpus */
1836                 smp_mb__after_atomic();
1837
1838                 if (cpdma_check_free_tx_desc(txch))
1839                         netif_tx_wake_queue(txq);
1840         }
1841
1842         return NETDEV_TX_OK;
1843 fail:
1844         ndev->stats.tx_dropped++;
1845         netif_tx_stop_queue(txq);
1846
1847         /* Barrier, so that stop_queue visible to other cpus */
1848         smp_mb__after_atomic();
1849
1850         if (cpdma_check_free_tx_desc(txch))
1851                 netif_tx_wake_queue(txq);
1852
1853         return NETDEV_TX_BUSY;
1854 }
1855
1856 #if IS_ENABLED(CONFIG_TI_CPTS)
1857
1858 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv)
1859 {
1860         struct cpsw_common *cpsw = priv->cpsw;
1861         struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1862         u32 ts_en, seq_id;
1863
1864         if (!priv->tx_ts_enabled && !priv->rx_ts_enabled) {
1865                 slave_write(slave, 0, CPSW1_TS_CTL);
1866                 return;
1867         }
1868
1869         seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1870         ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1871
1872         if (priv->tx_ts_enabled)
1873                 ts_en |= CPSW_V1_TS_TX_EN;
1874
1875         if (priv->rx_ts_enabled)
1876                 ts_en |= CPSW_V1_TS_RX_EN;
1877
1878         slave_write(slave, ts_en, CPSW1_TS_CTL);
1879         slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1880 }
1881
1882 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1883 {
1884         struct cpsw_slave *slave;
1885         struct cpsw_common *cpsw = priv->cpsw;
1886         u32 ctrl, mtype;
1887
1888         slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1889
1890         ctrl = slave_read(slave, CPSW2_CONTROL);
1891         switch (cpsw->version) {
1892         case CPSW_VERSION_2:
1893                 ctrl &= ~CTRL_V2_ALL_TS_MASK;
1894
1895                 if (priv->tx_ts_enabled)
1896                         ctrl |= CTRL_V2_TX_TS_BITS;
1897
1898                 if (priv->rx_ts_enabled)
1899                         ctrl |= CTRL_V2_RX_TS_BITS;
1900                 break;
1901         case CPSW_VERSION_3:
1902         default:
1903                 ctrl &= ~CTRL_V3_ALL_TS_MASK;
1904
1905                 if (priv->tx_ts_enabled)
1906                         ctrl |= CTRL_V3_TX_TS_BITS;
1907
1908                 if (priv->rx_ts_enabled)
1909                         ctrl |= CTRL_V3_RX_TS_BITS;
1910                 break;
1911         }
1912
1913         mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1914
1915         slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1916         slave_write(slave, ctrl, CPSW2_CONTROL);
1917         writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
1918         writel_relaxed(ETH_P_8021Q, &cpsw->regs->vlan_ltype);
1919 }
1920
1921 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1922 {
1923         struct cpsw_priv *priv = netdev_priv(dev);
1924         struct hwtstamp_config cfg;
1925         struct cpsw_common *cpsw = priv->cpsw;
1926
1927         if (cpsw->version != CPSW_VERSION_1 &&
1928             cpsw->version != CPSW_VERSION_2 &&
1929             cpsw->version != CPSW_VERSION_3)
1930                 return -EOPNOTSUPP;
1931
1932         if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1933                 return -EFAULT;
1934
1935         /* reserved for future extensions */
1936         if (cfg.flags)
1937                 return -EINVAL;
1938
1939         if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1940                 return -ERANGE;
1941
1942         switch (cfg.rx_filter) {
1943         case HWTSTAMP_FILTER_NONE:
1944                 priv->rx_ts_enabled = 0;
1945                 break;
1946         case HWTSTAMP_FILTER_ALL:
1947         case HWTSTAMP_FILTER_NTP_ALL:
1948                 return -ERANGE;
1949         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1950         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1951         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1952                 priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1953                 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1954                 break;
1955         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1956         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1957         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1958         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1959         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1960         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1961         case HWTSTAMP_FILTER_PTP_V2_EVENT:
1962         case HWTSTAMP_FILTER_PTP_V2_SYNC:
1963         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1964                 priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V2_EVENT;
1965                 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1966                 break;
1967         default:
1968                 return -ERANGE;
1969         }
1970
1971         priv->tx_ts_enabled = cfg.tx_type == HWTSTAMP_TX_ON;
1972
1973         switch (cpsw->version) {
1974         case CPSW_VERSION_1:
1975                 cpsw_hwtstamp_v1(priv);
1976                 break;
1977         case CPSW_VERSION_2:
1978         case CPSW_VERSION_3:
1979                 cpsw_hwtstamp_v2(priv);
1980                 break;
1981         default:
1982                 WARN_ON(1);
1983         }
1984
1985         return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1986 }
1987
1988 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1989 {
1990         struct cpsw_common *cpsw = ndev_to_cpsw(dev);
1991         struct cpsw_priv *priv = netdev_priv(dev);
1992         struct hwtstamp_config cfg;
1993
1994         if (cpsw->version != CPSW_VERSION_1 &&
1995             cpsw->version != CPSW_VERSION_2 &&
1996             cpsw->version != CPSW_VERSION_3)
1997                 return -EOPNOTSUPP;
1998
1999         cfg.flags = 0;
2000         cfg.tx_type = priv->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2001         cfg.rx_filter = priv->rx_ts_enabled;
2002
2003         return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
2004 }
2005 #else
2006 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
2007 {
2008         return -EOPNOTSUPP;
2009 }
2010
2011 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
2012 {
2013         return -EOPNOTSUPP;
2014 }
2015 #endif /*CONFIG_TI_CPTS*/
2016
2017 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2018 {
2019         struct cpsw_priv *priv = netdev_priv(dev);
2020         struct cpsw_common *cpsw = priv->cpsw;
2021         int slave_no = cpsw_slave_index(cpsw, priv);
2022
2023         if (!netif_running(dev))
2024                 return -EINVAL;
2025
2026         switch (cmd) {
2027         case SIOCSHWTSTAMP:
2028                 return cpsw_hwtstamp_set(dev, req);
2029         case SIOCGHWTSTAMP:
2030                 return cpsw_hwtstamp_get(dev, req);
2031         }
2032
2033         if (!cpsw->slaves[slave_no].phy)
2034                 return -EOPNOTSUPP;
2035         return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
2036 }
2037
2038 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
2039 {
2040         struct cpsw_priv *priv = netdev_priv(ndev);
2041         struct cpsw_common *cpsw = priv->cpsw;
2042         int ch;
2043
2044         cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
2045         ndev->stats.tx_errors++;
2046         cpsw_intr_disable(cpsw);
2047         for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
2048                 cpdma_chan_stop(cpsw->txv[ch].ch);
2049                 cpdma_chan_start(cpsw->txv[ch].ch);
2050         }
2051
2052         cpsw_intr_enable(cpsw);
2053         netif_trans_update(ndev);
2054         netif_tx_wake_all_queues(ndev);
2055 }
2056
2057 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
2058 {
2059         struct cpsw_priv *priv = netdev_priv(ndev);
2060         struct sockaddr *addr = (struct sockaddr *)p;
2061         struct cpsw_common *cpsw = priv->cpsw;
2062         int flags = 0;
2063         u16 vid = 0;
2064         int ret;
2065
2066         if (!is_valid_ether_addr(addr->sa_data))
2067                 return -EADDRNOTAVAIL;
2068
2069         ret = pm_runtime_get_sync(cpsw->dev);
2070         if (ret < 0) {
2071                 pm_runtime_put_noidle(cpsw->dev);
2072                 return ret;
2073         }
2074
2075         if (cpsw->data.dual_emac) {
2076                 vid = cpsw->slaves[priv->emac_port].port_vlan;
2077                 flags = ALE_VLAN;
2078         }
2079
2080         cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
2081                            flags, vid);
2082         cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
2083                            flags, vid);
2084
2085         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
2086         memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2087         for_each_slave(priv, cpsw_set_slave_mac, priv);
2088
2089         pm_runtime_put(cpsw->dev);
2090
2091         return 0;
2092 }
2093
2094 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
2095                                 unsigned short vid)
2096 {
2097         int ret;
2098         int unreg_mcast_mask = 0;
2099         int mcast_mask;
2100         u32 port_mask;
2101         struct cpsw_common *cpsw = priv->cpsw;
2102
2103         if (cpsw->data.dual_emac) {
2104                 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
2105
2106                 mcast_mask = ALE_PORT_HOST;
2107                 if (priv->ndev->flags & IFF_ALLMULTI)
2108                         unreg_mcast_mask = mcast_mask;
2109         } else {
2110                 port_mask = ALE_ALL_PORTS;
2111                 mcast_mask = port_mask;
2112
2113                 if (priv->ndev->flags & IFF_ALLMULTI)
2114                         unreg_mcast_mask = ALE_ALL_PORTS;
2115                 else
2116                         unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
2117         }
2118
2119         ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
2120                                 unreg_mcast_mask);
2121         if (ret != 0)
2122                 return ret;
2123
2124         ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
2125                                  HOST_PORT_NUM, ALE_VLAN, vid);
2126         if (ret != 0)
2127                 goto clean_vid;
2128
2129         ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
2130                                  mcast_mask, ALE_VLAN, vid, 0);
2131         if (ret != 0)
2132                 goto clean_vlan_ucast;
2133         return 0;
2134
2135 clean_vlan_ucast:
2136         cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2137                            HOST_PORT_NUM, ALE_VLAN, vid);
2138 clean_vid:
2139         cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2140         return ret;
2141 }
2142
2143 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
2144                                     __be16 proto, u16 vid)
2145 {
2146         struct cpsw_priv *priv = netdev_priv(ndev);
2147         struct cpsw_common *cpsw = priv->cpsw;
2148         int ret;
2149
2150         if (vid == cpsw->data.default_vlan)
2151                 return 0;
2152
2153         ret = pm_runtime_get_sync(cpsw->dev);
2154         if (ret < 0) {
2155                 pm_runtime_put_noidle(cpsw->dev);
2156                 return ret;
2157         }
2158
2159         if (cpsw->data.dual_emac) {
2160                 /* In dual EMAC, reserved VLAN id should not be used for
2161                  * creating VLAN interfaces as this can break the dual
2162                  * EMAC port separation
2163                  */
2164                 int i;
2165
2166                 for (i = 0; i < cpsw->data.slaves; i++) {
2167                         if (vid == cpsw->slaves[i].port_vlan) {
2168                                 ret = -EINVAL;
2169                                 goto err;
2170                         }
2171                 }
2172         }
2173
2174         dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
2175         ret = cpsw_add_vlan_ale_entry(priv, vid);
2176 err:
2177         pm_runtime_put(cpsw->dev);
2178         return ret;
2179 }
2180
2181 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
2182                                      __be16 proto, u16 vid)
2183 {
2184         struct cpsw_priv *priv = netdev_priv(ndev);
2185         struct cpsw_common *cpsw = priv->cpsw;
2186         int ret;
2187
2188         if (vid == cpsw->data.default_vlan)
2189                 return 0;
2190
2191         ret = pm_runtime_get_sync(cpsw->dev);
2192         if (ret < 0) {
2193                 pm_runtime_put_noidle(cpsw->dev);
2194                 return ret;
2195         }
2196
2197         if (cpsw->data.dual_emac) {
2198                 int i;
2199
2200                 for (i = 0; i < cpsw->data.slaves; i++) {
2201                         if (vid == cpsw->slaves[i].port_vlan)
2202                                 goto err;
2203                 }
2204         }
2205
2206         dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2207         ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2208         ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2209                                   HOST_PORT_NUM, ALE_VLAN, vid);
2210         ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2211                                   0, ALE_VLAN, vid);
2212         ret |= cpsw_ale_flush_multicast(cpsw->ale, 0, vid);
2213 err:
2214         pm_runtime_put(cpsw->dev);
2215         return ret;
2216 }
2217
2218 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
2219 {
2220         struct cpsw_priv *priv = netdev_priv(ndev);
2221         struct cpsw_common *cpsw = priv->cpsw;
2222         struct cpsw_slave *slave;
2223         u32 min_rate;
2224         u32 ch_rate;
2225         int i, ret;
2226
2227         ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
2228         if (ch_rate == rate)
2229                 return 0;
2230
2231         ch_rate = rate * 1000;
2232         min_rate = cpdma_chan_get_min_rate(cpsw->dma);
2233         if ((ch_rate < min_rate && ch_rate)) {
2234                 dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
2235                         min_rate);
2236                 return -EINVAL;
2237         }
2238
2239         if (rate > cpsw->speed) {
2240                 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2241                 return -EINVAL;
2242         }
2243
2244         ret = pm_runtime_get_sync(cpsw->dev);
2245         if (ret < 0) {
2246                 pm_runtime_put_noidle(cpsw->dev);
2247                 return ret;
2248         }
2249
2250         ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
2251         pm_runtime_put(cpsw->dev);
2252
2253         if (ret)
2254                 return ret;
2255
2256         /* update rates for slaves tx queues */
2257         for (i = 0; i < cpsw->data.slaves; i++) {
2258                 slave = &cpsw->slaves[i];
2259                 if (!slave->ndev)
2260                         continue;
2261
2262                 netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
2263         }
2264
2265         cpsw_split_res(cpsw);
2266         return ret;
2267 }
2268
2269 static int cpsw_set_mqprio(struct net_device *ndev, void *type_data)
2270 {
2271         struct tc_mqprio_qopt_offload *mqprio = type_data;
2272         struct cpsw_priv *priv = netdev_priv(ndev);
2273         struct cpsw_common *cpsw = priv->cpsw;
2274         int fifo, num_tc, count, offset;
2275         struct cpsw_slave *slave;
2276         u32 tx_prio_map = 0;
2277         int i, tc, ret;
2278
2279         num_tc = mqprio->qopt.num_tc;
2280         if (num_tc > CPSW_TC_NUM)
2281                 return -EINVAL;
2282
2283         if (mqprio->mode != TC_MQPRIO_MODE_DCB)
2284                 return -EINVAL;
2285
2286         ret = pm_runtime_get_sync(cpsw->dev);
2287         if (ret < 0) {
2288                 pm_runtime_put_noidle(cpsw->dev);
2289                 return ret;
2290         }
2291
2292         if (num_tc) {
2293                 for (i = 0; i < 8; i++) {
2294                         tc = mqprio->qopt.prio_tc_map[i];
2295                         fifo = cpsw_tc_to_fifo(tc, num_tc);
2296                         tx_prio_map |= fifo << (4 * i);
2297                 }
2298
2299                 netdev_set_num_tc(ndev, num_tc);
2300                 for (i = 0; i < num_tc; i++) {
2301                         count = mqprio->qopt.count[i];
2302                         offset = mqprio->qopt.offset[i];
2303                         netdev_set_tc_queue(ndev, i, count, offset);
2304                 }
2305         }
2306
2307         if (!mqprio->qopt.hw) {
2308                 /* restore default configuration */
2309                 netdev_reset_tc(ndev);
2310                 tx_prio_map = TX_PRIORITY_MAPPING;
2311         }
2312
2313         priv->mqprio_hw = mqprio->qopt.hw;
2314
2315         offset = cpsw->version == CPSW_VERSION_1 ?
2316                  CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;
2317
2318         slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
2319         slave_write(slave, tx_prio_map, offset);
2320
2321         pm_runtime_put_sync(cpsw->dev);
2322
2323         return 0;
2324 }
2325
2326 static int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type,
2327                              void *type_data)
2328 {
2329         switch (type) {
2330         case TC_SETUP_QDISC_CBS:
2331                 return cpsw_set_cbs(ndev, type_data);
2332
2333         case TC_SETUP_QDISC_MQPRIO:
2334                 return cpsw_set_mqprio(ndev, type_data);
2335
2336         default:
2337                 return -EOPNOTSUPP;
2338         }
2339 }
2340
2341 static int cpsw_xdp_prog_setup(struct cpsw_priv *priv, struct netdev_bpf *bpf)
2342 {
2343         struct bpf_prog *prog = bpf->prog;
2344
2345         if (!priv->xdpi.prog && !prog)
2346                 return 0;
2347
2348         if (!xdp_attachment_flags_ok(&priv->xdpi, bpf))
2349                 return -EBUSY;
2350
2351         WRITE_ONCE(priv->xdp_prog, prog);
2352
2353         xdp_attachment_setup(&priv->xdpi, bpf);
2354
2355         return 0;
2356 }
2357
2358 static int cpsw_ndo_bpf(struct net_device *ndev, struct netdev_bpf *bpf)
2359 {
2360         struct cpsw_priv *priv = netdev_priv(ndev);
2361
2362         switch (bpf->command) {
2363         case XDP_SETUP_PROG:
2364                 return cpsw_xdp_prog_setup(priv, bpf);
2365
2366         case XDP_QUERY_PROG:
2367                 return xdp_attachment_query(&priv->xdpi, bpf);
2368
2369         default:
2370                 return -EINVAL;
2371         }
2372 }
2373
2374 static int cpsw_ndo_xdp_xmit(struct net_device *ndev, int n,
2375                              struct xdp_frame **frames, u32 flags)
2376 {
2377         struct cpsw_priv *priv = netdev_priv(ndev);
2378         struct xdp_frame *xdpf;
2379         int i, drops = 0;
2380
2381         if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2382                 return -EINVAL;
2383
2384         for (i = 0; i < n; i++) {
2385                 xdpf = frames[i];
2386                 if (xdpf->len < CPSW_MIN_PACKET_SIZE) {
2387                         xdp_return_frame_rx_napi(xdpf);
2388                         drops++;
2389                         continue;
2390                 }
2391
2392                 if (cpsw_xdp_tx_frame(priv, xdpf, NULL))
2393                         drops++;
2394         }
2395
2396         return n - drops;
2397 }
2398
2399 #ifdef CONFIG_NET_POLL_CONTROLLER
2400 static void cpsw_ndo_poll_controller(struct net_device *ndev)
2401 {
2402         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2403
2404         cpsw_intr_disable(cpsw);
2405         cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
2406         cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
2407         cpsw_intr_enable(cpsw);
2408 }
2409 #endif
2410
2411 static const struct net_device_ops cpsw_netdev_ops = {
2412         .ndo_open               = cpsw_ndo_open,
2413         .ndo_stop               = cpsw_ndo_stop,
2414         .ndo_start_xmit         = cpsw_ndo_start_xmit,
2415         .ndo_set_mac_address    = cpsw_ndo_set_mac_address,
2416         .ndo_do_ioctl           = cpsw_ndo_ioctl,
2417         .ndo_validate_addr      = eth_validate_addr,
2418         .ndo_tx_timeout         = cpsw_ndo_tx_timeout,
2419         .ndo_set_rx_mode        = cpsw_ndo_set_rx_mode,
2420         .ndo_set_tx_maxrate     = cpsw_ndo_set_tx_maxrate,
2421 #ifdef CONFIG_NET_POLL_CONTROLLER
2422         .ndo_poll_controller    = cpsw_ndo_poll_controller,
2423 #endif
2424         .ndo_vlan_rx_add_vid    = cpsw_ndo_vlan_rx_add_vid,
2425         .ndo_vlan_rx_kill_vid   = cpsw_ndo_vlan_rx_kill_vid,
2426         .ndo_setup_tc           = cpsw_ndo_setup_tc,
2427         .ndo_bpf                = cpsw_ndo_bpf,
2428         .ndo_xdp_xmit           = cpsw_ndo_xdp_xmit,
2429 };
2430
2431 static void cpsw_get_drvinfo(struct net_device *ndev,
2432                              struct ethtool_drvinfo *info)
2433 {
2434         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2435         struct platform_device  *pdev = to_platform_device(cpsw->dev);
2436
2437         strlcpy(info->driver, "cpsw", sizeof(info->driver));
2438         strlcpy(info->version, "1.0", sizeof(info->version));
2439         strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2440 }
2441
2442 static int cpsw_set_pauseparam(struct net_device *ndev,
2443                                struct ethtool_pauseparam *pause)
2444 {
2445         struct cpsw_priv *priv = netdev_priv(ndev);
2446         bool link;
2447
2448         priv->rx_pause = pause->rx_pause ? true : false;
2449         priv->tx_pause = pause->tx_pause ? true : false;
2450
2451         for_each_slave(priv, _cpsw_adjust_link, priv, &link);
2452         return 0;
2453 }
2454
2455 static int cpsw_set_channels(struct net_device *ndev,
2456                              struct ethtool_channels *chs)
2457 {
2458         return cpsw_set_channels_common(ndev, chs, cpsw_rx_handler);
2459 }
2460
2461 static const struct ethtool_ops cpsw_ethtool_ops = {
2462         .get_drvinfo    = cpsw_get_drvinfo,
2463         .get_msglevel   = cpsw_get_msglevel,
2464         .set_msglevel   = cpsw_set_msglevel,
2465         .get_link       = ethtool_op_get_link,
2466         .get_ts_info    = cpsw_get_ts_info,
2467         .get_coalesce   = cpsw_get_coalesce,
2468         .set_coalesce   = cpsw_set_coalesce,
2469         .get_sset_count         = cpsw_get_sset_count,
2470         .get_strings            = cpsw_get_strings,
2471         .get_ethtool_stats      = cpsw_get_ethtool_stats,
2472         .get_pauseparam         = cpsw_get_pauseparam,
2473         .set_pauseparam         = cpsw_set_pauseparam,
2474         .get_wol        = cpsw_get_wol,
2475         .set_wol        = cpsw_set_wol,
2476         .get_regs_len   = cpsw_get_regs_len,
2477         .get_regs       = cpsw_get_regs,
2478         .begin          = cpsw_ethtool_op_begin,
2479         .complete       = cpsw_ethtool_op_complete,
2480         .get_channels   = cpsw_get_channels,
2481         .set_channels   = cpsw_set_channels,
2482         .get_link_ksettings     = cpsw_get_link_ksettings,
2483         .set_link_ksettings     = cpsw_set_link_ksettings,
2484         .get_eee        = cpsw_get_eee,
2485         .set_eee        = cpsw_set_eee,
2486         .nway_reset     = cpsw_nway_reset,
2487         .get_ringparam = cpsw_get_ringparam,
2488         .set_ringparam = cpsw_set_ringparam,
2489 };
2490
2491 static int cpsw_probe_dt(struct cpsw_platform_data *data,
2492                          struct platform_device *pdev)
2493 {
2494         struct device_node *node = pdev->dev.of_node;
2495         struct device_node *slave_node;
2496         int i = 0, ret;
2497         u32 prop;
2498
2499         if (!node)
2500                 return -EINVAL;
2501
2502         if (of_property_read_u32(node, "slaves", &prop)) {
2503                 dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2504                 return -EINVAL;
2505         }
2506         data->slaves = prop;
2507
2508         if (of_property_read_u32(node, "active_slave", &prop)) {
2509                 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2510                 return -EINVAL;
2511         }
2512         data->active_slave = prop;
2513
2514         data->slave_data = devm_kcalloc(&pdev->dev,
2515                                         data->slaves,
2516                                         sizeof(struct cpsw_slave_data),
2517                                         GFP_KERNEL);
2518         if (!data->slave_data)
2519                 return -ENOMEM;
2520
2521         if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2522                 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2523                 return -EINVAL;
2524         }
2525         data->channels = prop;
2526
2527         if (of_property_read_u32(node, "ale_entries", &prop)) {
2528                 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2529                 return -EINVAL;
2530         }
2531         data->ale_entries = prop;
2532
2533         if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2534                 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2535                 return -EINVAL;
2536         }
2537         data->bd_ram_size = prop;
2538
2539         if (of_property_read_u32(node, "mac_control", &prop)) {
2540                 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2541                 return -EINVAL;
2542         }
2543         data->mac_control = prop;
2544
2545         if (of_property_read_bool(node, "dual_emac"))
2546                 data->dual_emac = 1;
2547
2548         /*
2549          * Populate all the child nodes here...
2550          */
2551         ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2552         /* We do not want to force this, as in some cases may not have child */
2553         if (ret)
2554                 dev_warn(&pdev->dev, "Doesn't have any child node\n");
2555
2556         for_each_available_child_of_node(node, slave_node) {
2557                 struct cpsw_slave_data *slave_data = data->slave_data + i;
2558                 const void *mac_addr = NULL;
2559                 int lenp;
2560                 const __be32 *parp;
2561
2562                 /* This is no slave child node, continue */
2563                 if (!of_node_name_eq(slave_node, "slave"))
2564                         continue;
2565
2566                 slave_data->ifphy = devm_of_phy_get(&pdev->dev, slave_node,
2567                                                     NULL);
2568                 if (!IS_ENABLED(CONFIG_TI_CPSW_PHY_SEL) &&
2569                     IS_ERR(slave_data->ifphy)) {
2570                         ret = PTR_ERR(slave_data->ifphy);
2571                         dev_err(&pdev->dev,
2572                                 "%d: Error retrieving port phy: %d\n", i, ret);
2573                         return ret;
2574                 }
2575
2576                 slave_data->slave_node = slave_node;
2577                 slave_data->phy_node = of_parse_phandle(slave_node,
2578                                                         "phy-handle", 0);
2579                 parp = of_get_property(slave_node, "phy_id", &lenp);
2580                 if (slave_data->phy_node) {
2581                         dev_dbg(&pdev->dev,
2582                                 "slave[%d] using phy-handle=\"%pOF\"\n",
2583                                 i, slave_data->phy_node);
2584                 } else if (of_phy_is_fixed_link(slave_node)) {
2585                         /* In the case of a fixed PHY, the DT node associated
2586                          * to the PHY is the Ethernet MAC DT node.
2587                          */
2588                         ret = of_phy_register_fixed_link(slave_node);
2589                         if (ret) {
2590                                 if (ret != -EPROBE_DEFER)
2591                                         dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2592                                 return ret;
2593                         }
2594                         slave_data->phy_node = of_node_get(slave_node);
2595                 } else if (parp) {
2596                         u32 phyid;
2597                         struct device_node *mdio_node;
2598                         struct platform_device *mdio;
2599
2600                         if (lenp != (sizeof(__be32) * 2)) {
2601                                 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
2602                                 goto no_phy_slave;
2603                         }
2604                         mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2605                         phyid = be32_to_cpup(parp+1);
2606                         mdio = of_find_device_by_node(mdio_node);
2607                         of_node_put(mdio_node);
2608                         if (!mdio) {
2609                                 dev_err(&pdev->dev, "Missing mdio platform device\n");
2610                                 return -EINVAL;
2611                         }
2612                         snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2613                                  PHY_ID_FMT, mdio->name, phyid);
2614                         put_device(&mdio->dev);
2615                 } else {
2616                         dev_err(&pdev->dev,
2617                                 "No slave[%d] phy_id, phy-handle, or fixed-link property\n",
2618                                 i);
2619                         goto no_phy_slave;
2620                 }
2621                 slave_data->phy_if = of_get_phy_mode(slave_node);
2622                 if (slave_data->phy_if < 0) {
2623                         dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2624                                 i);
2625                         return slave_data->phy_if;
2626                 }
2627
2628 no_phy_slave:
2629                 mac_addr = of_get_mac_address(slave_node);
2630                 if (!IS_ERR(mac_addr)) {
2631                         ether_addr_copy(slave_data->mac_addr, mac_addr);
2632                 } else {
2633                         ret = ti_cm_get_macid(&pdev->dev, i,
2634                                               slave_data->mac_addr);
2635                         if (ret)
2636                                 return ret;
2637                 }
2638                 if (data->dual_emac) {
2639                         if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2640                                                  &prop)) {
2641                                 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2642                                 slave_data->dual_emac_res_vlan = i+1;
2643                                 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2644                                         slave_data->dual_emac_res_vlan, i);
2645                         } else {
2646                                 slave_data->dual_emac_res_vlan = prop;
2647                         }
2648                 }
2649
2650                 i++;
2651                 if (i == data->slaves)
2652                         break;
2653         }
2654
2655         return 0;
2656 }
2657
2658 static void cpsw_remove_dt(struct platform_device *pdev)
2659 {
2660         struct cpsw_common *cpsw = platform_get_drvdata(pdev);
2661         struct cpsw_platform_data *data = &cpsw->data;
2662         struct device_node *node = pdev->dev.of_node;
2663         struct device_node *slave_node;
2664         int i = 0;
2665
2666         for_each_available_child_of_node(node, slave_node) {
2667                 struct cpsw_slave_data *slave_data = &data->slave_data[i];
2668
2669                 if (!of_node_name_eq(slave_node, "slave"))
2670                         continue;
2671
2672                 if (of_phy_is_fixed_link(slave_node))
2673                         of_phy_deregister_fixed_link(slave_node);
2674
2675                 of_node_put(slave_data->phy_node);
2676
2677                 i++;
2678                 if (i == data->slaves)
2679                         break;
2680         }
2681
2682         of_platform_depopulate(&pdev->dev);
2683 }
2684
2685 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2686 {
2687         struct cpsw_common              *cpsw = priv->cpsw;
2688         struct cpsw_platform_data       *data = &cpsw->data;
2689         struct net_device               *ndev;
2690         struct cpsw_priv                *priv_sl2;
2691         int ret = 0;
2692
2693         ndev = devm_alloc_etherdev_mqs(cpsw->dev, sizeof(struct cpsw_priv),
2694                                        CPSW_MAX_QUEUES, CPSW_MAX_QUEUES);
2695         if (!ndev) {
2696                 dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2697                 return -ENOMEM;
2698         }
2699
2700         priv_sl2 = netdev_priv(ndev);
2701         priv_sl2->cpsw = cpsw;
2702         priv_sl2->ndev = ndev;
2703         priv_sl2->dev  = &ndev->dev;
2704         priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2705
2706         if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2707                 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2708                         ETH_ALEN);
2709                 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
2710                          priv_sl2->mac_addr);
2711         } else {
2712                 eth_random_addr(priv_sl2->mac_addr);
2713                 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
2714                          priv_sl2->mac_addr);
2715         }
2716         memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2717
2718         priv_sl2->emac_port = 1;
2719         cpsw->slaves[1].ndev = ndev;
2720         ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
2721
2722         ndev->netdev_ops = &cpsw_netdev_ops;
2723         ndev->ethtool_ops = &cpsw_ethtool_ops;
2724
2725         /* register the network device */
2726         SET_NETDEV_DEV(ndev, cpsw->dev);
2727         ndev->dev.of_node = cpsw->slaves[1].data->slave_node;
2728         ret = register_netdev(ndev);
2729         if (ret)
2730                 dev_err(cpsw->dev, "cpsw: error registering net device\n");
2731
2732         return ret;
2733 }
2734
2735 static const struct of_device_id cpsw_of_mtable[] = {
2736         { .compatible = "ti,cpsw"},
2737         { .compatible = "ti,am335x-cpsw"},
2738         { .compatible = "ti,am4372-cpsw"},
2739         { .compatible = "ti,dra7-cpsw"},
2740         { /* sentinel */ },
2741 };
2742 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2743
2744 static const struct soc_device_attribute cpsw_soc_devices[] = {
2745         { .family = "AM33xx", .revision = "ES1.0"},
2746         { /* sentinel */ }
2747 };
2748
2749 static int cpsw_probe(struct platform_device *pdev)
2750 {
2751         struct device                   *dev = &pdev->dev;
2752         struct clk                      *clk;
2753         struct cpsw_platform_data       *data;
2754         struct net_device               *ndev;
2755         struct cpsw_priv                *priv;
2756         void __iomem                    *ss_regs;
2757         struct resource                 *res, *ss_res;
2758         struct gpio_descs               *mode;
2759         const struct soc_device_attribute *soc;
2760         struct cpsw_common              *cpsw;
2761         int ret = 0, ch;
2762         int irq;
2763
2764         cpsw = devm_kzalloc(dev, sizeof(struct cpsw_common), GFP_KERNEL);
2765         if (!cpsw)
2766                 return -ENOMEM;
2767
2768         cpsw->dev = dev;
2769
2770         mode = devm_gpiod_get_array_optional(dev, "mode", GPIOD_OUT_LOW);
2771         if (IS_ERR(mode)) {
2772                 ret = PTR_ERR(mode);
2773                 dev_err(dev, "gpio request failed, ret %d\n", ret);
2774                 return ret;
2775         }
2776
2777         clk = devm_clk_get(dev, "fck");
2778         if (IS_ERR(clk)) {
2779                 ret = PTR_ERR(clk);
2780                 dev_err(dev, "fck is not found %d\n", ret);
2781                 return ret;
2782         }
2783         cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
2784
2785         ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2786         ss_regs = devm_ioremap_resource(dev, ss_res);
2787         if (IS_ERR(ss_regs))
2788                 return PTR_ERR(ss_regs);
2789         cpsw->regs = ss_regs;
2790
2791         res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2792         cpsw->wr_regs = devm_ioremap_resource(dev, res);
2793         if (IS_ERR(cpsw->wr_regs))
2794                 return PTR_ERR(cpsw->wr_regs);
2795
2796         /* RX IRQ */
2797         irq = platform_get_irq(pdev, 1);
2798         if (irq < 0)
2799                 return irq;
2800         cpsw->irqs_table[0] = irq;
2801
2802         /* TX IRQ */
2803         irq = platform_get_irq(pdev, 2);
2804         if (irq < 0)
2805                 return irq;
2806         cpsw->irqs_table[1] = irq;
2807
2808         /*
2809          * This may be required here for child devices.
2810          */
2811         pm_runtime_enable(dev);
2812
2813         /* Need to enable clocks with runtime PM api to access module
2814          * registers
2815          */
2816         ret = pm_runtime_get_sync(dev);
2817         if (ret < 0) {
2818                 pm_runtime_put_noidle(dev);
2819                 goto clean_runtime_disable_ret;
2820         }
2821
2822         ret = cpsw_probe_dt(&cpsw->data, pdev);
2823         if (ret)
2824                 goto clean_dt_ret;
2825
2826         soc = soc_device_match(cpsw_soc_devices);
2827         if (soc)
2828                 cpsw->quirk_irq = 1;
2829
2830         data = &cpsw->data;
2831         cpsw->slaves = devm_kcalloc(dev,
2832                                     data->slaves, sizeof(struct cpsw_slave),
2833                                     GFP_KERNEL);
2834         if (!cpsw->slaves) {
2835                 ret = -ENOMEM;
2836                 goto clean_dt_ret;
2837         }
2838
2839         cpsw->rx_packet_max = max(rx_packet_max, CPSW_MAX_PACKET_SIZE);
2840         cpsw->descs_pool_size = descs_pool_size;
2841
2842         ret = cpsw_init_common(cpsw, ss_regs, ale_ageout,
2843                                ss_res->start + CPSW2_BD_OFFSET,
2844                                descs_pool_size);
2845         if (ret)
2846                 goto clean_dt_ret;
2847
2848         ch = cpsw->quirk_irq ? 0 : 7;
2849         cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0);
2850         if (IS_ERR(cpsw->txv[0].ch)) {
2851                 dev_err(dev, "error initializing tx dma channel\n");
2852                 ret = PTR_ERR(cpsw->txv[0].ch);
2853                 goto clean_cpts;
2854         }
2855
2856         cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
2857         if (IS_ERR(cpsw->rxv[0].ch)) {
2858                 dev_err(dev, "error initializing rx dma channel\n");
2859                 ret = PTR_ERR(cpsw->rxv[0].ch);
2860                 goto clean_cpts;
2861         }
2862         cpsw_split_res(cpsw);
2863
2864         /* setup netdev */
2865         ndev = devm_alloc_etherdev_mqs(dev, sizeof(struct cpsw_priv),
2866                                        CPSW_MAX_QUEUES, CPSW_MAX_QUEUES);
2867         if (!ndev) {
2868                 dev_err(dev, "error allocating net_device\n");
2869                 goto clean_cpts;
2870         }
2871
2872         platform_set_drvdata(pdev, cpsw);
2873         priv = netdev_priv(ndev);
2874         priv->cpsw = cpsw;
2875         priv->ndev = ndev;
2876         priv->dev  = dev;
2877         priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2878         priv->emac_port = 0;
2879
2880         if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
2881                 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2882                 dev_info(dev, "Detected MACID = %pM\n", priv->mac_addr);
2883         } else {
2884                 eth_random_addr(priv->mac_addr);
2885                 dev_info(dev, "Random MACID = %pM\n", priv->mac_addr);
2886         }
2887
2888         memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2889
2890         cpsw->slaves[0].ndev = ndev;
2891
2892         ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
2893
2894         ndev->netdev_ops = &cpsw_netdev_ops;
2895         ndev->ethtool_ops = &cpsw_ethtool_ops;
2896         netif_napi_add(ndev, &cpsw->napi_rx,
2897                        cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll,
2898                        CPSW_POLL_WEIGHT);
2899         netif_tx_napi_add(ndev, &cpsw->napi_tx,
2900                           cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll,
2901                           CPSW_POLL_WEIGHT);
2902
2903         /* register the network device */
2904         SET_NETDEV_DEV(ndev, dev);
2905         ndev->dev.of_node = cpsw->slaves[0].data->slave_node;
2906         ret = register_netdev(ndev);
2907         if (ret) {
2908                 dev_err(dev, "error registering net device\n");
2909                 ret = -ENODEV;
2910                 goto clean_cpts;
2911         }
2912
2913         if (cpsw->data.dual_emac) {
2914                 ret = cpsw_probe_dual_emac(priv);
2915                 if (ret) {
2916                         cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
2917                         goto clean_unregister_netdev_ret;
2918                 }
2919         }
2920
2921         /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
2922          * MISC IRQs which are always kept disabled with this driver so
2923          * we will not request them.
2924          *
2925          * If anyone wants to implement support for those, make sure to
2926          * first request and append them to irqs_table array.
2927          */
2928         ret = devm_request_irq(dev, cpsw->irqs_table[0], cpsw_rx_interrupt,
2929                                0, dev_name(dev), cpsw);
2930         if (ret < 0) {
2931                 dev_err(dev, "error attaching irq (%d)\n", ret);
2932                 goto clean_unregister_netdev_ret;
2933         }
2934
2935
2936         ret = devm_request_irq(dev, cpsw->irqs_table[1], cpsw_tx_interrupt,
2937                                0, dev_name(&pdev->dev), cpsw);
2938         if (ret < 0) {
2939                 dev_err(dev, "error attaching irq (%d)\n", ret);
2940                 goto clean_unregister_netdev_ret;
2941         }
2942
2943         cpsw_notice(priv, probe,
2944                     "initialized device (regs %pa, irq %d, pool size %d)\n",
2945                     &ss_res->start, cpsw->irqs_table[0], descs_pool_size);
2946
2947         pm_runtime_put(&pdev->dev);
2948
2949         return 0;
2950
2951 clean_unregister_netdev_ret:
2952         unregister_netdev(ndev);
2953 clean_cpts:
2954         cpts_release(cpsw->cpts);
2955         cpdma_ctlr_destroy(cpsw->dma);
2956 clean_dt_ret:
2957         cpsw_remove_dt(pdev);
2958         pm_runtime_put_sync(&pdev->dev);
2959 clean_runtime_disable_ret:
2960         pm_runtime_disable(&pdev->dev);
2961         return ret;
2962 }
2963
2964 static int cpsw_remove(struct platform_device *pdev)
2965 {
2966         struct cpsw_common *cpsw = platform_get_drvdata(pdev);
2967         int i, ret;
2968
2969         ret = pm_runtime_get_sync(&pdev->dev);
2970         if (ret < 0) {
2971                 pm_runtime_put_noidle(&pdev->dev);
2972                 return ret;
2973         }
2974
2975         for (i = 0; i < cpsw->data.slaves; i++)
2976                 if (cpsw->slaves[i].ndev)
2977                         unregister_netdev(cpsw->slaves[i].ndev);
2978
2979         cpts_release(cpsw->cpts);
2980         cpdma_ctlr_destroy(cpsw->dma);
2981         cpsw_remove_dt(pdev);
2982         pm_runtime_put_sync(&pdev->dev);
2983         pm_runtime_disable(&pdev->dev);
2984         return 0;
2985 }
2986
2987 #ifdef CONFIG_PM_SLEEP
2988 static int cpsw_suspend(struct device *dev)
2989 {
2990         struct cpsw_common *cpsw = dev_get_drvdata(dev);
2991         int i;
2992
2993         for (i = 0; i < cpsw->data.slaves; i++)
2994                 if (cpsw->slaves[i].ndev)
2995                         if (netif_running(cpsw->slaves[i].ndev))
2996                                 cpsw_ndo_stop(cpsw->slaves[i].ndev);
2997
2998         /* Select sleep pin state */
2999         pinctrl_pm_select_sleep_state(dev);
3000
3001         return 0;
3002 }
3003
3004 static int cpsw_resume(struct device *dev)
3005 {
3006         struct cpsw_common *cpsw = dev_get_drvdata(dev);
3007         int i;
3008
3009         /* Select default pin state */
3010         pinctrl_pm_select_default_state(dev);
3011
3012         /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
3013         rtnl_lock();
3014
3015         for (i = 0; i < cpsw->data.slaves; i++)
3016                 if (cpsw->slaves[i].ndev)
3017                         if (netif_running(cpsw->slaves[i].ndev))
3018                                 cpsw_ndo_open(cpsw->slaves[i].ndev);
3019
3020         rtnl_unlock();
3021
3022         return 0;
3023 }
3024 #endif
3025
3026 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3027
3028 static struct platform_driver cpsw_driver = {
3029         .driver = {
3030                 .name    = "cpsw",
3031                 .pm      = &cpsw_pm_ops,
3032                 .of_match_table = cpsw_of_mtable,
3033         },
3034         .probe = cpsw_probe,
3035         .remove = cpsw_remove,
3036 };
3037
3038 module_platform_driver(cpsw_driver);
3039
3040 MODULE_LICENSE("GPL");
3041 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
3042 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
3043 MODULE_DESCRIPTION("TI CPSW Ethernet driver");