1 // SPDX-License-Identifier: GPL-2.0
2 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
3 * sungem.c: Sun GEM ethernet driver.
5 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
7 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
8 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
9 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
11 * NAPI and NETPOLL support
12 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/fcntl.h>
22 #include <linux/interrupt.h>
23 #include <linux/ioport.h>
25 #include <linux/sched.h>
26 #include <linux/string.h>
27 #include <linux/delay.h>
28 #include <linux/errno.h>
29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36 #include <linux/crc32.h>
37 #include <linux/random.h>
38 #include <linux/workqueue.h>
39 #include <linux/if_vlan.h>
40 #include <linux/bitops.h>
42 #include <linux/gfp.h>
45 #include <asm/byteorder.h>
46 #include <linux/uaccess.h>
50 #include <asm/idprom.h>
54 #ifdef CONFIG_PPC_PMAC
56 #include <asm/machdep.h>
57 #include <asm/pmac_feature.h>
60 #include <linux/sungem_phy.h>
65 #define DEFAULT_MSG (NETIF_MSG_DRV | \
69 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
70 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
71 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
72 SUPPORTED_Pause | SUPPORTED_Autoneg)
74 #define DRV_NAME "sungem"
75 #define DRV_VERSION "1.0"
76 #define DRV_AUTHOR "David S. Miller <davem@redhat.com>"
78 static char version[] =
79 DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
81 MODULE_AUTHOR(DRV_AUTHOR);
82 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
83 MODULE_LICENSE("GPL");
85 #define GEM_MODULE_NAME "gem"
87 static const struct pci_device_id gem_pci_tbl[] = {
88 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
89 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
91 /* These models only differ from the original GEM in
92 * that their tx/rx fifos are of a different size and
93 * they only support 10/100 speeds. -DaveM
95 * Apple's GMAC does support gigabit on machines with
96 * the BCM54xx PHYs. -BenH
98 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
99 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
100 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
101 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
102 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
103 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
104 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
105 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
106 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
107 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
108 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
109 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
110 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
111 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
115 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
117 static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg)
124 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
125 cmd |= (reg << 18) & MIF_FRAME_REGAD;
126 cmd |= (MIF_FRAME_TAMSB);
127 writel(cmd, gp->regs + MIF_FRAME);
130 cmd = readl(gp->regs + MIF_FRAME);
131 if (cmd & MIF_FRAME_TALSB)
140 return cmd & MIF_FRAME_DATA;
143 static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg)
145 struct gem *gp = netdev_priv(dev);
146 return __sungem_phy_read(gp, mii_id, reg);
149 static inline u16 sungem_phy_read(struct gem *gp, int reg)
151 return __sungem_phy_read(gp, gp->mii_phy_addr, reg);
154 static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
161 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
162 cmd |= (reg << 18) & MIF_FRAME_REGAD;
163 cmd |= (MIF_FRAME_TAMSB);
164 cmd |= (val & MIF_FRAME_DATA);
165 writel(cmd, gp->regs + MIF_FRAME);
168 cmd = readl(gp->regs + MIF_FRAME);
169 if (cmd & MIF_FRAME_TALSB)
176 static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val)
178 struct gem *gp = netdev_priv(dev);
179 __sungem_phy_write(gp, mii_id, reg, val & 0xffff);
182 static inline void sungem_phy_write(struct gem *gp, int reg, u16 val)
184 __sungem_phy_write(gp, gp->mii_phy_addr, reg, val);
187 static inline void gem_enable_ints(struct gem *gp)
189 /* Enable all interrupts but TXDONE */
190 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
193 static inline void gem_disable_ints(struct gem *gp)
195 /* Disable all interrupts, including TXDONE */
196 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
197 (void)readl(gp->regs + GREG_IMASK); /* write posting */
200 static void gem_get_cell(struct gem *gp)
202 BUG_ON(gp->cell_enabled < 0);
204 #ifdef CONFIG_PPC_PMAC
205 if (gp->cell_enabled == 1) {
207 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
210 #endif /* CONFIG_PPC_PMAC */
213 /* Turn off the chip's clock */
214 static void gem_put_cell(struct gem *gp)
216 BUG_ON(gp->cell_enabled <= 0);
218 #ifdef CONFIG_PPC_PMAC
219 if (gp->cell_enabled == 0) {
221 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
224 #endif /* CONFIG_PPC_PMAC */
227 static inline void gem_netif_stop(struct gem *gp)
229 netif_trans_update(gp->dev); /* prevent tx timeout */
230 napi_disable(&gp->napi);
231 netif_tx_disable(gp->dev);
234 static inline void gem_netif_start(struct gem *gp)
236 /* NOTE: unconditional netif_wake_queue is only
237 * appropriate so long as all callers are assured to
238 * have free tx slots.
240 netif_wake_queue(gp->dev);
241 napi_enable(&gp->napi);
244 static void gem_schedule_reset(struct gem *gp)
246 gp->reset_task_pending = 1;
247 schedule_work(&gp->reset_task);
250 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
252 if (netif_msg_intr(gp))
253 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
256 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
258 u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
261 if (netif_msg_intr(gp))
262 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
263 gp->dev->name, pcs_istat);
265 if (!(pcs_istat & PCS_ISTAT_LSC)) {
266 netdev_err(dev, "PCS irq but no link status change???\n");
270 /* The link status bit latches on zero, so you must
271 * read it twice in such a case to see a transition
272 * to the link being up.
274 pcs_miistat = readl(gp->regs + PCS_MIISTAT);
275 if (!(pcs_miistat & PCS_MIISTAT_LS))
277 (readl(gp->regs + PCS_MIISTAT) &
280 if (pcs_miistat & PCS_MIISTAT_ANC) {
281 /* The remote-fault indication is only valid
282 * when autoneg has completed.
284 if (pcs_miistat & PCS_MIISTAT_RF)
285 netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
287 netdev_info(dev, "PCS AutoNEG complete\n");
290 if (pcs_miistat & PCS_MIISTAT_LS) {
291 netdev_info(dev, "PCS link is now up\n");
292 netif_carrier_on(gp->dev);
294 netdev_info(dev, "PCS link is now down\n");
295 netif_carrier_off(gp->dev);
296 /* If this happens and the link timer is not running,
297 * reset so we re-negotiate.
299 if (!timer_pending(&gp->link_timer))
306 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
308 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
310 if (netif_msg_intr(gp))
311 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
312 gp->dev->name, txmac_stat);
314 /* Defer timer expiration is quite normal,
315 * don't even log the event.
317 if ((txmac_stat & MAC_TXSTAT_DTE) &&
318 !(txmac_stat & ~MAC_TXSTAT_DTE))
321 if (txmac_stat & MAC_TXSTAT_URUN) {
322 netdev_err(dev, "TX MAC xmit underrun\n");
323 dev->stats.tx_fifo_errors++;
326 if (txmac_stat & MAC_TXSTAT_MPE) {
327 netdev_err(dev, "TX MAC max packet size error\n");
328 dev->stats.tx_errors++;
331 /* The rest are all cases of one of the 16-bit TX
334 if (txmac_stat & MAC_TXSTAT_NCE)
335 dev->stats.collisions += 0x10000;
337 if (txmac_stat & MAC_TXSTAT_ECE) {
338 dev->stats.tx_aborted_errors += 0x10000;
339 dev->stats.collisions += 0x10000;
342 if (txmac_stat & MAC_TXSTAT_LCE) {
343 dev->stats.tx_aborted_errors += 0x10000;
344 dev->stats.collisions += 0x10000;
347 /* We do not keep track of MAC_TXSTAT_FCE and
348 * MAC_TXSTAT_PCE events.
353 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
354 * so we do the following.
356 * If any part of the reset goes wrong, we return 1 and that causes the
357 * whole chip to be reset.
359 static int gem_rxmac_reset(struct gem *gp)
361 struct net_device *dev = gp->dev;
366 /* First, reset & disable MAC RX. */
367 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
368 for (limit = 0; limit < 5000; limit++) {
369 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
374 netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
378 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
379 gp->regs + MAC_RXCFG);
380 for (limit = 0; limit < 5000; limit++) {
381 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
386 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
390 /* Second, disable RX DMA. */
391 writel(0, gp->regs + RXDMA_CFG);
392 for (limit = 0; limit < 5000; limit++) {
393 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
398 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
404 /* Execute RX reset command. */
405 writel(gp->swrst_base | GREG_SWRST_RXRST,
406 gp->regs + GREG_SWRST);
407 for (limit = 0; limit < 5000; limit++) {
408 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
413 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
417 /* Refresh the RX ring. */
418 for (i = 0; i < RX_RING_SIZE; i++) {
419 struct gem_rxd *rxd = &gp->init_block->rxd[i];
421 if (gp->rx_skbs[i] == NULL) {
422 netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
426 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
428 gp->rx_new = gp->rx_old = 0;
430 /* Now we must reprogram the rest of RX unit. */
431 desc_dma = (u64) gp->gblock_dvma;
432 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
433 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
434 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
435 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
436 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
437 (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
438 writel(val, gp->regs + RXDMA_CFG);
439 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
440 writel(((5 & RXDMA_BLANK_IPKTS) |
441 ((8 << 12) & RXDMA_BLANK_ITIME)),
442 gp->regs + RXDMA_BLANK);
444 writel(((5 & RXDMA_BLANK_IPKTS) |
445 ((4 << 12) & RXDMA_BLANK_ITIME)),
446 gp->regs + RXDMA_BLANK);
447 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
448 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
449 writel(val, gp->regs + RXDMA_PTHRESH);
450 val = readl(gp->regs + RXDMA_CFG);
451 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
452 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
453 val = readl(gp->regs + MAC_RXCFG);
454 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
459 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
461 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
464 if (netif_msg_intr(gp))
465 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
466 gp->dev->name, rxmac_stat);
468 if (rxmac_stat & MAC_RXSTAT_OFLW) {
469 u32 smac = readl(gp->regs + MAC_SMACHINE);
471 netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
472 dev->stats.rx_over_errors++;
473 dev->stats.rx_fifo_errors++;
475 ret = gem_rxmac_reset(gp);
478 if (rxmac_stat & MAC_RXSTAT_ACE)
479 dev->stats.rx_frame_errors += 0x10000;
481 if (rxmac_stat & MAC_RXSTAT_CCE)
482 dev->stats.rx_crc_errors += 0x10000;
484 if (rxmac_stat & MAC_RXSTAT_LCE)
485 dev->stats.rx_length_errors += 0x10000;
487 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
493 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
495 u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
497 if (netif_msg_intr(gp))
498 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
499 gp->dev->name, mac_cstat);
501 /* This interrupt is just for pause frame and pause
502 * tracking. It is useful for diagnostics and debug
503 * but probably by default we will mask these events.
505 if (mac_cstat & MAC_CSTAT_PS)
508 if (mac_cstat & MAC_CSTAT_PRCV)
509 gp->pause_last_time_recvd = (mac_cstat >> 16);
514 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
516 u32 mif_status = readl(gp->regs + MIF_STATUS);
517 u32 reg_val, changed_bits;
519 reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
520 changed_bits = (mif_status & MIF_STATUS_STAT);
522 gem_handle_mif_event(gp, reg_val, changed_bits);
527 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
529 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
531 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
532 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
533 netdev_err(dev, "PCI error [%04x]", pci_estat);
535 if (pci_estat & GREG_PCIESTAT_BADACK)
536 pr_cont(" <No ACK64# during ABS64 cycle>");
537 if (pci_estat & GREG_PCIESTAT_DTRTO)
538 pr_cont(" <Delayed transaction timeout>");
539 if (pci_estat & GREG_PCIESTAT_OTHER)
543 pci_estat |= GREG_PCIESTAT_OTHER;
544 netdev_err(dev, "PCI error\n");
547 if (pci_estat & GREG_PCIESTAT_OTHER) {
550 /* Interrogate PCI config space for the
553 pci_errs = pci_status_get_and_clear_errors(gp->pdev);
554 netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
555 if (pci_errs & PCI_STATUS_PARITY)
556 netdev_err(dev, "PCI parity error detected\n");
557 if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
558 netdev_err(dev, "PCI target abort\n");
559 if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
560 netdev_err(dev, "PCI master acks target abort\n");
561 if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
562 netdev_err(dev, "PCI master abort\n");
563 if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
564 netdev_err(dev, "PCI system error SERR#\n");
565 if (pci_errs & PCI_STATUS_DETECTED_PARITY)
566 netdev_err(dev, "PCI parity error\n");
569 /* For all PCI errors, we should reset the chip. */
573 /* All non-normal interrupt conditions get serviced here.
574 * Returns non-zero if we should just exit the interrupt
575 * handler right now (ie. if we reset the card which invalidates
576 * all of the other original irq status bits).
578 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
580 if (gem_status & GREG_STAT_RXNOBUF) {
581 /* Frame arrived, no free RX buffers available. */
582 if (netif_msg_rx_err(gp))
583 printk(KERN_DEBUG "%s: no buffer for rx frame\n",
585 dev->stats.rx_dropped++;
588 if (gem_status & GREG_STAT_RXTAGERR) {
589 /* corrupt RX tag framing */
590 if (netif_msg_rx_err(gp))
591 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
593 dev->stats.rx_errors++;
598 if (gem_status & GREG_STAT_PCS) {
599 if (gem_pcs_interrupt(dev, gp, gem_status))
603 if (gem_status & GREG_STAT_TXMAC) {
604 if (gem_txmac_interrupt(dev, gp, gem_status))
608 if (gem_status & GREG_STAT_RXMAC) {
609 if (gem_rxmac_interrupt(dev, gp, gem_status))
613 if (gem_status & GREG_STAT_MAC) {
614 if (gem_mac_interrupt(dev, gp, gem_status))
618 if (gem_status & GREG_STAT_MIF) {
619 if (gem_mif_interrupt(dev, gp, gem_status))
623 if (gem_status & GREG_STAT_PCIERR) {
624 if (gem_pci_interrupt(dev, gp, gem_status))
631 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
636 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
637 while (entry != limit) {
644 if (netif_msg_tx_done(gp))
645 printk(KERN_DEBUG "%s: tx done, slot %d\n",
646 gp->dev->name, entry);
647 skb = gp->tx_skbs[entry];
648 if (skb_shinfo(skb)->nr_frags) {
649 int last = entry + skb_shinfo(skb)->nr_frags;
653 last &= (TX_RING_SIZE - 1);
655 walk = NEXT_TX(walk);
664 gp->tx_skbs[entry] = NULL;
665 dev->stats.tx_bytes += skb->len;
667 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
668 txd = &gp->init_block->txd[entry];
670 dma_addr = le64_to_cpu(txd->buffer);
671 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
673 dma_unmap_page(&gp->pdev->dev, dma_addr, dma_len,
675 entry = NEXT_TX(entry);
678 dev->stats.tx_packets++;
679 dev_consume_skb_any(skb);
683 /* Need to make the tx_old update visible to gem_start_xmit()
684 * before checking for netif_queue_stopped(). Without the
685 * memory barrier, there is a small possibility that gem_start_xmit()
686 * will miss it and cause the queue to be stopped forever.
690 if (unlikely(netif_queue_stopped(dev) &&
691 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
692 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
694 __netif_tx_lock(txq, smp_processor_id());
695 if (netif_queue_stopped(dev) &&
696 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
697 netif_wake_queue(dev);
698 __netif_tx_unlock(txq);
702 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
704 int cluster_start, curr, count, kick;
706 cluster_start = curr = (gp->rx_new & ~(4 - 1));
710 while (curr != limit) {
711 curr = NEXT_RX(curr);
713 struct gem_rxd *rxd =
714 &gp->init_block->rxd[cluster_start];
716 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
718 cluster_start = NEXT_RX(cluster_start);
719 if (cluster_start == curr)
728 writel(kick, gp->regs + RXDMA_KICK);
732 #define ALIGNED_RX_SKB_ADDR(addr) \
733 ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
734 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
737 struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
740 unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
741 skb_reserve(skb, offset);
746 static int gem_rx(struct gem *gp, int work_to_do)
748 struct net_device *dev = gp->dev;
749 int entry, drops, work_done = 0;
752 if (netif_msg_rx_status(gp))
753 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
754 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
758 done = readl(gp->regs + RXDMA_DONE);
760 struct gem_rxd *rxd = &gp->init_block->rxd[entry];
762 u64 status = le64_to_cpu(rxd->status_word);
766 if ((status & RXDCTRL_OWN) != 0)
769 if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
772 /* When writing back RX descriptor, GEM writes status
773 * then buffer address, possibly in separate transactions.
774 * If we don't wait for the chip to write both, we could
775 * post a new buffer to this descriptor then have GEM spam
776 * on the buffer address. We sync on the RX completion
777 * register to prevent this from happening.
780 done = readl(gp->regs + RXDMA_DONE);
785 /* We can now account for the work we're about to do */
788 skb = gp->rx_skbs[entry];
790 len = (status & RXDCTRL_BUFSZ) >> 16;
791 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
792 dev->stats.rx_errors++;
794 dev->stats.rx_length_errors++;
795 if (len & RXDCTRL_BAD)
796 dev->stats.rx_crc_errors++;
798 /* We'll just return it to GEM. */
800 dev->stats.rx_dropped++;
804 dma_addr = le64_to_cpu(rxd->buffer);
805 if (len > RX_COPY_THRESHOLD) {
806 struct sk_buff *new_skb;
808 new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
809 if (new_skb == NULL) {
813 dma_unmap_page(&gp->pdev->dev, dma_addr,
814 RX_BUF_ALLOC_SIZE(gp), DMA_FROM_DEVICE);
815 gp->rx_skbs[entry] = new_skb;
816 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
817 rxd->buffer = cpu_to_le64(dma_map_page(&gp->pdev->dev,
818 virt_to_page(new_skb->data),
819 offset_in_page(new_skb->data),
820 RX_BUF_ALLOC_SIZE(gp),
822 skb_reserve(new_skb, RX_OFFSET);
824 /* Trim the original skb for the netif. */
827 struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
829 if (copy_skb == NULL) {
834 skb_reserve(copy_skb, 2);
835 skb_put(copy_skb, len);
836 dma_sync_single_for_cpu(&gp->pdev->dev, dma_addr, len,
838 skb_copy_from_linear_data(skb, copy_skb->data, len);
839 dma_sync_single_for_device(&gp->pdev->dev, dma_addr,
840 len, DMA_FROM_DEVICE);
842 /* We'll reuse the original ring buffer. */
846 if (likely(dev->features & NETIF_F_RXCSUM)) {
849 csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
850 skb->csum = csum_unfold(csum);
851 skb->ip_summed = CHECKSUM_COMPLETE;
853 skb->protocol = eth_type_trans(skb, gp->dev);
855 napi_gro_receive(&gp->napi, skb);
857 dev->stats.rx_packets++;
858 dev->stats.rx_bytes += len;
861 entry = NEXT_RX(entry);
864 gem_post_rxds(gp, entry);
869 netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
874 static int gem_poll(struct napi_struct *napi, int budget)
876 struct gem *gp = container_of(napi, struct gem, napi);
877 struct net_device *dev = gp->dev;
882 /* Handle anomalies */
883 if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
884 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
887 /* We run the abnormal interrupt handling code with
888 * the Tx lock. It only resets the Rx portion of the
889 * chip, but we need to guard it against DMA being
890 * restarted by the link poll timer
892 __netif_tx_lock(txq, smp_processor_id());
893 reset = gem_abnormal_irq(dev, gp, gp->status);
894 __netif_tx_unlock(txq);
896 gem_schedule_reset(gp);
902 /* Run TX completion thread */
903 gem_tx(dev, gp, gp->status);
905 /* Run RX thread. We don't use any locking here,
906 * code willing to do bad things - like cleaning the
907 * rx ring - must call napi_disable(), which
908 * schedule_timeout()'s if polling is already disabled.
910 work_done += gem_rx(gp, budget - work_done);
912 if (work_done >= budget)
915 gp->status = readl(gp->regs + GREG_STAT);
916 } while (gp->status & GREG_STAT_NAPI);
918 napi_complete_done(napi, work_done);
924 static irqreturn_t gem_interrupt(int irq, void *dev_id)
926 struct net_device *dev = dev_id;
927 struct gem *gp = netdev_priv(dev);
929 if (napi_schedule_prep(&gp->napi)) {
930 u32 gem_status = readl(gp->regs + GREG_STAT);
932 if (unlikely(gem_status == 0)) {
933 napi_enable(&gp->napi);
936 if (netif_msg_intr(gp))
937 printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
938 gp->dev->name, gem_status);
940 gp->status = gem_status;
941 gem_disable_ints(gp);
942 __napi_schedule(&gp->napi);
945 /* If polling was disabled at the time we received that
946 * interrupt, we may return IRQ_HANDLED here while we
947 * should return IRQ_NONE. No big deal...
952 #ifdef CONFIG_NET_POLL_CONTROLLER
953 static void gem_poll_controller(struct net_device *dev)
955 struct gem *gp = netdev_priv(dev);
957 disable_irq(gp->pdev->irq);
958 gem_interrupt(gp->pdev->irq, dev);
959 enable_irq(gp->pdev->irq);
963 static void gem_tx_timeout(struct net_device *dev, unsigned int txqueue)
965 struct gem *gp = netdev_priv(dev);
967 netdev_err(dev, "transmit timed out, resetting\n");
969 netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
970 readl(gp->regs + TXDMA_CFG),
971 readl(gp->regs + MAC_TXSTAT),
972 readl(gp->regs + MAC_TXCFG));
973 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
974 readl(gp->regs + RXDMA_CFG),
975 readl(gp->regs + MAC_RXSTAT),
976 readl(gp->regs + MAC_RXCFG));
978 gem_schedule_reset(gp);
981 static __inline__ int gem_intme(int entry)
983 /* Algorithm: IRQ every 1/2 of descriptors. */
984 if (!(entry & ((TX_RING_SIZE>>1)-1)))
990 static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
991 struct net_device *dev)
993 struct gem *gp = netdev_priv(dev);
998 if (skb->ip_summed == CHECKSUM_PARTIAL) {
999 const u64 csum_start_off = skb_checksum_start_offset(skb);
1000 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1002 ctrl = (TXDCTRL_CENAB |
1003 (csum_start_off << 15) |
1004 (csum_stuff_off << 21));
1007 if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1008 /* This is a hard error, log it. */
1009 if (!netif_queue_stopped(dev)) {
1010 netif_stop_queue(dev);
1011 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1013 return NETDEV_TX_BUSY;
1017 gp->tx_skbs[entry] = skb;
1019 if (skb_shinfo(skb)->nr_frags == 0) {
1020 struct gem_txd *txd = &gp->init_block->txd[entry];
1025 mapping = dma_map_page(&gp->pdev->dev,
1026 virt_to_page(skb->data),
1027 offset_in_page(skb->data),
1028 len, DMA_TO_DEVICE);
1029 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1030 if (gem_intme(entry))
1031 ctrl |= TXDCTRL_INTME;
1032 txd->buffer = cpu_to_le64(mapping);
1034 txd->control_word = cpu_to_le64(ctrl);
1035 entry = NEXT_TX(entry);
1037 struct gem_txd *txd;
1040 dma_addr_t first_mapping;
1041 int frag, first_entry = entry;
1044 if (gem_intme(entry))
1045 intme |= TXDCTRL_INTME;
1047 /* We must give this initial chunk to the device last.
1048 * Otherwise we could race with the device.
1050 first_len = skb_headlen(skb);
1051 first_mapping = dma_map_page(&gp->pdev->dev,
1052 virt_to_page(skb->data),
1053 offset_in_page(skb->data),
1054 first_len, DMA_TO_DEVICE);
1055 entry = NEXT_TX(entry);
1057 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1058 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1063 len = skb_frag_size(this_frag);
1064 mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
1065 0, len, DMA_TO_DEVICE);
1067 if (frag == skb_shinfo(skb)->nr_frags - 1)
1068 this_ctrl |= TXDCTRL_EOF;
1070 txd = &gp->init_block->txd[entry];
1071 txd->buffer = cpu_to_le64(mapping);
1073 txd->control_word = cpu_to_le64(this_ctrl | len);
1075 if (gem_intme(entry))
1076 intme |= TXDCTRL_INTME;
1078 entry = NEXT_TX(entry);
1080 txd = &gp->init_block->txd[first_entry];
1081 txd->buffer = cpu_to_le64(first_mapping);
1084 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1088 if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1089 netif_stop_queue(dev);
1091 /* netif_stop_queue() must be done before checking
1092 * checking tx index in TX_BUFFS_AVAIL() below, because
1093 * in gem_tx(), we update tx_old before checking for
1094 * netif_queue_stopped().
1097 if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1098 netif_wake_queue(dev);
1100 if (netif_msg_tx_queued(gp))
1101 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1102 dev->name, entry, skb->len);
1104 writel(gp->tx_new, gp->regs + TXDMA_KICK);
1106 return NETDEV_TX_OK;
1109 static void gem_pcs_reset(struct gem *gp)
1114 /* Reset PCS unit. */
1115 val = readl(gp->regs + PCS_MIICTRL);
1116 val |= PCS_MIICTRL_RST;
1117 writel(val, gp->regs + PCS_MIICTRL);
1120 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1126 netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1129 static void gem_pcs_reinit_adv(struct gem *gp)
1133 /* Make sure PCS is disabled while changing advertisement
1136 val = readl(gp->regs + PCS_CFG);
1137 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1138 writel(val, gp->regs + PCS_CFG);
1140 /* Advertise all capabilities except asymmetric
1143 val = readl(gp->regs + PCS_MIIADV);
1144 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1145 PCS_MIIADV_SP | PCS_MIIADV_AP);
1146 writel(val, gp->regs + PCS_MIIADV);
1148 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1149 * and re-enable PCS.
1151 val = readl(gp->regs + PCS_MIICTRL);
1152 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1153 val &= ~PCS_MIICTRL_WB;
1154 writel(val, gp->regs + PCS_MIICTRL);
1156 val = readl(gp->regs + PCS_CFG);
1157 val |= PCS_CFG_ENABLE;
1158 writel(val, gp->regs + PCS_CFG);
1160 /* Make sure serialink loopback is off. The meaning
1161 * of this bit is logically inverted based upon whether
1162 * you are in Serialink or SERDES mode.
1164 val = readl(gp->regs + PCS_SCTRL);
1165 if (gp->phy_type == phy_serialink)
1166 val &= ~PCS_SCTRL_LOOP;
1168 val |= PCS_SCTRL_LOOP;
1169 writel(val, gp->regs + PCS_SCTRL);
1172 #define STOP_TRIES 32
1174 static void gem_reset(struct gem *gp)
1179 /* Make sure we won't get any more interrupts */
1180 writel(0xffffffff, gp->regs + GREG_IMASK);
1182 /* Reset the chip */
1183 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1184 gp->regs + GREG_SWRST);
1190 val = readl(gp->regs + GREG_SWRST);
1193 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1196 netdev_err(gp->dev, "SW reset is ghetto\n");
1198 if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1199 gem_pcs_reinit_adv(gp);
1202 static void gem_start_dma(struct gem *gp)
1206 /* We are ready to rock, turn everything on. */
1207 val = readl(gp->regs + TXDMA_CFG);
1208 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1209 val = readl(gp->regs + RXDMA_CFG);
1210 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1211 val = readl(gp->regs + MAC_TXCFG);
1212 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1213 val = readl(gp->regs + MAC_RXCFG);
1214 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1216 (void) readl(gp->regs + MAC_RXCFG);
1219 gem_enable_ints(gp);
1221 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1224 /* DMA won't be actually stopped before about 4ms tho ...
1226 static void gem_stop_dma(struct gem *gp)
1230 /* We are done rocking, turn everything off. */
1231 val = readl(gp->regs + TXDMA_CFG);
1232 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1233 val = readl(gp->regs + RXDMA_CFG);
1234 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1235 val = readl(gp->regs + MAC_TXCFG);
1236 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1237 val = readl(gp->regs + MAC_RXCFG);
1238 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1240 (void) readl(gp->regs + MAC_RXCFG);
1242 /* Need to wait a bit ... done by the caller */
1246 // XXX dbl check what that function should do when called on PCS PHY
1247 static void gem_begin_auto_negotiation(struct gem *gp,
1248 const struct ethtool_link_ksettings *ep)
1250 u32 advertise, features;
1257 ethtool_convert_link_mode_to_legacy_u32(
1258 &advertising, ep->link_modes.advertising);
1260 if (gp->phy_type != phy_mii_mdio0 &&
1261 gp->phy_type != phy_mii_mdio1)
1264 /* Setup advertise */
1265 if (found_mii_phy(gp))
1266 features = gp->phy_mii.def->features;
1270 advertise = features & ADVERTISE_MASK;
1271 if (gp->phy_mii.advertising != 0)
1272 advertise &= gp->phy_mii.advertising;
1274 autoneg = gp->want_autoneg;
1275 speed = gp->phy_mii.speed;
1276 duplex = gp->phy_mii.duplex;
1278 /* Setup link parameters */
1281 if (ep->base.autoneg == AUTONEG_ENABLE) {
1282 advertise = advertising;
1286 speed = ep->base.speed;
1287 duplex = ep->base.duplex;
1291 /* Sanitize settings based on PHY capabilities */
1292 if ((features & SUPPORTED_Autoneg) == 0)
1294 if (speed == SPEED_1000 &&
1295 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1297 if (speed == SPEED_100 &&
1298 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1300 if (duplex == DUPLEX_FULL &&
1301 !(features & (SUPPORTED_1000baseT_Full |
1302 SUPPORTED_100baseT_Full |
1303 SUPPORTED_10baseT_Full)))
1304 duplex = DUPLEX_HALF;
1308 /* If we are asleep, we don't try to actually setup the PHY, we
1309 * just store the settings
1311 if (!netif_device_present(gp->dev)) {
1312 gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1313 gp->phy_mii.speed = speed;
1314 gp->phy_mii.duplex = duplex;
1318 /* Configure PHY & start aneg */
1319 gp->want_autoneg = autoneg;
1321 if (found_mii_phy(gp))
1322 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1323 gp->lstate = link_aneg;
1325 if (found_mii_phy(gp))
1326 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1327 gp->lstate = link_force_ok;
1331 gp->timer_ticks = 0;
1332 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1335 /* A link-up condition has occurred, initialize and enable the
1338 static int gem_set_link_modes(struct gem *gp)
1340 struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1341 int full_duplex, speed, pause;
1348 if (found_mii_phy(gp)) {
1349 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1351 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1352 speed = gp->phy_mii.speed;
1353 pause = gp->phy_mii.pause;
1354 } else if (gp->phy_type == phy_serialink ||
1355 gp->phy_type == phy_serdes) {
1356 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1358 if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1363 netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1364 speed, (full_duplex ? "full" : "half"));
1367 /* We take the tx queue lock to avoid collisions between
1368 * this code, the tx path and the NAPI-driven error path
1370 __netif_tx_lock(txq, smp_processor_id());
1372 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1374 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1376 /* MAC_TXCFG_NBO must be zero. */
1378 writel(val, gp->regs + MAC_TXCFG);
1380 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1382 (gp->phy_type == phy_mii_mdio0 ||
1383 gp->phy_type == phy_mii_mdio1)) {
1384 val |= MAC_XIFCFG_DISE;
1385 } else if (full_duplex) {
1386 val |= MAC_XIFCFG_FLED;
1389 if (speed == SPEED_1000)
1390 val |= (MAC_XIFCFG_GMII);
1392 writel(val, gp->regs + MAC_XIFCFG);
1394 /* If gigabit and half-duplex, enable carrier extension
1395 * mode. Else, disable it.
1397 if (speed == SPEED_1000 && !full_duplex) {
1398 val = readl(gp->regs + MAC_TXCFG);
1399 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1401 val = readl(gp->regs + MAC_RXCFG);
1402 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1404 val = readl(gp->regs + MAC_TXCFG);
1405 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1407 val = readl(gp->regs + MAC_RXCFG);
1408 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1411 if (gp->phy_type == phy_serialink ||
1412 gp->phy_type == phy_serdes) {
1413 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1415 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1420 writel(512, gp->regs + MAC_STIME);
1422 writel(64, gp->regs + MAC_STIME);
1423 val = readl(gp->regs + MAC_MCCFG);
1425 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1427 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1428 writel(val, gp->regs + MAC_MCCFG);
1432 __netif_tx_unlock(txq);
1434 if (netif_msg_link(gp)) {
1436 netdev_info(gp->dev,
1437 "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1442 netdev_info(gp->dev, "Pause is disabled\n");
1449 static int gem_mdio_link_not_up(struct gem *gp)
1451 switch (gp->lstate) {
1452 case link_force_ret:
1453 netif_info(gp, link, gp->dev,
1454 "Autoneg failed again, keeping forced mode\n");
1455 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1456 gp->last_forced_speed, DUPLEX_HALF);
1457 gp->timer_ticks = 5;
1458 gp->lstate = link_force_ok;
1461 /* We try forced modes after a failed aneg only on PHYs that don't
1462 * have "magic_aneg" bit set, which means they internally do the
1463 * while forced-mode thingy. On these, we just restart aneg
1465 if (gp->phy_mii.def->magic_aneg)
1467 netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1468 /* Try forced modes. */
1469 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1471 gp->timer_ticks = 5;
1472 gp->lstate = link_force_try;
1474 case link_force_try:
1475 /* Downgrade from 100 to 10 Mbps if necessary.
1476 * If already at 10Mbps, warn user about the
1477 * situation every 10 ticks.
1479 if (gp->phy_mii.speed == SPEED_100) {
1480 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1482 gp->timer_ticks = 5;
1483 netif_info(gp, link, gp->dev,
1484 "switching to forced 10bt\n");
1493 static void gem_link_timer(struct timer_list *t)
1495 struct gem *gp = from_timer(gp, t, link_timer);
1496 struct net_device *dev = gp->dev;
1497 int restart_aneg = 0;
1499 /* There's no point doing anything if we're going to be reset */
1500 if (gp->reset_task_pending)
1503 if (gp->phy_type == phy_serialink ||
1504 gp->phy_type == phy_serdes) {
1505 u32 val = readl(gp->regs + PCS_MIISTAT);
1507 if (!(val & PCS_MIISTAT_LS))
1508 val = readl(gp->regs + PCS_MIISTAT);
1510 if ((val & PCS_MIISTAT_LS) != 0) {
1511 if (gp->lstate == link_up)
1514 gp->lstate = link_up;
1515 netif_carrier_on(dev);
1516 (void)gem_set_link_modes(gp);
1520 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1521 /* Ok, here we got a link. If we had it due to a forced
1522 * fallback, and we were configured for autoneg, we do
1523 * retry a short autoneg pass. If you know your hub is
1524 * broken, use ethtool ;)
1526 if (gp->lstate == link_force_try && gp->want_autoneg) {
1527 gp->lstate = link_force_ret;
1528 gp->last_forced_speed = gp->phy_mii.speed;
1529 gp->timer_ticks = 5;
1530 if (netif_msg_link(gp))
1532 "Got link after fallback, retrying autoneg once...\n");
1533 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1534 } else if (gp->lstate != link_up) {
1535 gp->lstate = link_up;
1536 netif_carrier_on(dev);
1537 if (gem_set_link_modes(gp))
1541 /* If the link was previously up, we restart the
1544 if (gp->lstate == link_up) {
1545 gp->lstate = link_down;
1546 netif_info(gp, link, dev, "Link down\n");
1547 netif_carrier_off(dev);
1548 gem_schedule_reset(gp);
1549 /* The reset task will restart the timer */
1551 } else if (++gp->timer_ticks > 10) {
1552 if (found_mii_phy(gp))
1553 restart_aneg = gem_mdio_link_not_up(gp);
1559 gem_begin_auto_negotiation(gp, NULL);
1563 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1566 static void gem_clean_rings(struct gem *gp)
1568 struct gem_init_block *gb = gp->init_block;
1569 struct sk_buff *skb;
1571 dma_addr_t dma_addr;
1573 for (i = 0; i < RX_RING_SIZE; i++) {
1574 struct gem_rxd *rxd;
1577 if (gp->rx_skbs[i] != NULL) {
1578 skb = gp->rx_skbs[i];
1579 dma_addr = le64_to_cpu(rxd->buffer);
1580 dma_unmap_page(&gp->pdev->dev, dma_addr,
1581 RX_BUF_ALLOC_SIZE(gp),
1583 dev_kfree_skb_any(skb);
1584 gp->rx_skbs[i] = NULL;
1586 rxd->status_word = 0;
1591 for (i = 0; i < TX_RING_SIZE; i++) {
1592 if (gp->tx_skbs[i] != NULL) {
1593 struct gem_txd *txd;
1596 skb = gp->tx_skbs[i];
1597 gp->tx_skbs[i] = NULL;
1599 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1600 int ent = i & (TX_RING_SIZE - 1);
1602 txd = &gb->txd[ent];
1603 dma_addr = le64_to_cpu(txd->buffer);
1604 dma_unmap_page(&gp->pdev->dev, dma_addr,
1605 le64_to_cpu(txd->control_word) &
1606 TXDCTRL_BUFSZ, DMA_TO_DEVICE);
1608 if (frag != skb_shinfo(skb)->nr_frags)
1611 dev_kfree_skb_any(skb);
1616 static void gem_init_rings(struct gem *gp)
1618 struct gem_init_block *gb = gp->init_block;
1619 struct net_device *dev = gp->dev;
1621 dma_addr_t dma_addr;
1623 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1625 gem_clean_rings(gp);
1627 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1628 (unsigned)VLAN_ETH_FRAME_LEN);
1630 for (i = 0; i < RX_RING_SIZE; i++) {
1631 struct sk_buff *skb;
1632 struct gem_rxd *rxd = &gb->rxd[i];
1634 skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1637 rxd->status_word = 0;
1641 gp->rx_skbs[i] = skb;
1642 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1643 dma_addr = dma_map_page(&gp->pdev->dev,
1644 virt_to_page(skb->data),
1645 offset_in_page(skb->data),
1646 RX_BUF_ALLOC_SIZE(gp),
1648 rxd->buffer = cpu_to_le64(dma_addr);
1650 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1651 skb_reserve(skb, RX_OFFSET);
1654 for (i = 0; i < TX_RING_SIZE; i++) {
1655 struct gem_txd *txd = &gb->txd[i];
1657 txd->control_word = 0;
1664 /* Init PHY interface and start link poll state machine */
1665 static void gem_init_phy(struct gem *gp)
1669 /* Revert MIF CFG setting done on stop_phy */
1670 mifcfg = readl(gp->regs + MIF_CFG);
1671 mifcfg &= ~MIF_CFG_BBMODE;
1672 writel(mifcfg, gp->regs + MIF_CFG);
1674 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1677 /* Those delays sucks, the HW seems to love them though, I'll
1678 * seriously consider breaking some locks here to be able
1679 * to schedule instead
1681 for (i = 0; i < 3; i++) {
1682 #ifdef CONFIG_PPC_PMAC
1683 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1686 /* Some PHYs used by apple have problem getting back to us,
1687 * we do an additional reset here
1689 sungem_phy_write(gp, MII_BMCR, BMCR_RESET);
1691 if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
1694 netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1698 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1699 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1702 /* Init datapath mode register. */
1703 if (gp->phy_type == phy_mii_mdio0 ||
1704 gp->phy_type == phy_mii_mdio1) {
1705 val = PCS_DMODE_MGM;
1706 } else if (gp->phy_type == phy_serialink) {
1707 val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1709 val = PCS_DMODE_ESM;
1712 writel(val, gp->regs + PCS_DMODE);
1715 if (gp->phy_type == phy_mii_mdio0 ||
1716 gp->phy_type == phy_mii_mdio1) {
1717 /* Reset and detect MII PHY */
1718 sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1721 if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1722 gp->phy_mii.def->ops->init(&gp->phy_mii);
1725 gem_pcs_reinit_adv(gp);
1728 /* Default aneg parameters */
1729 gp->timer_ticks = 0;
1730 gp->lstate = link_down;
1731 netif_carrier_off(gp->dev);
1733 /* Print things out */
1734 if (gp->phy_type == phy_mii_mdio0 ||
1735 gp->phy_type == phy_mii_mdio1)
1736 netdev_info(gp->dev, "Found %s PHY\n",
1737 gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1739 gem_begin_auto_negotiation(gp, NULL);
1742 static void gem_init_dma(struct gem *gp)
1744 u64 desc_dma = (u64) gp->gblock_dvma;
1747 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1748 writel(val, gp->regs + TXDMA_CFG);
1750 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1751 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1752 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1754 writel(0, gp->regs + TXDMA_KICK);
1756 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1757 (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
1758 writel(val, gp->regs + RXDMA_CFG);
1760 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1761 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1763 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1765 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1766 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1767 writel(val, gp->regs + RXDMA_PTHRESH);
1769 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1770 writel(((5 & RXDMA_BLANK_IPKTS) |
1771 ((8 << 12) & RXDMA_BLANK_ITIME)),
1772 gp->regs + RXDMA_BLANK);
1774 writel(((5 & RXDMA_BLANK_IPKTS) |
1775 ((4 << 12) & RXDMA_BLANK_ITIME)),
1776 gp->regs + RXDMA_BLANK);
1779 static u32 gem_setup_multicast(struct gem *gp)
1784 if ((gp->dev->flags & IFF_ALLMULTI) ||
1785 (netdev_mc_count(gp->dev) > 256)) {
1786 for (i=0; i<16; i++)
1787 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1788 rxcfg |= MAC_RXCFG_HFE;
1789 } else if (gp->dev->flags & IFF_PROMISC) {
1790 rxcfg |= MAC_RXCFG_PROM;
1794 struct netdev_hw_addr *ha;
1797 memset(hash_table, 0, sizeof(hash_table));
1798 netdev_for_each_mc_addr(ha, gp->dev) {
1799 crc = ether_crc_le(6, ha->addr);
1801 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1803 for (i=0; i<16; i++)
1804 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1805 rxcfg |= MAC_RXCFG_HFE;
1811 static void gem_init_mac(struct gem *gp)
1813 unsigned char *e = &gp->dev->dev_addr[0];
1815 writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1817 writel(0x00, gp->regs + MAC_IPG0);
1818 writel(0x08, gp->regs + MAC_IPG1);
1819 writel(0x04, gp->regs + MAC_IPG2);
1820 writel(0x40, gp->regs + MAC_STIME);
1821 writel(0x40, gp->regs + MAC_MINFSZ);
1823 /* Ethernet payload + header + FCS + optional VLAN tag. */
1824 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1826 writel(0x07, gp->regs + MAC_PASIZE);
1827 writel(0x04, gp->regs + MAC_JAMSIZE);
1828 writel(0x10, gp->regs + MAC_ATTLIM);
1829 writel(0x8808, gp->regs + MAC_MCTYPE);
1831 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1833 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1834 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1835 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1837 writel(0, gp->regs + MAC_ADDR3);
1838 writel(0, gp->regs + MAC_ADDR4);
1839 writel(0, gp->regs + MAC_ADDR5);
1841 writel(0x0001, gp->regs + MAC_ADDR6);
1842 writel(0xc200, gp->regs + MAC_ADDR7);
1843 writel(0x0180, gp->regs + MAC_ADDR8);
1845 writel(0, gp->regs + MAC_AFILT0);
1846 writel(0, gp->regs + MAC_AFILT1);
1847 writel(0, gp->regs + MAC_AFILT2);
1848 writel(0, gp->regs + MAC_AF21MSK);
1849 writel(0, gp->regs + MAC_AF0MSK);
1851 gp->mac_rx_cfg = gem_setup_multicast(gp);
1853 gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1855 writel(0, gp->regs + MAC_NCOLL);
1856 writel(0, gp->regs + MAC_FASUCC);
1857 writel(0, gp->regs + MAC_ECOLL);
1858 writel(0, gp->regs + MAC_LCOLL);
1859 writel(0, gp->regs + MAC_DTIMER);
1860 writel(0, gp->regs + MAC_PATMPS);
1861 writel(0, gp->regs + MAC_RFCTR);
1862 writel(0, gp->regs + MAC_LERR);
1863 writel(0, gp->regs + MAC_AERR);
1864 writel(0, gp->regs + MAC_FCSERR);
1865 writel(0, gp->regs + MAC_RXCVERR);
1867 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1868 * them once a link is established.
1870 writel(0, gp->regs + MAC_TXCFG);
1871 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1872 writel(0, gp->regs + MAC_MCCFG);
1873 writel(0, gp->regs + MAC_XIFCFG);
1875 /* Setup MAC interrupts. We want to get all of the interesting
1876 * counter expiration events, but we do not want to hear about
1877 * normal rx/tx as the DMA engine tells us that.
1879 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1880 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1882 /* Don't enable even the PAUSE interrupts for now, we
1883 * make no use of those events other than to record them.
1885 writel(0xffffffff, gp->regs + MAC_MCMASK);
1887 /* Don't enable GEM's WOL in normal operations
1890 writel(0, gp->regs + WOL_WAKECSR);
1893 static void gem_init_pause_thresholds(struct gem *gp)
1897 /* Calculate pause thresholds. Setting the OFF threshold to the
1898 * full RX fifo size effectively disables PAUSE generation which
1899 * is what we do for 10/100 only GEMs which have FIFOs too small
1900 * to make real gains from PAUSE.
1902 if (gp->rx_fifo_sz <= (2 * 1024)) {
1903 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1905 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1906 int off = (gp->rx_fifo_sz - (max_frame * 2));
1907 int on = off - max_frame;
1909 gp->rx_pause_off = off;
1910 gp->rx_pause_on = on;
1914 /* Configure the chip "burst" DMA mode & enable some
1915 * HW bug fixes on Apple version
1918 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1919 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1920 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1921 cfg |= GREG_CFG_IBURST;
1923 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1924 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1925 writel(cfg, gp->regs + GREG_CFG);
1927 /* If Infinite Burst didn't stick, then use different
1928 * thresholds (and Apple bug fixes don't exist)
1930 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1931 cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1932 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1933 writel(cfg, gp->regs + GREG_CFG);
1937 static int gem_check_invariants(struct gem *gp)
1939 struct pci_dev *pdev = gp->pdev;
1942 /* On Apple's sungem, we can't rely on registers as the chip
1943 * was been powered down by the firmware. The PHY is looked
1946 if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1947 gp->phy_type = phy_mii_mdio0;
1948 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1949 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1952 mif_cfg = readl(gp->regs + MIF_CFG);
1953 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1954 mif_cfg |= MIF_CFG_MDI0;
1955 writel(mif_cfg, gp->regs + MIF_CFG);
1956 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1957 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1959 /* We hard-code the PHY address so we can properly bring it out of
1960 * reset later on, we can't really probe it at this point, though
1961 * that isn't an issue.
1963 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1964 gp->mii_phy_addr = 1;
1966 gp->mii_phy_addr = 0;
1971 mif_cfg = readl(gp->regs + MIF_CFG);
1973 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1974 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1975 /* One of the MII PHYs _must_ be present
1976 * as this chip has no gigabit PHY.
1978 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1979 pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1985 /* Determine initial PHY interface type guess. MDIO1 is the
1986 * external PHY and thus takes precedence over MDIO0.
1989 if (mif_cfg & MIF_CFG_MDI1) {
1990 gp->phy_type = phy_mii_mdio1;
1991 mif_cfg |= MIF_CFG_PSELECT;
1992 writel(mif_cfg, gp->regs + MIF_CFG);
1993 } else if (mif_cfg & MIF_CFG_MDI0) {
1994 gp->phy_type = phy_mii_mdio0;
1995 mif_cfg &= ~MIF_CFG_PSELECT;
1996 writel(mif_cfg, gp->regs + MIF_CFG);
2001 p = of_get_property(gp->of_node, "shared-pins", NULL);
2002 if (p && !strcmp(p, "serdes"))
2003 gp->phy_type = phy_serdes;
2006 gp->phy_type = phy_serialink;
2008 if (gp->phy_type == phy_mii_mdio1 ||
2009 gp->phy_type == phy_mii_mdio0) {
2012 for (i = 0; i < 32; i++) {
2013 gp->mii_phy_addr = i;
2014 if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
2018 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2019 pr_err("RIO MII phy will not respond\n");
2022 gp->phy_type = phy_serdes;
2026 /* Fetch the FIFO configurations now too. */
2027 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2028 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2030 if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2031 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2032 if (gp->tx_fifo_sz != (9 * 1024) ||
2033 gp->rx_fifo_sz != (20 * 1024)) {
2034 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2035 gp->tx_fifo_sz, gp->rx_fifo_sz);
2040 if (gp->tx_fifo_sz != (2 * 1024) ||
2041 gp->rx_fifo_sz != (2 * 1024)) {
2042 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2043 gp->tx_fifo_sz, gp->rx_fifo_sz);
2046 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2053 static void gem_reinit_chip(struct gem *gp)
2055 /* Reset the chip */
2058 /* Make sure ints are disabled */
2059 gem_disable_ints(gp);
2061 /* Allocate & setup ring buffers */
2064 /* Configure pause thresholds */
2065 gem_init_pause_thresholds(gp);
2067 /* Init DMA & MAC engines */
2073 static void gem_stop_phy(struct gem *gp, int wol)
2077 /* Let the chip settle down a bit, it seems that helps
2078 * for sleep mode on some models
2082 /* Make sure we aren't polling PHY status change. We
2083 * don't currently use that feature though
2085 mifcfg = readl(gp->regs + MIF_CFG);
2086 mifcfg &= ~MIF_CFG_POLL;
2087 writel(mifcfg, gp->regs + MIF_CFG);
2089 if (wol && gp->has_wol) {
2090 unsigned char *e = &gp->dev->dev_addr[0];
2093 /* Setup wake-on-lan for MAGIC packet */
2094 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2095 gp->regs + MAC_RXCFG);
2096 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2097 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2098 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2100 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2101 csr = WOL_WAKECSR_ENABLE;
2102 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2103 csr |= WOL_WAKECSR_MII;
2104 writel(csr, gp->regs + WOL_WAKECSR);
2106 writel(0, gp->regs + MAC_RXCFG);
2107 (void)readl(gp->regs + MAC_RXCFG);
2108 /* Machine sleep will die in strange ways if we
2109 * dont wait a bit here, looks like the chip takes
2110 * some time to really shut down
2115 writel(0, gp->regs + MAC_TXCFG);
2116 writel(0, gp->regs + MAC_XIFCFG);
2117 writel(0, gp->regs + TXDMA_CFG);
2118 writel(0, gp->regs + RXDMA_CFG);
2122 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2123 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2125 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2126 gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2128 /* According to Apple, we must set the MDIO pins to this begnign
2129 * state or we may 1) eat more current, 2) damage some PHYs
2131 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2132 writel(0, gp->regs + MIF_BBCLK);
2133 writel(0, gp->regs + MIF_BBDATA);
2134 writel(0, gp->regs + MIF_BBOENAB);
2135 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2136 (void) readl(gp->regs + MAC_XIFCFG);
2140 static int gem_do_start(struct net_device *dev)
2142 struct gem *gp = netdev_priv(dev);
2145 pci_set_master(gp->pdev);
2147 /* Init & setup chip hardware */
2148 gem_reinit_chip(gp);
2150 /* An interrupt might come in handy */
2151 rc = request_irq(gp->pdev->irq, gem_interrupt,
2152 IRQF_SHARED, dev->name, (void *)dev);
2154 netdev_err(dev, "failed to request irq !\n");
2157 gem_clean_rings(gp);
2162 /* Mark us as attached again if we come from resume(), this has
2163 * no effect if we weren't detached and needs to be done now.
2165 netif_device_attach(dev);
2167 /* Restart NAPI & queues */
2168 gem_netif_start(gp);
2170 /* Detect & init PHY, start autoneg etc... this will
2171 * eventually result in starting DMA operations when
2179 static void gem_do_stop(struct net_device *dev, int wol)
2181 struct gem *gp = netdev_priv(dev);
2183 /* Stop NAPI and stop tx queue */
2186 /* Make sure ints are disabled. We don't care about
2187 * synchronizing as NAPI is disabled, thus a stray
2188 * interrupt will do nothing bad (our irq handler
2189 * just schedules NAPI)
2191 gem_disable_ints(gp);
2193 /* Stop the link timer */
2194 del_timer_sync(&gp->link_timer);
2196 /* We cannot cancel the reset task while holding the
2197 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2198 * if we did. This is not an issue however as the reset
2199 * task is synchronized vs. us (rtnl_lock) and will do
2200 * nothing if the device is down or suspended. We do
2201 * still clear reset_task_pending to avoid a spurrious
2202 * reset later on in case we do resume before it gets
2205 gp->reset_task_pending = 0;
2207 /* If we are going to sleep with WOL */
2214 /* Get rid of rings */
2215 gem_clean_rings(gp);
2217 /* No irq needed anymore */
2218 free_irq(gp->pdev->irq, (void *) dev);
2220 /* Shut the PHY down eventually and setup WOL */
2221 gem_stop_phy(gp, wol);
2224 static void gem_reset_task(struct work_struct *work)
2226 struct gem *gp = container_of(work, struct gem, reset_task);
2228 /* Lock out the network stack (essentially shield ourselves
2229 * against a racing open, close, control call, or suspend
2233 /* Skip the reset task if suspended or closed, or if it's
2234 * been cancelled by gem_do_stop (see comment there)
2236 if (!netif_device_present(gp->dev) ||
2237 !netif_running(gp->dev) ||
2238 !gp->reset_task_pending) {
2243 /* Stop the link timer */
2244 del_timer_sync(&gp->link_timer);
2246 /* Stop NAPI and tx */
2249 /* Reset the chip & rings */
2250 gem_reinit_chip(gp);
2251 if (gp->lstate == link_up)
2252 gem_set_link_modes(gp);
2254 /* Restart NAPI and Tx */
2255 gem_netif_start(gp);
2258 gp->reset_task_pending = 0;
2260 /* If the link is not up, restart autoneg, else restart the
2263 if (gp->lstate != link_up)
2264 gem_begin_auto_negotiation(gp, NULL);
2266 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2271 static int gem_open(struct net_device *dev)
2273 struct gem *gp = netdev_priv(dev);
2276 /* We allow open while suspended, we just do nothing,
2277 * the chip will be initialized in resume()
2279 if (netif_device_present(dev)) {
2280 /* Enable the cell */
2283 /* Make sure PCI access and bus master are enabled */
2284 rc = pci_enable_device(gp->pdev);
2286 netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2288 /* Put cell and forget it for now, it will be considered
2289 *as still asleep, a new sleep cycle may bring it back
2294 return gem_do_start(dev);
2300 static int gem_close(struct net_device *dev)
2302 struct gem *gp = netdev_priv(dev);
2304 if (netif_device_present(dev)) {
2305 gem_do_stop(dev, 0);
2307 /* Make sure bus master is disabled */
2308 pci_disable_device(gp->pdev);
2310 /* Cell not needed neither if no WOL */
2311 if (!gp->asleep_wol)
2317 static int __maybe_unused gem_suspend(struct device *dev_d)
2319 struct net_device *dev = dev_get_drvdata(dev_d);
2320 struct gem *gp = netdev_priv(dev);
2322 /* Lock the network stack first to avoid racing with open/close,
2323 * reset task and setting calls
2327 /* Not running, mark ourselves non-present, no need for
2330 if (!netif_running(dev)) {
2331 netif_device_detach(dev);
2335 netdev_info(dev, "suspending, WakeOnLan %s\n",
2336 (gp->wake_on_lan && netif_running(dev)) ?
2337 "enabled" : "disabled");
2339 /* Tell the network stack we're gone. gem_do_stop() below will
2340 * synchronize with TX, stop NAPI etc...
2342 netif_device_detach(dev);
2344 /* Switch off chip, remember WOL setting */
2345 gp->asleep_wol = !!gp->wake_on_lan;
2346 gem_do_stop(dev, gp->asleep_wol);
2348 /* Cell not needed neither if no WOL */
2349 if (!gp->asleep_wol)
2352 /* Unlock the network stack */
2358 static int __maybe_unused gem_resume(struct device *dev_d)
2360 struct net_device *dev = dev_get_drvdata(dev_d);
2361 struct gem *gp = netdev_priv(dev);
2363 /* See locking comment in gem_suspend */
2366 /* Not running, mark ourselves present, no need for
2369 if (!netif_running(dev)) {
2370 netif_device_attach(dev);
2375 /* Enable the cell */
2378 /* Restart chip. If that fails there isn't much we can do, we
2379 * leave things stopped.
2383 /* If we had WOL enabled, the cell clock was never turned off during
2384 * sleep, so we end up beeing unbalanced. Fix that here
2389 /* Unlock the network stack */
2395 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2397 struct gem *gp = netdev_priv(dev);
2399 /* I have seen this being called while the PM was in progress,
2400 * so we shield against this. Let's also not poke at registers
2401 * while the reset task is going on.
2403 * TODO: Move stats collection elsewhere (link timer ?) and
2404 * make this a nop to avoid all those synchro issues
2406 if (!netif_device_present(dev) || !netif_running(dev))
2409 /* Better safe than sorry... */
2410 if (WARN_ON(!gp->cell_enabled))
2413 dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2414 writel(0, gp->regs + MAC_FCSERR);
2416 dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2417 writel(0, gp->regs + MAC_AERR);
2419 dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2420 writel(0, gp->regs + MAC_LERR);
2422 dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2423 dev->stats.collisions +=
2424 (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2425 writel(0, gp->regs + MAC_ECOLL);
2426 writel(0, gp->regs + MAC_LCOLL);
2431 static int gem_set_mac_address(struct net_device *dev, void *addr)
2433 struct sockaddr *macaddr = (struct sockaddr *) addr;
2434 struct gem *gp = netdev_priv(dev);
2435 unsigned char *e = &dev->dev_addr[0];
2437 if (!is_valid_ether_addr(macaddr->sa_data))
2438 return -EADDRNOTAVAIL;
2440 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2442 /* We'll just catch it later when the device is up'd or resumed */
2443 if (!netif_running(dev) || !netif_device_present(dev))
2446 /* Better safe than sorry... */
2447 if (WARN_ON(!gp->cell_enabled))
2450 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2451 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2452 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2457 static void gem_set_multicast(struct net_device *dev)
2459 struct gem *gp = netdev_priv(dev);
2460 u32 rxcfg, rxcfg_new;
2463 if (!netif_running(dev) || !netif_device_present(dev))
2466 /* Better safe than sorry... */
2467 if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2470 rxcfg = readl(gp->regs + MAC_RXCFG);
2471 rxcfg_new = gem_setup_multicast(gp);
2473 rxcfg_new |= MAC_RXCFG_SFCS;
2475 gp->mac_rx_cfg = rxcfg_new;
2477 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2478 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2484 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2487 writel(rxcfg, gp->regs + MAC_RXCFG);
2490 /* Jumbo-grams don't seem to work :-( */
2491 #define GEM_MIN_MTU ETH_MIN_MTU
2493 #define GEM_MAX_MTU ETH_DATA_LEN
2495 #define GEM_MAX_MTU 9000
2498 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2500 struct gem *gp = netdev_priv(dev);
2504 /* We'll just catch it later when the device is up'd or resumed */
2505 if (!netif_running(dev) || !netif_device_present(dev))
2508 /* Better safe than sorry... */
2509 if (WARN_ON(!gp->cell_enabled))
2513 gem_reinit_chip(gp);
2514 if (gp->lstate == link_up)
2515 gem_set_link_modes(gp);
2516 gem_netif_start(gp);
2521 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2523 struct gem *gp = netdev_priv(dev);
2525 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2526 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2527 strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
2530 static int gem_get_link_ksettings(struct net_device *dev,
2531 struct ethtool_link_ksettings *cmd)
2533 struct gem *gp = netdev_priv(dev);
2534 u32 supported, advertising;
2536 if (gp->phy_type == phy_mii_mdio0 ||
2537 gp->phy_type == phy_mii_mdio1) {
2538 if (gp->phy_mii.def)
2539 supported = gp->phy_mii.def->features;
2541 supported = (SUPPORTED_10baseT_Half |
2542 SUPPORTED_10baseT_Full);
2544 /* XXX hardcoded stuff for now */
2545 cmd->base.port = PORT_MII;
2546 cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2548 /* Return current PHY settings */
2549 cmd->base.autoneg = gp->want_autoneg;
2550 cmd->base.speed = gp->phy_mii.speed;
2551 cmd->base.duplex = gp->phy_mii.duplex;
2552 advertising = gp->phy_mii.advertising;
2554 /* If we started with a forced mode, we don't have a default
2555 * advertise set, we need to return something sensible so
2556 * userland can re-enable autoneg properly.
2558 if (advertising == 0)
2559 advertising = supported;
2560 } else { // XXX PCS ?
2562 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2563 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2565 advertising = supported;
2566 cmd->base.speed = 0;
2567 cmd->base.duplex = 0;
2569 cmd->base.phy_address = 0;
2570 cmd->base.autoneg = 0;
2572 /* serdes means usually a Fibre connector, with most fixed */
2573 if (gp->phy_type == phy_serdes) {
2574 cmd->base.port = PORT_FIBRE;
2575 supported = (SUPPORTED_1000baseT_Half |
2576 SUPPORTED_1000baseT_Full |
2577 SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2578 SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2579 advertising = supported;
2580 if (gp->lstate == link_up)
2581 cmd->base.speed = SPEED_1000;
2582 cmd->base.duplex = DUPLEX_FULL;
2583 cmd->base.autoneg = 1;
2587 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2589 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
2595 static int gem_set_link_ksettings(struct net_device *dev,
2596 const struct ethtool_link_ksettings *cmd)
2598 struct gem *gp = netdev_priv(dev);
2599 u32 speed = cmd->base.speed;
2602 ethtool_convert_link_mode_to_legacy_u32(&advertising,
2603 cmd->link_modes.advertising);
2605 /* Verify the settings we care about. */
2606 if (cmd->base.autoneg != AUTONEG_ENABLE &&
2607 cmd->base.autoneg != AUTONEG_DISABLE)
2610 if (cmd->base.autoneg == AUTONEG_ENABLE &&
2614 if (cmd->base.autoneg == AUTONEG_DISABLE &&
2615 ((speed != SPEED_1000 &&
2616 speed != SPEED_100 &&
2617 speed != SPEED_10) ||
2618 (cmd->base.duplex != DUPLEX_HALF &&
2619 cmd->base.duplex != DUPLEX_FULL)))
2622 /* Apply settings and restart link process. */
2623 if (netif_device_present(gp->dev)) {
2624 del_timer_sync(&gp->link_timer);
2625 gem_begin_auto_negotiation(gp, cmd);
2631 static int gem_nway_reset(struct net_device *dev)
2633 struct gem *gp = netdev_priv(dev);
2635 if (!gp->want_autoneg)
2638 /* Restart link process */
2639 if (netif_device_present(gp->dev)) {
2640 del_timer_sync(&gp->link_timer);
2641 gem_begin_auto_negotiation(gp, NULL);
2647 static u32 gem_get_msglevel(struct net_device *dev)
2649 struct gem *gp = netdev_priv(dev);
2650 return gp->msg_enable;
2653 static void gem_set_msglevel(struct net_device *dev, u32 value)
2655 struct gem *gp = netdev_priv(dev);
2656 gp->msg_enable = value;
2660 /* Add more when I understand how to program the chip */
2661 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2663 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2665 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2667 struct gem *gp = netdev_priv(dev);
2669 /* Add more when I understand how to program the chip */
2671 wol->supported = WOL_SUPPORTED_MASK;
2672 wol->wolopts = gp->wake_on_lan;
2679 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2681 struct gem *gp = netdev_priv(dev);
2685 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2689 static const struct ethtool_ops gem_ethtool_ops = {
2690 .get_drvinfo = gem_get_drvinfo,
2691 .get_link = ethtool_op_get_link,
2692 .nway_reset = gem_nway_reset,
2693 .get_msglevel = gem_get_msglevel,
2694 .set_msglevel = gem_set_msglevel,
2695 .get_wol = gem_get_wol,
2696 .set_wol = gem_set_wol,
2697 .get_link_ksettings = gem_get_link_ksettings,
2698 .set_link_ksettings = gem_set_link_ksettings,
2701 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2703 struct gem *gp = netdev_priv(dev);
2704 struct mii_ioctl_data *data = if_mii(ifr);
2705 int rc = -EOPNOTSUPP;
2707 /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2708 * netif_device_present() is true and holds rtnl_lock for us
2709 * so we have nothing to worry about
2713 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2714 data->phy_id = gp->mii_phy_addr;
2717 case SIOCGMIIREG: /* Read MII PHY register. */
2718 data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f,
2719 data->reg_num & 0x1f);
2723 case SIOCSMIIREG: /* Write MII PHY register. */
2724 __sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2732 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2733 /* Fetch MAC address from vital product data of PCI ROM. */
2734 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2738 for (this_offset = 0x20; this_offset < len; this_offset++) {
2739 void __iomem *p = rom_base + this_offset;
2742 if (readb(p + 0) != 0x90 ||
2743 readb(p + 1) != 0x00 ||
2744 readb(p + 2) != 0x09 ||
2745 readb(p + 3) != 0x4e ||
2746 readb(p + 4) != 0x41 ||
2747 readb(p + 5) != 0x06)
2753 for (i = 0; i < 6; i++)
2754 dev_addr[i] = readb(p + i);
2760 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2763 void __iomem *p = pci_map_rom(pdev, &size);
2768 found = readb(p) == 0x55 &&
2769 readb(p + 1) == 0xaa &&
2770 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2771 pci_unmap_rom(pdev, p);
2776 /* Sun MAC prefix then 3 random bytes. */
2780 get_random_bytes(dev_addr + 3, 3);
2782 #endif /* not Sparc and not PPC */
2784 static int gem_get_device_address(struct gem *gp)
2786 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2787 struct net_device *dev = gp->dev;
2788 const unsigned char *addr;
2790 addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2793 addr = idprom->id_ethaddr;
2796 pr_err("%s: can't get mac-address\n", dev->name);
2800 memcpy(dev->dev_addr, addr, ETH_ALEN);
2802 get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2807 static void gem_remove_one(struct pci_dev *pdev)
2809 struct net_device *dev = pci_get_drvdata(pdev);
2812 struct gem *gp = netdev_priv(dev);
2814 unregister_netdev(dev);
2816 /* Ensure reset task is truly gone */
2817 cancel_work_sync(&gp->reset_task);
2819 /* Free resources */
2820 dma_free_coherent(&pdev->dev, sizeof(struct gem_init_block),
2821 gp->init_block, gp->gblock_dvma);
2823 pci_release_regions(pdev);
2828 static const struct net_device_ops gem_netdev_ops = {
2829 .ndo_open = gem_open,
2830 .ndo_stop = gem_close,
2831 .ndo_start_xmit = gem_start_xmit,
2832 .ndo_get_stats = gem_get_stats,
2833 .ndo_set_rx_mode = gem_set_multicast,
2834 .ndo_do_ioctl = gem_ioctl,
2835 .ndo_tx_timeout = gem_tx_timeout,
2836 .ndo_change_mtu = gem_change_mtu,
2837 .ndo_validate_addr = eth_validate_addr,
2838 .ndo_set_mac_address = gem_set_mac_address,
2839 #ifdef CONFIG_NET_POLL_CONTROLLER
2840 .ndo_poll_controller = gem_poll_controller,
2844 static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2846 unsigned long gemreg_base, gemreg_len;
2847 struct net_device *dev;
2849 int err, pci_using_dac;
2851 printk_once(KERN_INFO "%s", version);
2853 /* Apple gmac note: during probe, the chip is powered up by
2854 * the arch code to allow the code below to work (and to let
2855 * the chip be probed on the config space. It won't stay powered
2856 * up until the interface is brought up however, so we can't rely
2857 * on register configuration done at this point.
2859 err = pci_enable_device(pdev);
2861 pr_err("Cannot enable MMIO operation, aborting\n");
2864 pci_set_master(pdev);
2866 /* Configure DMA attributes. */
2868 /* All of the GEM documentation states that 64-bit DMA addressing
2869 * is fully supported and should work just fine. However the
2870 * front end for RIO based GEMs is different and only supports
2871 * 32-bit addressing.
2873 * For now we assume the various PPC GEMs are 32-bit only as well.
2875 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2876 pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2877 !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
2880 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2882 pr_err("No usable DMA configuration, aborting\n");
2883 goto err_disable_device;
2888 gemreg_base = pci_resource_start(pdev, 0);
2889 gemreg_len = pci_resource_len(pdev, 0);
2891 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2892 pr_err("Cannot find proper PCI device base address, aborting\n");
2894 goto err_disable_device;
2897 dev = alloc_etherdev(sizeof(*gp));
2900 goto err_disable_device;
2902 SET_NETDEV_DEV(dev, &pdev->dev);
2904 gp = netdev_priv(dev);
2906 err = pci_request_regions(pdev, DRV_NAME);
2908 pr_err("Cannot obtain PCI resources, aborting\n");
2909 goto err_out_free_netdev;
2915 gp->msg_enable = DEFAULT_MSG;
2917 timer_setup(&gp->link_timer, gem_link_timer, 0);
2919 INIT_WORK(&gp->reset_task, gem_reset_task);
2921 gp->lstate = link_down;
2922 gp->timer_ticks = 0;
2923 netif_carrier_off(dev);
2925 gp->regs = ioremap(gemreg_base, gemreg_len);
2927 pr_err("Cannot map device registers, aborting\n");
2929 goto err_out_free_res;
2932 /* On Apple, we want a reference to the Open Firmware device-tree
2933 * node. We use it for clock control.
2935 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2936 gp->of_node = pci_device_to_OF_node(pdev);
2939 /* Only Apple version supports WOL afaik */
2940 if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2943 /* Make sure cell is enabled */
2946 /* Make sure everything is stopped and in init state */
2949 /* Fill up the mii_phy structure (even if we won't use it) */
2950 gp->phy_mii.dev = dev;
2951 gp->phy_mii.mdio_read = _sungem_phy_read;
2952 gp->phy_mii.mdio_write = _sungem_phy_write;
2953 #ifdef CONFIG_PPC_PMAC
2954 gp->phy_mii.platform_data = gp->of_node;
2956 /* By default, we start with autoneg */
2957 gp->want_autoneg = 1;
2959 /* Check fifo sizes, PHY type, etc... */
2960 if (gem_check_invariants(gp)) {
2962 goto err_out_iounmap;
2965 /* It is guaranteed that the returned buffer will be at least
2966 * PAGE_SIZE aligned.
2968 gp->init_block = dma_alloc_coherent(&pdev->dev, sizeof(struct gem_init_block),
2969 &gp->gblock_dvma, GFP_KERNEL);
2970 if (!gp->init_block) {
2971 pr_err("Cannot allocate init block, aborting\n");
2973 goto err_out_iounmap;
2976 err = gem_get_device_address(gp);
2978 goto err_out_free_consistent;
2980 dev->netdev_ops = &gem_netdev_ops;
2981 netif_napi_add(dev, &gp->napi, gem_poll, 64);
2982 dev->ethtool_ops = &gem_ethtool_ops;
2983 dev->watchdog_timeo = 5 * HZ;
2986 /* Set that now, in case PM kicks in now */
2987 pci_set_drvdata(pdev, dev);
2989 /* We can do scatter/gather and HW checksum */
2990 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
2991 dev->features = dev->hw_features;
2993 dev->features |= NETIF_F_HIGHDMA;
2995 /* MTU range: 68 - 1500 (Jumbo mode is broken) */
2996 dev->min_mtu = GEM_MIN_MTU;
2997 dev->max_mtu = GEM_MAX_MTU;
2999 /* Register with kernel */
3000 if (register_netdev(dev)) {
3001 pr_err("Cannot register net device, aborting\n");
3003 goto err_out_free_consistent;
3006 /* Undo the get_cell with appropriate locking (we could use
3007 * ndo_init/uninit but that would be even more clumsy imho)
3013 netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3017 err_out_free_consistent:
3018 gem_remove_one(pdev);
3024 pci_release_regions(pdev);
3026 err_out_free_netdev:
3029 pci_disable_device(pdev);
3034 static SIMPLE_DEV_PM_OPS(gem_pm_ops, gem_suspend, gem_resume);
3036 static struct pci_driver gem_driver = {
3037 .name = GEM_MODULE_NAME,
3038 .id_table = gem_pci_tbl,
3039 .probe = gem_init_one,
3040 .remove = gem_remove_one,
3041 .driver.pm = &gem_pm_ops,
3044 module_pci_driver(gem_driver);