Merge tag 'mtd/for-5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux
[linux-2.6-microblaze.git] / drivers / net / ethernet / sun / cassini.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3  *
4  * Copyright (C) 2004 Sun Microsystems Inc.
5  * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6  *
7  * This driver uses the sungem driver (c) David Miller
8  * (davem@redhat.com) as its basis.
9  *
10  * The cassini chip has a number of features that distinguish it from
11  * the gem chip:
12  *  4 transmit descriptor rings that are used for either QoS (VLAN) or
13  *      load balancing (non-VLAN mode)
14  *  batching of multiple packets
15  *  multiple CPU dispatching
16  *  page-based RX descriptor engine with separate completion rings
17  *  Gigabit support (GMII and PCS interface)
18  *  MIF link up/down detection works
19  *
20  * RX is handled by page sized buffers that are attached as fragments to
21  * the skb. here's what's done:
22  *  -- driver allocates pages at a time and keeps reference counts
23  *     on them.
24  *  -- the upper protocol layers assume that the header is in the skb
25  *     itself. as a result, cassini will copy a small amount (64 bytes)
26  *     to make them happy.
27  *  -- driver appends the rest of the data pages as frags to skbuffs
28  *     and increments the reference count
29  *  -- on page reclamation, the driver swaps the page with a spare page.
30  *     if that page is still in use, it frees its reference to that page,
31  *     and allocates a new page for use. otherwise, it just recycles the
32  *     the page.
33  *
34  * NOTE: cassini can parse the header. however, it's not worth it
35  *       as long as the network stack requires a header copy.
36  *
37  * TX has 4 queues. currently these queues are used in a round-robin
38  * fashion for load balancing. They can also be used for QoS. for that
39  * to work, however, QoS information needs to be exposed down to the driver
40  * level so that subqueues get targeted to particular transmit rings.
41  * alternatively, the queues can be configured via use of the all-purpose
42  * ioctl.
43  *
44  * RX DATA: the rx completion ring has all the info, but the rx desc
45  * ring has all of the data. RX can conceivably come in under multiple
46  * interrupts, but the INT# assignment needs to be set up properly by
47  * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
48  * that. also, the two descriptor rings are designed to distinguish between
49  * encrypted and non-encrypted packets, but we use them for buffering
50  * instead.
51  *
52  * by default, the selective clear mask is set up to process rx packets.
53  */
54
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56
57 #include <linux/module.h>
58 #include <linux/kernel.h>
59 #include <linux/types.h>
60 #include <linux/compiler.h>
61 #include <linux/slab.h>
62 #include <linux/delay.h>
63 #include <linux/init.h>
64 #include <linux/interrupt.h>
65 #include <linux/vmalloc.h>
66 #include <linux/ioport.h>
67 #include <linux/pci.h>
68 #include <linux/mm.h>
69 #include <linux/highmem.h>
70 #include <linux/list.h>
71 #include <linux/dma-mapping.h>
72
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/ethtool.h>
77 #include <linux/crc32.h>
78 #include <linux/random.h>
79 #include <linux/mii.h>
80 #include <linux/ip.h>
81 #include <linux/tcp.h>
82 #include <linux/mutex.h>
83 #include <linux/firmware.h>
84
85 #include <net/checksum.h>
86
87 #include <linux/atomic.h>
88 #include <asm/io.h>
89 #include <asm/byteorder.h>
90 #include <linux/uaccess.h>
91
92 #define cas_page_map(x)      kmap_atomic((x))
93 #define cas_page_unmap(x)    kunmap_atomic((x))
94 #define CAS_NCPUS            num_online_cpus()
95
96 #define cas_skb_release(x)  netif_rx(x)
97
98 /* select which firmware to use */
99 #define USE_HP_WORKAROUND
100 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
101 #define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
102
103 #include "cassini.h"
104
105 #define USE_TX_COMPWB      /* use completion writeback registers */
106 #define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
107 #define USE_RX_BLANK       /* hw interrupt mitigation */
108 #undef USE_ENTROPY_DEV     /* don't test for entropy device */
109
110 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
111  * also, we need to make cp->lock finer-grained.
112  */
113 #undef  USE_PCI_INTB
114 #undef  USE_PCI_INTC
115 #undef  USE_PCI_INTD
116 #undef  USE_QOS
117
118 #undef  USE_VPD_DEBUG       /* debug vpd information if defined */
119
120 /* rx processing options */
121 #define USE_PAGE_ORDER      /* specify to allocate large rx pages */
122 #define RX_DONT_BATCH  0    /* if 1, don't batch flows */
123 #define RX_COPY_ALWAYS 0    /* if 0, use frags */
124 #define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
125 #undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
126
127 #define DRV_MODULE_NAME         "cassini"
128 #define DRV_MODULE_VERSION      "1.6"
129 #define DRV_MODULE_RELDATE      "21 May 2008"
130
131 #define CAS_DEF_MSG_ENABLE        \
132         (NETIF_MSG_DRV          | \
133          NETIF_MSG_PROBE        | \
134          NETIF_MSG_LINK         | \
135          NETIF_MSG_TIMER        | \
136          NETIF_MSG_IFDOWN       | \
137          NETIF_MSG_IFUP         | \
138          NETIF_MSG_RX_ERR       | \
139          NETIF_MSG_TX_ERR)
140
141 /* length of time before we decide the hardware is borked,
142  * and dev->tx_timeout() should be called to fix the problem
143  */
144 #define CAS_TX_TIMEOUT                  (HZ)
145 #define CAS_LINK_TIMEOUT                (22*HZ/10)
146 #define CAS_LINK_FAST_TIMEOUT           (1)
147
148 /* timeout values for state changing. these specify the number
149  * of 10us delays to be used before giving up.
150  */
151 #define STOP_TRIES_PHY 1000
152 #define STOP_TRIES     5000
153
154 /* specify a minimum frame size to deal with some fifo issues
155  * max mtu == 2 * page size - ethernet header - 64 - swivel =
156  *            2 * page_size - 0x50
157  */
158 #define CAS_MIN_FRAME                   97
159 #define CAS_1000MB_MIN_FRAME            255
160 #define CAS_MIN_MTU                     60
161 #define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
162
163 #if 1
164 /*
165  * Eliminate these and use separate atomic counters for each, to
166  * avoid a race condition.
167  */
168 #else
169 #define CAS_RESET_MTU                   1
170 #define CAS_RESET_ALL                   2
171 #define CAS_RESET_SPARE                 3
172 #endif
173
174 static char version[] =
175         DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
176
177 static int cassini_debug = -1;  /* -1 == use CAS_DEF_MSG_ENABLE as value */
178 static int link_mode;
179
180 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
181 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
182 MODULE_LICENSE("GPL");
183 MODULE_FIRMWARE("sun/cassini.bin");
184 module_param(cassini_debug, int, 0);
185 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
186 module_param(link_mode, int, 0);
187 MODULE_PARM_DESC(link_mode, "default link mode");
188
189 /*
190  * Work around for a PCS bug in which the link goes down due to the chip
191  * being confused and never showing a link status of "up."
192  */
193 #define DEFAULT_LINKDOWN_TIMEOUT 5
194 /*
195  * Value in seconds, for user input.
196  */
197 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
198 module_param(linkdown_timeout, int, 0);
199 MODULE_PARM_DESC(linkdown_timeout,
200 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
201
202 /*
203  * value in 'ticks' (units used by jiffies). Set when we init the
204  * module because 'HZ' in actually a function call on some flavors of
205  * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
206  */
207 static int link_transition_timeout;
208
209
210
211 static u16 link_modes[] = {
212         BMCR_ANENABLE,                   /* 0 : autoneg */
213         0,                               /* 1 : 10bt half duplex */
214         BMCR_SPEED100,                   /* 2 : 100bt half duplex */
215         BMCR_FULLDPLX,                   /* 3 : 10bt full duplex */
216         BMCR_SPEED100|BMCR_FULLDPLX,     /* 4 : 100bt full duplex */
217         CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
218 };
219
220 static const struct pci_device_id cas_pci_tbl[] = {
221         { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
222           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
223         { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
224           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
225         { 0, }
226 };
227
228 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
229
230 static void cas_set_link_modes(struct cas *cp);
231
232 static inline void cas_lock_tx(struct cas *cp)
233 {
234         int i;
235
236         for (i = 0; i < N_TX_RINGS; i++)
237                 spin_lock_nested(&cp->tx_lock[i], i);
238 }
239
240 /* WTZ: QA was finding deadlock problems with the previous
241  * versions after long test runs with multiple cards per machine.
242  * See if replacing cas_lock_all with safer versions helps. The
243  * symptoms QA is reporting match those we'd expect if interrupts
244  * aren't being properly restored, and we fixed a previous deadlock
245  * with similar symptoms by using save/restore versions in other
246  * places.
247  */
248 #define cas_lock_all_save(cp, flags) \
249 do { \
250         struct cas *xxxcp = (cp); \
251         spin_lock_irqsave(&xxxcp->lock, flags); \
252         cas_lock_tx(xxxcp); \
253 } while (0)
254
255 static inline void cas_unlock_tx(struct cas *cp)
256 {
257         int i;
258
259         for (i = N_TX_RINGS; i > 0; i--)
260                 spin_unlock(&cp->tx_lock[i - 1]);
261 }
262
263 #define cas_unlock_all_restore(cp, flags) \
264 do { \
265         struct cas *xxxcp = (cp); \
266         cas_unlock_tx(xxxcp); \
267         spin_unlock_irqrestore(&xxxcp->lock, flags); \
268 } while (0)
269
270 static void cas_disable_irq(struct cas *cp, const int ring)
271 {
272         /* Make sure we won't get any more interrupts */
273         if (ring == 0) {
274                 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
275                 return;
276         }
277
278         /* disable completion interrupts and selectively mask */
279         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
280                 switch (ring) {
281 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
282 #ifdef USE_PCI_INTB
283                 case 1:
284 #endif
285 #ifdef USE_PCI_INTC
286                 case 2:
287 #endif
288 #ifdef USE_PCI_INTD
289                 case 3:
290 #endif
291                         writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
292                                cp->regs + REG_PLUS_INTRN_MASK(ring));
293                         break;
294 #endif
295                 default:
296                         writel(INTRN_MASK_CLEAR_ALL, cp->regs +
297                                REG_PLUS_INTRN_MASK(ring));
298                         break;
299                 }
300         }
301 }
302
303 static inline void cas_mask_intr(struct cas *cp)
304 {
305         int i;
306
307         for (i = 0; i < N_RX_COMP_RINGS; i++)
308                 cas_disable_irq(cp, i);
309 }
310
311 static void cas_enable_irq(struct cas *cp, const int ring)
312 {
313         if (ring == 0) { /* all but TX_DONE */
314                 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
315                 return;
316         }
317
318         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
319                 switch (ring) {
320 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
321 #ifdef USE_PCI_INTB
322                 case 1:
323 #endif
324 #ifdef USE_PCI_INTC
325                 case 2:
326 #endif
327 #ifdef USE_PCI_INTD
328                 case 3:
329 #endif
330                         writel(INTRN_MASK_RX_EN, cp->regs +
331                                REG_PLUS_INTRN_MASK(ring));
332                         break;
333 #endif
334                 default:
335                         break;
336                 }
337         }
338 }
339
340 static inline void cas_unmask_intr(struct cas *cp)
341 {
342         int i;
343
344         for (i = 0; i < N_RX_COMP_RINGS; i++)
345                 cas_enable_irq(cp, i);
346 }
347
348 static inline void cas_entropy_gather(struct cas *cp)
349 {
350 #ifdef USE_ENTROPY_DEV
351         if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
352                 return;
353
354         batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
355                             readl(cp->regs + REG_ENTROPY_IV),
356                             sizeof(uint64_t)*8);
357 #endif
358 }
359
360 static inline void cas_entropy_reset(struct cas *cp)
361 {
362 #ifdef USE_ENTROPY_DEV
363         if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
364                 return;
365
366         writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
367                cp->regs + REG_BIM_LOCAL_DEV_EN);
368         writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
369         writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
370
371         /* if we read back 0x0, we don't have an entropy device */
372         if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
373                 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
374 #endif
375 }
376
377 /* access to the phy. the following assumes that we've initialized the MIF to
378  * be in frame rather than bit-bang mode
379  */
380 static u16 cas_phy_read(struct cas *cp, int reg)
381 {
382         u32 cmd;
383         int limit = STOP_TRIES_PHY;
384
385         cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
386         cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
387         cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
388         cmd |= MIF_FRAME_TURN_AROUND_MSB;
389         writel(cmd, cp->regs + REG_MIF_FRAME);
390
391         /* poll for completion */
392         while (limit-- > 0) {
393                 udelay(10);
394                 cmd = readl(cp->regs + REG_MIF_FRAME);
395                 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
396                         return cmd & MIF_FRAME_DATA_MASK;
397         }
398         return 0xFFFF; /* -1 */
399 }
400
401 static int cas_phy_write(struct cas *cp, int reg, u16 val)
402 {
403         int limit = STOP_TRIES_PHY;
404         u32 cmd;
405
406         cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
407         cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
408         cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
409         cmd |= MIF_FRAME_TURN_AROUND_MSB;
410         cmd |= val & MIF_FRAME_DATA_MASK;
411         writel(cmd, cp->regs + REG_MIF_FRAME);
412
413         /* poll for completion */
414         while (limit-- > 0) {
415                 udelay(10);
416                 cmd = readl(cp->regs + REG_MIF_FRAME);
417                 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
418                         return 0;
419         }
420         return -1;
421 }
422
423 static void cas_phy_powerup(struct cas *cp)
424 {
425         u16 ctl = cas_phy_read(cp, MII_BMCR);
426
427         if ((ctl & BMCR_PDOWN) == 0)
428                 return;
429         ctl &= ~BMCR_PDOWN;
430         cas_phy_write(cp, MII_BMCR, ctl);
431 }
432
433 static void cas_phy_powerdown(struct cas *cp)
434 {
435         u16 ctl = cas_phy_read(cp, MII_BMCR);
436
437         if (ctl & BMCR_PDOWN)
438                 return;
439         ctl |= BMCR_PDOWN;
440         cas_phy_write(cp, MII_BMCR, ctl);
441 }
442
443 /* cp->lock held. note: the last put_page will free the buffer */
444 static int cas_page_free(struct cas *cp, cas_page_t *page)
445 {
446         dma_unmap_page(&cp->pdev->dev, page->dma_addr, cp->page_size,
447                        DMA_FROM_DEVICE);
448         __free_pages(page->buffer, cp->page_order);
449         kfree(page);
450         return 0;
451 }
452
453 #ifdef RX_COUNT_BUFFERS
454 #define RX_USED_ADD(x, y)       ((x)->used += (y))
455 #define RX_USED_SET(x, y)       ((x)->used  = (y))
456 #else
457 #define RX_USED_ADD(x, y) do { } while(0)
458 #define RX_USED_SET(x, y) do { } while(0)
459 #endif
460
461 /* local page allocation routines for the receive buffers. jumbo pages
462  * require at least 8K contiguous and 8K aligned buffers.
463  */
464 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
465 {
466         cas_page_t *page;
467
468         page = kmalloc(sizeof(cas_page_t), flags);
469         if (!page)
470                 return NULL;
471
472         INIT_LIST_HEAD(&page->list);
473         RX_USED_SET(page, 0);
474         page->buffer = alloc_pages(flags, cp->page_order);
475         if (!page->buffer)
476                 goto page_err;
477         page->dma_addr = dma_map_page(&cp->pdev->dev, page->buffer, 0,
478                                       cp->page_size, DMA_FROM_DEVICE);
479         return page;
480
481 page_err:
482         kfree(page);
483         return NULL;
484 }
485
486 /* initialize spare pool of rx buffers, but allocate during the open */
487 static void cas_spare_init(struct cas *cp)
488 {
489         spin_lock(&cp->rx_inuse_lock);
490         INIT_LIST_HEAD(&cp->rx_inuse_list);
491         spin_unlock(&cp->rx_inuse_lock);
492
493         spin_lock(&cp->rx_spare_lock);
494         INIT_LIST_HEAD(&cp->rx_spare_list);
495         cp->rx_spares_needed = RX_SPARE_COUNT;
496         spin_unlock(&cp->rx_spare_lock);
497 }
498
499 /* used on close. free all the spare buffers. */
500 static void cas_spare_free(struct cas *cp)
501 {
502         struct list_head list, *elem, *tmp;
503
504         /* free spare buffers */
505         INIT_LIST_HEAD(&list);
506         spin_lock(&cp->rx_spare_lock);
507         list_splice_init(&cp->rx_spare_list, &list);
508         spin_unlock(&cp->rx_spare_lock);
509         list_for_each_safe(elem, tmp, &list) {
510                 cas_page_free(cp, list_entry(elem, cas_page_t, list));
511         }
512
513         INIT_LIST_HEAD(&list);
514 #if 1
515         /*
516          * Looks like Adrian had protected this with a different
517          * lock than used everywhere else to manipulate this list.
518          */
519         spin_lock(&cp->rx_inuse_lock);
520         list_splice_init(&cp->rx_inuse_list, &list);
521         spin_unlock(&cp->rx_inuse_lock);
522 #else
523         spin_lock(&cp->rx_spare_lock);
524         list_splice_init(&cp->rx_inuse_list, &list);
525         spin_unlock(&cp->rx_spare_lock);
526 #endif
527         list_for_each_safe(elem, tmp, &list) {
528                 cas_page_free(cp, list_entry(elem, cas_page_t, list));
529         }
530 }
531
532 /* replenish spares if needed */
533 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
534 {
535         struct list_head list, *elem, *tmp;
536         int needed, i;
537
538         /* check inuse list. if we don't need any more free buffers,
539          * just free it
540          */
541
542         /* make a local copy of the list */
543         INIT_LIST_HEAD(&list);
544         spin_lock(&cp->rx_inuse_lock);
545         list_splice_init(&cp->rx_inuse_list, &list);
546         spin_unlock(&cp->rx_inuse_lock);
547
548         list_for_each_safe(elem, tmp, &list) {
549                 cas_page_t *page = list_entry(elem, cas_page_t, list);
550
551                 /*
552                  * With the lockless pagecache, cassini buffering scheme gets
553                  * slightly less accurate: we might find that a page has an
554                  * elevated reference count here, due to a speculative ref,
555                  * and skip it as in-use. Ideally we would be able to reclaim
556                  * it. However this would be such a rare case, it doesn't
557                  * matter too much as we should pick it up the next time round.
558                  *
559                  * Importantly, if we find that the page has a refcount of 1
560                  * here (our refcount), then we know it is definitely not inuse
561                  * so we can reuse it.
562                  */
563                 if (page_count(page->buffer) > 1)
564                         continue;
565
566                 list_del(elem);
567                 spin_lock(&cp->rx_spare_lock);
568                 if (cp->rx_spares_needed > 0) {
569                         list_add(elem, &cp->rx_spare_list);
570                         cp->rx_spares_needed--;
571                         spin_unlock(&cp->rx_spare_lock);
572                 } else {
573                         spin_unlock(&cp->rx_spare_lock);
574                         cas_page_free(cp, page);
575                 }
576         }
577
578         /* put any inuse buffers back on the list */
579         if (!list_empty(&list)) {
580                 spin_lock(&cp->rx_inuse_lock);
581                 list_splice(&list, &cp->rx_inuse_list);
582                 spin_unlock(&cp->rx_inuse_lock);
583         }
584
585         spin_lock(&cp->rx_spare_lock);
586         needed = cp->rx_spares_needed;
587         spin_unlock(&cp->rx_spare_lock);
588         if (!needed)
589                 return;
590
591         /* we still need spares, so try to allocate some */
592         INIT_LIST_HEAD(&list);
593         i = 0;
594         while (i < needed) {
595                 cas_page_t *spare = cas_page_alloc(cp, flags);
596                 if (!spare)
597                         break;
598                 list_add(&spare->list, &list);
599                 i++;
600         }
601
602         spin_lock(&cp->rx_spare_lock);
603         list_splice(&list, &cp->rx_spare_list);
604         cp->rx_spares_needed -= i;
605         spin_unlock(&cp->rx_spare_lock);
606 }
607
608 /* pull a page from the list. */
609 static cas_page_t *cas_page_dequeue(struct cas *cp)
610 {
611         struct list_head *entry;
612         int recover;
613
614         spin_lock(&cp->rx_spare_lock);
615         if (list_empty(&cp->rx_spare_list)) {
616                 /* try to do a quick recovery */
617                 spin_unlock(&cp->rx_spare_lock);
618                 cas_spare_recover(cp, GFP_ATOMIC);
619                 spin_lock(&cp->rx_spare_lock);
620                 if (list_empty(&cp->rx_spare_list)) {
621                         netif_err(cp, rx_err, cp->dev,
622                                   "no spare buffers available\n");
623                         spin_unlock(&cp->rx_spare_lock);
624                         return NULL;
625                 }
626         }
627
628         entry = cp->rx_spare_list.next;
629         list_del(entry);
630         recover = ++cp->rx_spares_needed;
631         spin_unlock(&cp->rx_spare_lock);
632
633         /* trigger the timer to do the recovery */
634         if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
635 #if 1
636                 atomic_inc(&cp->reset_task_pending);
637                 atomic_inc(&cp->reset_task_pending_spare);
638                 schedule_work(&cp->reset_task);
639 #else
640                 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
641                 schedule_work(&cp->reset_task);
642 #endif
643         }
644         return list_entry(entry, cas_page_t, list);
645 }
646
647
648 static void cas_mif_poll(struct cas *cp, const int enable)
649 {
650         u32 cfg;
651
652         cfg  = readl(cp->regs + REG_MIF_CFG);
653         cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
654
655         if (cp->phy_type & CAS_PHY_MII_MDIO1)
656                 cfg |= MIF_CFG_PHY_SELECT;
657
658         /* poll and interrupt on link status change. */
659         if (enable) {
660                 cfg |= MIF_CFG_POLL_EN;
661                 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
662                 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
663         }
664         writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
665                cp->regs + REG_MIF_MASK);
666         writel(cfg, cp->regs + REG_MIF_CFG);
667 }
668
669 /* Must be invoked under cp->lock */
670 static void cas_begin_auto_negotiation(struct cas *cp,
671                                        const struct ethtool_link_ksettings *ep)
672 {
673         u16 ctl;
674 #if 1
675         int lcntl;
676         int changed = 0;
677         int oldstate = cp->lstate;
678         int link_was_not_down = !(oldstate == link_down);
679 #endif
680         /* Setup link parameters */
681         if (!ep)
682                 goto start_aneg;
683         lcntl = cp->link_cntl;
684         if (ep->base.autoneg == AUTONEG_ENABLE) {
685                 cp->link_cntl = BMCR_ANENABLE;
686         } else {
687                 u32 speed = ep->base.speed;
688                 cp->link_cntl = 0;
689                 if (speed == SPEED_100)
690                         cp->link_cntl |= BMCR_SPEED100;
691                 else if (speed == SPEED_1000)
692                         cp->link_cntl |= CAS_BMCR_SPEED1000;
693                 if (ep->base.duplex == DUPLEX_FULL)
694                         cp->link_cntl |= BMCR_FULLDPLX;
695         }
696 #if 1
697         changed = (lcntl != cp->link_cntl);
698 #endif
699 start_aneg:
700         if (cp->lstate == link_up) {
701                 netdev_info(cp->dev, "PCS link down\n");
702         } else {
703                 if (changed) {
704                         netdev_info(cp->dev, "link configuration changed\n");
705                 }
706         }
707         cp->lstate = link_down;
708         cp->link_transition = LINK_TRANSITION_LINK_DOWN;
709         if (!cp->hw_running)
710                 return;
711 #if 1
712         /*
713          * WTZ: If the old state was link_up, we turn off the carrier
714          * to replicate everything we do elsewhere on a link-down
715          * event when we were already in a link-up state..
716          */
717         if (oldstate == link_up)
718                 netif_carrier_off(cp->dev);
719         if (changed  && link_was_not_down) {
720                 /*
721                  * WTZ: This branch will simply schedule a full reset after
722                  * we explicitly changed link modes in an ioctl. See if this
723                  * fixes the link-problems we were having for forced mode.
724                  */
725                 atomic_inc(&cp->reset_task_pending);
726                 atomic_inc(&cp->reset_task_pending_all);
727                 schedule_work(&cp->reset_task);
728                 cp->timer_ticks = 0;
729                 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
730                 return;
731         }
732 #endif
733         if (cp->phy_type & CAS_PHY_SERDES) {
734                 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
735
736                 if (cp->link_cntl & BMCR_ANENABLE) {
737                         val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
738                         cp->lstate = link_aneg;
739                 } else {
740                         if (cp->link_cntl & BMCR_FULLDPLX)
741                                 val |= PCS_MII_CTRL_DUPLEX;
742                         val &= ~PCS_MII_AUTONEG_EN;
743                         cp->lstate = link_force_ok;
744                 }
745                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
746                 writel(val, cp->regs + REG_PCS_MII_CTRL);
747
748         } else {
749                 cas_mif_poll(cp, 0);
750                 ctl = cas_phy_read(cp, MII_BMCR);
751                 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
752                          CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
753                 ctl |= cp->link_cntl;
754                 if (ctl & BMCR_ANENABLE) {
755                         ctl |= BMCR_ANRESTART;
756                         cp->lstate = link_aneg;
757                 } else {
758                         cp->lstate = link_force_ok;
759                 }
760                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
761                 cas_phy_write(cp, MII_BMCR, ctl);
762                 cas_mif_poll(cp, 1);
763         }
764
765         cp->timer_ticks = 0;
766         mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
767 }
768
769 /* Must be invoked under cp->lock. */
770 static int cas_reset_mii_phy(struct cas *cp)
771 {
772         int limit = STOP_TRIES_PHY;
773         u16 val;
774
775         cas_phy_write(cp, MII_BMCR, BMCR_RESET);
776         udelay(100);
777         while (--limit) {
778                 val = cas_phy_read(cp, MII_BMCR);
779                 if ((val & BMCR_RESET) == 0)
780                         break;
781                 udelay(10);
782         }
783         return limit <= 0;
784 }
785
786 static void cas_saturn_firmware_init(struct cas *cp)
787 {
788         const struct firmware *fw;
789         const char fw_name[] = "sun/cassini.bin";
790         int err;
791
792         if (PHY_NS_DP83065 != cp->phy_id)
793                 return;
794
795         err = request_firmware(&fw, fw_name, &cp->pdev->dev);
796         if (err) {
797                 pr_err("Failed to load firmware \"%s\"\n",
798                        fw_name);
799                 return;
800         }
801         if (fw->size < 2) {
802                 pr_err("bogus length %zu in \"%s\"\n",
803                        fw->size, fw_name);
804                 goto out;
805         }
806         cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
807         cp->fw_size = fw->size - 2;
808         cp->fw_data = vmalloc(cp->fw_size);
809         if (!cp->fw_data)
810                 goto out;
811         memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
812 out:
813         release_firmware(fw);
814 }
815
816 static void cas_saturn_firmware_load(struct cas *cp)
817 {
818         int i;
819
820         if (!cp->fw_data)
821                 return;
822
823         cas_phy_powerdown(cp);
824
825         /* expanded memory access mode */
826         cas_phy_write(cp, DP83065_MII_MEM, 0x0);
827
828         /* pointer configuration for new firmware */
829         cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
830         cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
831         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
832         cas_phy_write(cp, DP83065_MII_REGD, 0x82);
833         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
834         cas_phy_write(cp, DP83065_MII_REGD, 0x0);
835         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
836         cas_phy_write(cp, DP83065_MII_REGD, 0x39);
837
838         /* download new firmware */
839         cas_phy_write(cp, DP83065_MII_MEM, 0x1);
840         cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
841         for (i = 0; i < cp->fw_size; i++)
842                 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
843
844         /* enable firmware */
845         cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
846         cas_phy_write(cp, DP83065_MII_REGD, 0x1);
847 }
848
849
850 /* phy initialization */
851 static void cas_phy_init(struct cas *cp)
852 {
853         u16 val;
854
855         /* if we're in MII/GMII mode, set up phy */
856         if (CAS_PHY_MII(cp->phy_type)) {
857                 writel(PCS_DATAPATH_MODE_MII,
858                        cp->regs + REG_PCS_DATAPATH_MODE);
859
860                 cas_mif_poll(cp, 0);
861                 cas_reset_mii_phy(cp); /* take out of isolate mode */
862
863                 if (PHY_LUCENT_B0 == cp->phy_id) {
864                         /* workaround link up/down issue with lucent */
865                         cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
866                         cas_phy_write(cp, MII_BMCR, 0x00f1);
867                         cas_phy_write(cp, LUCENT_MII_REG, 0x0);
868
869                 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
870                         /* workarounds for broadcom phy */
871                         cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
872                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
873                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
874                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
875                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
876                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
877                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
878                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
879                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
880                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
881                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
882
883                 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
884                         val = cas_phy_read(cp, BROADCOM_MII_REG4);
885                         val = cas_phy_read(cp, BROADCOM_MII_REG4);
886                         if (val & 0x0080) {
887                                 /* link workaround */
888                                 cas_phy_write(cp, BROADCOM_MII_REG4,
889                                               val & ~0x0080);
890                         }
891
892                 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
893                         writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
894                                SATURN_PCFG_FSI : 0x0,
895                                cp->regs + REG_SATURN_PCFG);
896
897                         /* load firmware to address 10Mbps auto-negotiation
898                          * issue. NOTE: this will need to be changed if the
899                          * default firmware gets fixed.
900                          */
901                         if (PHY_NS_DP83065 == cp->phy_id) {
902                                 cas_saturn_firmware_load(cp);
903                         }
904                         cas_phy_powerup(cp);
905                 }
906
907                 /* advertise capabilities */
908                 val = cas_phy_read(cp, MII_BMCR);
909                 val &= ~BMCR_ANENABLE;
910                 cas_phy_write(cp, MII_BMCR, val);
911                 udelay(10);
912
913                 cas_phy_write(cp, MII_ADVERTISE,
914                               cas_phy_read(cp, MII_ADVERTISE) |
915                               (ADVERTISE_10HALF | ADVERTISE_10FULL |
916                                ADVERTISE_100HALF | ADVERTISE_100FULL |
917                                CAS_ADVERTISE_PAUSE |
918                                CAS_ADVERTISE_ASYM_PAUSE));
919
920                 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
921                         /* make sure that we don't advertise half
922                          * duplex to avoid a chip issue
923                          */
924                         val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
925                         val &= ~CAS_ADVERTISE_1000HALF;
926                         val |= CAS_ADVERTISE_1000FULL;
927                         cas_phy_write(cp, CAS_MII_1000_CTRL, val);
928                 }
929
930         } else {
931                 /* reset pcs for serdes */
932                 u32 val;
933                 int limit;
934
935                 writel(PCS_DATAPATH_MODE_SERDES,
936                        cp->regs + REG_PCS_DATAPATH_MODE);
937
938                 /* enable serdes pins on saturn */
939                 if (cp->cas_flags & CAS_FLAG_SATURN)
940                         writel(0, cp->regs + REG_SATURN_PCFG);
941
942                 /* Reset PCS unit. */
943                 val = readl(cp->regs + REG_PCS_MII_CTRL);
944                 val |= PCS_MII_RESET;
945                 writel(val, cp->regs + REG_PCS_MII_CTRL);
946
947                 limit = STOP_TRIES;
948                 while (--limit > 0) {
949                         udelay(10);
950                         if ((readl(cp->regs + REG_PCS_MII_CTRL) &
951                              PCS_MII_RESET) == 0)
952                                 break;
953                 }
954                 if (limit <= 0)
955                         netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
956                                     readl(cp->regs + REG_PCS_STATE_MACHINE));
957
958                 /* Make sure PCS is disabled while changing advertisement
959                  * configuration.
960                  */
961                 writel(0x0, cp->regs + REG_PCS_CFG);
962
963                 /* Advertise all capabilities except half-duplex. */
964                 val  = readl(cp->regs + REG_PCS_MII_ADVERT);
965                 val &= ~PCS_MII_ADVERT_HD;
966                 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
967                         PCS_MII_ADVERT_ASYM_PAUSE);
968                 writel(val, cp->regs + REG_PCS_MII_ADVERT);
969
970                 /* enable PCS */
971                 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
972
973                 /* pcs workaround: enable sync detect */
974                 writel(PCS_SERDES_CTRL_SYNCD_EN,
975                        cp->regs + REG_PCS_SERDES_CTRL);
976         }
977 }
978
979
980 static int cas_pcs_link_check(struct cas *cp)
981 {
982         u32 stat, state_machine;
983         int retval = 0;
984
985         /* The link status bit latches on zero, so you must
986          * read it twice in such a case to see a transition
987          * to the link being up.
988          */
989         stat = readl(cp->regs + REG_PCS_MII_STATUS);
990         if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
991                 stat = readl(cp->regs + REG_PCS_MII_STATUS);
992
993         /* The remote-fault indication is only valid
994          * when autoneg has completed.
995          */
996         if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
997                      PCS_MII_STATUS_REMOTE_FAULT)) ==
998             (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
999                 netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1000
1001         /* work around link detection issue by querying the PCS state
1002          * machine directly.
1003          */
1004         state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1005         if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1006                 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1007         } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1008                 stat |= PCS_MII_STATUS_LINK_STATUS;
1009         }
1010
1011         if (stat & PCS_MII_STATUS_LINK_STATUS) {
1012                 if (cp->lstate != link_up) {
1013                         if (cp->opened) {
1014                                 cp->lstate = link_up;
1015                                 cp->link_transition = LINK_TRANSITION_LINK_UP;
1016
1017                                 cas_set_link_modes(cp);
1018                                 netif_carrier_on(cp->dev);
1019                         }
1020                 }
1021         } else if (cp->lstate == link_up) {
1022                 cp->lstate = link_down;
1023                 if (link_transition_timeout != 0 &&
1024                     cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1025                     !cp->link_transition_jiffies_valid) {
1026                         /*
1027                          * force a reset, as a workaround for the
1028                          * link-failure problem. May want to move this to a
1029                          * point a bit earlier in the sequence. If we had
1030                          * generated a reset a short time ago, we'll wait for
1031                          * the link timer to check the status until a
1032                          * timer expires (link_transistion_jiffies_valid is
1033                          * true when the timer is running.)  Instead of using
1034                          * a system timer, we just do a check whenever the
1035                          * link timer is running - this clears the flag after
1036                          * a suitable delay.
1037                          */
1038                         retval = 1;
1039                         cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1040                         cp->link_transition_jiffies = jiffies;
1041                         cp->link_transition_jiffies_valid = 1;
1042                 } else {
1043                         cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1044                 }
1045                 netif_carrier_off(cp->dev);
1046                 if (cp->opened)
1047                         netif_info(cp, link, cp->dev, "PCS link down\n");
1048
1049                 /* Cassini only: if you force a mode, there can be
1050                  * sync problems on link down. to fix that, the following
1051                  * things need to be checked:
1052                  * 1) read serialink state register
1053                  * 2) read pcs status register to verify link down.
1054                  * 3) if link down and serial link == 0x03, then you need
1055                  *    to global reset the chip.
1056                  */
1057                 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1058                         /* should check to see if we're in a forced mode */
1059                         stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1060                         if (stat == 0x03)
1061                                 return 1;
1062                 }
1063         } else if (cp->lstate == link_down) {
1064                 if (link_transition_timeout != 0 &&
1065                     cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1066                     !cp->link_transition_jiffies_valid) {
1067                         /* force a reset, as a workaround for the
1068                          * link-failure problem.  May want to move
1069                          * this to a point a bit earlier in the
1070                          * sequence.
1071                          */
1072                         retval = 1;
1073                         cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1074                         cp->link_transition_jiffies = jiffies;
1075                         cp->link_transition_jiffies_valid = 1;
1076                 } else {
1077                         cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1078                 }
1079         }
1080
1081         return retval;
1082 }
1083
1084 static int cas_pcs_interrupt(struct net_device *dev,
1085                              struct cas *cp, u32 status)
1086 {
1087         u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1088
1089         if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1090                 return 0;
1091         return cas_pcs_link_check(cp);
1092 }
1093
1094 static int cas_txmac_interrupt(struct net_device *dev,
1095                                struct cas *cp, u32 status)
1096 {
1097         u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1098
1099         if (!txmac_stat)
1100                 return 0;
1101
1102         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1103                      "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1104
1105         /* Defer timer expiration is quite normal,
1106          * don't even log the event.
1107          */
1108         if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1109             !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1110                 return 0;
1111
1112         spin_lock(&cp->stat_lock[0]);
1113         if (txmac_stat & MAC_TX_UNDERRUN) {
1114                 netdev_err(dev, "TX MAC xmit underrun\n");
1115                 cp->net_stats[0].tx_fifo_errors++;
1116         }
1117
1118         if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1119                 netdev_err(dev, "TX MAC max packet size error\n");
1120                 cp->net_stats[0].tx_errors++;
1121         }
1122
1123         /* The rest are all cases of one of the 16-bit TX
1124          * counters expiring.
1125          */
1126         if (txmac_stat & MAC_TX_COLL_NORMAL)
1127                 cp->net_stats[0].collisions += 0x10000;
1128
1129         if (txmac_stat & MAC_TX_COLL_EXCESS) {
1130                 cp->net_stats[0].tx_aborted_errors += 0x10000;
1131                 cp->net_stats[0].collisions += 0x10000;
1132         }
1133
1134         if (txmac_stat & MAC_TX_COLL_LATE) {
1135                 cp->net_stats[0].tx_aborted_errors += 0x10000;
1136                 cp->net_stats[0].collisions += 0x10000;
1137         }
1138         spin_unlock(&cp->stat_lock[0]);
1139
1140         /* We do not keep track of MAC_TX_COLL_FIRST and
1141          * MAC_TX_PEAK_ATTEMPTS events.
1142          */
1143         return 0;
1144 }
1145
1146 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1147 {
1148         cas_hp_inst_t *inst;
1149         u32 val;
1150         int i;
1151
1152         i = 0;
1153         while ((inst = firmware) && inst->note) {
1154                 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1155
1156                 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1157                 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1158                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1159
1160                 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1161                 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1162                 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1163                 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1164                 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1165                 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1166                 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1167                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1168
1169                 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1170                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1171                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1172                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1173                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1174                 ++firmware;
1175                 ++i;
1176         }
1177 }
1178
1179 static void cas_init_rx_dma(struct cas *cp)
1180 {
1181         u64 desc_dma = cp->block_dvma;
1182         u32 val;
1183         int i, size;
1184
1185         /* rx free descriptors */
1186         val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1187         val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1188         val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1189         if ((N_RX_DESC_RINGS > 1) &&
1190             (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1191                 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1192         writel(val, cp->regs + REG_RX_CFG);
1193
1194         val = (unsigned long) cp->init_rxds[0] -
1195                 (unsigned long) cp->init_block;
1196         writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1197         writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1198         writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1199
1200         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1201                 /* rx desc 2 is for IPSEC packets. however,
1202                  * we don't it that for that purpose.
1203                  */
1204                 val = (unsigned long) cp->init_rxds[1] -
1205                         (unsigned long) cp->init_block;
1206                 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1207                 writel((desc_dma + val) & 0xffffffff, cp->regs +
1208                        REG_PLUS_RX_DB1_LOW);
1209                 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1210                        REG_PLUS_RX_KICK1);
1211         }
1212
1213         /* rx completion registers */
1214         val = (unsigned long) cp->init_rxcs[0] -
1215                 (unsigned long) cp->init_block;
1216         writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1217         writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1218
1219         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1220                 /* rx comp 2-4 */
1221                 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1222                         val = (unsigned long) cp->init_rxcs[i] -
1223                                 (unsigned long) cp->init_block;
1224                         writel((desc_dma + val) >> 32, cp->regs +
1225                                REG_PLUS_RX_CBN_HI(i));
1226                         writel((desc_dma + val) & 0xffffffff, cp->regs +
1227                                REG_PLUS_RX_CBN_LOW(i));
1228                 }
1229         }
1230
1231         /* read selective clear regs to prevent spurious interrupts
1232          * on reset because complete == kick.
1233          * selective clear set up to prevent interrupts on resets
1234          */
1235         readl(cp->regs + REG_INTR_STATUS_ALIAS);
1236         writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1237         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1238                 for (i = 1; i < N_RX_COMP_RINGS; i++)
1239                         readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1240
1241                 /* 2 is different from 3 and 4 */
1242                 if (N_RX_COMP_RINGS > 1)
1243                         writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1244                                cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1245
1246                 for (i = 2; i < N_RX_COMP_RINGS; i++)
1247                         writel(INTR_RX_DONE_ALT,
1248                                cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1249         }
1250
1251         /* set up pause thresholds */
1252         val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1253                         cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1254         val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1255                         cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1256         writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1257
1258         /* zero out dma reassembly buffers */
1259         for (i = 0; i < 64; i++) {
1260                 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1261                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1262                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1263                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1264         }
1265
1266         /* make sure address register is 0 for normal operation */
1267         writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1268         writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1269
1270         /* interrupt mitigation */
1271 #ifdef USE_RX_BLANK
1272         val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1273         val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1274         writel(val, cp->regs + REG_RX_BLANK);
1275 #else
1276         writel(0x0, cp->regs + REG_RX_BLANK);
1277 #endif
1278
1279         /* interrupt generation as a function of low water marks for
1280          * free desc and completion entries. these are used to trigger
1281          * housekeeping for rx descs. we don't use the free interrupt
1282          * as it's not very useful
1283          */
1284         /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1285         val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1286         writel(val, cp->regs + REG_RX_AE_THRESH);
1287         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1288                 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1289                 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1290         }
1291
1292         /* Random early detect registers. useful for congestion avoidance.
1293          * this should be tunable.
1294          */
1295         writel(0x0, cp->regs + REG_RX_RED);
1296
1297         /* receive page sizes. default == 2K (0x800) */
1298         val = 0;
1299         if (cp->page_size == 0x1000)
1300                 val = 0x1;
1301         else if (cp->page_size == 0x2000)
1302                 val = 0x2;
1303         else if (cp->page_size == 0x4000)
1304                 val = 0x3;
1305
1306         /* round mtu + offset. constrain to page size. */
1307         size = cp->dev->mtu + 64;
1308         if (size > cp->page_size)
1309                 size = cp->page_size;
1310
1311         if (size <= 0x400)
1312                 i = 0x0;
1313         else if (size <= 0x800)
1314                 i = 0x1;
1315         else if (size <= 0x1000)
1316                 i = 0x2;
1317         else
1318                 i = 0x3;
1319
1320         cp->mtu_stride = 1 << (i + 10);
1321         val  = CAS_BASE(RX_PAGE_SIZE, val);
1322         val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1323         val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1324         val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1325         writel(val, cp->regs + REG_RX_PAGE_SIZE);
1326
1327         /* enable the header parser if desired */
1328         if (CAS_HP_FIRMWARE == cas_prog_null)
1329                 return;
1330
1331         val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1332         val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1333         val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1334         writel(val, cp->regs + REG_HP_CFG);
1335 }
1336
1337 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1338 {
1339         memset(rxc, 0, sizeof(*rxc));
1340         rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1341 }
1342
1343 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1344  * flipping is protected by the fact that the chip will not
1345  * hand back the same page index while it's being processed.
1346  */
1347 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1348 {
1349         cas_page_t *page = cp->rx_pages[1][index];
1350         cas_page_t *new;
1351
1352         if (page_count(page->buffer) == 1)
1353                 return page;
1354
1355         new = cas_page_dequeue(cp);
1356         if (new) {
1357                 spin_lock(&cp->rx_inuse_lock);
1358                 list_add(&page->list, &cp->rx_inuse_list);
1359                 spin_unlock(&cp->rx_inuse_lock);
1360         }
1361         return new;
1362 }
1363
1364 /* this needs to be changed if we actually use the ENC RX DESC ring */
1365 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1366                                  const int index)
1367 {
1368         cas_page_t **page0 = cp->rx_pages[0];
1369         cas_page_t **page1 = cp->rx_pages[1];
1370
1371         /* swap if buffer is in use */
1372         if (page_count(page0[index]->buffer) > 1) {
1373                 cas_page_t *new = cas_page_spare(cp, index);
1374                 if (new) {
1375                         page1[index] = page0[index];
1376                         page0[index] = new;
1377                 }
1378         }
1379         RX_USED_SET(page0[index], 0);
1380         return page0[index];
1381 }
1382
1383 static void cas_clean_rxds(struct cas *cp)
1384 {
1385         /* only clean ring 0 as ring 1 is used for spare buffers */
1386         struct cas_rx_desc *rxd = cp->init_rxds[0];
1387         int i, size;
1388
1389         /* release all rx flows */
1390         for (i = 0; i < N_RX_FLOWS; i++) {
1391                 struct sk_buff *skb;
1392                 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1393                         cas_skb_release(skb);
1394                 }
1395         }
1396
1397         /* initialize descriptors */
1398         size = RX_DESC_RINGN_SIZE(0);
1399         for (i = 0; i < size; i++) {
1400                 cas_page_t *page = cas_page_swap(cp, 0, i);
1401                 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1402                 rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1403                                             CAS_BASE(RX_INDEX_RING, 0));
1404         }
1405
1406         cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1407         cp->rx_last[0] = 0;
1408         cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1409 }
1410
1411 static void cas_clean_rxcs(struct cas *cp)
1412 {
1413         int i, j;
1414
1415         /* take ownership of rx comp descriptors */
1416         memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1417         memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1418         for (i = 0; i < N_RX_COMP_RINGS; i++) {
1419                 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1420                 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1421                         cas_rxc_init(rxc + j);
1422                 }
1423         }
1424 }
1425
1426 #if 0
1427 /* When we get a RX fifo overflow, the RX unit is probably hung
1428  * so we do the following.
1429  *
1430  * If any part of the reset goes wrong, we return 1 and that causes the
1431  * whole chip to be reset.
1432  */
1433 static int cas_rxmac_reset(struct cas *cp)
1434 {
1435         struct net_device *dev = cp->dev;
1436         int limit;
1437         u32 val;
1438
1439         /* First, reset MAC RX. */
1440         writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1441         for (limit = 0; limit < STOP_TRIES; limit++) {
1442                 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1443                         break;
1444                 udelay(10);
1445         }
1446         if (limit == STOP_TRIES) {
1447                 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1448                 return 1;
1449         }
1450
1451         /* Second, disable RX DMA. */
1452         writel(0, cp->regs + REG_RX_CFG);
1453         for (limit = 0; limit < STOP_TRIES; limit++) {
1454                 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1455                         break;
1456                 udelay(10);
1457         }
1458         if (limit == STOP_TRIES) {
1459                 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1460                 return 1;
1461         }
1462
1463         mdelay(5);
1464
1465         /* Execute RX reset command. */
1466         writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1467         for (limit = 0; limit < STOP_TRIES; limit++) {
1468                 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1469                         break;
1470                 udelay(10);
1471         }
1472         if (limit == STOP_TRIES) {
1473                 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1474                 return 1;
1475         }
1476
1477         /* reset driver rx state */
1478         cas_clean_rxds(cp);
1479         cas_clean_rxcs(cp);
1480
1481         /* Now, reprogram the rest of RX unit. */
1482         cas_init_rx_dma(cp);
1483
1484         /* re-enable */
1485         val = readl(cp->regs + REG_RX_CFG);
1486         writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1487         writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1488         val = readl(cp->regs + REG_MAC_RX_CFG);
1489         writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1490         return 0;
1491 }
1492 #endif
1493
1494 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1495                                u32 status)
1496 {
1497         u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1498
1499         if (!stat)
1500                 return 0;
1501
1502         netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1503
1504         /* these are all rollovers */
1505         spin_lock(&cp->stat_lock[0]);
1506         if (stat & MAC_RX_ALIGN_ERR)
1507                 cp->net_stats[0].rx_frame_errors += 0x10000;
1508
1509         if (stat & MAC_RX_CRC_ERR)
1510                 cp->net_stats[0].rx_crc_errors += 0x10000;
1511
1512         if (stat & MAC_RX_LEN_ERR)
1513                 cp->net_stats[0].rx_length_errors += 0x10000;
1514
1515         if (stat & MAC_RX_OVERFLOW) {
1516                 cp->net_stats[0].rx_over_errors++;
1517                 cp->net_stats[0].rx_fifo_errors++;
1518         }
1519
1520         /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1521          * events.
1522          */
1523         spin_unlock(&cp->stat_lock[0]);
1524         return 0;
1525 }
1526
1527 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1528                              u32 status)
1529 {
1530         u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1531
1532         if (!stat)
1533                 return 0;
1534
1535         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1536                      "mac interrupt, stat: 0x%x\n", stat);
1537
1538         /* This interrupt is just for pause frame and pause
1539          * tracking.  It is useful for diagnostics and debug
1540          * but probably by default we will mask these events.
1541          */
1542         if (stat & MAC_CTRL_PAUSE_STATE)
1543                 cp->pause_entered++;
1544
1545         if (stat & MAC_CTRL_PAUSE_RECEIVED)
1546                 cp->pause_last_time_recvd = (stat >> 16);
1547
1548         return 0;
1549 }
1550
1551
1552 /* Must be invoked under cp->lock. */
1553 static inline int cas_mdio_link_not_up(struct cas *cp)
1554 {
1555         u16 val;
1556
1557         switch (cp->lstate) {
1558         case link_force_ret:
1559                 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1560                 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1561                 cp->timer_ticks = 5;
1562                 cp->lstate = link_force_ok;
1563                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1564                 break;
1565
1566         case link_aneg:
1567                 val = cas_phy_read(cp, MII_BMCR);
1568
1569                 /* Try forced modes. we try things in the following order:
1570                  * 1000 full -> 100 full/half -> 10 half
1571                  */
1572                 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1573                 val |= BMCR_FULLDPLX;
1574                 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1575                         CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1576                 cas_phy_write(cp, MII_BMCR, val);
1577                 cp->timer_ticks = 5;
1578                 cp->lstate = link_force_try;
1579                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1580                 break;
1581
1582         case link_force_try:
1583                 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1584                 val = cas_phy_read(cp, MII_BMCR);
1585                 cp->timer_ticks = 5;
1586                 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1587                         val &= ~CAS_BMCR_SPEED1000;
1588                         val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1589                         cas_phy_write(cp, MII_BMCR, val);
1590                         break;
1591                 }
1592
1593                 if (val & BMCR_SPEED100) {
1594                         if (val & BMCR_FULLDPLX) /* fd failed */
1595                                 val &= ~BMCR_FULLDPLX;
1596                         else { /* 100Mbps failed */
1597                                 val &= ~BMCR_SPEED100;
1598                         }
1599                         cas_phy_write(cp, MII_BMCR, val);
1600                         break;
1601                 }
1602                 break;
1603         default:
1604                 break;
1605         }
1606         return 0;
1607 }
1608
1609
1610 /* must be invoked with cp->lock held */
1611 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1612 {
1613         int restart;
1614
1615         if (bmsr & BMSR_LSTATUS) {
1616                 /* Ok, here we got a link. If we had it due to a forced
1617                  * fallback, and we were configured for autoneg, we
1618                  * retry a short autoneg pass. If you know your hub is
1619                  * broken, use ethtool ;)
1620                  */
1621                 if ((cp->lstate == link_force_try) &&
1622                     (cp->link_cntl & BMCR_ANENABLE)) {
1623                         cp->lstate = link_force_ret;
1624                         cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1625                         cas_mif_poll(cp, 0);
1626                         cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1627                         cp->timer_ticks = 5;
1628                         if (cp->opened)
1629                                 netif_info(cp, link, cp->dev,
1630                                            "Got link after fallback, retrying autoneg once...\n");
1631                         cas_phy_write(cp, MII_BMCR,
1632                                       cp->link_fcntl | BMCR_ANENABLE |
1633                                       BMCR_ANRESTART);
1634                         cas_mif_poll(cp, 1);
1635
1636                 } else if (cp->lstate != link_up) {
1637                         cp->lstate = link_up;
1638                         cp->link_transition = LINK_TRANSITION_LINK_UP;
1639
1640                         if (cp->opened) {
1641                                 cas_set_link_modes(cp);
1642                                 netif_carrier_on(cp->dev);
1643                         }
1644                 }
1645                 return 0;
1646         }
1647
1648         /* link not up. if the link was previously up, we restart the
1649          * whole process
1650          */
1651         restart = 0;
1652         if (cp->lstate == link_up) {
1653                 cp->lstate = link_down;
1654                 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1655
1656                 netif_carrier_off(cp->dev);
1657                 if (cp->opened)
1658                         netif_info(cp, link, cp->dev, "Link down\n");
1659                 restart = 1;
1660
1661         } else if (++cp->timer_ticks > 10)
1662                 cas_mdio_link_not_up(cp);
1663
1664         return restart;
1665 }
1666
1667 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1668                              u32 status)
1669 {
1670         u32 stat = readl(cp->regs + REG_MIF_STATUS);
1671         u16 bmsr;
1672
1673         /* check for a link change */
1674         if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1675                 return 0;
1676
1677         bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1678         return cas_mii_link_check(cp, bmsr);
1679 }
1680
1681 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1682                              u32 status)
1683 {
1684         u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1685
1686         if (!stat)
1687                 return 0;
1688
1689         netdev_err(dev, "PCI error [%04x:%04x]",
1690                    stat, readl(cp->regs + REG_BIM_DIAG));
1691
1692         /* cassini+ has this reserved */
1693         if ((stat & PCI_ERR_BADACK) &&
1694             ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1695                 pr_cont(" <No ACK64# during ABS64 cycle>");
1696
1697         if (stat & PCI_ERR_DTRTO)
1698                 pr_cont(" <Delayed transaction timeout>");
1699         if (stat & PCI_ERR_OTHER)
1700                 pr_cont(" <other>");
1701         if (stat & PCI_ERR_BIM_DMA_WRITE)
1702                 pr_cont(" <BIM DMA 0 write req>");
1703         if (stat & PCI_ERR_BIM_DMA_READ)
1704                 pr_cont(" <BIM DMA 0 read req>");
1705         pr_cont("\n");
1706
1707         if (stat & PCI_ERR_OTHER) {
1708                 int pci_errs;
1709
1710                 /* Interrogate PCI config space for the
1711                  * true cause.
1712                  */
1713                 pci_errs = pci_status_get_and_clear_errors(cp->pdev);
1714
1715                 netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
1716                 if (pci_errs & PCI_STATUS_PARITY)
1717                         netdev_err(dev, "PCI parity error detected\n");
1718                 if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
1719                         netdev_err(dev, "PCI target abort\n");
1720                 if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
1721                         netdev_err(dev, "PCI master acks target abort\n");
1722                 if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
1723                         netdev_err(dev, "PCI master abort\n");
1724                 if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
1725                         netdev_err(dev, "PCI system error SERR#\n");
1726                 if (pci_errs & PCI_STATUS_DETECTED_PARITY)
1727                         netdev_err(dev, "PCI parity error\n");
1728         }
1729
1730         /* For all PCI errors, we should reset the chip. */
1731         return 1;
1732 }
1733
1734 /* All non-normal interrupt conditions get serviced here.
1735  * Returns non-zero if we should just exit the interrupt
1736  * handler right now (ie. if we reset the card which invalidates
1737  * all of the other original irq status bits).
1738  */
1739 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1740                             u32 status)
1741 {
1742         if (status & INTR_RX_TAG_ERROR) {
1743                 /* corrupt RX tag framing */
1744                 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1745                              "corrupt rx tag framing\n");
1746                 spin_lock(&cp->stat_lock[0]);
1747                 cp->net_stats[0].rx_errors++;
1748                 spin_unlock(&cp->stat_lock[0]);
1749                 goto do_reset;
1750         }
1751
1752         if (status & INTR_RX_LEN_MISMATCH) {
1753                 /* length mismatch. */
1754                 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1755                              "length mismatch for rx frame\n");
1756                 spin_lock(&cp->stat_lock[0]);
1757                 cp->net_stats[0].rx_errors++;
1758                 spin_unlock(&cp->stat_lock[0]);
1759                 goto do_reset;
1760         }
1761
1762         if (status & INTR_PCS_STATUS) {
1763                 if (cas_pcs_interrupt(dev, cp, status))
1764                         goto do_reset;
1765         }
1766
1767         if (status & INTR_TX_MAC_STATUS) {
1768                 if (cas_txmac_interrupt(dev, cp, status))
1769                         goto do_reset;
1770         }
1771
1772         if (status & INTR_RX_MAC_STATUS) {
1773                 if (cas_rxmac_interrupt(dev, cp, status))
1774                         goto do_reset;
1775         }
1776
1777         if (status & INTR_MAC_CTRL_STATUS) {
1778                 if (cas_mac_interrupt(dev, cp, status))
1779                         goto do_reset;
1780         }
1781
1782         if (status & INTR_MIF_STATUS) {
1783                 if (cas_mif_interrupt(dev, cp, status))
1784                         goto do_reset;
1785         }
1786
1787         if (status & INTR_PCI_ERROR_STATUS) {
1788                 if (cas_pci_interrupt(dev, cp, status))
1789                         goto do_reset;
1790         }
1791         return 0;
1792
1793 do_reset:
1794 #if 1
1795         atomic_inc(&cp->reset_task_pending);
1796         atomic_inc(&cp->reset_task_pending_all);
1797         netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1798         schedule_work(&cp->reset_task);
1799 #else
1800         atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1801         netdev_err(dev, "reset called in cas_abnormal_irq\n");
1802         schedule_work(&cp->reset_task);
1803 #endif
1804         return 1;
1805 }
1806
1807 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1808  *       determining whether to do a netif_stop/wakeup
1809  */
1810 #define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1811 #define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1812 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1813                                   const int len)
1814 {
1815         unsigned long off = addr + len;
1816
1817         if (CAS_TABORT(cp) == 1)
1818                 return 0;
1819         if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1820                 return 0;
1821         return TX_TARGET_ABORT_LEN;
1822 }
1823
1824 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1825 {
1826         struct cas_tx_desc *txds;
1827         struct sk_buff **skbs;
1828         struct net_device *dev = cp->dev;
1829         int entry, count;
1830
1831         spin_lock(&cp->tx_lock[ring]);
1832         txds = cp->init_txds[ring];
1833         skbs = cp->tx_skbs[ring];
1834         entry = cp->tx_old[ring];
1835
1836         count = TX_BUFF_COUNT(ring, entry, limit);
1837         while (entry != limit) {
1838                 struct sk_buff *skb = skbs[entry];
1839                 dma_addr_t daddr;
1840                 u32 dlen;
1841                 int frag;
1842
1843                 if (!skb) {
1844                         /* this should never occur */
1845                         entry = TX_DESC_NEXT(ring, entry);
1846                         continue;
1847                 }
1848
1849                 /* however, we might get only a partial skb release. */
1850                 count -= skb_shinfo(skb)->nr_frags +
1851                         + cp->tx_tiny_use[ring][entry].nbufs + 1;
1852                 if (count < 0)
1853                         break;
1854
1855                 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1856                              "tx[%d] done, slot %d\n", ring, entry);
1857
1858                 skbs[entry] = NULL;
1859                 cp->tx_tiny_use[ring][entry].nbufs = 0;
1860
1861                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1862                         struct cas_tx_desc *txd = txds + entry;
1863
1864                         daddr = le64_to_cpu(txd->buffer);
1865                         dlen = CAS_VAL(TX_DESC_BUFLEN,
1866                                        le64_to_cpu(txd->control));
1867                         dma_unmap_page(&cp->pdev->dev, daddr, dlen,
1868                                        DMA_TO_DEVICE);
1869                         entry = TX_DESC_NEXT(ring, entry);
1870
1871                         /* tiny buffer may follow */
1872                         if (cp->tx_tiny_use[ring][entry].used) {
1873                                 cp->tx_tiny_use[ring][entry].used = 0;
1874                                 entry = TX_DESC_NEXT(ring, entry);
1875                         }
1876                 }
1877
1878                 spin_lock(&cp->stat_lock[ring]);
1879                 cp->net_stats[ring].tx_packets++;
1880                 cp->net_stats[ring].tx_bytes += skb->len;
1881                 spin_unlock(&cp->stat_lock[ring]);
1882                 dev_consume_skb_irq(skb);
1883         }
1884         cp->tx_old[ring] = entry;
1885
1886         /* this is wrong for multiple tx rings. the net device needs
1887          * multiple queues for this to do the right thing.  we wait
1888          * for 2*packets to be available when using tiny buffers
1889          */
1890         if (netif_queue_stopped(dev) &&
1891             (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1892                 netif_wake_queue(dev);
1893         spin_unlock(&cp->tx_lock[ring]);
1894 }
1895
1896 static void cas_tx(struct net_device *dev, struct cas *cp,
1897                    u32 status)
1898 {
1899         int limit, ring;
1900 #ifdef USE_TX_COMPWB
1901         u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1902 #endif
1903         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1904                      "tx interrupt, status: 0x%x, %llx\n",
1905                      status, (unsigned long long)compwb);
1906         /* process all the rings */
1907         for (ring = 0; ring < N_TX_RINGS; ring++) {
1908 #ifdef USE_TX_COMPWB
1909                 /* use the completion writeback registers */
1910                 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1911                         CAS_VAL(TX_COMPWB_LSB, compwb);
1912                 compwb = TX_COMPWB_NEXT(compwb);
1913 #else
1914                 limit = readl(cp->regs + REG_TX_COMPN(ring));
1915 #endif
1916                 if (cp->tx_old[ring] != limit)
1917                         cas_tx_ringN(cp, ring, limit);
1918         }
1919 }
1920
1921
1922 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1923                               int entry, const u64 *words,
1924                               struct sk_buff **skbref)
1925 {
1926         int dlen, hlen, len, i, alloclen;
1927         int off, swivel = RX_SWIVEL_OFF_VAL;
1928         struct cas_page *page;
1929         struct sk_buff *skb;
1930         void *addr, *crcaddr;
1931         __sum16 csum;
1932         char *p;
1933
1934         hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1935         dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1936         len  = hlen + dlen;
1937
1938         if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1939                 alloclen = len;
1940         else
1941                 alloclen = max(hlen, RX_COPY_MIN);
1942
1943         skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1944         if (skb == NULL)
1945                 return -1;
1946
1947         *skbref = skb;
1948         skb_reserve(skb, swivel);
1949
1950         p = skb->data;
1951         addr = crcaddr = NULL;
1952         if (hlen) { /* always copy header pages */
1953                 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1954                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1955                 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1956                         swivel;
1957
1958                 i = hlen;
1959                 if (!dlen) /* attach FCS */
1960                         i += cp->crc_size;
1961                 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
1962                                         i, DMA_FROM_DEVICE);
1963                 addr = cas_page_map(page->buffer);
1964                 memcpy(p, addr + off, i);
1965                 dma_sync_single_for_device(&cp->pdev->dev,
1966                                            page->dma_addr + off, i,
1967                                            DMA_FROM_DEVICE);
1968                 cas_page_unmap(addr);
1969                 RX_USED_ADD(page, 0x100);
1970                 p += hlen;
1971                 swivel = 0;
1972         }
1973
1974
1975         if (alloclen < (hlen + dlen)) {
1976                 skb_frag_t *frag = skb_shinfo(skb)->frags;
1977
1978                 /* normal or jumbo packets. we use frags */
1979                 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
1980                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1981                 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
1982
1983                 hlen = min(cp->page_size - off, dlen);
1984                 if (hlen < 0) {
1985                         netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1986                                      "rx page overflow: %d\n", hlen);
1987                         dev_kfree_skb_irq(skb);
1988                         return -1;
1989                 }
1990                 i = hlen;
1991                 if (i == dlen)  /* attach FCS */
1992                         i += cp->crc_size;
1993                 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
1994                                         i, DMA_FROM_DEVICE);
1995
1996                 /* make sure we always copy a header */
1997                 swivel = 0;
1998                 if (p == (char *) skb->data) { /* not split */
1999                         addr = cas_page_map(page->buffer);
2000                         memcpy(p, addr + off, RX_COPY_MIN);
2001                         dma_sync_single_for_device(&cp->pdev->dev,
2002                                                    page->dma_addr + off, i,
2003                                                    DMA_FROM_DEVICE);
2004                         cas_page_unmap(addr);
2005                         off += RX_COPY_MIN;
2006                         swivel = RX_COPY_MIN;
2007                         RX_USED_ADD(page, cp->mtu_stride);
2008                 } else {
2009                         RX_USED_ADD(page, hlen);
2010                 }
2011                 skb_put(skb, alloclen);
2012
2013                 skb_shinfo(skb)->nr_frags++;
2014                 skb->data_len += hlen - swivel;
2015                 skb->truesize += hlen - swivel;
2016                 skb->len      += hlen - swivel;
2017
2018                 __skb_frag_set_page(frag, page->buffer);
2019                 __skb_frag_ref(frag);
2020                 skb_frag_off_set(frag, off);
2021                 skb_frag_size_set(frag, hlen - swivel);
2022
2023                 /* any more data? */
2024                 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2025                         hlen = dlen;
2026                         off = 0;
2027
2028                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2029                         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2030                         dma_sync_single_for_cpu(&cp->pdev->dev,
2031                                                 page->dma_addr,
2032                                                 hlen + cp->crc_size,
2033                                                 DMA_FROM_DEVICE);
2034                         dma_sync_single_for_device(&cp->pdev->dev,
2035                                                    page->dma_addr,
2036                                                    hlen + cp->crc_size,
2037                                                    DMA_FROM_DEVICE);
2038
2039                         skb_shinfo(skb)->nr_frags++;
2040                         skb->data_len += hlen;
2041                         skb->len      += hlen;
2042                         frag++;
2043
2044                         __skb_frag_set_page(frag, page->buffer);
2045                         __skb_frag_ref(frag);
2046                         skb_frag_off_set(frag, 0);
2047                         skb_frag_size_set(frag, hlen);
2048                         RX_USED_ADD(page, hlen + cp->crc_size);
2049                 }
2050
2051                 if (cp->crc_size) {
2052                         addr = cas_page_map(page->buffer);
2053                         crcaddr  = addr + off + hlen;
2054                 }
2055
2056         } else {
2057                 /* copying packet */
2058                 if (!dlen)
2059                         goto end_copy_pkt;
2060
2061                 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2062                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2063                 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2064                 hlen = min(cp->page_size - off, dlen);
2065                 if (hlen < 0) {
2066                         netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2067                                      "rx page overflow: %d\n", hlen);
2068                         dev_kfree_skb_irq(skb);
2069                         return -1;
2070                 }
2071                 i = hlen;
2072                 if (i == dlen) /* attach FCS */
2073                         i += cp->crc_size;
2074                 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
2075                                         i, DMA_FROM_DEVICE);
2076                 addr = cas_page_map(page->buffer);
2077                 memcpy(p, addr + off, i);
2078                 dma_sync_single_for_device(&cp->pdev->dev,
2079                                            page->dma_addr + off, i,
2080                                            DMA_FROM_DEVICE);
2081                 cas_page_unmap(addr);
2082                 if (p == (char *) skb->data) /* not split */
2083                         RX_USED_ADD(page, cp->mtu_stride);
2084                 else
2085                         RX_USED_ADD(page, i);
2086
2087                 /* any more data? */
2088                 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2089                         p += hlen;
2090                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2091                         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2092                         dma_sync_single_for_cpu(&cp->pdev->dev,
2093                                                 page->dma_addr,
2094                                                 dlen + cp->crc_size,
2095                                                 DMA_FROM_DEVICE);
2096                         addr = cas_page_map(page->buffer);
2097                         memcpy(p, addr, dlen + cp->crc_size);
2098                         dma_sync_single_for_device(&cp->pdev->dev,
2099                                                    page->dma_addr,
2100                                                    dlen + cp->crc_size,
2101                                                    DMA_FROM_DEVICE);
2102                         cas_page_unmap(addr);
2103                         RX_USED_ADD(page, dlen + cp->crc_size);
2104                 }
2105 end_copy_pkt:
2106                 if (cp->crc_size) {
2107                         addr    = NULL;
2108                         crcaddr = skb->data + alloclen;
2109                 }
2110                 skb_put(skb, alloclen);
2111         }
2112
2113         csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2114         if (cp->crc_size) {
2115                 /* checksum includes FCS. strip it out. */
2116                 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2117                                               csum_unfold(csum)));
2118                 if (addr)
2119                         cas_page_unmap(addr);
2120         }
2121         skb->protocol = eth_type_trans(skb, cp->dev);
2122         if (skb->protocol == htons(ETH_P_IP)) {
2123                 skb->csum = csum_unfold(~csum);
2124                 skb->ip_summed = CHECKSUM_COMPLETE;
2125         } else
2126                 skb_checksum_none_assert(skb);
2127         return len;
2128 }
2129
2130
2131 /* we can handle up to 64 rx flows at a time. we do the same thing
2132  * as nonreassm except that we batch up the buffers.
2133  * NOTE: we currently just treat each flow as a bunch of packets that
2134  *       we pass up. a better way would be to coalesce the packets
2135  *       into a jumbo packet. to do that, we need to do the following:
2136  *       1) the first packet will have a clean split between header and
2137  *          data. save both.
2138  *       2) each time the next flow packet comes in, extend the
2139  *          data length and merge the checksums.
2140  *       3) on flow release, fix up the header.
2141  *       4) make sure the higher layer doesn't care.
2142  * because packets get coalesced, we shouldn't run into fragment count
2143  * issues.
2144  */
2145 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2146                                    struct sk_buff *skb)
2147 {
2148         int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2149         struct sk_buff_head *flow = &cp->rx_flows[flowid];
2150
2151         /* this is protected at a higher layer, so no need to
2152          * do any additional locking here. stick the buffer
2153          * at the end.
2154          */
2155         __skb_queue_tail(flow, skb);
2156         if (words[0] & RX_COMP1_RELEASE_FLOW) {
2157                 while ((skb = __skb_dequeue(flow))) {
2158                         cas_skb_release(skb);
2159                 }
2160         }
2161 }
2162
2163 /* put rx descriptor back on ring. if a buffer is in use by a higher
2164  * layer, this will need to put in a replacement.
2165  */
2166 static void cas_post_page(struct cas *cp, const int ring, const int index)
2167 {
2168         cas_page_t *new;
2169         int entry;
2170
2171         entry = cp->rx_old[ring];
2172
2173         new = cas_page_swap(cp, ring, index);
2174         cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2175         cp->init_rxds[ring][entry].index  =
2176                 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2177                             CAS_BASE(RX_INDEX_RING, ring));
2178
2179         entry = RX_DESC_ENTRY(ring, entry + 1);
2180         cp->rx_old[ring] = entry;
2181
2182         if (entry % 4)
2183                 return;
2184
2185         if (ring == 0)
2186                 writel(entry, cp->regs + REG_RX_KICK);
2187         else if ((N_RX_DESC_RINGS > 1) &&
2188                  (cp->cas_flags & CAS_FLAG_REG_PLUS))
2189                 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2190 }
2191
2192
2193 /* only when things are bad */
2194 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2195 {
2196         unsigned int entry, last, count, released;
2197         int cluster;
2198         cas_page_t **page = cp->rx_pages[ring];
2199
2200         entry = cp->rx_old[ring];
2201
2202         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2203                      "rxd[%d] interrupt, done: %d\n", ring, entry);
2204
2205         cluster = -1;
2206         count = entry & 0x3;
2207         last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2208         released = 0;
2209         while (entry != last) {
2210                 /* make a new buffer if it's still in use */
2211                 if (page_count(page[entry]->buffer) > 1) {
2212                         cas_page_t *new = cas_page_dequeue(cp);
2213                         if (!new) {
2214                                 /* let the timer know that we need to
2215                                  * do this again
2216                                  */
2217                                 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2218                                 if (!timer_pending(&cp->link_timer))
2219                                         mod_timer(&cp->link_timer, jiffies +
2220                                                   CAS_LINK_FAST_TIMEOUT);
2221                                 cp->rx_old[ring]  = entry;
2222                                 cp->rx_last[ring] = num ? num - released : 0;
2223                                 return -ENOMEM;
2224                         }
2225                         spin_lock(&cp->rx_inuse_lock);
2226                         list_add(&page[entry]->list, &cp->rx_inuse_list);
2227                         spin_unlock(&cp->rx_inuse_lock);
2228                         cp->init_rxds[ring][entry].buffer =
2229                                 cpu_to_le64(new->dma_addr);
2230                         page[entry] = new;
2231
2232                 }
2233
2234                 if (++count == 4) {
2235                         cluster = entry;
2236                         count = 0;
2237                 }
2238                 released++;
2239                 entry = RX_DESC_ENTRY(ring, entry + 1);
2240         }
2241         cp->rx_old[ring] = entry;
2242
2243         if (cluster < 0)
2244                 return 0;
2245
2246         if (ring == 0)
2247                 writel(cluster, cp->regs + REG_RX_KICK);
2248         else if ((N_RX_DESC_RINGS > 1) &&
2249                  (cp->cas_flags & CAS_FLAG_REG_PLUS))
2250                 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2251         return 0;
2252 }
2253
2254
2255 /* process a completion ring. packets are set up in three basic ways:
2256  * small packets: should be copied header + data in single buffer.
2257  * large packets: header and data in a single buffer.
2258  * split packets: header in a separate buffer from data.
2259  *                data may be in multiple pages. data may be > 256
2260  *                bytes but in a single page.
2261  *
2262  * NOTE: RX page posting is done in this routine as well. while there's
2263  *       the capability of using multiple RX completion rings, it isn't
2264  *       really worthwhile due to the fact that the page posting will
2265  *       force serialization on the single descriptor ring.
2266  */
2267 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2268 {
2269         struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2270         int entry, drops;
2271         int npackets = 0;
2272
2273         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2274                      "rx[%d] interrupt, done: %d/%d\n",
2275                      ring,
2276                      readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2277
2278         entry = cp->rx_new[ring];
2279         drops = 0;
2280         while (1) {
2281                 struct cas_rx_comp *rxc = rxcs + entry;
2282                 struct sk_buff *skb;
2283                 int type, len;
2284                 u64 words[4];
2285                 int i, dring;
2286
2287                 words[0] = le64_to_cpu(rxc->word1);
2288                 words[1] = le64_to_cpu(rxc->word2);
2289                 words[2] = le64_to_cpu(rxc->word3);
2290                 words[3] = le64_to_cpu(rxc->word4);
2291
2292                 /* don't touch if still owned by hw */
2293                 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2294                 if (type == 0)
2295                         break;
2296
2297                 /* hw hasn't cleared the zero bit yet */
2298                 if (words[3] & RX_COMP4_ZERO) {
2299                         break;
2300                 }
2301
2302                 /* get info on the packet */
2303                 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2304                         spin_lock(&cp->stat_lock[ring]);
2305                         cp->net_stats[ring].rx_errors++;
2306                         if (words[3] & RX_COMP4_LEN_MISMATCH)
2307                                 cp->net_stats[ring].rx_length_errors++;
2308                         if (words[3] & RX_COMP4_BAD)
2309                                 cp->net_stats[ring].rx_crc_errors++;
2310                         spin_unlock(&cp->stat_lock[ring]);
2311
2312                         /* We'll just return it to Cassini. */
2313                 drop_it:
2314                         spin_lock(&cp->stat_lock[ring]);
2315                         ++cp->net_stats[ring].rx_dropped;
2316                         spin_unlock(&cp->stat_lock[ring]);
2317                         goto next;
2318                 }
2319
2320                 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2321                 if (len < 0) {
2322                         ++drops;
2323                         goto drop_it;
2324                 }
2325
2326                 /* see if it's a flow re-assembly or not. the driver
2327                  * itself handles release back up.
2328                  */
2329                 if (RX_DONT_BATCH || (type == 0x2)) {
2330                         /* non-reassm: these always get released */
2331                         cas_skb_release(skb);
2332                 } else {
2333                         cas_rx_flow_pkt(cp, words, skb);
2334                 }
2335
2336                 spin_lock(&cp->stat_lock[ring]);
2337                 cp->net_stats[ring].rx_packets++;
2338                 cp->net_stats[ring].rx_bytes += len;
2339                 spin_unlock(&cp->stat_lock[ring]);
2340
2341         next:
2342                 npackets++;
2343
2344                 /* should it be released? */
2345                 if (words[0] & RX_COMP1_RELEASE_HDR) {
2346                         i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2347                         dring = CAS_VAL(RX_INDEX_RING, i);
2348                         i = CAS_VAL(RX_INDEX_NUM, i);
2349                         cas_post_page(cp, dring, i);
2350                 }
2351
2352                 if (words[0] & RX_COMP1_RELEASE_DATA) {
2353                         i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2354                         dring = CAS_VAL(RX_INDEX_RING, i);
2355                         i = CAS_VAL(RX_INDEX_NUM, i);
2356                         cas_post_page(cp, dring, i);
2357                 }
2358
2359                 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2360                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2361                         dring = CAS_VAL(RX_INDEX_RING, i);
2362                         i = CAS_VAL(RX_INDEX_NUM, i);
2363                         cas_post_page(cp, dring, i);
2364                 }
2365
2366                 /* skip to the next entry */
2367                 entry = RX_COMP_ENTRY(ring, entry + 1 +
2368                                       CAS_VAL(RX_COMP1_SKIP, words[0]));
2369 #ifdef USE_NAPI
2370                 if (budget && (npackets >= budget))
2371                         break;
2372 #endif
2373         }
2374         cp->rx_new[ring] = entry;
2375
2376         if (drops)
2377                 netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2378         return npackets;
2379 }
2380
2381
2382 /* put completion entries back on the ring */
2383 static void cas_post_rxcs_ringN(struct net_device *dev,
2384                                 struct cas *cp, int ring)
2385 {
2386         struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2387         int last, entry;
2388
2389         last = cp->rx_cur[ring];
2390         entry = cp->rx_new[ring];
2391         netif_printk(cp, intr, KERN_DEBUG, dev,
2392                      "rxc[%d] interrupt, done: %d/%d\n",
2393                      ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2394
2395         /* zero and re-mark descriptors */
2396         while (last != entry) {
2397                 cas_rxc_init(rxc + last);
2398                 last = RX_COMP_ENTRY(ring, last + 1);
2399         }
2400         cp->rx_cur[ring] = last;
2401
2402         if (ring == 0)
2403                 writel(last, cp->regs + REG_RX_COMP_TAIL);
2404         else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2405                 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2406 }
2407
2408
2409
2410 /* cassini can use all four PCI interrupts for the completion ring.
2411  * rings 3 and 4 are identical
2412  */
2413 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2414 static inline void cas_handle_irqN(struct net_device *dev,
2415                                    struct cas *cp, const u32 status,
2416                                    const int ring)
2417 {
2418         if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2419                 cas_post_rxcs_ringN(dev, cp, ring);
2420 }
2421
2422 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2423 {
2424         struct net_device *dev = dev_id;
2425         struct cas *cp = netdev_priv(dev);
2426         unsigned long flags;
2427         int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2428         u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2429
2430         /* check for shared irq */
2431         if (status == 0)
2432                 return IRQ_NONE;
2433
2434         spin_lock_irqsave(&cp->lock, flags);
2435         if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2436 #ifdef USE_NAPI
2437                 cas_mask_intr(cp);
2438                 napi_schedule(&cp->napi);
2439 #else
2440                 cas_rx_ringN(cp, ring, 0);
2441 #endif
2442                 status &= ~INTR_RX_DONE_ALT;
2443         }
2444
2445         if (status)
2446                 cas_handle_irqN(dev, cp, status, ring);
2447         spin_unlock_irqrestore(&cp->lock, flags);
2448         return IRQ_HANDLED;
2449 }
2450 #endif
2451
2452 #ifdef USE_PCI_INTB
2453 /* everything but rx packets */
2454 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2455 {
2456         if (status & INTR_RX_BUF_UNAVAIL_1) {
2457                 /* Frame arrived, no free RX buffers available.
2458                  * NOTE: we can get this on a link transition. */
2459                 cas_post_rxds_ringN(cp, 1, 0);
2460                 spin_lock(&cp->stat_lock[1]);
2461                 cp->net_stats[1].rx_dropped++;
2462                 spin_unlock(&cp->stat_lock[1]);
2463         }
2464
2465         if (status & INTR_RX_BUF_AE_1)
2466                 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2467                                     RX_AE_FREEN_VAL(1));
2468
2469         if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2470                 cas_post_rxcs_ringN(cp, 1);
2471 }
2472
2473 /* ring 2 handles a few more events than 3 and 4 */
2474 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2475 {
2476         struct net_device *dev = dev_id;
2477         struct cas *cp = netdev_priv(dev);
2478         unsigned long flags;
2479         u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2480
2481         /* check for shared interrupt */
2482         if (status == 0)
2483                 return IRQ_NONE;
2484
2485         spin_lock_irqsave(&cp->lock, flags);
2486         if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2487 #ifdef USE_NAPI
2488                 cas_mask_intr(cp);
2489                 napi_schedule(&cp->napi);
2490 #else
2491                 cas_rx_ringN(cp, 1, 0);
2492 #endif
2493                 status &= ~INTR_RX_DONE_ALT;
2494         }
2495         if (status)
2496                 cas_handle_irq1(cp, status);
2497         spin_unlock_irqrestore(&cp->lock, flags);
2498         return IRQ_HANDLED;
2499 }
2500 #endif
2501
2502 static inline void cas_handle_irq(struct net_device *dev,
2503                                   struct cas *cp, const u32 status)
2504 {
2505         /* housekeeping interrupts */
2506         if (status & INTR_ERROR_MASK)
2507                 cas_abnormal_irq(dev, cp, status);
2508
2509         if (status & INTR_RX_BUF_UNAVAIL) {
2510                 /* Frame arrived, no free RX buffers available.
2511                  * NOTE: we can get this on a link transition.
2512                  */
2513                 cas_post_rxds_ringN(cp, 0, 0);
2514                 spin_lock(&cp->stat_lock[0]);
2515                 cp->net_stats[0].rx_dropped++;
2516                 spin_unlock(&cp->stat_lock[0]);
2517         } else if (status & INTR_RX_BUF_AE) {
2518                 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2519                                     RX_AE_FREEN_VAL(0));
2520         }
2521
2522         if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2523                 cas_post_rxcs_ringN(dev, cp, 0);
2524 }
2525
2526 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2527 {
2528         struct net_device *dev = dev_id;
2529         struct cas *cp = netdev_priv(dev);
2530         unsigned long flags;
2531         u32 status = readl(cp->regs + REG_INTR_STATUS);
2532
2533         if (status == 0)
2534                 return IRQ_NONE;
2535
2536         spin_lock_irqsave(&cp->lock, flags);
2537         if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2538                 cas_tx(dev, cp, status);
2539                 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2540         }
2541
2542         if (status & INTR_RX_DONE) {
2543 #ifdef USE_NAPI
2544                 cas_mask_intr(cp);
2545                 napi_schedule(&cp->napi);
2546 #else
2547                 cas_rx_ringN(cp, 0, 0);
2548 #endif
2549                 status &= ~INTR_RX_DONE;
2550         }
2551
2552         if (status)
2553                 cas_handle_irq(dev, cp, status);
2554         spin_unlock_irqrestore(&cp->lock, flags);
2555         return IRQ_HANDLED;
2556 }
2557
2558
2559 #ifdef USE_NAPI
2560 static int cas_poll(struct napi_struct *napi, int budget)
2561 {
2562         struct cas *cp = container_of(napi, struct cas, napi);
2563         struct net_device *dev = cp->dev;
2564         int i, enable_intr, credits;
2565         u32 status = readl(cp->regs + REG_INTR_STATUS);
2566         unsigned long flags;
2567
2568         spin_lock_irqsave(&cp->lock, flags);
2569         cas_tx(dev, cp, status);
2570         spin_unlock_irqrestore(&cp->lock, flags);
2571
2572         /* NAPI rx packets. we spread the credits across all of the
2573          * rxc rings
2574          *
2575          * to make sure we're fair with the work we loop through each
2576          * ring N_RX_COMP_RING times with a request of
2577          * budget / N_RX_COMP_RINGS
2578          */
2579         enable_intr = 1;
2580         credits = 0;
2581         for (i = 0; i < N_RX_COMP_RINGS; i++) {
2582                 int j;
2583                 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2584                         credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2585                         if (credits >= budget) {
2586                                 enable_intr = 0;
2587                                 goto rx_comp;
2588                         }
2589                 }
2590         }
2591
2592 rx_comp:
2593         /* final rx completion */
2594         spin_lock_irqsave(&cp->lock, flags);
2595         if (status)
2596                 cas_handle_irq(dev, cp, status);
2597
2598 #ifdef USE_PCI_INTB
2599         if (N_RX_COMP_RINGS > 1) {
2600                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2601                 if (status)
2602                         cas_handle_irq1(dev, cp, status);
2603         }
2604 #endif
2605
2606 #ifdef USE_PCI_INTC
2607         if (N_RX_COMP_RINGS > 2) {
2608                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2609                 if (status)
2610                         cas_handle_irqN(dev, cp, status, 2);
2611         }
2612 #endif
2613
2614 #ifdef USE_PCI_INTD
2615         if (N_RX_COMP_RINGS > 3) {
2616                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2617                 if (status)
2618                         cas_handle_irqN(dev, cp, status, 3);
2619         }
2620 #endif
2621         spin_unlock_irqrestore(&cp->lock, flags);
2622         if (enable_intr) {
2623                 napi_complete(napi);
2624                 cas_unmask_intr(cp);
2625         }
2626         return credits;
2627 }
2628 #endif
2629
2630 #ifdef CONFIG_NET_POLL_CONTROLLER
2631 static void cas_netpoll(struct net_device *dev)
2632 {
2633         struct cas *cp = netdev_priv(dev);
2634
2635         cas_disable_irq(cp, 0);
2636         cas_interrupt(cp->pdev->irq, dev);
2637         cas_enable_irq(cp, 0);
2638
2639 #ifdef USE_PCI_INTB
2640         if (N_RX_COMP_RINGS > 1) {
2641                 /* cas_interrupt1(); */
2642         }
2643 #endif
2644 #ifdef USE_PCI_INTC
2645         if (N_RX_COMP_RINGS > 2) {
2646                 /* cas_interruptN(); */
2647         }
2648 #endif
2649 #ifdef USE_PCI_INTD
2650         if (N_RX_COMP_RINGS > 3) {
2651                 /* cas_interruptN(); */
2652         }
2653 #endif
2654 }
2655 #endif
2656
2657 static void cas_tx_timeout(struct net_device *dev, unsigned int txqueue)
2658 {
2659         struct cas *cp = netdev_priv(dev);
2660
2661         netdev_err(dev, "transmit timed out, resetting\n");
2662         if (!cp->hw_running) {
2663                 netdev_err(dev, "hrm.. hw not running!\n");
2664                 return;
2665         }
2666
2667         netdev_err(dev, "MIF_STATE[%08x]\n",
2668                    readl(cp->regs + REG_MIF_STATE_MACHINE));
2669
2670         netdev_err(dev, "MAC_STATE[%08x]\n",
2671                    readl(cp->regs + REG_MAC_STATE_MACHINE));
2672
2673         netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2674                    readl(cp->regs + REG_TX_CFG),
2675                    readl(cp->regs + REG_MAC_TX_STATUS),
2676                    readl(cp->regs + REG_MAC_TX_CFG),
2677                    readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2678                    readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2679                    readl(cp->regs + REG_TX_FIFO_READ_PTR),
2680                    readl(cp->regs + REG_TX_SM_1),
2681                    readl(cp->regs + REG_TX_SM_2));
2682
2683         netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2684                    readl(cp->regs + REG_RX_CFG),
2685                    readl(cp->regs + REG_MAC_RX_STATUS),
2686                    readl(cp->regs + REG_MAC_RX_CFG));
2687
2688         netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2689                    readl(cp->regs + REG_HP_STATE_MACHINE),
2690                    readl(cp->regs + REG_HP_STATUS0),
2691                    readl(cp->regs + REG_HP_STATUS1),
2692                    readl(cp->regs + REG_HP_STATUS2));
2693
2694 #if 1
2695         atomic_inc(&cp->reset_task_pending);
2696         atomic_inc(&cp->reset_task_pending_all);
2697         schedule_work(&cp->reset_task);
2698 #else
2699         atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2700         schedule_work(&cp->reset_task);
2701 #endif
2702 }
2703
2704 static inline int cas_intme(int ring, int entry)
2705 {
2706         /* Algorithm: IRQ every 1/2 of descriptors. */
2707         if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2708                 return 1;
2709         return 0;
2710 }
2711
2712
2713 static void cas_write_txd(struct cas *cp, int ring, int entry,
2714                           dma_addr_t mapping, int len, u64 ctrl, int last)
2715 {
2716         struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2717
2718         ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2719         if (cas_intme(ring, entry))
2720                 ctrl |= TX_DESC_INTME;
2721         if (last)
2722                 ctrl |= TX_DESC_EOF;
2723         txd->control = cpu_to_le64(ctrl);
2724         txd->buffer = cpu_to_le64(mapping);
2725 }
2726
2727 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2728                                 const int entry)
2729 {
2730         return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2731 }
2732
2733 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2734                                      const int entry, const int tentry)
2735 {
2736         cp->tx_tiny_use[ring][tentry].nbufs++;
2737         cp->tx_tiny_use[ring][entry].used = 1;
2738         return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2739 }
2740
2741 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2742                                     struct sk_buff *skb)
2743 {
2744         struct net_device *dev = cp->dev;
2745         int entry, nr_frags, frag, tabort, tentry;
2746         dma_addr_t mapping;
2747         unsigned long flags;
2748         u64 ctrl;
2749         u32 len;
2750
2751         spin_lock_irqsave(&cp->tx_lock[ring], flags);
2752
2753         /* This is a hard error, log it. */
2754         if (TX_BUFFS_AVAIL(cp, ring) <=
2755             CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2756                 netif_stop_queue(dev);
2757                 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2758                 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2759                 return 1;
2760         }
2761
2762         ctrl = 0;
2763         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2764                 const u64 csum_start_off = skb_checksum_start_offset(skb);
2765                 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2766
2767                 ctrl =  TX_DESC_CSUM_EN |
2768                         CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2769                         CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2770         }
2771
2772         entry = cp->tx_new[ring];
2773         cp->tx_skbs[ring][entry] = skb;
2774
2775         nr_frags = skb_shinfo(skb)->nr_frags;
2776         len = skb_headlen(skb);
2777         mapping = dma_map_page(&cp->pdev->dev, virt_to_page(skb->data),
2778                                offset_in_page(skb->data), len, DMA_TO_DEVICE);
2779
2780         tentry = entry;
2781         tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2782         if (unlikely(tabort)) {
2783                 /* NOTE: len is always >  tabort */
2784                 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2785                               ctrl | TX_DESC_SOF, 0);
2786                 entry = TX_DESC_NEXT(ring, entry);
2787
2788                 skb_copy_from_linear_data_offset(skb, len - tabort,
2789                               tx_tiny_buf(cp, ring, entry), tabort);
2790                 mapping = tx_tiny_map(cp, ring, entry, tentry);
2791                 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2792                               (nr_frags == 0));
2793         } else {
2794                 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2795                               TX_DESC_SOF, (nr_frags == 0));
2796         }
2797         entry = TX_DESC_NEXT(ring, entry);
2798
2799         for (frag = 0; frag < nr_frags; frag++) {
2800                 const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2801
2802                 len = skb_frag_size(fragp);
2803                 mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2804                                            DMA_TO_DEVICE);
2805
2806                 tabort = cas_calc_tabort(cp, skb_frag_off(fragp), len);
2807                 if (unlikely(tabort)) {
2808                         void *addr;
2809
2810                         /* NOTE: len is always > tabort */
2811                         cas_write_txd(cp, ring, entry, mapping, len - tabort,
2812                                       ctrl, 0);
2813                         entry = TX_DESC_NEXT(ring, entry);
2814
2815                         addr = cas_page_map(skb_frag_page(fragp));
2816                         memcpy(tx_tiny_buf(cp, ring, entry),
2817                                addr + skb_frag_off(fragp) + len - tabort,
2818                                tabort);
2819                         cas_page_unmap(addr);
2820                         mapping = tx_tiny_map(cp, ring, entry, tentry);
2821                         len     = tabort;
2822                 }
2823
2824                 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2825                               (frag + 1 == nr_frags));
2826                 entry = TX_DESC_NEXT(ring, entry);
2827         }
2828
2829         cp->tx_new[ring] = entry;
2830         if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2831                 netif_stop_queue(dev);
2832
2833         netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2834                      "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2835                      ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2836         writel(entry, cp->regs + REG_TX_KICKN(ring));
2837         spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2838         return 0;
2839 }
2840
2841 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2842 {
2843         struct cas *cp = netdev_priv(dev);
2844
2845         /* this is only used as a load-balancing hint, so it doesn't
2846          * need to be SMP safe
2847          */
2848         static int ring;
2849
2850         if (skb_padto(skb, cp->min_frame_size))
2851                 return NETDEV_TX_OK;
2852
2853         /* XXX: we need some higher-level QoS hooks to steer packets to
2854          *      individual queues.
2855          */
2856         if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2857                 return NETDEV_TX_BUSY;
2858         return NETDEV_TX_OK;
2859 }
2860
2861 static void cas_init_tx_dma(struct cas *cp)
2862 {
2863         u64 desc_dma = cp->block_dvma;
2864         unsigned long off;
2865         u32 val;
2866         int i;
2867
2868         /* set up tx completion writeback registers. must be 8-byte aligned */
2869 #ifdef USE_TX_COMPWB
2870         off = offsetof(struct cas_init_block, tx_compwb);
2871         writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2872         writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2873 #endif
2874
2875         /* enable completion writebacks, enable paced mode,
2876          * disable read pipe, and disable pre-interrupt compwbs
2877          */
2878         val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2879                 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2880                 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2881                 TX_CFG_INTR_COMPWB_DIS;
2882
2883         /* write out tx ring info and tx desc bases */
2884         for (i = 0; i < MAX_TX_RINGS; i++) {
2885                 off = (unsigned long) cp->init_txds[i] -
2886                         (unsigned long) cp->init_block;
2887
2888                 val |= CAS_TX_RINGN_BASE(i);
2889                 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2890                 writel((desc_dma + off) & 0xffffffff, cp->regs +
2891                        REG_TX_DBN_LOW(i));
2892                 /* don't zero out the kick register here as the system
2893                  * will wedge
2894                  */
2895         }
2896         writel(val, cp->regs + REG_TX_CFG);
2897
2898         /* program max burst sizes. these numbers should be different
2899          * if doing QoS.
2900          */
2901 #ifdef USE_QOS
2902         writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2903         writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2904         writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2905         writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2906 #else
2907         writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2908         writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2909         writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2910         writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2911 #endif
2912 }
2913
2914 /* Must be invoked under cp->lock. */
2915 static inline void cas_init_dma(struct cas *cp)
2916 {
2917         cas_init_tx_dma(cp);
2918         cas_init_rx_dma(cp);
2919 }
2920
2921 static void cas_process_mc_list(struct cas *cp)
2922 {
2923         u16 hash_table[16];
2924         u32 crc;
2925         struct netdev_hw_addr *ha;
2926         int i = 1;
2927
2928         memset(hash_table, 0, sizeof(hash_table));
2929         netdev_for_each_mc_addr(ha, cp->dev) {
2930                 if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2931                         /* use the alternate mac address registers for the
2932                          * first 15 multicast addresses
2933                          */
2934                         writel((ha->addr[4] << 8) | ha->addr[5],
2935                                cp->regs + REG_MAC_ADDRN(i*3 + 0));
2936                         writel((ha->addr[2] << 8) | ha->addr[3],
2937                                cp->regs + REG_MAC_ADDRN(i*3 + 1));
2938                         writel((ha->addr[0] << 8) | ha->addr[1],
2939                                cp->regs + REG_MAC_ADDRN(i*3 + 2));
2940                         i++;
2941                 }
2942                 else {
2943                         /* use hw hash table for the next series of
2944                          * multicast addresses
2945                          */
2946                         crc = ether_crc_le(ETH_ALEN, ha->addr);
2947                         crc >>= 24;
2948                         hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2949                 }
2950         }
2951         for (i = 0; i < 16; i++)
2952                 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2953 }
2954
2955 /* Must be invoked under cp->lock. */
2956 static u32 cas_setup_multicast(struct cas *cp)
2957 {
2958         u32 rxcfg = 0;
2959         int i;
2960
2961         if (cp->dev->flags & IFF_PROMISC) {
2962                 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2963
2964         } else if (cp->dev->flags & IFF_ALLMULTI) {
2965                 for (i=0; i < 16; i++)
2966                         writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2967                 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2968
2969         } else {
2970                 cas_process_mc_list(cp);
2971                 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2972         }
2973
2974         return rxcfg;
2975 }
2976
2977 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
2978 static void cas_clear_mac_err(struct cas *cp)
2979 {
2980         writel(0, cp->regs + REG_MAC_COLL_NORMAL);
2981         writel(0, cp->regs + REG_MAC_COLL_FIRST);
2982         writel(0, cp->regs + REG_MAC_COLL_EXCESS);
2983         writel(0, cp->regs + REG_MAC_COLL_LATE);
2984         writel(0, cp->regs + REG_MAC_TIMER_DEFER);
2985         writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
2986         writel(0, cp->regs + REG_MAC_RECV_FRAME);
2987         writel(0, cp->regs + REG_MAC_LEN_ERR);
2988         writel(0, cp->regs + REG_MAC_ALIGN_ERR);
2989         writel(0, cp->regs + REG_MAC_FCS_ERR);
2990         writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
2991 }
2992
2993
2994 static void cas_mac_reset(struct cas *cp)
2995 {
2996         int i;
2997
2998         /* do both TX and RX reset */
2999         writel(0x1, cp->regs + REG_MAC_TX_RESET);
3000         writel(0x1, cp->regs + REG_MAC_RX_RESET);
3001
3002         /* wait for TX */
3003         i = STOP_TRIES;
3004         while (i-- > 0) {
3005                 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3006                         break;
3007                 udelay(10);
3008         }
3009
3010         /* wait for RX */
3011         i = STOP_TRIES;
3012         while (i-- > 0) {
3013                 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3014                         break;
3015                 udelay(10);
3016         }
3017
3018         if (readl(cp->regs + REG_MAC_TX_RESET) |
3019             readl(cp->regs + REG_MAC_RX_RESET))
3020                 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3021                            readl(cp->regs + REG_MAC_TX_RESET),
3022                            readl(cp->regs + REG_MAC_RX_RESET),
3023                            readl(cp->regs + REG_MAC_STATE_MACHINE));
3024 }
3025
3026
3027 /* Must be invoked under cp->lock. */
3028 static void cas_init_mac(struct cas *cp)
3029 {
3030         unsigned char *e = &cp->dev->dev_addr[0];
3031         int i;
3032         cas_mac_reset(cp);
3033
3034         /* setup core arbitration weight register */
3035         writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3036
3037 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3038         /* set the infinite burst register for chips that don't have
3039          * pci issues.
3040          */
3041         if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3042                 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3043 #endif
3044
3045         writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3046
3047         writel(0x00, cp->regs + REG_MAC_IPG0);
3048         writel(0x08, cp->regs + REG_MAC_IPG1);
3049         writel(0x04, cp->regs + REG_MAC_IPG2);
3050
3051         /* change later for 802.3z */
3052         writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3053
3054         /* min frame + FCS */
3055         writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3056
3057         /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3058          * specify the maximum frame size to prevent RX tag errors on
3059          * oversized frames.
3060          */
3061         writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3062                CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3063                         (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3064                cp->regs + REG_MAC_FRAMESIZE_MAX);
3065
3066         /* NOTE: crc_size is used as a surrogate for half-duplex.
3067          * workaround saturn half-duplex issue by increasing preamble
3068          * size to 65 bytes.
3069          */
3070         if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3071                 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3072         else
3073                 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3074         writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3075         writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3076         writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3077
3078         writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3079
3080         writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3081         writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3082         writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3083         writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3084         writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3085
3086         /* setup mac address in perfect filter array */
3087         for (i = 0; i < 45; i++)
3088                 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3089
3090         writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3091         writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3092         writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3093
3094         writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3095         writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3096         writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3097
3098         cp->mac_rx_cfg = cas_setup_multicast(cp);
3099
3100         spin_lock(&cp->stat_lock[N_TX_RINGS]);
3101         cas_clear_mac_err(cp);
3102         spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3103
3104         /* Setup MAC interrupts.  We want to get all of the interesting
3105          * counter expiration events, but we do not want to hear about
3106          * normal rx/tx as the DMA engine tells us that.
3107          */
3108         writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3109         writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3110
3111         /* Don't enable even the PAUSE interrupts for now, we
3112          * make no use of those events other than to record them.
3113          */
3114         writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3115 }
3116
3117 /* Must be invoked under cp->lock. */
3118 static void cas_init_pause_thresholds(struct cas *cp)
3119 {
3120         /* Calculate pause thresholds.  Setting the OFF threshold to the
3121          * full RX fifo size effectively disables PAUSE generation
3122          */
3123         if (cp->rx_fifo_size <= (2 * 1024)) {
3124                 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3125         } else {
3126                 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3127                 if (max_frame * 3 > cp->rx_fifo_size) {
3128                         cp->rx_pause_off = 7104;
3129                         cp->rx_pause_on  = 960;
3130                 } else {
3131                         int off = (cp->rx_fifo_size - (max_frame * 2));
3132                         int on = off - max_frame;
3133                         cp->rx_pause_off = off;
3134                         cp->rx_pause_on = on;
3135                 }
3136         }
3137 }
3138
3139 static int cas_vpd_match(const void __iomem *p, const char *str)
3140 {
3141         int len = strlen(str) + 1;
3142         int i;
3143
3144         for (i = 0; i < len; i++) {
3145                 if (readb(p + i) != str[i])
3146                         return 0;
3147         }
3148         return 1;
3149 }
3150
3151
3152 /* get the mac address by reading the vpd information in the rom.
3153  * also get the phy type and determine if there's an entropy generator.
3154  * NOTE: this is a bit convoluted for the following reasons:
3155  *  1) vpd info has order-dependent mac addresses for multinic cards
3156  *  2) the only way to determine the nic order is to use the slot
3157  *     number.
3158  *  3) fiber cards don't have bridges, so their slot numbers don't
3159  *     mean anything.
3160  *  4) we don't actually know we have a fiber card until after
3161  *     the mac addresses are parsed.
3162  */
3163 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3164                             const int offset)
3165 {
3166         void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3167         void __iomem *base, *kstart;
3168         int i, len;
3169         int found = 0;
3170 #define VPD_FOUND_MAC        0x01
3171 #define VPD_FOUND_PHY        0x02
3172
3173         int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3174         int mac_off  = 0;
3175
3176 #if defined(CONFIG_SPARC)
3177         const unsigned char *addr;
3178 #endif
3179
3180         /* give us access to the PROM */
3181         writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3182                cp->regs + REG_BIM_LOCAL_DEV_EN);
3183
3184         /* check for an expansion rom */
3185         if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3186                 goto use_random_mac_addr;
3187
3188         /* search for beginning of vpd */
3189         base = NULL;
3190         for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3191                 /* check for PCIR */
3192                 if ((readb(p + i + 0) == 0x50) &&
3193                     (readb(p + i + 1) == 0x43) &&
3194                     (readb(p + i + 2) == 0x49) &&
3195                     (readb(p + i + 3) == 0x52)) {
3196                         base = p + (readb(p + i + 8) |
3197                                     (readb(p + i + 9) << 8));
3198                         break;
3199                 }
3200         }
3201
3202         if (!base || (readb(base) != 0x82))
3203                 goto use_random_mac_addr;
3204
3205         i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3206         while (i < EXPANSION_ROM_SIZE) {
3207                 if (readb(base + i) != 0x90) /* no vpd found */
3208                         goto use_random_mac_addr;
3209
3210                 /* found a vpd field */
3211                 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3212
3213                 /* extract keywords */
3214                 kstart = base + i + 3;
3215                 p = kstart;
3216                 while ((p - kstart) < len) {
3217                         int klen = readb(p + 2);
3218                         int j;
3219                         char type;
3220
3221                         p += 3;
3222
3223                         /* look for the following things:
3224                          * -- correct length == 29
3225                          * 3 (type) + 2 (size) +
3226                          * 18 (strlen("local-mac-address") + 1) +
3227                          * 6 (mac addr)
3228                          * -- VPD Instance 'I'
3229                          * -- VPD Type Bytes 'B'
3230                          * -- VPD data length == 6
3231                          * -- property string == local-mac-address
3232                          *
3233                          * -- correct length == 24
3234                          * 3 (type) + 2 (size) +
3235                          * 12 (strlen("entropy-dev") + 1) +
3236                          * 7 (strlen("vms110") + 1)
3237                          * -- VPD Instance 'I'
3238                          * -- VPD Type String 'B'
3239                          * -- VPD data length == 7
3240                          * -- property string == entropy-dev
3241                          *
3242                          * -- correct length == 18
3243                          * 3 (type) + 2 (size) +
3244                          * 9 (strlen("phy-type") + 1) +
3245                          * 4 (strlen("pcs") + 1)
3246                          * -- VPD Instance 'I'
3247                          * -- VPD Type String 'S'
3248                          * -- VPD data length == 4
3249                          * -- property string == phy-type
3250                          *
3251                          * -- correct length == 23
3252                          * 3 (type) + 2 (size) +
3253                          * 14 (strlen("phy-interface") + 1) +
3254                          * 4 (strlen("pcs") + 1)
3255                          * -- VPD Instance 'I'
3256                          * -- VPD Type String 'S'
3257                          * -- VPD data length == 4
3258                          * -- property string == phy-interface
3259                          */
3260                         if (readb(p) != 'I')
3261                                 goto next;
3262
3263                         /* finally, check string and length */
3264                         type = readb(p + 3);
3265                         if (type == 'B') {
3266                                 if ((klen == 29) && readb(p + 4) == 6 &&
3267                                     cas_vpd_match(p + 5,
3268                                                   "local-mac-address")) {
3269                                         if (mac_off++ > offset)
3270                                                 goto next;
3271
3272                                         /* set mac address */
3273                                         for (j = 0; j < 6; j++)
3274                                                 dev_addr[j] =
3275                                                         readb(p + 23 + j);
3276                                         goto found_mac;
3277                                 }
3278                         }
3279
3280                         if (type != 'S')
3281                                 goto next;
3282
3283 #ifdef USE_ENTROPY_DEV
3284                         if ((klen == 24) &&
3285                             cas_vpd_match(p + 5, "entropy-dev") &&
3286                             cas_vpd_match(p + 17, "vms110")) {
3287                                 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3288                                 goto next;
3289                         }
3290 #endif
3291
3292                         if (found & VPD_FOUND_PHY)
3293                                 goto next;
3294
3295                         if ((klen == 18) && readb(p + 4) == 4 &&
3296                             cas_vpd_match(p + 5, "phy-type")) {
3297                                 if (cas_vpd_match(p + 14, "pcs")) {
3298                                         phy_type = CAS_PHY_SERDES;
3299                                         goto found_phy;
3300                                 }
3301                         }
3302
3303                         if ((klen == 23) && readb(p + 4) == 4 &&
3304                             cas_vpd_match(p + 5, "phy-interface")) {
3305                                 if (cas_vpd_match(p + 19, "pcs")) {
3306                                         phy_type = CAS_PHY_SERDES;
3307                                         goto found_phy;
3308                                 }
3309                         }
3310 found_mac:
3311                         found |= VPD_FOUND_MAC;
3312                         goto next;
3313
3314 found_phy:
3315                         found |= VPD_FOUND_PHY;
3316
3317 next:
3318                         p += klen;
3319                 }
3320                 i += len + 3;
3321         }
3322
3323 use_random_mac_addr:
3324         if (found & VPD_FOUND_MAC)
3325                 goto done;
3326
3327 #if defined(CONFIG_SPARC)
3328         addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3329         if (addr != NULL) {
3330                 memcpy(dev_addr, addr, ETH_ALEN);
3331                 goto done;
3332         }
3333 #endif
3334
3335         /* Sun MAC prefix then 3 random bytes. */
3336         pr_info("MAC address not found in ROM VPD\n");
3337         dev_addr[0] = 0x08;
3338         dev_addr[1] = 0x00;
3339         dev_addr[2] = 0x20;
3340         get_random_bytes(dev_addr + 3, 3);
3341
3342 done:
3343         writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3344         return phy_type;
3345 }
3346
3347 /* check pci invariants */
3348 static void cas_check_pci_invariants(struct cas *cp)
3349 {
3350         struct pci_dev *pdev = cp->pdev;
3351
3352         cp->cas_flags = 0;
3353         if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3354             (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3355                 if (pdev->revision >= CAS_ID_REVPLUS)
3356                         cp->cas_flags |= CAS_FLAG_REG_PLUS;
3357                 if (pdev->revision < CAS_ID_REVPLUS02u)
3358                         cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3359
3360                 /* Original Cassini supports HW CSUM, but it's not
3361                  * enabled by default as it can trigger TX hangs.
3362                  */
3363                 if (pdev->revision < CAS_ID_REV2)
3364                         cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3365         } else {
3366                 /* Only sun has original cassini chips.  */
3367                 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3368
3369                 /* We use a flag because the same phy might be externally
3370                  * connected.
3371                  */
3372                 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3373                     (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3374                         cp->cas_flags |= CAS_FLAG_SATURN;
3375         }
3376 }
3377
3378
3379 static int cas_check_invariants(struct cas *cp)
3380 {
3381         struct pci_dev *pdev = cp->pdev;
3382         u32 cfg;
3383         int i;
3384
3385         /* get page size for rx buffers. */
3386         cp->page_order = 0;
3387 #ifdef USE_PAGE_ORDER
3388         if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3389                 /* see if we can allocate larger pages */
3390                 struct page *page = alloc_pages(GFP_ATOMIC,
3391                                                 CAS_JUMBO_PAGE_SHIFT -
3392                                                 PAGE_SHIFT);
3393                 if (page) {
3394                         __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3395                         cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3396                 } else {
3397                         printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3398                 }
3399         }
3400 #endif
3401         cp->page_size = (PAGE_SIZE << cp->page_order);
3402
3403         /* Fetch the FIFO configurations. */
3404         cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3405         cp->rx_fifo_size = RX_FIFO_SIZE;
3406
3407         /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3408          * they're both connected.
3409          */
3410         cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3411                                         PCI_SLOT(pdev->devfn));
3412         if (cp->phy_type & CAS_PHY_SERDES) {
3413                 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3414                 return 0; /* no more checking needed */
3415         }
3416
3417         /* MII */
3418         cfg = readl(cp->regs + REG_MIF_CFG);
3419         if (cfg & MIF_CFG_MDIO_1) {
3420                 cp->phy_type = CAS_PHY_MII_MDIO1;
3421         } else if (cfg & MIF_CFG_MDIO_0) {
3422                 cp->phy_type = CAS_PHY_MII_MDIO0;
3423         }
3424
3425         cas_mif_poll(cp, 0);
3426         writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3427
3428         for (i = 0; i < 32; i++) {
3429                 u32 phy_id;
3430                 int j;
3431
3432                 for (j = 0; j < 3; j++) {
3433                         cp->phy_addr = i;
3434                         phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3435                         phy_id |= cas_phy_read(cp, MII_PHYSID2);
3436                         if (phy_id && (phy_id != 0xFFFFFFFF)) {
3437                                 cp->phy_id = phy_id;
3438                                 goto done;
3439                         }
3440                 }
3441         }
3442         pr_err("MII phy did not respond [%08x]\n",
3443                readl(cp->regs + REG_MIF_STATE_MACHINE));
3444         return -1;
3445
3446 done:
3447         /* see if we can do gigabit */
3448         cfg = cas_phy_read(cp, MII_BMSR);
3449         if ((cfg & CAS_BMSR_1000_EXTEND) &&
3450             cas_phy_read(cp, CAS_MII_1000_EXTEND))
3451                 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3452         return 0;
3453 }
3454
3455 /* Must be invoked under cp->lock. */
3456 static inline void cas_start_dma(struct cas *cp)
3457 {
3458         int i;
3459         u32 val;
3460         int txfailed = 0;
3461
3462         /* enable dma */
3463         val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3464         writel(val, cp->regs + REG_TX_CFG);
3465         val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3466         writel(val, cp->regs + REG_RX_CFG);
3467
3468         /* enable the mac */
3469         val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3470         writel(val, cp->regs + REG_MAC_TX_CFG);
3471         val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3472         writel(val, cp->regs + REG_MAC_RX_CFG);
3473
3474         i = STOP_TRIES;
3475         while (i-- > 0) {
3476                 val = readl(cp->regs + REG_MAC_TX_CFG);
3477                 if ((val & MAC_TX_CFG_EN))
3478                         break;
3479                 udelay(10);
3480         }
3481         if (i < 0) txfailed = 1;
3482         i = STOP_TRIES;
3483         while (i-- > 0) {
3484                 val = readl(cp->regs + REG_MAC_RX_CFG);
3485                 if ((val & MAC_RX_CFG_EN)) {
3486                         if (txfailed) {
3487                                 netdev_err(cp->dev,
3488                                            "enabling mac failed [tx:%08x:%08x]\n",
3489                                            readl(cp->regs + REG_MIF_STATE_MACHINE),
3490                                            readl(cp->regs + REG_MAC_STATE_MACHINE));
3491                         }
3492                         goto enable_rx_done;
3493                 }
3494                 udelay(10);
3495         }
3496         netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3497                    (txfailed ? "tx,rx" : "rx"),
3498                    readl(cp->regs + REG_MIF_STATE_MACHINE),
3499                    readl(cp->regs + REG_MAC_STATE_MACHINE));
3500
3501 enable_rx_done:
3502         cas_unmask_intr(cp); /* enable interrupts */
3503         writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3504         writel(0, cp->regs + REG_RX_COMP_TAIL);
3505
3506         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3507                 if (N_RX_DESC_RINGS > 1)
3508                         writel(RX_DESC_RINGN_SIZE(1) - 4,
3509                                cp->regs + REG_PLUS_RX_KICK1);
3510
3511                 for (i = 1; i < N_RX_COMP_RINGS; i++)
3512                         writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3513         }
3514 }
3515
3516 /* Must be invoked under cp->lock. */
3517 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3518                                    int *pause)
3519 {
3520         u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3521         *fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3522         *pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3523         if (val & PCS_MII_LPA_ASYM_PAUSE)
3524                 *pause |= 0x10;
3525         *spd = 1000;
3526 }
3527
3528 /* Must be invoked under cp->lock. */
3529 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3530                                    int *pause)
3531 {
3532         u32 val;
3533
3534         *fd = 0;
3535         *spd = 10;
3536         *pause = 0;
3537
3538         /* use GMII registers */
3539         val = cas_phy_read(cp, MII_LPA);
3540         if (val & CAS_LPA_PAUSE)
3541                 *pause = 0x01;
3542
3543         if (val & CAS_LPA_ASYM_PAUSE)
3544                 *pause |= 0x10;
3545
3546         if (val & LPA_DUPLEX)
3547                 *fd = 1;
3548         if (val & LPA_100)
3549                 *spd = 100;
3550
3551         if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3552                 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3553                 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3554                         *spd = 1000;
3555                 if (val & CAS_LPA_1000FULL)
3556                         *fd = 1;
3557         }
3558 }
3559
3560 /* A link-up condition has occurred, initialize and enable the
3561  * rest of the chip.
3562  *
3563  * Must be invoked under cp->lock.
3564  */
3565 static void cas_set_link_modes(struct cas *cp)
3566 {
3567         u32 val;
3568         int full_duplex, speed, pause;
3569
3570         full_duplex = 0;
3571         speed = 10;
3572         pause = 0;
3573
3574         if (CAS_PHY_MII(cp->phy_type)) {
3575                 cas_mif_poll(cp, 0);
3576                 val = cas_phy_read(cp, MII_BMCR);
3577                 if (val & BMCR_ANENABLE) {
3578                         cas_read_mii_link_mode(cp, &full_duplex, &speed,
3579                                                &pause);
3580                 } else {
3581                         if (val & BMCR_FULLDPLX)
3582                                 full_duplex = 1;
3583
3584                         if (val & BMCR_SPEED100)
3585                                 speed = 100;
3586                         else if (val & CAS_BMCR_SPEED1000)
3587                                 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3588                                         1000 : 100;
3589                 }
3590                 cas_mif_poll(cp, 1);
3591
3592         } else {
3593                 val = readl(cp->regs + REG_PCS_MII_CTRL);
3594                 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3595                 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3596                         if (val & PCS_MII_CTRL_DUPLEX)
3597                                 full_duplex = 1;
3598                 }
3599         }
3600
3601         netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3602                    speed, full_duplex ? "full" : "half");
3603
3604         val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3605         if (CAS_PHY_MII(cp->phy_type)) {
3606                 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3607                 if (!full_duplex)
3608                         val |= MAC_XIF_DISABLE_ECHO;
3609         }
3610         if (full_duplex)
3611                 val |= MAC_XIF_FDPLX_LED;
3612         if (speed == 1000)
3613                 val |= MAC_XIF_GMII_MODE;
3614         writel(val, cp->regs + REG_MAC_XIF_CFG);
3615
3616         /* deal with carrier and collision detect. */
3617         val = MAC_TX_CFG_IPG_EN;
3618         if (full_duplex) {
3619                 val |= MAC_TX_CFG_IGNORE_CARRIER;
3620                 val |= MAC_TX_CFG_IGNORE_COLL;
3621         } else {
3622 #ifndef USE_CSMA_CD_PROTO
3623                 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3624                 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3625 #endif
3626         }
3627         /* val now set up for REG_MAC_TX_CFG */
3628
3629         /* If gigabit and half-duplex, enable carrier extension
3630          * mode.  increase slot time to 512 bytes as well.
3631          * else, disable it and make sure slot time is 64 bytes.
3632          * also activate checksum bug workaround
3633          */
3634         if ((speed == 1000) && !full_duplex) {
3635                 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3636                        cp->regs + REG_MAC_TX_CFG);
3637
3638                 val = readl(cp->regs + REG_MAC_RX_CFG);
3639                 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3640                 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3641                        cp->regs + REG_MAC_RX_CFG);
3642
3643                 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3644
3645                 cp->crc_size = 4;
3646                 /* minimum size gigabit frame at half duplex */
3647                 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3648
3649         } else {
3650                 writel(val, cp->regs + REG_MAC_TX_CFG);
3651
3652                 /* checksum bug workaround. don't strip FCS when in
3653                  * half-duplex mode
3654                  */
3655                 val = readl(cp->regs + REG_MAC_RX_CFG);
3656                 if (full_duplex) {
3657                         val |= MAC_RX_CFG_STRIP_FCS;
3658                         cp->crc_size = 0;
3659                         cp->min_frame_size = CAS_MIN_MTU;
3660                 } else {
3661                         val &= ~MAC_RX_CFG_STRIP_FCS;
3662                         cp->crc_size = 4;
3663                         cp->min_frame_size = CAS_MIN_FRAME;
3664                 }
3665                 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3666                        cp->regs + REG_MAC_RX_CFG);
3667                 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3668         }
3669
3670         if (netif_msg_link(cp)) {
3671                 if (pause & 0x01) {
3672                         netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3673                                     cp->rx_fifo_size,
3674                                     cp->rx_pause_off,
3675                                     cp->rx_pause_on);
3676                 } else if (pause & 0x10) {
3677                         netdev_info(cp->dev, "TX pause enabled\n");
3678                 } else {
3679                         netdev_info(cp->dev, "Pause is disabled\n");
3680                 }
3681         }
3682
3683         val = readl(cp->regs + REG_MAC_CTRL_CFG);
3684         val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3685         if (pause) { /* symmetric or asymmetric pause */
3686                 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3687                 if (pause & 0x01) { /* symmetric pause */
3688                         val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3689                 }
3690         }
3691         writel(val, cp->regs + REG_MAC_CTRL_CFG);
3692         cas_start_dma(cp);
3693 }
3694
3695 /* Must be invoked under cp->lock. */
3696 static void cas_init_hw(struct cas *cp, int restart_link)
3697 {
3698         if (restart_link)
3699                 cas_phy_init(cp);
3700
3701         cas_init_pause_thresholds(cp);
3702         cas_init_mac(cp);
3703         cas_init_dma(cp);
3704
3705         if (restart_link) {
3706                 /* Default aneg parameters */
3707                 cp->timer_ticks = 0;
3708                 cas_begin_auto_negotiation(cp, NULL);
3709         } else if (cp->lstate == link_up) {
3710                 cas_set_link_modes(cp);
3711                 netif_carrier_on(cp->dev);
3712         }
3713 }
3714
3715 /* Must be invoked under cp->lock. on earlier cassini boards,
3716  * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3717  * let it settle out, and then restore pci state.
3718  */
3719 static void cas_hard_reset(struct cas *cp)
3720 {
3721         writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3722         udelay(20);
3723         pci_restore_state(cp->pdev);
3724 }
3725
3726
3727 static void cas_global_reset(struct cas *cp, int blkflag)
3728 {
3729         int limit;
3730
3731         /* issue a global reset. don't use RSTOUT. */
3732         if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3733                 /* For PCS, when the blkflag is set, we should set the
3734                  * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3735                  * the last autonegotiation from being cleared.  We'll
3736                  * need some special handling if the chip is set into a
3737                  * loopback mode.
3738                  */
3739                 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3740                        cp->regs + REG_SW_RESET);
3741         } else {
3742                 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3743         }
3744
3745         /* need to wait at least 3ms before polling register */
3746         mdelay(3);
3747
3748         limit = STOP_TRIES;
3749         while (limit-- > 0) {
3750                 u32 val = readl(cp->regs + REG_SW_RESET);
3751                 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3752                         goto done;
3753                 udelay(10);
3754         }
3755         netdev_err(cp->dev, "sw reset failed\n");
3756
3757 done:
3758         /* enable various BIM interrupts */
3759         writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3760                BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3761
3762         /* clear out pci error status mask for handled errors.
3763          * we don't deal with DMA counter overflows as they happen
3764          * all the time.
3765          */
3766         writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3767                                PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3768                                PCI_ERR_BIM_DMA_READ), cp->regs +
3769                REG_PCI_ERR_STATUS_MASK);
3770
3771         /* set up for MII by default to address mac rx reset timeout
3772          * issue
3773          */
3774         writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3775 }
3776
3777 static void cas_reset(struct cas *cp, int blkflag)
3778 {
3779         u32 val;
3780
3781         cas_mask_intr(cp);
3782         cas_global_reset(cp, blkflag);
3783         cas_mac_reset(cp);
3784         cas_entropy_reset(cp);
3785
3786         /* disable dma engines. */
3787         val = readl(cp->regs + REG_TX_CFG);
3788         val &= ~TX_CFG_DMA_EN;
3789         writel(val, cp->regs + REG_TX_CFG);
3790
3791         val = readl(cp->regs + REG_RX_CFG);
3792         val &= ~RX_CFG_DMA_EN;
3793         writel(val, cp->regs + REG_RX_CFG);
3794
3795         /* program header parser */
3796         if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3797             (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3798                 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3799         } else {
3800                 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3801         }
3802
3803         /* clear out error registers */
3804         spin_lock(&cp->stat_lock[N_TX_RINGS]);
3805         cas_clear_mac_err(cp);
3806         spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3807 }
3808
3809 /* Shut down the chip, must be called with pm_mutex held.  */
3810 static void cas_shutdown(struct cas *cp)
3811 {
3812         unsigned long flags;
3813
3814         /* Make us not-running to avoid timers respawning */
3815         cp->hw_running = 0;
3816
3817         del_timer_sync(&cp->link_timer);
3818
3819         /* Stop the reset task */
3820 #if 0
3821         while (atomic_read(&cp->reset_task_pending_mtu) ||
3822                atomic_read(&cp->reset_task_pending_spare) ||
3823                atomic_read(&cp->reset_task_pending_all))
3824                 schedule();
3825
3826 #else
3827         while (atomic_read(&cp->reset_task_pending))
3828                 schedule();
3829 #endif
3830         /* Actually stop the chip */
3831         cas_lock_all_save(cp, flags);
3832         cas_reset(cp, 0);
3833         if (cp->cas_flags & CAS_FLAG_SATURN)
3834                 cas_phy_powerdown(cp);
3835         cas_unlock_all_restore(cp, flags);
3836 }
3837
3838 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3839 {
3840         struct cas *cp = netdev_priv(dev);
3841
3842         dev->mtu = new_mtu;
3843         if (!netif_running(dev) || !netif_device_present(dev))
3844                 return 0;
3845
3846         /* let the reset task handle it */
3847 #if 1
3848         atomic_inc(&cp->reset_task_pending);
3849         if ((cp->phy_type & CAS_PHY_SERDES)) {
3850                 atomic_inc(&cp->reset_task_pending_all);
3851         } else {
3852                 atomic_inc(&cp->reset_task_pending_mtu);
3853         }
3854         schedule_work(&cp->reset_task);
3855 #else
3856         atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3857                    CAS_RESET_ALL : CAS_RESET_MTU);
3858         pr_err("reset called in cas_change_mtu\n");
3859         schedule_work(&cp->reset_task);
3860 #endif
3861
3862         flush_work(&cp->reset_task);
3863         return 0;
3864 }
3865
3866 static void cas_clean_txd(struct cas *cp, int ring)
3867 {
3868         struct cas_tx_desc *txd = cp->init_txds[ring];
3869         struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3870         u64 daddr, dlen;
3871         int i, size;
3872
3873         size = TX_DESC_RINGN_SIZE(ring);
3874         for (i = 0; i < size; i++) {
3875                 int frag;
3876
3877                 if (skbs[i] == NULL)
3878                         continue;
3879
3880                 skb = skbs[i];
3881                 skbs[i] = NULL;
3882
3883                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3884                         int ent = i & (size - 1);
3885
3886                         /* first buffer is never a tiny buffer and so
3887                          * needs to be unmapped.
3888                          */
3889                         daddr = le64_to_cpu(txd[ent].buffer);
3890                         dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3891                                          le64_to_cpu(txd[ent].control));
3892                         dma_unmap_page(&cp->pdev->dev, daddr, dlen,
3893                                        DMA_TO_DEVICE);
3894
3895                         if (frag != skb_shinfo(skb)->nr_frags) {
3896                                 i++;
3897
3898                                 /* next buffer might by a tiny buffer.
3899                                  * skip past it.
3900                                  */
3901                                 ent = i & (size - 1);
3902                                 if (cp->tx_tiny_use[ring][ent].used)
3903                                         i++;
3904                         }
3905                 }
3906                 dev_kfree_skb_any(skb);
3907         }
3908
3909         /* zero out tiny buf usage */
3910         memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3911 }
3912
3913 /* freed on close */
3914 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3915 {
3916         cas_page_t **page = cp->rx_pages[ring];
3917         int i, size;
3918
3919         size = RX_DESC_RINGN_SIZE(ring);
3920         for (i = 0; i < size; i++) {
3921                 if (page[i]) {
3922                         cas_page_free(cp, page[i]);
3923                         page[i] = NULL;
3924                 }
3925         }
3926 }
3927
3928 static void cas_free_rxds(struct cas *cp)
3929 {
3930         int i;
3931
3932         for (i = 0; i < N_RX_DESC_RINGS; i++)
3933                 cas_free_rx_desc(cp, i);
3934 }
3935
3936 /* Must be invoked under cp->lock. */
3937 static void cas_clean_rings(struct cas *cp)
3938 {
3939         int i;
3940
3941         /* need to clean all tx rings */
3942         memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3943         memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3944         for (i = 0; i < N_TX_RINGS; i++)
3945                 cas_clean_txd(cp, i);
3946
3947         /* zero out init block */
3948         memset(cp->init_block, 0, sizeof(struct cas_init_block));
3949         cas_clean_rxds(cp);
3950         cas_clean_rxcs(cp);
3951 }
3952
3953 /* allocated on open */
3954 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3955 {
3956         cas_page_t **page = cp->rx_pages[ring];
3957         int size, i = 0;
3958
3959         size = RX_DESC_RINGN_SIZE(ring);
3960         for (i = 0; i < size; i++) {
3961                 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3962                         return -1;
3963         }
3964         return 0;
3965 }
3966
3967 static int cas_alloc_rxds(struct cas *cp)
3968 {
3969         int i;
3970
3971         for (i = 0; i < N_RX_DESC_RINGS; i++) {
3972                 if (cas_alloc_rx_desc(cp, i) < 0) {
3973                         cas_free_rxds(cp);
3974                         return -1;
3975                 }
3976         }
3977         return 0;
3978 }
3979
3980 static void cas_reset_task(struct work_struct *work)
3981 {
3982         struct cas *cp = container_of(work, struct cas, reset_task);
3983 #if 0
3984         int pending = atomic_read(&cp->reset_task_pending);
3985 #else
3986         int pending_all = atomic_read(&cp->reset_task_pending_all);
3987         int pending_spare = atomic_read(&cp->reset_task_pending_spare);
3988         int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
3989
3990         if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
3991                 /* We can have more tasks scheduled than actually
3992                  * needed.
3993                  */
3994                 atomic_dec(&cp->reset_task_pending);
3995                 return;
3996         }
3997 #endif
3998         /* The link went down, we reset the ring, but keep
3999          * DMA stopped. Use this function for reset
4000          * on error as well.
4001          */
4002         if (cp->hw_running) {
4003                 unsigned long flags;
4004
4005                 /* Make sure we don't get interrupts or tx packets */
4006                 netif_device_detach(cp->dev);
4007                 cas_lock_all_save(cp, flags);
4008
4009                 if (cp->opened) {
4010                         /* We call cas_spare_recover when we call cas_open.
4011                          * but we do not initialize the lists cas_spare_recover
4012                          * uses until cas_open is called.
4013                          */
4014                         cas_spare_recover(cp, GFP_ATOMIC);
4015                 }
4016 #if 1
4017                 /* test => only pending_spare set */
4018                 if (!pending_all && !pending_mtu)
4019                         goto done;
4020 #else
4021                 if (pending == CAS_RESET_SPARE)
4022                         goto done;
4023 #endif
4024                 /* when pending == CAS_RESET_ALL, the following
4025                  * call to cas_init_hw will restart auto negotiation.
4026                  * Setting the second argument of cas_reset to
4027                  * !(pending == CAS_RESET_ALL) will set this argument
4028                  * to 1 (avoiding reinitializing the PHY for the normal
4029                  * PCS case) when auto negotiation is not restarted.
4030                  */
4031 #if 1
4032                 cas_reset(cp, !(pending_all > 0));
4033                 if (cp->opened)
4034                         cas_clean_rings(cp);
4035                 cas_init_hw(cp, (pending_all > 0));
4036 #else
4037                 cas_reset(cp, !(pending == CAS_RESET_ALL));
4038                 if (cp->opened)
4039                         cas_clean_rings(cp);
4040                 cas_init_hw(cp, pending == CAS_RESET_ALL);
4041 #endif
4042
4043 done:
4044                 cas_unlock_all_restore(cp, flags);
4045                 netif_device_attach(cp->dev);
4046         }
4047 #if 1
4048         atomic_sub(pending_all, &cp->reset_task_pending_all);
4049         atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4050         atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4051         atomic_dec(&cp->reset_task_pending);
4052 #else
4053         atomic_set(&cp->reset_task_pending, 0);
4054 #endif
4055 }
4056
4057 static void cas_link_timer(struct timer_list *t)
4058 {
4059         struct cas *cp = from_timer(cp, t, link_timer);
4060         int mask, pending = 0, reset = 0;
4061         unsigned long flags;
4062
4063         if (link_transition_timeout != 0 &&
4064             cp->link_transition_jiffies_valid &&
4065             ((jiffies - cp->link_transition_jiffies) >
4066               (link_transition_timeout))) {
4067                 /* One-second counter so link-down workaround doesn't
4068                  * cause resets to occur so fast as to fool the switch
4069                  * into thinking the link is down.
4070                  */
4071                 cp->link_transition_jiffies_valid = 0;
4072         }
4073
4074         if (!cp->hw_running)
4075                 return;
4076
4077         spin_lock_irqsave(&cp->lock, flags);
4078         cas_lock_tx(cp);
4079         cas_entropy_gather(cp);
4080
4081         /* If the link task is still pending, we just
4082          * reschedule the link timer
4083          */
4084 #if 1
4085         if (atomic_read(&cp->reset_task_pending_all) ||
4086             atomic_read(&cp->reset_task_pending_spare) ||
4087             atomic_read(&cp->reset_task_pending_mtu))
4088                 goto done;
4089 #else
4090         if (atomic_read(&cp->reset_task_pending))
4091                 goto done;
4092 #endif
4093
4094         /* check for rx cleaning */
4095         if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4096                 int i, rmask;
4097
4098                 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4099                         rmask = CAS_FLAG_RXD_POST(i);
4100                         if ((mask & rmask) == 0)
4101                                 continue;
4102
4103                         /* post_rxds will do a mod_timer */
4104                         if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4105                                 pending = 1;
4106                                 continue;
4107                         }
4108                         cp->cas_flags &= ~rmask;
4109                 }
4110         }
4111
4112         if (CAS_PHY_MII(cp->phy_type)) {
4113                 u16 bmsr;
4114                 cas_mif_poll(cp, 0);
4115                 bmsr = cas_phy_read(cp, MII_BMSR);
4116                 /* WTZ: Solaris driver reads this twice, but that
4117                  * may be due to the PCS case and the use of a
4118                  * common implementation. Read it twice here to be
4119                  * safe.
4120                  */
4121                 bmsr = cas_phy_read(cp, MII_BMSR);
4122                 cas_mif_poll(cp, 1);
4123                 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4124                 reset = cas_mii_link_check(cp, bmsr);
4125         } else {
4126                 reset = cas_pcs_link_check(cp);
4127         }
4128
4129         if (reset)
4130                 goto done;
4131
4132         /* check for tx state machine confusion */
4133         if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4134                 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4135                 u32 wptr, rptr;
4136                 int tlm  = CAS_VAL(MAC_SM_TLM, val);
4137
4138                 if (((tlm == 0x5) || (tlm == 0x3)) &&
4139                     (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4140                         netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4141                                      "tx err: MAC_STATE[%08x]\n", val);
4142                         reset = 1;
4143                         goto done;
4144                 }
4145
4146                 val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4147                 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4148                 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4149                 if ((val == 0) && (wptr != rptr)) {
4150                         netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4151                                      "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4152                                      val, wptr, rptr);
4153                         reset = 1;
4154                 }
4155
4156                 if (reset)
4157                         cas_hard_reset(cp);
4158         }
4159
4160 done:
4161         if (reset) {
4162 #if 1
4163                 atomic_inc(&cp->reset_task_pending);
4164                 atomic_inc(&cp->reset_task_pending_all);
4165                 schedule_work(&cp->reset_task);
4166 #else
4167                 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4168                 pr_err("reset called in cas_link_timer\n");
4169                 schedule_work(&cp->reset_task);
4170 #endif
4171         }
4172
4173         if (!pending)
4174                 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4175         cas_unlock_tx(cp);
4176         spin_unlock_irqrestore(&cp->lock, flags);
4177 }
4178
4179 /* tiny buffers are used to avoid target abort issues with
4180  * older cassini's
4181  */
4182 static void cas_tx_tiny_free(struct cas *cp)
4183 {
4184         struct pci_dev *pdev = cp->pdev;
4185         int i;
4186
4187         for (i = 0; i < N_TX_RINGS; i++) {
4188                 if (!cp->tx_tiny_bufs[i])
4189                         continue;
4190
4191                 dma_free_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
4192                                   cp->tx_tiny_bufs[i], cp->tx_tiny_dvma[i]);
4193                 cp->tx_tiny_bufs[i] = NULL;
4194         }
4195 }
4196
4197 static int cas_tx_tiny_alloc(struct cas *cp)
4198 {
4199         struct pci_dev *pdev = cp->pdev;
4200         int i;
4201
4202         for (i = 0; i < N_TX_RINGS; i++) {
4203                 cp->tx_tiny_bufs[i] =
4204                         dma_alloc_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
4205                                            &cp->tx_tiny_dvma[i], GFP_KERNEL);
4206                 if (!cp->tx_tiny_bufs[i]) {
4207                         cas_tx_tiny_free(cp);
4208                         return -1;
4209                 }
4210         }
4211         return 0;
4212 }
4213
4214
4215 static int cas_open(struct net_device *dev)
4216 {
4217         struct cas *cp = netdev_priv(dev);
4218         int hw_was_up, err;
4219         unsigned long flags;
4220
4221         mutex_lock(&cp->pm_mutex);
4222
4223         hw_was_up = cp->hw_running;
4224
4225         /* The power-management mutex protects the hw_running
4226          * etc. state so it is safe to do this bit without cp->lock
4227          */
4228         if (!cp->hw_running) {
4229                 /* Reset the chip */
4230                 cas_lock_all_save(cp, flags);
4231                 /* We set the second arg to cas_reset to zero
4232                  * because cas_init_hw below will have its second
4233                  * argument set to non-zero, which will force
4234                  * autonegotiation to start.
4235                  */
4236                 cas_reset(cp, 0);
4237                 cp->hw_running = 1;
4238                 cas_unlock_all_restore(cp, flags);
4239         }
4240
4241         err = -ENOMEM;
4242         if (cas_tx_tiny_alloc(cp) < 0)
4243                 goto err_unlock;
4244
4245         /* alloc rx descriptors */
4246         if (cas_alloc_rxds(cp) < 0)
4247                 goto err_tx_tiny;
4248
4249         /* allocate spares */
4250         cas_spare_init(cp);
4251         cas_spare_recover(cp, GFP_KERNEL);
4252
4253         /* We can now request the interrupt as we know it's masked
4254          * on the controller. cassini+ has up to 4 interrupts
4255          * that can be used, but you need to do explicit pci interrupt
4256          * mapping to expose them
4257          */
4258         if (request_irq(cp->pdev->irq, cas_interrupt,
4259                         IRQF_SHARED, dev->name, (void *) dev)) {
4260                 netdev_err(cp->dev, "failed to request irq !\n");
4261                 err = -EAGAIN;
4262                 goto err_spare;
4263         }
4264
4265 #ifdef USE_NAPI
4266         napi_enable(&cp->napi);
4267 #endif
4268         /* init hw */
4269         cas_lock_all_save(cp, flags);
4270         cas_clean_rings(cp);
4271         cas_init_hw(cp, !hw_was_up);
4272         cp->opened = 1;
4273         cas_unlock_all_restore(cp, flags);
4274
4275         netif_start_queue(dev);
4276         mutex_unlock(&cp->pm_mutex);
4277         return 0;
4278
4279 err_spare:
4280         cas_spare_free(cp);
4281         cas_free_rxds(cp);
4282 err_tx_tiny:
4283         cas_tx_tiny_free(cp);
4284 err_unlock:
4285         mutex_unlock(&cp->pm_mutex);
4286         return err;
4287 }
4288
4289 static int cas_close(struct net_device *dev)
4290 {
4291         unsigned long flags;
4292         struct cas *cp = netdev_priv(dev);
4293
4294 #ifdef USE_NAPI
4295         napi_disable(&cp->napi);
4296 #endif
4297         /* Make sure we don't get distracted by suspend/resume */
4298         mutex_lock(&cp->pm_mutex);
4299
4300         netif_stop_queue(dev);
4301
4302         /* Stop traffic, mark us closed */
4303         cas_lock_all_save(cp, flags);
4304         cp->opened = 0;
4305         cas_reset(cp, 0);
4306         cas_phy_init(cp);
4307         cas_begin_auto_negotiation(cp, NULL);
4308         cas_clean_rings(cp);
4309         cas_unlock_all_restore(cp, flags);
4310
4311         free_irq(cp->pdev->irq, (void *) dev);
4312         cas_spare_free(cp);
4313         cas_free_rxds(cp);
4314         cas_tx_tiny_free(cp);
4315         mutex_unlock(&cp->pm_mutex);
4316         return 0;
4317 }
4318
4319 static struct {
4320         const char name[ETH_GSTRING_LEN];
4321 } ethtool_cassini_statnames[] = {
4322         {"collisions"},
4323         {"rx_bytes"},
4324         {"rx_crc_errors"},
4325         {"rx_dropped"},
4326         {"rx_errors"},
4327         {"rx_fifo_errors"},
4328         {"rx_frame_errors"},
4329         {"rx_length_errors"},
4330         {"rx_over_errors"},
4331         {"rx_packets"},
4332         {"tx_aborted_errors"},
4333         {"tx_bytes"},
4334         {"tx_dropped"},
4335         {"tx_errors"},
4336         {"tx_fifo_errors"},
4337         {"tx_packets"}
4338 };
4339 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4340
4341 static struct {
4342         const int offsets;      /* neg. values for 2nd arg to cas_read_phy */
4343 } ethtool_register_table[] = {
4344         {-MII_BMSR},
4345         {-MII_BMCR},
4346         {REG_CAWR},
4347         {REG_INF_BURST},
4348         {REG_BIM_CFG},
4349         {REG_RX_CFG},
4350         {REG_HP_CFG},
4351         {REG_MAC_TX_CFG},
4352         {REG_MAC_RX_CFG},
4353         {REG_MAC_CTRL_CFG},
4354         {REG_MAC_XIF_CFG},
4355         {REG_MIF_CFG},
4356         {REG_PCS_CFG},
4357         {REG_SATURN_PCFG},
4358         {REG_PCS_MII_STATUS},
4359         {REG_PCS_STATE_MACHINE},
4360         {REG_MAC_COLL_EXCESS},
4361         {REG_MAC_COLL_LATE}
4362 };
4363 #define CAS_REG_LEN     ARRAY_SIZE(ethtool_register_table)
4364 #define CAS_MAX_REGS    (sizeof (u32)*CAS_REG_LEN)
4365
4366 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4367 {
4368         u8 *p;
4369         int i;
4370         unsigned long flags;
4371
4372         spin_lock_irqsave(&cp->lock, flags);
4373         for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4374                 u16 hval;
4375                 u32 val;
4376                 if (ethtool_register_table[i].offsets < 0) {
4377                         hval = cas_phy_read(cp,
4378                                     -ethtool_register_table[i].offsets);
4379                         val = hval;
4380                 } else {
4381                         val= readl(cp->regs+ethtool_register_table[i].offsets);
4382                 }
4383                 memcpy(p, (u8 *)&val, sizeof(u32));
4384         }
4385         spin_unlock_irqrestore(&cp->lock, flags);
4386 }
4387
4388 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4389 {
4390         struct cas *cp = netdev_priv(dev);
4391         struct net_device_stats *stats = cp->net_stats;
4392         unsigned long flags;
4393         int i;
4394         unsigned long tmp;
4395
4396         /* we collate all of the stats into net_stats[N_TX_RING] */
4397         if (!cp->hw_running)
4398                 return stats + N_TX_RINGS;
4399
4400         /* collect outstanding stats */
4401         /* WTZ: the Cassini spec gives these as 16 bit counters but
4402          * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4403          * in case the chip somehow puts any garbage in the other bits.
4404          * Also, counter usage didn't seem to mach what Adrian did
4405          * in the parts of the code that set these quantities. Made
4406          * that consistent.
4407          */
4408         spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4409         stats[N_TX_RINGS].rx_crc_errors +=
4410           readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4411         stats[N_TX_RINGS].rx_frame_errors +=
4412                 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4413         stats[N_TX_RINGS].rx_length_errors +=
4414                 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4415 #if 1
4416         tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4417                 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4418         stats[N_TX_RINGS].tx_aborted_errors += tmp;
4419         stats[N_TX_RINGS].collisions +=
4420           tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4421 #else
4422         stats[N_TX_RINGS].tx_aborted_errors +=
4423                 readl(cp->regs + REG_MAC_COLL_EXCESS);
4424         stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4425                 readl(cp->regs + REG_MAC_COLL_LATE);
4426 #endif
4427         cas_clear_mac_err(cp);
4428
4429         /* saved bits that are unique to ring 0 */
4430         spin_lock(&cp->stat_lock[0]);
4431         stats[N_TX_RINGS].collisions        += stats[0].collisions;
4432         stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4433         stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4434         stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4435         stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4436         stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4437         spin_unlock(&cp->stat_lock[0]);
4438
4439         for (i = 0; i < N_TX_RINGS; i++) {
4440                 spin_lock(&cp->stat_lock[i]);
4441                 stats[N_TX_RINGS].rx_length_errors +=
4442                         stats[i].rx_length_errors;
4443                 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4444                 stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4445                 stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4446                 stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4447                 stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4448                 stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4449                 stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4450                 stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4451                 stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4452                 memset(stats + i, 0, sizeof(struct net_device_stats));
4453                 spin_unlock(&cp->stat_lock[i]);
4454         }
4455         spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4456         return stats + N_TX_RINGS;
4457 }
4458
4459
4460 static void cas_set_multicast(struct net_device *dev)
4461 {
4462         struct cas *cp = netdev_priv(dev);
4463         u32 rxcfg, rxcfg_new;
4464         unsigned long flags;
4465         int limit = STOP_TRIES;
4466
4467         if (!cp->hw_running)
4468                 return;
4469
4470         spin_lock_irqsave(&cp->lock, flags);
4471         rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4472
4473         /* disable RX MAC and wait for completion */
4474         writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4475         while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4476                 if (!limit--)
4477                         break;
4478                 udelay(10);
4479         }
4480
4481         /* disable hash filter and wait for completion */
4482         limit = STOP_TRIES;
4483         rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4484         writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4485         while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4486                 if (!limit--)
4487                         break;
4488                 udelay(10);
4489         }
4490
4491         /* program hash filters */
4492         cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4493         rxcfg |= rxcfg_new;
4494         writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4495         spin_unlock_irqrestore(&cp->lock, flags);
4496 }
4497
4498 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4499 {
4500         struct cas *cp = netdev_priv(dev);
4501         strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4502         strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4503         strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4504 }
4505
4506 static int cas_get_link_ksettings(struct net_device *dev,
4507                                   struct ethtool_link_ksettings *cmd)
4508 {
4509         struct cas *cp = netdev_priv(dev);
4510         u16 bmcr;
4511         int full_duplex, speed, pause;
4512         unsigned long flags;
4513         enum link_state linkstate = link_up;
4514         u32 supported, advertising;
4515
4516         advertising = 0;
4517         supported = SUPPORTED_Autoneg;
4518         if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4519                 supported |= SUPPORTED_1000baseT_Full;
4520                 advertising |= ADVERTISED_1000baseT_Full;
4521         }
4522
4523         /* Record PHY settings if HW is on. */
4524         spin_lock_irqsave(&cp->lock, flags);
4525         bmcr = 0;
4526         linkstate = cp->lstate;
4527         if (CAS_PHY_MII(cp->phy_type)) {
4528                 cmd->base.port = PORT_MII;
4529                 cmd->base.phy_address = cp->phy_addr;
4530                 advertising |= ADVERTISED_TP | ADVERTISED_MII |
4531                         ADVERTISED_10baseT_Half |
4532                         ADVERTISED_10baseT_Full |
4533                         ADVERTISED_100baseT_Half |
4534                         ADVERTISED_100baseT_Full;
4535
4536                 supported |=
4537                         (SUPPORTED_10baseT_Half |
4538                          SUPPORTED_10baseT_Full |
4539                          SUPPORTED_100baseT_Half |
4540                          SUPPORTED_100baseT_Full |
4541                          SUPPORTED_TP | SUPPORTED_MII);
4542
4543                 if (cp->hw_running) {
4544                         cas_mif_poll(cp, 0);
4545                         bmcr = cas_phy_read(cp, MII_BMCR);
4546                         cas_read_mii_link_mode(cp, &full_duplex,
4547                                                &speed, &pause);
4548                         cas_mif_poll(cp, 1);
4549                 }
4550
4551         } else {
4552                 cmd->base.port = PORT_FIBRE;
4553                 cmd->base.phy_address = 0;
4554                 supported   |= SUPPORTED_FIBRE;
4555                 advertising |= ADVERTISED_FIBRE;
4556
4557                 if (cp->hw_running) {
4558                         /* pcs uses the same bits as mii */
4559                         bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4560                         cas_read_pcs_link_mode(cp, &full_duplex,
4561                                                &speed, &pause);
4562                 }
4563         }
4564         spin_unlock_irqrestore(&cp->lock, flags);
4565
4566         if (bmcr & BMCR_ANENABLE) {
4567                 advertising |= ADVERTISED_Autoneg;
4568                 cmd->base.autoneg = AUTONEG_ENABLE;
4569                 cmd->base.speed =  ((speed == 10) ?
4570                                             SPEED_10 :
4571                                             ((speed == 1000) ?
4572                                              SPEED_1000 : SPEED_100));
4573                 cmd->base.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4574         } else {
4575                 cmd->base.autoneg = AUTONEG_DISABLE;
4576                 cmd->base.speed = ((bmcr & CAS_BMCR_SPEED1000) ?
4577                                             SPEED_1000 :
4578                                             ((bmcr & BMCR_SPEED100) ?
4579                                              SPEED_100 : SPEED_10));
4580                 cmd->base.duplex = (bmcr & BMCR_FULLDPLX) ?
4581                         DUPLEX_FULL : DUPLEX_HALF;
4582         }
4583         if (linkstate != link_up) {
4584                 /* Force these to "unknown" if the link is not up and
4585                  * autonogotiation in enabled. We can set the link
4586                  * speed to 0, but not cmd->duplex,
4587                  * because its legal values are 0 and 1.  Ethtool will
4588                  * print the value reported in parentheses after the
4589                  * word "Unknown" for unrecognized values.
4590                  *
4591                  * If in forced mode, we report the speed and duplex
4592                  * settings that we configured.
4593                  */
4594                 if (cp->link_cntl & BMCR_ANENABLE) {
4595                         cmd->base.speed = 0;
4596                         cmd->base.duplex = 0xff;
4597                 } else {
4598                         cmd->base.speed = SPEED_10;
4599                         if (cp->link_cntl & BMCR_SPEED100) {
4600                                 cmd->base.speed = SPEED_100;
4601                         } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4602                                 cmd->base.speed = SPEED_1000;
4603                         }
4604                         cmd->base.duplex = (cp->link_cntl & BMCR_FULLDPLX) ?
4605                                 DUPLEX_FULL : DUPLEX_HALF;
4606                 }
4607         }
4608
4609         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
4610                                                 supported);
4611         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
4612                                                 advertising);
4613
4614         return 0;
4615 }
4616
4617 static int cas_set_link_ksettings(struct net_device *dev,
4618                                   const struct ethtool_link_ksettings *cmd)
4619 {
4620         struct cas *cp = netdev_priv(dev);
4621         unsigned long flags;
4622         u32 speed = cmd->base.speed;
4623
4624         /* Verify the settings we care about. */
4625         if (cmd->base.autoneg != AUTONEG_ENABLE &&
4626             cmd->base.autoneg != AUTONEG_DISABLE)
4627                 return -EINVAL;
4628
4629         if (cmd->base.autoneg == AUTONEG_DISABLE &&
4630             ((speed != SPEED_1000 &&
4631               speed != SPEED_100 &&
4632               speed != SPEED_10) ||
4633              (cmd->base.duplex != DUPLEX_HALF &&
4634               cmd->base.duplex != DUPLEX_FULL)))
4635                 return -EINVAL;
4636
4637         /* Apply settings and restart link process. */
4638         spin_lock_irqsave(&cp->lock, flags);
4639         cas_begin_auto_negotiation(cp, cmd);
4640         spin_unlock_irqrestore(&cp->lock, flags);
4641         return 0;
4642 }
4643
4644 static int cas_nway_reset(struct net_device *dev)
4645 {
4646         struct cas *cp = netdev_priv(dev);
4647         unsigned long flags;
4648
4649         if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4650                 return -EINVAL;
4651
4652         /* Restart link process. */
4653         spin_lock_irqsave(&cp->lock, flags);
4654         cas_begin_auto_negotiation(cp, NULL);
4655         spin_unlock_irqrestore(&cp->lock, flags);
4656
4657         return 0;
4658 }
4659
4660 static u32 cas_get_link(struct net_device *dev)
4661 {
4662         struct cas *cp = netdev_priv(dev);
4663         return cp->lstate == link_up;
4664 }
4665
4666 static u32 cas_get_msglevel(struct net_device *dev)
4667 {
4668         struct cas *cp = netdev_priv(dev);
4669         return cp->msg_enable;
4670 }
4671
4672 static void cas_set_msglevel(struct net_device *dev, u32 value)
4673 {
4674         struct cas *cp = netdev_priv(dev);
4675         cp->msg_enable = value;
4676 }
4677
4678 static int cas_get_regs_len(struct net_device *dev)
4679 {
4680         struct cas *cp = netdev_priv(dev);
4681         return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4682 }
4683
4684 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4685                              void *p)
4686 {
4687         struct cas *cp = netdev_priv(dev);
4688         regs->version = 0;
4689         /* cas_read_regs handles locks (cp->lock).  */
4690         cas_read_regs(cp, p, regs->len / sizeof(u32));
4691 }
4692
4693 static int cas_get_sset_count(struct net_device *dev, int sset)
4694 {
4695         switch (sset) {
4696         case ETH_SS_STATS:
4697                 return CAS_NUM_STAT_KEYS;
4698         default:
4699                 return -EOPNOTSUPP;
4700         }
4701 }
4702
4703 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4704 {
4705          memcpy(data, &ethtool_cassini_statnames,
4706                                          CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4707 }
4708
4709 static void cas_get_ethtool_stats(struct net_device *dev,
4710                                       struct ethtool_stats *estats, u64 *data)
4711 {
4712         struct cas *cp = netdev_priv(dev);
4713         struct net_device_stats *stats = cas_get_stats(cp->dev);
4714         int i = 0;
4715         data[i++] = stats->collisions;
4716         data[i++] = stats->rx_bytes;
4717         data[i++] = stats->rx_crc_errors;
4718         data[i++] = stats->rx_dropped;
4719         data[i++] = stats->rx_errors;
4720         data[i++] = stats->rx_fifo_errors;
4721         data[i++] = stats->rx_frame_errors;
4722         data[i++] = stats->rx_length_errors;
4723         data[i++] = stats->rx_over_errors;
4724         data[i++] = stats->rx_packets;
4725         data[i++] = stats->tx_aborted_errors;
4726         data[i++] = stats->tx_bytes;
4727         data[i++] = stats->tx_dropped;
4728         data[i++] = stats->tx_errors;
4729         data[i++] = stats->tx_fifo_errors;
4730         data[i++] = stats->tx_packets;
4731         BUG_ON(i != CAS_NUM_STAT_KEYS);
4732 }
4733
4734 static const struct ethtool_ops cas_ethtool_ops = {
4735         .get_drvinfo            = cas_get_drvinfo,
4736         .nway_reset             = cas_nway_reset,
4737         .get_link               = cas_get_link,
4738         .get_msglevel           = cas_get_msglevel,
4739         .set_msglevel           = cas_set_msglevel,
4740         .get_regs_len           = cas_get_regs_len,
4741         .get_regs               = cas_get_regs,
4742         .get_sset_count         = cas_get_sset_count,
4743         .get_strings            = cas_get_strings,
4744         .get_ethtool_stats      = cas_get_ethtool_stats,
4745         .get_link_ksettings     = cas_get_link_ksettings,
4746         .set_link_ksettings     = cas_set_link_ksettings,
4747 };
4748
4749 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4750 {
4751         struct cas *cp = netdev_priv(dev);
4752         struct mii_ioctl_data *data = if_mii(ifr);
4753         unsigned long flags;
4754         int rc = -EOPNOTSUPP;
4755
4756         /* Hold the PM mutex while doing ioctl's or we may collide
4757          * with open/close and power management and oops.
4758          */
4759         mutex_lock(&cp->pm_mutex);
4760         switch (cmd) {
4761         case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
4762                 data->phy_id = cp->phy_addr;
4763                 fallthrough;
4764
4765         case SIOCGMIIREG:               /* Read MII PHY register. */
4766                 spin_lock_irqsave(&cp->lock, flags);
4767                 cas_mif_poll(cp, 0);
4768                 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4769                 cas_mif_poll(cp, 1);
4770                 spin_unlock_irqrestore(&cp->lock, flags);
4771                 rc = 0;
4772                 break;
4773
4774         case SIOCSMIIREG:               /* Write MII PHY register. */
4775                 spin_lock_irqsave(&cp->lock, flags);
4776                 cas_mif_poll(cp, 0);
4777                 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4778                 cas_mif_poll(cp, 1);
4779                 spin_unlock_irqrestore(&cp->lock, flags);
4780                 break;
4781         default:
4782                 break;
4783         }
4784
4785         mutex_unlock(&cp->pm_mutex);
4786         return rc;
4787 }
4788
4789 /* When this chip sits underneath an Intel 31154 bridge, it is the
4790  * only subordinate device and we can tweak the bridge settings to
4791  * reflect that fact.
4792  */
4793 static void cas_program_bridge(struct pci_dev *cas_pdev)
4794 {
4795         struct pci_dev *pdev = cas_pdev->bus->self;
4796         u32 val;
4797
4798         if (!pdev)
4799                 return;
4800
4801         if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4802                 return;
4803
4804         /* Clear bit 10 (Bus Parking Control) in the Secondary
4805          * Arbiter Control/Status Register which lives at offset
4806          * 0x41.  Using a 32-bit word read/modify/write at 0x40
4807          * is much simpler so that's how we do this.
4808          */
4809         pci_read_config_dword(pdev, 0x40, &val);
4810         val &= ~0x00040000;
4811         pci_write_config_dword(pdev, 0x40, val);
4812
4813         /* Max out the Multi-Transaction Timer settings since
4814          * Cassini is the only device present.
4815          *
4816          * The register is 16-bit and lives at 0x50.  When the
4817          * settings are enabled, it extends the GRANT# signal
4818          * for a requestor after a transaction is complete.  This
4819          * allows the next request to run without first needing
4820          * to negotiate the GRANT# signal back.
4821          *
4822          * Bits 12:10 define the grant duration:
4823          *
4824          *      1       --      16 clocks
4825          *      2       --      32 clocks
4826          *      3       --      64 clocks
4827          *      4       --      128 clocks
4828          *      5       --      256 clocks
4829          *
4830          * All other values are illegal.
4831          *
4832          * Bits 09:00 define which REQ/GNT signal pairs get the
4833          * GRANT# signal treatment.  We set them all.
4834          */
4835         pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4836
4837         /* The Read Prefecth Policy register is 16-bit and sits at
4838          * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4839          * enable it and max out all of the settings since only one
4840          * device is sitting underneath and thus bandwidth sharing is
4841          * not an issue.
4842          *
4843          * The register has several 3 bit fields, which indicates a
4844          * multiplier applied to the base amount of prefetching the
4845          * chip would do.  These fields are at:
4846          *
4847          *      15:13   ---     ReRead Primary Bus
4848          *      12:10   ---     FirstRead Primary Bus
4849          *      09:07   ---     ReRead Secondary Bus
4850          *      06:04   ---     FirstRead Secondary Bus
4851          *
4852          * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4853          * get enabled on.  Bit 3 is a grouped enabler which controls
4854          * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4855          * the individual REQ/GNT pairs [2:0].
4856          */
4857         pci_write_config_word(pdev, 0x52,
4858                               (0x7 << 13) |
4859                               (0x7 << 10) |
4860                               (0x7 <<  7) |
4861                               (0x7 <<  4) |
4862                               (0xf <<  0));
4863
4864         /* Force cacheline size to 0x8 */
4865         pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4866
4867         /* Force latency timer to maximum setting so Cassini can
4868          * sit on the bus as long as it likes.
4869          */
4870         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4871 }
4872
4873 static const struct net_device_ops cas_netdev_ops = {
4874         .ndo_open               = cas_open,
4875         .ndo_stop               = cas_close,
4876         .ndo_start_xmit         = cas_start_xmit,
4877         .ndo_get_stats          = cas_get_stats,
4878         .ndo_set_rx_mode        = cas_set_multicast,
4879         .ndo_do_ioctl           = cas_ioctl,
4880         .ndo_tx_timeout         = cas_tx_timeout,
4881         .ndo_change_mtu         = cas_change_mtu,
4882         .ndo_set_mac_address    = eth_mac_addr,
4883         .ndo_validate_addr      = eth_validate_addr,
4884 #ifdef CONFIG_NET_POLL_CONTROLLER
4885         .ndo_poll_controller    = cas_netpoll,
4886 #endif
4887 };
4888
4889 static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4890 {
4891         static int cas_version_printed = 0;
4892         unsigned long casreg_len;
4893         struct net_device *dev;
4894         struct cas *cp;
4895         int i, err, pci_using_dac;
4896         u16 pci_cmd;
4897         u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4898
4899         if (cas_version_printed++ == 0)
4900                 pr_info("%s", version);
4901
4902         err = pci_enable_device(pdev);
4903         if (err) {
4904                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4905                 return err;
4906         }
4907
4908         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4909                 dev_err(&pdev->dev, "Cannot find proper PCI device "
4910                        "base address, aborting\n");
4911                 err = -ENODEV;
4912                 goto err_out_disable_pdev;
4913         }
4914
4915         dev = alloc_etherdev(sizeof(*cp));
4916         if (!dev) {
4917                 err = -ENOMEM;
4918                 goto err_out_disable_pdev;
4919         }
4920         SET_NETDEV_DEV(dev, &pdev->dev);
4921
4922         err = pci_request_regions(pdev, dev->name);
4923         if (err) {
4924                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4925                 goto err_out_free_netdev;
4926         }
4927         pci_set_master(pdev);
4928
4929         /* we must always turn on parity response or else parity
4930          * doesn't get generated properly. disable SERR/PERR as well.
4931          * in addition, we want to turn MWI on.
4932          */
4933         pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4934         pci_cmd &= ~PCI_COMMAND_SERR;
4935         pci_cmd |= PCI_COMMAND_PARITY;
4936         pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4937         if (pci_try_set_mwi(pdev))
4938                 pr_warn("Could not enable MWI for %s\n", pci_name(pdev));
4939
4940         cas_program_bridge(pdev);
4941
4942         /*
4943          * On some architectures, the default cache line size set
4944          * by pci_try_set_mwi reduces perforamnce.  We have to increase
4945          * it for this case.  To start, we'll print some configuration
4946          * data.
4947          */
4948 #if 1
4949         pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4950                              &orig_cacheline_size);
4951         if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4952                 cas_cacheline_size =
4953                         (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4954                         CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4955                 if (pci_write_config_byte(pdev,
4956                                           PCI_CACHE_LINE_SIZE,
4957                                           cas_cacheline_size)) {
4958                         dev_err(&pdev->dev, "Could not set PCI cache "
4959                                "line size\n");
4960                         goto err_out_free_res;
4961                 }
4962         }
4963 #endif
4964
4965
4966         /* Configure DMA attributes. */
4967         if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
4968                 pci_using_dac = 1;
4969                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
4970                 if (err < 0) {
4971                         dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
4972                                "for consistent allocations\n");
4973                         goto err_out_free_res;
4974                 }
4975
4976         } else {
4977                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
4978                 if (err) {
4979                         dev_err(&pdev->dev, "No usable DMA configuration, "
4980                                "aborting\n");
4981                         goto err_out_free_res;
4982                 }
4983                 pci_using_dac = 0;
4984         }
4985
4986         casreg_len = pci_resource_len(pdev, 0);
4987
4988         cp = netdev_priv(dev);
4989         cp->pdev = pdev;
4990 #if 1
4991         /* A value of 0 indicates we never explicitly set it */
4992         cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
4993 #endif
4994         cp->dev = dev;
4995         cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
4996           cassini_debug;
4997
4998 #if defined(CONFIG_SPARC)
4999         cp->of_node = pci_device_to_OF_node(pdev);
5000 #endif
5001
5002         cp->link_transition = LINK_TRANSITION_UNKNOWN;
5003         cp->link_transition_jiffies_valid = 0;
5004
5005         spin_lock_init(&cp->lock);
5006         spin_lock_init(&cp->rx_inuse_lock);
5007         spin_lock_init(&cp->rx_spare_lock);
5008         for (i = 0; i < N_TX_RINGS; i++) {
5009                 spin_lock_init(&cp->stat_lock[i]);
5010                 spin_lock_init(&cp->tx_lock[i]);
5011         }
5012         spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5013         mutex_init(&cp->pm_mutex);
5014
5015         timer_setup(&cp->link_timer, cas_link_timer, 0);
5016
5017 #if 1
5018         /* Just in case the implementation of atomic operations
5019          * change so that an explicit initialization is necessary.
5020          */
5021         atomic_set(&cp->reset_task_pending, 0);
5022         atomic_set(&cp->reset_task_pending_all, 0);
5023         atomic_set(&cp->reset_task_pending_spare, 0);
5024         atomic_set(&cp->reset_task_pending_mtu, 0);
5025 #endif
5026         INIT_WORK(&cp->reset_task, cas_reset_task);
5027
5028         /* Default link parameters */
5029         if (link_mode >= 0 && link_mode < 6)
5030                 cp->link_cntl = link_modes[link_mode];
5031         else
5032                 cp->link_cntl = BMCR_ANENABLE;
5033         cp->lstate = link_down;
5034         cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5035         netif_carrier_off(cp->dev);
5036         cp->timer_ticks = 0;
5037
5038         /* give us access to cassini registers */
5039         cp->regs = pci_iomap(pdev, 0, casreg_len);
5040         if (!cp->regs) {
5041                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5042                 goto err_out_free_res;
5043         }
5044         cp->casreg_len = casreg_len;
5045
5046         pci_save_state(pdev);
5047         cas_check_pci_invariants(cp);
5048         cas_hard_reset(cp);
5049         cas_reset(cp, 0);
5050         if (cas_check_invariants(cp))
5051                 goto err_out_iounmap;
5052         if (cp->cas_flags & CAS_FLAG_SATURN)
5053                 cas_saturn_firmware_init(cp);
5054
5055         cp->init_block =
5056                 dma_alloc_coherent(&pdev->dev, sizeof(struct cas_init_block),
5057                                    &cp->block_dvma, GFP_KERNEL);
5058         if (!cp->init_block) {
5059                 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5060                 goto err_out_iounmap;
5061         }
5062
5063         for (i = 0; i < N_TX_RINGS; i++)
5064                 cp->init_txds[i] = cp->init_block->txds[i];
5065
5066         for (i = 0; i < N_RX_DESC_RINGS; i++)
5067                 cp->init_rxds[i] = cp->init_block->rxds[i];
5068
5069         for (i = 0; i < N_RX_COMP_RINGS; i++)
5070                 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5071
5072         for (i = 0; i < N_RX_FLOWS; i++)
5073                 skb_queue_head_init(&cp->rx_flows[i]);
5074
5075         dev->netdev_ops = &cas_netdev_ops;
5076         dev->ethtool_ops = &cas_ethtool_ops;
5077         dev->watchdog_timeo = CAS_TX_TIMEOUT;
5078
5079 #ifdef USE_NAPI
5080         netif_napi_add(dev, &cp->napi, cas_poll, 64);
5081 #endif
5082         dev->irq = pdev->irq;
5083         dev->dma = 0;
5084
5085         /* Cassini features. */
5086         if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5087                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5088
5089         if (pci_using_dac)
5090                 dev->features |= NETIF_F_HIGHDMA;
5091
5092         /* MTU range: 60 - varies or 9000 */
5093         dev->min_mtu = CAS_MIN_MTU;
5094         dev->max_mtu = CAS_MAX_MTU;
5095
5096         if (register_netdev(dev)) {
5097                 dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5098                 goto err_out_free_consistent;
5099         }
5100
5101         i = readl(cp->regs + REG_BIM_CFG);
5102         netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5103                     (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5104                     (i & BIM_CFG_32BIT) ? "32" : "64",
5105                     (i & BIM_CFG_66MHZ) ? "66" : "33",
5106                     (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5107                     dev->dev_addr);
5108
5109         pci_set_drvdata(pdev, dev);
5110         cp->hw_running = 1;
5111         cas_entropy_reset(cp);
5112         cas_phy_init(cp);
5113         cas_begin_auto_negotiation(cp, NULL);
5114         return 0;
5115
5116 err_out_free_consistent:
5117         dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
5118                           cp->init_block, cp->block_dvma);
5119
5120 err_out_iounmap:
5121         mutex_lock(&cp->pm_mutex);
5122         if (cp->hw_running)
5123                 cas_shutdown(cp);
5124         mutex_unlock(&cp->pm_mutex);
5125
5126         pci_iounmap(pdev, cp->regs);
5127
5128
5129 err_out_free_res:
5130         pci_release_regions(pdev);
5131
5132         /* Try to restore it in case the error occurred after we
5133          * set it.
5134          */
5135         pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5136
5137 err_out_free_netdev:
5138         free_netdev(dev);
5139
5140 err_out_disable_pdev:
5141         pci_disable_device(pdev);
5142         return -ENODEV;
5143 }
5144
5145 static void cas_remove_one(struct pci_dev *pdev)
5146 {
5147         struct net_device *dev = pci_get_drvdata(pdev);
5148         struct cas *cp;
5149         if (!dev)
5150                 return;
5151
5152         cp = netdev_priv(dev);
5153         unregister_netdev(dev);
5154
5155         vfree(cp->fw_data);
5156
5157         mutex_lock(&cp->pm_mutex);
5158         cancel_work_sync(&cp->reset_task);
5159         if (cp->hw_running)
5160                 cas_shutdown(cp);
5161         mutex_unlock(&cp->pm_mutex);
5162
5163 #if 1
5164         if (cp->orig_cacheline_size) {
5165                 /* Restore the cache line size if we had modified
5166                  * it.
5167                  */
5168                 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5169                                       cp->orig_cacheline_size);
5170         }
5171 #endif
5172         dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
5173                           cp->init_block, cp->block_dvma);
5174         pci_iounmap(pdev, cp->regs);
5175         free_netdev(dev);
5176         pci_release_regions(pdev);
5177         pci_disable_device(pdev);
5178 }
5179
5180 static int __maybe_unused cas_suspend(struct device *dev_d)
5181 {
5182         struct net_device *dev = dev_get_drvdata(dev_d);
5183         struct cas *cp = netdev_priv(dev);
5184         unsigned long flags;
5185
5186         mutex_lock(&cp->pm_mutex);
5187
5188         /* If the driver is opened, we stop the DMA */
5189         if (cp->opened) {
5190                 netif_device_detach(dev);
5191
5192                 cas_lock_all_save(cp, flags);
5193
5194                 /* We can set the second arg of cas_reset to 0
5195                  * because on resume, we'll call cas_init_hw with
5196                  * its second arg set so that autonegotiation is
5197                  * restarted.
5198                  */
5199                 cas_reset(cp, 0);
5200                 cas_clean_rings(cp);
5201                 cas_unlock_all_restore(cp, flags);
5202         }
5203
5204         if (cp->hw_running)
5205                 cas_shutdown(cp);
5206         mutex_unlock(&cp->pm_mutex);
5207
5208         return 0;
5209 }
5210
5211 static int __maybe_unused cas_resume(struct device *dev_d)
5212 {
5213         struct net_device *dev = dev_get_drvdata(dev_d);
5214         struct cas *cp = netdev_priv(dev);
5215
5216         netdev_info(dev, "resuming\n");
5217
5218         mutex_lock(&cp->pm_mutex);
5219         cas_hard_reset(cp);
5220         if (cp->opened) {
5221                 unsigned long flags;
5222                 cas_lock_all_save(cp, flags);
5223                 cas_reset(cp, 0);
5224                 cp->hw_running = 1;
5225                 cas_clean_rings(cp);
5226                 cas_init_hw(cp, 1);
5227                 cas_unlock_all_restore(cp, flags);
5228
5229                 netif_device_attach(dev);
5230         }
5231         mutex_unlock(&cp->pm_mutex);
5232         return 0;
5233 }
5234
5235 static SIMPLE_DEV_PM_OPS(cas_pm_ops, cas_suspend, cas_resume);
5236
5237 static struct pci_driver cas_driver = {
5238         .name           = DRV_MODULE_NAME,
5239         .id_table       = cas_pci_tbl,
5240         .probe          = cas_init_one,
5241         .remove         = cas_remove_one,
5242         .driver.pm      = &cas_pm_ops,
5243 };
5244
5245 static int __init cas_init(void)
5246 {
5247         if (linkdown_timeout > 0)
5248                 link_transition_timeout = linkdown_timeout * HZ;
5249         else
5250                 link_transition_timeout = 0;
5251
5252         return pci_register_driver(&cas_driver);
5253 }
5254
5255 static void __exit cas_cleanup(void)
5256 {
5257         pci_unregister_driver(&cas_driver);
5258 }
5259
5260 module_init(cas_init);
5261 module_exit(cas_cleanup);