sun: Add SPDX license tags to Sun network drivers
[linux-2.6-microblaze.git] / drivers / net / ethernet / sun / cassini.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3  *
4  * Copyright (C) 2004 Sun Microsystems Inc.
5  * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as
9  * published by the Free Software Foundation; either version 2 of the
10  * License, or (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, see <http://www.gnu.org/licenses/>.
19  *
20  * This driver uses the sungem driver (c) David Miller
21  * (davem@redhat.com) as its basis.
22  *
23  * The cassini chip has a number of features that distinguish it from
24  * the gem chip:
25  *  4 transmit descriptor rings that are used for either QoS (VLAN) or
26  *      load balancing (non-VLAN mode)
27  *  batching of multiple packets
28  *  multiple CPU dispatching
29  *  page-based RX descriptor engine with separate completion rings
30  *  Gigabit support (GMII and PCS interface)
31  *  MIF link up/down detection works
32  *
33  * RX is handled by page sized buffers that are attached as fragments to
34  * the skb. here's what's done:
35  *  -- driver allocates pages at a time and keeps reference counts
36  *     on them.
37  *  -- the upper protocol layers assume that the header is in the skb
38  *     itself. as a result, cassini will copy a small amount (64 bytes)
39  *     to make them happy.
40  *  -- driver appends the rest of the data pages as frags to skbuffs
41  *     and increments the reference count
42  *  -- on page reclamation, the driver swaps the page with a spare page.
43  *     if that page is still in use, it frees its reference to that page,
44  *     and allocates a new page for use. otherwise, it just recycles the
45  *     the page.
46  *
47  * NOTE: cassini can parse the header. however, it's not worth it
48  *       as long as the network stack requires a header copy.
49  *
50  * TX has 4 queues. currently these queues are used in a round-robin
51  * fashion for load balancing. They can also be used for QoS. for that
52  * to work, however, QoS information needs to be exposed down to the driver
53  * level so that subqueues get targeted to particular transmit rings.
54  * alternatively, the queues can be configured via use of the all-purpose
55  * ioctl.
56  *
57  * RX DATA: the rx completion ring has all the info, but the rx desc
58  * ring has all of the data. RX can conceivably come in under multiple
59  * interrupts, but the INT# assignment needs to be set up properly by
60  * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
61  * that. also, the two descriptor rings are designed to distinguish between
62  * encrypted and non-encrypted packets, but we use them for buffering
63  * instead.
64  *
65  * by default, the selective clear mask is set up to process rx packets.
66  */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/types.h>
73 #include <linux/compiler.h>
74 #include <linux/slab.h>
75 #include <linux/delay.h>
76 #include <linux/init.h>
77 #include <linux/interrupt.h>
78 #include <linux/vmalloc.h>
79 #include <linux/ioport.h>
80 #include <linux/pci.h>
81 #include <linux/mm.h>
82 #include <linux/highmem.h>
83 #include <linux/list.h>
84 #include <linux/dma-mapping.h>
85
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/skbuff.h>
89 #include <linux/ethtool.h>
90 #include <linux/crc32.h>
91 #include <linux/random.h>
92 #include <linux/mii.h>
93 #include <linux/ip.h>
94 #include <linux/tcp.h>
95 #include <linux/mutex.h>
96 #include <linux/firmware.h>
97
98 #include <net/checksum.h>
99
100 #include <linux/atomic.h>
101 #include <asm/io.h>
102 #include <asm/byteorder.h>
103 #include <linux/uaccess.h>
104
105 #define cas_page_map(x)      kmap_atomic((x))
106 #define cas_page_unmap(x)    kunmap_atomic((x))
107 #define CAS_NCPUS            num_online_cpus()
108
109 #define cas_skb_release(x)  netif_rx(x)
110
111 /* select which firmware to use */
112 #define USE_HP_WORKAROUND
113 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
114 #define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
115
116 #include "cassini.h"
117
118 #define USE_TX_COMPWB      /* use completion writeback registers */
119 #define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
120 #define USE_RX_BLANK       /* hw interrupt mitigation */
121 #undef USE_ENTROPY_DEV     /* don't test for entropy device */
122
123 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
124  * also, we need to make cp->lock finer-grained.
125  */
126 #undef  USE_PCI_INTB
127 #undef  USE_PCI_INTC
128 #undef  USE_PCI_INTD
129 #undef  USE_QOS
130
131 #undef  USE_VPD_DEBUG       /* debug vpd information if defined */
132
133 /* rx processing options */
134 #define USE_PAGE_ORDER      /* specify to allocate large rx pages */
135 #define RX_DONT_BATCH  0    /* if 1, don't batch flows */
136 #define RX_COPY_ALWAYS 0    /* if 0, use frags */
137 #define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
138 #undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
139
140 #define DRV_MODULE_NAME         "cassini"
141 #define DRV_MODULE_VERSION      "1.6"
142 #define DRV_MODULE_RELDATE      "21 May 2008"
143
144 #define CAS_DEF_MSG_ENABLE        \
145         (NETIF_MSG_DRV          | \
146          NETIF_MSG_PROBE        | \
147          NETIF_MSG_LINK         | \
148          NETIF_MSG_TIMER        | \
149          NETIF_MSG_IFDOWN       | \
150          NETIF_MSG_IFUP         | \
151          NETIF_MSG_RX_ERR       | \
152          NETIF_MSG_TX_ERR)
153
154 /* length of time before we decide the hardware is borked,
155  * and dev->tx_timeout() should be called to fix the problem
156  */
157 #define CAS_TX_TIMEOUT                  (HZ)
158 #define CAS_LINK_TIMEOUT                (22*HZ/10)
159 #define CAS_LINK_FAST_TIMEOUT           (1)
160
161 /* timeout values for state changing. these specify the number
162  * of 10us delays to be used before giving up.
163  */
164 #define STOP_TRIES_PHY 1000
165 #define STOP_TRIES     5000
166
167 /* specify a minimum frame size to deal with some fifo issues
168  * max mtu == 2 * page size - ethernet header - 64 - swivel =
169  *            2 * page_size - 0x50
170  */
171 #define CAS_MIN_FRAME                   97
172 #define CAS_1000MB_MIN_FRAME            255
173 #define CAS_MIN_MTU                     60
174 #define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
175
176 #if 1
177 /*
178  * Eliminate these and use separate atomic counters for each, to
179  * avoid a race condition.
180  */
181 #else
182 #define CAS_RESET_MTU                   1
183 #define CAS_RESET_ALL                   2
184 #define CAS_RESET_SPARE                 3
185 #endif
186
187 static char version[] =
188         DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
189
190 static int cassini_debug = -1;  /* -1 == use CAS_DEF_MSG_ENABLE as value */
191 static int link_mode;
192
193 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
194 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
195 MODULE_LICENSE("GPL");
196 MODULE_FIRMWARE("sun/cassini.bin");
197 module_param(cassini_debug, int, 0);
198 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
199 module_param(link_mode, int, 0);
200 MODULE_PARM_DESC(link_mode, "default link mode");
201
202 /*
203  * Work around for a PCS bug in which the link goes down due to the chip
204  * being confused and never showing a link status of "up."
205  */
206 #define DEFAULT_LINKDOWN_TIMEOUT 5
207 /*
208  * Value in seconds, for user input.
209  */
210 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
211 module_param(linkdown_timeout, int, 0);
212 MODULE_PARM_DESC(linkdown_timeout,
213 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
214
215 /*
216  * value in 'ticks' (units used by jiffies). Set when we init the
217  * module because 'HZ' in actually a function call on some flavors of
218  * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
219  */
220 static int link_transition_timeout;
221
222
223
224 static u16 link_modes[] = {
225         BMCR_ANENABLE,                   /* 0 : autoneg */
226         0,                               /* 1 : 10bt half duplex */
227         BMCR_SPEED100,                   /* 2 : 100bt half duplex */
228         BMCR_FULLDPLX,                   /* 3 : 10bt full duplex */
229         BMCR_SPEED100|BMCR_FULLDPLX,     /* 4 : 100bt full duplex */
230         CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
231 };
232
233 static const struct pci_device_id cas_pci_tbl[] = {
234         { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
235           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
236         { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
237           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
238         { 0, }
239 };
240
241 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
242
243 static void cas_set_link_modes(struct cas *cp);
244
245 static inline void cas_lock_tx(struct cas *cp)
246 {
247         int i;
248
249         for (i = 0; i < N_TX_RINGS; i++)
250                 spin_lock_nested(&cp->tx_lock[i], i);
251 }
252
253 static inline void cas_lock_all(struct cas *cp)
254 {
255         spin_lock_irq(&cp->lock);
256         cas_lock_tx(cp);
257 }
258
259 /* WTZ: QA was finding deadlock problems with the previous
260  * versions after long test runs with multiple cards per machine.
261  * See if replacing cas_lock_all with safer versions helps. The
262  * symptoms QA is reporting match those we'd expect if interrupts
263  * aren't being properly restored, and we fixed a previous deadlock
264  * with similar symptoms by using save/restore versions in other
265  * places.
266  */
267 #define cas_lock_all_save(cp, flags) \
268 do { \
269         struct cas *xxxcp = (cp); \
270         spin_lock_irqsave(&xxxcp->lock, flags); \
271         cas_lock_tx(xxxcp); \
272 } while (0)
273
274 static inline void cas_unlock_tx(struct cas *cp)
275 {
276         int i;
277
278         for (i = N_TX_RINGS; i > 0; i--)
279                 spin_unlock(&cp->tx_lock[i - 1]);
280 }
281
282 static inline void cas_unlock_all(struct cas *cp)
283 {
284         cas_unlock_tx(cp);
285         spin_unlock_irq(&cp->lock);
286 }
287
288 #define cas_unlock_all_restore(cp, flags) \
289 do { \
290         struct cas *xxxcp = (cp); \
291         cas_unlock_tx(xxxcp); \
292         spin_unlock_irqrestore(&xxxcp->lock, flags); \
293 } while (0)
294
295 static void cas_disable_irq(struct cas *cp, const int ring)
296 {
297         /* Make sure we won't get any more interrupts */
298         if (ring == 0) {
299                 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
300                 return;
301         }
302
303         /* disable completion interrupts and selectively mask */
304         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
305                 switch (ring) {
306 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
307 #ifdef USE_PCI_INTB
308                 case 1:
309 #endif
310 #ifdef USE_PCI_INTC
311                 case 2:
312 #endif
313 #ifdef USE_PCI_INTD
314                 case 3:
315 #endif
316                         writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
317                                cp->regs + REG_PLUS_INTRN_MASK(ring));
318                         break;
319 #endif
320                 default:
321                         writel(INTRN_MASK_CLEAR_ALL, cp->regs +
322                                REG_PLUS_INTRN_MASK(ring));
323                         break;
324                 }
325         }
326 }
327
328 static inline void cas_mask_intr(struct cas *cp)
329 {
330         int i;
331
332         for (i = 0; i < N_RX_COMP_RINGS; i++)
333                 cas_disable_irq(cp, i);
334 }
335
336 static void cas_enable_irq(struct cas *cp, const int ring)
337 {
338         if (ring == 0) { /* all but TX_DONE */
339                 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
340                 return;
341         }
342
343         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
344                 switch (ring) {
345 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
346 #ifdef USE_PCI_INTB
347                 case 1:
348 #endif
349 #ifdef USE_PCI_INTC
350                 case 2:
351 #endif
352 #ifdef USE_PCI_INTD
353                 case 3:
354 #endif
355                         writel(INTRN_MASK_RX_EN, cp->regs +
356                                REG_PLUS_INTRN_MASK(ring));
357                         break;
358 #endif
359                 default:
360                         break;
361                 }
362         }
363 }
364
365 static inline void cas_unmask_intr(struct cas *cp)
366 {
367         int i;
368
369         for (i = 0; i < N_RX_COMP_RINGS; i++)
370                 cas_enable_irq(cp, i);
371 }
372
373 static inline void cas_entropy_gather(struct cas *cp)
374 {
375 #ifdef USE_ENTROPY_DEV
376         if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
377                 return;
378
379         batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
380                             readl(cp->regs + REG_ENTROPY_IV),
381                             sizeof(uint64_t)*8);
382 #endif
383 }
384
385 static inline void cas_entropy_reset(struct cas *cp)
386 {
387 #ifdef USE_ENTROPY_DEV
388         if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
389                 return;
390
391         writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
392                cp->regs + REG_BIM_LOCAL_DEV_EN);
393         writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
394         writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
395
396         /* if we read back 0x0, we don't have an entropy device */
397         if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
398                 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
399 #endif
400 }
401
402 /* access to the phy. the following assumes that we've initialized the MIF to
403  * be in frame rather than bit-bang mode
404  */
405 static u16 cas_phy_read(struct cas *cp, int reg)
406 {
407         u32 cmd;
408         int limit = STOP_TRIES_PHY;
409
410         cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
411         cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
412         cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
413         cmd |= MIF_FRAME_TURN_AROUND_MSB;
414         writel(cmd, cp->regs + REG_MIF_FRAME);
415
416         /* poll for completion */
417         while (limit-- > 0) {
418                 udelay(10);
419                 cmd = readl(cp->regs + REG_MIF_FRAME);
420                 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
421                         return cmd & MIF_FRAME_DATA_MASK;
422         }
423         return 0xFFFF; /* -1 */
424 }
425
426 static int cas_phy_write(struct cas *cp, int reg, u16 val)
427 {
428         int limit = STOP_TRIES_PHY;
429         u32 cmd;
430
431         cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
432         cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
433         cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
434         cmd |= MIF_FRAME_TURN_AROUND_MSB;
435         cmd |= val & MIF_FRAME_DATA_MASK;
436         writel(cmd, cp->regs + REG_MIF_FRAME);
437
438         /* poll for completion */
439         while (limit-- > 0) {
440                 udelay(10);
441                 cmd = readl(cp->regs + REG_MIF_FRAME);
442                 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
443                         return 0;
444         }
445         return -1;
446 }
447
448 static void cas_phy_powerup(struct cas *cp)
449 {
450         u16 ctl = cas_phy_read(cp, MII_BMCR);
451
452         if ((ctl & BMCR_PDOWN) == 0)
453                 return;
454         ctl &= ~BMCR_PDOWN;
455         cas_phy_write(cp, MII_BMCR, ctl);
456 }
457
458 static void cas_phy_powerdown(struct cas *cp)
459 {
460         u16 ctl = cas_phy_read(cp, MII_BMCR);
461
462         if (ctl & BMCR_PDOWN)
463                 return;
464         ctl |= BMCR_PDOWN;
465         cas_phy_write(cp, MII_BMCR, ctl);
466 }
467
468 /* cp->lock held. note: the last put_page will free the buffer */
469 static int cas_page_free(struct cas *cp, cas_page_t *page)
470 {
471         pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
472                        PCI_DMA_FROMDEVICE);
473         __free_pages(page->buffer, cp->page_order);
474         kfree(page);
475         return 0;
476 }
477
478 #ifdef RX_COUNT_BUFFERS
479 #define RX_USED_ADD(x, y)       ((x)->used += (y))
480 #define RX_USED_SET(x, y)       ((x)->used  = (y))
481 #else
482 #define RX_USED_ADD(x, y)
483 #define RX_USED_SET(x, y)
484 #endif
485
486 /* local page allocation routines for the receive buffers. jumbo pages
487  * require at least 8K contiguous and 8K aligned buffers.
488  */
489 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
490 {
491         cas_page_t *page;
492
493         page = kmalloc(sizeof(cas_page_t), flags);
494         if (!page)
495                 return NULL;
496
497         INIT_LIST_HEAD(&page->list);
498         RX_USED_SET(page, 0);
499         page->buffer = alloc_pages(flags, cp->page_order);
500         if (!page->buffer)
501                 goto page_err;
502         page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
503                                       cp->page_size, PCI_DMA_FROMDEVICE);
504         return page;
505
506 page_err:
507         kfree(page);
508         return NULL;
509 }
510
511 /* initialize spare pool of rx buffers, but allocate during the open */
512 static void cas_spare_init(struct cas *cp)
513 {
514         spin_lock(&cp->rx_inuse_lock);
515         INIT_LIST_HEAD(&cp->rx_inuse_list);
516         spin_unlock(&cp->rx_inuse_lock);
517
518         spin_lock(&cp->rx_spare_lock);
519         INIT_LIST_HEAD(&cp->rx_spare_list);
520         cp->rx_spares_needed = RX_SPARE_COUNT;
521         spin_unlock(&cp->rx_spare_lock);
522 }
523
524 /* used on close. free all the spare buffers. */
525 static void cas_spare_free(struct cas *cp)
526 {
527         struct list_head list, *elem, *tmp;
528
529         /* free spare buffers */
530         INIT_LIST_HEAD(&list);
531         spin_lock(&cp->rx_spare_lock);
532         list_splice_init(&cp->rx_spare_list, &list);
533         spin_unlock(&cp->rx_spare_lock);
534         list_for_each_safe(elem, tmp, &list) {
535                 cas_page_free(cp, list_entry(elem, cas_page_t, list));
536         }
537
538         INIT_LIST_HEAD(&list);
539 #if 1
540         /*
541          * Looks like Adrian had protected this with a different
542          * lock than used everywhere else to manipulate this list.
543          */
544         spin_lock(&cp->rx_inuse_lock);
545         list_splice_init(&cp->rx_inuse_list, &list);
546         spin_unlock(&cp->rx_inuse_lock);
547 #else
548         spin_lock(&cp->rx_spare_lock);
549         list_splice_init(&cp->rx_inuse_list, &list);
550         spin_unlock(&cp->rx_spare_lock);
551 #endif
552         list_for_each_safe(elem, tmp, &list) {
553                 cas_page_free(cp, list_entry(elem, cas_page_t, list));
554         }
555 }
556
557 /* replenish spares if needed */
558 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
559 {
560         struct list_head list, *elem, *tmp;
561         int needed, i;
562
563         /* check inuse list. if we don't need any more free buffers,
564          * just free it
565          */
566
567         /* make a local copy of the list */
568         INIT_LIST_HEAD(&list);
569         spin_lock(&cp->rx_inuse_lock);
570         list_splice_init(&cp->rx_inuse_list, &list);
571         spin_unlock(&cp->rx_inuse_lock);
572
573         list_for_each_safe(elem, tmp, &list) {
574                 cas_page_t *page = list_entry(elem, cas_page_t, list);
575
576                 /*
577                  * With the lockless pagecache, cassini buffering scheme gets
578                  * slightly less accurate: we might find that a page has an
579                  * elevated reference count here, due to a speculative ref,
580                  * and skip it as in-use. Ideally we would be able to reclaim
581                  * it. However this would be such a rare case, it doesn't
582                  * matter too much as we should pick it up the next time round.
583                  *
584                  * Importantly, if we find that the page has a refcount of 1
585                  * here (our refcount), then we know it is definitely not inuse
586                  * so we can reuse it.
587                  */
588                 if (page_count(page->buffer) > 1)
589                         continue;
590
591                 list_del(elem);
592                 spin_lock(&cp->rx_spare_lock);
593                 if (cp->rx_spares_needed > 0) {
594                         list_add(elem, &cp->rx_spare_list);
595                         cp->rx_spares_needed--;
596                         spin_unlock(&cp->rx_spare_lock);
597                 } else {
598                         spin_unlock(&cp->rx_spare_lock);
599                         cas_page_free(cp, page);
600                 }
601         }
602
603         /* put any inuse buffers back on the list */
604         if (!list_empty(&list)) {
605                 spin_lock(&cp->rx_inuse_lock);
606                 list_splice(&list, &cp->rx_inuse_list);
607                 spin_unlock(&cp->rx_inuse_lock);
608         }
609
610         spin_lock(&cp->rx_spare_lock);
611         needed = cp->rx_spares_needed;
612         spin_unlock(&cp->rx_spare_lock);
613         if (!needed)
614                 return;
615
616         /* we still need spares, so try to allocate some */
617         INIT_LIST_HEAD(&list);
618         i = 0;
619         while (i < needed) {
620                 cas_page_t *spare = cas_page_alloc(cp, flags);
621                 if (!spare)
622                         break;
623                 list_add(&spare->list, &list);
624                 i++;
625         }
626
627         spin_lock(&cp->rx_spare_lock);
628         list_splice(&list, &cp->rx_spare_list);
629         cp->rx_spares_needed -= i;
630         spin_unlock(&cp->rx_spare_lock);
631 }
632
633 /* pull a page from the list. */
634 static cas_page_t *cas_page_dequeue(struct cas *cp)
635 {
636         struct list_head *entry;
637         int recover;
638
639         spin_lock(&cp->rx_spare_lock);
640         if (list_empty(&cp->rx_spare_list)) {
641                 /* try to do a quick recovery */
642                 spin_unlock(&cp->rx_spare_lock);
643                 cas_spare_recover(cp, GFP_ATOMIC);
644                 spin_lock(&cp->rx_spare_lock);
645                 if (list_empty(&cp->rx_spare_list)) {
646                         netif_err(cp, rx_err, cp->dev,
647                                   "no spare buffers available\n");
648                         spin_unlock(&cp->rx_spare_lock);
649                         return NULL;
650                 }
651         }
652
653         entry = cp->rx_spare_list.next;
654         list_del(entry);
655         recover = ++cp->rx_spares_needed;
656         spin_unlock(&cp->rx_spare_lock);
657
658         /* trigger the timer to do the recovery */
659         if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
660 #if 1
661                 atomic_inc(&cp->reset_task_pending);
662                 atomic_inc(&cp->reset_task_pending_spare);
663                 schedule_work(&cp->reset_task);
664 #else
665                 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
666                 schedule_work(&cp->reset_task);
667 #endif
668         }
669         return list_entry(entry, cas_page_t, list);
670 }
671
672
673 static void cas_mif_poll(struct cas *cp, const int enable)
674 {
675         u32 cfg;
676
677         cfg  = readl(cp->regs + REG_MIF_CFG);
678         cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
679
680         if (cp->phy_type & CAS_PHY_MII_MDIO1)
681                 cfg |= MIF_CFG_PHY_SELECT;
682
683         /* poll and interrupt on link status change. */
684         if (enable) {
685                 cfg |= MIF_CFG_POLL_EN;
686                 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
687                 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
688         }
689         writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
690                cp->regs + REG_MIF_MASK);
691         writel(cfg, cp->regs + REG_MIF_CFG);
692 }
693
694 /* Must be invoked under cp->lock */
695 static void cas_begin_auto_negotiation(struct cas *cp,
696                                        const struct ethtool_link_ksettings *ep)
697 {
698         u16 ctl;
699 #if 1
700         int lcntl;
701         int changed = 0;
702         int oldstate = cp->lstate;
703         int link_was_not_down = !(oldstate == link_down);
704 #endif
705         /* Setup link parameters */
706         if (!ep)
707                 goto start_aneg;
708         lcntl = cp->link_cntl;
709         if (ep->base.autoneg == AUTONEG_ENABLE) {
710                 cp->link_cntl = BMCR_ANENABLE;
711         } else {
712                 u32 speed = ep->base.speed;
713                 cp->link_cntl = 0;
714                 if (speed == SPEED_100)
715                         cp->link_cntl |= BMCR_SPEED100;
716                 else if (speed == SPEED_1000)
717                         cp->link_cntl |= CAS_BMCR_SPEED1000;
718                 if (ep->base.duplex == DUPLEX_FULL)
719                         cp->link_cntl |= BMCR_FULLDPLX;
720         }
721 #if 1
722         changed = (lcntl != cp->link_cntl);
723 #endif
724 start_aneg:
725         if (cp->lstate == link_up) {
726                 netdev_info(cp->dev, "PCS link down\n");
727         } else {
728                 if (changed) {
729                         netdev_info(cp->dev, "link configuration changed\n");
730                 }
731         }
732         cp->lstate = link_down;
733         cp->link_transition = LINK_TRANSITION_LINK_DOWN;
734         if (!cp->hw_running)
735                 return;
736 #if 1
737         /*
738          * WTZ: If the old state was link_up, we turn off the carrier
739          * to replicate everything we do elsewhere on a link-down
740          * event when we were already in a link-up state..
741          */
742         if (oldstate == link_up)
743                 netif_carrier_off(cp->dev);
744         if (changed  && link_was_not_down) {
745                 /*
746                  * WTZ: This branch will simply schedule a full reset after
747                  * we explicitly changed link modes in an ioctl. See if this
748                  * fixes the link-problems we were having for forced mode.
749                  */
750                 atomic_inc(&cp->reset_task_pending);
751                 atomic_inc(&cp->reset_task_pending_all);
752                 schedule_work(&cp->reset_task);
753                 cp->timer_ticks = 0;
754                 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
755                 return;
756         }
757 #endif
758         if (cp->phy_type & CAS_PHY_SERDES) {
759                 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
760
761                 if (cp->link_cntl & BMCR_ANENABLE) {
762                         val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
763                         cp->lstate = link_aneg;
764                 } else {
765                         if (cp->link_cntl & BMCR_FULLDPLX)
766                                 val |= PCS_MII_CTRL_DUPLEX;
767                         val &= ~PCS_MII_AUTONEG_EN;
768                         cp->lstate = link_force_ok;
769                 }
770                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
771                 writel(val, cp->regs + REG_PCS_MII_CTRL);
772
773         } else {
774                 cas_mif_poll(cp, 0);
775                 ctl = cas_phy_read(cp, MII_BMCR);
776                 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
777                          CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
778                 ctl |= cp->link_cntl;
779                 if (ctl & BMCR_ANENABLE) {
780                         ctl |= BMCR_ANRESTART;
781                         cp->lstate = link_aneg;
782                 } else {
783                         cp->lstate = link_force_ok;
784                 }
785                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
786                 cas_phy_write(cp, MII_BMCR, ctl);
787                 cas_mif_poll(cp, 1);
788         }
789
790         cp->timer_ticks = 0;
791         mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
792 }
793
794 /* Must be invoked under cp->lock. */
795 static int cas_reset_mii_phy(struct cas *cp)
796 {
797         int limit = STOP_TRIES_PHY;
798         u16 val;
799
800         cas_phy_write(cp, MII_BMCR, BMCR_RESET);
801         udelay(100);
802         while (--limit) {
803                 val = cas_phy_read(cp, MII_BMCR);
804                 if ((val & BMCR_RESET) == 0)
805                         break;
806                 udelay(10);
807         }
808         return limit <= 0;
809 }
810
811 static void cas_saturn_firmware_init(struct cas *cp)
812 {
813         const struct firmware *fw;
814         const char fw_name[] = "sun/cassini.bin";
815         int err;
816
817         if (PHY_NS_DP83065 != cp->phy_id)
818                 return;
819
820         err = request_firmware(&fw, fw_name, &cp->pdev->dev);
821         if (err) {
822                 pr_err("Failed to load firmware \"%s\"\n",
823                        fw_name);
824                 return;
825         }
826         if (fw->size < 2) {
827                 pr_err("bogus length %zu in \"%s\"\n",
828                        fw->size, fw_name);
829                 goto out;
830         }
831         cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
832         cp->fw_size = fw->size - 2;
833         cp->fw_data = vmalloc(cp->fw_size);
834         if (!cp->fw_data)
835                 goto out;
836         memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
837 out:
838         release_firmware(fw);
839 }
840
841 static void cas_saturn_firmware_load(struct cas *cp)
842 {
843         int i;
844
845         if (!cp->fw_data)
846                 return;
847
848         cas_phy_powerdown(cp);
849
850         /* expanded memory access mode */
851         cas_phy_write(cp, DP83065_MII_MEM, 0x0);
852
853         /* pointer configuration for new firmware */
854         cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
855         cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
856         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
857         cas_phy_write(cp, DP83065_MII_REGD, 0x82);
858         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
859         cas_phy_write(cp, DP83065_MII_REGD, 0x0);
860         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
861         cas_phy_write(cp, DP83065_MII_REGD, 0x39);
862
863         /* download new firmware */
864         cas_phy_write(cp, DP83065_MII_MEM, 0x1);
865         cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
866         for (i = 0; i < cp->fw_size; i++)
867                 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
868
869         /* enable firmware */
870         cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
871         cas_phy_write(cp, DP83065_MII_REGD, 0x1);
872 }
873
874
875 /* phy initialization */
876 static void cas_phy_init(struct cas *cp)
877 {
878         u16 val;
879
880         /* if we're in MII/GMII mode, set up phy */
881         if (CAS_PHY_MII(cp->phy_type)) {
882                 writel(PCS_DATAPATH_MODE_MII,
883                        cp->regs + REG_PCS_DATAPATH_MODE);
884
885                 cas_mif_poll(cp, 0);
886                 cas_reset_mii_phy(cp); /* take out of isolate mode */
887
888                 if (PHY_LUCENT_B0 == cp->phy_id) {
889                         /* workaround link up/down issue with lucent */
890                         cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
891                         cas_phy_write(cp, MII_BMCR, 0x00f1);
892                         cas_phy_write(cp, LUCENT_MII_REG, 0x0);
893
894                 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
895                         /* workarounds for broadcom phy */
896                         cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
897                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
898                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
899                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
900                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
901                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
902                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
903                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
904                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
905                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
906                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
907
908                 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
909                         val = cas_phy_read(cp, BROADCOM_MII_REG4);
910                         val = cas_phy_read(cp, BROADCOM_MII_REG4);
911                         if (val & 0x0080) {
912                                 /* link workaround */
913                                 cas_phy_write(cp, BROADCOM_MII_REG4,
914                                               val & ~0x0080);
915                         }
916
917                 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
918                         writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
919                                SATURN_PCFG_FSI : 0x0,
920                                cp->regs + REG_SATURN_PCFG);
921
922                         /* load firmware to address 10Mbps auto-negotiation
923                          * issue. NOTE: this will need to be changed if the
924                          * default firmware gets fixed.
925                          */
926                         if (PHY_NS_DP83065 == cp->phy_id) {
927                                 cas_saturn_firmware_load(cp);
928                         }
929                         cas_phy_powerup(cp);
930                 }
931
932                 /* advertise capabilities */
933                 val = cas_phy_read(cp, MII_BMCR);
934                 val &= ~BMCR_ANENABLE;
935                 cas_phy_write(cp, MII_BMCR, val);
936                 udelay(10);
937
938                 cas_phy_write(cp, MII_ADVERTISE,
939                               cas_phy_read(cp, MII_ADVERTISE) |
940                               (ADVERTISE_10HALF | ADVERTISE_10FULL |
941                                ADVERTISE_100HALF | ADVERTISE_100FULL |
942                                CAS_ADVERTISE_PAUSE |
943                                CAS_ADVERTISE_ASYM_PAUSE));
944
945                 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
946                         /* make sure that we don't advertise half
947                          * duplex to avoid a chip issue
948                          */
949                         val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
950                         val &= ~CAS_ADVERTISE_1000HALF;
951                         val |= CAS_ADVERTISE_1000FULL;
952                         cas_phy_write(cp, CAS_MII_1000_CTRL, val);
953                 }
954
955         } else {
956                 /* reset pcs for serdes */
957                 u32 val;
958                 int limit;
959
960                 writel(PCS_DATAPATH_MODE_SERDES,
961                        cp->regs + REG_PCS_DATAPATH_MODE);
962
963                 /* enable serdes pins on saturn */
964                 if (cp->cas_flags & CAS_FLAG_SATURN)
965                         writel(0, cp->regs + REG_SATURN_PCFG);
966
967                 /* Reset PCS unit. */
968                 val = readl(cp->regs + REG_PCS_MII_CTRL);
969                 val |= PCS_MII_RESET;
970                 writel(val, cp->regs + REG_PCS_MII_CTRL);
971
972                 limit = STOP_TRIES;
973                 while (--limit > 0) {
974                         udelay(10);
975                         if ((readl(cp->regs + REG_PCS_MII_CTRL) &
976                              PCS_MII_RESET) == 0)
977                                 break;
978                 }
979                 if (limit <= 0)
980                         netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
981                                     readl(cp->regs + REG_PCS_STATE_MACHINE));
982
983                 /* Make sure PCS is disabled while changing advertisement
984                  * configuration.
985                  */
986                 writel(0x0, cp->regs + REG_PCS_CFG);
987
988                 /* Advertise all capabilities except half-duplex. */
989                 val  = readl(cp->regs + REG_PCS_MII_ADVERT);
990                 val &= ~PCS_MII_ADVERT_HD;
991                 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
992                         PCS_MII_ADVERT_ASYM_PAUSE);
993                 writel(val, cp->regs + REG_PCS_MII_ADVERT);
994
995                 /* enable PCS */
996                 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
997
998                 /* pcs workaround: enable sync detect */
999                 writel(PCS_SERDES_CTRL_SYNCD_EN,
1000                        cp->regs + REG_PCS_SERDES_CTRL);
1001         }
1002 }
1003
1004
1005 static int cas_pcs_link_check(struct cas *cp)
1006 {
1007         u32 stat, state_machine;
1008         int retval = 0;
1009
1010         /* The link status bit latches on zero, so you must
1011          * read it twice in such a case to see a transition
1012          * to the link being up.
1013          */
1014         stat = readl(cp->regs + REG_PCS_MII_STATUS);
1015         if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1016                 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1017
1018         /* The remote-fault indication is only valid
1019          * when autoneg has completed.
1020          */
1021         if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1022                      PCS_MII_STATUS_REMOTE_FAULT)) ==
1023             (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1024                 netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1025
1026         /* work around link detection issue by querying the PCS state
1027          * machine directly.
1028          */
1029         state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1030         if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1031                 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1032         } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1033                 stat |= PCS_MII_STATUS_LINK_STATUS;
1034         }
1035
1036         if (stat & PCS_MII_STATUS_LINK_STATUS) {
1037                 if (cp->lstate != link_up) {
1038                         if (cp->opened) {
1039                                 cp->lstate = link_up;
1040                                 cp->link_transition = LINK_TRANSITION_LINK_UP;
1041
1042                                 cas_set_link_modes(cp);
1043                                 netif_carrier_on(cp->dev);
1044                         }
1045                 }
1046         } else if (cp->lstate == link_up) {
1047                 cp->lstate = link_down;
1048                 if (link_transition_timeout != 0 &&
1049                     cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1050                     !cp->link_transition_jiffies_valid) {
1051                         /*
1052                          * force a reset, as a workaround for the
1053                          * link-failure problem. May want to move this to a
1054                          * point a bit earlier in the sequence. If we had
1055                          * generated a reset a short time ago, we'll wait for
1056                          * the link timer to check the status until a
1057                          * timer expires (link_transistion_jiffies_valid is
1058                          * true when the timer is running.)  Instead of using
1059                          * a system timer, we just do a check whenever the
1060                          * link timer is running - this clears the flag after
1061                          * a suitable delay.
1062                          */
1063                         retval = 1;
1064                         cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1065                         cp->link_transition_jiffies = jiffies;
1066                         cp->link_transition_jiffies_valid = 1;
1067                 } else {
1068                         cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1069                 }
1070                 netif_carrier_off(cp->dev);
1071                 if (cp->opened)
1072                         netif_info(cp, link, cp->dev, "PCS link down\n");
1073
1074                 /* Cassini only: if you force a mode, there can be
1075                  * sync problems on link down. to fix that, the following
1076                  * things need to be checked:
1077                  * 1) read serialink state register
1078                  * 2) read pcs status register to verify link down.
1079                  * 3) if link down and serial link == 0x03, then you need
1080                  *    to global reset the chip.
1081                  */
1082                 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1083                         /* should check to see if we're in a forced mode */
1084                         stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1085                         if (stat == 0x03)
1086                                 return 1;
1087                 }
1088         } else if (cp->lstate == link_down) {
1089                 if (link_transition_timeout != 0 &&
1090                     cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1091                     !cp->link_transition_jiffies_valid) {
1092                         /* force a reset, as a workaround for the
1093                          * link-failure problem.  May want to move
1094                          * this to a point a bit earlier in the
1095                          * sequence.
1096                          */
1097                         retval = 1;
1098                         cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1099                         cp->link_transition_jiffies = jiffies;
1100                         cp->link_transition_jiffies_valid = 1;
1101                 } else {
1102                         cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1103                 }
1104         }
1105
1106         return retval;
1107 }
1108
1109 static int cas_pcs_interrupt(struct net_device *dev,
1110                              struct cas *cp, u32 status)
1111 {
1112         u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1113
1114         if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1115                 return 0;
1116         return cas_pcs_link_check(cp);
1117 }
1118
1119 static int cas_txmac_interrupt(struct net_device *dev,
1120                                struct cas *cp, u32 status)
1121 {
1122         u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1123
1124         if (!txmac_stat)
1125                 return 0;
1126
1127         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1128                      "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1129
1130         /* Defer timer expiration is quite normal,
1131          * don't even log the event.
1132          */
1133         if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1134             !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1135                 return 0;
1136
1137         spin_lock(&cp->stat_lock[0]);
1138         if (txmac_stat & MAC_TX_UNDERRUN) {
1139                 netdev_err(dev, "TX MAC xmit underrun\n");
1140                 cp->net_stats[0].tx_fifo_errors++;
1141         }
1142
1143         if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1144                 netdev_err(dev, "TX MAC max packet size error\n");
1145                 cp->net_stats[0].tx_errors++;
1146         }
1147
1148         /* The rest are all cases of one of the 16-bit TX
1149          * counters expiring.
1150          */
1151         if (txmac_stat & MAC_TX_COLL_NORMAL)
1152                 cp->net_stats[0].collisions += 0x10000;
1153
1154         if (txmac_stat & MAC_TX_COLL_EXCESS) {
1155                 cp->net_stats[0].tx_aborted_errors += 0x10000;
1156                 cp->net_stats[0].collisions += 0x10000;
1157         }
1158
1159         if (txmac_stat & MAC_TX_COLL_LATE) {
1160                 cp->net_stats[0].tx_aborted_errors += 0x10000;
1161                 cp->net_stats[0].collisions += 0x10000;
1162         }
1163         spin_unlock(&cp->stat_lock[0]);
1164
1165         /* We do not keep track of MAC_TX_COLL_FIRST and
1166          * MAC_TX_PEAK_ATTEMPTS events.
1167          */
1168         return 0;
1169 }
1170
1171 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1172 {
1173         cas_hp_inst_t *inst;
1174         u32 val;
1175         int i;
1176
1177         i = 0;
1178         while ((inst = firmware) && inst->note) {
1179                 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1180
1181                 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1182                 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1183                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1184
1185                 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1186                 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1187                 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1188                 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1189                 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1190                 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1191                 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1192                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1193
1194                 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1195                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1196                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1197                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1198                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1199                 ++firmware;
1200                 ++i;
1201         }
1202 }
1203
1204 static void cas_init_rx_dma(struct cas *cp)
1205 {
1206         u64 desc_dma = cp->block_dvma;
1207         u32 val;
1208         int i, size;
1209
1210         /* rx free descriptors */
1211         val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1212         val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1213         val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1214         if ((N_RX_DESC_RINGS > 1) &&
1215             (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1216                 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1217         writel(val, cp->regs + REG_RX_CFG);
1218
1219         val = (unsigned long) cp->init_rxds[0] -
1220                 (unsigned long) cp->init_block;
1221         writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1222         writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1223         writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1224
1225         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1226                 /* rx desc 2 is for IPSEC packets. however,
1227                  * we don't it that for that purpose.
1228                  */
1229                 val = (unsigned long) cp->init_rxds[1] -
1230                         (unsigned long) cp->init_block;
1231                 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1232                 writel((desc_dma + val) & 0xffffffff, cp->regs +
1233                        REG_PLUS_RX_DB1_LOW);
1234                 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1235                        REG_PLUS_RX_KICK1);
1236         }
1237
1238         /* rx completion registers */
1239         val = (unsigned long) cp->init_rxcs[0] -
1240                 (unsigned long) cp->init_block;
1241         writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1242         writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1243
1244         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1245                 /* rx comp 2-4 */
1246                 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1247                         val = (unsigned long) cp->init_rxcs[i] -
1248                                 (unsigned long) cp->init_block;
1249                         writel((desc_dma + val) >> 32, cp->regs +
1250                                REG_PLUS_RX_CBN_HI(i));
1251                         writel((desc_dma + val) & 0xffffffff, cp->regs +
1252                                REG_PLUS_RX_CBN_LOW(i));
1253                 }
1254         }
1255
1256         /* read selective clear regs to prevent spurious interrupts
1257          * on reset because complete == kick.
1258          * selective clear set up to prevent interrupts on resets
1259          */
1260         readl(cp->regs + REG_INTR_STATUS_ALIAS);
1261         writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1262         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1263                 for (i = 1; i < N_RX_COMP_RINGS; i++)
1264                         readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1265
1266                 /* 2 is different from 3 and 4 */
1267                 if (N_RX_COMP_RINGS > 1)
1268                         writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1269                                cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1270
1271                 for (i = 2; i < N_RX_COMP_RINGS; i++)
1272                         writel(INTR_RX_DONE_ALT,
1273                                cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1274         }
1275
1276         /* set up pause thresholds */
1277         val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1278                         cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1279         val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1280                         cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1281         writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1282
1283         /* zero out dma reassembly buffers */
1284         for (i = 0; i < 64; i++) {
1285                 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1286                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1287                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1288                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1289         }
1290
1291         /* make sure address register is 0 for normal operation */
1292         writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1293         writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1294
1295         /* interrupt mitigation */
1296 #ifdef USE_RX_BLANK
1297         val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1298         val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1299         writel(val, cp->regs + REG_RX_BLANK);
1300 #else
1301         writel(0x0, cp->regs + REG_RX_BLANK);
1302 #endif
1303
1304         /* interrupt generation as a function of low water marks for
1305          * free desc and completion entries. these are used to trigger
1306          * housekeeping for rx descs. we don't use the free interrupt
1307          * as it's not very useful
1308          */
1309         /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1310         val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1311         writel(val, cp->regs + REG_RX_AE_THRESH);
1312         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1313                 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1314                 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1315         }
1316
1317         /* Random early detect registers. useful for congestion avoidance.
1318          * this should be tunable.
1319          */
1320         writel(0x0, cp->regs + REG_RX_RED);
1321
1322         /* receive page sizes. default == 2K (0x800) */
1323         val = 0;
1324         if (cp->page_size == 0x1000)
1325                 val = 0x1;
1326         else if (cp->page_size == 0x2000)
1327                 val = 0x2;
1328         else if (cp->page_size == 0x4000)
1329                 val = 0x3;
1330
1331         /* round mtu + offset. constrain to page size. */
1332         size = cp->dev->mtu + 64;
1333         if (size > cp->page_size)
1334                 size = cp->page_size;
1335
1336         if (size <= 0x400)
1337                 i = 0x0;
1338         else if (size <= 0x800)
1339                 i = 0x1;
1340         else if (size <= 0x1000)
1341                 i = 0x2;
1342         else
1343                 i = 0x3;
1344
1345         cp->mtu_stride = 1 << (i + 10);
1346         val  = CAS_BASE(RX_PAGE_SIZE, val);
1347         val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1348         val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1349         val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1350         writel(val, cp->regs + REG_RX_PAGE_SIZE);
1351
1352         /* enable the header parser if desired */
1353         if (CAS_HP_FIRMWARE == cas_prog_null)
1354                 return;
1355
1356         val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1357         val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1358         val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1359         writel(val, cp->regs + REG_HP_CFG);
1360 }
1361
1362 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1363 {
1364         memset(rxc, 0, sizeof(*rxc));
1365         rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1366 }
1367
1368 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1369  * flipping is protected by the fact that the chip will not
1370  * hand back the same page index while it's being processed.
1371  */
1372 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1373 {
1374         cas_page_t *page = cp->rx_pages[1][index];
1375         cas_page_t *new;
1376
1377         if (page_count(page->buffer) == 1)
1378                 return page;
1379
1380         new = cas_page_dequeue(cp);
1381         if (new) {
1382                 spin_lock(&cp->rx_inuse_lock);
1383                 list_add(&page->list, &cp->rx_inuse_list);
1384                 spin_unlock(&cp->rx_inuse_lock);
1385         }
1386         return new;
1387 }
1388
1389 /* this needs to be changed if we actually use the ENC RX DESC ring */
1390 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1391                                  const int index)
1392 {
1393         cas_page_t **page0 = cp->rx_pages[0];
1394         cas_page_t **page1 = cp->rx_pages[1];
1395
1396         /* swap if buffer is in use */
1397         if (page_count(page0[index]->buffer) > 1) {
1398                 cas_page_t *new = cas_page_spare(cp, index);
1399                 if (new) {
1400                         page1[index] = page0[index];
1401                         page0[index] = new;
1402                 }
1403         }
1404         RX_USED_SET(page0[index], 0);
1405         return page0[index];
1406 }
1407
1408 static void cas_clean_rxds(struct cas *cp)
1409 {
1410         /* only clean ring 0 as ring 1 is used for spare buffers */
1411         struct cas_rx_desc *rxd = cp->init_rxds[0];
1412         int i, size;
1413
1414         /* release all rx flows */
1415         for (i = 0; i < N_RX_FLOWS; i++) {
1416                 struct sk_buff *skb;
1417                 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1418                         cas_skb_release(skb);
1419                 }
1420         }
1421
1422         /* initialize descriptors */
1423         size = RX_DESC_RINGN_SIZE(0);
1424         for (i = 0; i < size; i++) {
1425                 cas_page_t *page = cas_page_swap(cp, 0, i);
1426                 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1427                 rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1428                                             CAS_BASE(RX_INDEX_RING, 0));
1429         }
1430
1431         cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1432         cp->rx_last[0] = 0;
1433         cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1434 }
1435
1436 static void cas_clean_rxcs(struct cas *cp)
1437 {
1438         int i, j;
1439
1440         /* take ownership of rx comp descriptors */
1441         memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1442         memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1443         for (i = 0; i < N_RX_COMP_RINGS; i++) {
1444                 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1445                 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1446                         cas_rxc_init(rxc + j);
1447                 }
1448         }
1449 }
1450
1451 #if 0
1452 /* When we get a RX fifo overflow, the RX unit is probably hung
1453  * so we do the following.
1454  *
1455  * If any part of the reset goes wrong, we return 1 and that causes the
1456  * whole chip to be reset.
1457  */
1458 static int cas_rxmac_reset(struct cas *cp)
1459 {
1460         struct net_device *dev = cp->dev;
1461         int limit;
1462         u32 val;
1463
1464         /* First, reset MAC RX. */
1465         writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1466         for (limit = 0; limit < STOP_TRIES; limit++) {
1467                 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1468                         break;
1469                 udelay(10);
1470         }
1471         if (limit == STOP_TRIES) {
1472                 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1473                 return 1;
1474         }
1475
1476         /* Second, disable RX DMA. */
1477         writel(0, cp->regs + REG_RX_CFG);
1478         for (limit = 0; limit < STOP_TRIES; limit++) {
1479                 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1480                         break;
1481                 udelay(10);
1482         }
1483         if (limit == STOP_TRIES) {
1484                 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1485                 return 1;
1486         }
1487
1488         mdelay(5);
1489
1490         /* Execute RX reset command. */
1491         writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1492         for (limit = 0; limit < STOP_TRIES; limit++) {
1493                 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1494                         break;
1495                 udelay(10);
1496         }
1497         if (limit == STOP_TRIES) {
1498                 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1499                 return 1;
1500         }
1501
1502         /* reset driver rx state */
1503         cas_clean_rxds(cp);
1504         cas_clean_rxcs(cp);
1505
1506         /* Now, reprogram the rest of RX unit. */
1507         cas_init_rx_dma(cp);
1508
1509         /* re-enable */
1510         val = readl(cp->regs + REG_RX_CFG);
1511         writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1512         writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1513         val = readl(cp->regs + REG_MAC_RX_CFG);
1514         writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1515         return 0;
1516 }
1517 #endif
1518
1519 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1520                                u32 status)
1521 {
1522         u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1523
1524         if (!stat)
1525                 return 0;
1526
1527         netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1528
1529         /* these are all rollovers */
1530         spin_lock(&cp->stat_lock[0]);
1531         if (stat & MAC_RX_ALIGN_ERR)
1532                 cp->net_stats[0].rx_frame_errors += 0x10000;
1533
1534         if (stat & MAC_RX_CRC_ERR)
1535                 cp->net_stats[0].rx_crc_errors += 0x10000;
1536
1537         if (stat & MAC_RX_LEN_ERR)
1538                 cp->net_stats[0].rx_length_errors += 0x10000;
1539
1540         if (stat & MAC_RX_OVERFLOW) {
1541                 cp->net_stats[0].rx_over_errors++;
1542                 cp->net_stats[0].rx_fifo_errors++;
1543         }
1544
1545         /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1546          * events.
1547          */
1548         spin_unlock(&cp->stat_lock[0]);
1549         return 0;
1550 }
1551
1552 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1553                              u32 status)
1554 {
1555         u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1556
1557         if (!stat)
1558                 return 0;
1559
1560         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1561                      "mac interrupt, stat: 0x%x\n", stat);
1562
1563         /* This interrupt is just for pause frame and pause
1564          * tracking.  It is useful for diagnostics and debug
1565          * but probably by default we will mask these events.
1566          */
1567         if (stat & MAC_CTRL_PAUSE_STATE)
1568                 cp->pause_entered++;
1569
1570         if (stat & MAC_CTRL_PAUSE_RECEIVED)
1571                 cp->pause_last_time_recvd = (stat >> 16);
1572
1573         return 0;
1574 }
1575
1576
1577 /* Must be invoked under cp->lock. */
1578 static inline int cas_mdio_link_not_up(struct cas *cp)
1579 {
1580         u16 val;
1581
1582         switch (cp->lstate) {
1583         case link_force_ret:
1584                 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1585                 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1586                 cp->timer_ticks = 5;
1587                 cp->lstate = link_force_ok;
1588                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1589                 break;
1590
1591         case link_aneg:
1592                 val = cas_phy_read(cp, MII_BMCR);
1593
1594                 /* Try forced modes. we try things in the following order:
1595                  * 1000 full -> 100 full/half -> 10 half
1596                  */
1597                 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1598                 val |= BMCR_FULLDPLX;
1599                 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1600                         CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1601                 cas_phy_write(cp, MII_BMCR, val);
1602                 cp->timer_ticks = 5;
1603                 cp->lstate = link_force_try;
1604                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1605                 break;
1606
1607         case link_force_try:
1608                 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1609                 val = cas_phy_read(cp, MII_BMCR);
1610                 cp->timer_ticks = 5;
1611                 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1612                         val &= ~CAS_BMCR_SPEED1000;
1613                         val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1614                         cas_phy_write(cp, MII_BMCR, val);
1615                         break;
1616                 }
1617
1618                 if (val & BMCR_SPEED100) {
1619                         if (val & BMCR_FULLDPLX) /* fd failed */
1620                                 val &= ~BMCR_FULLDPLX;
1621                         else { /* 100Mbps failed */
1622                                 val &= ~BMCR_SPEED100;
1623                         }
1624                         cas_phy_write(cp, MII_BMCR, val);
1625                         break;
1626                 }
1627         default:
1628                 break;
1629         }
1630         return 0;
1631 }
1632
1633
1634 /* must be invoked with cp->lock held */
1635 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1636 {
1637         int restart;
1638
1639         if (bmsr & BMSR_LSTATUS) {
1640                 /* Ok, here we got a link. If we had it due to a forced
1641                  * fallback, and we were configured for autoneg, we
1642                  * retry a short autoneg pass. If you know your hub is
1643                  * broken, use ethtool ;)
1644                  */
1645                 if ((cp->lstate == link_force_try) &&
1646                     (cp->link_cntl & BMCR_ANENABLE)) {
1647                         cp->lstate = link_force_ret;
1648                         cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1649                         cas_mif_poll(cp, 0);
1650                         cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1651                         cp->timer_ticks = 5;
1652                         if (cp->opened)
1653                                 netif_info(cp, link, cp->dev,
1654                                            "Got link after fallback, retrying autoneg once...\n");
1655                         cas_phy_write(cp, MII_BMCR,
1656                                       cp->link_fcntl | BMCR_ANENABLE |
1657                                       BMCR_ANRESTART);
1658                         cas_mif_poll(cp, 1);
1659
1660                 } else if (cp->lstate != link_up) {
1661                         cp->lstate = link_up;
1662                         cp->link_transition = LINK_TRANSITION_LINK_UP;
1663
1664                         if (cp->opened) {
1665                                 cas_set_link_modes(cp);
1666                                 netif_carrier_on(cp->dev);
1667                         }
1668                 }
1669                 return 0;
1670         }
1671
1672         /* link not up. if the link was previously up, we restart the
1673          * whole process
1674          */
1675         restart = 0;
1676         if (cp->lstate == link_up) {
1677                 cp->lstate = link_down;
1678                 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1679
1680                 netif_carrier_off(cp->dev);
1681                 if (cp->opened)
1682                         netif_info(cp, link, cp->dev, "Link down\n");
1683                 restart = 1;
1684
1685         } else if (++cp->timer_ticks > 10)
1686                 cas_mdio_link_not_up(cp);
1687
1688         return restart;
1689 }
1690
1691 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1692                              u32 status)
1693 {
1694         u32 stat = readl(cp->regs + REG_MIF_STATUS);
1695         u16 bmsr;
1696
1697         /* check for a link change */
1698         if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1699                 return 0;
1700
1701         bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1702         return cas_mii_link_check(cp, bmsr);
1703 }
1704
1705 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1706                              u32 status)
1707 {
1708         u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1709
1710         if (!stat)
1711                 return 0;
1712
1713         netdev_err(dev, "PCI error [%04x:%04x]",
1714                    stat, readl(cp->regs + REG_BIM_DIAG));
1715
1716         /* cassini+ has this reserved */
1717         if ((stat & PCI_ERR_BADACK) &&
1718             ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1719                 pr_cont(" <No ACK64# during ABS64 cycle>");
1720
1721         if (stat & PCI_ERR_DTRTO)
1722                 pr_cont(" <Delayed transaction timeout>");
1723         if (stat & PCI_ERR_OTHER)
1724                 pr_cont(" <other>");
1725         if (stat & PCI_ERR_BIM_DMA_WRITE)
1726                 pr_cont(" <BIM DMA 0 write req>");
1727         if (stat & PCI_ERR_BIM_DMA_READ)
1728                 pr_cont(" <BIM DMA 0 read req>");
1729         pr_cont("\n");
1730
1731         if (stat & PCI_ERR_OTHER) {
1732                 u16 cfg;
1733
1734                 /* Interrogate PCI config space for the
1735                  * true cause.
1736                  */
1737                 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1738                 netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg);
1739                 if (cfg & PCI_STATUS_PARITY)
1740                         netdev_err(dev, "PCI parity error detected\n");
1741                 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1742                         netdev_err(dev, "PCI target abort\n");
1743                 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1744                         netdev_err(dev, "PCI master acks target abort\n");
1745                 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1746                         netdev_err(dev, "PCI master abort\n");
1747                 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1748                         netdev_err(dev, "PCI system error SERR#\n");
1749                 if (cfg & PCI_STATUS_DETECTED_PARITY)
1750                         netdev_err(dev, "PCI parity error\n");
1751
1752                 /* Write the error bits back to clear them. */
1753                 cfg &= (PCI_STATUS_PARITY |
1754                         PCI_STATUS_SIG_TARGET_ABORT |
1755                         PCI_STATUS_REC_TARGET_ABORT |
1756                         PCI_STATUS_REC_MASTER_ABORT |
1757                         PCI_STATUS_SIG_SYSTEM_ERROR |
1758                         PCI_STATUS_DETECTED_PARITY);
1759                 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1760         }
1761
1762         /* For all PCI errors, we should reset the chip. */
1763         return 1;
1764 }
1765
1766 /* All non-normal interrupt conditions get serviced here.
1767  * Returns non-zero if we should just exit the interrupt
1768  * handler right now (ie. if we reset the card which invalidates
1769  * all of the other original irq status bits).
1770  */
1771 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1772                             u32 status)
1773 {
1774         if (status & INTR_RX_TAG_ERROR) {
1775                 /* corrupt RX tag framing */
1776                 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1777                              "corrupt rx tag framing\n");
1778                 spin_lock(&cp->stat_lock[0]);
1779                 cp->net_stats[0].rx_errors++;
1780                 spin_unlock(&cp->stat_lock[0]);
1781                 goto do_reset;
1782         }
1783
1784         if (status & INTR_RX_LEN_MISMATCH) {
1785                 /* length mismatch. */
1786                 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1787                              "length mismatch for rx frame\n");
1788                 spin_lock(&cp->stat_lock[0]);
1789                 cp->net_stats[0].rx_errors++;
1790                 spin_unlock(&cp->stat_lock[0]);
1791                 goto do_reset;
1792         }
1793
1794         if (status & INTR_PCS_STATUS) {
1795                 if (cas_pcs_interrupt(dev, cp, status))
1796                         goto do_reset;
1797         }
1798
1799         if (status & INTR_TX_MAC_STATUS) {
1800                 if (cas_txmac_interrupt(dev, cp, status))
1801                         goto do_reset;
1802         }
1803
1804         if (status & INTR_RX_MAC_STATUS) {
1805                 if (cas_rxmac_interrupt(dev, cp, status))
1806                         goto do_reset;
1807         }
1808
1809         if (status & INTR_MAC_CTRL_STATUS) {
1810                 if (cas_mac_interrupt(dev, cp, status))
1811                         goto do_reset;
1812         }
1813
1814         if (status & INTR_MIF_STATUS) {
1815                 if (cas_mif_interrupt(dev, cp, status))
1816                         goto do_reset;
1817         }
1818
1819         if (status & INTR_PCI_ERROR_STATUS) {
1820                 if (cas_pci_interrupt(dev, cp, status))
1821                         goto do_reset;
1822         }
1823         return 0;
1824
1825 do_reset:
1826 #if 1
1827         atomic_inc(&cp->reset_task_pending);
1828         atomic_inc(&cp->reset_task_pending_all);
1829         netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1830         schedule_work(&cp->reset_task);
1831 #else
1832         atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1833         netdev_err(dev, "reset called in cas_abnormal_irq\n");
1834         schedule_work(&cp->reset_task);
1835 #endif
1836         return 1;
1837 }
1838
1839 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1840  *       determining whether to do a netif_stop/wakeup
1841  */
1842 #define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1843 #define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1844 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1845                                   const int len)
1846 {
1847         unsigned long off = addr + len;
1848
1849         if (CAS_TABORT(cp) == 1)
1850                 return 0;
1851         if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1852                 return 0;
1853         return TX_TARGET_ABORT_LEN;
1854 }
1855
1856 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1857 {
1858         struct cas_tx_desc *txds;
1859         struct sk_buff **skbs;
1860         struct net_device *dev = cp->dev;
1861         int entry, count;
1862
1863         spin_lock(&cp->tx_lock[ring]);
1864         txds = cp->init_txds[ring];
1865         skbs = cp->tx_skbs[ring];
1866         entry = cp->tx_old[ring];
1867
1868         count = TX_BUFF_COUNT(ring, entry, limit);
1869         while (entry != limit) {
1870                 struct sk_buff *skb = skbs[entry];
1871                 dma_addr_t daddr;
1872                 u32 dlen;
1873                 int frag;
1874
1875                 if (!skb) {
1876                         /* this should never occur */
1877                         entry = TX_DESC_NEXT(ring, entry);
1878                         continue;
1879                 }
1880
1881                 /* however, we might get only a partial skb release. */
1882                 count -= skb_shinfo(skb)->nr_frags +
1883                         + cp->tx_tiny_use[ring][entry].nbufs + 1;
1884                 if (count < 0)
1885                         break;
1886
1887                 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1888                              "tx[%d] done, slot %d\n", ring, entry);
1889
1890                 skbs[entry] = NULL;
1891                 cp->tx_tiny_use[ring][entry].nbufs = 0;
1892
1893                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1894                         struct cas_tx_desc *txd = txds + entry;
1895
1896                         daddr = le64_to_cpu(txd->buffer);
1897                         dlen = CAS_VAL(TX_DESC_BUFLEN,
1898                                        le64_to_cpu(txd->control));
1899                         pci_unmap_page(cp->pdev, daddr, dlen,
1900                                        PCI_DMA_TODEVICE);
1901                         entry = TX_DESC_NEXT(ring, entry);
1902
1903                         /* tiny buffer may follow */
1904                         if (cp->tx_tiny_use[ring][entry].used) {
1905                                 cp->tx_tiny_use[ring][entry].used = 0;
1906                                 entry = TX_DESC_NEXT(ring, entry);
1907                         }
1908                 }
1909
1910                 spin_lock(&cp->stat_lock[ring]);
1911                 cp->net_stats[ring].tx_packets++;
1912                 cp->net_stats[ring].tx_bytes += skb->len;
1913                 spin_unlock(&cp->stat_lock[ring]);
1914                 dev_kfree_skb_irq(skb);
1915         }
1916         cp->tx_old[ring] = entry;
1917
1918         /* this is wrong for multiple tx rings. the net device needs
1919          * multiple queues for this to do the right thing.  we wait
1920          * for 2*packets to be available when using tiny buffers
1921          */
1922         if (netif_queue_stopped(dev) &&
1923             (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1924                 netif_wake_queue(dev);
1925         spin_unlock(&cp->tx_lock[ring]);
1926 }
1927
1928 static void cas_tx(struct net_device *dev, struct cas *cp,
1929                    u32 status)
1930 {
1931         int limit, ring;
1932 #ifdef USE_TX_COMPWB
1933         u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1934 #endif
1935         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1936                      "tx interrupt, status: 0x%x, %llx\n",
1937                      status, (unsigned long long)compwb);
1938         /* process all the rings */
1939         for (ring = 0; ring < N_TX_RINGS; ring++) {
1940 #ifdef USE_TX_COMPWB
1941                 /* use the completion writeback registers */
1942                 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1943                         CAS_VAL(TX_COMPWB_LSB, compwb);
1944                 compwb = TX_COMPWB_NEXT(compwb);
1945 #else
1946                 limit = readl(cp->regs + REG_TX_COMPN(ring));
1947 #endif
1948                 if (cp->tx_old[ring] != limit)
1949                         cas_tx_ringN(cp, ring, limit);
1950         }
1951 }
1952
1953
1954 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1955                               int entry, const u64 *words,
1956                               struct sk_buff **skbref)
1957 {
1958         int dlen, hlen, len, i, alloclen;
1959         int off, swivel = RX_SWIVEL_OFF_VAL;
1960         struct cas_page *page;
1961         struct sk_buff *skb;
1962         void *addr, *crcaddr;
1963         __sum16 csum;
1964         char *p;
1965
1966         hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1967         dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1968         len  = hlen + dlen;
1969
1970         if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1971                 alloclen = len;
1972         else
1973                 alloclen = max(hlen, RX_COPY_MIN);
1974
1975         skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1976         if (skb == NULL)
1977                 return -1;
1978
1979         *skbref = skb;
1980         skb_reserve(skb, swivel);
1981
1982         p = skb->data;
1983         addr = crcaddr = NULL;
1984         if (hlen) { /* always copy header pages */
1985                 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1986                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1987                 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1988                         swivel;
1989
1990                 i = hlen;
1991                 if (!dlen) /* attach FCS */
1992                         i += cp->crc_size;
1993                 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1994                                     PCI_DMA_FROMDEVICE);
1995                 addr = cas_page_map(page->buffer);
1996                 memcpy(p, addr + off, i);
1997                 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
1998                                     PCI_DMA_FROMDEVICE);
1999                 cas_page_unmap(addr);
2000                 RX_USED_ADD(page, 0x100);
2001                 p += hlen;
2002                 swivel = 0;
2003         }
2004
2005
2006         if (alloclen < (hlen + dlen)) {
2007                 skb_frag_t *frag = skb_shinfo(skb)->frags;
2008
2009                 /* normal or jumbo packets. we use frags */
2010                 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2011                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2012                 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2013
2014                 hlen = min(cp->page_size - off, dlen);
2015                 if (hlen < 0) {
2016                         netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2017                                      "rx page overflow: %d\n", hlen);
2018                         dev_kfree_skb_irq(skb);
2019                         return -1;
2020                 }
2021                 i = hlen;
2022                 if (i == dlen)  /* attach FCS */
2023                         i += cp->crc_size;
2024                 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2025                                     PCI_DMA_FROMDEVICE);
2026
2027                 /* make sure we always copy a header */
2028                 swivel = 0;
2029                 if (p == (char *) skb->data) { /* not split */
2030                         addr = cas_page_map(page->buffer);
2031                         memcpy(p, addr + off, RX_COPY_MIN);
2032                         pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2033                                         PCI_DMA_FROMDEVICE);
2034                         cas_page_unmap(addr);
2035                         off += RX_COPY_MIN;
2036                         swivel = RX_COPY_MIN;
2037                         RX_USED_ADD(page, cp->mtu_stride);
2038                 } else {
2039                         RX_USED_ADD(page, hlen);
2040                 }
2041                 skb_put(skb, alloclen);
2042
2043                 skb_shinfo(skb)->nr_frags++;
2044                 skb->data_len += hlen - swivel;
2045                 skb->truesize += hlen - swivel;
2046                 skb->len      += hlen - swivel;
2047
2048                 __skb_frag_set_page(frag, page->buffer);
2049                 __skb_frag_ref(frag);
2050                 frag->page_offset = off;
2051                 skb_frag_size_set(frag, hlen - swivel);
2052
2053                 /* any more data? */
2054                 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2055                         hlen = dlen;
2056                         off = 0;
2057
2058                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2059                         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2060                         pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2061                                             hlen + cp->crc_size,
2062                                             PCI_DMA_FROMDEVICE);
2063                         pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2064                                             hlen + cp->crc_size,
2065                                             PCI_DMA_FROMDEVICE);
2066
2067                         skb_shinfo(skb)->nr_frags++;
2068                         skb->data_len += hlen;
2069                         skb->len      += hlen;
2070                         frag++;
2071
2072                         __skb_frag_set_page(frag, page->buffer);
2073                         __skb_frag_ref(frag);
2074                         frag->page_offset = 0;
2075                         skb_frag_size_set(frag, hlen);
2076                         RX_USED_ADD(page, hlen + cp->crc_size);
2077                 }
2078
2079                 if (cp->crc_size) {
2080                         addr = cas_page_map(page->buffer);
2081                         crcaddr  = addr + off + hlen;
2082                 }
2083
2084         } else {
2085                 /* copying packet */
2086                 if (!dlen)
2087                         goto end_copy_pkt;
2088
2089                 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2090                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2091                 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2092                 hlen = min(cp->page_size - off, dlen);
2093                 if (hlen < 0) {
2094                         netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2095                                      "rx page overflow: %d\n", hlen);
2096                         dev_kfree_skb_irq(skb);
2097                         return -1;
2098                 }
2099                 i = hlen;
2100                 if (i == dlen) /* attach FCS */
2101                         i += cp->crc_size;
2102                 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2103                                     PCI_DMA_FROMDEVICE);
2104                 addr = cas_page_map(page->buffer);
2105                 memcpy(p, addr + off, i);
2106                 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2107                                     PCI_DMA_FROMDEVICE);
2108                 cas_page_unmap(addr);
2109                 if (p == (char *) skb->data) /* not split */
2110                         RX_USED_ADD(page, cp->mtu_stride);
2111                 else
2112                         RX_USED_ADD(page, i);
2113
2114                 /* any more data? */
2115                 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2116                         p += hlen;
2117                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2118                         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2119                         pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2120                                             dlen + cp->crc_size,
2121                                             PCI_DMA_FROMDEVICE);
2122                         addr = cas_page_map(page->buffer);
2123                         memcpy(p, addr, dlen + cp->crc_size);
2124                         pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2125                                             dlen + cp->crc_size,
2126                                             PCI_DMA_FROMDEVICE);
2127                         cas_page_unmap(addr);
2128                         RX_USED_ADD(page, dlen + cp->crc_size);
2129                 }
2130 end_copy_pkt:
2131                 if (cp->crc_size) {
2132                         addr    = NULL;
2133                         crcaddr = skb->data + alloclen;
2134                 }
2135                 skb_put(skb, alloclen);
2136         }
2137
2138         csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2139         if (cp->crc_size) {
2140                 /* checksum includes FCS. strip it out. */
2141                 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2142                                               csum_unfold(csum)));
2143                 if (addr)
2144                         cas_page_unmap(addr);
2145         }
2146         skb->protocol = eth_type_trans(skb, cp->dev);
2147         if (skb->protocol == htons(ETH_P_IP)) {
2148                 skb->csum = csum_unfold(~csum);
2149                 skb->ip_summed = CHECKSUM_COMPLETE;
2150         } else
2151                 skb_checksum_none_assert(skb);
2152         return len;
2153 }
2154
2155
2156 /* we can handle up to 64 rx flows at a time. we do the same thing
2157  * as nonreassm except that we batch up the buffers.
2158  * NOTE: we currently just treat each flow as a bunch of packets that
2159  *       we pass up. a better way would be to coalesce the packets
2160  *       into a jumbo packet. to do that, we need to do the following:
2161  *       1) the first packet will have a clean split between header and
2162  *          data. save both.
2163  *       2) each time the next flow packet comes in, extend the
2164  *          data length and merge the checksums.
2165  *       3) on flow release, fix up the header.
2166  *       4) make sure the higher layer doesn't care.
2167  * because packets get coalesced, we shouldn't run into fragment count
2168  * issues.
2169  */
2170 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2171                                    struct sk_buff *skb)
2172 {
2173         int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2174         struct sk_buff_head *flow = &cp->rx_flows[flowid];
2175
2176         /* this is protected at a higher layer, so no need to
2177          * do any additional locking here. stick the buffer
2178          * at the end.
2179          */
2180         __skb_queue_tail(flow, skb);
2181         if (words[0] & RX_COMP1_RELEASE_FLOW) {
2182                 while ((skb = __skb_dequeue(flow))) {
2183                         cas_skb_release(skb);
2184                 }
2185         }
2186 }
2187
2188 /* put rx descriptor back on ring. if a buffer is in use by a higher
2189  * layer, this will need to put in a replacement.
2190  */
2191 static void cas_post_page(struct cas *cp, const int ring, const int index)
2192 {
2193         cas_page_t *new;
2194         int entry;
2195
2196         entry = cp->rx_old[ring];
2197
2198         new = cas_page_swap(cp, ring, index);
2199         cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2200         cp->init_rxds[ring][entry].index  =
2201                 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2202                             CAS_BASE(RX_INDEX_RING, ring));
2203
2204         entry = RX_DESC_ENTRY(ring, entry + 1);
2205         cp->rx_old[ring] = entry;
2206
2207         if (entry % 4)
2208                 return;
2209
2210         if (ring == 0)
2211                 writel(entry, cp->regs + REG_RX_KICK);
2212         else if ((N_RX_DESC_RINGS > 1) &&
2213                  (cp->cas_flags & CAS_FLAG_REG_PLUS))
2214                 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2215 }
2216
2217
2218 /* only when things are bad */
2219 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2220 {
2221         unsigned int entry, last, count, released;
2222         int cluster;
2223         cas_page_t **page = cp->rx_pages[ring];
2224
2225         entry = cp->rx_old[ring];
2226
2227         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2228                      "rxd[%d] interrupt, done: %d\n", ring, entry);
2229
2230         cluster = -1;
2231         count = entry & 0x3;
2232         last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2233         released = 0;
2234         while (entry != last) {
2235                 /* make a new buffer if it's still in use */
2236                 if (page_count(page[entry]->buffer) > 1) {
2237                         cas_page_t *new = cas_page_dequeue(cp);
2238                         if (!new) {
2239                                 /* let the timer know that we need to
2240                                  * do this again
2241                                  */
2242                                 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2243                                 if (!timer_pending(&cp->link_timer))
2244                                         mod_timer(&cp->link_timer, jiffies +
2245                                                   CAS_LINK_FAST_TIMEOUT);
2246                                 cp->rx_old[ring]  = entry;
2247                                 cp->rx_last[ring] = num ? num - released : 0;
2248                                 return -ENOMEM;
2249                         }
2250                         spin_lock(&cp->rx_inuse_lock);
2251                         list_add(&page[entry]->list, &cp->rx_inuse_list);
2252                         spin_unlock(&cp->rx_inuse_lock);
2253                         cp->init_rxds[ring][entry].buffer =
2254                                 cpu_to_le64(new->dma_addr);
2255                         page[entry] = new;
2256
2257                 }
2258
2259                 if (++count == 4) {
2260                         cluster = entry;
2261                         count = 0;
2262                 }
2263                 released++;
2264                 entry = RX_DESC_ENTRY(ring, entry + 1);
2265         }
2266         cp->rx_old[ring] = entry;
2267
2268         if (cluster < 0)
2269                 return 0;
2270
2271         if (ring == 0)
2272                 writel(cluster, cp->regs + REG_RX_KICK);
2273         else if ((N_RX_DESC_RINGS > 1) &&
2274                  (cp->cas_flags & CAS_FLAG_REG_PLUS))
2275                 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2276         return 0;
2277 }
2278
2279
2280 /* process a completion ring. packets are set up in three basic ways:
2281  * small packets: should be copied header + data in single buffer.
2282  * large packets: header and data in a single buffer.
2283  * split packets: header in a separate buffer from data.
2284  *                data may be in multiple pages. data may be > 256
2285  *                bytes but in a single page.
2286  *
2287  * NOTE: RX page posting is done in this routine as well. while there's
2288  *       the capability of using multiple RX completion rings, it isn't
2289  *       really worthwhile due to the fact that the page posting will
2290  *       force serialization on the single descriptor ring.
2291  */
2292 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2293 {
2294         struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2295         int entry, drops;
2296         int npackets = 0;
2297
2298         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2299                      "rx[%d] interrupt, done: %d/%d\n",
2300                      ring,
2301                      readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2302
2303         entry = cp->rx_new[ring];
2304         drops = 0;
2305         while (1) {
2306                 struct cas_rx_comp *rxc = rxcs + entry;
2307                 struct sk_buff *uninitialized_var(skb);
2308                 int type, len;
2309                 u64 words[4];
2310                 int i, dring;
2311
2312                 words[0] = le64_to_cpu(rxc->word1);
2313                 words[1] = le64_to_cpu(rxc->word2);
2314                 words[2] = le64_to_cpu(rxc->word3);
2315                 words[3] = le64_to_cpu(rxc->word4);
2316
2317                 /* don't touch if still owned by hw */
2318                 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2319                 if (type == 0)
2320                         break;
2321
2322                 /* hw hasn't cleared the zero bit yet */
2323                 if (words[3] & RX_COMP4_ZERO) {
2324                         break;
2325                 }
2326
2327                 /* get info on the packet */
2328                 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2329                         spin_lock(&cp->stat_lock[ring]);
2330                         cp->net_stats[ring].rx_errors++;
2331                         if (words[3] & RX_COMP4_LEN_MISMATCH)
2332                                 cp->net_stats[ring].rx_length_errors++;
2333                         if (words[3] & RX_COMP4_BAD)
2334                                 cp->net_stats[ring].rx_crc_errors++;
2335                         spin_unlock(&cp->stat_lock[ring]);
2336
2337                         /* We'll just return it to Cassini. */
2338                 drop_it:
2339                         spin_lock(&cp->stat_lock[ring]);
2340                         ++cp->net_stats[ring].rx_dropped;
2341                         spin_unlock(&cp->stat_lock[ring]);
2342                         goto next;
2343                 }
2344
2345                 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2346                 if (len < 0) {
2347                         ++drops;
2348                         goto drop_it;
2349                 }
2350
2351                 /* see if it's a flow re-assembly or not. the driver
2352                  * itself handles release back up.
2353                  */
2354                 if (RX_DONT_BATCH || (type == 0x2)) {
2355                         /* non-reassm: these always get released */
2356                         cas_skb_release(skb);
2357                 } else {
2358                         cas_rx_flow_pkt(cp, words, skb);
2359                 }
2360
2361                 spin_lock(&cp->stat_lock[ring]);
2362                 cp->net_stats[ring].rx_packets++;
2363                 cp->net_stats[ring].rx_bytes += len;
2364                 spin_unlock(&cp->stat_lock[ring]);
2365
2366         next:
2367                 npackets++;
2368
2369                 /* should it be released? */
2370                 if (words[0] & RX_COMP1_RELEASE_HDR) {
2371                         i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2372                         dring = CAS_VAL(RX_INDEX_RING, i);
2373                         i = CAS_VAL(RX_INDEX_NUM, i);
2374                         cas_post_page(cp, dring, i);
2375                 }
2376
2377                 if (words[0] & RX_COMP1_RELEASE_DATA) {
2378                         i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2379                         dring = CAS_VAL(RX_INDEX_RING, i);
2380                         i = CAS_VAL(RX_INDEX_NUM, i);
2381                         cas_post_page(cp, dring, i);
2382                 }
2383
2384                 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2385                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2386                         dring = CAS_VAL(RX_INDEX_RING, i);
2387                         i = CAS_VAL(RX_INDEX_NUM, i);
2388                         cas_post_page(cp, dring, i);
2389                 }
2390
2391                 /* skip to the next entry */
2392                 entry = RX_COMP_ENTRY(ring, entry + 1 +
2393                                       CAS_VAL(RX_COMP1_SKIP, words[0]));
2394 #ifdef USE_NAPI
2395                 if (budget && (npackets >= budget))
2396                         break;
2397 #endif
2398         }
2399         cp->rx_new[ring] = entry;
2400
2401         if (drops)
2402                 netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2403         return npackets;
2404 }
2405
2406
2407 /* put completion entries back on the ring */
2408 static void cas_post_rxcs_ringN(struct net_device *dev,
2409                                 struct cas *cp, int ring)
2410 {
2411         struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2412         int last, entry;
2413
2414         last = cp->rx_cur[ring];
2415         entry = cp->rx_new[ring];
2416         netif_printk(cp, intr, KERN_DEBUG, dev,
2417                      "rxc[%d] interrupt, done: %d/%d\n",
2418                      ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2419
2420         /* zero and re-mark descriptors */
2421         while (last != entry) {
2422                 cas_rxc_init(rxc + last);
2423                 last = RX_COMP_ENTRY(ring, last + 1);
2424         }
2425         cp->rx_cur[ring] = last;
2426
2427         if (ring == 0)
2428                 writel(last, cp->regs + REG_RX_COMP_TAIL);
2429         else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2430                 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2431 }
2432
2433
2434
2435 /* cassini can use all four PCI interrupts for the completion ring.
2436  * rings 3 and 4 are identical
2437  */
2438 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2439 static inline void cas_handle_irqN(struct net_device *dev,
2440                                    struct cas *cp, const u32 status,
2441                                    const int ring)
2442 {
2443         if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2444                 cas_post_rxcs_ringN(dev, cp, ring);
2445 }
2446
2447 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2448 {
2449         struct net_device *dev = dev_id;
2450         struct cas *cp = netdev_priv(dev);
2451         unsigned long flags;
2452         int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2453         u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2454
2455         /* check for shared irq */
2456         if (status == 0)
2457                 return IRQ_NONE;
2458
2459         spin_lock_irqsave(&cp->lock, flags);
2460         if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2461 #ifdef USE_NAPI
2462                 cas_mask_intr(cp);
2463                 napi_schedule(&cp->napi);
2464 #else
2465                 cas_rx_ringN(cp, ring, 0);
2466 #endif
2467                 status &= ~INTR_RX_DONE_ALT;
2468         }
2469
2470         if (status)
2471                 cas_handle_irqN(dev, cp, status, ring);
2472         spin_unlock_irqrestore(&cp->lock, flags);
2473         return IRQ_HANDLED;
2474 }
2475 #endif
2476
2477 #ifdef USE_PCI_INTB
2478 /* everything but rx packets */
2479 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2480 {
2481         if (status & INTR_RX_BUF_UNAVAIL_1) {
2482                 /* Frame arrived, no free RX buffers available.
2483                  * NOTE: we can get this on a link transition. */
2484                 cas_post_rxds_ringN(cp, 1, 0);
2485                 spin_lock(&cp->stat_lock[1]);
2486                 cp->net_stats[1].rx_dropped++;
2487                 spin_unlock(&cp->stat_lock[1]);
2488         }
2489
2490         if (status & INTR_RX_BUF_AE_1)
2491                 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2492                                     RX_AE_FREEN_VAL(1));
2493
2494         if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2495                 cas_post_rxcs_ringN(cp, 1);
2496 }
2497
2498 /* ring 2 handles a few more events than 3 and 4 */
2499 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2500 {
2501         struct net_device *dev = dev_id;
2502         struct cas *cp = netdev_priv(dev);
2503         unsigned long flags;
2504         u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2505
2506         /* check for shared interrupt */
2507         if (status == 0)
2508                 return IRQ_NONE;
2509
2510         spin_lock_irqsave(&cp->lock, flags);
2511         if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2512 #ifdef USE_NAPI
2513                 cas_mask_intr(cp);
2514                 napi_schedule(&cp->napi);
2515 #else
2516                 cas_rx_ringN(cp, 1, 0);
2517 #endif
2518                 status &= ~INTR_RX_DONE_ALT;
2519         }
2520         if (status)
2521                 cas_handle_irq1(cp, status);
2522         spin_unlock_irqrestore(&cp->lock, flags);
2523         return IRQ_HANDLED;
2524 }
2525 #endif
2526
2527 static inline void cas_handle_irq(struct net_device *dev,
2528                                   struct cas *cp, const u32 status)
2529 {
2530         /* housekeeping interrupts */
2531         if (status & INTR_ERROR_MASK)
2532                 cas_abnormal_irq(dev, cp, status);
2533
2534         if (status & INTR_RX_BUF_UNAVAIL) {
2535                 /* Frame arrived, no free RX buffers available.
2536                  * NOTE: we can get this on a link transition.
2537                  */
2538                 cas_post_rxds_ringN(cp, 0, 0);
2539                 spin_lock(&cp->stat_lock[0]);
2540                 cp->net_stats[0].rx_dropped++;
2541                 spin_unlock(&cp->stat_lock[0]);
2542         } else if (status & INTR_RX_BUF_AE) {
2543                 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2544                                     RX_AE_FREEN_VAL(0));
2545         }
2546
2547         if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2548                 cas_post_rxcs_ringN(dev, cp, 0);
2549 }
2550
2551 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2552 {
2553         struct net_device *dev = dev_id;
2554         struct cas *cp = netdev_priv(dev);
2555         unsigned long flags;
2556         u32 status = readl(cp->regs + REG_INTR_STATUS);
2557
2558         if (status == 0)
2559                 return IRQ_NONE;
2560
2561         spin_lock_irqsave(&cp->lock, flags);
2562         if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2563                 cas_tx(dev, cp, status);
2564                 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2565         }
2566
2567         if (status & INTR_RX_DONE) {
2568 #ifdef USE_NAPI
2569                 cas_mask_intr(cp);
2570                 napi_schedule(&cp->napi);
2571 #else
2572                 cas_rx_ringN(cp, 0, 0);
2573 #endif
2574                 status &= ~INTR_RX_DONE;
2575         }
2576
2577         if (status)
2578                 cas_handle_irq(dev, cp, status);
2579         spin_unlock_irqrestore(&cp->lock, flags);
2580         return IRQ_HANDLED;
2581 }
2582
2583
2584 #ifdef USE_NAPI
2585 static int cas_poll(struct napi_struct *napi, int budget)
2586 {
2587         struct cas *cp = container_of(napi, struct cas, napi);
2588         struct net_device *dev = cp->dev;
2589         int i, enable_intr, credits;
2590         u32 status = readl(cp->regs + REG_INTR_STATUS);
2591         unsigned long flags;
2592
2593         spin_lock_irqsave(&cp->lock, flags);
2594         cas_tx(dev, cp, status);
2595         spin_unlock_irqrestore(&cp->lock, flags);
2596
2597         /* NAPI rx packets. we spread the credits across all of the
2598          * rxc rings
2599          *
2600          * to make sure we're fair with the work we loop through each
2601          * ring N_RX_COMP_RING times with a request of
2602          * budget / N_RX_COMP_RINGS
2603          */
2604         enable_intr = 1;
2605         credits = 0;
2606         for (i = 0; i < N_RX_COMP_RINGS; i++) {
2607                 int j;
2608                 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2609                         credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2610                         if (credits >= budget) {
2611                                 enable_intr = 0;
2612                                 goto rx_comp;
2613                         }
2614                 }
2615         }
2616
2617 rx_comp:
2618         /* final rx completion */
2619         spin_lock_irqsave(&cp->lock, flags);
2620         if (status)
2621                 cas_handle_irq(dev, cp, status);
2622
2623 #ifdef USE_PCI_INTB
2624         if (N_RX_COMP_RINGS > 1) {
2625                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2626                 if (status)
2627                         cas_handle_irq1(dev, cp, status);
2628         }
2629 #endif
2630
2631 #ifdef USE_PCI_INTC
2632         if (N_RX_COMP_RINGS > 2) {
2633                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2634                 if (status)
2635                         cas_handle_irqN(dev, cp, status, 2);
2636         }
2637 #endif
2638
2639 #ifdef USE_PCI_INTD
2640         if (N_RX_COMP_RINGS > 3) {
2641                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2642                 if (status)
2643                         cas_handle_irqN(dev, cp, status, 3);
2644         }
2645 #endif
2646         spin_unlock_irqrestore(&cp->lock, flags);
2647         if (enable_intr) {
2648                 napi_complete(napi);
2649                 cas_unmask_intr(cp);
2650         }
2651         return credits;
2652 }
2653 #endif
2654
2655 #ifdef CONFIG_NET_POLL_CONTROLLER
2656 static void cas_netpoll(struct net_device *dev)
2657 {
2658         struct cas *cp = netdev_priv(dev);
2659
2660         cas_disable_irq(cp, 0);
2661         cas_interrupt(cp->pdev->irq, dev);
2662         cas_enable_irq(cp, 0);
2663
2664 #ifdef USE_PCI_INTB
2665         if (N_RX_COMP_RINGS > 1) {
2666                 /* cas_interrupt1(); */
2667         }
2668 #endif
2669 #ifdef USE_PCI_INTC
2670         if (N_RX_COMP_RINGS > 2) {
2671                 /* cas_interruptN(); */
2672         }
2673 #endif
2674 #ifdef USE_PCI_INTD
2675         if (N_RX_COMP_RINGS > 3) {
2676                 /* cas_interruptN(); */
2677         }
2678 #endif
2679 }
2680 #endif
2681
2682 static void cas_tx_timeout(struct net_device *dev)
2683 {
2684         struct cas *cp = netdev_priv(dev);
2685
2686         netdev_err(dev, "transmit timed out, resetting\n");
2687         if (!cp->hw_running) {
2688                 netdev_err(dev, "hrm.. hw not running!\n");
2689                 return;
2690         }
2691
2692         netdev_err(dev, "MIF_STATE[%08x]\n",
2693                    readl(cp->regs + REG_MIF_STATE_MACHINE));
2694
2695         netdev_err(dev, "MAC_STATE[%08x]\n",
2696                    readl(cp->regs + REG_MAC_STATE_MACHINE));
2697
2698         netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2699                    readl(cp->regs + REG_TX_CFG),
2700                    readl(cp->regs + REG_MAC_TX_STATUS),
2701                    readl(cp->regs + REG_MAC_TX_CFG),
2702                    readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2703                    readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2704                    readl(cp->regs + REG_TX_FIFO_READ_PTR),
2705                    readl(cp->regs + REG_TX_SM_1),
2706                    readl(cp->regs + REG_TX_SM_2));
2707
2708         netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2709                    readl(cp->regs + REG_RX_CFG),
2710                    readl(cp->regs + REG_MAC_RX_STATUS),
2711                    readl(cp->regs + REG_MAC_RX_CFG));
2712
2713         netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2714                    readl(cp->regs + REG_HP_STATE_MACHINE),
2715                    readl(cp->regs + REG_HP_STATUS0),
2716                    readl(cp->regs + REG_HP_STATUS1),
2717                    readl(cp->regs + REG_HP_STATUS2));
2718
2719 #if 1
2720         atomic_inc(&cp->reset_task_pending);
2721         atomic_inc(&cp->reset_task_pending_all);
2722         schedule_work(&cp->reset_task);
2723 #else
2724         atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2725         schedule_work(&cp->reset_task);
2726 #endif
2727 }
2728
2729 static inline int cas_intme(int ring, int entry)
2730 {
2731         /* Algorithm: IRQ every 1/2 of descriptors. */
2732         if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2733                 return 1;
2734         return 0;
2735 }
2736
2737
2738 static void cas_write_txd(struct cas *cp, int ring, int entry,
2739                           dma_addr_t mapping, int len, u64 ctrl, int last)
2740 {
2741         struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2742
2743         ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2744         if (cas_intme(ring, entry))
2745                 ctrl |= TX_DESC_INTME;
2746         if (last)
2747                 ctrl |= TX_DESC_EOF;
2748         txd->control = cpu_to_le64(ctrl);
2749         txd->buffer = cpu_to_le64(mapping);
2750 }
2751
2752 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2753                                 const int entry)
2754 {
2755         return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2756 }
2757
2758 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2759                                      const int entry, const int tentry)
2760 {
2761         cp->tx_tiny_use[ring][tentry].nbufs++;
2762         cp->tx_tiny_use[ring][entry].used = 1;
2763         return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2764 }
2765
2766 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2767                                     struct sk_buff *skb)
2768 {
2769         struct net_device *dev = cp->dev;
2770         int entry, nr_frags, frag, tabort, tentry;
2771         dma_addr_t mapping;
2772         unsigned long flags;
2773         u64 ctrl;
2774         u32 len;
2775
2776         spin_lock_irqsave(&cp->tx_lock[ring], flags);
2777
2778         /* This is a hard error, log it. */
2779         if (TX_BUFFS_AVAIL(cp, ring) <=
2780             CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2781                 netif_stop_queue(dev);
2782                 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2783                 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2784                 return 1;
2785         }
2786
2787         ctrl = 0;
2788         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2789                 const u64 csum_start_off = skb_checksum_start_offset(skb);
2790                 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2791
2792                 ctrl =  TX_DESC_CSUM_EN |
2793                         CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2794                         CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2795         }
2796
2797         entry = cp->tx_new[ring];
2798         cp->tx_skbs[ring][entry] = skb;
2799
2800         nr_frags = skb_shinfo(skb)->nr_frags;
2801         len = skb_headlen(skb);
2802         mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2803                                offset_in_page(skb->data), len,
2804                                PCI_DMA_TODEVICE);
2805
2806         tentry = entry;
2807         tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2808         if (unlikely(tabort)) {
2809                 /* NOTE: len is always >  tabort */
2810                 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2811                               ctrl | TX_DESC_SOF, 0);
2812                 entry = TX_DESC_NEXT(ring, entry);
2813
2814                 skb_copy_from_linear_data_offset(skb, len - tabort,
2815                               tx_tiny_buf(cp, ring, entry), tabort);
2816                 mapping = tx_tiny_map(cp, ring, entry, tentry);
2817                 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2818                               (nr_frags == 0));
2819         } else {
2820                 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2821                               TX_DESC_SOF, (nr_frags == 0));
2822         }
2823         entry = TX_DESC_NEXT(ring, entry);
2824
2825         for (frag = 0; frag < nr_frags; frag++) {
2826                 const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2827
2828                 len = skb_frag_size(fragp);
2829                 mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2830                                            DMA_TO_DEVICE);
2831
2832                 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2833                 if (unlikely(tabort)) {
2834                         void *addr;
2835
2836                         /* NOTE: len is always > tabort */
2837                         cas_write_txd(cp, ring, entry, mapping, len - tabort,
2838                                       ctrl, 0);
2839                         entry = TX_DESC_NEXT(ring, entry);
2840
2841                         addr = cas_page_map(skb_frag_page(fragp));
2842                         memcpy(tx_tiny_buf(cp, ring, entry),
2843                                addr + fragp->page_offset + len - tabort,
2844                                tabort);
2845                         cas_page_unmap(addr);
2846                         mapping = tx_tiny_map(cp, ring, entry, tentry);
2847                         len     = tabort;
2848                 }
2849
2850                 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2851                               (frag + 1 == nr_frags));
2852                 entry = TX_DESC_NEXT(ring, entry);
2853         }
2854
2855         cp->tx_new[ring] = entry;
2856         if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2857                 netif_stop_queue(dev);
2858
2859         netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2860                      "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2861                      ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2862         writel(entry, cp->regs + REG_TX_KICKN(ring));
2863         spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2864         return 0;
2865 }
2866
2867 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2868 {
2869         struct cas *cp = netdev_priv(dev);
2870
2871         /* this is only used as a load-balancing hint, so it doesn't
2872          * need to be SMP safe
2873          */
2874         static int ring;
2875
2876         if (skb_padto(skb, cp->min_frame_size))
2877                 return NETDEV_TX_OK;
2878
2879         /* XXX: we need some higher-level QoS hooks to steer packets to
2880          *      individual queues.
2881          */
2882         if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2883                 return NETDEV_TX_BUSY;
2884         return NETDEV_TX_OK;
2885 }
2886
2887 static void cas_init_tx_dma(struct cas *cp)
2888 {
2889         u64 desc_dma = cp->block_dvma;
2890         unsigned long off;
2891         u32 val;
2892         int i;
2893
2894         /* set up tx completion writeback registers. must be 8-byte aligned */
2895 #ifdef USE_TX_COMPWB
2896         off = offsetof(struct cas_init_block, tx_compwb);
2897         writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2898         writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2899 #endif
2900
2901         /* enable completion writebacks, enable paced mode,
2902          * disable read pipe, and disable pre-interrupt compwbs
2903          */
2904         val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2905                 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2906                 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2907                 TX_CFG_INTR_COMPWB_DIS;
2908
2909         /* write out tx ring info and tx desc bases */
2910         for (i = 0; i < MAX_TX_RINGS; i++) {
2911                 off = (unsigned long) cp->init_txds[i] -
2912                         (unsigned long) cp->init_block;
2913
2914                 val |= CAS_TX_RINGN_BASE(i);
2915                 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2916                 writel((desc_dma + off) & 0xffffffff, cp->regs +
2917                        REG_TX_DBN_LOW(i));
2918                 /* don't zero out the kick register here as the system
2919                  * will wedge
2920                  */
2921         }
2922         writel(val, cp->regs + REG_TX_CFG);
2923
2924         /* program max burst sizes. these numbers should be different
2925          * if doing QoS.
2926          */
2927 #ifdef USE_QOS
2928         writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2929         writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2930         writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2931         writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2932 #else
2933         writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2934         writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2935         writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2936         writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2937 #endif
2938 }
2939
2940 /* Must be invoked under cp->lock. */
2941 static inline void cas_init_dma(struct cas *cp)
2942 {
2943         cas_init_tx_dma(cp);
2944         cas_init_rx_dma(cp);
2945 }
2946
2947 static void cas_process_mc_list(struct cas *cp)
2948 {
2949         u16 hash_table[16];
2950         u32 crc;
2951         struct netdev_hw_addr *ha;
2952         int i = 1;
2953
2954         memset(hash_table, 0, sizeof(hash_table));
2955         netdev_for_each_mc_addr(ha, cp->dev) {
2956                 if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2957                         /* use the alternate mac address registers for the
2958                          * first 15 multicast addresses
2959                          */
2960                         writel((ha->addr[4] << 8) | ha->addr[5],
2961                                cp->regs + REG_MAC_ADDRN(i*3 + 0));
2962                         writel((ha->addr[2] << 8) | ha->addr[3],
2963                                cp->regs + REG_MAC_ADDRN(i*3 + 1));
2964                         writel((ha->addr[0] << 8) | ha->addr[1],
2965                                cp->regs + REG_MAC_ADDRN(i*3 + 2));
2966                         i++;
2967                 }
2968                 else {
2969                         /* use hw hash table for the next series of
2970                          * multicast addresses
2971                          */
2972                         crc = ether_crc_le(ETH_ALEN, ha->addr);
2973                         crc >>= 24;
2974                         hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2975                 }
2976         }
2977         for (i = 0; i < 16; i++)
2978                 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2979 }
2980
2981 /* Must be invoked under cp->lock. */
2982 static u32 cas_setup_multicast(struct cas *cp)
2983 {
2984         u32 rxcfg = 0;
2985         int i;
2986
2987         if (cp->dev->flags & IFF_PROMISC) {
2988                 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2989
2990         } else if (cp->dev->flags & IFF_ALLMULTI) {
2991                 for (i=0; i < 16; i++)
2992                         writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2993                 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2994
2995         } else {
2996                 cas_process_mc_list(cp);
2997                 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2998         }
2999
3000         return rxcfg;
3001 }
3002
3003 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3004 static void cas_clear_mac_err(struct cas *cp)
3005 {
3006         writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3007         writel(0, cp->regs + REG_MAC_COLL_FIRST);
3008         writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3009         writel(0, cp->regs + REG_MAC_COLL_LATE);
3010         writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3011         writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3012         writel(0, cp->regs + REG_MAC_RECV_FRAME);
3013         writel(0, cp->regs + REG_MAC_LEN_ERR);
3014         writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3015         writel(0, cp->regs + REG_MAC_FCS_ERR);
3016         writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3017 }
3018
3019
3020 static void cas_mac_reset(struct cas *cp)
3021 {
3022         int i;
3023
3024         /* do both TX and RX reset */
3025         writel(0x1, cp->regs + REG_MAC_TX_RESET);
3026         writel(0x1, cp->regs + REG_MAC_RX_RESET);
3027
3028         /* wait for TX */
3029         i = STOP_TRIES;
3030         while (i-- > 0) {
3031                 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3032                         break;
3033                 udelay(10);
3034         }
3035
3036         /* wait for RX */
3037         i = STOP_TRIES;
3038         while (i-- > 0) {
3039                 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3040                         break;
3041                 udelay(10);
3042         }
3043
3044         if (readl(cp->regs + REG_MAC_TX_RESET) |
3045             readl(cp->regs + REG_MAC_RX_RESET))
3046                 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3047                            readl(cp->regs + REG_MAC_TX_RESET),
3048                            readl(cp->regs + REG_MAC_RX_RESET),
3049                            readl(cp->regs + REG_MAC_STATE_MACHINE));
3050 }
3051
3052
3053 /* Must be invoked under cp->lock. */
3054 static void cas_init_mac(struct cas *cp)
3055 {
3056         unsigned char *e = &cp->dev->dev_addr[0];
3057         int i;
3058         cas_mac_reset(cp);
3059
3060         /* setup core arbitration weight register */
3061         writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3062
3063 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3064         /* set the infinite burst register for chips that don't have
3065          * pci issues.
3066          */
3067         if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3068                 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3069 #endif
3070
3071         writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3072
3073         writel(0x00, cp->regs + REG_MAC_IPG0);
3074         writel(0x08, cp->regs + REG_MAC_IPG1);
3075         writel(0x04, cp->regs + REG_MAC_IPG2);
3076
3077         /* change later for 802.3z */
3078         writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3079
3080         /* min frame + FCS */
3081         writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3082
3083         /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3084          * specify the maximum frame size to prevent RX tag errors on
3085          * oversized frames.
3086          */
3087         writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3088                CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3089                         (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3090                cp->regs + REG_MAC_FRAMESIZE_MAX);
3091
3092         /* NOTE: crc_size is used as a surrogate for half-duplex.
3093          * workaround saturn half-duplex issue by increasing preamble
3094          * size to 65 bytes.
3095          */
3096         if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3097                 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3098         else
3099                 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3100         writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3101         writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3102         writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3103
3104         writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3105
3106         writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3107         writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3108         writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3109         writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3110         writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3111
3112         /* setup mac address in perfect filter array */
3113         for (i = 0; i < 45; i++)
3114                 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3115
3116         writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3117         writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3118         writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3119
3120         writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3121         writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3122         writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3123
3124         cp->mac_rx_cfg = cas_setup_multicast(cp);
3125
3126         spin_lock(&cp->stat_lock[N_TX_RINGS]);
3127         cas_clear_mac_err(cp);
3128         spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3129
3130         /* Setup MAC interrupts.  We want to get all of the interesting
3131          * counter expiration events, but we do not want to hear about
3132          * normal rx/tx as the DMA engine tells us that.
3133          */
3134         writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3135         writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3136
3137         /* Don't enable even the PAUSE interrupts for now, we
3138          * make no use of those events other than to record them.
3139          */
3140         writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3141 }
3142
3143 /* Must be invoked under cp->lock. */
3144 static void cas_init_pause_thresholds(struct cas *cp)
3145 {
3146         /* Calculate pause thresholds.  Setting the OFF threshold to the
3147          * full RX fifo size effectively disables PAUSE generation
3148          */
3149         if (cp->rx_fifo_size <= (2 * 1024)) {
3150                 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3151         } else {
3152                 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3153                 if (max_frame * 3 > cp->rx_fifo_size) {
3154                         cp->rx_pause_off = 7104;
3155                         cp->rx_pause_on  = 960;
3156                 } else {
3157                         int off = (cp->rx_fifo_size - (max_frame * 2));
3158                         int on = off - max_frame;
3159                         cp->rx_pause_off = off;
3160                         cp->rx_pause_on = on;
3161                 }
3162         }
3163 }
3164
3165 static int cas_vpd_match(const void __iomem *p, const char *str)
3166 {
3167         int len = strlen(str) + 1;
3168         int i;
3169
3170         for (i = 0; i < len; i++) {
3171                 if (readb(p + i) != str[i])
3172                         return 0;
3173         }
3174         return 1;
3175 }
3176
3177
3178 /* get the mac address by reading the vpd information in the rom.
3179  * also get the phy type and determine if there's an entropy generator.
3180  * NOTE: this is a bit convoluted for the following reasons:
3181  *  1) vpd info has order-dependent mac addresses for multinic cards
3182  *  2) the only way to determine the nic order is to use the slot
3183  *     number.
3184  *  3) fiber cards don't have bridges, so their slot numbers don't
3185  *     mean anything.
3186  *  4) we don't actually know we have a fiber card until after
3187  *     the mac addresses are parsed.
3188  */
3189 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3190                             const int offset)
3191 {
3192         void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3193         void __iomem *base, *kstart;
3194         int i, len;
3195         int found = 0;
3196 #define VPD_FOUND_MAC        0x01
3197 #define VPD_FOUND_PHY        0x02
3198
3199         int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3200         int mac_off  = 0;
3201
3202 #if defined(CONFIG_SPARC)
3203         const unsigned char *addr;
3204 #endif
3205
3206         /* give us access to the PROM */
3207         writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3208                cp->regs + REG_BIM_LOCAL_DEV_EN);
3209
3210         /* check for an expansion rom */
3211         if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3212                 goto use_random_mac_addr;
3213
3214         /* search for beginning of vpd */
3215         base = NULL;
3216         for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3217                 /* check for PCIR */
3218                 if ((readb(p + i + 0) == 0x50) &&
3219                     (readb(p + i + 1) == 0x43) &&
3220                     (readb(p + i + 2) == 0x49) &&
3221                     (readb(p + i + 3) == 0x52)) {
3222                         base = p + (readb(p + i + 8) |
3223                                     (readb(p + i + 9) << 8));
3224                         break;
3225                 }
3226         }
3227
3228         if (!base || (readb(base) != 0x82))
3229                 goto use_random_mac_addr;
3230
3231         i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3232         while (i < EXPANSION_ROM_SIZE) {
3233                 if (readb(base + i) != 0x90) /* no vpd found */
3234                         goto use_random_mac_addr;
3235
3236                 /* found a vpd field */
3237                 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3238
3239                 /* extract keywords */
3240                 kstart = base + i + 3;
3241                 p = kstart;
3242                 while ((p - kstart) < len) {
3243                         int klen = readb(p + 2);
3244                         int j;
3245                         char type;
3246
3247                         p += 3;
3248
3249                         /* look for the following things:
3250                          * -- correct length == 29
3251                          * 3 (type) + 2 (size) +
3252                          * 18 (strlen("local-mac-address") + 1) +
3253                          * 6 (mac addr)
3254                          * -- VPD Instance 'I'
3255                          * -- VPD Type Bytes 'B'
3256                          * -- VPD data length == 6
3257                          * -- property string == local-mac-address
3258                          *
3259                          * -- correct length == 24
3260                          * 3 (type) + 2 (size) +
3261                          * 12 (strlen("entropy-dev") + 1) +
3262                          * 7 (strlen("vms110") + 1)
3263                          * -- VPD Instance 'I'
3264                          * -- VPD Type String 'B'
3265                          * -- VPD data length == 7
3266                          * -- property string == entropy-dev
3267                          *
3268                          * -- correct length == 18
3269                          * 3 (type) + 2 (size) +
3270                          * 9 (strlen("phy-type") + 1) +
3271                          * 4 (strlen("pcs") + 1)
3272                          * -- VPD Instance 'I'
3273                          * -- VPD Type String 'S'
3274                          * -- VPD data length == 4
3275                          * -- property string == phy-type
3276                          *
3277                          * -- correct length == 23
3278                          * 3 (type) + 2 (size) +
3279                          * 14 (strlen("phy-interface") + 1) +
3280                          * 4 (strlen("pcs") + 1)
3281                          * -- VPD Instance 'I'
3282                          * -- VPD Type String 'S'
3283                          * -- VPD data length == 4
3284                          * -- property string == phy-interface
3285                          */
3286                         if (readb(p) != 'I')
3287                                 goto next;
3288
3289                         /* finally, check string and length */
3290                         type = readb(p + 3);
3291                         if (type == 'B') {
3292                                 if ((klen == 29) && readb(p + 4) == 6 &&
3293                                     cas_vpd_match(p + 5,
3294                                                   "local-mac-address")) {
3295                                         if (mac_off++ > offset)
3296                                                 goto next;
3297
3298                                         /* set mac address */
3299                                         for (j = 0; j < 6; j++)
3300                                                 dev_addr[j] =
3301                                                         readb(p + 23 + j);
3302                                         goto found_mac;
3303                                 }
3304                         }
3305
3306                         if (type != 'S')
3307                                 goto next;
3308
3309 #ifdef USE_ENTROPY_DEV
3310                         if ((klen == 24) &&
3311                             cas_vpd_match(p + 5, "entropy-dev") &&
3312                             cas_vpd_match(p + 17, "vms110")) {
3313                                 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3314                                 goto next;
3315                         }
3316 #endif
3317
3318                         if (found & VPD_FOUND_PHY)
3319                                 goto next;
3320
3321                         if ((klen == 18) && readb(p + 4) == 4 &&
3322                             cas_vpd_match(p + 5, "phy-type")) {
3323                                 if (cas_vpd_match(p + 14, "pcs")) {
3324                                         phy_type = CAS_PHY_SERDES;
3325                                         goto found_phy;
3326                                 }
3327                         }
3328
3329                         if ((klen == 23) && readb(p + 4) == 4 &&
3330                             cas_vpd_match(p + 5, "phy-interface")) {
3331                                 if (cas_vpd_match(p + 19, "pcs")) {
3332                                         phy_type = CAS_PHY_SERDES;
3333                                         goto found_phy;
3334                                 }
3335                         }
3336 found_mac:
3337                         found |= VPD_FOUND_MAC;
3338                         goto next;
3339
3340 found_phy:
3341                         found |= VPD_FOUND_PHY;
3342
3343 next:
3344                         p += klen;
3345                 }
3346                 i += len + 3;
3347         }
3348
3349 use_random_mac_addr:
3350         if (found & VPD_FOUND_MAC)
3351                 goto done;
3352
3353 #if defined(CONFIG_SPARC)
3354         addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3355         if (addr != NULL) {
3356                 memcpy(dev_addr, addr, ETH_ALEN);
3357                 goto done;
3358         }
3359 #endif
3360
3361         /* Sun MAC prefix then 3 random bytes. */
3362         pr_info("MAC address not found in ROM VPD\n");
3363         dev_addr[0] = 0x08;
3364         dev_addr[1] = 0x00;
3365         dev_addr[2] = 0x20;
3366         get_random_bytes(dev_addr + 3, 3);
3367
3368 done:
3369         writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3370         return phy_type;
3371 }
3372
3373 /* check pci invariants */
3374 static void cas_check_pci_invariants(struct cas *cp)
3375 {
3376         struct pci_dev *pdev = cp->pdev;
3377
3378         cp->cas_flags = 0;
3379         if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3380             (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3381                 if (pdev->revision >= CAS_ID_REVPLUS)
3382                         cp->cas_flags |= CAS_FLAG_REG_PLUS;
3383                 if (pdev->revision < CAS_ID_REVPLUS02u)
3384                         cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3385
3386                 /* Original Cassini supports HW CSUM, but it's not
3387                  * enabled by default as it can trigger TX hangs.
3388                  */
3389                 if (pdev->revision < CAS_ID_REV2)
3390                         cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3391         } else {
3392                 /* Only sun has original cassini chips.  */
3393                 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3394
3395                 /* We use a flag because the same phy might be externally
3396                  * connected.
3397                  */
3398                 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3399                     (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3400                         cp->cas_flags |= CAS_FLAG_SATURN;
3401         }
3402 }
3403
3404
3405 static int cas_check_invariants(struct cas *cp)
3406 {
3407         struct pci_dev *pdev = cp->pdev;
3408         u32 cfg;
3409         int i;
3410
3411         /* get page size for rx buffers. */
3412         cp->page_order = 0;
3413 #ifdef USE_PAGE_ORDER
3414         if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3415                 /* see if we can allocate larger pages */
3416                 struct page *page = alloc_pages(GFP_ATOMIC,
3417                                                 CAS_JUMBO_PAGE_SHIFT -
3418                                                 PAGE_SHIFT);
3419                 if (page) {
3420                         __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3421                         cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3422                 } else {
3423                         printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3424                 }
3425         }
3426 #endif
3427         cp->page_size = (PAGE_SIZE << cp->page_order);
3428
3429         /* Fetch the FIFO configurations. */
3430         cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3431         cp->rx_fifo_size = RX_FIFO_SIZE;
3432
3433         /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3434          * they're both connected.
3435          */
3436         cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3437                                         PCI_SLOT(pdev->devfn));
3438         if (cp->phy_type & CAS_PHY_SERDES) {
3439                 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3440                 return 0; /* no more checking needed */
3441         }
3442
3443         /* MII */
3444         cfg = readl(cp->regs + REG_MIF_CFG);
3445         if (cfg & MIF_CFG_MDIO_1) {
3446                 cp->phy_type = CAS_PHY_MII_MDIO1;
3447         } else if (cfg & MIF_CFG_MDIO_0) {
3448                 cp->phy_type = CAS_PHY_MII_MDIO0;
3449         }
3450
3451         cas_mif_poll(cp, 0);
3452         writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3453
3454         for (i = 0; i < 32; i++) {
3455                 u32 phy_id;
3456                 int j;
3457
3458                 for (j = 0; j < 3; j++) {
3459                         cp->phy_addr = i;
3460                         phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3461                         phy_id |= cas_phy_read(cp, MII_PHYSID2);
3462                         if (phy_id && (phy_id != 0xFFFFFFFF)) {
3463                                 cp->phy_id = phy_id;
3464                                 goto done;
3465                         }
3466                 }
3467         }
3468         pr_err("MII phy did not respond [%08x]\n",
3469                readl(cp->regs + REG_MIF_STATE_MACHINE));
3470         return -1;
3471
3472 done:
3473         /* see if we can do gigabit */
3474         cfg = cas_phy_read(cp, MII_BMSR);
3475         if ((cfg & CAS_BMSR_1000_EXTEND) &&
3476             cas_phy_read(cp, CAS_MII_1000_EXTEND))
3477                 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3478         return 0;
3479 }
3480
3481 /* Must be invoked under cp->lock. */
3482 static inline void cas_start_dma(struct cas *cp)
3483 {
3484         int i;
3485         u32 val;
3486         int txfailed = 0;
3487
3488         /* enable dma */
3489         val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3490         writel(val, cp->regs + REG_TX_CFG);
3491         val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3492         writel(val, cp->regs + REG_RX_CFG);
3493
3494         /* enable the mac */
3495         val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3496         writel(val, cp->regs + REG_MAC_TX_CFG);
3497         val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3498         writel(val, cp->regs + REG_MAC_RX_CFG);
3499
3500         i = STOP_TRIES;
3501         while (i-- > 0) {
3502                 val = readl(cp->regs + REG_MAC_TX_CFG);
3503                 if ((val & MAC_TX_CFG_EN))
3504                         break;
3505                 udelay(10);
3506         }
3507         if (i < 0) txfailed = 1;
3508         i = STOP_TRIES;
3509         while (i-- > 0) {
3510                 val = readl(cp->regs + REG_MAC_RX_CFG);
3511                 if ((val & MAC_RX_CFG_EN)) {
3512                         if (txfailed) {
3513                                 netdev_err(cp->dev,
3514                                            "enabling mac failed [tx:%08x:%08x]\n",
3515                                            readl(cp->regs + REG_MIF_STATE_MACHINE),
3516                                            readl(cp->regs + REG_MAC_STATE_MACHINE));
3517                         }
3518                         goto enable_rx_done;
3519                 }
3520                 udelay(10);
3521         }
3522         netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3523                    (txfailed ? "tx,rx" : "rx"),
3524                    readl(cp->regs + REG_MIF_STATE_MACHINE),
3525                    readl(cp->regs + REG_MAC_STATE_MACHINE));
3526
3527 enable_rx_done:
3528         cas_unmask_intr(cp); /* enable interrupts */
3529         writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3530         writel(0, cp->regs + REG_RX_COMP_TAIL);
3531
3532         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3533                 if (N_RX_DESC_RINGS > 1)
3534                         writel(RX_DESC_RINGN_SIZE(1) - 4,
3535                                cp->regs + REG_PLUS_RX_KICK1);
3536
3537                 for (i = 1; i < N_RX_COMP_RINGS; i++)
3538                         writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3539         }
3540 }
3541
3542 /* Must be invoked under cp->lock. */
3543 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3544                                    int *pause)
3545 {
3546         u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3547         *fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3548         *pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3549         if (val & PCS_MII_LPA_ASYM_PAUSE)
3550                 *pause |= 0x10;
3551         *spd = 1000;
3552 }
3553
3554 /* Must be invoked under cp->lock. */
3555 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3556                                    int *pause)
3557 {
3558         u32 val;
3559
3560         *fd = 0;
3561         *spd = 10;
3562         *pause = 0;
3563
3564         /* use GMII registers */
3565         val = cas_phy_read(cp, MII_LPA);
3566         if (val & CAS_LPA_PAUSE)
3567                 *pause = 0x01;
3568
3569         if (val & CAS_LPA_ASYM_PAUSE)
3570                 *pause |= 0x10;
3571
3572         if (val & LPA_DUPLEX)
3573                 *fd = 1;
3574         if (val & LPA_100)
3575                 *spd = 100;
3576
3577         if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3578                 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3579                 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3580                         *spd = 1000;
3581                 if (val & CAS_LPA_1000FULL)
3582                         *fd = 1;
3583         }
3584 }
3585
3586 /* A link-up condition has occurred, initialize and enable the
3587  * rest of the chip.
3588  *
3589  * Must be invoked under cp->lock.
3590  */
3591 static void cas_set_link_modes(struct cas *cp)
3592 {
3593         u32 val;
3594         int full_duplex, speed, pause;
3595
3596         full_duplex = 0;
3597         speed = 10;
3598         pause = 0;
3599
3600         if (CAS_PHY_MII(cp->phy_type)) {
3601                 cas_mif_poll(cp, 0);
3602                 val = cas_phy_read(cp, MII_BMCR);
3603                 if (val & BMCR_ANENABLE) {
3604                         cas_read_mii_link_mode(cp, &full_duplex, &speed,
3605                                                &pause);
3606                 } else {
3607                         if (val & BMCR_FULLDPLX)
3608                                 full_duplex = 1;
3609
3610                         if (val & BMCR_SPEED100)
3611                                 speed = 100;
3612                         else if (val & CAS_BMCR_SPEED1000)
3613                                 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3614                                         1000 : 100;
3615                 }
3616                 cas_mif_poll(cp, 1);
3617
3618         } else {
3619                 val = readl(cp->regs + REG_PCS_MII_CTRL);
3620                 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3621                 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3622                         if (val & PCS_MII_CTRL_DUPLEX)
3623                                 full_duplex = 1;
3624                 }
3625         }
3626
3627         netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3628                    speed, full_duplex ? "full" : "half");
3629
3630         val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3631         if (CAS_PHY_MII(cp->phy_type)) {
3632                 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3633                 if (!full_duplex)
3634                         val |= MAC_XIF_DISABLE_ECHO;
3635         }
3636         if (full_duplex)
3637                 val |= MAC_XIF_FDPLX_LED;
3638         if (speed == 1000)
3639                 val |= MAC_XIF_GMII_MODE;
3640         writel(val, cp->regs + REG_MAC_XIF_CFG);
3641
3642         /* deal with carrier and collision detect. */
3643         val = MAC_TX_CFG_IPG_EN;
3644         if (full_duplex) {
3645                 val |= MAC_TX_CFG_IGNORE_CARRIER;
3646                 val |= MAC_TX_CFG_IGNORE_COLL;
3647         } else {
3648 #ifndef USE_CSMA_CD_PROTO
3649                 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3650                 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3651 #endif
3652         }
3653         /* val now set up for REG_MAC_TX_CFG */
3654
3655         /* If gigabit and half-duplex, enable carrier extension
3656          * mode.  increase slot time to 512 bytes as well.
3657          * else, disable it and make sure slot time is 64 bytes.
3658          * also activate checksum bug workaround
3659          */
3660         if ((speed == 1000) && !full_duplex) {
3661                 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3662                        cp->regs + REG_MAC_TX_CFG);
3663
3664                 val = readl(cp->regs + REG_MAC_RX_CFG);
3665                 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3666                 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3667                        cp->regs + REG_MAC_RX_CFG);
3668
3669                 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3670
3671                 cp->crc_size = 4;
3672                 /* minimum size gigabit frame at half duplex */
3673                 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3674
3675         } else {
3676                 writel(val, cp->regs + REG_MAC_TX_CFG);
3677
3678                 /* checksum bug workaround. don't strip FCS when in
3679                  * half-duplex mode
3680                  */
3681                 val = readl(cp->regs + REG_MAC_RX_CFG);
3682                 if (full_duplex) {
3683                         val |= MAC_RX_CFG_STRIP_FCS;
3684                         cp->crc_size = 0;
3685                         cp->min_frame_size = CAS_MIN_MTU;
3686                 } else {
3687                         val &= ~MAC_RX_CFG_STRIP_FCS;
3688                         cp->crc_size = 4;
3689                         cp->min_frame_size = CAS_MIN_FRAME;
3690                 }
3691                 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3692                        cp->regs + REG_MAC_RX_CFG);
3693                 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3694         }
3695
3696         if (netif_msg_link(cp)) {
3697                 if (pause & 0x01) {
3698                         netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3699                                     cp->rx_fifo_size,
3700                                     cp->rx_pause_off,
3701                                     cp->rx_pause_on);
3702                 } else if (pause & 0x10) {
3703                         netdev_info(cp->dev, "TX pause enabled\n");
3704                 } else {
3705                         netdev_info(cp->dev, "Pause is disabled\n");
3706                 }
3707         }
3708
3709         val = readl(cp->regs + REG_MAC_CTRL_CFG);
3710         val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3711         if (pause) { /* symmetric or asymmetric pause */
3712                 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3713                 if (pause & 0x01) { /* symmetric pause */
3714                         val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3715                 }
3716         }
3717         writel(val, cp->regs + REG_MAC_CTRL_CFG);
3718         cas_start_dma(cp);
3719 }
3720
3721 /* Must be invoked under cp->lock. */
3722 static void cas_init_hw(struct cas *cp, int restart_link)
3723 {
3724         if (restart_link)
3725                 cas_phy_init(cp);
3726
3727         cas_init_pause_thresholds(cp);
3728         cas_init_mac(cp);
3729         cas_init_dma(cp);
3730
3731         if (restart_link) {
3732                 /* Default aneg parameters */
3733                 cp->timer_ticks = 0;
3734                 cas_begin_auto_negotiation(cp, NULL);
3735         } else if (cp->lstate == link_up) {
3736                 cas_set_link_modes(cp);
3737                 netif_carrier_on(cp->dev);
3738         }
3739 }
3740
3741 /* Must be invoked under cp->lock. on earlier cassini boards,
3742  * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3743  * let it settle out, and then restore pci state.
3744  */
3745 static void cas_hard_reset(struct cas *cp)
3746 {
3747         writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3748         udelay(20);
3749         pci_restore_state(cp->pdev);
3750 }
3751
3752
3753 static void cas_global_reset(struct cas *cp, int blkflag)
3754 {
3755         int limit;
3756
3757         /* issue a global reset. don't use RSTOUT. */
3758         if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3759                 /* For PCS, when the blkflag is set, we should set the
3760                  * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3761                  * the last autonegotiation from being cleared.  We'll
3762                  * need some special handling if the chip is set into a
3763                  * loopback mode.
3764                  */
3765                 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3766                        cp->regs + REG_SW_RESET);
3767         } else {
3768                 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3769         }
3770
3771         /* need to wait at least 3ms before polling register */
3772         mdelay(3);
3773
3774         limit = STOP_TRIES;
3775         while (limit-- > 0) {
3776                 u32 val = readl(cp->regs + REG_SW_RESET);
3777                 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3778                         goto done;
3779                 udelay(10);
3780         }
3781         netdev_err(cp->dev, "sw reset failed\n");
3782
3783 done:
3784         /* enable various BIM interrupts */
3785         writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3786                BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3787
3788         /* clear out pci error status mask for handled errors.
3789          * we don't deal with DMA counter overflows as they happen
3790          * all the time.
3791          */
3792         writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3793                                PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3794                                PCI_ERR_BIM_DMA_READ), cp->regs +
3795                REG_PCI_ERR_STATUS_MASK);
3796
3797         /* set up for MII by default to address mac rx reset timeout
3798          * issue
3799          */
3800         writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3801 }
3802
3803 static void cas_reset(struct cas *cp, int blkflag)
3804 {
3805         u32 val;
3806
3807         cas_mask_intr(cp);
3808         cas_global_reset(cp, blkflag);
3809         cas_mac_reset(cp);
3810         cas_entropy_reset(cp);
3811
3812         /* disable dma engines. */
3813         val = readl(cp->regs + REG_TX_CFG);
3814         val &= ~TX_CFG_DMA_EN;
3815         writel(val, cp->regs + REG_TX_CFG);
3816
3817         val = readl(cp->regs + REG_RX_CFG);
3818         val &= ~RX_CFG_DMA_EN;
3819         writel(val, cp->regs + REG_RX_CFG);
3820
3821         /* program header parser */
3822         if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3823             (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3824                 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3825         } else {
3826                 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3827         }
3828
3829         /* clear out error registers */
3830         spin_lock(&cp->stat_lock[N_TX_RINGS]);
3831         cas_clear_mac_err(cp);
3832         spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3833 }
3834
3835 /* Shut down the chip, must be called with pm_mutex held.  */
3836 static void cas_shutdown(struct cas *cp)
3837 {
3838         unsigned long flags;
3839
3840         /* Make us not-running to avoid timers respawning */
3841         cp->hw_running = 0;
3842
3843         del_timer_sync(&cp->link_timer);
3844
3845         /* Stop the reset task */
3846 #if 0
3847         while (atomic_read(&cp->reset_task_pending_mtu) ||
3848                atomic_read(&cp->reset_task_pending_spare) ||
3849                atomic_read(&cp->reset_task_pending_all))
3850                 schedule();
3851
3852 #else
3853         while (atomic_read(&cp->reset_task_pending))
3854                 schedule();
3855 #endif
3856         /* Actually stop the chip */
3857         cas_lock_all_save(cp, flags);
3858         cas_reset(cp, 0);
3859         if (cp->cas_flags & CAS_FLAG_SATURN)
3860                 cas_phy_powerdown(cp);
3861         cas_unlock_all_restore(cp, flags);
3862 }
3863
3864 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3865 {
3866         struct cas *cp = netdev_priv(dev);
3867
3868         dev->mtu = new_mtu;
3869         if (!netif_running(dev) || !netif_device_present(dev))
3870                 return 0;
3871
3872         /* let the reset task handle it */
3873 #if 1
3874         atomic_inc(&cp->reset_task_pending);
3875         if ((cp->phy_type & CAS_PHY_SERDES)) {
3876                 atomic_inc(&cp->reset_task_pending_all);
3877         } else {
3878                 atomic_inc(&cp->reset_task_pending_mtu);
3879         }
3880         schedule_work(&cp->reset_task);
3881 #else
3882         atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3883                    CAS_RESET_ALL : CAS_RESET_MTU);
3884         pr_err("reset called in cas_change_mtu\n");
3885         schedule_work(&cp->reset_task);
3886 #endif
3887
3888         flush_work(&cp->reset_task);
3889         return 0;
3890 }
3891
3892 static void cas_clean_txd(struct cas *cp, int ring)
3893 {
3894         struct cas_tx_desc *txd = cp->init_txds[ring];
3895         struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3896         u64 daddr, dlen;
3897         int i, size;
3898
3899         size = TX_DESC_RINGN_SIZE(ring);
3900         for (i = 0; i < size; i++) {
3901                 int frag;
3902
3903                 if (skbs[i] == NULL)
3904                         continue;
3905
3906                 skb = skbs[i];
3907                 skbs[i] = NULL;
3908
3909                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3910                         int ent = i & (size - 1);
3911
3912                         /* first buffer is never a tiny buffer and so
3913                          * needs to be unmapped.
3914                          */
3915                         daddr = le64_to_cpu(txd[ent].buffer);
3916                         dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3917                                          le64_to_cpu(txd[ent].control));
3918                         pci_unmap_page(cp->pdev, daddr, dlen,
3919                                        PCI_DMA_TODEVICE);
3920
3921                         if (frag != skb_shinfo(skb)->nr_frags) {
3922                                 i++;
3923
3924                                 /* next buffer might by a tiny buffer.
3925                                  * skip past it.
3926                                  */
3927                                 ent = i & (size - 1);
3928                                 if (cp->tx_tiny_use[ring][ent].used)
3929                                         i++;
3930                         }
3931                 }
3932                 dev_kfree_skb_any(skb);
3933         }
3934
3935         /* zero out tiny buf usage */
3936         memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3937 }
3938
3939 /* freed on close */
3940 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3941 {
3942         cas_page_t **page = cp->rx_pages[ring];
3943         int i, size;
3944
3945         size = RX_DESC_RINGN_SIZE(ring);
3946         for (i = 0; i < size; i++) {
3947                 if (page[i]) {
3948                         cas_page_free(cp, page[i]);
3949                         page[i] = NULL;
3950                 }
3951         }
3952 }
3953
3954 static void cas_free_rxds(struct cas *cp)
3955 {
3956         int i;
3957
3958         for (i = 0; i < N_RX_DESC_RINGS; i++)
3959                 cas_free_rx_desc(cp, i);
3960 }
3961
3962 /* Must be invoked under cp->lock. */
3963 static void cas_clean_rings(struct cas *cp)
3964 {
3965         int i;
3966
3967         /* need to clean all tx rings */
3968         memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3969         memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3970         for (i = 0; i < N_TX_RINGS; i++)
3971                 cas_clean_txd(cp, i);
3972
3973         /* zero out init block */
3974         memset(cp->init_block, 0, sizeof(struct cas_init_block));
3975         cas_clean_rxds(cp);
3976         cas_clean_rxcs(cp);
3977 }
3978
3979 /* allocated on open */
3980 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3981 {
3982         cas_page_t **page = cp->rx_pages[ring];
3983         int size, i = 0;
3984
3985         size = RX_DESC_RINGN_SIZE(ring);
3986         for (i = 0; i < size; i++) {
3987                 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3988                         return -1;
3989         }
3990         return 0;
3991 }
3992
3993 static int cas_alloc_rxds(struct cas *cp)
3994 {
3995         int i;
3996
3997         for (i = 0; i < N_RX_DESC_RINGS; i++) {
3998                 if (cas_alloc_rx_desc(cp, i) < 0) {
3999                         cas_free_rxds(cp);
4000                         return -1;
4001                 }
4002         }
4003         return 0;
4004 }
4005
4006 static void cas_reset_task(struct work_struct *work)
4007 {
4008         struct cas *cp = container_of(work, struct cas, reset_task);
4009 #if 0
4010         int pending = atomic_read(&cp->reset_task_pending);
4011 #else
4012         int pending_all = atomic_read(&cp->reset_task_pending_all);
4013         int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4014         int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4015
4016         if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4017                 /* We can have more tasks scheduled than actually
4018                  * needed.
4019                  */
4020                 atomic_dec(&cp->reset_task_pending);
4021                 return;
4022         }
4023 #endif
4024         /* The link went down, we reset the ring, but keep
4025          * DMA stopped. Use this function for reset
4026          * on error as well.
4027          */
4028         if (cp->hw_running) {
4029                 unsigned long flags;
4030
4031                 /* Make sure we don't get interrupts or tx packets */
4032                 netif_device_detach(cp->dev);
4033                 cas_lock_all_save(cp, flags);
4034
4035                 if (cp->opened) {
4036                         /* We call cas_spare_recover when we call cas_open.
4037                          * but we do not initialize the lists cas_spare_recover
4038                          * uses until cas_open is called.
4039                          */
4040                         cas_spare_recover(cp, GFP_ATOMIC);
4041                 }
4042 #if 1
4043                 /* test => only pending_spare set */
4044                 if (!pending_all && !pending_mtu)
4045                         goto done;
4046 #else
4047                 if (pending == CAS_RESET_SPARE)
4048                         goto done;
4049 #endif
4050                 /* when pending == CAS_RESET_ALL, the following
4051                  * call to cas_init_hw will restart auto negotiation.
4052                  * Setting the second argument of cas_reset to
4053                  * !(pending == CAS_RESET_ALL) will set this argument
4054                  * to 1 (avoiding reinitializing the PHY for the normal
4055                  * PCS case) when auto negotiation is not restarted.
4056                  */
4057 #if 1
4058                 cas_reset(cp, !(pending_all > 0));
4059                 if (cp->opened)
4060                         cas_clean_rings(cp);
4061                 cas_init_hw(cp, (pending_all > 0));
4062 #else
4063                 cas_reset(cp, !(pending == CAS_RESET_ALL));
4064                 if (cp->opened)
4065                         cas_clean_rings(cp);
4066                 cas_init_hw(cp, pending == CAS_RESET_ALL);
4067 #endif
4068
4069 done:
4070                 cas_unlock_all_restore(cp, flags);
4071                 netif_device_attach(cp->dev);
4072         }
4073 #if 1
4074         atomic_sub(pending_all, &cp->reset_task_pending_all);
4075         atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4076         atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4077         atomic_dec(&cp->reset_task_pending);
4078 #else
4079         atomic_set(&cp->reset_task_pending, 0);
4080 #endif
4081 }
4082
4083 static void cas_link_timer(struct timer_list *t)
4084 {
4085         struct cas *cp = from_timer(cp, t, link_timer);
4086         int mask, pending = 0, reset = 0;
4087         unsigned long flags;
4088
4089         if (link_transition_timeout != 0 &&
4090             cp->link_transition_jiffies_valid &&
4091             ((jiffies - cp->link_transition_jiffies) >
4092               (link_transition_timeout))) {
4093                 /* One-second counter so link-down workaround doesn't
4094                  * cause resets to occur so fast as to fool the switch
4095                  * into thinking the link is down.
4096                  */
4097                 cp->link_transition_jiffies_valid = 0;
4098         }
4099
4100         if (!cp->hw_running)
4101                 return;
4102
4103         spin_lock_irqsave(&cp->lock, flags);
4104         cas_lock_tx(cp);
4105         cas_entropy_gather(cp);
4106
4107         /* If the link task is still pending, we just
4108          * reschedule the link timer
4109          */
4110 #if 1
4111         if (atomic_read(&cp->reset_task_pending_all) ||
4112             atomic_read(&cp->reset_task_pending_spare) ||
4113             atomic_read(&cp->reset_task_pending_mtu))
4114                 goto done;
4115 #else
4116         if (atomic_read(&cp->reset_task_pending))
4117                 goto done;
4118 #endif
4119
4120         /* check for rx cleaning */
4121         if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4122                 int i, rmask;
4123
4124                 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4125                         rmask = CAS_FLAG_RXD_POST(i);
4126                         if ((mask & rmask) == 0)
4127                                 continue;
4128
4129                         /* post_rxds will do a mod_timer */
4130                         if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4131                                 pending = 1;
4132                                 continue;
4133                         }
4134                         cp->cas_flags &= ~rmask;
4135                 }
4136         }
4137
4138         if (CAS_PHY_MII(cp->phy_type)) {
4139                 u16 bmsr;
4140                 cas_mif_poll(cp, 0);
4141                 bmsr = cas_phy_read(cp, MII_BMSR);
4142                 /* WTZ: Solaris driver reads this twice, but that
4143                  * may be due to the PCS case and the use of a
4144                  * common implementation. Read it twice here to be
4145                  * safe.
4146                  */
4147                 bmsr = cas_phy_read(cp, MII_BMSR);
4148                 cas_mif_poll(cp, 1);
4149                 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4150                 reset = cas_mii_link_check(cp, bmsr);
4151         } else {
4152                 reset = cas_pcs_link_check(cp);
4153         }
4154
4155         if (reset)
4156                 goto done;
4157
4158         /* check for tx state machine confusion */
4159         if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4160                 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4161                 u32 wptr, rptr;
4162                 int tlm  = CAS_VAL(MAC_SM_TLM, val);
4163
4164                 if (((tlm == 0x5) || (tlm == 0x3)) &&
4165                     (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4166                         netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4167                                      "tx err: MAC_STATE[%08x]\n", val);
4168                         reset = 1;
4169                         goto done;
4170                 }
4171
4172                 val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4173                 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4174                 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4175                 if ((val == 0) && (wptr != rptr)) {
4176                         netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4177                                      "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4178                                      val, wptr, rptr);
4179                         reset = 1;
4180                 }
4181
4182                 if (reset)
4183                         cas_hard_reset(cp);
4184         }
4185
4186 done:
4187         if (reset) {
4188 #if 1
4189                 atomic_inc(&cp->reset_task_pending);
4190                 atomic_inc(&cp->reset_task_pending_all);
4191                 schedule_work(&cp->reset_task);
4192 #else
4193                 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4194                 pr_err("reset called in cas_link_timer\n");
4195                 schedule_work(&cp->reset_task);
4196 #endif
4197         }
4198
4199         if (!pending)
4200                 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4201         cas_unlock_tx(cp);
4202         spin_unlock_irqrestore(&cp->lock, flags);
4203 }
4204
4205 /* tiny buffers are used to avoid target abort issues with
4206  * older cassini's
4207  */
4208 static void cas_tx_tiny_free(struct cas *cp)
4209 {
4210         struct pci_dev *pdev = cp->pdev;
4211         int i;
4212
4213         for (i = 0; i < N_TX_RINGS; i++) {
4214                 if (!cp->tx_tiny_bufs[i])
4215                         continue;
4216
4217                 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4218                                     cp->tx_tiny_bufs[i],
4219                                     cp->tx_tiny_dvma[i]);
4220                 cp->tx_tiny_bufs[i] = NULL;
4221         }
4222 }
4223
4224 static int cas_tx_tiny_alloc(struct cas *cp)
4225 {
4226         struct pci_dev *pdev = cp->pdev;
4227         int i;
4228
4229         for (i = 0; i < N_TX_RINGS; i++) {
4230                 cp->tx_tiny_bufs[i] =
4231                         pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4232                                              &cp->tx_tiny_dvma[i]);
4233                 if (!cp->tx_tiny_bufs[i]) {
4234                         cas_tx_tiny_free(cp);
4235                         return -1;
4236                 }
4237         }
4238         return 0;
4239 }
4240
4241
4242 static int cas_open(struct net_device *dev)
4243 {
4244         struct cas *cp = netdev_priv(dev);
4245         int hw_was_up, err;
4246         unsigned long flags;
4247
4248         mutex_lock(&cp->pm_mutex);
4249
4250         hw_was_up = cp->hw_running;
4251
4252         /* The power-management mutex protects the hw_running
4253          * etc. state so it is safe to do this bit without cp->lock
4254          */
4255         if (!cp->hw_running) {
4256                 /* Reset the chip */
4257                 cas_lock_all_save(cp, flags);
4258                 /* We set the second arg to cas_reset to zero
4259                  * because cas_init_hw below will have its second
4260                  * argument set to non-zero, which will force
4261                  * autonegotiation to start.
4262                  */
4263                 cas_reset(cp, 0);
4264                 cp->hw_running = 1;
4265                 cas_unlock_all_restore(cp, flags);
4266         }
4267
4268         err = -ENOMEM;
4269         if (cas_tx_tiny_alloc(cp) < 0)
4270                 goto err_unlock;
4271
4272         /* alloc rx descriptors */
4273         if (cas_alloc_rxds(cp) < 0)
4274                 goto err_tx_tiny;
4275
4276         /* allocate spares */
4277         cas_spare_init(cp);
4278         cas_spare_recover(cp, GFP_KERNEL);
4279
4280         /* We can now request the interrupt as we know it's masked
4281          * on the controller. cassini+ has up to 4 interrupts
4282          * that can be used, but you need to do explicit pci interrupt
4283          * mapping to expose them
4284          */
4285         if (request_irq(cp->pdev->irq, cas_interrupt,
4286                         IRQF_SHARED, dev->name, (void *) dev)) {
4287                 netdev_err(cp->dev, "failed to request irq !\n");
4288                 err = -EAGAIN;
4289                 goto err_spare;
4290         }
4291
4292 #ifdef USE_NAPI
4293         napi_enable(&cp->napi);
4294 #endif
4295         /* init hw */
4296         cas_lock_all_save(cp, flags);
4297         cas_clean_rings(cp);
4298         cas_init_hw(cp, !hw_was_up);
4299         cp->opened = 1;
4300         cas_unlock_all_restore(cp, flags);
4301
4302         netif_start_queue(dev);
4303         mutex_unlock(&cp->pm_mutex);
4304         return 0;
4305
4306 err_spare:
4307         cas_spare_free(cp);
4308         cas_free_rxds(cp);
4309 err_tx_tiny:
4310         cas_tx_tiny_free(cp);
4311 err_unlock:
4312         mutex_unlock(&cp->pm_mutex);
4313         return err;
4314 }
4315
4316 static int cas_close(struct net_device *dev)
4317 {
4318         unsigned long flags;
4319         struct cas *cp = netdev_priv(dev);
4320
4321 #ifdef USE_NAPI
4322         napi_disable(&cp->napi);
4323 #endif
4324         /* Make sure we don't get distracted by suspend/resume */
4325         mutex_lock(&cp->pm_mutex);
4326
4327         netif_stop_queue(dev);
4328
4329         /* Stop traffic, mark us closed */
4330         cas_lock_all_save(cp, flags);
4331         cp->opened = 0;
4332         cas_reset(cp, 0);
4333         cas_phy_init(cp);
4334         cas_begin_auto_negotiation(cp, NULL);
4335         cas_clean_rings(cp);
4336         cas_unlock_all_restore(cp, flags);
4337
4338         free_irq(cp->pdev->irq, (void *) dev);
4339         cas_spare_free(cp);
4340         cas_free_rxds(cp);
4341         cas_tx_tiny_free(cp);
4342         mutex_unlock(&cp->pm_mutex);
4343         return 0;
4344 }
4345
4346 static struct {
4347         const char name[ETH_GSTRING_LEN];
4348 } ethtool_cassini_statnames[] = {
4349         {"collisions"},
4350         {"rx_bytes"},
4351         {"rx_crc_errors"},
4352         {"rx_dropped"},
4353         {"rx_errors"},
4354         {"rx_fifo_errors"},
4355         {"rx_frame_errors"},
4356         {"rx_length_errors"},
4357         {"rx_over_errors"},
4358         {"rx_packets"},
4359         {"tx_aborted_errors"},
4360         {"tx_bytes"},
4361         {"tx_dropped"},
4362         {"tx_errors"},
4363         {"tx_fifo_errors"},
4364         {"tx_packets"}
4365 };
4366 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4367
4368 static struct {
4369         const int offsets;      /* neg. values for 2nd arg to cas_read_phy */
4370 } ethtool_register_table[] = {
4371         {-MII_BMSR},
4372         {-MII_BMCR},
4373         {REG_CAWR},
4374         {REG_INF_BURST},
4375         {REG_BIM_CFG},
4376         {REG_RX_CFG},
4377         {REG_HP_CFG},
4378         {REG_MAC_TX_CFG},
4379         {REG_MAC_RX_CFG},
4380         {REG_MAC_CTRL_CFG},
4381         {REG_MAC_XIF_CFG},
4382         {REG_MIF_CFG},
4383         {REG_PCS_CFG},
4384         {REG_SATURN_PCFG},
4385         {REG_PCS_MII_STATUS},
4386         {REG_PCS_STATE_MACHINE},
4387         {REG_MAC_COLL_EXCESS},
4388         {REG_MAC_COLL_LATE}
4389 };
4390 #define CAS_REG_LEN     ARRAY_SIZE(ethtool_register_table)
4391 #define CAS_MAX_REGS    (sizeof (u32)*CAS_REG_LEN)
4392
4393 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4394 {
4395         u8 *p;
4396         int i;
4397         unsigned long flags;
4398
4399         spin_lock_irqsave(&cp->lock, flags);
4400         for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4401                 u16 hval;
4402                 u32 val;
4403                 if (ethtool_register_table[i].offsets < 0) {
4404                         hval = cas_phy_read(cp,
4405                                     -ethtool_register_table[i].offsets);
4406                         val = hval;
4407                 } else {
4408                         val= readl(cp->regs+ethtool_register_table[i].offsets);
4409                 }
4410                 memcpy(p, (u8 *)&val, sizeof(u32));
4411         }
4412         spin_unlock_irqrestore(&cp->lock, flags);
4413 }
4414
4415 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4416 {
4417         struct cas *cp = netdev_priv(dev);
4418         struct net_device_stats *stats = cp->net_stats;
4419         unsigned long flags;
4420         int i;
4421         unsigned long tmp;
4422
4423         /* we collate all of the stats into net_stats[N_TX_RING] */
4424         if (!cp->hw_running)
4425                 return stats + N_TX_RINGS;
4426
4427         /* collect outstanding stats */
4428         /* WTZ: the Cassini spec gives these as 16 bit counters but
4429          * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4430          * in case the chip somehow puts any garbage in the other bits.
4431          * Also, counter usage didn't seem to mach what Adrian did
4432          * in the parts of the code that set these quantities. Made
4433          * that consistent.
4434          */
4435         spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4436         stats[N_TX_RINGS].rx_crc_errors +=
4437           readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4438         stats[N_TX_RINGS].rx_frame_errors +=
4439                 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4440         stats[N_TX_RINGS].rx_length_errors +=
4441                 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4442 #if 1
4443         tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4444                 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4445         stats[N_TX_RINGS].tx_aborted_errors += tmp;
4446         stats[N_TX_RINGS].collisions +=
4447           tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4448 #else
4449         stats[N_TX_RINGS].tx_aborted_errors +=
4450                 readl(cp->regs + REG_MAC_COLL_EXCESS);
4451         stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4452                 readl(cp->regs + REG_MAC_COLL_LATE);
4453 #endif
4454         cas_clear_mac_err(cp);
4455
4456         /* saved bits that are unique to ring 0 */
4457         spin_lock(&cp->stat_lock[0]);
4458         stats[N_TX_RINGS].collisions        += stats[0].collisions;
4459         stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4460         stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4461         stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4462         stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4463         stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4464         spin_unlock(&cp->stat_lock[0]);
4465
4466         for (i = 0; i < N_TX_RINGS; i++) {
4467                 spin_lock(&cp->stat_lock[i]);
4468                 stats[N_TX_RINGS].rx_length_errors +=
4469                         stats[i].rx_length_errors;
4470                 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4471                 stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4472                 stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4473                 stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4474                 stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4475                 stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4476                 stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4477                 stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4478                 stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4479                 memset(stats + i, 0, sizeof(struct net_device_stats));
4480                 spin_unlock(&cp->stat_lock[i]);
4481         }
4482         spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4483         return stats + N_TX_RINGS;
4484 }
4485
4486
4487 static void cas_set_multicast(struct net_device *dev)
4488 {
4489         struct cas *cp = netdev_priv(dev);
4490         u32 rxcfg, rxcfg_new;
4491         unsigned long flags;
4492         int limit = STOP_TRIES;
4493
4494         if (!cp->hw_running)
4495                 return;
4496
4497         spin_lock_irqsave(&cp->lock, flags);
4498         rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4499
4500         /* disable RX MAC and wait for completion */
4501         writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4502         while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4503                 if (!limit--)
4504                         break;
4505                 udelay(10);
4506         }
4507
4508         /* disable hash filter and wait for completion */
4509         limit = STOP_TRIES;
4510         rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4511         writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4512         while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4513                 if (!limit--)
4514                         break;
4515                 udelay(10);
4516         }
4517
4518         /* program hash filters */
4519         cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4520         rxcfg |= rxcfg_new;
4521         writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4522         spin_unlock_irqrestore(&cp->lock, flags);
4523 }
4524
4525 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4526 {
4527         struct cas *cp = netdev_priv(dev);
4528         strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4529         strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4530         strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4531 }
4532
4533 static int cas_get_link_ksettings(struct net_device *dev,
4534                                   struct ethtool_link_ksettings *cmd)
4535 {
4536         struct cas *cp = netdev_priv(dev);
4537         u16 bmcr;
4538         int full_duplex, speed, pause;
4539         unsigned long flags;
4540         enum link_state linkstate = link_up;
4541         u32 supported, advertising;
4542
4543         advertising = 0;
4544         supported = SUPPORTED_Autoneg;
4545         if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4546                 supported |= SUPPORTED_1000baseT_Full;
4547                 advertising |= ADVERTISED_1000baseT_Full;
4548         }
4549
4550         /* Record PHY settings if HW is on. */
4551         spin_lock_irqsave(&cp->lock, flags);
4552         bmcr = 0;
4553         linkstate = cp->lstate;
4554         if (CAS_PHY_MII(cp->phy_type)) {
4555                 cmd->base.port = PORT_MII;
4556                 cmd->base.phy_address = cp->phy_addr;
4557                 advertising |= ADVERTISED_TP | ADVERTISED_MII |
4558                         ADVERTISED_10baseT_Half |
4559                         ADVERTISED_10baseT_Full |
4560                         ADVERTISED_100baseT_Half |
4561                         ADVERTISED_100baseT_Full;
4562
4563                 supported |=
4564                         (SUPPORTED_10baseT_Half |
4565                          SUPPORTED_10baseT_Full |
4566                          SUPPORTED_100baseT_Half |
4567                          SUPPORTED_100baseT_Full |
4568                          SUPPORTED_TP | SUPPORTED_MII);
4569
4570                 if (cp->hw_running) {
4571                         cas_mif_poll(cp, 0);
4572                         bmcr = cas_phy_read(cp, MII_BMCR);
4573                         cas_read_mii_link_mode(cp, &full_duplex,
4574                                                &speed, &pause);
4575                         cas_mif_poll(cp, 1);
4576                 }
4577
4578         } else {
4579                 cmd->base.port = PORT_FIBRE;
4580                 cmd->base.phy_address = 0;
4581                 supported   |= SUPPORTED_FIBRE;
4582                 advertising |= ADVERTISED_FIBRE;
4583
4584                 if (cp->hw_running) {
4585                         /* pcs uses the same bits as mii */
4586                         bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4587                         cas_read_pcs_link_mode(cp, &full_duplex,
4588                                                &speed, &pause);
4589                 }
4590         }
4591         spin_unlock_irqrestore(&cp->lock, flags);
4592
4593         if (bmcr & BMCR_ANENABLE) {
4594                 advertising |= ADVERTISED_Autoneg;
4595                 cmd->base.autoneg = AUTONEG_ENABLE;
4596                 cmd->base.speed =  ((speed == 10) ?
4597                                             SPEED_10 :
4598                                             ((speed == 1000) ?
4599                                              SPEED_1000 : SPEED_100));
4600                 cmd->base.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4601         } else {
4602                 cmd->base.autoneg = AUTONEG_DISABLE;
4603                 cmd->base.speed = ((bmcr & CAS_BMCR_SPEED1000) ?
4604                                             SPEED_1000 :
4605                                             ((bmcr & BMCR_SPEED100) ?
4606                                              SPEED_100 : SPEED_10));
4607                 cmd->base.duplex = (bmcr & BMCR_FULLDPLX) ?
4608                         DUPLEX_FULL : DUPLEX_HALF;
4609         }
4610         if (linkstate != link_up) {
4611                 /* Force these to "unknown" if the link is not up and
4612                  * autonogotiation in enabled. We can set the link
4613                  * speed to 0, but not cmd->duplex,
4614                  * because its legal values are 0 and 1.  Ethtool will
4615                  * print the value reported in parentheses after the
4616                  * word "Unknown" for unrecognized values.
4617                  *
4618                  * If in forced mode, we report the speed and duplex
4619                  * settings that we configured.
4620                  */
4621                 if (cp->link_cntl & BMCR_ANENABLE) {
4622                         cmd->base.speed = 0;
4623                         cmd->base.duplex = 0xff;
4624                 } else {
4625                         cmd->base.speed = SPEED_10;
4626                         if (cp->link_cntl & BMCR_SPEED100) {
4627                                 cmd->base.speed = SPEED_100;
4628                         } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4629                                 cmd->base.speed = SPEED_1000;
4630                         }
4631                         cmd->base.duplex = (cp->link_cntl & BMCR_FULLDPLX) ?
4632                                 DUPLEX_FULL : DUPLEX_HALF;
4633                 }
4634         }
4635
4636         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
4637                                                 supported);
4638         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
4639                                                 advertising);
4640
4641         return 0;
4642 }
4643
4644 static int cas_set_link_ksettings(struct net_device *dev,
4645                                   const struct ethtool_link_ksettings *cmd)
4646 {
4647         struct cas *cp = netdev_priv(dev);
4648         unsigned long flags;
4649         u32 speed = cmd->base.speed;
4650
4651         /* Verify the settings we care about. */
4652         if (cmd->base.autoneg != AUTONEG_ENABLE &&
4653             cmd->base.autoneg != AUTONEG_DISABLE)
4654                 return -EINVAL;
4655
4656         if (cmd->base.autoneg == AUTONEG_DISABLE &&
4657             ((speed != SPEED_1000 &&
4658               speed != SPEED_100 &&
4659               speed != SPEED_10) ||
4660              (cmd->base.duplex != DUPLEX_HALF &&
4661               cmd->base.duplex != DUPLEX_FULL)))
4662                 return -EINVAL;
4663
4664         /* Apply settings and restart link process. */
4665         spin_lock_irqsave(&cp->lock, flags);
4666         cas_begin_auto_negotiation(cp, cmd);
4667         spin_unlock_irqrestore(&cp->lock, flags);
4668         return 0;
4669 }
4670
4671 static int cas_nway_reset(struct net_device *dev)
4672 {
4673         struct cas *cp = netdev_priv(dev);
4674         unsigned long flags;
4675
4676         if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4677                 return -EINVAL;
4678
4679         /* Restart link process. */
4680         spin_lock_irqsave(&cp->lock, flags);
4681         cas_begin_auto_negotiation(cp, NULL);
4682         spin_unlock_irqrestore(&cp->lock, flags);
4683
4684         return 0;
4685 }
4686
4687 static u32 cas_get_link(struct net_device *dev)
4688 {
4689         struct cas *cp = netdev_priv(dev);
4690         return cp->lstate == link_up;
4691 }
4692
4693 static u32 cas_get_msglevel(struct net_device *dev)
4694 {
4695         struct cas *cp = netdev_priv(dev);
4696         return cp->msg_enable;
4697 }
4698
4699 static void cas_set_msglevel(struct net_device *dev, u32 value)
4700 {
4701         struct cas *cp = netdev_priv(dev);
4702         cp->msg_enable = value;
4703 }
4704
4705 static int cas_get_regs_len(struct net_device *dev)
4706 {
4707         struct cas *cp = netdev_priv(dev);
4708         return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4709 }
4710
4711 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4712                              void *p)
4713 {
4714         struct cas *cp = netdev_priv(dev);
4715         regs->version = 0;
4716         /* cas_read_regs handles locks (cp->lock).  */
4717         cas_read_regs(cp, p, regs->len / sizeof(u32));
4718 }
4719
4720 static int cas_get_sset_count(struct net_device *dev, int sset)
4721 {
4722         switch (sset) {
4723         case ETH_SS_STATS:
4724                 return CAS_NUM_STAT_KEYS;
4725         default:
4726                 return -EOPNOTSUPP;
4727         }
4728 }
4729
4730 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4731 {
4732          memcpy(data, &ethtool_cassini_statnames,
4733                                          CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4734 }
4735
4736 static void cas_get_ethtool_stats(struct net_device *dev,
4737                                       struct ethtool_stats *estats, u64 *data)
4738 {
4739         struct cas *cp = netdev_priv(dev);
4740         struct net_device_stats *stats = cas_get_stats(cp->dev);
4741         int i = 0;
4742         data[i++] = stats->collisions;
4743         data[i++] = stats->rx_bytes;
4744         data[i++] = stats->rx_crc_errors;
4745         data[i++] = stats->rx_dropped;
4746         data[i++] = stats->rx_errors;
4747         data[i++] = stats->rx_fifo_errors;
4748         data[i++] = stats->rx_frame_errors;
4749         data[i++] = stats->rx_length_errors;
4750         data[i++] = stats->rx_over_errors;
4751         data[i++] = stats->rx_packets;
4752         data[i++] = stats->tx_aborted_errors;
4753         data[i++] = stats->tx_bytes;
4754         data[i++] = stats->tx_dropped;
4755         data[i++] = stats->tx_errors;
4756         data[i++] = stats->tx_fifo_errors;
4757         data[i++] = stats->tx_packets;
4758         BUG_ON(i != CAS_NUM_STAT_KEYS);
4759 }
4760
4761 static const struct ethtool_ops cas_ethtool_ops = {
4762         .get_drvinfo            = cas_get_drvinfo,
4763         .nway_reset             = cas_nway_reset,
4764         .get_link               = cas_get_link,
4765         .get_msglevel           = cas_get_msglevel,
4766         .set_msglevel           = cas_set_msglevel,
4767         .get_regs_len           = cas_get_regs_len,
4768         .get_regs               = cas_get_regs,
4769         .get_sset_count         = cas_get_sset_count,
4770         .get_strings            = cas_get_strings,
4771         .get_ethtool_stats      = cas_get_ethtool_stats,
4772         .get_link_ksettings     = cas_get_link_ksettings,
4773         .set_link_ksettings     = cas_set_link_ksettings,
4774 };
4775
4776 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4777 {
4778         struct cas *cp = netdev_priv(dev);
4779         struct mii_ioctl_data *data = if_mii(ifr);
4780         unsigned long flags;
4781         int rc = -EOPNOTSUPP;
4782
4783         /* Hold the PM mutex while doing ioctl's or we may collide
4784          * with open/close and power management and oops.
4785          */
4786         mutex_lock(&cp->pm_mutex);
4787         switch (cmd) {
4788         case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
4789                 data->phy_id = cp->phy_addr;
4790                 /* Fallthrough... */
4791
4792         case SIOCGMIIREG:               /* Read MII PHY register. */
4793                 spin_lock_irqsave(&cp->lock, flags);
4794                 cas_mif_poll(cp, 0);
4795                 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4796                 cas_mif_poll(cp, 1);
4797                 spin_unlock_irqrestore(&cp->lock, flags);
4798                 rc = 0;
4799                 break;
4800
4801         case SIOCSMIIREG:               /* Write MII PHY register. */
4802                 spin_lock_irqsave(&cp->lock, flags);
4803                 cas_mif_poll(cp, 0);
4804                 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4805                 cas_mif_poll(cp, 1);
4806                 spin_unlock_irqrestore(&cp->lock, flags);
4807                 break;
4808         default:
4809                 break;
4810         }
4811
4812         mutex_unlock(&cp->pm_mutex);
4813         return rc;
4814 }
4815
4816 /* When this chip sits underneath an Intel 31154 bridge, it is the
4817  * only subordinate device and we can tweak the bridge settings to
4818  * reflect that fact.
4819  */
4820 static void cas_program_bridge(struct pci_dev *cas_pdev)
4821 {
4822         struct pci_dev *pdev = cas_pdev->bus->self;
4823         u32 val;
4824
4825         if (!pdev)
4826                 return;
4827
4828         if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4829                 return;
4830
4831         /* Clear bit 10 (Bus Parking Control) in the Secondary
4832          * Arbiter Control/Status Register which lives at offset
4833          * 0x41.  Using a 32-bit word read/modify/write at 0x40
4834          * is much simpler so that's how we do this.
4835          */
4836         pci_read_config_dword(pdev, 0x40, &val);
4837         val &= ~0x00040000;
4838         pci_write_config_dword(pdev, 0x40, val);
4839
4840         /* Max out the Multi-Transaction Timer settings since
4841          * Cassini is the only device present.
4842          *
4843          * The register is 16-bit and lives at 0x50.  When the
4844          * settings are enabled, it extends the GRANT# signal
4845          * for a requestor after a transaction is complete.  This
4846          * allows the next request to run without first needing
4847          * to negotiate the GRANT# signal back.
4848          *
4849          * Bits 12:10 define the grant duration:
4850          *
4851          *      1       --      16 clocks
4852          *      2       --      32 clocks
4853          *      3       --      64 clocks
4854          *      4       --      128 clocks
4855          *      5       --      256 clocks
4856          *
4857          * All other values are illegal.
4858          *
4859          * Bits 09:00 define which REQ/GNT signal pairs get the
4860          * GRANT# signal treatment.  We set them all.
4861          */
4862         pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4863
4864         /* The Read Prefecth Policy register is 16-bit and sits at
4865          * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4866          * enable it and max out all of the settings since only one
4867          * device is sitting underneath and thus bandwidth sharing is
4868          * not an issue.
4869          *
4870          * The register has several 3 bit fields, which indicates a
4871          * multiplier applied to the base amount of prefetching the
4872          * chip would do.  These fields are at:
4873          *
4874          *      15:13   ---     ReRead Primary Bus
4875          *      12:10   ---     FirstRead Primary Bus
4876          *      09:07   ---     ReRead Secondary Bus
4877          *      06:04   ---     FirstRead Secondary Bus
4878          *
4879          * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4880          * get enabled on.  Bit 3 is a grouped enabler which controls
4881          * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4882          * the individual REQ/GNT pairs [2:0].
4883          */
4884         pci_write_config_word(pdev, 0x52,
4885                               (0x7 << 13) |
4886                               (0x7 << 10) |
4887                               (0x7 <<  7) |
4888                               (0x7 <<  4) |
4889                               (0xf <<  0));
4890
4891         /* Force cacheline size to 0x8 */
4892         pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4893
4894         /* Force latency timer to maximum setting so Cassini can
4895          * sit on the bus as long as it likes.
4896          */
4897         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4898 }
4899
4900 static const struct net_device_ops cas_netdev_ops = {
4901         .ndo_open               = cas_open,
4902         .ndo_stop               = cas_close,
4903         .ndo_start_xmit         = cas_start_xmit,
4904         .ndo_get_stats          = cas_get_stats,
4905         .ndo_set_rx_mode        = cas_set_multicast,
4906         .ndo_do_ioctl           = cas_ioctl,
4907         .ndo_tx_timeout         = cas_tx_timeout,
4908         .ndo_change_mtu         = cas_change_mtu,
4909         .ndo_set_mac_address    = eth_mac_addr,
4910         .ndo_validate_addr      = eth_validate_addr,
4911 #ifdef CONFIG_NET_POLL_CONTROLLER
4912         .ndo_poll_controller    = cas_netpoll,
4913 #endif
4914 };
4915
4916 static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4917 {
4918         static int cas_version_printed = 0;
4919         unsigned long casreg_len;
4920         struct net_device *dev;
4921         struct cas *cp;
4922         int i, err, pci_using_dac;
4923         u16 pci_cmd;
4924         u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4925
4926         if (cas_version_printed++ == 0)
4927                 pr_info("%s", version);
4928
4929         err = pci_enable_device(pdev);
4930         if (err) {
4931                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4932                 return err;
4933         }
4934
4935         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4936                 dev_err(&pdev->dev, "Cannot find proper PCI device "
4937                        "base address, aborting\n");
4938                 err = -ENODEV;
4939                 goto err_out_disable_pdev;
4940         }
4941
4942         dev = alloc_etherdev(sizeof(*cp));
4943         if (!dev) {
4944                 err = -ENOMEM;
4945                 goto err_out_disable_pdev;
4946         }
4947         SET_NETDEV_DEV(dev, &pdev->dev);
4948
4949         err = pci_request_regions(pdev, dev->name);
4950         if (err) {
4951                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4952                 goto err_out_free_netdev;
4953         }
4954         pci_set_master(pdev);
4955
4956         /* we must always turn on parity response or else parity
4957          * doesn't get generated properly. disable SERR/PERR as well.
4958          * in addition, we want to turn MWI on.
4959          */
4960         pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4961         pci_cmd &= ~PCI_COMMAND_SERR;
4962         pci_cmd |= PCI_COMMAND_PARITY;
4963         pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4964         if (pci_try_set_mwi(pdev))
4965                 pr_warn("Could not enable MWI for %s\n", pci_name(pdev));
4966
4967         cas_program_bridge(pdev);
4968
4969         /*
4970          * On some architectures, the default cache line size set
4971          * by pci_try_set_mwi reduces perforamnce.  We have to increase
4972          * it for this case.  To start, we'll print some configuration
4973          * data.
4974          */
4975 #if 1
4976         pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4977                              &orig_cacheline_size);
4978         if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4979                 cas_cacheline_size =
4980                         (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4981                         CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4982                 if (pci_write_config_byte(pdev,
4983                                           PCI_CACHE_LINE_SIZE,
4984                                           cas_cacheline_size)) {
4985                         dev_err(&pdev->dev, "Could not set PCI cache "
4986                                "line size\n");
4987                         goto err_write_cacheline;
4988                 }
4989         }
4990 #endif
4991
4992
4993         /* Configure DMA attributes. */
4994         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4995                 pci_using_dac = 1;
4996                 err = pci_set_consistent_dma_mask(pdev,
4997                                                   DMA_BIT_MASK(64));
4998                 if (err < 0) {
4999                         dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
5000                                "for consistent allocations\n");
5001                         goto err_out_free_res;
5002                 }
5003
5004         } else {
5005                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5006                 if (err) {
5007                         dev_err(&pdev->dev, "No usable DMA configuration, "
5008                                "aborting\n");
5009                         goto err_out_free_res;
5010                 }
5011                 pci_using_dac = 0;
5012         }
5013
5014         casreg_len = pci_resource_len(pdev, 0);
5015
5016         cp = netdev_priv(dev);
5017         cp->pdev = pdev;
5018 #if 1
5019         /* A value of 0 indicates we never explicitly set it */
5020         cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5021 #endif
5022         cp->dev = dev;
5023         cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5024           cassini_debug;
5025
5026 #if defined(CONFIG_SPARC)
5027         cp->of_node = pci_device_to_OF_node(pdev);
5028 #endif
5029
5030         cp->link_transition = LINK_TRANSITION_UNKNOWN;
5031         cp->link_transition_jiffies_valid = 0;
5032
5033         spin_lock_init(&cp->lock);
5034         spin_lock_init(&cp->rx_inuse_lock);
5035         spin_lock_init(&cp->rx_spare_lock);
5036         for (i = 0; i < N_TX_RINGS; i++) {
5037                 spin_lock_init(&cp->stat_lock[i]);
5038                 spin_lock_init(&cp->tx_lock[i]);
5039         }
5040         spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5041         mutex_init(&cp->pm_mutex);
5042
5043         timer_setup(&cp->link_timer, cas_link_timer, 0);
5044
5045 #if 1
5046         /* Just in case the implementation of atomic operations
5047          * change so that an explicit initialization is necessary.
5048          */
5049         atomic_set(&cp->reset_task_pending, 0);
5050         atomic_set(&cp->reset_task_pending_all, 0);
5051         atomic_set(&cp->reset_task_pending_spare, 0);
5052         atomic_set(&cp->reset_task_pending_mtu, 0);
5053 #endif
5054         INIT_WORK(&cp->reset_task, cas_reset_task);
5055
5056         /* Default link parameters */
5057         if (link_mode >= 0 && link_mode < 6)
5058                 cp->link_cntl = link_modes[link_mode];
5059         else
5060                 cp->link_cntl = BMCR_ANENABLE;
5061         cp->lstate = link_down;
5062         cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5063         netif_carrier_off(cp->dev);
5064         cp->timer_ticks = 0;
5065
5066         /* give us access to cassini registers */
5067         cp->regs = pci_iomap(pdev, 0, casreg_len);
5068         if (!cp->regs) {
5069                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5070                 goto err_out_free_res;
5071         }
5072         cp->casreg_len = casreg_len;
5073
5074         pci_save_state(pdev);
5075         cas_check_pci_invariants(cp);
5076         cas_hard_reset(cp);
5077         cas_reset(cp, 0);
5078         if (cas_check_invariants(cp))
5079                 goto err_out_iounmap;
5080         if (cp->cas_flags & CAS_FLAG_SATURN)
5081                 cas_saturn_firmware_init(cp);
5082
5083         cp->init_block = (struct cas_init_block *)
5084                 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5085                                      &cp->block_dvma);
5086         if (!cp->init_block) {
5087                 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5088                 goto err_out_iounmap;
5089         }
5090
5091         for (i = 0; i < N_TX_RINGS; i++)
5092                 cp->init_txds[i] = cp->init_block->txds[i];
5093
5094         for (i = 0; i < N_RX_DESC_RINGS; i++)
5095                 cp->init_rxds[i] = cp->init_block->rxds[i];
5096
5097         for (i = 0; i < N_RX_COMP_RINGS; i++)
5098                 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5099
5100         for (i = 0; i < N_RX_FLOWS; i++)
5101                 skb_queue_head_init(&cp->rx_flows[i]);
5102
5103         dev->netdev_ops = &cas_netdev_ops;
5104         dev->ethtool_ops = &cas_ethtool_ops;
5105         dev->watchdog_timeo = CAS_TX_TIMEOUT;
5106
5107 #ifdef USE_NAPI
5108         netif_napi_add(dev, &cp->napi, cas_poll, 64);
5109 #endif
5110         dev->irq = pdev->irq;
5111         dev->dma = 0;
5112
5113         /* Cassini features. */
5114         if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5115                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5116
5117         if (pci_using_dac)
5118                 dev->features |= NETIF_F_HIGHDMA;
5119
5120         /* MTU range: 60 - varies or 9000 */
5121         dev->min_mtu = CAS_MIN_MTU;
5122         dev->max_mtu = CAS_MAX_MTU;
5123
5124         if (register_netdev(dev)) {
5125                 dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5126                 goto err_out_free_consistent;
5127         }
5128
5129         i = readl(cp->regs + REG_BIM_CFG);
5130         netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5131                     (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5132                     (i & BIM_CFG_32BIT) ? "32" : "64",
5133                     (i & BIM_CFG_66MHZ) ? "66" : "33",
5134                     (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5135                     dev->dev_addr);
5136
5137         pci_set_drvdata(pdev, dev);
5138         cp->hw_running = 1;
5139         cas_entropy_reset(cp);
5140         cas_phy_init(cp);
5141         cas_begin_auto_negotiation(cp, NULL);
5142         return 0;
5143
5144 err_out_free_consistent:
5145         pci_free_consistent(pdev, sizeof(struct cas_init_block),
5146                             cp->init_block, cp->block_dvma);
5147
5148 err_out_iounmap:
5149         mutex_lock(&cp->pm_mutex);
5150         if (cp->hw_running)
5151                 cas_shutdown(cp);
5152         mutex_unlock(&cp->pm_mutex);
5153
5154         pci_iounmap(pdev, cp->regs);
5155
5156
5157 err_out_free_res:
5158         pci_release_regions(pdev);
5159
5160 err_write_cacheline:
5161         /* Try to restore it in case the error occurred after we
5162          * set it.
5163          */
5164         pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5165
5166 err_out_free_netdev:
5167         free_netdev(dev);
5168
5169 err_out_disable_pdev:
5170         pci_disable_device(pdev);
5171         return -ENODEV;
5172 }
5173
5174 static void cas_remove_one(struct pci_dev *pdev)
5175 {
5176         struct net_device *dev = pci_get_drvdata(pdev);
5177         struct cas *cp;
5178         if (!dev)
5179                 return;
5180
5181         cp = netdev_priv(dev);
5182         unregister_netdev(dev);
5183
5184         vfree(cp->fw_data);
5185
5186         mutex_lock(&cp->pm_mutex);
5187         cancel_work_sync(&cp->reset_task);
5188         if (cp->hw_running)
5189                 cas_shutdown(cp);
5190         mutex_unlock(&cp->pm_mutex);
5191
5192 #if 1
5193         if (cp->orig_cacheline_size) {
5194                 /* Restore the cache line size if we had modified
5195                  * it.
5196                  */
5197                 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5198                                       cp->orig_cacheline_size);
5199         }
5200 #endif
5201         pci_free_consistent(pdev, sizeof(struct cas_init_block),
5202                             cp->init_block, cp->block_dvma);
5203         pci_iounmap(pdev, cp->regs);
5204         free_netdev(dev);
5205         pci_release_regions(pdev);
5206         pci_disable_device(pdev);
5207 }
5208
5209 #ifdef CONFIG_PM
5210 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5211 {
5212         struct net_device *dev = pci_get_drvdata(pdev);
5213         struct cas *cp = netdev_priv(dev);
5214         unsigned long flags;
5215
5216         mutex_lock(&cp->pm_mutex);
5217
5218         /* If the driver is opened, we stop the DMA */
5219         if (cp->opened) {
5220                 netif_device_detach(dev);
5221
5222                 cas_lock_all_save(cp, flags);
5223
5224                 /* We can set the second arg of cas_reset to 0
5225                  * because on resume, we'll call cas_init_hw with
5226                  * its second arg set so that autonegotiation is
5227                  * restarted.
5228                  */
5229                 cas_reset(cp, 0);
5230                 cas_clean_rings(cp);
5231                 cas_unlock_all_restore(cp, flags);
5232         }
5233
5234         if (cp->hw_running)
5235                 cas_shutdown(cp);
5236         mutex_unlock(&cp->pm_mutex);
5237
5238         return 0;
5239 }
5240
5241 static int cas_resume(struct pci_dev *pdev)
5242 {
5243         struct net_device *dev = pci_get_drvdata(pdev);
5244         struct cas *cp = netdev_priv(dev);
5245
5246         netdev_info(dev, "resuming\n");
5247
5248         mutex_lock(&cp->pm_mutex);
5249         cas_hard_reset(cp);
5250         if (cp->opened) {
5251                 unsigned long flags;
5252                 cas_lock_all_save(cp, flags);
5253                 cas_reset(cp, 0);
5254                 cp->hw_running = 1;
5255                 cas_clean_rings(cp);
5256                 cas_init_hw(cp, 1);
5257                 cas_unlock_all_restore(cp, flags);
5258
5259                 netif_device_attach(dev);
5260         }
5261         mutex_unlock(&cp->pm_mutex);
5262         return 0;
5263 }
5264 #endif /* CONFIG_PM */
5265
5266 static struct pci_driver cas_driver = {
5267         .name           = DRV_MODULE_NAME,
5268         .id_table       = cas_pci_tbl,
5269         .probe          = cas_init_one,
5270         .remove         = cas_remove_one,
5271 #ifdef CONFIG_PM
5272         .suspend        = cas_suspend,
5273         .resume         = cas_resume
5274 #endif
5275 };
5276
5277 static int __init cas_init(void)
5278 {
5279         if (linkdown_timeout > 0)
5280                 link_transition_timeout = linkdown_timeout * HZ;
5281         else
5282                 link_transition_timeout = 0;
5283
5284         return pci_register_driver(&cas_driver);
5285 }
5286
5287 static void __exit cas_cleanup(void)
5288 {
5289         pci_unregister_driver(&cas_driver);
5290 }
5291
5292 module_init(cas_init);
5293 module_exit(cas_cleanup);