Merge tag 'for-linus-2019-10-18' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5
6         Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11   Documentation available at:
12         http://www.stlinux.com
13   Support available at:
14         https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <net/pkt_cls.h>
40 #include "stmmac_ptp.h"
41 #include "stmmac.h"
42 #include <linux/reset.h>
43 #include <linux/of_mdio.h>
44 #include "dwmac1000.h"
45 #include "dwxgmac2.h"
46 #include "hwif.h"
47
48 #define STMMAC_ALIGN(x)         __ALIGN_KERNEL(x, SMP_CACHE_BYTES)
49 #define TSO_MAX_BUFF_SIZE       (SZ_16K - 1)
50
51 /* Module parameters */
52 #define TX_TIMEO        5000
53 static int watchdog = TX_TIMEO;
54 module_param(watchdog, int, 0644);
55 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
56
57 static int debug = -1;
58 module_param(debug, int, 0644);
59 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
60
61 static int phyaddr = -1;
62 module_param(phyaddr, int, 0444);
63 MODULE_PARM_DESC(phyaddr, "Physical device address");
64
65 #define STMMAC_TX_THRESH        (DMA_TX_SIZE / 4)
66 #define STMMAC_RX_THRESH        (DMA_RX_SIZE / 4)
67
68 static int flow_ctrl = FLOW_AUTO;
69 module_param(flow_ctrl, int, 0644);
70 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
71
72 static int pause = PAUSE_TIME;
73 module_param(pause, int, 0644);
74 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
75
76 #define TC_DEFAULT 64
77 static int tc = TC_DEFAULT;
78 module_param(tc, int, 0644);
79 MODULE_PARM_DESC(tc, "DMA threshold control value");
80
81 #define DEFAULT_BUFSIZE 1536
82 static int buf_sz = DEFAULT_BUFSIZE;
83 module_param(buf_sz, int, 0644);
84 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
85
86 #define STMMAC_RX_COPYBREAK     256
87
88 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
89                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
90                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
91
92 #define STMMAC_DEFAULT_LPI_TIMER        1000
93 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
94 module_param(eee_timer, int, 0644);
95 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
96 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
97
98 /* By default the driver will use the ring mode to manage tx and rx descriptors,
99  * but allow user to force to use the chain instead of the ring
100  */
101 static unsigned int chain_mode;
102 module_param(chain_mode, int, 0444);
103 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
104
105 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
106
107 #ifdef CONFIG_DEBUG_FS
108 static void stmmac_init_fs(struct net_device *dev);
109 static void stmmac_exit_fs(struct net_device *dev);
110 #endif
111
112 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
113
114 /**
115  * stmmac_verify_args - verify the driver parameters.
116  * Description: it checks the driver parameters and set a default in case of
117  * errors.
118  */
119 static void stmmac_verify_args(void)
120 {
121         if (unlikely(watchdog < 0))
122                 watchdog = TX_TIMEO;
123         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
124                 buf_sz = DEFAULT_BUFSIZE;
125         if (unlikely(flow_ctrl > 1))
126                 flow_ctrl = FLOW_AUTO;
127         else if (likely(flow_ctrl < 0))
128                 flow_ctrl = FLOW_OFF;
129         if (unlikely((pause < 0) || (pause > 0xffff)))
130                 pause = PAUSE_TIME;
131         if (eee_timer < 0)
132                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
133 }
134
135 /**
136  * stmmac_disable_all_queues - Disable all queues
137  * @priv: driver private structure
138  */
139 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
140 {
141         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
142         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
143         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
144         u32 queue;
145
146         for (queue = 0; queue < maxq; queue++) {
147                 struct stmmac_channel *ch = &priv->channel[queue];
148
149                 if (queue < rx_queues_cnt)
150                         napi_disable(&ch->rx_napi);
151                 if (queue < tx_queues_cnt)
152                         napi_disable(&ch->tx_napi);
153         }
154 }
155
156 /**
157  * stmmac_enable_all_queues - Enable all queues
158  * @priv: driver private structure
159  */
160 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
161 {
162         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
163         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
164         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
165         u32 queue;
166
167         for (queue = 0; queue < maxq; queue++) {
168                 struct stmmac_channel *ch = &priv->channel[queue];
169
170                 if (queue < rx_queues_cnt)
171                         napi_enable(&ch->rx_napi);
172                 if (queue < tx_queues_cnt)
173                         napi_enable(&ch->tx_napi);
174         }
175 }
176
177 /**
178  * stmmac_stop_all_queues - Stop all queues
179  * @priv: driver private structure
180  */
181 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
182 {
183         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
184         u32 queue;
185
186         for (queue = 0; queue < tx_queues_cnt; queue++)
187                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
188 }
189
190 /**
191  * stmmac_start_all_queues - Start all queues
192  * @priv: driver private structure
193  */
194 static void stmmac_start_all_queues(struct stmmac_priv *priv)
195 {
196         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
197         u32 queue;
198
199         for (queue = 0; queue < tx_queues_cnt; queue++)
200                 netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
201 }
202
203 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
204 {
205         if (!test_bit(STMMAC_DOWN, &priv->state) &&
206             !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
207                 queue_work(priv->wq, &priv->service_task);
208 }
209
210 static void stmmac_global_err(struct stmmac_priv *priv)
211 {
212         netif_carrier_off(priv->dev);
213         set_bit(STMMAC_RESET_REQUESTED, &priv->state);
214         stmmac_service_event_schedule(priv);
215 }
216
217 /**
218  * stmmac_clk_csr_set - dynamically set the MDC clock
219  * @priv: driver private structure
220  * Description: this is to dynamically set the MDC clock according to the csr
221  * clock input.
222  * Note:
223  *      If a specific clk_csr value is passed from the platform
224  *      this means that the CSR Clock Range selection cannot be
225  *      changed at run-time and it is fixed (as reported in the driver
226  *      documentation). Viceversa the driver will try to set the MDC
227  *      clock dynamically according to the actual clock input.
228  */
229 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
230 {
231         u32 clk_rate;
232
233         clk_rate = clk_get_rate(priv->plat->stmmac_clk);
234
235         /* Platform provided default clk_csr would be assumed valid
236          * for all other cases except for the below mentioned ones.
237          * For values higher than the IEEE 802.3 specified frequency
238          * we can not estimate the proper divider as it is not known
239          * the frequency of clk_csr_i. So we do not change the default
240          * divider.
241          */
242         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
243                 if (clk_rate < CSR_F_35M)
244                         priv->clk_csr = STMMAC_CSR_20_35M;
245                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
246                         priv->clk_csr = STMMAC_CSR_35_60M;
247                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
248                         priv->clk_csr = STMMAC_CSR_60_100M;
249                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
250                         priv->clk_csr = STMMAC_CSR_100_150M;
251                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
252                         priv->clk_csr = STMMAC_CSR_150_250M;
253                 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
254                         priv->clk_csr = STMMAC_CSR_250_300M;
255         }
256
257         if (priv->plat->has_sun8i) {
258                 if (clk_rate > 160000000)
259                         priv->clk_csr = 0x03;
260                 else if (clk_rate > 80000000)
261                         priv->clk_csr = 0x02;
262                 else if (clk_rate > 40000000)
263                         priv->clk_csr = 0x01;
264                 else
265                         priv->clk_csr = 0;
266         }
267
268         if (priv->plat->has_xgmac) {
269                 if (clk_rate > 400000000)
270                         priv->clk_csr = 0x5;
271                 else if (clk_rate > 350000000)
272                         priv->clk_csr = 0x4;
273                 else if (clk_rate > 300000000)
274                         priv->clk_csr = 0x3;
275                 else if (clk_rate > 250000000)
276                         priv->clk_csr = 0x2;
277                 else if (clk_rate > 150000000)
278                         priv->clk_csr = 0x1;
279                 else
280                         priv->clk_csr = 0x0;
281         }
282 }
283
284 static void print_pkt(unsigned char *buf, int len)
285 {
286         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
287         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
288 }
289
290 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
291 {
292         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
293         u32 avail;
294
295         if (tx_q->dirty_tx > tx_q->cur_tx)
296                 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
297         else
298                 avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
299
300         return avail;
301 }
302
303 /**
304  * stmmac_rx_dirty - Get RX queue dirty
305  * @priv: driver private structure
306  * @queue: RX queue index
307  */
308 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
309 {
310         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
311         u32 dirty;
312
313         if (rx_q->dirty_rx <= rx_q->cur_rx)
314                 dirty = rx_q->cur_rx - rx_q->dirty_rx;
315         else
316                 dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
317
318         return dirty;
319 }
320
321 /**
322  * stmmac_enable_eee_mode - check and enter in LPI mode
323  * @priv: driver private structure
324  * Description: this function is to verify and enter in LPI mode in case of
325  * EEE.
326  */
327 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
328 {
329         u32 tx_cnt = priv->plat->tx_queues_to_use;
330         u32 queue;
331
332         /* check if all TX queues have the work finished */
333         for (queue = 0; queue < tx_cnt; queue++) {
334                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
335
336                 if (tx_q->dirty_tx != tx_q->cur_tx)
337                         return; /* still unfinished work */
338         }
339
340         /* Check and enter in LPI mode */
341         if (!priv->tx_path_in_lpi_mode)
342                 stmmac_set_eee_mode(priv, priv->hw,
343                                 priv->plat->en_tx_lpi_clockgating);
344 }
345
346 /**
347  * stmmac_disable_eee_mode - disable and exit from LPI mode
348  * @priv: driver private structure
349  * Description: this function is to exit and disable EEE in case of
350  * LPI state is true. This is called by the xmit.
351  */
352 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
353 {
354         stmmac_reset_eee_mode(priv, priv->hw);
355         del_timer_sync(&priv->eee_ctrl_timer);
356         priv->tx_path_in_lpi_mode = false;
357 }
358
359 /**
360  * stmmac_eee_ctrl_timer - EEE TX SW timer.
361  * @arg : data hook
362  * Description:
363  *  if there is no data transfer and if we are not in LPI state,
364  *  then MAC Transmitter can be moved to LPI state.
365  */
366 static void stmmac_eee_ctrl_timer(struct timer_list *t)
367 {
368         struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
369
370         stmmac_enable_eee_mode(priv);
371         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
372 }
373
374 /**
375  * stmmac_eee_init - init EEE
376  * @priv: driver private structure
377  * Description:
378  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
379  *  can also manage EEE, this function enable the LPI state and start related
380  *  timer.
381  */
382 bool stmmac_eee_init(struct stmmac_priv *priv)
383 {
384         int tx_lpi_timer = priv->tx_lpi_timer;
385
386         /* Using PCS we cannot dial with the phy registers at this stage
387          * so we do not support extra feature like EEE.
388          */
389         if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
390             (priv->hw->pcs == STMMAC_PCS_TBI) ||
391             (priv->hw->pcs == STMMAC_PCS_RTBI))
392                 return false;
393
394         /* Check if MAC core supports the EEE feature. */
395         if (!priv->dma_cap.eee)
396                 return false;
397
398         mutex_lock(&priv->lock);
399
400         /* Check if it needs to be deactivated */
401         if (!priv->eee_active) {
402                 if (priv->eee_enabled) {
403                         netdev_dbg(priv->dev, "disable EEE\n");
404                         del_timer_sync(&priv->eee_ctrl_timer);
405                         stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer);
406                 }
407                 mutex_unlock(&priv->lock);
408                 return false;
409         }
410
411         if (priv->eee_active && !priv->eee_enabled) {
412                 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
413                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
414                 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
415                                      tx_lpi_timer);
416         }
417
418         mutex_unlock(&priv->lock);
419         netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
420         return true;
421 }
422
423 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
424  * @priv: driver private structure
425  * @p : descriptor pointer
426  * @skb : the socket buffer
427  * Description :
428  * This function will read timestamp from the descriptor & pass it to stack.
429  * and also perform some sanity checks.
430  */
431 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
432                                    struct dma_desc *p, struct sk_buff *skb)
433 {
434         struct skb_shared_hwtstamps shhwtstamp;
435         bool found = false;
436         u64 ns = 0;
437
438         if (!priv->hwts_tx_en)
439                 return;
440
441         /* exit if skb doesn't support hw tstamp */
442         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
443                 return;
444
445         /* check tx tstamp status */
446         if (stmmac_get_tx_timestamp_status(priv, p)) {
447                 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
448                 found = true;
449         } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
450                 found = true;
451         }
452
453         if (found) {
454                 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
455                 shhwtstamp.hwtstamp = ns_to_ktime(ns);
456
457                 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
458                 /* pass tstamp to stack */
459                 skb_tstamp_tx(skb, &shhwtstamp);
460         }
461 }
462
463 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
464  * @priv: driver private structure
465  * @p : descriptor pointer
466  * @np : next descriptor pointer
467  * @skb : the socket buffer
468  * Description :
469  * This function will read received packet's timestamp from the descriptor
470  * and pass it to stack. It also perform some sanity checks.
471  */
472 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
473                                    struct dma_desc *np, struct sk_buff *skb)
474 {
475         struct skb_shared_hwtstamps *shhwtstamp = NULL;
476         struct dma_desc *desc = p;
477         u64 ns = 0;
478
479         if (!priv->hwts_rx_en)
480                 return;
481         /* For GMAC4, the valid timestamp is from CTX next desc. */
482         if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
483                 desc = np;
484
485         /* Check if timestamp is available */
486         if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
487                 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
488                 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
489                 shhwtstamp = skb_hwtstamps(skb);
490                 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
491                 shhwtstamp->hwtstamp = ns_to_ktime(ns);
492         } else  {
493                 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
494         }
495 }
496
497 /**
498  *  stmmac_hwtstamp_set - control hardware timestamping.
499  *  @dev: device pointer.
500  *  @ifr: An IOCTL specific structure, that can contain a pointer to
501  *  a proprietary structure used to pass information to the driver.
502  *  Description:
503  *  This function configures the MAC to enable/disable both outgoing(TX)
504  *  and incoming(RX) packets time stamping based on user input.
505  *  Return Value:
506  *  0 on success and an appropriate -ve integer on failure.
507  */
508 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
509 {
510         struct stmmac_priv *priv = netdev_priv(dev);
511         struct hwtstamp_config config;
512         struct timespec64 now;
513         u64 temp = 0;
514         u32 ptp_v2 = 0;
515         u32 tstamp_all = 0;
516         u32 ptp_over_ipv4_udp = 0;
517         u32 ptp_over_ipv6_udp = 0;
518         u32 ptp_over_ethernet = 0;
519         u32 snap_type_sel = 0;
520         u32 ts_master_en = 0;
521         u32 ts_event_en = 0;
522         u32 sec_inc = 0;
523         u32 value = 0;
524         bool xmac;
525
526         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
527
528         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
529                 netdev_alert(priv->dev, "No support for HW time stamping\n");
530                 priv->hwts_tx_en = 0;
531                 priv->hwts_rx_en = 0;
532
533                 return -EOPNOTSUPP;
534         }
535
536         if (copy_from_user(&config, ifr->ifr_data,
537                            sizeof(config)))
538                 return -EFAULT;
539
540         netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
541                    __func__, config.flags, config.tx_type, config.rx_filter);
542
543         /* reserved for future extensions */
544         if (config.flags)
545                 return -EINVAL;
546
547         if (config.tx_type != HWTSTAMP_TX_OFF &&
548             config.tx_type != HWTSTAMP_TX_ON)
549                 return -ERANGE;
550
551         if (priv->adv_ts) {
552                 switch (config.rx_filter) {
553                 case HWTSTAMP_FILTER_NONE:
554                         /* time stamp no incoming packet at all */
555                         config.rx_filter = HWTSTAMP_FILTER_NONE;
556                         break;
557
558                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
559                         /* PTP v1, UDP, any kind of event packet */
560                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
561                         /* 'xmac' hardware can support Sync, Pdelay_Req and
562                          * Pdelay_resp by setting bit14 and bits17/16 to 01
563                          * This leaves Delay_Req timestamps out.
564                          * Enable all events *and* general purpose message
565                          * timestamping
566                          */
567                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
568                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
569                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
570                         break;
571
572                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
573                         /* PTP v1, UDP, Sync packet */
574                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
575                         /* take time stamp for SYNC messages only */
576                         ts_event_en = PTP_TCR_TSEVNTENA;
577
578                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
579                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
580                         break;
581
582                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
583                         /* PTP v1, UDP, Delay_req packet */
584                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
585                         /* take time stamp for Delay_Req messages only */
586                         ts_master_en = PTP_TCR_TSMSTRENA;
587                         ts_event_en = PTP_TCR_TSEVNTENA;
588
589                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
590                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
591                         break;
592
593                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
594                         /* PTP v2, UDP, any kind of event packet */
595                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
596                         ptp_v2 = PTP_TCR_TSVER2ENA;
597                         /* take time stamp for all event messages */
598                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
599
600                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
601                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
602                         break;
603
604                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
605                         /* PTP v2, UDP, Sync packet */
606                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
607                         ptp_v2 = PTP_TCR_TSVER2ENA;
608                         /* take time stamp for SYNC messages only */
609                         ts_event_en = PTP_TCR_TSEVNTENA;
610
611                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
612                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
613                         break;
614
615                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
616                         /* PTP v2, UDP, Delay_req packet */
617                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
618                         ptp_v2 = PTP_TCR_TSVER2ENA;
619                         /* take time stamp for Delay_Req messages only */
620                         ts_master_en = PTP_TCR_TSMSTRENA;
621                         ts_event_en = PTP_TCR_TSEVNTENA;
622
623                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
624                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
625                         break;
626
627                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
628                         /* PTP v2/802.AS1 any layer, any kind of event packet */
629                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
630                         ptp_v2 = PTP_TCR_TSVER2ENA;
631                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
632                         ts_event_en = PTP_TCR_TSEVNTENA;
633                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
634                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
635                         ptp_over_ethernet = PTP_TCR_TSIPENA;
636                         break;
637
638                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
639                         /* PTP v2/802.AS1, any layer, Sync packet */
640                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
641                         ptp_v2 = PTP_TCR_TSVER2ENA;
642                         /* take time stamp for SYNC messages only */
643                         ts_event_en = PTP_TCR_TSEVNTENA;
644
645                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
646                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
647                         ptp_over_ethernet = PTP_TCR_TSIPENA;
648                         break;
649
650                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
651                         /* PTP v2/802.AS1, any layer, Delay_req packet */
652                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
653                         ptp_v2 = PTP_TCR_TSVER2ENA;
654                         /* take time stamp for Delay_Req messages only */
655                         ts_master_en = PTP_TCR_TSMSTRENA;
656                         ts_event_en = PTP_TCR_TSEVNTENA;
657
658                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
659                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
660                         ptp_over_ethernet = PTP_TCR_TSIPENA;
661                         break;
662
663                 case HWTSTAMP_FILTER_NTP_ALL:
664                 case HWTSTAMP_FILTER_ALL:
665                         /* time stamp any incoming packet */
666                         config.rx_filter = HWTSTAMP_FILTER_ALL;
667                         tstamp_all = PTP_TCR_TSENALL;
668                         break;
669
670                 default:
671                         return -ERANGE;
672                 }
673         } else {
674                 switch (config.rx_filter) {
675                 case HWTSTAMP_FILTER_NONE:
676                         config.rx_filter = HWTSTAMP_FILTER_NONE;
677                         break;
678                 default:
679                         /* PTP v1, UDP, any kind of event packet */
680                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
681                         break;
682                 }
683         }
684         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
685         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
686
687         if (!priv->hwts_tx_en && !priv->hwts_rx_en)
688                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
689         else {
690                 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
691                          tstamp_all | ptp_v2 | ptp_over_ethernet |
692                          ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
693                          ts_master_en | snap_type_sel);
694                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
695
696                 /* program Sub Second Increment reg */
697                 stmmac_config_sub_second_increment(priv,
698                                 priv->ptpaddr, priv->plat->clk_ptp_rate,
699                                 xmac, &sec_inc);
700                 temp = div_u64(1000000000ULL, sec_inc);
701
702                 /* Store sub second increment and flags for later use */
703                 priv->sub_second_inc = sec_inc;
704                 priv->systime_flags = value;
705
706                 /* calculate default added value:
707                  * formula is :
708                  * addend = (2^32)/freq_div_ratio;
709                  * where, freq_div_ratio = 1e9ns/sec_inc
710                  */
711                 temp = (u64)(temp << 32);
712                 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
713                 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
714
715                 /* initialize system time */
716                 ktime_get_real_ts64(&now);
717
718                 /* lower 32 bits of tv_sec are safe until y2106 */
719                 stmmac_init_systime(priv, priv->ptpaddr,
720                                 (u32)now.tv_sec, now.tv_nsec);
721         }
722
723         memcpy(&priv->tstamp_config, &config, sizeof(config));
724
725         return copy_to_user(ifr->ifr_data, &config,
726                             sizeof(config)) ? -EFAULT : 0;
727 }
728
729 /**
730  *  stmmac_hwtstamp_get - read hardware timestamping.
731  *  @dev: device pointer.
732  *  @ifr: An IOCTL specific structure, that can contain a pointer to
733  *  a proprietary structure used to pass information to the driver.
734  *  Description:
735  *  This function obtain the current hardware timestamping settings
736     as requested.
737  */
738 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
739 {
740         struct stmmac_priv *priv = netdev_priv(dev);
741         struct hwtstamp_config *config = &priv->tstamp_config;
742
743         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
744                 return -EOPNOTSUPP;
745
746         return copy_to_user(ifr->ifr_data, config,
747                             sizeof(*config)) ? -EFAULT : 0;
748 }
749
750 /**
751  * stmmac_init_ptp - init PTP
752  * @priv: driver private structure
753  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
754  * This is done by looking at the HW cap. register.
755  * This function also registers the ptp driver.
756  */
757 static int stmmac_init_ptp(struct stmmac_priv *priv)
758 {
759         bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
760
761         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
762                 return -EOPNOTSUPP;
763
764         priv->adv_ts = 0;
765         /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
766         if (xmac && priv->dma_cap.atime_stamp)
767                 priv->adv_ts = 1;
768         /* Dwmac 3.x core with extend_desc can support adv_ts */
769         else if (priv->extend_desc && priv->dma_cap.atime_stamp)
770                 priv->adv_ts = 1;
771
772         if (priv->dma_cap.time_stamp)
773                 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
774
775         if (priv->adv_ts)
776                 netdev_info(priv->dev,
777                             "IEEE 1588-2008 Advanced Timestamp supported\n");
778
779         priv->hwts_tx_en = 0;
780         priv->hwts_rx_en = 0;
781
782         stmmac_ptp_register(priv);
783
784         return 0;
785 }
786
787 static void stmmac_release_ptp(struct stmmac_priv *priv)
788 {
789         if (priv->plat->clk_ptp_ref)
790                 clk_disable_unprepare(priv->plat->clk_ptp_ref);
791         stmmac_ptp_unregister(priv);
792 }
793
794 /**
795  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
796  *  @priv: driver private structure
797  *  Description: It is used for configuring the flow control in all queues
798  */
799 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
800 {
801         u32 tx_cnt = priv->plat->tx_queues_to_use;
802
803         stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
804                         priv->pause, tx_cnt);
805 }
806
807 static void stmmac_validate(struct phylink_config *config,
808                             unsigned long *supported,
809                             struct phylink_link_state *state)
810 {
811         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
812         __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
813         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
814         int tx_cnt = priv->plat->tx_queues_to_use;
815         int max_speed = priv->plat->max_speed;
816
817         phylink_set(mac_supported, 10baseT_Half);
818         phylink_set(mac_supported, 10baseT_Full);
819         phylink_set(mac_supported, 100baseT_Half);
820         phylink_set(mac_supported, 100baseT_Full);
821         phylink_set(mac_supported, 1000baseT_Half);
822         phylink_set(mac_supported, 1000baseT_Full);
823         phylink_set(mac_supported, 1000baseKX_Full);
824
825         phylink_set(mac_supported, Autoneg);
826         phylink_set(mac_supported, Pause);
827         phylink_set(mac_supported, Asym_Pause);
828         phylink_set_port_modes(mac_supported);
829
830         /* Cut down 1G if asked to */
831         if ((max_speed > 0) && (max_speed < 1000)) {
832                 phylink_set(mask, 1000baseT_Full);
833                 phylink_set(mask, 1000baseX_Full);
834         } else if (priv->plat->has_xgmac) {
835                 if (!max_speed || (max_speed >= 2500)) {
836                         phylink_set(mac_supported, 2500baseT_Full);
837                         phylink_set(mac_supported, 2500baseX_Full);
838                 }
839                 if (!max_speed || (max_speed >= 5000)) {
840                         phylink_set(mac_supported, 5000baseT_Full);
841                 }
842                 if (!max_speed || (max_speed >= 10000)) {
843                         phylink_set(mac_supported, 10000baseSR_Full);
844                         phylink_set(mac_supported, 10000baseLR_Full);
845                         phylink_set(mac_supported, 10000baseER_Full);
846                         phylink_set(mac_supported, 10000baseLRM_Full);
847                         phylink_set(mac_supported, 10000baseT_Full);
848                         phylink_set(mac_supported, 10000baseKX4_Full);
849                         phylink_set(mac_supported, 10000baseKR_Full);
850                 }
851         }
852
853         /* Half-Duplex can only work with single queue */
854         if (tx_cnt > 1) {
855                 phylink_set(mask, 10baseT_Half);
856                 phylink_set(mask, 100baseT_Half);
857                 phylink_set(mask, 1000baseT_Half);
858         }
859
860         bitmap_and(supported, supported, mac_supported,
861                    __ETHTOOL_LINK_MODE_MASK_NBITS);
862         bitmap_andnot(supported, supported, mask,
863                       __ETHTOOL_LINK_MODE_MASK_NBITS);
864         bitmap_and(state->advertising, state->advertising, mac_supported,
865                    __ETHTOOL_LINK_MODE_MASK_NBITS);
866         bitmap_andnot(state->advertising, state->advertising, mask,
867                       __ETHTOOL_LINK_MODE_MASK_NBITS);
868 }
869
870 static int stmmac_mac_link_state(struct phylink_config *config,
871                                  struct phylink_link_state *state)
872 {
873         return -EOPNOTSUPP;
874 }
875
876 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
877                               const struct phylink_link_state *state)
878 {
879         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
880         u32 ctrl;
881
882         ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
883         ctrl &= ~priv->hw->link.speed_mask;
884
885         if (state->interface == PHY_INTERFACE_MODE_USXGMII) {
886                 switch (state->speed) {
887                 case SPEED_10000:
888                         ctrl |= priv->hw->link.xgmii.speed10000;
889                         break;
890                 case SPEED_5000:
891                         ctrl |= priv->hw->link.xgmii.speed5000;
892                         break;
893                 case SPEED_2500:
894                         ctrl |= priv->hw->link.xgmii.speed2500;
895                         break;
896                 default:
897                         return;
898                 }
899         } else {
900                 switch (state->speed) {
901                 case SPEED_2500:
902                         ctrl |= priv->hw->link.speed2500;
903                         break;
904                 case SPEED_1000:
905                         ctrl |= priv->hw->link.speed1000;
906                         break;
907                 case SPEED_100:
908                         ctrl |= priv->hw->link.speed100;
909                         break;
910                 case SPEED_10:
911                         ctrl |= priv->hw->link.speed10;
912                         break;
913                 default:
914                         return;
915                 }
916         }
917
918         priv->speed = state->speed;
919
920         if (priv->plat->fix_mac_speed)
921                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, state->speed);
922
923         if (!state->duplex)
924                 ctrl &= ~priv->hw->link.duplex;
925         else
926                 ctrl |= priv->hw->link.duplex;
927
928         /* Flow Control operation */
929         if (state->pause)
930                 stmmac_mac_flow_ctrl(priv, state->duplex);
931
932         writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
933 }
934
935 static void stmmac_mac_an_restart(struct phylink_config *config)
936 {
937         /* Not Supported */
938 }
939
940 static void stmmac_mac_link_down(struct phylink_config *config,
941                                  unsigned int mode, phy_interface_t interface)
942 {
943         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
944
945         stmmac_mac_set(priv, priv->ioaddr, false);
946         priv->eee_active = false;
947         stmmac_eee_init(priv);
948         stmmac_set_eee_pls(priv, priv->hw, false);
949 }
950
951 static void stmmac_mac_link_up(struct phylink_config *config,
952                                unsigned int mode, phy_interface_t interface,
953                                struct phy_device *phy)
954 {
955         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
956
957         stmmac_mac_set(priv, priv->ioaddr, true);
958         if (phy && priv->dma_cap.eee) {
959                 priv->eee_active = phy_init_eee(phy, 1) >= 0;
960                 priv->eee_enabled = stmmac_eee_init(priv);
961                 stmmac_set_eee_pls(priv, priv->hw, true);
962         }
963 }
964
965 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
966         .validate = stmmac_validate,
967         .mac_link_state = stmmac_mac_link_state,
968         .mac_config = stmmac_mac_config,
969         .mac_an_restart = stmmac_mac_an_restart,
970         .mac_link_down = stmmac_mac_link_down,
971         .mac_link_up = stmmac_mac_link_up,
972 };
973
974 /**
975  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
976  * @priv: driver private structure
977  * Description: this is to verify if the HW supports the PCS.
978  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
979  * configured for the TBI, RTBI, or SGMII PHY interface.
980  */
981 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
982 {
983         int interface = priv->plat->interface;
984
985         if (priv->dma_cap.pcs) {
986                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
987                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
988                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
989                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
990                         netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
991                         priv->hw->pcs = STMMAC_PCS_RGMII;
992                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
993                         netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
994                         priv->hw->pcs = STMMAC_PCS_SGMII;
995                 }
996         }
997 }
998
999 /**
1000  * stmmac_init_phy - PHY initialization
1001  * @dev: net device structure
1002  * Description: it initializes the driver's PHY state, and attaches the PHY
1003  * to the mac driver.
1004  *  Return value:
1005  *  0 on success
1006  */
1007 static int stmmac_init_phy(struct net_device *dev)
1008 {
1009         struct stmmac_priv *priv = netdev_priv(dev);
1010         struct device_node *node;
1011         int ret;
1012
1013         node = priv->plat->phylink_node;
1014
1015         if (node)
1016                 ret = phylink_of_phy_connect(priv->phylink, node, 0);
1017
1018         /* Some DT bindings do not set-up the PHY handle. Let's try to
1019          * manually parse it
1020          */
1021         if (!node || ret) {
1022                 int addr = priv->plat->phy_addr;
1023                 struct phy_device *phydev;
1024
1025                 phydev = mdiobus_get_phy(priv->mii, addr);
1026                 if (!phydev) {
1027                         netdev_err(priv->dev, "no phy at addr %d\n", addr);
1028                         return -ENODEV;
1029                 }
1030
1031                 ret = phylink_connect_phy(priv->phylink, phydev);
1032         }
1033
1034         return ret;
1035 }
1036
1037 static int stmmac_phy_setup(struct stmmac_priv *priv)
1038 {
1039         struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1040         int mode = priv->plat->phy_interface;
1041         struct phylink *phylink;
1042
1043         priv->phylink_config.dev = &priv->dev->dev;
1044         priv->phylink_config.type = PHYLINK_NETDEV;
1045
1046         phylink = phylink_create(&priv->phylink_config, fwnode,
1047                                  mode, &stmmac_phylink_mac_ops);
1048         if (IS_ERR(phylink))
1049                 return PTR_ERR(phylink);
1050
1051         priv->phylink = phylink;
1052         return 0;
1053 }
1054
1055 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1056 {
1057         u32 rx_cnt = priv->plat->rx_queues_to_use;
1058         void *head_rx;
1059         u32 queue;
1060
1061         /* Display RX rings */
1062         for (queue = 0; queue < rx_cnt; queue++) {
1063                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1064
1065                 pr_info("\tRX Queue %u rings\n", queue);
1066
1067                 if (priv->extend_desc)
1068                         head_rx = (void *)rx_q->dma_erx;
1069                 else
1070                         head_rx = (void *)rx_q->dma_rx;
1071
1072                 /* Display RX ring */
1073                 stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1074         }
1075 }
1076
1077 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1078 {
1079         u32 tx_cnt = priv->plat->tx_queues_to_use;
1080         void *head_tx;
1081         u32 queue;
1082
1083         /* Display TX rings */
1084         for (queue = 0; queue < tx_cnt; queue++) {
1085                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1086
1087                 pr_info("\tTX Queue %d rings\n", queue);
1088
1089                 if (priv->extend_desc)
1090                         head_tx = (void *)tx_q->dma_etx;
1091                 else
1092                         head_tx = (void *)tx_q->dma_tx;
1093
1094                 stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1095         }
1096 }
1097
1098 static void stmmac_display_rings(struct stmmac_priv *priv)
1099 {
1100         /* Display RX ring */
1101         stmmac_display_rx_rings(priv);
1102
1103         /* Display TX ring */
1104         stmmac_display_tx_rings(priv);
1105 }
1106
1107 static int stmmac_set_bfsize(int mtu, int bufsize)
1108 {
1109         int ret = bufsize;
1110
1111         if (mtu >= BUF_SIZE_4KiB)
1112                 ret = BUF_SIZE_8KiB;
1113         else if (mtu >= BUF_SIZE_2KiB)
1114                 ret = BUF_SIZE_4KiB;
1115         else if (mtu > DEFAULT_BUFSIZE)
1116                 ret = BUF_SIZE_2KiB;
1117         else
1118                 ret = DEFAULT_BUFSIZE;
1119
1120         return ret;
1121 }
1122
1123 /**
1124  * stmmac_clear_rx_descriptors - clear RX descriptors
1125  * @priv: driver private structure
1126  * @queue: RX queue index
1127  * Description: this function is called to clear the RX descriptors
1128  * in case of both basic and extended descriptors are used.
1129  */
1130 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1131 {
1132         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1133         int i;
1134
1135         /* Clear the RX descriptors */
1136         for (i = 0; i < DMA_RX_SIZE; i++)
1137                 if (priv->extend_desc)
1138                         stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1139                                         priv->use_riwt, priv->mode,
1140                                         (i == DMA_RX_SIZE - 1),
1141                                         priv->dma_buf_sz);
1142                 else
1143                         stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1144                                         priv->use_riwt, priv->mode,
1145                                         (i == DMA_RX_SIZE - 1),
1146                                         priv->dma_buf_sz);
1147 }
1148
1149 /**
1150  * stmmac_clear_tx_descriptors - clear tx descriptors
1151  * @priv: driver private structure
1152  * @queue: TX queue index.
1153  * Description: this function is called to clear the TX descriptors
1154  * in case of both basic and extended descriptors are used.
1155  */
1156 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1157 {
1158         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1159         int i;
1160
1161         /* Clear the TX descriptors */
1162         for (i = 0; i < DMA_TX_SIZE; i++)
1163                 if (priv->extend_desc)
1164                         stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1165                                         priv->mode, (i == DMA_TX_SIZE - 1));
1166                 else
1167                         stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1168                                         priv->mode, (i == DMA_TX_SIZE - 1));
1169 }
1170
1171 /**
1172  * stmmac_clear_descriptors - clear descriptors
1173  * @priv: driver private structure
1174  * Description: this function is called to clear the TX and RX descriptors
1175  * in case of both basic and extended descriptors are used.
1176  */
1177 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1178 {
1179         u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1180         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1181         u32 queue;
1182
1183         /* Clear the RX descriptors */
1184         for (queue = 0; queue < rx_queue_cnt; queue++)
1185                 stmmac_clear_rx_descriptors(priv, queue);
1186
1187         /* Clear the TX descriptors */
1188         for (queue = 0; queue < tx_queue_cnt; queue++)
1189                 stmmac_clear_tx_descriptors(priv, queue);
1190 }
1191
1192 /**
1193  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1194  * @priv: driver private structure
1195  * @p: descriptor pointer
1196  * @i: descriptor index
1197  * @flags: gfp flag
1198  * @queue: RX queue index
1199  * Description: this function is called to allocate a receive buffer, perform
1200  * the DMA mapping and init the descriptor.
1201  */
1202 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1203                                   int i, gfp_t flags, u32 queue)
1204 {
1205         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1206         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1207
1208         buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1209         if (!buf->page)
1210                 return -ENOMEM;
1211
1212         if (priv->sph) {
1213                 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1214                 if (!buf->sec_page)
1215                         return -ENOMEM;
1216
1217                 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1218                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
1219         } else {
1220                 buf->sec_page = NULL;
1221         }
1222
1223         buf->addr = page_pool_get_dma_addr(buf->page);
1224         stmmac_set_desc_addr(priv, p, buf->addr);
1225         if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1226                 stmmac_init_desc3(priv, p);
1227
1228         return 0;
1229 }
1230
1231 /**
1232  * stmmac_free_rx_buffer - free RX dma buffers
1233  * @priv: private structure
1234  * @queue: RX queue index
1235  * @i: buffer index.
1236  */
1237 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1238 {
1239         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1240         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1241
1242         if (buf->page)
1243                 page_pool_put_page(rx_q->page_pool, buf->page, false);
1244         buf->page = NULL;
1245
1246         if (buf->sec_page)
1247                 page_pool_put_page(rx_q->page_pool, buf->sec_page, false);
1248         buf->sec_page = NULL;
1249 }
1250
1251 /**
1252  * stmmac_free_tx_buffer - free RX dma buffers
1253  * @priv: private structure
1254  * @queue: RX queue index
1255  * @i: buffer index.
1256  */
1257 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1258 {
1259         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1260
1261         if (tx_q->tx_skbuff_dma[i].buf) {
1262                 if (tx_q->tx_skbuff_dma[i].map_as_page)
1263                         dma_unmap_page(priv->device,
1264                                        tx_q->tx_skbuff_dma[i].buf,
1265                                        tx_q->tx_skbuff_dma[i].len,
1266                                        DMA_TO_DEVICE);
1267                 else
1268                         dma_unmap_single(priv->device,
1269                                          tx_q->tx_skbuff_dma[i].buf,
1270                                          tx_q->tx_skbuff_dma[i].len,
1271                                          DMA_TO_DEVICE);
1272         }
1273
1274         if (tx_q->tx_skbuff[i]) {
1275                 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1276                 tx_q->tx_skbuff[i] = NULL;
1277                 tx_q->tx_skbuff_dma[i].buf = 0;
1278                 tx_q->tx_skbuff_dma[i].map_as_page = false;
1279         }
1280 }
1281
1282 /**
1283  * init_dma_rx_desc_rings - init the RX descriptor rings
1284  * @dev: net device structure
1285  * @flags: gfp flag.
1286  * Description: this function initializes the DMA RX descriptors
1287  * and allocates the socket buffers. It supports the chained and ring
1288  * modes.
1289  */
1290 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1291 {
1292         struct stmmac_priv *priv = netdev_priv(dev);
1293         u32 rx_count = priv->plat->rx_queues_to_use;
1294         int ret = -ENOMEM;
1295         int bfsize = 0;
1296         int queue;
1297         int i;
1298
1299         bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
1300         if (bfsize < 0)
1301                 bfsize = 0;
1302
1303         if (bfsize < BUF_SIZE_16KiB)
1304                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1305
1306         priv->dma_buf_sz = bfsize;
1307
1308         /* RX INITIALIZATION */
1309         netif_dbg(priv, probe, priv->dev,
1310                   "SKB addresses:\nskb\t\tskb data\tdma data\n");
1311
1312         for (queue = 0; queue < rx_count; queue++) {
1313                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1314
1315                 netif_dbg(priv, probe, priv->dev,
1316                           "(%s) dma_rx_phy=0x%08x\n", __func__,
1317                           (u32)rx_q->dma_rx_phy);
1318
1319                 stmmac_clear_rx_descriptors(priv, queue);
1320
1321                 for (i = 0; i < DMA_RX_SIZE; i++) {
1322                         struct dma_desc *p;
1323
1324                         if (priv->extend_desc)
1325                                 p = &((rx_q->dma_erx + i)->basic);
1326                         else
1327                                 p = rx_q->dma_rx + i;
1328
1329                         ret = stmmac_init_rx_buffers(priv, p, i, flags,
1330                                                      queue);
1331                         if (ret)
1332                                 goto err_init_rx_buffers;
1333                 }
1334
1335                 rx_q->cur_rx = 0;
1336                 rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1337
1338                 /* Setup the chained descriptor addresses */
1339                 if (priv->mode == STMMAC_CHAIN_MODE) {
1340                         if (priv->extend_desc)
1341                                 stmmac_mode_init(priv, rx_q->dma_erx,
1342                                                 rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1343                         else
1344                                 stmmac_mode_init(priv, rx_q->dma_rx,
1345                                                 rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1346                 }
1347         }
1348
1349         buf_sz = bfsize;
1350
1351         return 0;
1352
1353 err_init_rx_buffers:
1354         while (queue >= 0) {
1355                 while (--i >= 0)
1356                         stmmac_free_rx_buffer(priv, queue, i);
1357
1358                 if (queue == 0)
1359                         break;
1360
1361                 i = DMA_RX_SIZE;
1362                 queue--;
1363         }
1364
1365         return ret;
1366 }
1367
1368 /**
1369  * init_dma_tx_desc_rings - init the TX descriptor rings
1370  * @dev: net device structure.
1371  * Description: this function initializes the DMA TX descriptors
1372  * and allocates the socket buffers. It supports the chained and ring
1373  * modes.
1374  */
1375 static int init_dma_tx_desc_rings(struct net_device *dev)
1376 {
1377         struct stmmac_priv *priv = netdev_priv(dev);
1378         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1379         u32 queue;
1380         int i;
1381
1382         for (queue = 0; queue < tx_queue_cnt; queue++) {
1383                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1384
1385                 netif_dbg(priv, probe, priv->dev,
1386                           "(%s) dma_tx_phy=0x%08x\n", __func__,
1387                          (u32)tx_q->dma_tx_phy);
1388
1389                 /* Setup the chained descriptor addresses */
1390                 if (priv->mode == STMMAC_CHAIN_MODE) {
1391                         if (priv->extend_desc)
1392                                 stmmac_mode_init(priv, tx_q->dma_etx,
1393                                                 tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1394                         else
1395                                 stmmac_mode_init(priv, tx_q->dma_tx,
1396                                                 tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1397                 }
1398
1399                 for (i = 0; i < DMA_TX_SIZE; i++) {
1400                         struct dma_desc *p;
1401                         if (priv->extend_desc)
1402                                 p = &((tx_q->dma_etx + i)->basic);
1403                         else
1404                                 p = tx_q->dma_tx + i;
1405
1406                         stmmac_clear_desc(priv, p);
1407
1408                         tx_q->tx_skbuff_dma[i].buf = 0;
1409                         tx_q->tx_skbuff_dma[i].map_as_page = false;
1410                         tx_q->tx_skbuff_dma[i].len = 0;
1411                         tx_q->tx_skbuff_dma[i].last_segment = false;
1412                         tx_q->tx_skbuff[i] = NULL;
1413                 }
1414
1415                 tx_q->dirty_tx = 0;
1416                 tx_q->cur_tx = 0;
1417                 tx_q->mss = 0;
1418
1419                 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1420         }
1421
1422         return 0;
1423 }
1424
1425 /**
1426  * init_dma_desc_rings - init the RX/TX descriptor rings
1427  * @dev: net device structure
1428  * @flags: gfp flag.
1429  * Description: this function initializes the DMA RX/TX descriptors
1430  * and allocates the socket buffers. It supports the chained and ring
1431  * modes.
1432  */
1433 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1434 {
1435         struct stmmac_priv *priv = netdev_priv(dev);
1436         int ret;
1437
1438         ret = init_dma_rx_desc_rings(dev, flags);
1439         if (ret)
1440                 return ret;
1441
1442         ret = init_dma_tx_desc_rings(dev);
1443
1444         stmmac_clear_descriptors(priv);
1445
1446         if (netif_msg_hw(priv))
1447                 stmmac_display_rings(priv);
1448
1449         return ret;
1450 }
1451
1452 /**
1453  * dma_free_rx_skbufs - free RX dma buffers
1454  * @priv: private structure
1455  * @queue: RX queue index
1456  */
1457 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1458 {
1459         int i;
1460
1461         for (i = 0; i < DMA_RX_SIZE; i++)
1462                 stmmac_free_rx_buffer(priv, queue, i);
1463 }
1464
1465 /**
1466  * dma_free_tx_skbufs - free TX dma buffers
1467  * @priv: private structure
1468  * @queue: TX queue index
1469  */
1470 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1471 {
1472         int i;
1473
1474         for (i = 0; i < DMA_TX_SIZE; i++)
1475                 stmmac_free_tx_buffer(priv, queue, i);
1476 }
1477
1478 /**
1479  * free_dma_rx_desc_resources - free RX dma desc resources
1480  * @priv: private structure
1481  */
1482 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1483 {
1484         u32 rx_count = priv->plat->rx_queues_to_use;
1485         u32 queue;
1486
1487         /* Free RX queue resources */
1488         for (queue = 0; queue < rx_count; queue++) {
1489                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1490
1491                 /* Release the DMA RX socket buffers */
1492                 dma_free_rx_skbufs(priv, queue);
1493
1494                 /* Free DMA regions of consistent memory previously allocated */
1495                 if (!priv->extend_desc)
1496                         dma_free_coherent(priv->device,
1497                                           DMA_RX_SIZE * sizeof(struct dma_desc),
1498                                           rx_q->dma_rx, rx_q->dma_rx_phy);
1499                 else
1500                         dma_free_coherent(priv->device, DMA_RX_SIZE *
1501                                           sizeof(struct dma_extended_desc),
1502                                           rx_q->dma_erx, rx_q->dma_rx_phy);
1503
1504                 kfree(rx_q->buf_pool);
1505                 if (rx_q->page_pool) {
1506                         page_pool_request_shutdown(rx_q->page_pool);
1507                         page_pool_destroy(rx_q->page_pool);
1508                 }
1509         }
1510 }
1511
1512 /**
1513  * free_dma_tx_desc_resources - free TX dma desc resources
1514  * @priv: private structure
1515  */
1516 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1517 {
1518         u32 tx_count = priv->plat->tx_queues_to_use;
1519         u32 queue;
1520
1521         /* Free TX queue resources */
1522         for (queue = 0; queue < tx_count; queue++) {
1523                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1524
1525                 /* Release the DMA TX socket buffers */
1526                 dma_free_tx_skbufs(priv, queue);
1527
1528                 /* Free DMA regions of consistent memory previously allocated */
1529                 if (!priv->extend_desc)
1530                         dma_free_coherent(priv->device,
1531                                           DMA_TX_SIZE * sizeof(struct dma_desc),
1532                                           tx_q->dma_tx, tx_q->dma_tx_phy);
1533                 else
1534                         dma_free_coherent(priv->device, DMA_TX_SIZE *
1535                                           sizeof(struct dma_extended_desc),
1536                                           tx_q->dma_etx, tx_q->dma_tx_phy);
1537
1538                 kfree(tx_q->tx_skbuff_dma);
1539                 kfree(tx_q->tx_skbuff);
1540         }
1541 }
1542
1543 /**
1544  * alloc_dma_rx_desc_resources - alloc RX resources.
1545  * @priv: private structure
1546  * Description: according to which descriptor can be used (extend or basic)
1547  * this function allocates the resources for TX and RX paths. In case of
1548  * reception, for example, it pre-allocated the RX socket buffer in order to
1549  * allow zero-copy mechanism.
1550  */
1551 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1552 {
1553         u32 rx_count = priv->plat->rx_queues_to_use;
1554         int ret = -ENOMEM;
1555         u32 queue;
1556
1557         /* RX queues buffers and DMA */
1558         for (queue = 0; queue < rx_count; queue++) {
1559                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1560                 struct page_pool_params pp_params = { 0 };
1561                 unsigned int num_pages;
1562
1563                 rx_q->queue_index = queue;
1564                 rx_q->priv_data = priv;
1565
1566                 pp_params.flags = PP_FLAG_DMA_MAP;
1567                 pp_params.pool_size = DMA_RX_SIZE;
1568                 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1569                 pp_params.order = ilog2(num_pages);
1570                 pp_params.nid = dev_to_node(priv->device);
1571                 pp_params.dev = priv->device;
1572                 pp_params.dma_dir = DMA_FROM_DEVICE;
1573
1574                 rx_q->page_pool = page_pool_create(&pp_params);
1575                 if (IS_ERR(rx_q->page_pool)) {
1576                         ret = PTR_ERR(rx_q->page_pool);
1577                         rx_q->page_pool = NULL;
1578                         goto err_dma;
1579                 }
1580
1581                 rx_q->buf_pool = kcalloc(DMA_RX_SIZE, sizeof(*rx_q->buf_pool),
1582                                          GFP_KERNEL);
1583                 if (!rx_q->buf_pool)
1584                         goto err_dma;
1585
1586                 if (priv->extend_desc) {
1587                         rx_q->dma_erx = dma_alloc_coherent(priv->device,
1588                                                            DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1589                                                            &rx_q->dma_rx_phy,
1590                                                            GFP_KERNEL);
1591                         if (!rx_q->dma_erx)
1592                                 goto err_dma;
1593
1594                 } else {
1595                         rx_q->dma_rx = dma_alloc_coherent(priv->device,
1596                                                           DMA_RX_SIZE * sizeof(struct dma_desc),
1597                                                           &rx_q->dma_rx_phy,
1598                                                           GFP_KERNEL);
1599                         if (!rx_q->dma_rx)
1600                                 goto err_dma;
1601                 }
1602         }
1603
1604         return 0;
1605
1606 err_dma:
1607         free_dma_rx_desc_resources(priv);
1608
1609         return ret;
1610 }
1611
1612 /**
1613  * alloc_dma_tx_desc_resources - alloc TX resources.
1614  * @priv: private structure
1615  * Description: according to which descriptor can be used (extend or basic)
1616  * this function allocates the resources for TX and RX paths. In case of
1617  * reception, for example, it pre-allocated the RX socket buffer in order to
1618  * allow zero-copy mechanism.
1619  */
1620 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1621 {
1622         u32 tx_count = priv->plat->tx_queues_to_use;
1623         int ret = -ENOMEM;
1624         u32 queue;
1625
1626         /* TX queues buffers and DMA */
1627         for (queue = 0; queue < tx_count; queue++) {
1628                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1629
1630                 tx_q->queue_index = queue;
1631                 tx_q->priv_data = priv;
1632
1633                 tx_q->tx_skbuff_dma = kcalloc(DMA_TX_SIZE,
1634                                               sizeof(*tx_q->tx_skbuff_dma),
1635                                               GFP_KERNEL);
1636                 if (!tx_q->tx_skbuff_dma)
1637                         goto err_dma;
1638
1639                 tx_q->tx_skbuff = kcalloc(DMA_TX_SIZE,
1640                                           sizeof(struct sk_buff *),
1641                                           GFP_KERNEL);
1642                 if (!tx_q->tx_skbuff)
1643                         goto err_dma;
1644
1645                 if (priv->extend_desc) {
1646                         tx_q->dma_etx = dma_alloc_coherent(priv->device,
1647                                                            DMA_TX_SIZE * sizeof(struct dma_extended_desc),
1648                                                            &tx_q->dma_tx_phy,
1649                                                            GFP_KERNEL);
1650                         if (!tx_q->dma_etx)
1651                                 goto err_dma;
1652                 } else {
1653                         tx_q->dma_tx = dma_alloc_coherent(priv->device,
1654                                                           DMA_TX_SIZE * sizeof(struct dma_desc),
1655                                                           &tx_q->dma_tx_phy,
1656                                                           GFP_KERNEL);
1657                         if (!tx_q->dma_tx)
1658                                 goto err_dma;
1659                 }
1660         }
1661
1662         return 0;
1663
1664 err_dma:
1665         free_dma_tx_desc_resources(priv);
1666
1667         return ret;
1668 }
1669
1670 /**
1671  * alloc_dma_desc_resources - alloc TX/RX resources.
1672  * @priv: private structure
1673  * Description: according to which descriptor can be used (extend or basic)
1674  * this function allocates the resources for TX and RX paths. In case of
1675  * reception, for example, it pre-allocated the RX socket buffer in order to
1676  * allow zero-copy mechanism.
1677  */
1678 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1679 {
1680         /* RX Allocation */
1681         int ret = alloc_dma_rx_desc_resources(priv);
1682
1683         if (ret)
1684                 return ret;
1685
1686         ret = alloc_dma_tx_desc_resources(priv);
1687
1688         return ret;
1689 }
1690
1691 /**
1692  * free_dma_desc_resources - free dma desc resources
1693  * @priv: private structure
1694  */
1695 static void free_dma_desc_resources(struct stmmac_priv *priv)
1696 {
1697         /* Release the DMA RX socket buffers */
1698         free_dma_rx_desc_resources(priv);
1699
1700         /* Release the DMA TX socket buffers */
1701         free_dma_tx_desc_resources(priv);
1702 }
1703
1704 /**
1705  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1706  *  @priv: driver private structure
1707  *  Description: It is used for enabling the rx queues in the MAC
1708  */
1709 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1710 {
1711         u32 rx_queues_count = priv->plat->rx_queues_to_use;
1712         int queue;
1713         u8 mode;
1714
1715         for (queue = 0; queue < rx_queues_count; queue++) {
1716                 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1717                 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1718         }
1719 }
1720
1721 /**
1722  * stmmac_start_rx_dma - start RX DMA channel
1723  * @priv: driver private structure
1724  * @chan: RX channel index
1725  * Description:
1726  * This starts a RX DMA channel
1727  */
1728 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1729 {
1730         netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1731         stmmac_start_rx(priv, priv->ioaddr, chan);
1732 }
1733
1734 /**
1735  * stmmac_start_tx_dma - start TX DMA channel
1736  * @priv: driver private structure
1737  * @chan: TX channel index
1738  * Description:
1739  * This starts a TX DMA channel
1740  */
1741 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1742 {
1743         netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1744         stmmac_start_tx(priv, priv->ioaddr, chan);
1745 }
1746
1747 /**
1748  * stmmac_stop_rx_dma - stop RX DMA channel
1749  * @priv: driver private structure
1750  * @chan: RX channel index
1751  * Description:
1752  * This stops a RX DMA channel
1753  */
1754 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1755 {
1756         netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1757         stmmac_stop_rx(priv, priv->ioaddr, chan);
1758 }
1759
1760 /**
1761  * stmmac_stop_tx_dma - stop TX DMA channel
1762  * @priv: driver private structure
1763  * @chan: TX channel index
1764  * Description:
1765  * This stops a TX DMA channel
1766  */
1767 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1768 {
1769         netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1770         stmmac_stop_tx(priv, priv->ioaddr, chan);
1771 }
1772
1773 /**
1774  * stmmac_start_all_dma - start all RX and TX DMA channels
1775  * @priv: driver private structure
1776  * Description:
1777  * This starts all the RX and TX DMA channels
1778  */
1779 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1780 {
1781         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1782         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1783         u32 chan = 0;
1784
1785         for (chan = 0; chan < rx_channels_count; chan++)
1786                 stmmac_start_rx_dma(priv, chan);
1787
1788         for (chan = 0; chan < tx_channels_count; chan++)
1789                 stmmac_start_tx_dma(priv, chan);
1790 }
1791
1792 /**
1793  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1794  * @priv: driver private structure
1795  * Description:
1796  * This stops the RX and TX DMA channels
1797  */
1798 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1799 {
1800         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1801         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1802         u32 chan = 0;
1803
1804         for (chan = 0; chan < rx_channels_count; chan++)
1805                 stmmac_stop_rx_dma(priv, chan);
1806
1807         for (chan = 0; chan < tx_channels_count; chan++)
1808                 stmmac_stop_tx_dma(priv, chan);
1809 }
1810
1811 /**
1812  *  stmmac_dma_operation_mode - HW DMA operation mode
1813  *  @priv: driver private structure
1814  *  Description: it is used for configuring the DMA operation mode register in
1815  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1816  */
1817 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1818 {
1819         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1820         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1821         int rxfifosz = priv->plat->rx_fifo_size;
1822         int txfifosz = priv->plat->tx_fifo_size;
1823         u32 txmode = 0;
1824         u32 rxmode = 0;
1825         u32 chan = 0;
1826         u8 qmode = 0;
1827
1828         if (rxfifosz == 0)
1829                 rxfifosz = priv->dma_cap.rx_fifo_size;
1830         if (txfifosz == 0)
1831                 txfifosz = priv->dma_cap.tx_fifo_size;
1832
1833         /* Adjust for real per queue fifo size */
1834         rxfifosz /= rx_channels_count;
1835         txfifosz /= tx_channels_count;
1836
1837         if (priv->plat->force_thresh_dma_mode) {
1838                 txmode = tc;
1839                 rxmode = tc;
1840         } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1841                 /*
1842                  * In case of GMAC, SF mode can be enabled
1843                  * to perform the TX COE in HW. This depends on:
1844                  * 1) TX COE if actually supported
1845                  * 2) There is no bugged Jumbo frame support
1846                  *    that needs to not insert csum in the TDES.
1847                  */
1848                 txmode = SF_DMA_MODE;
1849                 rxmode = SF_DMA_MODE;
1850                 priv->xstats.threshold = SF_DMA_MODE;
1851         } else {
1852                 txmode = tc;
1853                 rxmode = SF_DMA_MODE;
1854         }
1855
1856         /* configure all channels */
1857         for (chan = 0; chan < rx_channels_count; chan++) {
1858                 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1859
1860                 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1861                                 rxfifosz, qmode);
1862                 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1863                                 chan);
1864         }
1865
1866         for (chan = 0; chan < tx_channels_count; chan++) {
1867                 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1868
1869                 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1870                                 txfifosz, qmode);
1871         }
1872 }
1873
1874 /**
1875  * stmmac_tx_clean - to manage the transmission completion
1876  * @priv: driver private structure
1877  * @queue: TX queue index
1878  * Description: it reclaims the transmit resources after transmission completes.
1879  */
1880 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1881 {
1882         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1883         unsigned int bytes_compl = 0, pkts_compl = 0;
1884         unsigned int entry, count = 0;
1885
1886         __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1887
1888         priv->xstats.tx_clean++;
1889
1890         entry = tx_q->dirty_tx;
1891         while ((entry != tx_q->cur_tx) && (count < budget)) {
1892                 struct sk_buff *skb = tx_q->tx_skbuff[entry];
1893                 struct dma_desc *p;
1894                 int status;
1895
1896                 if (priv->extend_desc)
1897                         p = (struct dma_desc *)(tx_q->dma_etx + entry);
1898                 else
1899                         p = tx_q->dma_tx + entry;
1900
1901                 status = stmmac_tx_status(priv, &priv->dev->stats,
1902                                 &priv->xstats, p, priv->ioaddr);
1903                 /* Check if the descriptor is owned by the DMA */
1904                 if (unlikely(status & tx_dma_own))
1905                         break;
1906
1907                 count++;
1908
1909                 /* Make sure descriptor fields are read after reading
1910                  * the own bit.
1911                  */
1912                 dma_rmb();
1913
1914                 /* Just consider the last segment and ...*/
1915                 if (likely(!(status & tx_not_ls))) {
1916                         /* ... verify the status error condition */
1917                         if (unlikely(status & tx_err)) {
1918                                 priv->dev->stats.tx_errors++;
1919                         } else {
1920                                 priv->dev->stats.tx_packets++;
1921                                 priv->xstats.tx_pkt_n++;
1922                         }
1923                         stmmac_get_tx_hwtstamp(priv, p, skb);
1924                 }
1925
1926                 if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1927                         if (tx_q->tx_skbuff_dma[entry].map_as_page)
1928                                 dma_unmap_page(priv->device,
1929                                                tx_q->tx_skbuff_dma[entry].buf,
1930                                                tx_q->tx_skbuff_dma[entry].len,
1931                                                DMA_TO_DEVICE);
1932                         else
1933                                 dma_unmap_single(priv->device,
1934                                                  tx_q->tx_skbuff_dma[entry].buf,
1935                                                  tx_q->tx_skbuff_dma[entry].len,
1936                                                  DMA_TO_DEVICE);
1937                         tx_q->tx_skbuff_dma[entry].buf = 0;
1938                         tx_q->tx_skbuff_dma[entry].len = 0;
1939                         tx_q->tx_skbuff_dma[entry].map_as_page = false;
1940                 }
1941
1942                 stmmac_clean_desc3(priv, tx_q, p);
1943
1944                 tx_q->tx_skbuff_dma[entry].last_segment = false;
1945                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1946
1947                 if (likely(skb != NULL)) {
1948                         pkts_compl++;
1949                         bytes_compl += skb->len;
1950                         dev_consume_skb_any(skb);
1951                         tx_q->tx_skbuff[entry] = NULL;
1952                 }
1953
1954                 stmmac_release_tx_desc(priv, p, priv->mode);
1955
1956                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1957         }
1958         tx_q->dirty_tx = entry;
1959
1960         netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1961                                   pkts_compl, bytes_compl);
1962
1963         if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1964                                                                 queue))) &&
1965             stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1966
1967                 netif_dbg(priv, tx_done, priv->dev,
1968                           "%s: restart transmit\n", __func__);
1969                 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1970         }
1971
1972         if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1973                 stmmac_enable_eee_mode(priv);
1974                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1975         }
1976
1977         /* We still have pending packets, let's call for a new scheduling */
1978         if (tx_q->dirty_tx != tx_q->cur_tx)
1979                 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
1980
1981         __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1982
1983         return count;
1984 }
1985
1986 /**
1987  * stmmac_tx_err - to manage the tx error
1988  * @priv: driver private structure
1989  * @chan: channel index
1990  * Description: it cleans the descriptors and restarts the transmission
1991  * in case of transmission errors.
1992  */
1993 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1994 {
1995         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1996         int i;
1997
1998         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1999
2000         stmmac_stop_tx_dma(priv, chan);
2001         dma_free_tx_skbufs(priv, chan);
2002         for (i = 0; i < DMA_TX_SIZE; i++)
2003                 if (priv->extend_desc)
2004                         stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
2005                                         priv->mode, (i == DMA_TX_SIZE - 1));
2006                 else
2007                         stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
2008                                         priv->mode, (i == DMA_TX_SIZE - 1));
2009         tx_q->dirty_tx = 0;
2010         tx_q->cur_tx = 0;
2011         tx_q->mss = 0;
2012         netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2013         stmmac_start_tx_dma(priv, chan);
2014
2015         priv->dev->stats.tx_errors++;
2016         netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2017 }
2018
2019 /**
2020  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2021  *  @priv: driver private structure
2022  *  @txmode: TX operating mode
2023  *  @rxmode: RX operating mode
2024  *  @chan: channel index
2025  *  Description: it is used for configuring of the DMA operation mode in
2026  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2027  *  mode.
2028  */
2029 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2030                                           u32 rxmode, u32 chan)
2031 {
2032         u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2033         u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2034         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2035         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2036         int rxfifosz = priv->plat->rx_fifo_size;
2037         int txfifosz = priv->plat->tx_fifo_size;
2038
2039         if (rxfifosz == 0)
2040                 rxfifosz = priv->dma_cap.rx_fifo_size;
2041         if (txfifosz == 0)
2042                 txfifosz = priv->dma_cap.tx_fifo_size;
2043
2044         /* Adjust for real per queue fifo size */
2045         rxfifosz /= rx_channels_count;
2046         txfifosz /= tx_channels_count;
2047
2048         stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2049         stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2050 }
2051
2052 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2053 {
2054         int ret;
2055
2056         ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2057                         priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2058         if (ret && (ret != -EINVAL)) {
2059                 stmmac_global_err(priv);
2060                 return true;
2061         }
2062
2063         return false;
2064 }
2065
2066 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2067 {
2068         int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2069                                                  &priv->xstats, chan);
2070         struct stmmac_channel *ch = &priv->channel[chan];
2071
2072         if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2073                 if (napi_schedule_prep(&ch->rx_napi)) {
2074                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2075                         __napi_schedule_irqoff(&ch->rx_napi);
2076                         status |= handle_tx;
2077                 }
2078         }
2079
2080         if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use))
2081                 napi_schedule_irqoff(&ch->tx_napi);
2082
2083         return status;
2084 }
2085
2086 /**
2087  * stmmac_dma_interrupt - DMA ISR
2088  * @priv: driver private structure
2089  * Description: this is the DMA ISR. It is called by the main ISR.
2090  * It calls the dwmac dma routine and schedule poll method in case of some
2091  * work can be done.
2092  */
2093 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2094 {
2095         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2096         u32 rx_channel_count = priv->plat->rx_queues_to_use;
2097         u32 channels_to_check = tx_channel_count > rx_channel_count ?
2098                                 tx_channel_count : rx_channel_count;
2099         u32 chan;
2100         int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2101
2102         /* Make sure we never check beyond our status buffer. */
2103         if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2104                 channels_to_check = ARRAY_SIZE(status);
2105
2106         for (chan = 0; chan < channels_to_check; chan++)
2107                 status[chan] = stmmac_napi_check(priv, chan);
2108
2109         for (chan = 0; chan < tx_channel_count; chan++) {
2110                 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2111                         /* Try to bump up the dma threshold on this failure */
2112                         if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2113                             (tc <= 256)) {
2114                                 tc += 64;
2115                                 if (priv->plat->force_thresh_dma_mode)
2116                                         stmmac_set_dma_operation_mode(priv,
2117                                                                       tc,
2118                                                                       tc,
2119                                                                       chan);
2120                                 else
2121                                         stmmac_set_dma_operation_mode(priv,
2122                                                                     tc,
2123                                                                     SF_DMA_MODE,
2124                                                                     chan);
2125                                 priv->xstats.threshold = tc;
2126                         }
2127                 } else if (unlikely(status[chan] == tx_hard_error)) {
2128                         stmmac_tx_err(priv, chan);
2129                 }
2130         }
2131 }
2132
2133 /**
2134  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2135  * @priv: driver private structure
2136  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2137  */
2138 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2139 {
2140         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2141                             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2142
2143         stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2144
2145         if (priv->dma_cap.rmon) {
2146                 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2147                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2148         } else
2149                 netdev_info(priv->dev, "No MAC Management Counters available\n");
2150 }
2151
2152 /**
2153  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2154  * @priv: driver private structure
2155  * Description:
2156  *  new GMAC chip generations have a new register to indicate the
2157  *  presence of the optional feature/functions.
2158  *  This can be also used to override the value passed through the
2159  *  platform and necessary for old MAC10/100 and GMAC chips.
2160  */
2161 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2162 {
2163         return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2164 }
2165
2166 /**
2167  * stmmac_check_ether_addr - check if the MAC addr is valid
2168  * @priv: driver private structure
2169  * Description:
2170  * it is to verify if the MAC address is valid, in case of failures it
2171  * generates a random MAC address
2172  */
2173 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2174 {
2175         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2176                 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2177                 if (!is_valid_ether_addr(priv->dev->dev_addr))
2178                         eth_hw_addr_random(priv->dev);
2179                 dev_info(priv->device, "device MAC address %pM\n",
2180                          priv->dev->dev_addr);
2181         }
2182 }
2183
2184 /**
2185  * stmmac_init_dma_engine - DMA init.
2186  * @priv: driver private structure
2187  * Description:
2188  * It inits the DMA invoking the specific MAC/GMAC callback.
2189  * Some DMA parameters can be passed from the platform;
2190  * in case of these are not passed a default is kept for the MAC or GMAC.
2191  */
2192 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2193 {
2194         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2195         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2196         u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2197         struct stmmac_rx_queue *rx_q;
2198         struct stmmac_tx_queue *tx_q;
2199         u32 chan = 0;
2200         int atds = 0;
2201         int ret = 0;
2202
2203         if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2204                 dev_err(priv->device, "Invalid DMA configuration\n");
2205                 return -EINVAL;
2206         }
2207
2208         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2209                 atds = 1;
2210
2211         ret = stmmac_reset(priv, priv->ioaddr);
2212         if (ret) {
2213                 dev_err(priv->device, "Failed to reset the dma\n");
2214                 return ret;
2215         }
2216
2217         /* DMA Configuration */
2218         stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2219
2220         if (priv->plat->axi)
2221                 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2222
2223         /* DMA CSR Channel configuration */
2224         for (chan = 0; chan < dma_csr_ch; chan++)
2225                 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2226
2227         /* DMA RX Channel Configuration */
2228         for (chan = 0; chan < rx_channels_count; chan++) {
2229                 rx_q = &priv->rx_queue[chan];
2230
2231                 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2232                                     rx_q->dma_rx_phy, chan);
2233
2234                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2235                             (DMA_RX_SIZE * sizeof(struct dma_desc));
2236                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2237                                        rx_q->rx_tail_addr, chan);
2238         }
2239
2240         /* DMA TX Channel Configuration */
2241         for (chan = 0; chan < tx_channels_count; chan++) {
2242                 tx_q = &priv->tx_queue[chan];
2243
2244                 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2245                                     tx_q->dma_tx_phy, chan);
2246
2247                 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2248                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2249                                        tx_q->tx_tail_addr, chan);
2250         }
2251
2252         return ret;
2253 }
2254
2255 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2256 {
2257         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2258
2259         mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2260 }
2261
2262 /**
2263  * stmmac_tx_timer - mitigation sw timer for tx.
2264  * @data: data pointer
2265  * Description:
2266  * This is the timer handler to directly invoke the stmmac_tx_clean.
2267  */
2268 static void stmmac_tx_timer(struct timer_list *t)
2269 {
2270         struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2271         struct stmmac_priv *priv = tx_q->priv_data;
2272         struct stmmac_channel *ch;
2273
2274         ch = &priv->channel[tx_q->queue_index];
2275
2276         /*
2277          * If NAPI is already running we can miss some events. Let's rearm
2278          * the timer and try again.
2279          */
2280         if (likely(napi_schedule_prep(&ch->tx_napi)))
2281                 __napi_schedule(&ch->tx_napi);
2282         else
2283                 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
2284 }
2285
2286 /**
2287  * stmmac_init_coalesce - init mitigation options.
2288  * @priv: driver private structure
2289  * Description:
2290  * This inits the coalesce parameters: i.e. timer rate,
2291  * timer handler and default threshold used for enabling the
2292  * interrupt on completion bit.
2293  */
2294 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2295 {
2296         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2297         u32 chan;
2298
2299         priv->tx_coal_frames = STMMAC_TX_FRAMES;
2300         priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2301         priv->rx_coal_frames = STMMAC_RX_FRAMES;
2302
2303         for (chan = 0; chan < tx_channel_count; chan++) {
2304                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2305
2306                 timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2307         }
2308 }
2309
2310 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2311 {
2312         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2313         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2314         u32 chan;
2315
2316         /* set TX ring length */
2317         for (chan = 0; chan < tx_channels_count; chan++)
2318                 stmmac_set_tx_ring_len(priv, priv->ioaddr,
2319                                 (DMA_TX_SIZE - 1), chan);
2320
2321         /* set RX ring length */
2322         for (chan = 0; chan < rx_channels_count; chan++)
2323                 stmmac_set_rx_ring_len(priv, priv->ioaddr,
2324                                 (DMA_RX_SIZE - 1), chan);
2325 }
2326
2327 /**
2328  *  stmmac_set_tx_queue_weight - Set TX queue weight
2329  *  @priv: driver private structure
2330  *  Description: It is used for setting TX queues weight
2331  */
2332 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2333 {
2334         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2335         u32 weight;
2336         u32 queue;
2337
2338         for (queue = 0; queue < tx_queues_count; queue++) {
2339                 weight = priv->plat->tx_queues_cfg[queue].weight;
2340                 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2341         }
2342 }
2343
2344 /**
2345  *  stmmac_configure_cbs - Configure CBS in TX queue
2346  *  @priv: driver private structure
2347  *  Description: It is used for configuring CBS in AVB TX queues
2348  */
2349 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2350 {
2351         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2352         u32 mode_to_use;
2353         u32 queue;
2354
2355         /* queue 0 is reserved for legacy traffic */
2356         for (queue = 1; queue < tx_queues_count; queue++) {
2357                 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2358                 if (mode_to_use == MTL_QUEUE_DCB)
2359                         continue;
2360
2361                 stmmac_config_cbs(priv, priv->hw,
2362                                 priv->plat->tx_queues_cfg[queue].send_slope,
2363                                 priv->plat->tx_queues_cfg[queue].idle_slope,
2364                                 priv->plat->tx_queues_cfg[queue].high_credit,
2365                                 priv->plat->tx_queues_cfg[queue].low_credit,
2366                                 queue);
2367         }
2368 }
2369
2370 /**
2371  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2372  *  @priv: driver private structure
2373  *  Description: It is used for mapping RX queues to RX dma channels
2374  */
2375 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2376 {
2377         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2378         u32 queue;
2379         u32 chan;
2380
2381         for (queue = 0; queue < rx_queues_count; queue++) {
2382                 chan = priv->plat->rx_queues_cfg[queue].chan;
2383                 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2384         }
2385 }
2386
2387 /**
2388  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2389  *  @priv: driver private structure
2390  *  Description: It is used for configuring the RX Queue Priority
2391  */
2392 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2393 {
2394         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2395         u32 queue;
2396         u32 prio;
2397
2398         for (queue = 0; queue < rx_queues_count; queue++) {
2399                 if (!priv->plat->rx_queues_cfg[queue].use_prio)
2400                         continue;
2401
2402                 prio = priv->plat->rx_queues_cfg[queue].prio;
2403                 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2404         }
2405 }
2406
2407 /**
2408  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2409  *  @priv: driver private structure
2410  *  Description: It is used for configuring the TX Queue Priority
2411  */
2412 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2413 {
2414         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2415         u32 queue;
2416         u32 prio;
2417
2418         for (queue = 0; queue < tx_queues_count; queue++) {
2419                 if (!priv->plat->tx_queues_cfg[queue].use_prio)
2420                         continue;
2421
2422                 prio = priv->plat->tx_queues_cfg[queue].prio;
2423                 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2424         }
2425 }
2426
2427 /**
2428  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2429  *  @priv: driver private structure
2430  *  Description: It is used for configuring the RX queue routing
2431  */
2432 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2433 {
2434         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2435         u32 queue;
2436         u8 packet;
2437
2438         for (queue = 0; queue < rx_queues_count; queue++) {
2439                 /* no specific packet type routing specified for the queue */
2440                 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2441                         continue;
2442
2443                 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2444                 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2445         }
2446 }
2447
2448 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2449 {
2450         if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2451                 priv->rss.enable = false;
2452                 return;
2453         }
2454
2455         if (priv->dev->features & NETIF_F_RXHASH)
2456                 priv->rss.enable = true;
2457         else
2458                 priv->rss.enable = false;
2459
2460         stmmac_rss_configure(priv, priv->hw, &priv->rss,
2461                              priv->plat->rx_queues_to_use);
2462 }
2463
2464 /**
2465  *  stmmac_mtl_configuration - Configure MTL
2466  *  @priv: driver private structure
2467  *  Description: It is used for configurring MTL
2468  */
2469 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2470 {
2471         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2472         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2473
2474         if (tx_queues_count > 1)
2475                 stmmac_set_tx_queue_weight(priv);
2476
2477         /* Configure MTL RX algorithms */
2478         if (rx_queues_count > 1)
2479                 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2480                                 priv->plat->rx_sched_algorithm);
2481
2482         /* Configure MTL TX algorithms */
2483         if (tx_queues_count > 1)
2484                 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2485                                 priv->plat->tx_sched_algorithm);
2486
2487         /* Configure CBS in AVB TX queues */
2488         if (tx_queues_count > 1)
2489                 stmmac_configure_cbs(priv);
2490
2491         /* Map RX MTL to DMA channels */
2492         stmmac_rx_queue_dma_chan_map(priv);
2493
2494         /* Enable MAC RX Queues */
2495         stmmac_mac_enable_rx_queues(priv);
2496
2497         /* Set RX priorities */
2498         if (rx_queues_count > 1)
2499                 stmmac_mac_config_rx_queues_prio(priv);
2500
2501         /* Set TX priorities */
2502         if (tx_queues_count > 1)
2503                 stmmac_mac_config_tx_queues_prio(priv);
2504
2505         /* Set RX routing */
2506         if (rx_queues_count > 1)
2507                 stmmac_mac_config_rx_queues_routing(priv);
2508
2509         /* Receive Side Scaling */
2510         if (rx_queues_count > 1)
2511                 stmmac_mac_config_rss(priv);
2512 }
2513
2514 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2515 {
2516         if (priv->dma_cap.asp) {
2517                 netdev_info(priv->dev, "Enabling Safety Features\n");
2518                 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2519         } else {
2520                 netdev_info(priv->dev, "No Safety Features support found\n");
2521         }
2522 }
2523
2524 /**
2525  * stmmac_hw_setup - setup mac in a usable state.
2526  *  @dev : pointer to the device structure.
2527  *  Description:
2528  *  this is the main function to setup the HW in a usable state because the
2529  *  dma engine is reset, the core registers are configured (e.g. AXI,
2530  *  Checksum features, timers). The DMA is ready to start receiving and
2531  *  transmitting.
2532  *  Return value:
2533  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2534  *  file on failure.
2535  */
2536 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2537 {
2538         struct stmmac_priv *priv = netdev_priv(dev);
2539         u32 rx_cnt = priv->plat->rx_queues_to_use;
2540         u32 tx_cnt = priv->plat->tx_queues_to_use;
2541         u32 chan;
2542         int ret;
2543
2544         /* DMA initialization and SW reset */
2545         ret = stmmac_init_dma_engine(priv);
2546         if (ret < 0) {
2547                 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2548                            __func__);
2549                 return ret;
2550         }
2551
2552         /* Copy the MAC addr into the HW  */
2553         stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2554
2555         /* PS and related bits will be programmed according to the speed */
2556         if (priv->hw->pcs) {
2557                 int speed = priv->plat->mac_port_sel_speed;
2558
2559                 if ((speed == SPEED_10) || (speed == SPEED_100) ||
2560                     (speed == SPEED_1000)) {
2561                         priv->hw->ps = speed;
2562                 } else {
2563                         dev_warn(priv->device, "invalid port speed\n");
2564                         priv->hw->ps = 0;
2565                 }
2566         }
2567
2568         /* Initialize the MAC Core */
2569         stmmac_core_init(priv, priv->hw, dev);
2570
2571         /* Initialize MTL*/
2572         stmmac_mtl_configuration(priv);
2573
2574         /* Initialize Safety Features */
2575         stmmac_safety_feat_configuration(priv);
2576
2577         ret = stmmac_rx_ipc(priv, priv->hw);
2578         if (!ret) {
2579                 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2580                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2581                 priv->hw->rx_csum = 0;
2582         }
2583
2584         /* Enable the MAC Rx/Tx */
2585         stmmac_mac_set(priv, priv->ioaddr, true);
2586
2587         /* Set the HW DMA mode and the COE */
2588         stmmac_dma_operation_mode(priv);
2589
2590         stmmac_mmc_setup(priv);
2591
2592         if (init_ptp) {
2593                 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2594                 if (ret < 0)
2595                         netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2596
2597                 ret = stmmac_init_ptp(priv);
2598                 if (ret == -EOPNOTSUPP)
2599                         netdev_warn(priv->dev, "PTP not supported by HW\n");
2600                 else if (ret)
2601                         netdev_warn(priv->dev, "PTP init failed\n");
2602         }
2603
2604         priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2605
2606         if (priv->use_riwt) {
2607                 ret = stmmac_rx_watchdog(priv, priv->ioaddr, MIN_DMA_RIWT, rx_cnt);
2608                 if (!ret)
2609                         priv->rx_riwt = MIN_DMA_RIWT;
2610         }
2611
2612         if (priv->hw->pcs)
2613                 stmmac_pcs_ctrl_ane(priv, priv->hw, 1, priv->hw->ps, 0);
2614
2615         /* set TX and RX rings length */
2616         stmmac_set_rings_length(priv);
2617
2618         /* Enable TSO */
2619         if (priv->tso) {
2620                 for (chan = 0; chan < tx_cnt; chan++)
2621                         stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2622         }
2623
2624         /* Enable Split Header */
2625         if (priv->sph && priv->hw->rx_csum) {
2626                 for (chan = 0; chan < rx_cnt; chan++)
2627                         stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2628         }
2629
2630         /* VLAN Tag Insertion */
2631         if (priv->dma_cap.vlins)
2632                 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2633
2634         /* Start the ball rolling... */
2635         stmmac_start_all_dma(priv);
2636
2637         return 0;
2638 }
2639
2640 static void stmmac_hw_teardown(struct net_device *dev)
2641 {
2642         struct stmmac_priv *priv = netdev_priv(dev);
2643
2644         clk_disable_unprepare(priv->plat->clk_ptp_ref);
2645 }
2646
2647 /**
2648  *  stmmac_open - open entry point of the driver
2649  *  @dev : pointer to the device structure.
2650  *  Description:
2651  *  This function is the open entry point of the driver.
2652  *  Return value:
2653  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2654  *  file on failure.
2655  */
2656 static int stmmac_open(struct net_device *dev)
2657 {
2658         struct stmmac_priv *priv = netdev_priv(dev);
2659         u32 chan;
2660         int ret;
2661
2662         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2663             priv->hw->pcs != STMMAC_PCS_TBI &&
2664             priv->hw->pcs != STMMAC_PCS_RTBI) {
2665                 ret = stmmac_init_phy(dev);
2666                 if (ret) {
2667                         netdev_err(priv->dev,
2668                                    "%s: Cannot attach to PHY (error: %d)\n",
2669                                    __func__, ret);
2670                         return ret;
2671                 }
2672         }
2673
2674         /* Extra statistics */
2675         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2676         priv->xstats.threshold = tc;
2677
2678         priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2679         priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2680
2681         ret = alloc_dma_desc_resources(priv);
2682         if (ret < 0) {
2683                 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2684                            __func__);
2685                 goto dma_desc_error;
2686         }
2687
2688         ret = init_dma_desc_rings(dev, GFP_KERNEL);
2689         if (ret < 0) {
2690                 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2691                            __func__);
2692                 goto init_error;
2693         }
2694
2695         ret = stmmac_hw_setup(dev, true);
2696         if (ret < 0) {
2697                 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2698                 goto init_error;
2699         }
2700
2701         stmmac_init_coalesce(priv);
2702
2703         phylink_start(priv->phylink);
2704
2705         /* Request the IRQ lines */
2706         ret = request_irq(dev->irq, stmmac_interrupt,
2707                           IRQF_SHARED, dev->name, dev);
2708         if (unlikely(ret < 0)) {
2709                 netdev_err(priv->dev,
2710                            "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2711                            __func__, dev->irq, ret);
2712                 goto irq_error;
2713         }
2714
2715         /* Request the Wake IRQ in case of another line is used for WoL */
2716         if (priv->wol_irq != dev->irq) {
2717                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
2718                                   IRQF_SHARED, dev->name, dev);
2719                 if (unlikely(ret < 0)) {
2720                         netdev_err(priv->dev,
2721                                    "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2722                                    __func__, priv->wol_irq, ret);
2723                         goto wolirq_error;
2724                 }
2725         }
2726
2727         /* Request the IRQ lines */
2728         if (priv->lpi_irq > 0) {
2729                 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2730                                   dev->name, dev);
2731                 if (unlikely(ret < 0)) {
2732                         netdev_err(priv->dev,
2733                                    "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2734                                    __func__, priv->lpi_irq, ret);
2735                         goto lpiirq_error;
2736                 }
2737         }
2738
2739         stmmac_enable_all_queues(priv);
2740         stmmac_start_all_queues(priv);
2741
2742         return 0;
2743
2744 lpiirq_error:
2745         if (priv->wol_irq != dev->irq)
2746                 free_irq(priv->wol_irq, dev);
2747 wolirq_error:
2748         free_irq(dev->irq, dev);
2749 irq_error:
2750         phylink_stop(priv->phylink);
2751
2752         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2753                 del_timer_sync(&priv->tx_queue[chan].txtimer);
2754
2755         stmmac_hw_teardown(dev);
2756 init_error:
2757         free_dma_desc_resources(priv);
2758 dma_desc_error:
2759         phylink_disconnect_phy(priv->phylink);
2760         return ret;
2761 }
2762
2763 /**
2764  *  stmmac_release - close entry point of the driver
2765  *  @dev : device pointer.
2766  *  Description:
2767  *  This is the stop entry point of the driver.
2768  */
2769 static int stmmac_release(struct net_device *dev)
2770 {
2771         struct stmmac_priv *priv = netdev_priv(dev);
2772         u32 chan;
2773
2774         if (priv->eee_enabled)
2775                 del_timer_sync(&priv->eee_ctrl_timer);
2776
2777         /* Stop and disconnect the PHY */
2778         phylink_stop(priv->phylink);
2779         phylink_disconnect_phy(priv->phylink);
2780
2781         stmmac_stop_all_queues(priv);
2782
2783         stmmac_disable_all_queues(priv);
2784
2785         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2786                 del_timer_sync(&priv->tx_queue[chan].txtimer);
2787
2788         /* Free the IRQ lines */
2789         free_irq(dev->irq, dev);
2790         if (priv->wol_irq != dev->irq)
2791                 free_irq(priv->wol_irq, dev);
2792         if (priv->lpi_irq > 0)
2793                 free_irq(priv->lpi_irq, dev);
2794
2795         /* Stop TX/RX DMA and clear the descriptors */
2796         stmmac_stop_all_dma(priv);
2797
2798         /* Release and free the Rx/Tx resources */
2799         free_dma_desc_resources(priv);
2800
2801         /* Disable the MAC Rx/Tx */
2802         stmmac_mac_set(priv, priv->ioaddr, false);
2803
2804         netif_carrier_off(dev);
2805
2806         stmmac_release_ptp(priv);
2807
2808         return 0;
2809 }
2810
2811 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
2812                                struct stmmac_tx_queue *tx_q)
2813 {
2814         u16 tag = 0x0, inner_tag = 0x0;
2815         u32 inner_type = 0x0;
2816         struct dma_desc *p;
2817
2818         if (!priv->dma_cap.vlins)
2819                 return false;
2820         if (!skb_vlan_tag_present(skb))
2821                 return false;
2822         if (skb->vlan_proto == htons(ETH_P_8021AD)) {
2823                 inner_tag = skb_vlan_tag_get(skb);
2824                 inner_type = STMMAC_VLAN_INSERT;
2825         }
2826
2827         tag = skb_vlan_tag_get(skb);
2828
2829         p = tx_q->dma_tx + tx_q->cur_tx;
2830         if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
2831                 return false;
2832
2833         stmmac_set_tx_owner(priv, p);
2834         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2835         return true;
2836 }
2837
2838 /**
2839  *  stmmac_tso_allocator - close entry point of the driver
2840  *  @priv: driver private structure
2841  *  @des: buffer start address
2842  *  @total_len: total length to fill in descriptors
2843  *  @last_segmant: condition for the last descriptor
2844  *  @queue: TX queue index
2845  *  Description:
2846  *  This function fills descriptor and request new descriptors according to
2847  *  buffer length to fill
2848  */
2849 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
2850                                  int total_len, bool last_segment, u32 queue)
2851 {
2852         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2853         struct dma_desc *desc;
2854         u32 buff_size;
2855         int tmp_len;
2856
2857         tmp_len = total_len;
2858
2859         while (tmp_len > 0) {
2860                 dma_addr_t curr_addr;
2861
2862                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2863                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2864                 desc = tx_q->dma_tx + tx_q->cur_tx;
2865
2866                 curr_addr = des + (total_len - tmp_len);
2867                 if (priv->dma_cap.addr64 <= 32)
2868                         desc->des0 = cpu_to_le32(curr_addr);
2869                 else
2870                         stmmac_set_desc_addr(priv, desc, curr_addr);
2871
2872                 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2873                             TSO_MAX_BUFF_SIZE : tmp_len;
2874
2875                 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2876                                 0, 1,
2877                                 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2878                                 0, 0);
2879
2880                 tmp_len -= TSO_MAX_BUFF_SIZE;
2881         }
2882 }
2883
2884 /**
2885  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2886  *  @skb : the socket buffer
2887  *  @dev : device pointer
2888  *  Description: this is the transmit function that is called on TSO frames
2889  *  (support available on GMAC4 and newer chips).
2890  *  Diagram below show the ring programming in case of TSO frames:
2891  *
2892  *  First Descriptor
2893  *   --------
2894  *   | DES0 |---> buffer1 = L2/L3/L4 header
2895  *   | DES1 |---> TCP Payload (can continue on next descr...)
2896  *   | DES2 |---> buffer 1 and 2 len
2897  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2898  *   --------
2899  *      |
2900  *     ...
2901  *      |
2902  *   --------
2903  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2904  *   | DES1 | --|
2905  *   | DES2 | --> buffer 1 and 2 len
2906  *   | DES3 |
2907  *   --------
2908  *
2909  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2910  */
2911 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2912 {
2913         struct dma_desc *desc, *first, *mss_desc = NULL;
2914         struct stmmac_priv *priv = netdev_priv(dev);
2915         int nfrags = skb_shinfo(skb)->nr_frags;
2916         u32 queue = skb_get_queue_mapping(skb);
2917         struct stmmac_tx_queue *tx_q;
2918         unsigned int first_entry;
2919         int tmp_pay_len = 0;
2920         u32 pay_len, mss;
2921         u8 proto_hdr_len;
2922         dma_addr_t des;
2923         bool has_vlan;
2924         int i;
2925
2926         tx_q = &priv->tx_queue[queue];
2927
2928         /* Compute header lengths */
2929         proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2930
2931         /* Desc availability based on threshold should be enough safe */
2932         if (unlikely(stmmac_tx_avail(priv, queue) <
2933                 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2934                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2935                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2936                                                                 queue));
2937                         /* This is a hard error, log it. */
2938                         netdev_err(priv->dev,
2939                                    "%s: Tx Ring full when queue awake\n",
2940                                    __func__);
2941                 }
2942                 return NETDEV_TX_BUSY;
2943         }
2944
2945         pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2946
2947         mss = skb_shinfo(skb)->gso_size;
2948
2949         /* set new MSS value if needed */
2950         if (mss != tx_q->mss) {
2951                 mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2952                 stmmac_set_mss(priv, mss_desc, mss);
2953                 tx_q->mss = mss;
2954                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2955                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2956         }
2957
2958         if (netif_msg_tx_queued(priv)) {
2959                 pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2960                         __func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2961                 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2962                         skb->data_len);
2963         }
2964
2965         /* Check if VLAN can be inserted by HW */
2966         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
2967
2968         first_entry = tx_q->cur_tx;
2969         WARN_ON(tx_q->tx_skbuff[first_entry]);
2970
2971         desc = tx_q->dma_tx + first_entry;
2972         first = desc;
2973
2974         if (has_vlan)
2975                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
2976
2977         /* first descriptor: fill Headers on Buf1 */
2978         des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2979                              DMA_TO_DEVICE);
2980         if (dma_mapping_error(priv->device, des))
2981                 goto dma_map_err;
2982
2983         tx_q->tx_skbuff_dma[first_entry].buf = des;
2984         tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2985
2986         if (priv->dma_cap.addr64 <= 32) {
2987                 first->des0 = cpu_to_le32(des);
2988
2989                 /* Fill start of payload in buff2 of first descriptor */
2990                 if (pay_len)
2991                         first->des1 = cpu_to_le32(des + proto_hdr_len);
2992
2993                 /* If needed take extra descriptors to fill the remaining payload */
2994                 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2995         } else {
2996                 stmmac_set_desc_addr(priv, first, des);
2997                 tmp_pay_len = pay_len;
2998         }
2999
3000         stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3001
3002         /* Prepare fragments */
3003         for (i = 0; i < nfrags; i++) {
3004                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3005
3006                 des = skb_frag_dma_map(priv->device, frag, 0,
3007                                        skb_frag_size(frag),
3008                                        DMA_TO_DEVICE);
3009                 if (dma_mapping_error(priv->device, des))
3010                         goto dma_map_err;
3011
3012                 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3013                                      (i == nfrags - 1), queue);
3014
3015                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3016                 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3017                 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3018         }
3019
3020         tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3021
3022         /* Only the last descriptor gets to point to the skb. */
3023         tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3024
3025         /* We've used all descriptors we need for this skb, however,
3026          * advance cur_tx so that it references a fresh descriptor.
3027          * ndo_start_xmit will fill this descriptor the next time it's
3028          * called and stmmac_tx_clean may clean up to this descriptor.
3029          */
3030         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3031
3032         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3033                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3034                           __func__);
3035                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3036         }
3037
3038         dev->stats.tx_bytes += skb->len;
3039         priv->xstats.tx_tso_frames++;
3040         priv->xstats.tx_tso_nfrags += nfrags;
3041
3042         /* Manage tx mitigation */
3043         tx_q->tx_count_frames += nfrags + 1;
3044         if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) &&
3045             !(priv->synopsys_id >= DWMAC_CORE_4_00 &&
3046             (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3047             priv->hwts_tx_en)) {
3048                 stmmac_tx_timer_arm(priv, queue);
3049         } else {
3050                 tx_q->tx_count_frames = 0;
3051                 stmmac_set_tx_ic(priv, desc);
3052                 priv->xstats.tx_set_ic_bit++;
3053         }
3054
3055         if (priv->sarc_type)
3056                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3057
3058         skb_tx_timestamp(skb);
3059
3060         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3061                      priv->hwts_tx_en)) {
3062                 /* declare that device is doing timestamping */
3063                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3064                 stmmac_enable_tx_timestamp(priv, first);
3065         }
3066
3067         /* Complete the first descriptor before granting the DMA */
3068         stmmac_prepare_tso_tx_desc(priv, first, 1,
3069                         proto_hdr_len,
3070                         pay_len,
3071                         1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3072                         tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
3073
3074         /* If context desc is used to change MSS */
3075         if (mss_desc) {
3076                 /* Make sure that first descriptor has been completely
3077                  * written, including its own bit. This is because MSS is
3078                  * actually before first descriptor, so we need to make
3079                  * sure that MSS's own bit is the last thing written.
3080                  */
3081                 dma_wmb();
3082                 stmmac_set_tx_owner(priv, mss_desc);
3083         }
3084
3085         /* The own bit must be the latest setting done when prepare the
3086          * descriptor and then barrier is needed to make sure that
3087          * all is coherent before granting the DMA engine.
3088          */
3089         wmb();
3090
3091         if (netif_msg_pktdata(priv)) {
3092                 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3093                         __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3094                         tx_q->cur_tx, first, nfrags);
3095
3096                 stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
3097
3098                 pr_info(">>> frame to be transmitted: ");
3099                 print_pkt(skb->data, skb_headlen(skb));
3100         }
3101
3102         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3103
3104         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3105         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3106
3107         return NETDEV_TX_OK;
3108
3109 dma_map_err:
3110         dev_err(priv->device, "Tx dma map failed\n");
3111         dev_kfree_skb(skb);
3112         priv->dev->stats.tx_dropped++;
3113         return NETDEV_TX_OK;
3114 }
3115
3116 /**
3117  *  stmmac_xmit - Tx entry point of the driver
3118  *  @skb : the socket buffer
3119  *  @dev : device pointer
3120  *  Description : this is the tx entry point of the driver.
3121  *  It programs the chain or the ring and supports oversized frames
3122  *  and SG feature.
3123  */
3124 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3125 {
3126         struct stmmac_priv *priv = netdev_priv(dev);
3127         unsigned int nopaged_len = skb_headlen(skb);
3128         int i, csum_insertion = 0, is_jumbo = 0;
3129         u32 queue = skb_get_queue_mapping(skb);
3130         int nfrags = skb_shinfo(skb)->nr_frags;
3131         struct dma_desc *desc, *first;
3132         struct stmmac_tx_queue *tx_q;
3133         unsigned int first_entry;
3134         unsigned int enh_desc;
3135         dma_addr_t des;
3136         bool has_vlan;
3137         int entry;
3138
3139         tx_q = &priv->tx_queue[queue];
3140
3141         if (priv->tx_path_in_lpi_mode)
3142                 stmmac_disable_eee_mode(priv);
3143
3144         /* Manage oversized TCP frames for GMAC4 device */
3145         if (skb_is_gso(skb) && priv->tso) {
3146                 if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3147                         return stmmac_tso_xmit(skb, dev);
3148         }
3149
3150         if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3151                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3152                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3153                                                                 queue));
3154                         /* This is a hard error, log it. */
3155                         netdev_err(priv->dev,
3156                                    "%s: Tx Ring full when queue awake\n",
3157                                    __func__);
3158                 }
3159                 return NETDEV_TX_BUSY;
3160         }
3161
3162         /* Check if VLAN can be inserted by HW */
3163         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3164
3165         entry = tx_q->cur_tx;
3166         first_entry = entry;
3167         WARN_ON(tx_q->tx_skbuff[first_entry]);
3168
3169         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3170
3171         if (likely(priv->extend_desc))
3172                 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3173         else
3174                 desc = tx_q->dma_tx + entry;
3175
3176         first = desc;
3177
3178         if (has_vlan)
3179                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3180
3181         enh_desc = priv->plat->enh_desc;
3182         /* To program the descriptors according to the size of the frame */
3183         if (enh_desc)
3184                 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3185
3186         if (unlikely(is_jumbo)) {
3187                 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3188                 if (unlikely(entry < 0) && (entry != -EINVAL))
3189                         goto dma_map_err;
3190         }
3191
3192         for (i = 0; i < nfrags; i++) {
3193                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3194                 int len = skb_frag_size(frag);
3195                 bool last_segment = (i == (nfrags - 1));
3196
3197                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3198                 WARN_ON(tx_q->tx_skbuff[entry]);
3199
3200                 if (likely(priv->extend_desc))
3201                         desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3202                 else
3203                         desc = tx_q->dma_tx + entry;
3204
3205                 des = skb_frag_dma_map(priv->device, frag, 0, len,
3206                                        DMA_TO_DEVICE);
3207                 if (dma_mapping_error(priv->device, des))
3208                         goto dma_map_err; /* should reuse desc w/o issues */
3209
3210                 tx_q->tx_skbuff_dma[entry].buf = des;
3211
3212                 stmmac_set_desc_addr(priv, desc, des);
3213
3214                 tx_q->tx_skbuff_dma[entry].map_as_page = true;
3215                 tx_q->tx_skbuff_dma[entry].len = len;
3216                 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3217
3218                 /* Prepare the descriptor and set the own bit too */
3219                 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3220                                 priv->mode, 1, last_segment, skb->len);
3221         }
3222
3223         /* Only the last descriptor gets to point to the skb. */
3224         tx_q->tx_skbuff[entry] = skb;
3225
3226         /* We've used all descriptors we need for this skb, however,
3227          * advance cur_tx so that it references a fresh descriptor.
3228          * ndo_start_xmit will fill this descriptor the next time it's
3229          * called and stmmac_tx_clean may clean up to this descriptor.
3230          */
3231         entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3232         tx_q->cur_tx = entry;
3233
3234         if (netif_msg_pktdata(priv)) {
3235                 void *tx_head;
3236
3237                 netdev_dbg(priv->dev,
3238                            "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3239                            __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3240                            entry, first, nfrags);
3241
3242                 if (priv->extend_desc)
3243                         tx_head = (void *)tx_q->dma_etx;
3244                 else
3245                         tx_head = (void *)tx_q->dma_tx;
3246
3247                 stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3248
3249                 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3250                 print_pkt(skb->data, skb->len);
3251         }
3252
3253         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3254                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3255                           __func__);
3256                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3257         }
3258
3259         dev->stats.tx_bytes += skb->len;
3260
3261         /* According to the coalesce parameter the IC bit for the latest
3262          * segment is reset and the timer re-started to clean the tx status.
3263          * This approach takes care about the fragments: desc is the first
3264          * element in case of no SG.
3265          */
3266         tx_q->tx_count_frames += nfrags + 1;
3267         if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) &&
3268             !(priv->synopsys_id >= DWMAC_CORE_4_00 &&
3269             (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3270             priv->hwts_tx_en)) {
3271                 stmmac_tx_timer_arm(priv, queue);
3272         } else {
3273                 tx_q->tx_count_frames = 0;
3274                 stmmac_set_tx_ic(priv, desc);
3275                 priv->xstats.tx_set_ic_bit++;
3276         }
3277
3278         if (priv->sarc_type)
3279                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3280
3281         skb_tx_timestamp(skb);
3282
3283         /* Ready to fill the first descriptor and set the OWN bit w/o any
3284          * problems because all the descriptors are actually ready to be
3285          * passed to the DMA engine.
3286          */
3287         if (likely(!is_jumbo)) {
3288                 bool last_segment = (nfrags == 0);
3289
3290                 des = dma_map_single(priv->device, skb->data,
3291                                      nopaged_len, DMA_TO_DEVICE);
3292                 if (dma_mapping_error(priv->device, des))
3293                         goto dma_map_err;
3294
3295                 tx_q->tx_skbuff_dma[first_entry].buf = des;
3296
3297                 stmmac_set_desc_addr(priv, first, des);
3298
3299                 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3300                 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3301
3302                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3303                              priv->hwts_tx_en)) {
3304                         /* declare that device is doing timestamping */
3305                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3306                         stmmac_enable_tx_timestamp(priv, first);
3307                 }
3308
3309                 /* Prepare the first descriptor setting the OWN bit too */
3310                 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3311                                 csum_insertion, priv->mode, 1, last_segment,
3312                                 skb->len);
3313         } else {
3314                 stmmac_set_tx_owner(priv, first);
3315         }
3316
3317         /* The own bit must be the latest setting done when prepare the
3318          * descriptor and then barrier is needed to make sure that
3319          * all is coherent before granting the DMA engine.
3320          */
3321         wmb();
3322
3323         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3324
3325         stmmac_enable_dma_transmission(priv, priv->ioaddr);
3326
3327         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3328         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3329
3330         return NETDEV_TX_OK;
3331
3332 dma_map_err:
3333         netdev_err(priv->dev, "Tx DMA map failed\n");
3334         dev_kfree_skb(skb);
3335         priv->dev->stats.tx_dropped++;
3336         return NETDEV_TX_OK;
3337 }
3338
3339 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3340 {
3341         struct vlan_ethhdr *veth;
3342         __be16 vlan_proto;
3343         u16 vlanid;
3344
3345         veth = (struct vlan_ethhdr *)skb->data;
3346         vlan_proto = veth->h_vlan_proto;
3347
3348         if ((vlan_proto == htons(ETH_P_8021Q) &&
3349              dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3350             (vlan_proto == htons(ETH_P_8021AD) &&
3351              dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3352                 /* pop the vlan tag */
3353                 vlanid = ntohs(veth->h_vlan_TCI);
3354                 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3355                 skb_pull(skb, VLAN_HLEN);
3356                 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3357         }
3358 }
3359
3360
3361 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3362 {
3363         if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3364                 return 0;
3365
3366         return 1;
3367 }
3368
3369 /**
3370  * stmmac_rx_refill - refill used skb preallocated buffers
3371  * @priv: driver private structure
3372  * @queue: RX queue index
3373  * Description : this is to reallocate the skb for the reception process
3374  * that is based on zero-copy.
3375  */
3376 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3377 {
3378         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3379         int len, dirty = stmmac_rx_dirty(priv, queue);
3380         unsigned int entry = rx_q->dirty_rx;
3381
3382         len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3383
3384         while (dirty-- > 0) {
3385                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3386                 struct dma_desc *p;
3387                 bool use_rx_wd;
3388
3389                 if (priv->extend_desc)
3390                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
3391                 else
3392                         p = rx_q->dma_rx + entry;
3393
3394                 if (!buf->page) {
3395                         buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3396                         if (!buf->page)
3397                                 break;
3398                 }
3399
3400                 if (priv->sph && !buf->sec_page) {
3401                         buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3402                         if (!buf->sec_page)
3403                                 break;
3404
3405                         buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3406
3407                         dma_sync_single_for_device(priv->device, buf->sec_addr,
3408                                                    len, DMA_FROM_DEVICE);
3409                 }
3410
3411                 buf->addr = page_pool_get_dma_addr(buf->page);
3412
3413                 /* Sync whole allocation to device. This will invalidate old
3414                  * data.
3415                  */
3416                 dma_sync_single_for_device(priv->device, buf->addr, len,
3417                                            DMA_FROM_DEVICE);
3418
3419                 stmmac_set_desc_addr(priv, p, buf->addr);
3420                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
3421                 stmmac_refill_desc3(priv, rx_q, p);
3422
3423                 rx_q->rx_count_frames++;
3424                 rx_q->rx_count_frames += priv->rx_coal_frames;
3425                 if (rx_q->rx_count_frames > priv->rx_coal_frames)
3426                         rx_q->rx_count_frames = 0;
3427                 use_rx_wd = priv->use_riwt && rx_q->rx_count_frames;
3428
3429                 dma_wmb();
3430                 stmmac_set_rx_owner(priv, p, use_rx_wd);
3431
3432                 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3433         }
3434         rx_q->dirty_rx = entry;
3435         rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3436                             (rx_q->dirty_rx * sizeof(struct dma_desc));
3437         stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3438 }
3439
3440 /**
3441  * stmmac_rx - manage the receive process
3442  * @priv: driver private structure
3443  * @limit: napi bugget
3444  * @queue: RX queue index.
3445  * Description :  this the function called by the napi poll method.
3446  * It gets all the frames inside the ring.
3447  */
3448 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3449 {
3450         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3451         struct stmmac_channel *ch = &priv->channel[queue];
3452         unsigned int count = 0, error = 0, len = 0;
3453         int status = 0, coe = priv->hw->rx_csum;
3454         unsigned int next_entry = rx_q->cur_rx;
3455         struct sk_buff *skb = NULL;
3456
3457         if (netif_msg_rx_status(priv)) {
3458                 void *rx_head;
3459
3460                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3461                 if (priv->extend_desc)
3462                         rx_head = (void *)rx_q->dma_erx;
3463                 else
3464                         rx_head = (void *)rx_q->dma_rx;
3465
3466                 stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3467         }
3468         while (count < limit) {
3469                 unsigned int hlen = 0, prev_len = 0;
3470                 enum pkt_hash_types hash_type;
3471                 struct stmmac_rx_buffer *buf;
3472                 struct dma_desc *np, *p;
3473                 unsigned int sec_len;
3474                 int entry;
3475                 u32 hash;
3476
3477                 if (!count && rx_q->state_saved) {
3478                         skb = rx_q->state.skb;
3479                         error = rx_q->state.error;
3480                         len = rx_q->state.len;
3481                 } else {
3482                         rx_q->state_saved = false;
3483                         skb = NULL;
3484                         error = 0;
3485                         len = 0;
3486                 }
3487
3488                 if (count >= limit)
3489                         break;
3490
3491 read_again:
3492                 sec_len = 0;
3493                 entry = next_entry;
3494                 buf = &rx_q->buf_pool[entry];
3495
3496                 if (priv->extend_desc)
3497                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
3498                 else
3499                         p = rx_q->dma_rx + entry;
3500
3501                 /* read the status of the incoming frame */
3502                 status = stmmac_rx_status(priv, &priv->dev->stats,
3503                                 &priv->xstats, p);
3504                 /* check if managed by the DMA otherwise go ahead */
3505                 if (unlikely(status & dma_own))
3506                         break;
3507
3508                 count++;
3509
3510                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3511                 next_entry = rx_q->cur_rx;
3512
3513                 if (priv->extend_desc)
3514                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3515                 else
3516                         np = rx_q->dma_rx + next_entry;
3517
3518                 prefetch(np);
3519                 prefetch(page_address(buf->page));
3520
3521                 if (priv->extend_desc)
3522                         stmmac_rx_extended_status(priv, &priv->dev->stats,
3523                                         &priv->xstats, rx_q->dma_erx + entry);
3524                 if (unlikely(status == discard_frame)) {
3525                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
3526                         buf->page = NULL;
3527                         error = 1;
3528                         if (!priv->hwts_rx_en)
3529                                 priv->dev->stats.rx_errors++;
3530                 }
3531
3532                 if (unlikely(error && (status & rx_not_ls)))
3533                         goto read_again;
3534                 if (unlikely(error)) {
3535                         dev_kfree_skb(skb);
3536                         continue;
3537                 }
3538
3539                 /* Buffer is good. Go on. */
3540
3541                 if (likely(status & rx_not_ls)) {
3542                         len += priv->dma_buf_sz;
3543                 } else {
3544                         prev_len = len;
3545                         len = stmmac_get_rx_frame_len(priv, p, coe);
3546
3547                         /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3548                          * Type frames (LLC/LLC-SNAP)
3549                          *
3550                          * llc_snap is never checked in GMAC >= 4, so this ACS
3551                          * feature is always disabled and packets need to be
3552                          * stripped manually.
3553                          */
3554                         if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3555                             unlikely(status != llc_snap))
3556                                 len -= ETH_FCS_LEN;
3557                 }
3558
3559                 if (!skb) {
3560                         int ret = stmmac_get_rx_header_len(priv, p, &hlen);
3561
3562                         if (priv->sph && !ret && (hlen > 0)) {
3563                                 sec_len = len;
3564                                 if (!(status & rx_not_ls))
3565                                         sec_len = sec_len - hlen;
3566                                 len = hlen;
3567
3568                                 prefetch(page_address(buf->sec_page));
3569                                 priv->xstats.rx_split_hdr_pkt_n++;
3570                         }
3571
3572                         skb = napi_alloc_skb(&ch->rx_napi, len);
3573                         if (!skb) {
3574                                 priv->dev->stats.rx_dropped++;
3575                                 continue;
3576                         }
3577
3578                         dma_sync_single_for_cpu(priv->device, buf->addr, len,
3579                                                 DMA_FROM_DEVICE);
3580                         skb_copy_to_linear_data(skb, page_address(buf->page),
3581                                                 len);
3582                         skb_put(skb, len);
3583
3584                         /* Data payload copied into SKB, page ready for recycle */
3585                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
3586                         buf->page = NULL;
3587                 } else {
3588                         unsigned int buf_len = len - prev_len;
3589
3590                         if (likely(status & rx_not_ls))
3591                                 buf_len = priv->dma_buf_sz;
3592
3593                         dma_sync_single_for_cpu(priv->device, buf->addr,
3594                                                 buf_len, DMA_FROM_DEVICE);
3595                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3596                                         buf->page, 0, buf_len,
3597                                         priv->dma_buf_sz);
3598
3599                         /* Data payload appended into SKB */
3600                         page_pool_release_page(rx_q->page_pool, buf->page);
3601                         buf->page = NULL;
3602                 }
3603
3604                 if (sec_len > 0) {
3605                         dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3606                                                 sec_len, DMA_FROM_DEVICE);
3607                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3608                                         buf->sec_page, 0, sec_len,
3609                                         priv->dma_buf_sz);
3610
3611                         len += sec_len;
3612
3613                         /* Data payload appended into SKB */
3614                         page_pool_release_page(rx_q->page_pool, buf->sec_page);
3615                         buf->sec_page = NULL;
3616                 }
3617
3618                 if (likely(status & rx_not_ls))
3619                         goto read_again;
3620
3621                 /* Got entire packet into SKB. Finish it. */
3622
3623                 stmmac_get_rx_hwtstamp(priv, p, np, skb);
3624                 stmmac_rx_vlan(priv->dev, skb);
3625                 skb->protocol = eth_type_trans(skb, priv->dev);
3626
3627                 if (unlikely(!coe))
3628                         skb_checksum_none_assert(skb);
3629                 else
3630                         skb->ip_summed = CHECKSUM_UNNECESSARY;
3631
3632                 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
3633                         skb_set_hash(skb, hash, hash_type);
3634
3635                 skb_record_rx_queue(skb, queue);
3636                 napi_gro_receive(&ch->rx_napi, skb);
3637
3638                 priv->dev->stats.rx_packets++;
3639                 priv->dev->stats.rx_bytes += len;
3640         }
3641
3642         if (status & rx_not_ls) {
3643                 rx_q->state_saved = true;
3644                 rx_q->state.skb = skb;
3645                 rx_q->state.error = error;
3646                 rx_q->state.len = len;
3647         }
3648
3649         stmmac_rx_refill(priv, queue);
3650
3651         priv->xstats.rx_pkt_n += count;
3652
3653         return count;
3654 }
3655
3656 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3657 {
3658         struct stmmac_channel *ch =
3659                 container_of(napi, struct stmmac_channel, rx_napi);
3660         struct stmmac_priv *priv = ch->priv_data;
3661         u32 chan = ch->index;
3662         int work_done;
3663
3664         priv->xstats.napi_poll++;
3665
3666         work_done = stmmac_rx(priv, budget, chan);
3667         if (work_done < budget && napi_complete_done(napi, work_done))
3668                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3669         return work_done;
3670 }
3671
3672 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3673 {
3674         struct stmmac_channel *ch =
3675                 container_of(napi, struct stmmac_channel, tx_napi);
3676         struct stmmac_priv *priv = ch->priv_data;
3677         struct stmmac_tx_queue *tx_q;
3678         u32 chan = ch->index;
3679         int work_done;
3680
3681         priv->xstats.napi_poll++;
3682
3683         work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3684         work_done = min(work_done, budget);
3685
3686         if (work_done < budget)
3687                 napi_complete_done(napi, work_done);
3688
3689         /* Force transmission restart */
3690         tx_q = &priv->tx_queue[chan];
3691         if (tx_q->cur_tx != tx_q->dirty_tx) {
3692                 stmmac_enable_dma_transmission(priv, priv->ioaddr);
3693                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr,
3694                                        chan);
3695         }
3696
3697         return work_done;
3698 }
3699
3700 /**
3701  *  stmmac_tx_timeout
3702  *  @dev : Pointer to net device structure
3703  *  Description: this function is called when a packet transmission fails to
3704  *   complete within a reasonable time. The driver will mark the error in the
3705  *   netdev structure and arrange for the device to be reset to a sane state
3706  *   in order to transmit a new packet.
3707  */
3708 static void stmmac_tx_timeout(struct net_device *dev)
3709 {
3710         struct stmmac_priv *priv = netdev_priv(dev);
3711
3712         stmmac_global_err(priv);
3713 }
3714
3715 /**
3716  *  stmmac_set_rx_mode - entry point for multicast addressing
3717  *  @dev : pointer to the device structure
3718  *  Description:
3719  *  This function is a driver entry point which gets called by the kernel
3720  *  whenever multicast addresses must be enabled/disabled.
3721  *  Return value:
3722  *  void.
3723  */
3724 static void stmmac_set_rx_mode(struct net_device *dev)
3725 {
3726         struct stmmac_priv *priv = netdev_priv(dev);
3727
3728         stmmac_set_filter(priv, priv->hw, dev);
3729 }
3730
3731 /**
3732  *  stmmac_change_mtu - entry point to change MTU size for the device.
3733  *  @dev : device pointer.
3734  *  @new_mtu : the new MTU size for the device.
3735  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3736  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3737  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3738  *  Return value:
3739  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3740  *  file on failure.
3741  */
3742 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3743 {
3744         struct stmmac_priv *priv = netdev_priv(dev);
3745
3746         if (netif_running(dev)) {
3747                 netdev_err(priv->dev, "must be stopped to change its MTU\n");
3748                 return -EBUSY;
3749         }
3750
3751         dev->mtu = new_mtu;
3752
3753         netdev_update_features(dev);
3754
3755         return 0;
3756 }
3757
3758 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3759                                              netdev_features_t features)
3760 {
3761         struct stmmac_priv *priv = netdev_priv(dev);
3762
3763         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3764                 features &= ~NETIF_F_RXCSUM;
3765
3766         if (!priv->plat->tx_coe)
3767                 features &= ~NETIF_F_CSUM_MASK;
3768
3769         /* Some GMAC devices have a bugged Jumbo frame support that
3770          * needs to have the Tx COE disabled for oversized frames
3771          * (due to limited buffer sizes). In this case we disable
3772          * the TX csum insertion in the TDES and not use SF.
3773          */
3774         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3775                 features &= ~NETIF_F_CSUM_MASK;
3776
3777         /* Disable tso if asked by ethtool */
3778         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3779                 if (features & NETIF_F_TSO)
3780                         priv->tso = true;
3781                 else
3782                         priv->tso = false;
3783         }
3784
3785         return features;
3786 }
3787
3788 static int stmmac_set_features(struct net_device *netdev,
3789                                netdev_features_t features)
3790 {
3791         struct stmmac_priv *priv = netdev_priv(netdev);
3792         bool sph_en;
3793         u32 chan;
3794
3795         /* Keep the COE Type in case of csum is supporting */
3796         if (features & NETIF_F_RXCSUM)
3797                 priv->hw->rx_csum = priv->plat->rx_coe;
3798         else
3799                 priv->hw->rx_csum = 0;
3800         /* No check needed because rx_coe has been set before and it will be
3801          * fixed in case of issue.
3802          */
3803         stmmac_rx_ipc(priv, priv->hw);
3804
3805         sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3806         for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
3807                 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3808
3809         return 0;
3810 }
3811
3812 /**
3813  *  stmmac_interrupt - main ISR
3814  *  @irq: interrupt number.
3815  *  @dev_id: to pass the net device pointer.
3816  *  Description: this is the main driver interrupt service routine.
3817  *  It can call:
3818  *  o DMA service routine (to manage incoming frame reception and transmission
3819  *    status)
3820  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3821  *    interrupts.
3822  */
3823 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3824 {
3825         struct net_device *dev = (struct net_device *)dev_id;
3826         struct stmmac_priv *priv = netdev_priv(dev);
3827         u32 rx_cnt = priv->plat->rx_queues_to_use;
3828         u32 tx_cnt = priv->plat->tx_queues_to_use;
3829         u32 queues_count;
3830         u32 queue;
3831         bool xmac;
3832
3833         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3834         queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3835
3836         if (priv->irq_wake)
3837                 pm_wakeup_event(priv->device, 0);
3838
3839         if (unlikely(!dev)) {
3840                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3841                 return IRQ_NONE;
3842         }
3843
3844         /* Check if adapter is up */
3845         if (test_bit(STMMAC_DOWN, &priv->state))
3846                 return IRQ_HANDLED;
3847         /* Check if a fatal error happened */
3848         if (stmmac_safety_feat_interrupt(priv))
3849                 return IRQ_HANDLED;
3850
3851         /* To handle GMAC own interrupts */
3852         if ((priv->plat->has_gmac) || xmac) {
3853                 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3854                 int mtl_status;
3855
3856                 if (unlikely(status)) {
3857                         /* For LPI we need to save the tx status */
3858                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3859                                 priv->tx_path_in_lpi_mode = true;
3860                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3861                                 priv->tx_path_in_lpi_mode = false;
3862                 }
3863
3864                 for (queue = 0; queue < queues_count; queue++) {
3865                         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3866
3867                         mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3868                                                                 queue);
3869                         if (mtl_status != -EINVAL)
3870                                 status |= mtl_status;
3871
3872                         if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3873                                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3874                                                        rx_q->rx_tail_addr,
3875                                                        queue);
3876                 }
3877
3878                 /* PCS link status */
3879                 if (priv->hw->pcs) {
3880                         if (priv->xstats.pcs_link)
3881                                 netif_carrier_on(dev);
3882                         else
3883                                 netif_carrier_off(dev);
3884                 }
3885         }
3886
3887         /* To handle DMA interrupts */
3888         stmmac_dma_interrupt(priv);
3889
3890         return IRQ_HANDLED;
3891 }
3892
3893 #ifdef CONFIG_NET_POLL_CONTROLLER
3894 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3895  * to allow network I/O with interrupts disabled.
3896  */
3897 static void stmmac_poll_controller(struct net_device *dev)
3898 {
3899         disable_irq(dev->irq);
3900         stmmac_interrupt(dev->irq, dev);
3901         enable_irq(dev->irq);
3902 }
3903 #endif
3904
3905 /**
3906  *  stmmac_ioctl - Entry point for the Ioctl
3907  *  @dev: Device pointer.
3908  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3909  *  a proprietary structure used to pass information to the driver.
3910  *  @cmd: IOCTL command
3911  *  Description:
3912  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3913  */
3914 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3915 {
3916         struct stmmac_priv *priv = netdev_priv (dev);
3917         int ret = -EOPNOTSUPP;
3918
3919         if (!netif_running(dev))
3920                 return -EINVAL;
3921
3922         switch (cmd) {
3923         case SIOCGMIIPHY:
3924         case SIOCGMIIREG:
3925         case SIOCSMIIREG:
3926                 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
3927                 break;
3928         case SIOCSHWTSTAMP:
3929                 ret = stmmac_hwtstamp_set(dev, rq);
3930                 break;
3931         case SIOCGHWTSTAMP:
3932                 ret = stmmac_hwtstamp_get(dev, rq);
3933                 break;
3934         default:
3935                 break;
3936         }
3937
3938         return ret;
3939 }
3940
3941 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3942                                     void *cb_priv)
3943 {
3944         struct stmmac_priv *priv = cb_priv;
3945         int ret = -EOPNOTSUPP;
3946
3947         if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
3948                 return ret;
3949
3950         stmmac_disable_all_queues(priv);
3951
3952         switch (type) {
3953         case TC_SETUP_CLSU32:
3954                 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
3955                 break;
3956         case TC_SETUP_CLSFLOWER:
3957                 ret = stmmac_tc_setup_cls(priv, priv, type_data);
3958                 break;
3959         default:
3960                 break;
3961         }
3962
3963         stmmac_enable_all_queues(priv);
3964         return ret;
3965 }
3966
3967 static LIST_HEAD(stmmac_block_cb_list);
3968
3969 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
3970                            void *type_data)
3971 {
3972         struct stmmac_priv *priv = netdev_priv(ndev);
3973
3974         switch (type) {
3975         case TC_SETUP_BLOCK:
3976                 return flow_block_cb_setup_simple(type_data,
3977                                                   &stmmac_block_cb_list,
3978                                                   stmmac_setup_tc_block_cb,
3979                                                   priv, priv, true);
3980         case TC_SETUP_QDISC_CBS:
3981                 return stmmac_tc_setup_cbs(priv, priv, type_data);
3982         default:
3983                 return -EOPNOTSUPP;
3984         }
3985 }
3986
3987 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
3988                                struct net_device *sb_dev)
3989 {
3990         if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3991                 /*
3992                  * There is no way to determine the number of TSO
3993                  * capable Queues. Let's use always the Queue 0
3994                  * because if TSO is supported then at least this
3995                  * one will be capable.
3996                  */
3997                 return 0;
3998         }
3999
4000         return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4001 }
4002
4003 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4004 {
4005         struct stmmac_priv *priv = netdev_priv(ndev);
4006         int ret = 0;
4007
4008         ret = eth_mac_addr(ndev, addr);
4009         if (ret)
4010                 return ret;
4011
4012         stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4013
4014         return ret;
4015 }
4016
4017 #ifdef CONFIG_DEBUG_FS
4018 static struct dentry *stmmac_fs_dir;
4019
4020 static void sysfs_display_ring(void *head, int size, int extend_desc,
4021                                struct seq_file *seq)
4022 {
4023         int i;
4024         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4025         struct dma_desc *p = (struct dma_desc *)head;
4026
4027         for (i = 0; i < size; i++) {
4028                 if (extend_desc) {
4029                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4030                                    i, (unsigned int)virt_to_phys(ep),
4031                                    le32_to_cpu(ep->basic.des0),
4032                                    le32_to_cpu(ep->basic.des1),
4033                                    le32_to_cpu(ep->basic.des2),
4034                                    le32_to_cpu(ep->basic.des3));
4035                         ep++;
4036                 } else {
4037                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4038                                    i, (unsigned int)virt_to_phys(p),
4039                                    le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4040                                    le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4041                         p++;
4042                 }
4043                 seq_printf(seq, "\n");
4044         }
4045 }
4046
4047 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4048 {
4049         struct net_device *dev = seq->private;
4050         struct stmmac_priv *priv = netdev_priv(dev);
4051         u32 rx_count = priv->plat->rx_queues_to_use;
4052         u32 tx_count = priv->plat->tx_queues_to_use;
4053         u32 queue;
4054
4055         if ((dev->flags & IFF_UP) == 0)
4056                 return 0;
4057
4058         for (queue = 0; queue < rx_count; queue++) {
4059                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4060
4061                 seq_printf(seq, "RX Queue %d:\n", queue);
4062
4063                 if (priv->extend_desc) {
4064                         seq_printf(seq, "Extended descriptor ring:\n");
4065                         sysfs_display_ring((void *)rx_q->dma_erx,
4066                                            DMA_RX_SIZE, 1, seq);
4067                 } else {
4068                         seq_printf(seq, "Descriptor ring:\n");
4069                         sysfs_display_ring((void *)rx_q->dma_rx,
4070                                            DMA_RX_SIZE, 0, seq);
4071                 }
4072         }
4073
4074         for (queue = 0; queue < tx_count; queue++) {
4075                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4076
4077                 seq_printf(seq, "TX Queue %d:\n", queue);
4078
4079                 if (priv->extend_desc) {
4080                         seq_printf(seq, "Extended descriptor ring:\n");
4081                         sysfs_display_ring((void *)tx_q->dma_etx,
4082                                            DMA_TX_SIZE, 1, seq);
4083                 } else {
4084                         seq_printf(seq, "Descriptor ring:\n");
4085                         sysfs_display_ring((void *)tx_q->dma_tx,
4086                                            DMA_TX_SIZE, 0, seq);
4087                 }
4088         }
4089
4090         return 0;
4091 }
4092 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4093
4094 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4095 {
4096         struct net_device *dev = seq->private;
4097         struct stmmac_priv *priv = netdev_priv(dev);
4098
4099         if (!priv->hw_cap_support) {
4100                 seq_printf(seq, "DMA HW features not supported\n");
4101                 return 0;
4102         }
4103
4104         seq_printf(seq, "==============================\n");
4105         seq_printf(seq, "\tDMA HW features\n");
4106         seq_printf(seq, "==============================\n");
4107
4108         seq_printf(seq, "\t10/100 Mbps: %s\n",
4109                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4110         seq_printf(seq, "\t1000 Mbps: %s\n",
4111                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
4112         seq_printf(seq, "\tHalf duplex: %s\n",
4113                    (priv->dma_cap.half_duplex) ? "Y" : "N");
4114         seq_printf(seq, "\tHash Filter: %s\n",
4115                    (priv->dma_cap.hash_filter) ? "Y" : "N");
4116         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4117                    (priv->dma_cap.multi_addr) ? "Y" : "N");
4118         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4119                    (priv->dma_cap.pcs) ? "Y" : "N");
4120         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4121                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
4122         seq_printf(seq, "\tPMT Remote wake up: %s\n",
4123                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4124         seq_printf(seq, "\tPMT Magic Frame: %s\n",
4125                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4126         seq_printf(seq, "\tRMON module: %s\n",
4127                    (priv->dma_cap.rmon) ? "Y" : "N");
4128         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4129                    (priv->dma_cap.time_stamp) ? "Y" : "N");
4130         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4131                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
4132         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4133                    (priv->dma_cap.eee) ? "Y" : "N");
4134         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4135         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4136                    (priv->dma_cap.tx_coe) ? "Y" : "N");
4137         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4138                 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4139                            (priv->dma_cap.rx_coe) ? "Y" : "N");
4140         } else {
4141                 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4142                            (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4143                 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4144                            (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4145         }
4146         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4147                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4148         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4149                    priv->dma_cap.number_rx_channel);
4150         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4151                    priv->dma_cap.number_tx_channel);
4152         seq_printf(seq, "\tEnhanced descriptors: %s\n",
4153                    (priv->dma_cap.enh_desc) ? "Y" : "N");
4154
4155         return 0;
4156 }
4157 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4158
4159 static void stmmac_init_fs(struct net_device *dev)
4160 {
4161         struct stmmac_priv *priv = netdev_priv(dev);
4162
4163         /* Create per netdev entries */
4164         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4165
4166         /* Entry to report DMA RX/TX rings */
4167         debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4168                             &stmmac_rings_status_fops);
4169
4170         /* Entry to report the DMA HW features */
4171         debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4172                             &stmmac_dma_cap_fops);
4173 }
4174
4175 static void stmmac_exit_fs(struct net_device *dev)
4176 {
4177         struct stmmac_priv *priv = netdev_priv(dev);
4178
4179         debugfs_remove_recursive(priv->dbgfs_dir);
4180 }
4181 #endif /* CONFIG_DEBUG_FS */
4182
4183 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4184 {
4185         unsigned char *data = (unsigned char *)&vid_le;
4186         unsigned char data_byte = 0;
4187         u32 crc = ~0x0;
4188         u32 temp = 0;
4189         int i, bits;
4190
4191         bits = get_bitmask_order(VLAN_VID_MASK);
4192         for (i = 0; i < bits; i++) {
4193                 if ((i % 8) == 0)
4194                         data_byte = data[i / 8];
4195
4196                 temp = ((crc & 1) ^ data_byte) & 1;
4197                 crc >>= 1;
4198                 data_byte >>= 1;
4199
4200                 if (temp)
4201                         crc ^= 0xedb88320;
4202         }
4203
4204         return crc;
4205 }
4206
4207 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4208 {
4209         u32 crc, hash = 0;
4210         u16 vid;
4211
4212         for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4213                 __le16 vid_le = cpu_to_le16(vid);
4214                 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4215                 hash |= (1 << crc);
4216         }
4217
4218         return stmmac_update_vlan_hash(priv, priv->hw, hash, is_double);
4219 }
4220
4221 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4222 {
4223         struct stmmac_priv *priv = netdev_priv(ndev);
4224         bool is_double = false;
4225         int ret;
4226
4227         if (!priv->dma_cap.vlhash)
4228                 return -EOPNOTSUPP;
4229         if (be16_to_cpu(proto) == ETH_P_8021AD)
4230                 is_double = true;
4231
4232         set_bit(vid, priv->active_vlans);
4233         ret = stmmac_vlan_update(priv, is_double);
4234         if (ret) {
4235                 clear_bit(vid, priv->active_vlans);
4236                 return ret;
4237         }
4238
4239         return ret;
4240 }
4241
4242 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4243 {
4244         struct stmmac_priv *priv = netdev_priv(ndev);
4245         bool is_double = false;
4246
4247         if (!priv->dma_cap.vlhash)
4248                 return -EOPNOTSUPP;
4249         if (be16_to_cpu(proto) == ETH_P_8021AD)
4250                 is_double = true;
4251
4252         clear_bit(vid, priv->active_vlans);
4253         return stmmac_vlan_update(priv, is_double);
4254 }
4255
4256 static const struct net_device_ops stmmac_netdev_ops = {
4257         .ndo_open = stmmac_open,
4258         .ndo_start_xmit = stmmac_xmit,
4259         .ndo_stop = stmmac_release,
4260         .ndo_change_mtu = stmmac_change_mtu,
4261         .ndo_fix_features = stmmac_fix_features,
4262         .ndo_set_features = stmmac_set_features,
4263         .ndo_set_rx_mode = stmmac_set_rx_mode,
4264         .ndo_tx_timeout = stmmac_tx_timeout,
4265         .ndo_do_ioctl = stmmac_ioctl,
4266         .ndo_setup_tc = stmmac_setup_tc,
4267         .ndo_select_queue = stmmac_select_queue,
4268 #ifdef CONFIG_NET_POLL_CONTROLLER
4269         .ndo_poll_controller = stmmac_poll_controller,
4270 #endif
4271         .ndo_set_mac_address = stmmac_set_mac_address,
4272         .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4273         .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4274 };
4275
4276 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4277 {
4278         if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4279                 return;
4280         if (test_bit(STMMAC_DOWN, &priv->state))
4281                 return;
4282
4283         netdev_err(priv->dev, "Reset adapter.\n");
4284
4285         rtnl_lock();
4286         netif_trans_update(priv->dev);
4287         while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4288                 usleep_range(1000, 2000);
4289
4290         set_bit(STMMAC_DOWN, &priv->state);
4291         dev_close(priv->dev);
4292         dev_open(priv->dev, NULL);
4293         clear_bit(STMMAC_DOWN, &priv->state);
4294         clear_bit(STMMAC_RESETING, &priv->state);
4295         rtnl_unlock();
4296 }
4297
4298 static void stmmac_service_task(struct work_struct *work)
4299 {
4300         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4301                         service_task);
4302
4303         stmmac_reset_subtask(priv);
4304         clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4305 }
4306
4307 /**
4308  *  stmmac_hw_init - Init the MAC device
4309  *  @priv: driver private structure
4310  *  Description: this function is to configure the MAC device according to
4311  *  some platform parameters or the HW capability register. It prepares the
4312  *  driver to use either ring or chain modes and to setup either enhanced or
4313  *  normal descriptors.
4314  */
4315 static int stmmac_hw_init(struct stmmac_priv *priv)
4316 {
4317         int ret;
4318
4319         /* dwmac-sun8i only work in chain mode */
4320         if (priv->plat->has_sun8i)
4321                 chain_mode = 1;
4322         priv->chain_mode = chain_mode;
4323
4324         /* Initialize HW Interface */
4325         ret = stmmac_hwif_init(priv);
4326         if (ret)
4327                 return ret;
4328
4329         /* Get the HW capability (new GMAC newer than 3.50a) */
4330         priv->hw_cap_support = stmmac_get_hw_features(priv);
4331         if (priv->hw_cap_support) {
4332                 dev_info(priv->device, "DMA HW capability register supported\n");
4333
4334                 /* We can override some gmac/dma configuration fields: e.g.
4335                  * enh_desc, tx_coe (e.g. that are passed through the
4336                  * platform) with the values from the HW capability
4337                  * register (if supported).
4338                  */
4339                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
4340                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4341                 priv->hw->pmt = priv->plat->pmt;
4342                 if (priv->dma_cap.hash_tb_sz) {
4343                         priv->hw->multicast_filter_bins =
4344                                         (BIT(priv->dma_cap.hash_tb_sz) << 5);
4345                         priv->hw->mcast_bits_log2 =
4346                                         ilog2(priv->hw->multicast_filter_bins);
4347                 }
4348
4349                 /* TXCOE doesn't work in thresh DMA mode */
4350                 if (priv->plat->force_thresh_dma_mode)
4351                         priv->plat->tx_coe = 0;
4352                 else
4353                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
4354
4355                 /* In case of GMAC4 rx_coe is from HW cap register. */
4356                 priv->plat->rx_coe = priv->dma_cap.rx_coe;
4357
4358                 if (priv->dma_cap.rx_coe_type2)
4359                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4360                 else if (priv->dma_cap.rx_coe_type1)
4361                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4362
4363         } else {
4364                 dev_info(priv->device, "No HW DMA feature register supported\n");
4365         }
4366
4367         if (priv->plat->rx_coe) {
4368                 priv->hw->rx_csum = priv->plat->rx_coe;
4369                 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4370                 if (priv->synopsys_id < DWMAC_CORE_4_00)
4371                         dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4372         }
4373         if (priv->plat->tx_coe)
4374                 dev_info(priv->device, "TX Checksum insertion supported\n");
4375
4376         if (priv->plat->pmt) {
4377                 dev_info(priv->device, "Wake-Up On Lan supported\n");
4378                 device_set_wakeup_capable(priv->device, 1);
4379         }
4380
4381         if (priv->dma_cap.tsoen)
4382                 dev_info(priv->device, "TSO supported\n");
4383
4384         /* Run HW quirks, if any */
4385         if (priv->hwif_quirks) {
4386                 ret = priv->hwif_quirks(priv);
4387                 if (ret)
4388                         return ret;
4389         }
4390
4391         /* Rx Watchdog is available in the COREs newer than the 3.40.
4392          * In some case, for example on bugged HW this feature
4393          * has to be disable and this can be done by passing the
4394          * riwt_off field from the platform.
4395          */
4396         if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4397             (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4398                 priv->use_riwt = 1;
4399                 dev_info(priv->device,
4400                          "Enable RX Mitigation via HW Watchdog Timer\n");
4401         }
4402
4403         return 0;
4404 }
4405
4406 /**
4407  * stmmac_dvr_probe
4408  * @device: device pointer
4409  * @plat_dat: platform data pointer
4410  * @res: stmmac resource pointer
4411  * Description: this is the main probe function used to
4412  * call the alloc_etherdev, allocate the priv structure.
4413  * Return:
4414  * returns 0 on success, otherwise errno.
4415  */
4416 int stmmac_dvr_probe(struct device *device,
4417                      struct plat_stmmacenet_data *plat_dat,
4418                      struct stmmac_resources *res)
4419 {
4420         struct net_device *ndev = NULL;
4421         struct stmmac_priv *priv;
4422         u32 queue, rxq, maxq;
4423         int i, ret = 0;
4424
4425         ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4426                                        MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4427         if (!ndev)
4428                 return -ENOMEM;
4429
4430         SET_NETDEV_DEV(ndev, device);
4431
4432         priv = netdev_priv(ndev);
4433         priv->device = device;
4434         priv->dev = ndev;
4435
4436         stmmac_set_ethtool_ops(ndev);
4437         priv->pause = pause;
4438         priv->plat = plat_dat;
4439         priv->ioaddr = res->addr;
4440         priv->dev->base_addr = (unsigned long)res->addr;
4441
4442         priv->dev->irq = res->irq;
4443         priv->wol_irq = res->wol_irq;
4444         priv->lpi_irq = res->lpi_irq;
4445
4446         if (!IS_ERR_OR_NULL(res->mac))
4447                 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4448
4449         dev_set_drvdata(device, priv->dev);
4450
4451         /* Verify driver arguments */
4452         stmmac_verify_args();
4453
4454         /* Allocate workqueue */
4455         priv->wq = create_singlethread_workqueue("stmmac_wq");
4456         if (!priv->wq) {
4457                 dev_err(priv->device, "failed to create workqueue\n");
4458                 return -ENOMEM;
4459         }
4460
4461         INIT_WORK(&priv->service_task, stmmac_service_task);
4462
4463         /* Override with kernel parameters if supplied XXX CRS XXX
4464          * this needs to have multiple instances
4465          */
4466         if ((phyaddr >= 0) && (phyaddr <= 31))
4467                 priv->plat->phy_addr = phyaddr;
4468
4469         if (priv->plat->stmmac_rst) {
4470                 ret = reset_control_assert(priv->plat->stmmac_rst);
4471                 reset_control_deassert(priv->plat->stmmac_rst);
4472                 /* Some reset controllers have only reset callback instead of
4473                  * assert + deassert callbacks pair.
4474                  */
4475                 if (ret == -ENOTSUPP)
4476                         reset_control_reset(priv->plat->stmmac_rst);
4477         }
4478
4479         /* Init MAC and get the capabilities */
4480         ret = stmmac_hw_init(priv);
4481         if (ret)
4482                 goto error_hw_init;
4483
4484         stmmac_check_ether_addr(priv);
4485
4486         /* Configure real RX and TX queues */
4487         netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4488         netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4489
4490         ndev->netdev_ops = &stmmac_netdev_ops;
4491
4492         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4493                             NETIF_F_RXCSUM;
4494
4495         ret = stmmac_tc_init(priv, priv);
4496         if (!ret) {
4497                 ndev->hw_features |= NETIF_F_HW_TC;
4498         }
4499
4500         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4501                 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4502                 priv->tso = true;
4503                 dev_info(priv->device, "TSO feature enabled\n");
4504         }
4505
4506         if (priv->dma_cap.sphen) {
4507                 ndev->hw_features |= NETIF_F_GRO;
4508                 priv->sph = true;
4509                 dev_info(priv->device, "SPH feature enabled\n");
4510         }
4511
4512         if (priv->dma_cap.addr64) {
4513                 ret = dma_set_mask_and_coherent(device,
4514                                 DMA_BIT_MASK(priv->dma_cap.addr64));
4515                 if (!ret) {
4516                         dev_info(priv->device, "Using %d bits DMA width\n",
4517                                  priv->dma_cap.addr64);
4518                 } else {
4519                         ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
4520                         if (ret) {
4521                                 dev_err(priv->device, "Failed to set DMA Mask\n");
4522                                 goto error_hw_init;
4523                         }
4524
4525                         priv->dma_cap.addr64 = 32;
4526                 }
4527         }
4528
4529         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4530         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4531 #ifdef STMMAC_VLAN_TAG_USED
4532         /* Both mac100 and gmac support receive VLAN tag detection */
4533         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4534         if (priv->dma_cap.vlhash) {
4535                 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4536                 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
4537         }
4538         if (priv->dma_cap.vlins) {
4539                 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
4540                 if (priv->dma_cap.dvlan)
4541                         ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
4542         }
4543 #endif
4544         priv->msg_enable = netif_msg_init(debug, default_msg_level);
4545
4546         /* Initialize RSS */
4547         rxq = priv->plat->rx_queues_to_use;
4548         netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
4549         for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
4550                 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
4551
4552         if (priv->dma_cap.rssen && priv->plat->rss_en)
4553                 ndev->features |= NETIF_F_RXHASH;
4554
4555         /* MTU range: 46 - hw-specific max */
4556         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4557         if (priv->plat->has_xgmac)
4558                 ndev->max_mtu = XGMAC_JUMBO_LEN;
4559         else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4560                 ndev->max_mtu = JUMBO_LEN;
4561         else
4562                 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4563         /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4564          * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4565          */
4566         if ((priv->plat->maxmtu < ndev->max_mtu) &&
4567             (priv->plat->maxmtu >= ndev->min_mtu))
4568                 ndev->max_mtu = priv->plat->maxmtu;
4569         else if (priv->plat->maxmtu < ndev->min_mtu)
4570                 dev_warn(priv->device,
4571                          "%s: warning: maxmtu having invalid value (%d)\n",
4572                          __func__, priv->plat->maxmtu);
4573
4574         if (flow_ctrl)
4575                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
4576
4577         /* Setup channels NAPI */
4578         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4579
4580         for (queue = 0; queue < maxq; queue++) {
4581                 struct stmmac_channel *ch = &priv->channel[queue];
4582
4583                 ch->priv_data = priv;
4584                 ch->index = queue;
4585
4586                 if (queue < priv->plat->rx_queues_to_use) {
4587                         netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4588                                        NAPI_POLL_WEIGHT);
4589                 }
4590                 if (queue < priv->plat->tx_queues_to_use) {
4591                         netif_tx_napi_add(ndev, &ch->tx_napi,
4592                                           stmmac_napi_poll_tx,
4593                                           NAPI_POLL_WEIGHT);
4594                 }
4595         }
4596
4597         mutex_init(&priv->lock);
4598
4599         /* If a specific clk_csr value is passed from the platform
4600          * this means that the CSR Clock Range selection cannot be
4601          * changed at run-time and it is fixed. Viceversa the driver'll try to
4602          * set the MDC clock dynamically according to the csr actual
4603          * clock input.
4604          */
4605         if (priv->plat->clk_csr >= 0)
4606                 priv->clk_csr = priv->plat->clk_csr;
4607         else
4608                 stmmac_clk_csr_set(priv);
4609
4610         stmmac_check_pcs_mode(priv);
4611
4612         if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4613             priv->hw->pcs != STMMAC_PCS_TBI &&
4614             priv->hw->pcs != STMMAC_PCS_RTBI) {
4615                 /* MDIO bus Registration */
4616                 ret = stmmac_mdio_register(ndev);
4617                 if (ret < 0) {
4618                         dev_err(priv->device,
4619                                 "%s: MDIO bus (id: %d) registration failed",
4620                                 __func__, priv->plat->bus_id);
4621                         goto error_mdio_register;
4622                 }
4623         }
4624
4625         ret = stmmac_phy_setup(priv);
4626         if (ret) {
4627                 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
4628                 goto error_phy_setup;
4629         }
4630
4631         ret = register_netdev(ndev);
4632         if (ret) {
4633                 dev_err(priv->device, "%s: ERROR %i registering the device\n",
4634                         __func__, ret);
4635                 goto error_netdev_register;
4636         }
4637
4638 #ifdef CONFIG_DEBUG_FS
4639         stmmac_init_fs(ndev);
4640 #endif
4641
4642         return ret;
4643
4644 error_netdev_register:
4645         phylink_destroy(priv->phylink);
4646 error_phy_setup:
4647         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4648             priv->hw->pcs != STMMAC_PCS_TBI &&
4649             priv->hw->pcs != STMMAC_PCS_RTBI)
4650                 stmmac_mdio_unregister(ndev);
4651 error_mdio_register:
4652         for (queue = 0; queue < maxq; queue++) {
4653                 struct stmmac_channel *ch = &priv->channel[queue];
4654
4655                 if (queue < priv->plat->rx_queues_to_use)
4656                         netif_napi_del(&ch->rx_napi);
4657                 if (queue < priv->plat->tx_queues_to_use)
4658                         netif_napi_del(&ch->tx_napi);
4659         }
4660 error_hw_init:
4661         destroy_workqueue(priv->wq);
4662
4663         return ret;
4664 }
4665 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4666
4667 /**
4668  * stmmac_dvr_remove
4669  * @dev: device pointer
4670  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4671  * changes the link status, releases the DMA descriptor rings.
4672  */
4673 int stmmac_dvr_remove(struct device *dev)
4674 {
4675         struct net_device *ndev = dev_get_drvdata(dev);
4676         struct stmmac_priv *priv = netdev_priv(ndev);
4677
4678         netdev_info(priv->dev, "%s: removing driver", __func__);
4679
4680 #ifdef CONFIG_DEBUG_FS
4681         stmmac_exit_fs(ndev);
4682 #endif
4683         stmmac_stop_all_dma(priv);
4684
4685         stmmac_mac_set(priv, priv->ioaddr, false);
4686         netif_carrier_off(ndev);
4687         unregister_netdev(ndev);
4688         phylink_destroy(priv->phylink);
4689         if (priv->plat->stmmac_rst)
4690                 reset_control_assert(priv->plat->stmmac_rst);
4691         clk_disable_unprepare(priv->plat->pclk);
4692         clk_disable_unprepare(priv->plat->stmmac_clk);
4693         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4694             priv->hw->pcs != STMMAC_PCS_TBI &&
4695             priv->hw->pcs != STMMAC_PCS_RTBI)
4696                 stmmac_mdio_unregister(ndev);
4697         destroy_workqueue(priv->wq);
4698         mutex_destroy(&priv->lock);
4699
4700         return 0;
4701 }
4702 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4703
4704 /**
4705  * stmmac_suspend - suspend callback
4706  * @dev: device pointer
4707  * Description: this is the function to suspend the device and it is called
4708  * by the platform driver to stop the network queue, release the resources,
4709  * program the PMT register (for WoL), clean and release driver resources.
4710  */
4711 int stmmac_suspend(struct device *dev)
4712 {
4713         struct net_device *ndev = dev_get_drvdata(dev);
4714         struct stmmac_priv *priv = netdev_priv(ndev);
4715
4716         if (!ndev || !netif_running(ndev))
4717                 return 0;
4718
4719         phylink_mac_change(priv->phylink, false);
4720
4721         mutex_lock(&priv->lock);
4722
4723         netif_device_detach(ndev);
4724         stmmac_stop_all_queues(priv);
4725
4726         stmmac_disable_all_queues(priv);
4727
4728         /* Stop TX/RX DMA */
4729         stmmac_stop_all_dma(priv);
4730
4731         /* Enable Power down mode by programming the PMT regs */
4732         if (device_may_wakeup(priv->device)) {
4733                 stmmac_pmt(priv, priv->hw, priv->wolopts);
4734                 priv->irq_wake = 1;
4735         } else {
4736                 mutex_unlock(&priv->lock);
4737                 rtnl_lock();
4738                 phylink_stop(priv->phylink);
4739                 rtnl_unlock();
4740                 mutex_lock(&priv->lock);
4741
4742                 stmmac_mac_set(priv, priv->ioaddr, false);
4743                 pinctrl_pm_select_sleep_state(priv->device);
4744                 /* Disable clock in case of PWM is off */
4745                 clk_disable(priv->plat->pclk);
4746                 clk_disable(priv->plat->stmmac_clk);
4747         }
4748         mutex_unlock(&priv->lock);
4749
4750         priv->speed = SPEED_UNKNOWN;
4751         return 0;
4752 }
4753 EXPORT_SYMBOL_GPL(stmmac_suspend);
4754
4755 /**
4756  * stmmac_reset_queues_param - reset queue parameters
4757  * @dev: device pointer
4758  */
4759 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4760 {
4761         u32 rx_cnt = priv->plat->rx_queues_to_use;
4762         u32 tx_cnt = priv->plat->tx_queues_to_use;
4763         u32 queue;
4764
4765         for (queue = 0; queue < rx_cnt; queue++) {
4766                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4767
4768                 rx_q->cur_rx = 0;
4769                 rx_q->dirty_rx = 0;
4770         }
4771
4772         for (queue = 0; queue < tx_cnt; queue++) {
4773                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4774
4775                 tx_q->cur_tx = 0;
4776                 tx_q->dirty_tx = 0;
4777                 tx_q->mss = 0;
4778         }
4779 }
4780
4781 /**
4782  * stmmac_resume - resume callback
4783  * @dev: device pointer
4784  * Description: when resume this function is invoked to setup the DMA and CORE
4785  * in a usable state.
4786  */
4787 int stmmac_resume(struct device *dev)
4788 {
4789         struct net_device *ndev = dev_get_drvdata(dev);
4790         struct stmmac_priv *priv = netdev_priv(ndev);
4791
4792         if (!netif_running(ndev))
4793                 return 0;
4794
4795         /* Power Down bit, into the PM register, is cleared
4796          * automatically as soon as a magic packet or a Wake-up frame
4797          * is received. Anyway, it's better to manually clear
4798          * this bit because it can generate problems while resuming
4799          * from another devices (e.g. serial console).
4800          */
4801         if (device_may_wakeup(priv->device)) {
4802                 mutex_lock(&priv->lock);
4803                 stmmac_pmt(priv, priv->hw, 0);
4804                 mutex_unlock(&priv->lock);
4805                 priv->irq_wake = 0;
4806         } else {
4807                 pinctrl_pm_select_default_state(priv->device);
4808                 /* enable the clk previously disabled */
4809                 clk_enable(priv->plat->stmmac_clk);
4810                 clk_enable(priv->plat->pclk);
4811                 /* reset the phy so that it's ready */
4812                 if (priv->mii)
4813                         stmmac_mdio_reset(priv->mii);
4814         }
4815
4816         netif_device_attach(ndev);
4817
4818         mutex_lock(&priv->lock);
4819
4820         stmmac_reset_queues_param(priv);
4821
4822         stmmac_clear_descriptors(priv);
4823
4824         stmmac_hw_setup(ndev, false);
4825         stmmac_init_coalesce(priv);
4826         stmmac_set_rx_mode(ndev);
4827
4828         stmmac_enable_all_queues(priv);
4829
4830         stmmac_start_all_queues(priv);
4831
4832         mutex_unlock(&priv->lock);
4833
4834         if (!device_may_wakeup(priv->device)) {
4835                 rtnl_lock();
4836                 phylink_start(priv->phylink);
4837                 rtnl_unlock();
4838         }
4839
4840         phylink_mac_change(priv->phylink, true);
4841
4842         return 0;
4843 }
4844 EXPORT_SYMBOL_GPL(stmmac_resume);
4845
4846 #ifndef MODULE
4847 static int __init stmmac_cmdline_opt(char *str)
4848 {
4849         char *opt;
4850
4851         if (!str || !*str)
4852                 return -EINVAL;
4853         while ((opt = strsep(&str, ",")) != NULL) {
4854                 if (!strncmp(opt, "debug:", 6)) {
4855                         if (kstrtoint(opt + 6, 0, &debug))
4856                                 goto err;
4857                 } else if (!strncmp(opt, "phyaddr:", 8)) {
4858                         if (kstrtoint(opt + 8, 0, &phyaddr))
4859                                 goto err;
4860                 } else if (!strncmp(opt, "buf_sz:", 7)) {
4861                         if (kstrtoint(opt + 7, 0, &buf_sz))
4862                                 goto err;
4863                 } else if (!strncmp(opt, "tc:", 3)) {
4864                         if (kstrtoint(opt + 3, 0, &tc))
4865                                 goto err;
4866                 } else if (!strncmp(opt, "watchdog:", 9)) {
4867                         if (kstrtoint(opt + 9, 0, &watchdog))
4868                                 goto err;
4869                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
4870                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
4871                                 goto err;
4872                 } else if (!strncmp(opt, "pause:", 6)) {
4873                         if (kstrtoint(opt + 6, 0, &pause))
4874                                 goto err;
4875                 } else if (!strncmp(opt, "eee_timer:", 10)) {
4876                         if (kstrtoint(opt + 10, 0, &eee_timer))
4877                                 goto err;
4878                 } else if (!strncmp(opt, "chain_mode:", 11)) {
4879                         if (kstrtoint(opt + 11, 0, &chain_mode))
4880                                 goto err;
4881                 }
4882         }
4883         return 0;
4884
4885 err:
4886         pr_err("%s: ERROR broken module parameter conversion", __func__);
4887         return -EINVAL;
4888 }
4889
4890 __setup("stmmaceth=", stmmac_cmdline_opt);
4891 #endif /* MODULE */
4892
4893 static int __init stmmac_init(void)
4894 {
4895 #ifdef CONFIG_DEBUG_FS
4896         /* Create debugfs main directory if it doesn't exist yet */
4897         if (!stmmac_fs_dir)
4898                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
4899 #endif
4900
4901         return 0;
4902 }
4903
4904 static void __exit stmmac_exit(void)
4905 {
4906 #ifdef CONFIG_DEBUG_FS
4907         debugfs_remove_recursive(stmmac_fs_dir);
4908 #endif
4909 }
4910
4911 module_init(stmmac_init)
4912 module_exit(stmmac_exit)
4913
4914 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
4915 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
4916 MODULE_LICENSE("GPL");