Merge tag 'mlx5-updates-2019-06-13' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4
5         Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15
16   The full GNU General Public License is included in this distribution in
17   the file called "COPYING".
18
19   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
20
21   Documentation available at:
22         http://www.stlinux.com
23   Support available at:
24         https://bugzilla.stlinux.com/
25 *******************************************************************************/
26
27 #include <linux/clk.h>
28 #include <linux/kernel.h>
29 #include <linux/interrupt.h>
30 #include <linux/ip.h>
31 #include <linux/tcp.h>
32 #include <linux/skbuff.h>
33 #include <linux/ethtool.h>
34 #include <linux/if_ether.h>
35 #include <linux/crc32.h>
36 #include <linux/mii.h>
37 #include <linux/if.h>
38 #include <linux/if_vlan.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/slab.h>
41 #include <linux/prefetch.h>
42 #include <linux/pinctrl/consumer.h>
43 #ifdef CONFIG_DEBUG_FS
44 #include <linux/debugfs.h>
45 #include <linux/seq_file.h>
46 #endif /* CONFIG_DEBUG_FS */
47 #include <linux/net_tstamp.h>
48 #include <linux/phylink.h>
49 #include <net/pkt_cls.h>
50 #include "stmmac_ptp.h"
51 #include "stmmac.h"
52 #include <linux/reset.h>
53 #include <linux/of_mdio.h>
54 #include "dwmac1000.h"
55 #include "dwxgmac2.h"
56 #include "hwif.h"
57
58 #define STMMAC_ALIGN(x)         __ALIGN_KERNEL(x, SMP_CACHE_BYTES)
59 #define TSO_MAX_BUFF_SIZE       (SZ_16K - 1)
60
61 /* Module parameters */
62 #define TX_TIMEO        5000
63 static int watchdog = TX_TIMEO;
64 module_param(watchdog, int, 0644);
65 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
66
67 static int debug = -1;
68 module_param(debug, int, 0644);
69 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
70
71 static int phyaddr = -1;
72 module_param(phyaddr, int, 0444);
73 MODULE_PARM_DESC(phyaddr, "Physical device address");
74
75 #define STMMAC_TX_THRESH        (DMA_TX_SIZE / 4)
76 #define STMMAC_RX_THRESH        (DMA_RX_SIZE / 4)
77
78 static int flow_ctrl = FLOW_AUTO;
79 module_param(flow_ctrl, int, 0644);
80 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
81
82 static int pause = PAUSE_TIME;
83 module_param(pause, int, 0644);
84 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
85
86 #define TC_DEFAULT 64
87 static int tc = TC_DEFAULT;
88 module_param(tc, int, 0644);
89 MODULE_PARM_DESC(tc, "DMA threshold control value");
90
91 #define DEFAULT_BUFSIZE 1536
92 static int buf_sz = DEFAULT_BUFSIZE;
93 module_param(buf_sz, int, 0644);
94 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
95
96 #define STMMAC_RX_COPYBREAK     256
97
98 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
99                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
100                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
101
102 #define STMMAC_DEFAULT_LPI_TIMER        1000
103 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
104 module_param(eee_timer, int, 0644);
105 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
106 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
107
108 /* By default the driver will use the ring mode to manage tx and rx descriptors,
109  * but allow user to force to use the chain instead of the ring
110  */
111 static unsigned int chain_mode;
112 module_param(chain_mode, int, 0444);
113 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
114
115 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
116
117 #ifdef CONFIG_DEBUG_FS
118 static int stmmac_init_fs(struct net_device *dev);
119 static void stmmac_exit_fs(struct net_device *dev);
120 #endif
121
122 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
123
124 /**
125  * stmmac_verify_args - verify the driver parameters.
126  * Description: it checks the driver parameters and set a default in case of
127  * errors.
128  */
129 static void stmmac_verify_args(void)
130 {
131         if (unlikely(watchdog < 0))
132                 watchdog = TX_TIMEO;
133         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
134                 buf_sz = DEFAULT_BUFSIZE;
135         if (unlikely(flow_ctrl > 1))
136                 flow_ctrl = FLOW_AUTO;
137         else if (likely(flow_ctrl < 0))
138                 flow_ctrl = FLOW_OFF;
139         if (unlikely((pause < 0) || (pause > 0xffff)))
140                 pause = PAUSE_TIME;
141         if (eee_timer < 0)
142                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
143 }
144
145 /**
146  * stmmac_disable_all_queues - Disable all queues
147  * @priv: driver private structure
148  */
149 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
150 {
151         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
152         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
153         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
154         u32 queue;
155
156         for (queue = 0; queue < maxq; queue++) {
157                 struct stmmac_channel *ch = &priv->channel[queue];
158
159                 if (queue < rx_queues_cnt)
160                         napi_disable(&ch->rx_napi);
161                 if (queue < tx_queues_cnt)
162                         napi_disable(&ch->tx_napi);
163         }
164 }
165
166 /**
167  * stmmac_enable_all_queues - Enable all queues
168  * @priv: driver private structure
169  */
170 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
171 {
172         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
173         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
174         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
175         u32 queue;
176
177         for (queue = 0; queue < maxq; queue++) {
178                 struct stmmac_channel *ch = &priv->channel[queue];
179
180                 if (queue < rx_queues_cnt)
181                         napi_enable(&ch->rx_napi);
182                 if (queue < tx_queues_cnt)
183                         napi_enable(&ch->tx_napi);
184         }
185 }
186
187 /**
188  * stmmac_stop_all_queues - Stop all queues
189  * @priv: driver private structure
190  */
191 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
192 {
193         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
194         u32 queue;
195
196         for (queue = 0; queue < tx_queues_cnt; queue++)
197                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
198 }
199
200 /**
201  * stmmac_start_all_queues - Start all queues
202  * @priv: driver private structure
203  */
204 static void stmmac_start_all_queues(struct stmmac_priv *priv)
205 {
206         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
207         u32 queue;
208
209         for (queue = 0; queue < tx_queues_cnt; queue++)
210                 netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
211 }
212
213 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
214 {
215         if (!test_bit(STMMAC_DOWN, &priv->state) &&
216             !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
217                 queue_work(priv->wq, &priv->service_task);
218 }
219
220 static void stmmac_global_err(struct stmmac_priv *priv)
221 {
222         netif_carrier_off(priv->dev);
223         set_bit(STMMAC_RESET_REQUESTED, &priv->state);
224         stmmac_service_event_schedule(priv);
225 }
226
227 /**
228  * stmmac_clk_csr_set - dynamically set the MDC clock
229  * @priv: driver private structure
230  * Description: this is to dynamically set the MDC clock according to the csr
231  * clock input.
232  * Note:
233  *      If a specific clk_csr value is passed from the platform
234  *      this means that the CSR Clock Range selection cannot be
235  *      changed at run-time and it is fixed (as reported in the driver
236  *      documentation). Viceversa the driver will try to set the MDC
237  *      clock dynamically according to the actual clock input.
238  */
239 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
240 {
241         u32 clk_rate;
242
243         clk_rate = clk_get_rate(priv->plat->stmmac_clk);
244
245         /* Platform provided default clk_csr would be assumed valid
246          * for all other cases except for the below mentioned ones.
247          * For values higher than the IEEE 802.3 specified frequency
248          * we can not estimate the proper divider as it is not known
249          * the frequency of clk_csr_i. So we do not change the default
250          * divider.
251          */
252         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
253                 if (clk_rate < CSR_F_35M)
254                         priv->clk_csr = STMMAC_CSR_20_35M;
255                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
256                         priv->clk_csr = STMMAC_CSR_35_60M;
257                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
258                         priv->clk_csr = STMMAC_CSR_60_100M;
259                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
260                         priv->clk_csr = STMMAC_CSR_100_150M;
261                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
262                         priv->clk_csr = STMMAC_CSR_150_250M;
263                 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
264                         priv->clk_csr = STMMAC_CSR_250_300M;
265         }
266
267         if (priv->plat->has_sun8i) {
268                 if (clk_rate > 160000000)
269                         priv->clk_csr = 0x03;
270                 else if (clk_rate > 80000000)
271                         priv->clk_csr = 0x02;
272                 else if (clk_rate > 40000000)
273                         priv->clk_csr = 0x01;
274                 else
275                         priv->clk_csr = 0;
276         }
277
278         if (priv->plat->has_xgmac) {
279                 if (clk_rate > 400000000)
280                         priv->clk_csr = 0x5;
281                 else if (clk_rate > 350000000)
282                         priv->clk_csr = 0x4;
283                 else if (clk_rate > 300000000)
284                         priv->clk_csr = 0x3;
285                 else if (clk_rate > 250000000)
286                         priv->clk_csr = 0x2;
287                 else if (clk_rate > 150000000)
288                         priv->clk_csr = 0x1;
289                 else
290                         priv->clk_csr = 0x0;
291         }
292 }
293
294 static void print_pkt(unsigned char *buf, int len)
295 {
296         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
297         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
298 }
299
300 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
301 {
302         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
303         u32 avail;
304
305         if (tx_q->dirty_tx > tx_q->cur_tx)
306                 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
307         else
308                 avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
309
310         return avail;
311 }
312
313 /**
314  * stmmac_rx_dirty - Get RX queue dirty
315  * @priv: driver private structure
316  * @queue: RX queue index
317  */
318 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
319 {
320         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
321         u32 dirty;
322
323         if (rx_q->dirty_rx <= rx_q->cur_rx)
324                 dirty = rx_q->cur_rx - rx_q->dirty_rx;
325         else
326                 dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
327
328         return dirty;
329 }
330
331 /**
332  * stmmac_enable_eee_mode - check and enter in LPI mode
333  * @priv: driver private structure
334  * Description: this function is to verify and enter in LPI mode in case of
335  * EEE.
336  */
337 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
338 {
339         u32 tx_cnt = priv->plat->tx_queues_to_use;
340         u32 queue;
341
342         /* check if all TX queues have the work finished */
343         for (queue = 0; queue < tx_cnt; queue++) {
344                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
345
346                 if (tx_q->dirty_tx != tx_q->cur_tx)
347                         return; /* still unfinished work */
348         }
349
350         /* Check and enter in LPI mode */
351         if (!priv->tx_path_in_lpi_mode)
352                 stmmac_set_eee_mode(priv, priv->hw,
353                                 priv->plat->en_tx_lpi_clockgating);
354 }
355
356 /**
357  * stmmac_disable_eee_mode - disable and exit from LPI mode
358  * @priv: driver private structure
359  * Description: this function is to exit and disable EEE in case of
360  * LPI state is true. This is called by the xmit.
361  */
362 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
363 {
364         stmmac_reset_eee_mode(priv, priv->hw);
365         del_timer_sync(&priv->eee_ctrl_timer);
366         priv->tx_path_in_lpi_mode = false;
367 }
368
369 /**
370  * stmmac_eee_ctrl_timer - EEE TX SW timer.
371  * @arg : data hook
372  * Description:
373  *  if there is no data transfer and if we are not in LPI state,
374  *  then MAC Transmitter can be moved to LPI state.
375  */
376 static void stmmac_eee_ctrl_timer(struct timer_list *t)
377 {
378         struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
379
380         stmmac_enable_eee_mode(priv);
381         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
382 }
383
384 /**
385  * stmmac_eee_init - init EEE
386  * @priv: driver private structure
387  * Description:
388  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
389  *  can also manage EEE, this function enable the LPI state and start related
390  *  timer.
391  */
392 bool stmmac_eee_init(struct stmmac_priv *priv)
393 {
394         int tx_lpi_timer = priv->tx_lpi_timer;
395
396         /* Using PCS we cannot dial with the phy registers at this stage
397          * so we do not support extra feature like EEE.
398          */
399         if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
400             (priv->hw->pcs == STMMAC_PCS_TBI) ||
401             (priv->hw->pcs == STMMAC_PCS_RTBI))
402                 return false;
403
404         /* Check if MAC core supports the EEE feature. */
405         if (!priv->dma_cap.eee)
406                 return false;
407
408         mutex_lock(&priv->lock);
409
410         /* Check if it needs to be deactivated */
411         if (!priv->eee_active && priv->eee_enabled) {
412                 netdev_dbg(priv->dev, "disable EEE\n");
413                 del_timer_sync(&priv->eee_ctrl_timer);
414                 stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer);
415                 return false;
416         }
417
418         if (priv->eee_active && !priv->eee_enabled) {
419                 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
420                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
421                 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
422                                      tx_lpi_timer);
423         }
424
425         mutex_unlock(&priv->lock);
426         netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
427         return true;
428 }
429
430 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
431  * @priv: driver private structure
432  * @p : descriptor pointer
433  * @skb : the socket buffer
434  * Description :
435  * This function will read timestamp from the descriptor & pass it to stack.
436  * and also perform some sanity checks.
437  */
438 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
439                                    struct dma_desc *p, struct sk_buff *skb)
440 {
441         struct skb_shared_hwtstamps shhwtstamp;
442         u64 ns = 0;
443
444         if (!priv->hwts_tx_en)
445                 return;
446
447         /* exit if skb doesn't support hw tstamp */
448         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
449                 return;
450
451         /* check tx tstamp status */
452         if (stmmac_get_tx_timestamp_status(priv, p)) {
453                 /* get the valid tstamp */
454                 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
455
456                 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
457                 shhwtstamp.hwtstamp = ns_to_ktime(ns);
458
459                 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
460                 /* pass tstamp to stack */
461                 skb_tstamp_tx(skb, &shhwtstamp);
462         }
463
464         return;
465 }
466
467 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
468  * @priv: driver private structure
469  * @p : descriptor pointer
470  * @np : next descriptor pointer
471  * @skb : the socket buffer
472  * Description :
473  * This function will read received packet's timestamp from the descriptor
474  * and pass it to stack. It also perform some sanity checks.
475  */
476 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
477                                    struct dma_desc *np, struct sk_buff *skb)
478 {
479         struct skb_shared_hwtstamps *shhwtstamp = NULL;
480         struct dma_desc *desc = p;
481         u64 ns = 0;
482
483         if (!priv->hwts_rx_en)
484                 return;
485         /* For GMAC4, the valid timestamp is from CTX next desc. */
486         if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
487                 desc = np;
488
489         /* Check if timestamp is available */
490         if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
491                 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
492                 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
493                 shhwtstamp = skb_hwtstamps(skb);
494                 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
495                 shhwtstamp->hwtstamp = ns_to_ktime(ns);
496         } else  {
497                 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
498         }
499 }
500
501 /**
502  *  stmmac_hwtstamp_set - control hardware timestamping.
503  *  @dev: device pointer.
504  *  @ifr: An IOCTL specific structure, that can contain a pointer to
505  *  a proprietary structure used to pass information to the driver.
506  *  Description:
507  *  This function configures the MAC to enable/disable both outgoing(TX)
508  *  and incoming(RX) packets time stamping based on user input.
509  *  Return Value:
510  *  0 on success and an appropriate -ve integer on failure.
511  */
512 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
513 {
514         struct stmmac_priv *priv = netdev_priv(dev);
515         struct hwtstamp_config config;
516         struct timespec64 now;
517         u64 temp = 0;
518         u32 ptp_v2 = 0;
519         u32 tstamp_all = 0;
520         u32 ptp_over_ipv4_udp = 0;
521         u32 ptp_over_ipv6_udp = 0;
522         u32 ptp_over_ethernet = 0;
523         u32 snap_type_sel = 0;
524         u32 ts_master_en = 0;
525         u32 ts_event_en = 0;
526         u32 sec_inc = 0;
527         u32 value = 0;
528         bool xmac;
529
530         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
531
532         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
533                 netdev_alert(priv->dev, "No support for HW time stamping\n");
534                 priv->hwts_tx_en = 0;
535                 priv->hwts_rx_en = 0;
536
537                 return -EOPNOTSUPP;
538         }
539
540         if (copy_from_user(&config, ifr->ifr_data,
541                            sizeof(config)))
542                 return -EFAULT;
543
544         netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
545                    __func__, config.flags, config.tx_type, config.rx_filter);
546
547         /* reserved for future extensions */
548         if (config.flags)
549                 return -EINVAL;
550
551         if (config.tx_type != HWTSTAMP_TX_OFF &&
552             config.tx_type != HWTSTAMP_TX_ON)
553                 return -ERANGE;
554
555         if (priv->adv_ts) {
556                 switch (config.rx_filter) {
557                 case HWTSTAMP_FILTER_NONE:
558                         /* time stamp no incoming packet at all */
559                         config.rx_filter = HWTSTAMP_FILTER_NONE;
560                         break;
561
562                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
563                         /* PTP v1, UDP, any kind of event packet */
564                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
565                         /* 'xmac' hardware can support Sync, Pdelay_Req and
566                          * Pdelay_resp by setting bit14 and bits17/16 to 01
567                          * This leaves Delay_Req timestamps out.
568                          * Enable all events *and* general purpose message
569                          * timestamping
570                          */
571                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
572                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
573                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
574                         break;
575
576                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
577                         /* PTP v1, UDP, Sync packet */
578                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
579                         /* take time stamp for SYNC messages only */
580                         ts_event_en = PTP_TCR_TSEVNTENA;
581
582                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
583                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
584                         break;
585
586                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
587                         /* PTP v1, UDP, Delay_req packet */
588                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
589                         /* take time stamp for Delay_Req messages only */
590                         ts_master_en = PTP_TCR_TSMSTRENA;
591                         ts_event_en = PTP_TCR_TSEVNTENA;
592
593                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
594                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
595                         break;
596
597                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
598                         /* PTP v2, UDP, any kind of event packet */
599                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
600                         ptp_v2 = PTP_TCR_TSVER2ENA;
601                         /* take time stamp for all event messages */
602                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
603
604                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
605                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
606                         break;
607
608                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
609                         /* PTP v2, UDP, Sync packet */
610                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
611                         ptp_v2 = PTP_TCR_TSVER2ENA;
612                         /* take time stamp for SYNC messages only */
613                         ts_event_en = PTP_TCR_TSEVNTENA;
614
615                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
616                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
617                         break;
618
619                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
620                         /* PTP v2, UDP, Delay_req packet */
621                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
622                         ptp_v2 = PTP_TCR_TSVER2ENA;
623                         /* take time stamp for Delay_Req messages only */
624                         ts_master_en = PTP_TCR_TSMSTRENA;
625                         ts_event_en = PTP_TCR_TSEVNTENA;
626
627                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
628                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
629                         break;
630
631                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
632                         /* PTP v2/802.AS1 any layer, any kind of event packet */
633                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
634                         ptp_v2 = PTP_TCR_TSVER2ENA;
635                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
636                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
637                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
638                         ptp_over_ethernet = PTP_TCR_TSIPENA;
639                         break;
640
641                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
642                         /* PTP v2/802.AS1, any layer, Sync packet */
643                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
644                         ptp_v2 = PTP_TCR_TSVER2ENA;
645                         /* take time stamp for SYNC messages only */
646                         ts_event_en = PTP_TCR_TSEVNTENA;
647
648                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
649                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
650                         ptp_over_ethernet = PTP_TCR_TSIPENA;
651                         break;
652
653                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
654                         /* PTP v2/802.AS1, any layer, Delay_req packet */
655                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
656                         ptp_v2 = PTP_TCR_TSVER2ENA;
657                         /* take time stamp for Delay_Req messages only */
658                         ts_master_en = PTP_TCR_TSMSTRENA;
659                         ts_event_en = PTP_TCR_TSEVNTENA;
660
661                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
662                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
663                         ptp_over_ethernet = PTP_TCR_TSIPENA;
664                         break;
665
666                 case HWTSTAMP_FILTER_NTP_ALL:
667                 case HWTSTAMP_FILTER_ALL:
668                         /* time stamp any incoming packet */
669                         config.rx_filter = HWTSTAMP_FILTER_ALL;
670                         tstamp_all = PTP_TCR_TSENALL;
671                         break;
672
673                 default:
674                         return -ERANGE;
675                 }
676         } else {
677                 switch (config.rx_filter) {
678                 case HWTSTAMP_FILTER_NONE:
679                         config.rx_filter = HWTSTAMP_FILTER_NONE;
680                         break;
681                 default:
682                         /* PTP v1, UDP, any kind of event packet */
683                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
684                         break;
685                 }
686         }
687         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
688         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
689
690         if (!priv->hwts_tx_en && !priv->hwts_rx_en)
691                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
692         else {
693                 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
694                          tstamp_all | ptp_v2 | ptp_over_ethernet |
695                          ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
696                          ts_master_en | snap_type_sel);
697                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
698
699                 /* program Sub Second Increment reg */
700                 stmmac_config_sub_second_increment(priv,
701                                 priv->ptpaddr, priv->plat->clk_ptp_rate,
702                                 xmac, &sec_inc);
703                 temp = div_u64(1000000000ULL, sec_inc);
704
705                 /* Store sub second increment and flags for later use */
706                 priv->sub_second_inc = sec_inc;
707                 priv->systime_flags = value;
708
709                 /* calculate default added value:
710                  * formula is :
711                  * addend = (2^32)/freq_div_ratio;
712                  * where, freq_div_ratio = 1e9ns/sec_inc
713                  */
714                 temp = (u64)(temp << 32);
715                 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
716                 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
717
718                 /* initialize system time */
719                 ktime_get_real_ts64(&now);
720
721                 /* lower 32 bits of tv_sec are safe until y2106 */
722                 stmmac_init_systime(priv, priv->ptpaddr,
723                                 (u32)now.tv_sec, now.tv_nsec);
724         }
725
726         memcpy(&priv->tstamp_config, &config, sizeof(config));
727
728         return copy_to_user(ifr->ifr_data, &config,
729                             sizeof(config)) ? -EFAULT : 0;
730 }
731
732 /**
733  *  stmmac_hwtstamp_get - read hardware timestamping.
734  *  @dev: device pointer.
735  *  @ifr: An IOCTL specific structure, that can contain a pointer to
736  *  a proprietary structure used to pass information to the driver.
737  *  Description:
738  *  This function obtain the current hardware timestamping settings
739     as requested.
740  */
741 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
742 {
743         struct stmmac_priv *priv = netdev_priv(dev);
744         struct hwtstamp_config *config = &priv->tstamp_config;
745
746         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
747                 return -EOPNOTSUPP;
748
749         return copy_to_user(ifr->ifr_data, config,
750                             sizeof(*config)) ? -EFAULT : 0;
751 }
752
753 /**
754  * stmmac_init_ptp - init PTP
755  * @priv: driver private structure
756  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
757  * This is done by looking at the HW cap. register.
758  * This function also registers the ptp driver.
759  */
760 static int stmmac_init_ptp(struct stmmac_priv *priv)
761 {
762         bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
763
764         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
765                 return -EOPNOTSUPP;
766
767         priv->adv_ts = 0;
768         /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
769         if (xmac && priv->dma_cap.atime_stamp)
770                 priv->adv_ts = 1;
771         /* Dwmac 3.x core with extend_desc can support adv_ts */
772         else if (priv->extend_desc && priv->dma_cap.atime_stamp)
773                 priv->adv_ts = 1;
774
775         if (priv->dma_cap.time_stamp)
776                 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
777
778         if (priv->adv_ts)
779                 netdev_info(priv->dev,
780                             "IEEE 1588-2008 Advanced Timestamp supported\n");
781
782         priv->hwts_tx_en = 0;
783         priv->hwts_rx_en = 0;
784
785         stmmac_ptp_register(priv);
786
787         return 0;
788 }
789
790 static void stmmac_release_ptp(struct stmmac_priv *priv)
791 {
792         if (priv->plat->clk_ptp_ref)
793                 clk_disable_unprepare(priv->plat->clk_ptp_ref);
794         stmmac_ptp_unregister(priv);
795 }
796
797 /**
798  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
799  *  @priv: driver private structure
800  *  Description: It is used for configuring the flow control in all queues
801  */
802 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
803 {
804         u32 tx_cnt = priv->plat->tx_queues_to_use;
805
806         stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
807                         priv->pause, tx_cnt);
808 }
809
810 static void stmmac_validate(struct phylink_config *config,
811                             unsigned long *supported,
812                             struct phylink_link_state *state)
813 {
814         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
815         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
816         int tx_cnt = priv->plat->tx_queues_to_use;
817         int max_speed = priv->plat->max_speed;
818
819         /* Cut down 1G if asked to */
820         if ((max_speed > 0) && (max_speed < 1000)) {
821                 phylink_set(mask, 1000baseT_Full);
822                 phylink_set(mask, 1000baseX_Full);
823         }
824
825         /* Half-Duplex can only work with single queue */
826         if (tx_cnt > 1) {
827                 phylink_set(mask, 10baseT_Half);
828                 phylink_set(mask, 100baseT_Half);
829                 phylink_set(mask, 1000baseT_Half);
830         }
831
832         bitmap_andnot(supported, supported, mask, __ETHTOOL_LINK_MODE_MASK_NBITS);
833         bitmap_andnot(state->advertising, state->advertising, mask,
834                       __ETHTOOL_LINK_MODE_MASK_NBITS);
835 }
836
837 static int stmmac_mac_link_state(struct phylink_config *config,
838                                  struct phylink_link_state *state)
839 {
840         return -EOPNOTSUPP;
841 }
842
843 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
844                               const struct phylink_link_state *state)
845 {
846         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
847         u32 ctrl;
848
849         ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
850         ctrl &= ~priv->hw->link.speed_mask;
851
852         switch (state->speed) {
853         case SPEED_1000:
854                 ctrl |= priv->hw->link.speed1000;
855                 break;
856         case SPEED_100:
857                 ctrl |= priv->hw->link.speed100;
858                 break;
859         case SPEED_10:
860                 ctrl |= priv->hw->link.speed10;
861                 break;
862         default:
863                 return;
864         }
865
866         priv->speed = state->speed;
867
868         if (priv->plat->fix_mac_speed)
869                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, state->speed);
870
871         if (!state->duplex)
872                 ctrl &= ~priv->hw->link.duplex;
873         else
874                 ctrl |= priv->hw->link.duplex;
875
876         /* Flow Control operation */
877         if (state->pause)
878                 stmmac_mac_flow_ctrl(priv, state->duplex);
879
880         writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
881 }
882
883 static void stmmac_mac_an_restart(struct phylink_config *config)
884 {
885         /* Not Supported */
886 }
887
888 static void stmmac_mac_link_down(struct phylink_config *config,
889                                  unsigned int mode, phy_interface_t interface)
890 {
891         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
892
893         stmmac_mac_set(priv, priv->ioaddr, false);
894         priv->eee_active = false;
895         stmmac_eee_init(priv);
896         stmmac_set_eee_pls(priv, priv->hw, false);
897 }
898
899 static void stmmac_mac_link_up(struct phylink_config *config,
900                                unsigned int mode, phy_interface_t interface,
901                                struct phy_device *phy)
902 {
903         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
904
905         stmmac_mac_set(priv, priv->ioaddr, true);
906         if (phy) {
907                 priv->eee_active = phy_init_eee(phy, 1) >= 0;
908                 priv->eee_enabled = stmmac_eee_init(priv);
909                 stmmac_set_eee_pls(priv, priv->hw, true);
910         }
911 }
912
913 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
914         .validate = stmmac_validate,
915         .mac_link_state = stmmac_mac_link_state,
916         .mac_config = stmmac_mac_config,
917         .mac_an_restart = stmmac_mac_an_restart,
918         .mac_link_down = stmmac_mac_link_down,
919         .mac_link_up = stmmac_mac_link_up,
920 };
921
922 /**
923  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
924  * @priv: driver private structure
925  * Description: this is to verify if the HW supports the PCS.
926  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
927  * configured for the TBI, RTBI, or SGMII PHY interface.
928  */
929 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
930 {
931         int interface = priv->plat->interface;
932
933         if (priv->dma_cap.pcs) {
934                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
935                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
936                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
937                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
938                         netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
939                         priv->hw->pcs = STMMAC_PCS_RGMII;
940                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
941                         netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
942                         priv->hw->pcs = STMMAC_PCS_SGMII;
943                 }
944         }
945 }
946
947 /**
948  * stmmac_init_phy - PHY initialization
949  * @dev: net device structure
950  * Description: it initializes the driver's PHY state, and attaches the PHY
951  * to the mac driver.
952  *  Return value:
953  *  0 on success
954  */
955 static int stmmac_init_phy(struct net_device *dev)
956 {
957         struct stmmac_priv *priv = netdev_priv(dev);
958         struct device_node *node;
959         int ret;
960
961         node = priv->plat->phy_node;
962
963         if (node) {
964                 ret = phylink_of_phy_connect(priv->phylink, node, 0);
965         } else {
966                 int addr = priv->plat->phy_addr;
967                 struct phy_device *phydev;
968
969                 phydev = mdiobus_get_phy(priv->mii, addr);
970                 if (!phydev) {
971                         netdev_err(priv->dev, "no phy at addr %d\n", addr);
972                         return -ENODEV;
973                 }
974
975                 ret = phylink_connect_phy(priv->phylink, phydev);
976         }
977
978         return ret;
979 }
980
981 static int stmmac_phy_setup(struct stmmac_priv *priv)
982 {
983         struct device_node *node = priv->plat->phy_node;
984         int mode = priv->plat->interface;
985         struct phylink *phylink;
986
987         priv->phylink_config.dev = &priv->dev->dev;
988         priv->phylink_config.type = PHYLINK_NETDEV;
989
990         phylink = phylink_create(&priv->phylink_config, of_fwnode_handle(node),
991                                  mode, &stmmac_phylink_mac_ops);
992         if (IS_ERR(phylink))
993                 return PTR_ERR(phylink);
994
995         priv->phylink = phylink;
996         return 0;
997 }
998
999 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1000 {
1001         u32 rx_cnt = priv->plat->rx_queues_to_use;
1002         void *head_rx;
1003         u32 queue;
1004
1005         /* Display RX rings */
1006         for (queue = 0; queue < rx_cnt; queue++) {
1007                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1008
1009                 pr_info("\tRX Queue %u rings\n", queue);
1010
1011                 if (priv->extend_desc)
1012                         head_rx = (void *)rx_q->dma_erx;
1013                 else
1014                         head_rx = (void *)rx_q->dma_rx;
1015
1016                 /* Display RX ring */
1017                 stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1018         }
1019 }
1020
1021 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1022 {
1023         u32 tx_cnt = priv->plat->tx_queues_to_use;
1024         void *head_tx;
1025         u32 queue;
1026
1027         /* Display TX rings */
1028         for (queue = 0; queue < tx_cnt; queue++) {
1029                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1030
1031                 pr_info("\tTX Queue %d rings\n", queue);
1032
1033                 if (priv->extend_desc)
1034                         head_tx = (void *)tx_q->dma_etx;
1035                 else
1036                         head_tx = (void *)tx_q->dma_tx;
1037
1038                 stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1039         }
1040 }
1041
1042 static void stmmac_display_rings(struct stmmac_priv *priv)
1043 {
1044         /* Display RX ring */
1045         stmmac_display_rx_rings(priv);
1046
1047         /* Display TX ring */
1048         stmmac_display_tx_rings(priv);
1049 }
1050
1051 static int stmmac_set_bfsize(int mtu, int bufsize)
1052 {
1053         int ret = bufsize;
1054
1055         if (mtu >= BUF_SIZE_4KiB)
1056                 ret = BUF_SIZE_8KiB;
1057         else if (mtu >= BUF_SIZE_2KiB)
1058                 ret = BUF_SIZE_4KiB;
1059         else if (mtu > DEFAULT_BUFSIZE)
1060                 ret = BUF_SIZE_2KiB;
1061         else
1062                 ret = DEFAULT_BUFSIZE;
1063
1064         return ret;
1065 }
1066
1067 /**
1068  * stmmac_clear_rx_descriptors - clear RX descriptors
1069  * @priv: driver private structure
1070  * @queue: RX queue index
1071  * Description: this function is called to clear the RX descriptors
1072  * in case of both basic and extended descriptors are used.
1073  */
1074 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1075 {
1076         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1077         int i;
1078
1079         /* Clear the RX descriptors */
1080         for (i = 0; i < DMA_RX_SIZE; i++)
1081                 if (priv->extend_desc)
1082                         stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1083                                         priv->use_riwt, priv->mode,
1084                                         (i == DMA_RX_SIZE - 1),
1085                                         priv->dma_buf_sz);
1086                 else
1087                         stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1088                                         priv->use_riwt, priv->mode,
1089                                         (i == DMA_RX_SIZE - 1),
1090                                         priv->dma_buf_sz);
1091 }
1092
1093 /**
1094  * stmmac_clear_tx_descriptors - clear tx descriptors
1095  * @priv: driver private structure
1096  * @queue: TX queue index.
1097  * Description: this function is called to clear the TX descriptors
1098  * in case of both basic and extended descriptors are used.
1099  */
1100 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1101 {
1102         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1103         int i;
1104
1105         /* Clear the TX descriptors */
1106         for (i = 0; i < DMA_TX_SIZE; i++)
1107                 if (priv->extend_desc)
1108                         stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1109                                         priv->mode, (i == DMA_TX_SIZE - 1));
1110                 else
1111                         stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1112                                         priv->mode, (i == DMA_TX_SIZE - 1));
1113 }
1114
1115 /**
1116  * stmmac_clear_descriptors - clear descriptors
1117  * @priv: driver private structure
1118  * Description: this function is called to clear the TX and RX descriptors
1119  * in case of both basic and extended descriptors are used.
1120  */
1121 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1122 {
1123         u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1124         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1125         u32 queue;
1126
1127         /* Clear the RX descriptors */
1128         for (queue = 0; queue < rx_queue_cnt; queue++)
1129                 stmmac_clear_rx_descriptors(priv, queue);
1130
1131         /* Clear the TX descriptors */
1132         for (queue = 0; queue < tx_queue_cnt; queue++)
1133                 stmmac_clear_tx_descriptors(priv, queue);
1134 }
1135
1136 /**
1137  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1138  * @priv: driver private structure
1139  * @p: descriptor pointer
1140  * @i: descriptor index
1141  * @flags: gfp flag
1142  * @queue: RX queue index
1143  * Description: this function is called to allocate a receive buffer, perform
1144  * the DMA mapping and init the descriptor.
1145  */
1146 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1147                                   int i, gfp_t flags, u32 queue)
1148 {
1149         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1150         struct sk_buff *skb;
1151
1152         skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
1153         if (!skb) {
1154                 netdev_err(priv->dev,
1155                            "%s: Rx init fails; skb is NULL\n", __func__);
1156                 return -ENOMEM;
1157         }
1158         rx_q->rx_skbuff[i] = skb;
1159         rx_q->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
1160                                                 priv->dma_buf_sz,
1161                                                 DMA_FROM_DEVICE);
1162         if (dma_mapping_error(priv->device, rx_q->rx_skbuff_dma[i])) {
1163                 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
1164                 dev_kfree_skb_any(skb);
1165                 return -EINVAL;
1166         }
1167
1168         stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[i]);
1169
1170         if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1171                 stmmac_init_desc3(priv, p);
1172
1173         return 0;
1174 }
1175
1176 /**
1177  * stmmac_free_rx_buffer - free RX dma buffers
1178  * @priv: private structure
1179  * @queue: RX queue index
1180  * @i: buffer index.
1181  */
1182 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1183 {
1184         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1185
1186         if (rx_q->rx_skbuff[i]) {
1187                 dma_unmap_single(priv->device, rx_q->rx_skbuff_dma[i],
1188                                  priv->dma_buf_sz, DMA_FROM_DEVICE);
1189                 dev_kfree_skb_any(rx_q->rx_skbuff[i]);
1190         }
1191         rx_q->rx_skbuff[i] = NULL;
1192 }
1193
1194 /**
1195  * stmmac_free_tx_buffer - free RX dma buffers
1196  * @priv: private structure
1197  * @queue: RX queue index
1198  * @i: buffer index.
1199  */
1200 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1201 {
1202         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1203
1204         if (tx_q->tx_skbuff_dma[i].buf) {
1205                 if (tx_q->tx_skbuff_dma[i].map_as_page)
1206                         dma_unmap_page(priv->device,
1207                                        tx_q->tx_skbuff_dma[i].buf,
1208                                        tx_q->tx_skbuff_dma[i].len,
1209                                        DMA_TO_DEVICE);
1210                 else
1211                         dma_unmap_single(priv->device,
1212                                          tx_q->tx_skbuff_dma[i].buf,
1213                                          tx_q->tx_skbuff_dma[i].len,
1214                                          DMA_TO_DEVICE);
1215         }
1216
1217         if (tx_q->tx_skbuff[i]) {
1218                 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1219                 tx_q->tx_skbuff[i] = NULL;
1220                 tx_q->tx_skbuff_dma[i].buf = 0;
1221                 tx_q->tx_skbuff_dma[i].map_as_page = false;
1222         }
1223 }
1224
1225 /**
1226  * init_dma_rx_desc_rings - init the RX descriptor rings
1227  * @dev: net device structure
1228  * @flags: gfp flag.
1229  * Description: this function initializes the DMA RX descriptors
1230  * and allocates the socket buffers. It supports the chained and ring
1231  * modes.
1232  */
1233 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1234 {
1235         struct stmmac_priv *priv = netdev_priv(dev);
1236         u32 rx_count = priv->plat->rx_queues_to_use;
1237         int ret = -ENOMEM;
1238         int bfsize = 0;
1239         int queue;
1240         int i;
1241
1242         bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
1243         if (bfsize < 0)
1244                 bfsize = 0;
1245
1246         if (bfsize < BUF_SIZE_16KiB)
1247                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1248
1249         priv->dma_buf_sz = bfsize;
1250
1251         /* RX INITIALIZATION */
1252         netif_dbg(priv, probe, priv->dev,
1253                   "SKB addresses:\nskb\t\tskb data\tdma data\n");
1254
1255         for (queue = 0; queue < rx_count; queue++) {
1256                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1257
1258                 netif_dbg(priv, probe, priv->dev,
1259                           "(%s) dma_rx_phy=0x%08x\n", __func__,
1260                           (u32)rx_q->dma_rx_phy);
1261
1262                 for (i = 0; i < DMA_RX_SIZE; i++) {
1263                         struct dma_desc *p;
1264
1265                         if (priv->extend_desc)
1266                                 p = &((rx_q->dma_erx + i)->basic);
1267                         else
1268                                 p = rx_q->dma_rx + i;
1269
1270                         ret = stmmac_init_rx_buffers(priv, p, i, flags,
1271                                                      queue);
1272                         if (ret)
1273                                 goto err_init_rx_buffers;
1274
1275                         netif_dbg(priv, probe, priv->dev, "[%p]\t[%p]\t[%x]\n",
1276                                   rx_q->rx_skbuff[i], rx_q->rx_skbuff[i]->data,
1277                                   (unsigned int)rx_q->rx_skbuff_dma[i]);
1278                 }
1279
1280                 rx_q->cur_rx = 0;
1281                 rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1282
1283                 stmmac_clear_rx_descriptors(priv, queue);
1284
1285                 /* Setup the chained descriptor addresses */
1286                 if (priv->mode == STMMAC_CHAIN_MODE) {
1287                         if (priv->extend_desc)
1288                                 stmmac_mode_init(priv, rx_q->dma_erx,
1289                                                 rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1290                         else
1291                                 stmmac_mode_init(priv, rx_q->dma_rx,
1292                                                 rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1293                 }
1294         }
1295
1296         buf_sz = bfsize;
1297
1298         return 0;
1299
1300 err_init_rx_buffers:
1301         while (queue >= 0) {
1302                 while (--i >= 0)
1303                         stmmac_free_rx_buffer(priv, queue, i);
1304
1305                 if (queue == 0)
1306                         break;
1307
1308                 i = DMA_RX_SIZE;
1309                 queue--;
1310         }
1311
1312         return ret;
1313 }
1314
1315 /**
1316  * init_dma_tx_desc_rings - init the TX descriptor rings
1317  * @dev: net device structure.
1318  * Description: this function initializes the DMA TX descriptors
1319  * and allocates the socket buffers. It supports the chained and ring
1320  * modes.
1321  */
1322 static int init_dma_tx_desc_rings(struct net_device *dev)
1323 {
1324         struct stmmac_priv *priv = netdev_priv(dev);
1325         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1326         u32 queue;
1327         int i;
1328
1329         for (queue = 0; queue < tx_queue_cnt; queue++) {
1330                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1331
1332                 netif_dbg(priv, probe, priv->dev,
1333                           "(%s) dma_tx_phy=0x%08x\n", __func__,
1334                          (u32)tx_q->dma_tx_phy);
1335
1336                 /* Setup the chained descriptor addresses */
1337                 if (priv->mode == STMMAC_CHAIN_MODE) {
1338                         if (priv->extend_desc)
1339                                 stmmac_mode_init(priv, tx_q->dma_etx,
1340                                                 tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1341                         else
1342                                 stmmac_mode_init(priv, tx_q->dma_tx,
1343                                                 tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1344                 }
1345
1346                 for (i = 0; i < DMA_TX_SIZE; i++) {
1347                         struct dma_desc *p;
1348                         if (priv->extend_desc)
1349                                 p = &((tx_q->dma_etx + i)->basic);
1350                         else
1351                                 p = tx_q->dma_tx + i;
1352
1353                         stmmac_clear_desc(priv, p);
1354
1355                         tx_q->tx_skbuff_dma[i].buf = 0;
1356                         tx_q->tx_skbuff_dma[i].map_as_page = false;
1357                         tx_q->tx_skbuff_dma[i].len = 0;
1358                         tx_q->tx_skbuff_dma[i].last_segment = false;
1359                         tx_q->tx_skbuff[i] = NULL;
1360                 }
1361
1362                 tx_q->dirty_tx = 0;
1363                 tx_q->cur_tx = 0;
1364                 tx_q->mss = 0;
1365
1366                 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1367         }
1368
1369         return 0;
1370 }
1371
1372 /**
1373  * init_dma_desc_rings - init the RX/TX descriptor rings
1374  * @dev: net device structure
1375  * @flags: gfp flag.
1376  * Description: this function initializes the DMA RX/TX descriptors
1377  * and allocates the socket buffers. It supports the chained and ring
1378  * modes.
1379  */
1380 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1381 {
1382         struct stmmac_priv *priv = netdev_priv(dev);
1383         int ret;
1384
1385         ret = init_dma_rx_desc_rings(dev, flags);
1386         if (ret)
1387                 return ret;
1388
1389         ret = init_dma_tx_desc_rings(dev);
1390
1391         stmmac_clear_descriptors(priv);
1392
1393         if (netif_msg_hw(priv))
1394                 stmmac_display_rings(priv);
1395
1396         return ret;
1397 }
1398
1399 /**
1400  * dma_free_rx_skbufs - free RX dma buffers
1401  * @priv: private structure
1402  * @queue: RX queue index
1403  */
1404 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1405 {
1406         int i;
1407
1408         for (i = 0; i < DMA_RX_SIZE; i++)
1409                 stmmac_free_rx_buffer(priv, queue, i);
1410 }
1411
1412 /**
1413  * dma_free_tx_skbufs - free TX dma buffers
1414  * @priv: private structure
1415  * @queue: TX queue index
1416  */
1417 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1418 {
1419         int i;
1420
1421         for (i = 0; i < DMA_TX_SIZE; i++)
1422                 stmmac_free_tx_buffer(priv, queue, i);
1423 }
1424
1425 /**
1426  * free_dma_rx_desc_resources - free RX dma desc resources
1427  * @priv: private structure
1428  */
1429 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1430 {
1431         u32 rx_count = priv->plat->rx_queues_to_use;
1432         u32 queue;
1433
1434         /* Free RX queue resources */
1435         for (queue = 0; queue < rx_count; queue++) {
1436                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1437
1438                 /* Release the DMA RX socket buffers */
1439                 dma_free_rx_skbufs(priv, queue);
1440
1441                 /* Free DMA regions of consistent memory previously allocated */
1442                 if (!priv->extend_desc)
1443                         dma_free_coherent(priv->device,
1444                                           DMA_RX_SIZE * sizeof(struct dma_desc),
1445                                           rx_q->dma_rx, rx_q->dma_rx_phy);
1446                 else
1447                         dma_free_coherent(priv->device, DMA_RX_SIZE *
1448                                           sizeof(struct dma_extended_desc),
1449                                           rx_q->dma_erx, rx_q->dma_rx_phy);
1450
1451                 kfree(rx_q->rx_skbuff_dma);
1452                 kfree(rx_q->rx_skbuff);
1453         }
1454 }
1455
1456 /**
1457  * free_dma_tx_desc_resources - free TX dma desc resources
1458  * @priv: private structure
1459  */
1460 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1461 {
1462         u32 tx_count = priv->plat->tx_queues_to_use;
1463         u32 queue;
1464
1465         /* Free TX queue resources */
1466         for (queue = 0; queue < tx_count; queue++) {
1467                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1468
1469                 /* Release the DMA TX socket buffers */
1470                 dma_free_tx_skbufs(priv, queue);
1471
1472                 /* Free DMA regions of consistent memory previously allocated */
1473                 if (!priv->extend_desc)
1474                         dma_free_coherent(priv->device,
1475                                           DMA_TX_SIZE * sizeof(struct dma_desc),
1476                                           tx_q->dma_tx, tx_q->dma_tx_phy);
1477                 else
1478                         dma_free_coherent(priv->device, DMA_TX_SIZE *
1479                                           sizeof(struct dma_extended_desc),
1480                                           tx_q->dma_etx, tx_q->dma_tx_phy);
1481
1482                 kfree(tx_q->tx_skbuff_dma);
1483                 kfree(tx_q->tx_skbuff);
1484         }
1485 }
1486
1487 /**
1488  * alloc_dma_rx_desc_resources - alloc RX resources.
1489  * @priv: private structure
1490  * Description: according to which descriptor can be used (extend or basic)
1491  * this function allocates the resources for TX and RX paths. In case of
1492  * reception, for example, it pre-allocated the RX socket buffer in order to
1493  * allow zero-copy mechanism.
1494  */
1495 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1496 {
1497         u32 rx_count = priv->plat->rx_queues_to_use;
1498         int ret = -ENOMEM;
1499         u32 queue;
1500
1501         /* RX queues buffers and DMA */
1502         for (queue = 0; queue < rx_count; queue++) {
1503                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1504
1505                 rx_q->queue_index = queue;
1506                 rx_q->priv_data = priv;
1507
1508                 rx_q->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE,
1509                                                     sizeof(dma_addr_t),
1510                                                     GFP_KERNEL);
1511                 if (!rx_q->rx_skbuff_dma)
1512                         goto err_dma;
1513
1514                 rx_q->rx_skbuff = kmalloc_array(DMA_RX_SIZE,
1515                                                 sizeof(struct sk_buff *),
1516                                                 GFP_KERNEL);
1517                 if (!rx_q->rx_skbuff)
1518                         goto err_dma;
1519
1520                 if (priv->extend_desc) {
1521                         rx_q->dma_erx = dma_alloc_coherent(priv->device,
1522                                                            DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1523                                                            &rx_q->dma_rx_phy,
1524                                                            GFP_KERNEL);
1525                         if (!rx_q->dma_erx)
1526                                 goto err_dma;
1527
1528                 } else {
1529                         rx_q->dma_rx = dma_alloc_coherent(priv->device,
1530                                                           DMA_RX_SIZE * sizeof(struct dma_desc),
1531                                                           &rx_q->dma_rx_phy,
1532                                                           GFP_KERNEL);
1533                         if (!rx_q->dma_rx)
1534                                 goto err_dma;
1535                 }
1536         }
1537
1538         return 0;
1539
1540 err_dma:
1541         free_dma_rx_desc_resources(priv);
1542
1543         return ret;
1544 }
1545
1546 /**
1547  * alloc_dma_tx_desc_resources - alloc TX resources.
1548  * @priv: private structure
1549  * Description: according to which descriptor can be used (extend or basic)
1550  * this function allocates the resources for TX and RX paths. In case of
1551  * reception, for example, it pre-allocated the RX socket buffer in order to
1552  * allow zero-copy mechanism.
1553  */
1554 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1555 {
1556         u32 tx_count = priv->plat->tx_queues_to_use;
1557         int ret = -ENOMEM;
1558         u32 queue;
1559
1560         /* TX queues buffers and DMA */
1561         for (queue = 0; queue < tx_count; queue++) {
1562                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1563
1564                 tx_q->queue_index = queue;
1565                 tx_q->priv_data = priv;
1566
1567                 tx_q->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1568                                                     sizeof(*tx_q->tx_skbuff_dma),
1569                                                     GFP_KERNEL);
1570                 if (!tx_q->tx_skbuff_dma)
1571                         goto err_dma;
1572
1573                 tx_q->tx_skbuff = kmalloc_array(DMA_TX_SIZE,
1574                                                 sizeof(struct sk_buff *),
1575                                                 GFP_KERNEL);
1576                 if (!tx_q->tx_skbuff)
1577                         goto err_dma;
1578
1579                 if (priv->extend_desc) {
1580                         tx_q->dma_etx = dma_alloc_coherent(priv->device,
1581                                                            DMA_TX_SIZE * sizeof(struct dma_extended_desc),
1582                                                            &tx_q->dma_tx_phy,
1583                                                            GFP_KERNEL);
1584                         if (!tx_q->dma_etx)
1585                                 goto err_dma;
1586                 } else {
1587                         tx_q->dma_tx = dma_alloc_coherent(priv->device,
1588                                                           DMA_TX_SIZE * sizeof(struct dma_desc),
1589                                                           &tx_q->dma_tx_phy,
1590                                                           GFP_KERNEL);
1591                         if (!tx_q->dma_tx)
1592                                 goto err_dma;
1593                 }
1594         }
1595
1596         return 0;
1597
1598 err_dma:
1599         free_dma_tx_desc_resources(priv);
1600
1601         return ret;
1602 }
1603
1604 /**
1605  * alloc_dma_desc_resources - alloc TX/RX resources.
1606  * @priv: private structure
1607  * Description: according to which descriptor can be used (extend or basic)
1608  * this function allocates the resources for TX and RX paths. In case of
1609  * reception, for example, it pre-allocated the RX socket buffer in order to
1610  * allow zero-copy mechanism.
1611  */
1612 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1613 {
1614         /* RX Allocation */
1615         int ret = alloc_dma_rx_desc_resources(priv);
1616
1617         if (ret)
1618                 return ret;
1619
1620         ret = alloc_dma_tx_desc_resources(priv);
1621
1622         return ret;
1623 }
1624
1625 /**
1626  * free_dma_desc_resources - free dma desc resources
1627  * @priv: private structure
1628  */
1629 static void free_dma_desc_resources(struct stmmac_priv *priv)
1630 {
1631         /* Release the DMA RX socket buffers */
1632         free_dma_rx_desc_resources(priv);
1633
1634         /* Release the DMA TX socket buffers */
1635         free_dma_tx_desc_resources(priv);
1636 }
1637
1638 /**
1639  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1640  *  @priv: driver private structure
1641  *  Description: It is used for enabling the rx queues in the MAC
1642  */
1643 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1644 {
1645         u32 rx_queues_count = priv->plat->rx_queues_to_use;
1646         int queue;
1647         u8 mode;
1648
1649         for (queue = 0; queue < rx_queues_count; queue++) {
1650                 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1651                 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1652         }
1653 }
1654
1655 /**
1656  * stmmac_start_rx_dma - start RX DMA channel
1657  * @priv: driver private structure
1658  * @chan: RX channel index
1659  * Description:
1660  * This starts a RX DMA channel
1661  */
1662 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1663 {
1664         netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1665         stmmac_start_rx(priv, priv->ioaddr, chan);
1666 }
1667
1668 /**
1669  * stmmac_start_tx_dma - start TX DMA channel
1670  * @priv: driver private structure
1671  * @chan: TX channel index
1672  * Description:
1673  * This starts a TX DMA channel
1674  */
1675 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1676 {
1677         netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1678         stmmac_start_tx(priv, priv->ioaddr, chan);
1679 }
1680
1681 /**
1682  * stmmac_stop_rx_dma - stop RX DMA channel
1683  * @priv: driver private structure
1684  * @chan: RX channel index
1685  * Description:
1686  * This stops a RX DMA channel
1687  */
1688 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1689 {
1690         netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1691         stmmac_stop_rx(priv, priv->ioaddr, chan);
1692 }
1693
1694 /**
1695  * stmmac_stop_tx_dma - stop TX DMA channel
1696  * @priv: driver private structure
1697  * @chan: TX channel index
1698  * Description:
1699  * This stops a TX DMA channel
1700  */
1701 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1702 {
1703         netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1704         stmmac_stop_tx(priv, priv->ioaddr, chan);
1705 }
1706
1707 /**
1708  * stmmac_start_all_dma - start all RX and TX DMA channels
1709  * @priv: driver private structure
1710  * Description:
1711  * This starts all the RX and TX DMA channels
1712  */
1713 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1714 {
1715         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1716         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1717         u32 chan = 0;
1718
1719         for (chan = 0; chan < rx_channels_count; chan++)
1720                 stmmac_start_rx_dma(priv, chan);
1721
1722         for (chan = 0; chan < tx_channels_count; chan++)
1723                 stmmac_start_tx_dma(priv, chan);
1724 }
1725
1726 /**
1727  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1728  * @priv: driver private structure
1729  * Description:
1730  * This stops the RX and TX DMA channels
1731  */
1732 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1733 {
1734         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1735         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1736         u32 chan = 0;
1737
1738         for (chan = 0; chan < rx_channels_count; chan++)
1739                 stmmac_stop_rx_dma(priv, chan);
1740
1741         for (chan = 0; chan < tx_channels_count; chan++)
1742                 stmmac_stop_tx_dma(priv, chan);
1743 }
1744
1745 /**
1746  *  stmmac_dma_operation_mode - HW DMA operation mode
1747  *  @priv: driver private structure
1748  *  Description: it is used for configuring the DMA operation mode register in
1749  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1750  */
1751 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1752 {
1753         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1754         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1755         int rxfifosz = priv->plat->rx_fifo_size;
1756         int txfifosz = priv->plat->tx_fifo_size;
1757         u32 txmode = 0;
1758         u32 rxmode = 0;
1759         u32 chan = 0;
1760         u8 qmode = 0;
1761
1762         if (rxfifosz == 0)
1763                 rxfifosz = priv->dma_cap.rx_fifo_size;
1764         if (txfifosz == 0)
1765                 txfifosz = priv->dma_cap.tx_fifo_size;
1766
1767         /* Adjust for real per queue fifo size */
1768         rxfifosz /= rx_channels_count;
1769         txfifosz /= tx_channels_count;
1770
1771         if (priv->plat->force_thresh_dma_mode) {
1772                 txmode = tc;
1773                 rxmode = tc;
1774         } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1775                 /*
1776                  * In case of GMAC, SF mode can be enabled
1777                  * to perform the TX COE in HW. This depends on:
1778                  * 1) TX COE if actually supported
1779                  * 2) There is no bugged Jumbo frame support
1780                  *    that needs to not insert csum in the TDES.
1781                  */
1782                 txmode = SF_DMA_MODE;
1783                 rxmode = SF_DMA_MODE;
1784                 priv->xstats.threshold = SF_DMA_MODE;
1785         } else {
1786                 txmode = tc;
1787                 rxmode = SF_DMA_MODE;
1788         }
1789
1790         /* configure all channels */
1791         for (chan = 0; chan < rx_channels_count; chan++) {
1792                 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1793
1794                 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1795                                 rxfifosz, qmode);
1796                 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1797                                 chan);
1798         }
1799
1800         for (chan = 0; chan < tx_channels_count; chan++) {
1801                 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1802
1803                 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1804                                 txfifosz, qmode);
1805         }
1806 }
1807
1808 /**
1809  * stmmac_tx_clean - to manage the transmission completion
1810  * @priv: driver private structure
1811  * @queue: TX queue index
1812  * Description: it reclaims the transmit resources after transmission completes.
1813  */
1814 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1815 {
1816         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1817         unsigned int bytes_compl = 0, pkts_compl = 0;
1818         unsigned int entry, count = 0;
1819
1820         __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1821
1822         priv->xstats.tx_clean++;
1823
1824         entry = tx_q->dirty_tx;
1825         while ((entry != tx_q->cur_tx) && (count < budget)) {
1826                 struct sk_buff *skb = tx_q->tx_skbuff[entry];
1827                 struct dma_desc *p;
1828                 int status;
1829
1830                 if (priv->extend_desc)
1831                         p = (struct dma_desc *)(tx_q->dma_etx + entry);
1832                 else
1833                         p = tx_q->dma_tx + entry;
1834
1835                 status = stmmac_tx_status(priv, &priv->dev->stats,
1836                                 &priv->xstats, p, priv->ioaddr);
1837                 /* Check if the descriptor is owned by the DMA */
1838                 if (unlikely(status & tx_dma_own))
1839                         break;
1840
1841                 count++;
1842
1843                 /* Make sure descriptor fields are read after reading
1844                  * the own bit.
1845                  */
1846                 dma_rmb();
1847
1848                 /* Just consider the last segment and ...*/
1849                 if (likely(!(status & tx_not_ls))) {
1850                         /* ... verify the status error condition */
1851                         if (unlikely(status & tx_err)) {
1852                                 priv->dev->stats.tx_errors++;
1853                         } else {
1854                                 priv->dev->stats.tx_packets++;
1855                                 priv->xstats.tx_pkt_n++;
1856                         }
1857                         stmmac_get_tx_hwtstamp(priv, p, skb);
1858                 }
1859
1860                 if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1861                         if (tx_q->tx_skbuff_dma[entry].map_as_page)
1862                                 dma_unmap_page(priv->device,
1863                                                tx_q->tx_skbuff_dma[entry].buf,
1864                                                tx_q->tx_skbuff_dma[entry].len,
1865                                                DMA_TO_DEVICE);
1866                         else
1867                                 dma_unmap_single(priv->device,
1868                                                  tx_q->tx_skbuff_dma[entry].buf,
1869                                                  tx_q->tx_skbuff_dma[entry].len,
1870                                                  DMA_TO_DEVICE);
1871                         tx_q->tx_skbuff_dma[entry].buf = 0;
1872                         tx_q->tx_skbuff_dma[entry].len = 0;
1873                         tx_q->tx_skbuff_dma[entry].map_as_page = false;
1874                 }
1875
1876                 stmmac_clean_desc3(priv, tx_q, p);
1877
1878                 tx_q->tx_skbuff_dma[entry].last_segment = false;
1879                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1880
1881                 if (likely(skb != NULL)) {
1882                         pkts_compl++;
1883                         bytes_compl += skb->len;
1884                         dev_consume_skb_any(skb);
1885                         tx_q->tx_skbuff[entry] = NULL;
1886                 }
1887
1888                 stmmac_release_tx_desc(priv, p, priv->mode);
1889
1890                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1891         }
1892         tx_q->dirty_tx = entry;
1893
1894         netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1895                                   pkts_compl, bytes_compl);
1896
1897         if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1898                                                                 queue))) &&
1899             stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1900
1901                 netif_dbg(priv, tx_done, priv->dev,
1902                           "%s: restart transmit\n", __func__);
1903                 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1904         }
1905
1906         if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1907                 stmmac_enable_eee_mode(priv);
1908                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1909         }
1910
1911         /* We still have pending packets, let's call for a new scheduling */
1912         if (tx_q->dirty_tx != tx_q->cur_tx)
1913                 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
1914
1915         __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1916
1917         return count;
1918 }
1919
1920 /**
1921  * stmmac_tx_err - to manage the tx error
1922  * @priv: driver private structure
1923  * @chan: channel index
1924  * Description: it cleans the descriptors and restarts the transmission
1925  * in case of transmission errors.
1926  */
1927 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1928 {
1929         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1930         int i;
1931
1932         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1933
1934         stmmac_stop_tx_dma(priv, chan);
1935         dma_free_tx_skbufs(priv, chan);
1936         for (i = 0; i < DMA_TX_SIZE; i++)
1937                 if (priv->extend_desc)
1938                         stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1939                                         priv->mode, (i == DMA_TX_SIZE - 1));
1940                 else
1941                         stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1942                                         priv->mode, (i == DMA_TX_SIZE - 1));
1943         tx_q->dirty_tx = 0;
1944         tx_q->cur_tx = 0;
1945         tx_q->mss = 0;
1946         netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
1947         stmmac_start_tx_dma(priv, chan);
1948
1949         priv->dev->stats.tx_errors++;
1950         netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
1951 }
1952
1953 /**
1954  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
1955  *  @priv: driver private structure
1956  *  @txmode: TX operating mode
1957  *  @rxmode: RX operating mode
1958  *  @chan: channel index
1959  *  Description: it is used for configuring of the DMA operation mode in
1960  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
1961  *  mode.
1962  */
1963 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
1964                                           u32 rxmode, u32 chan)
1965 {
1966         u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1967         u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1968         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1969         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1970         int rxfifosz = priv->plat->rx_fifo_size;
1971         int txfifosz = priv->plat->tx_fifo_size;
1972
1973         if (rxfifosz == 0)
1974                 rxfifosz = priv->dma_cap.rx_fifo_size;
1975         if (txfifosz == 0)
1976                 txfifosz = priv->dma_cap.tx_fifo_size;
1977
1978         /* Adjust for real per queue fifo size */
1979         rxfifosz /= rx_channels_count;
1980         txfifosz /= tx_channels_count;
1981
1982         stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
1983         stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
1984 }
1985
1986 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
1987 {
1988         int ret;
1989
1990         ret = stmmac_safety_feat_irq_status(priv, priv->dev,
1991                         priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
1992         if (ret && (ret != -EINVAL)) {
1993                 stmmac_global_err(priv);
1994                 return true;
1995         }
1996
1997         return false;
1998 }
1999
2000 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2001 {
2002         int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2003                                                  &priv->xstats, chan);
2004         struct stmmac_channel *ch = &priv->channel[chan];
2005
2006         if (status)
2007                 status |= handle_rx | handle_tx;
2008
2009         if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2010                 stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2011                 napi_schedule_irqoff(&ch->rx_napi);
2012         }
2013
2014         if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2015                 stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2016                 napi_schedule_irqoff(&ch->tx_napi);
2017         }
2018
2019         return status;
2020 }
2021
2022 /**
2023  * stmmac_dma_interrupt - DMA ISR
2024  * @priv: driver private structure
2025  * Description: this is the DMA ISR. It is called by the main ISR.
2026  * It calls the dwmac dma routine and schedule poll method in case of some
2027  * work can be done.
2028  */
2029 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2030 {
2031         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2032         u32 rx_channel_count = priv->plat->rx_queues_to_use;
2033         u32 channels_to_check = tx_channel_count > rx_channel_count ?
2034                                 tx_channel_count : rx_channel_count;
2035         u32 chan;
2036         int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2037
2038         /* Make sure we never check beyond our status buffer. */
2039         if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2040                 channels_to_check = ARRAY_SIZE(status);
2041
2042         for (chan = 0; chan < channels_to_check; chan++)
2043                 status[chan] = stmmac_napi_check(priv, chan);
2044
2045         for (chan = 0; chan < tx_channel_count; chan++) {
2046                 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2047                         /* Try to bump up the dma threshold on this failure */
2048                         if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2049                             (tc <= 256)) {
2050                                 tc += 64;
2051                                 if (priv->plat->force_thresh_dma_mode)
2052                                         stmmac_set_dma_operation_mode(priv,
2053                                                                       tc,
2054                                                                       tc,
2055                                                                       chan);
2056                                 else
2057                                         stmmac_set_dma_operation_mode(priv,
2058                                                                     tc,
2059                                                                     SF_DMA_MODE,
2060                                                                     chan);
2061                                 priv->xstats.threshold = tc;
2062                         }
2063                 } else if (unlikely(status[chan] == tx_hard_error)) {
2064                         stmmac_tx_err(priv, chan);
2065                 }
2066         }
2067 }
2068
2069 /**
2070  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2071  * @priv: driver private structure
2072  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2073  */
2074 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2075 {
2076         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2077                             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2078
2079         stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2080
2081         if (priv->dma_cap.rmon) {
2082                 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2083                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2084         } else
2085                 netdev_info(priv->dev, "No MAC Management Counters available\n");
2086 }
2087
2088 /**
2089  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2090  * @priv: driver private structure
2091  * Description:
2092  *  new GMAC chip generations have a new register to indicate the
2093  *  presence of the optional feature/functions.
2094  *  This can be also used to override the value passed through the
2095  *  platform and necessary for old MAC10/100 and GMAC chips.
2096  */
2097 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2098 {
2099         return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2100 }
2101
2102 /**
2103  * stmmac_check_ether_addr - check if the MAC addr is valid
2104  * @priv: driver private structure
2105  * Description:
2106  * it is to verify if the MAC address is valid, in case of failures it
2107  * generates a random MAC address
2108  */
2109 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2110 {
2111         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2112                 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2113                 if (!is_valid_ether_addr(priv->dev->dev_addr))
2114                         eth_hw_addr_random(priv->dev);
2115                 dev_info(priv->device, "device MAC address %pM\n",
2116                          priv->dev->dev_addr);
2117         }
2118 }
2119
2120 /**
2121  * stmmac_init_dma_engine - DMA init.
2122  * @priv: driver private structure
2123  * Description:
2124  * It inits the DMA invoking the specific MAC/GMAC callback.
2125  * Some DMA parameters can be passed from the platform;
2126  * in case of these are not passed a default is kept for the MAC or GMAC.
2127  */
2128 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2129 {
2130         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2131         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2132         u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2133         struct stmmac_rx_queue *rx_q;
2134         struct stmmac_tx_queue *tx_q;
2135         u32 chan = 0;
2136         int atds = 0;
2137         int ret = 0;
2138
2139         if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2140                 dev_err(priv->device, "Invalid DMA configuration\n");
2141                 return -EINVAL;
2142         }
2143
2144         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2145                 atds = 1;
2146
2147         ret = stmmac_reset(priv, priv->ioaddr);
2148         if (ret) {
2149                 dev_err(priv->device, "Failed to reset the dma\n");
2150                 return ret;
2151         }
2152
2153         /* DMA Configuration */
2154         stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2155
2156         if (priv->plat->axi)
2157                 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2158
2159         /* DMA CSR Channel configuration */
2160         for (chan = 0; chan < dma_csr_ch; chan++)
2161                 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2162
2163         /* DMA RX Channel Configuration */
2164         for (chan = 0; chan < rx_channels_count; chan++) {
2165                 rx_q = &priv->rx_queue[chan];
2166
2167                 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2168                                     rx_q->dma_rx_phy, chan);
2169
2170                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2171                             (DMA_RX_SIZE * sizeof(struct dma_desc));
2172                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2173                                        rx_q->rx_tail_addr, chan);
2174         }
2175
2176         /* DMA TX Channel Configuration */
2177         for (chan = 0; chan < tx_channels_count; chan++) {
2178                 tx_q = &priv->tx_queue[chan];
2179
2180                 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2181                                     tx_q->dma_tx_phy, chan);
2182
2183                 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2184                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2185                                        tx_q->tx_tail_addr, chan);
2186         }
2187
2188         return ret;
2189 }
2190
2191 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2192 {
2193         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2194
2195         mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2196 }
2197
2198 /**
2199  * stmmac_tx_timer - mitigation sw timer for tx.
2200  * @data: data pointer
2201  * Description:
2202  * This is the timer handler to directly invoke the stmmac_tx_clean.
2203  */
2204 static void stmmac_tx_timer(struct timer_list *t)
2205 {
2206         struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2207         struct stmmac_priv *priv = tx_q->priv_data;
2208         struct stmmac_channel *ch;
2209
2210         ch = &priv->channel[tx_q->queue_index];
2211
2212         /*
2213          * If NAPI is already running we can miss some events. Let's rearm
2214          * the timer and try again.
2215          */
2216         if (likely(napi_schedule_prep(&ch->tx_napi)))
2217                 __napi_schedule(&ch->tx_napi);
2218         else
2219                 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
2220 }
2221
2222 /**
2223  * stmmac_init_tx_coalesce - init tx mitigation options.
2224  * @priv: driver private structure
2225  * Description:
2226  * This inits the transmit coalesce parameters: i.e. timer rate,
2227  * timer handler and default threshold used for enabling the
2228  * interrupt on completion bit.
2229  */
2230 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
2231 {
2232         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2233         u32 chan;
2234
2235         priv->tx_coal_frames = STMMAC_TX_FRAMES;
2236         priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2237
2238         for (chan = 0; chan < tx_channel_count; chan++) {
2239                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2240
2241                 timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2242         }
2243 }
2244
2245 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2246 {
2247         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2248         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2249         u32 chan;
2250
2251         /* set TX ring length */
2252         for (chan = 0; chan < tx_channels_count; chan++)
2253                 stmmac_set_tx_ring_len(priv, priv->ioaddr,
2254                                 (DMA_TX_SIZE - 1), chan);
2255
2256         /* set RX ring length */
2257         for (chan = 0; chan < rx_channels_count; chan++)
2258                 stmmac_set_rx_ring_len(priv, priv->ioaddr,
2259                                 (DMA_RX_SIZE - 1), chan);
2260 }
2261
2262 /**
2263  *  stmmac_set_tx_queue_weight - Set TX queue weight
2264  *  @priv: driver private structure
2265  *  Description: It is used for setting TX queues weight
2266  */
2267 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2268 {
2269         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2270         u32 weight;
2271         u32 queue;
2272
2273         for (queue = 0; queue < tx_queues_count; queue++) {
2274                 weight = priv->plat->tx_queues_cfg[queue].weight;
2275                 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2276         }
2277 }
2278
2279 /**
2280  *  stmmac_configure_cbs - Configure CBS in TX queue
2281  *  @priv: driver private structure
2282  *  Description: It is used for configuring CBS in AVB TX queues
2283  */
2284 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2285 {
2286         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2287         u32 mode_to_use;
2288         u32 queue;
2289
2290         /* queue 0 is reserved for legacy traffic */
2291         for (queue = 1; queue < tx_queues_count; queue++) {
2292                 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2293                 if (mode_to_use == MTL_QUEUE_DCB)
2294                         continue;
2295
2296                 stmmac_config_cbs(priv, priv->hw,
2297                                 priv->plat->tx_queues_cfg[queue].send_slope,
2298                                 priv->plat->tx_queues_cfg[queue].idle_slope,
2299                                 priv->plat->tx_queues_cfg[queue].high_credit,
2300                                 priv->plat->tx_queues_cfg[queue].low_credit,
2301                                 queue);
2302         }
2303 }
2304
2305 /**
2306  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2307  *  @priv: driver private structure
2308  *  Description: It is used for mapping RX queues to RX dma channels
2309  */
2310 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2311 {
2312         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2313         u32 queue;
2314         u32 chan;
2315
2316         for (queue = 0; queue < rx_queues_count; queue++) {
2317                 chan = priv->plat->rx_queues_cfg[queue].chan;
2318                 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2319         }
2320 }
2321
2322 /**
2323  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2324  *  @priv: driver private structure
2325  *  Description: It is used for configuring the RX Queue Priority
2326  */
2327 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2328 {
2329         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2330         u32 queue;
2331         u32 prio;
2332
2333         for (queue = 0; queue < rx_queues_count; queue++) {
2334                 if (!priv->plat->rx_queues_cfg[queue].use_prio)
2335                         continue;
2336
2337                 prio = priv->plat->rx_queues_cfg[queue].prio;
2338                 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2339         }
2340 }
2341
2342 /**
2343  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2344  *  @priv: driver private structure
2345  *  Description: It is used for configuring the TX Queue Priority
2346  */
2347 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2348 {
2349         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2350         u32 queue;
2351         u32 prio;
2352
2353         for (queue = 0; queue < tx_queues_count; queue++) {
2354                 if (!priv->plat->tx_queues_cfg[queue].use_prio)
2355                         continue;
2356
2357                 prio = priv->plat->tx_queues_cfg[queue].prio;
2358                 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2359         }
2360 }
2361
2362 /**
2363  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2364  *  @priv: driver private structure
2365  *  Description: It is used for configuring the RX queue routing
2366  */
2367 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2368 {
2369         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2370         u32 queue;
2371         u8 packet;
2372
2373         for (queue = 0; queue < rx_queues_count; queue++) {
2374                 /* no specific packet type routing specified for the queue */
2375                 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2376                         continue;
2377
2378                 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2379                 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2380         }
2381 }
2382
2383 /**
2384  *  stmmac_mtl_configuration - Configure MTL
2385  *  @priv: driver private structure
2386  *  Description: It is used for configurring MTL
2387  */
2388 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2389 {
2390         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2391         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2392
2393         if (tx_queues_count > 1)
2394                 stmmac_set_tx_queue_weight(priv);
2395
2396         /* Configure MTL RX algorithms */
2397         if (rx_queues_count > 1)
2398                 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2399                                 priv->plat->rx_sched_algorithm);
2400
2401         /* Configure MTL TX algorithms */
2402         if (tx_queues_count > 1)
2403                 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2404                                 priv->plat->tx_sched_algorithm);
2405
2406         /* Configure CBS in AVB TX queues */
2407         if (tx_queues_count > 1)
2408                 stmmac_configure_cbs(priv);
2409
2410         /* Map RX MTL to DMA channels */
2411         stmmac_rx_queue_dma_chan_map(priv);
2412
2413         /* Enable MAC RX Queues */
2414         stmmac_mac_enable_rx_queues(priv);
2415
2416         /* Set RX priorities */
2417         if (rx_queues_count > 1)
2418                 stmmac_mac_config_rx_queues_prio(priv);
2419
2420         /* Set TX priorities */
2421         if (tx_queues_count > 1)
2422                 stmmac_mac_config_tx_queues_prio(priv);
2423
2424         /* Set RX routing */
2425         if (rx_queues_count > 1)
2426                 stmmac_mac_config_rx_queues_routing(priv);
2427 }
2428
2429 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2430 {
2431         if (priv->dma_cap.asp) {
2432                 netdev_info(priv->dev, "Enabling Safety Features\n");
2433                 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2434         } else {
2435                 netdev_info(priv->dev, "No Safety Features support found\n");
2436         }
2437 }
2438
2439 /**
2440  * stmmac_hw_setup - setup mac in a usable state.
2441  *  @dev : pointer to the device structure.
2442  *  Description:
2443  *  this is the main function to setup the HW in a usable state because the
2444  *  dma engine is reset, the core registers are configured (e.g. AXI,
2445  *  Checksum features, timers). The DMA is ready to start receiving and
2446  *  transmitting.
2447  *  Return value:
2448  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2449  *  file on failure.
2450  */
2451 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2452 {
2453         struct stmmac_priv *priv = netdev_priv(dev);
2454         u32 rx_cnt = priv->plat->rx_queues_to_use;
2455         u32 tx_cnt = priv->plat->tx_queues_to_use;
2456         u32 chan;
2457         int ret;
2458
2459         /* DMA initialization and SW reset */
2460         ret = stmmac_init_dma_engine(priv);
2461         if (ret < 0) {
2462                 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2463                            __func__);
2464                 return ret;
2465         }
2466
2467         /* Copy the MAC addr into the HW  */
2468         stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2469
2470         /* PS and related bits will be programmed according to the speed */
2471         if (priv->hw->pcs) {
2472                 int speed = priv->plat->mac_port_sel_speed;
2473
2474                 if ((speed == SPEED_10) || (speed == SPEED_100) ||
2475                     (speed == SPEED_1000)) {
2476                         priv->hw->ps = speed;
2477                 } else {
2478                         dev_warn(priv->device, "invalid port speed\n");
2479                         priv->hw->ps = 0;
2480                 }
2481         }
2482
2483         /* Initialize the MAC Core */
2484         stmmac_core_init(priv, priv->hw, dev);
2485
2486         /* Initialize MTL*/
2487         stmmac_mtl_configuration(priv);
2488
2489         /* Initialize Safety Features */
2490         stmmac_safety_feat_configuration(priv);
2491
2492         ret = stmmac_rx_ipc(priv, priv->hw);
2493         if (!ret) {
2494                 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2495                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2496                 priv->hw->rx_csum = 0;
2497         }
2498
2499         /* Enable the MAC Rx/Tx */
2500         stmmac_mac_set(priv, priv->ioaddr, true);
2501
2502         /* Set the HW DMA mode and the COE */
2503         stmmac_dma_operation_mode(priv);
2504
2505         stmmac_mmc_setup(priv);
2506
2507         if (init_ptp) {
2508                 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2509                 if (ret < 0)
2510                         netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2511
2512                 ret = stmmac_init_ptp(priv);
2513                 if (ret == -EOPNOTSUPP)
2514                         netdev_warn(priv->dev, "PTP not supported by HW\n");
2515                 else if (ret)
2516                         netdev_warn(priv->dev, "PTP init failed\n");
2517         }
2518
2519         priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2520
2521         if (priv->use_riwt) {
2522                 ret = stmmac_rx_watchdog(priv, priv->ioaddr, MAX_DMA_RIWT, rx_cnt);
2523                 if (!ret)
2524                         priv->rx_riwt = MAX_DMA_RIWT;
2525         }
2526
2527         if (priv->hw->pcs)
2528                 stmmac_pcs_ctrl_ane(priv, priv->hw, 1, priv->hw->ps, 0);
2529
2530         /* set TX and RX rings length */
2531         stmmac_set_rings_length(priv);
2532
2533         /* Enable TSO */
2534         if (priv->tso) {
2535                 for (chan = 0; chan < tx_cnt; chan++)
2536                         stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2537         }
2538
2539         /* Start the ball rolling... */
2540         stmmac_start_all_dma(priv);
2541
2542         return 0;
2543 }
2544
2545 static void stmmac_hw_teardown(struct net_device *dev)
2546 {
2547         struct stmmac_priv *priv = netdev_priv(dev);
2548
2549         clk_disable_unprepare(priv->plat->clk_ptp_ref);
2550 }
2551
2552 /**
2553  *  stmmac_open - open entry point of the driver
2554  *  @dev : pointer to the device structure.
2555  *  Description:
2556  *  This function is the open entry point of the driver.
2557  *  Return value:
2558  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2559  *  file on failure.
2560  */
2561 static int stmmac_open(struct net_device *dev)
2562 {
2563         struct stmmac_priv *priv = netdev_priv(dev);
2564         u32 chan;
2565         int ret;
2566
2567         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2568             priv->hw->pcs != STMMAC_PCS_TBI &&
2569             priv->hw->pcs != STMMAC_PCS_RTBI) {
2570                 ret = stmmac_init_phy(dev);
2571                 if (ret) {
2572                         netdev_err(priv->dev,
2573                                    "%s: Cannot attach to PHY (error: %d)\n",
2574                                    __func__, ret);
2575                         return ret;
2576                 }
2577         }
2578
2579         /* Extra statistics */
2580         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2581         priv->xstats.threshold = tc;
2582
2583         priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2584         priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2585
2586         ret = alloc_dma_desc_resources(priv);
2587         if (ret < 0) {
2588                 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2589                            __func__);
2590                 goto dma_desc_error;
2591         }
2592
2593         ret = init_dma_desc_rings(dev, GFP_KERNEL);
2594         if (ret < 0) {
2595                 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2596                            __func__);
2597                 goto init_error;
2598         }
2599
2600         ret = stmmac_hw_setup(dev, true);
2601         if (ret < 0) {
2602                 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2603                 goto init_error;
2604         }
2605
2606         stmmac_init_tx_coalesce(priv);
2607
2608         phylink_start(priv->phylink);
2609
2610         /* Request the IRQ lines */
2611         ret = request_irq(dev->irq, stmmac_interrupt,
2612                           IRQF_SHARED, dev->name, dev);
2613         if (unlikely(ret < 0)) {
2614                 netdev_err(priv->dev,
2615                            "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2616                            __func__, dev->irq, ret);
2617                 goto irq_error;
2618         }
2619
2620         /* Request the Wake IRQ in case of another line is used for WoL */
2621         if (priv->wol_irq != dev->irq) {
2622                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
2623                                   IRQF_SHARED, dev->name, dev);
2624                 if (unlikely(ret < 0)) {
2625                         netdev_err(priv->dev,
2626                                    "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2627                                    __func__, priv->wol_irq, ret);
2628                         goto wolirq_error;
2629                 }
2630         }
2631
2632         /* Request the IRQ lines */
2633         if (priv->lpi_irq > 0) {
2634                 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2635                                   dev->name, dev);
2636                 if (unlikely(ret < 0)) {
2637                         netdev_err(priv->dev,
2638                                    "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2639                                    __func__, priv->lpi_irq, ret);
2640                         goto lpiirq_error;
2641                 }
2642         }
2643
2644         stmmac_enable_all_queues(priv);
2645         stmmac_start_all_queues(priv);
2646
2647         return 0;
2648
2649 lpiirq_error:
2650         if (priv->wol_irq != dev->irq)
2651                 free_irq(priv->wol_irq, dev);
2652 wolirq_error:
2653         free_irq(dev->irq, dev);
2654 irq_error:
2655         phylink_stop(priv->phylink);
2656
2657         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2658                 del_timer_sync(&priv->tx_queue[chan].txtimer);
2659
2660         stmmac_hw_teardown(dev);
2661 init_error:
2662         free_dma_desc_resources(priv);
2663 dma_desc_error:
2664         phylink_disconnect_phy(priv->phylink);
2665         return ret;
2666 }
2667
2668 /**
2669  *  stmmac_release - close entry point of the driver
2670  *  @dev : device pointer.
2671  *  Description:
2672  *  This is the stop entry point of the driver.
2673  */
2674 static int stmmac_release(struct net_device *dev)
2675 {
2676         struct stmmac_priv *priv = netdev_priv(dev);
2677         u32 chan;
2678
2679         if (priv->eee_enabled)
2680                 del_timer_sync(&priv->eee_ctrl_timer);
2681
2682         /* Stop and disconnect the PHY */
2683         phylink_stop(priv->phylink);
2684         phylink_disconnect_phy(priv->phylink);
2685
2686         stmmac_stop_all_queues(priv);
2687
2688         stmmac_disable_all_queues(priv);
2689
2690         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2691                 del_timer_sync(&priv->tx_queue[chan].txtimer);
2692
2693         /* Free the IRQ lines */
2694         free_irq(dev->irq, dev);
2695         if (priv->wol_irq != dev->irq)
2696                 free_irq(priv->wol_irq, dev);
2697         if (priv->lpi_irq > 0)
2698                 free_irq(priv->lpi_irq, dev);
2699
2700         /* Stop TX/RX DMA and clear the descriptors */
2701         stmmac_stop_all_dma(priv);
2702
2703         /* Release and free the Rx/Tx resources */
2704         free_dma_desc_resources(priv);
2705
2706         /* Disable the MAC Rx/Tx */
2707         stmmac_mac_set(priv, priv->ioaddr, false);
2708
2709         netif_carrier_off(dev);
2710
2711         stmmac_release_ptp(priv);
2712
2713         return 0;
2714 }
2715
2716 /**
2717  *  stmmac_tso_allocator - close entry point of the driver
2718  *  @priv: driver private structure
2719  *  @des: buffer start address
2720  *  @total_len: total length to fill in descriptors
2721  *  @last_segmant: condition for the last descriptor
2722  *  @queue: TX queue index
2723  *  Description:
2724  *  This function fills descriptor and request new descriptors according to
2725  *  buffer length to fill
2726  */
2727 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
2728                                  int total_len, bool last_segment, u32 queue)
2729 {
2730         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2731         struct dma_desc *desc;
2732         u32 buff_size;
2733         int tmp_len;
2734
2735         tmp_len = total_len;
2736
2737         while (tmp_len > 0) {
2738                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2739                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2740                 desc = tx_q->dma_tx + tx_q->cur_tx;
2741
2742                 desc->des0 = cpu_to_le32(des + (total_len - tmp_len));
2743                 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2744                             TSO_MAX_BUFF_SIZE : tmp_len;
2745
2746                 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2747                                 0, 1,
2748                                 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2749                                 0, 0);
2750
2751                 tmp_len -= TSO_MAX_BUFF_SIZE;
2752         }
2753 }
2754
2755 /**
2756  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2757  *  @skb : the socket buffer
2758  *  @dev : device pointer
2759  *  Description: this is the transmit function that is called on TSO frames
2760  *  (support available on GMAC4 and newer chips).
2761  *  Diagram below show the ring programming in case of TSO frames:
2762  *
2763  *  First Descriptor
2764  *   --------
2765  *   | DES0 |---> buffer1 = L2/L3/L4 header
2766  *   | DES1 |---> TCP Payload (can continue on next descr...)
2767  *   | DES2 |---> buffer 1 and 2 len
2768  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2769  *   --------
2770  *      |
2771  *     ...
2772  *      |
2773  *   --------
2774  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2775  *   | DES1 | --|
2776  *   | DES2 | --> buffer 1 and 2 len
2777  *   | DES3 |
2778  *   --------
2779  *
2780  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2781  */
2782 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2783 {
2784         struct dma_desc *desc, *first, *mss_desc = NULL;
2785         struct stmmac_priv *priv = netdev_priv(dev);
2786         int nfrags = skb_shinfo(skb)->nr_frags;
2787         u32 queue = skb_get_queue_mapping(skb);
2788         unsigned int first_entry, des;
2789         struct stmmac_tx_queue *tx_q;
2790         int tmp_pay_len = 0;
2791         u32 pay_len, mss;
2792         u8 proto_hdr_len;
2793         int i;
2794
2795         tx_q = &priv->tx_queue[queue];
2796
2797         /* Compute header lengths */
2798         proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2799
2800         /* Desc availability based on threshold should be enough safe */
2801         if (unlikely(stmmac_tx_avail(priv, queue) <
2802                 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2803                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2804                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2805                                                                 queue));
2806                         /* This is a hard error, log it. */
2807                         netdev_err(priv->dev,
2808                                    "%s: Tx Ring full when queue awake\n",
2809                                    __func__);
2810                 }
2811                 return NETDEV_TX_BUSY;
2812         }
2813
2814         pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2815
2816         mss = skb_shinfo(skb)->gso_size;
2817
2818         /* set new MSS value if needed */
2819         if (mss != tx_q->mss) {
2820                 mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2821                 stmmac_set_mss(priv, mss_desc, mss);
2822                 tx_q->mss = mss;
2823                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2824                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2825         }
2826
2827         if (netif_msg_tx_queued(priv)) {
2828                 pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2829                         __func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2830                 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2831                         skb->data_len);
2832         }
2833
2834         first_entry = tx_q->cur_tx;
2835         WARN_ON(tx_q->tx_skbuff[first_entry]);
2836
2837         desc = tx_q->dma_tx + first_entry;
2838         first = desc;
2839
2840         /* first descriptor: fill Headers on Buf1 */
2841         des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2842                              DMA_TO_DEVICE);
2843         if (dma_mapping_error(priv->device, des))
2844                 goto dma_map_err;
2845
2846         tx_q->tx_skbuff_dma[first_entry].buf = des;
2847         tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2848
2849         first->des0 = cpu_to_le32(des);
2850
2851         /* Fill start of payload in buff2 of first descriptor */
2852         if (pay_len)
2853                 first->des1 = cpu_to_le32(des + proto_hdr_len);
2854
2855         /* If needed take extra descriptors to fill the remaining payload */
2856         tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2857
2858         stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
2859
2860         /* Prepare fragments */
2861         for (i = 0; i < nfrags; i++) {
2862                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2863
2864                 des = skb_frag_dma_map(priv->device, frag, 0,
2865                                        skb_frag_size(frag),
2866                                        DMA_TO_DEVICE);
2867                 if (dma_mapping_error(priv->device, des))
2868                         goto dma_map_err;
2869
2870                 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2871                                      (i == nfrags - 1), queue);
2872
2873                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
2874                 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
2875                 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
2876         }
2877
2878         tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
2879
2880         /* Only the last descriptor gets to point to the skb. */
2881         tx_q->tx_skbuff[tx_q->cur_tx] = skb;
2882
2883         /* We've used all descriptors we need for this skb, however,
2884          * advance cur_tx so that it references a fresh descriptor.
2885          * ndo_start_xmit will fill this descriptor the next time it's
2886          * called and stmmac_tx_clean may clean up to this descriptor.
2887          */
2888         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2889
2890         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
2891                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
2892                           __func__);
2893                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
2894         }
2895
2896         dev->stats.tx_bytes += skb->len;
2897         priv->xstats.tx_tso_frames++;
2898         priv->xstats.tx_tso_nfrags += nfrags;
2899
2900         /* Manage tx mitigation */
2901         tx_q->tx_count_frames += nfrags + 1;
2902         if (priv->tx_coal_frames <= tx_q->tx_count_frames) {
2903                 stmmac_set_tx_ic(priv, desc);
2904                 priv->xstats.tx_set_ic_bit++;
2905                 tx_q->tx_count_frames = 0;
2906         } else {
2907                 stmmac_tx_timer_arm(priv, queue);
2908         }
2909
2910         skb_tx_timestamp(skb);
2911
2912         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2913                      priv->hwts_tx_en)) {
2914                 /* declare that device is doing timestamping */
2915                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2916                 stmmac_enable_tx_timestamp(priv, first);
2917         }
2918
2919         /* Complete the first descriptor before granting the DMA */
2920         stmmac_prepare_tso_tx_desc(priv, first, 1,
2921                         proto_hdr_len,
2922                         pay_len,
2923                         1, tx_q->tx_skbuff_dma[first_entry].last_segment,
2924                         tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2925
2926         /* If context desc is used to change MSS */
2927         if (mss_desc) {
2928                 /* Make sure that first descriptor has been completely
2929                  * written, including its own bit. This is because MSS is
2930                  * actually before first descriptor, so we need to make
2931                  * sure that MSS's own bit is the last thing written.
2932                  */
2933                 dma_wmb();
2934                 stmmac_set_tx_owner(priv, mss_desc);
2935         }
2936
2937         /* The own bit must be the latest setting done when prepare the
2938          * descriptor and then barrier is needed to make sure that
2939          * all is coherent before granting the DMA engine.
2940          */
2941         wmb();
2942
2943         if (netif_msg_pktdata(priv)) {
2944                 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
2945                         __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
2946                         tx_q->cur_tx, first, nfrags);
2947
2948                 stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
2949
2950                 pr_info(">>> frame to be transmitted: ");
2951                 print_pkt(skb->data, skb_headlen(skb));
2952         }
2953
2954         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
2955
2956         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
2957         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
2958
2959         return NETDEV_TX_OK;
2960
2961 dma_map_err:
2962         dev_err(priv->device, "Tx dma map failed\n");
2963         dev_kfree_skb(skb);
2964         priv->dev->stats.tx_dropped++;
2965         return NETDEV_TX_OK;
2966 }
2967
2968 /**
2969  *  stmmac_xmit - Tx entry point of the driver
2970  *  @skb : the socket buffer
2971  *  @dev : device pointer
2972  *  Description : this is the tx entry point of the driver.
2973  *  It programs the chain or the ring and supports oversized frames
2974  *  and SG feature.
2975  */
2976 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
2977 {
2978         struct stmmac_priv *priv = netdev_priv(dev);
2979         unsigned int nopaged_len = skb_headlen(skb);
2980         int i, csum_insertion = 0, is_jumbo = 0;
2981         u32 queue = skb_get_queue_mapping(skb);
2982         int nfrags = skb_shinfo(skb)->nr_frags;
2983         int entry;
2984         unsigned int first_entry;
2985         struct dma_desc *desc, *first;
2986         struct stmmac_tx_queue *tx_q;
2987         unsigned int enh_desc;
2988         unsigned int des;
2989
2990         tx_q = &priv->tx_queue[queue];
2991
2992         if (priv->tx_path_in_lpi_mode)
2993                 stmmac_disable_eee_mode(priv);
2994
2995         /* Manage oversized TCP frames for GMAC4 device */
2996         if (skb_is_gso(skb) && priv->tso) {
2997                 if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
2998                         /*
2999                          * There is no way to determine the number of TSO
3000                          * capable Queues. Let's use always the Queue 0
3001                          * because if TSO is supported then at least this
3002                          * one will be capable.
3003                          */
3004                         skb_set_queue_mapping(skb, 0);
3005
3006                         return stmmac_tso_xmit(skb, dev);
3007                 }
3008         }
3009
3010         if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3011                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3012                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3013                                                                 queue));
3014                         /* This is a hard error, log it. */
3015                         netdev_err(priv->dev,
3016                                    "%s: Tx Ring full when queue awake\n",
3017                                    __func__);
3018                 }
3019                 return NETDEV_TX_BUSY;
3020         }
3021
3022         entry = tx_q->cur_tx;
3023         first_entry = entry;
3024         WARN_ON(tx_q->tx_skbuff[first_entry]);
3025
3026         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3027
3028         if (likely(priv->extend_desc))
3029                 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3030         else
3031                 desc = tx_q->dma_tx + entry;
3032
3033         first = desc;
3034
3035         enh_desc = priv->plat->enh_desc;
3036         /* To program the descriptors according to the size of the frame */
3037         if (enh_desc)
3038                 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3039
3040         if (unlikely(is_jumbo)) {
3041                 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3042                 if (unlikely(entry < 0) && (entry != -EINVAL))
3043                         goto dma_map_err;
3044         }
3045
3046         for (i = 0; i < nfrags; i++) {
3047                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3048                 int len = skb_frag_size(frag);
3049                 bool last_segment = (i == (nfrags - 1));
3050
3051                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3052                 WARN_ON(tx_q->tx_skbuff[entry]);
3053
3054                 if (likely(priv->extend_desc))
3055                         desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3056                 else
3057                         desc = tx_q->dma_tx + entry;
3058
3059                 des = skb_frag_dma_map(priv->device, frag, 0, len,
3060                                        DMA_TO_DEVICE);
3061                 if (dma_mapping_error(priv->device, des))
3062                         goto dma_map_err; /* should reuse desc w/o issues */
3063
3064                 tx_q->tx_skbuff_dma[entry].buf = des;
3065
3066                 stmmac_set_desc_addr(priv, desc, des);
3067
3068                 tx_q->tx_skbuff_dma[entry].map_as_page = true;
3069                 tx_q->tx_skbuff_dma[entry].len = len;
3070                 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3071
3072                 /* Prepare the descriptor and set the own bit too */
3073                 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3074                                 priv->mode, 1, last_segment, skb->len);
3075         }
3076
3077         /* Only the last descriptor gets to point to the skb. */
3078         tx_q->tx_skbuff[entry] = skb;
3079
3080         /* We've used all descriptors we need for this skb, however,
3081          * advance cur_tx so that it references a fresh descriptor.
3082          * ndo_start_xmit will fill this descriptor the next time it's
3083          * called and stmmac_tx_clean may clean up to this descriptor.
3084          */
3085         entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3086         tx_q->cur_tx = entry;
3087
3088         if (netif_msg_pktdata(priv)) {
3089                 void *tx_head;
3090
3091                 netdev_dbg(priv->dev,
3092                            "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3093                            __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3094                            entry, first, nfrags);
3095
3096                 if (priv->extend_desc)
3097                         tx_head = (void *)tx_q->dma_etx;
3098                 else
3099                         tx_head = (void *)tx_q->dma_tx;
3100
3101                 stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3102
3103                 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3104                 print_pkt(skb->data, skb->len);
3105         }
3106
3107         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3108                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3109                           __func__);
3110                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3111         }
3112
3113         dev->stats.tx_bytes += skb->len;
3114
3115         /* According to the coalesce parameter the IC bit for the latest
3116          * segment is reset and the timer re-started to clean the tx status.
3117          * This approach takes care about the fragments: desc is the first
3118          * element in case of no SG.
3119          */
3120         tx_q->tx_count_frames += nfrags + 1;
3121         if (priv->tx_coal_frames <= tx_q->tx_count_frames) {
3122                 stmmac_set_tx_ic(priv, desc);
3123                 priv->xstats.tx_set_ic_bit++;
3124                 tx_q->tx_count_frames = 0;
3125         } else {
3126                 stmmac_tx_timer_arm(priv, queue);
3127         }
3128
3129         skb_tx_timestamp(skb);
3130
3131         /* Ready to fill the first descriptor and set the OWN bit w/o any
3132          * problems because all the descriptors are actually ready to be
3133          * passed to the DMA engine.
3134          */
3135         if (likely(!is_jumbo)) {
3136                 bool last_segment = (nfrags == 0);
3137
3138                 des = dma_map_single(priv->device, skb->data,
3139                                      nopaged_len, DMA_TO_DEVICE);
3140                 if (dma_mapping_error(priv->device, des))
3141                         goto dma_map_err;
3142
3143                 tx_q->tx_skbuff_dma[first_entry].buf = des;
3144
3145                 stmmac_set_desc_addr(priv, first, des);
3146
3147                 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3148                 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3149
3150                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3151                              priv->hwts_tx_en)) {
3152                         /* declare that device is doing timestamping */
3153                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3154                         stmmac_enable_tx_timestamp(priv, first);
3155                 }
3156
3157                 /* Prepare the first descriptor setting the OWN bit too */
3158                 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3159                                 csum_insertion, priv->mode, 1, last_segment,
3160                                 skb->len);
3161         } else {
3162                 stmmac_set_tx_owner(priv, first);
3163         }
3164
3165         /* The own bit must be the latest setting done when prepare the
3166          * descriptor and then barrier is needed to make sure that
3167          * all is coherent before granting the DMA engine.
3168          */
3169         wmb();
3170
3171         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3172
3173         stmmac_enable_dma_transmission(priv, priv->ioaddr);
3174
3175         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3176         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3177
3178         return NETDEV_TX_OK;
3179
3180 dma_map_err:
3181         netdev_err(priv->dev, "Tx DMA map failed\n");
3182         dev_kfree_skb(skb);
3183         priv->dev->stats.tx_dropped++;
3184         return NETDEV_TX_OK;
3185 }
3186
3187 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3188 {
3189         struct vlan_ethhdr *veth;
3190         __be16 vlan_proto;
3191         u16 vlanid;
3192
3193         veth = (struct vlan_ethhdr *)skb->data;
3194         vlan_proto = veth->h_vlan_proto;
3195
3196         if ((vlan_proto == htons(ETH_P_8021Q) &&
3197              dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3198             (vlan_proto == htons(ETH_P_8021AD) &&
3199              dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3200                 /* pop the vlan tag */
3201                 vlanid = ntohs(veth->h_vlan_TCI);
3202                 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3203                 skb_pull(skb, VLAN_HLEN);
3204                 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3205         }
3206 }
3207
3208
3209 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3210 {
3211         if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3212                 return 0;
3213
3214         return 1;
3215 }
3216
3217 /**
3218  * stmmac_rx_refill - refill used skb preallocated buffers
3219  * @priv: driver private structure
3220  * @queue: RX queue index
3221  * Description : this is to reallocate the skb for the reception process
3222  * that is based on zero-copy.
3223  */
3224 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3225 {
3226         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3227         int dirty = stmmac_rx_dirty(priv, queue);
3228         unsigned int entry = rx_q->dirty_rx;
3229
3230         int bfsize = priv->dma_buf_sz;
3231
3232         while (dirty-- > 0) {
3233                 struct dma_desc *p;
3234
3235                 if (priv->extend_desc)
3236                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
3237                 else
3238                         p = rx_q->dma_rx + entry;
3239
3240                 if (likely(!rx_q->rx_skbuff[entry])) {
3241                         struct sk_buff *skb;
3242
3243                         skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
3244                         if (unlikely(!skb)) {
3245                                 /* so for a while no zero-copy! */
3246                                 rx_q->rx_zeroc_thresh = STMMAC_RX_THRESH;
3247                                 if (unlikely(net_ratelimit()))
3248                                         dev_err(priv->device,
3249                                                 "fail to alloc skb entry %d\n",
3250                                                 entry);
3251                                 break;
3252                         }
3253
3254                         rx_q->rx_skbuff[entry] = skb;
3255                         rx_q->rx_skbuff_dma[entry] =
3256                             dma_map_single(priv->device, skb->data, bfsize,
3257                                            DMA_FROM_DEVICE);
3258                         if (dma_mapping_error(priv->device,
3259                                               rx_q->rx_skbuff_dma[entry])) {
3260                                 netdev_err(priv->dev, "Rx DMA map failed\n");
3261                                 dev_kfree_skb(skb);
3262                                 break;
3263                         }
3264
3265                         stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[entry]);
3266                         stmmac_refill_desc3(priv, rx_q, p);
3267
3268                         if (rx_q->rx_zeroc_thresh > 0)
3269                                 rx_q->rx_zeroc_thresh--;
3270
3271                         netif_dbg(priv, rx_status, priv->dev,
3272                                   "refill entry #%d\n", entry);
3273                 }
3274                 dma_wmb();
3275
3276                 stmmac_set_rx_owner(priv, p, priv->use_riwt);
3277
3278                 dma_wmb();
3279
3280                 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3281         }
3282         rx_q->dirty_rx = entry;
3283         stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3284 }
3285
3286 /**
3287  * stmmac_rx - manage the receive process
3288  * @priv: driver private structure
3289  * @limit: napi bugget
3290  * @queue: RX queue index.
3291  * Description :  this the function called by the napi poll method.
3292  * It gets all the frames inside the ring.
3293  */
3294 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3295 {
3296         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3297         struct stmmac_channel *ch = &priv->channel[queue];
3298         unsigned int next_entry = rx_q->cur_rx;
3299         int coe = priv->hw->rx_csum;
3300         unsigned int count = 0;
3301         bool xmac;
3302
3303         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3304
3305         if (netif_msg_rx_status(priv)) {
3306                 void *rx_head;
3307
3308                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3309                 if (priv->extend_desc)
3310                         rx_head = (void *)rx_q->dma_erx;
3311                 else
3312                         rx_head = (void *)rx_q->dma_rx;
3313
3314                 stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3315         }
3316         while (count < limit) {
3317                 int entry, status;
3318                 struct dma_desc *p;
3319                 struct dma_desc *np;
3320
3321                 entry = next_entry;
3322
3323                 if (priv->extend_desc)
3324                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
3325                 else
3326                         p = rx_q->dma_rx + entry;
3327
3328                 /* read the status of the incoming frame */
3329                 status = stmmac_rx_status(priv, &priv->dev->stats,
3330                                 &priv->xstats, p);
3331                 /* check if managed by the DMA otherwise go ahead */
3332                 if (unlikely(status & dma_own))
3333                         break;
3334
3335                 count++;
3336
3337                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3338                 next_entry = rx_q->cur_rx;
3339
3340                 if (priv->extend_desc)
3341                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3342                 else
3343                         np = rx_q->dma_rx + next_entry;
3344
3345                 prefetch(np);
3346
3347                 if (priv->extend_desc)
3348                         stmmac_rx_extended_status(priv, &priv->dev->stats,
3349                                         &priv->xstats, rx_q->dma_erx + entry);
3350                 if (unlikely(status == discard_frame)) {
3351                         priv->dev->stats.rx_errors++;
3352                         if (priv->hwts_rx_en && !priv->extend_desc) {
3353                                 /* DESC2 & DESC3 will be overwritten by device
3354                                  * with timestamp value, hence reinitialize
3355                                  * them in stmmac_rx_refill() function so that
3356                                  * device can reuse it.
3357                                  */
3358                                 dev_kfree_skb_any(rx_q->rx_skbuff[entry]);
3359                                 rx_q->rx_skbuff[entry] = NULL;
3360                                 dma_unmap_single(priv->device,
3361                                                  rx_q->rx_skbuff_dma[entry],
3362                                                  priv->dma_buf_sz,
3363                                                  DMA_FROM_DEVICE);
3364                         }
3365                 } else {
3366                         struct sk_buff *skb;
3367                         int frame_len;
3368                         unsigned int des;
3369
3370                         stmmac_get_desc_addr(priv, p, &des);
3371                         frame_len = stmmac_get_rx_frame_len(priv, p, coe);
3372
3373                         /*  If frame length is greater than skb buffer size
3374                          *  (preallocated during init) then the packet is
3375                          *  ignored
3376                          */
3377                         if (frame_len > priv->dma_buf_sz) {
3378                                 if (net_ratelimit())
3379                                         netdev_err(priv->dev,
3380                                                    "len %d larger than size (%d)\n",
3381                                                    frame_len, priv->dma_buf_sz);
3382                                 priv->dev->stats.rx_length_errors++;
3383                                 continue;
3384                         }
3385
3386                         /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3387                          * Type frames (LLC/LLC-SNAP)
3388                          *
3389                          * llc_snap is never checked in GMAC >= 4, so this ACS
3390                          * feature is always disabled and packets need to be
3391                          * stripped manually.
3392                          */
3393                         if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3394                             unlikely(status != llc_snap))
3395                                 frame_len -= ETH_FCS_LEN;
3396
3397                         if (netif_msg_rx_status(priv)) {
3398                                 netdev_dbg(priv->dev, "\tdesc: %p [entry %d] buff=0x%x\n",
3399                                            p, entry, des);
3400                                 netdev_dbg(priv->dev, "frame size %d, COE: %d\n",
3401                                            frame_len, status);
3402                         }
3403
3404                         /* The zero-copy is always used for all the sizes
3405                          * in case of GMAC4 because it needs
3406                          * to refill the used descriptors, always.
3407                          */
3408                         if (unlikely(!xmac &&
3409                                      ((frame_len < priv->rx_copybreak) ||
3410                                      stmmac_rx_threshold_count(rx_q)))) {
3411                                 skb = netdev_alloc_skb_ip_align(priv->dev,
3412                                                                 frame_len);
3413                                 if (unlikely(!skb)) {
3414                                         if (net_ratelimit())
3415                                                 dev_warn(priv->device,
3416                                                          "packet dropped\n");
3417                                         priv->dev->stats.rx_dropped++;
3418                                         continue;
3419                                 }
3420
3421                                 dma_sync_single_for_cpu(priv->device,
3422                                                         rx_q->rx_skbuff_dma
3423                                                         [entry], frame_len,
3424                                                         DMA_FROM_DEVICE);
3425                                 skb_copy_to_linear_data(skb,
3426                                                         rx_q->
3427                                                         rx_skbuff[entry]->data,
3428                                                         frame_len);
3429
3430                                 skb_put(skb, frame_len);
3431                                 dma_sync_single_for_device(priv->device,
3432                                                            rx_q->rx_skbuff_dma
3433                                                            [entry], frame_len,
3434                                                            DMA_FROM_DEVICE);
3435                         } else {
3436                                 skb = rx_q->rx_skbuff[entry];
3437                                 if (unlikely(!skb)) {
3438                                         if (net_ratelimit())
3439                                                 netdev_err(priv->dev,
3440                                                            "%s: Inconsistent Rx chain\n",
3441                                                            priv->dev->name);
3442                                         priv->dev->stats.rx_dropped++;
3443                                         continue;
3444                                 }
3445                                 prefetch(skb->data - NET_IP_ALIGN);
3446                                 rx_q->rx_skbuff[entry] = NULL;
3447                                 rx_q->rx_zeroc_thresh++;
3448
3449                                 skb_put(skb, frame_len);
3450                                 dma_unmap_single(priv->device,
3451                                                  rx_q->rx_skbuff_dma[entry],
3452                                                  priv->dma_buf_sz,
3453                                                  DMA_FROM_DEVICE);
3454                         }
3455
3456                         if (netif_msg_pktdata(priv)) {
3457                                 netdev_dbg(priv->dev, "frame received (%dbytes)",
3458                                            frame_len);
3459                                 print_pkt(skb->data, frame_len);
3460                         }
3461
3462                         stmmac_get_rx_hwtstamp(priv, p, np, skb);
3463
3464                         stmmac_rx_vlan(priv->dev, skb);
3465
3466                         skb->protocol = eth_type_trans(skb, priv->dev);
3467
3468                         if (unlikely(!coe))
3469                                 skb_checksum_none_assert(skb);
3470                         else
3471                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3472
3473                         napi_gro_receive(&ch->rx_napi, skb);
3474
3475                         priv->dev->stats.rx_packets++;
3476                         priv->dev->stats.rx_bytes += frame_len;
3477                 }
3478         }
3479
3480         stmmac_rx_refill(priv, queue);
3481
3482         priv->xstats.rx_pkt_n += count;
3483
3484         return count;
3485 }
3486
3487 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3488 {
3489         struct stmmac_channel *ch =
3490                 container_of(napi, struct stmmac_channel, rx_napi);
3491         struct stmmac_priv *priv = ch->priv_data;
3492         u32 chan = ch->index;
3493         int work_done;
3494
3495         priv->xstats.napi_poll++;
3496
3497         work_done = stmmac_rx(priv, budget, chan);
3498         if (work_done < budget && napi_complete_done(napi, work_done))
3499                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3500         return work_done;
3501 }
3502
3503 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3504 {
3505         struct stmmac_channel *ch =
3506                 container_of(napi, struct stmmac_channel, tx_napi);
3507         struct stmmac_priv *priv = ch->priv_data;
3508         struct stmmac_tx_queue *tx_q;
3509         u32 chan = ch->index;
3510         int work_done;
3511
3512         priv->xstats.napi_poll++;
3513
3514         work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3515         work_done = min(work_done, budget);
3516
3517         if (work_done < budget && napi_complete_done(napi, work_done))
3518                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3519
3520         /* Force transmission restart */
3521         tx_q = &priv->tx_queue[chan];
3522         if (tx_q->cur_tx != tx_q->dirty_tx) {
3523                 stmmac_enable_dma_transmission(priv, priv->ioaddr);
3524                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr,
3525                                        chan);
3526         }
3527
3528         return work_done;
3529 }
3530
3531 /**
3532  *  stmmac_tx_timeout
3533  *  @dev : Pointer to net device structure
3534  *  Description: this function is called when a packet transmission fails to
3535  *   complete within a reasonable time. The driver will mark the error in the
3536  *   netdev structure and arrange for the device to be reset to a sane state
3537  *   in order to transmit a new packet.
3538  */
3539 static void stmmac_tx_timeout(struct net_device *dev)
3540 {
3541         struct stmmac_priv *priv = netdev_priv(dev);
3542
3543         stmmac_global_err(priv);
3544 }
3545
3546 /**
3547  *  stmmac_set_rx_mode - entry point for multicast addressing
3548  *  @dev : pointer to the device structure
3549  *  Description:
3550  *  This function is a driver entry point which gets called by the kernel
3551  *  whenever multicast addresses must be enabled/disabled.
3552  *  Return value:
3553  *  void.
3554  */
3555 static void stmmac_set_rx_mode(struct net_device *dev)
3556 {
3557         struct stmmac_priv *priv = netdev_priv(dev);
3558
3559         stmmac_set_filter(priv, priv->hw, dev);
3560 }
3561
3562 /**
3563  *  stmmac_change_mtu - entry point to change MTU size for the device.
3564  *  @dev : device pointer.
3565  *  @new_mtu : the new MTU size for the device.
3566  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3567  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3568  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3569  *  Return value:
3570  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3571  *  file on failure.
3572  */
3573 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3574 {
3575         struct stmmac_priv *priv = netdev_priv(dev);
3576
3577         if (netif_running(dev)) {
3578                 netdev_err(priv->dev, "must be stopped to change its MTU\n");
3579                 return -EBUSY;
3580         }
3581
3582         dev->mtu = new_mtu;
3583
3584         netdev_update_features(dev);
3585
3586         return 0;
3587 }
3588
3589 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3590                                              netdev_features_t features)
3591 {
3592         struct stmmac_priv *priv = netdev_priv(dev);
3593
3594         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3595                 features &= ~NETIF_F_RXCSUM;
3596
3597         if (!priv->plat->tx_coe)
3598                 features &= ~NETIF_F_CSUM_MASK;
3599
3600         /* Some GMAC devices have a bugged Jumbo frame support that
3601          * needs to have the Tx COE disabled for oversized frames
3602          * (due to limited buffer sizes). In this case we disable
3603          * the TX csum insertion in the TDES and not use SF.
3604          */
3605         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3606                 features &= ~NETIF_F_CSUM_MASK;
3607
3608         /* Disable tso if asked by ethtool */
3609         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3610                 if (features & NETIF_F_TSO)
3611                         priv->tso = true;
3612                 else
3613                         priv->tso = false;
3614         }
3615
3616         return features;
3617 }
3618
3619 static int stmmac_set_features(struct net_device *netdev,
3620                                netdev_features_t features)
3621 {
3622         struct stmmac_priv *priv = netdev_priv(netdev);
3623
3624         /* Keep the COE Type in case of csum is supporting */
3625         if (features & NETIF_F_RXCSUM)
3626                 priv->hw->rx_csum = priv->plat->rx_coe;
3627         else
3628                 priv->hw->rx_csum = 0;
3629         /* No check needed because rx_coe has been set before and it will be
3630          * fixed in case of issue.
3631          */
3632         stmmac_rx_ipc(priv, priv->hw);
3633
3634         return 0;
3635 }
3636
3637 /**
3638  *  stmmac_interrupt - main ISR
3639  *  @irq: interrupt number.
3640  *  @dev_id: to pass the net device pointer.
3641  *  Description: this is the main driver interrupt service routine.
3642  *  It can call:
3643  *  o DMA service routine (to manage incoming frame reception and transmission
3644  *    status)
3645  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3646  *    interrupts.
3647  */
3648 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3649 {
3650         struct net_device *dev = (struct net_device *)dev_id;
3651         struct stmmac_priv *priv = netdev_priv(dev);
3652         u32 rx_cnt = priv->plat->rx_queues_to_use;
3653         u32 tx_cnt = priv->plat->tx_queues_to_use;
3654         u32 queues_count;
3655         u32 queue;
3656         bool xmac;
3657
3658         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3659         queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3660
3661         if (priv->irq_wake)
3662                 pm_wakeup_event(priv->device, 0);
3663
3664         if (unlikely(!dev)) {
3665                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3666                 return IRQ_NONE;
3667         }
3668
3669         /* Check if adapter is up */
3670         if (test_bit(STMMAC_DOWN, &priv->state))
3671                 return IRQ_HANDLED;
3672         /* Check if a fatal error happened */
3673         if (stmmac_safety_feat_interrupt(priv))
3674                 return IRQ_HANDLED;
3675
3676         /* To handle GMAC own interrupts */
3677         if ((priv->plat->has_gmac) || xmac) {
3678                 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3679                 int mtl_status;
3680
3681                 if (unlikely(status)) {
3682                         /* For LPI we need to save the tx status */
3683                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3684                                 priv->tx_path_in_lpi_mode = true;
3685                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3686                                 priv->tx_path_in_lpi_mode = false;
3687                 }
3688
3689                 for (queue = 0; queue < queues_count; queue++) {
3690                         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3691
3692                         mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3693                                                                 queue);
3694                         if (mtl_status != -EINVAL)
3695                                 status |= mtl_status;
3696
3697                         if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3698                                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3699                                                        rx_q->rx_tail_addr,
3700                                                        queue);
3701                 }
3702
3703                 /* PCS link status */
3704                 if (priv->hw->pcs) {
3705                         if (priv->xstats.pcs_link)
3706                                 netif_carrier_on(dev);
3707                         else
3708                                 netif_carrier_off(dev);
3709                 }
3710         }
3711
3712         /* To handle DMA interrupts */
3713         stmmac_dma_interrupt(priv);
3714
3715         return IRQ_HANDLED;
3716 }
3717
3718 #ifdef CONFIG_NET_POLL_CONTROLLER
3719 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3720  * to allow network I/O with interrupts disabled.
3721  */
3722 static void stmmac_poll_controller(struct net_device *dev)
3723 {
3724         disable_irq(dev->irq);
3725         stmmac_interrupt(dev->irq, dev);
3726         enable_irq(dev->irq);
3727 }
3728 #endif
3729
3730 /**
3731  *  stmmac_ioctl - Entry point for the Ioctl
3732  *  @dev: Device pointer.
3733  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3734  *  a proprietary structure used to pass information to the driver.
3735  *  @cmd: IOCTL command
3736  *  Description:
3737  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3738  */
3739 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3740 {
3741         struct stmmac_priv *priv = netdev_priv (dev);
3742         int ret = -EOPNOTSUPP;
3743
3744         if (!netif_running(dev))
3745                 return -EINVAL;
3746
3747         switch (cmd) {
3748         case SIOCGMIIPHY:
3749         case SIOCGMIIREG:
3750         case SIOCSMIIREG:
3751                 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
3752                 break;
3753         case SIOCSHWTSTAMP:
3754                 ret = stmmac_hwtstamp_set(dev, rq);
3755                 break;
3756         case SIOCGHWTSTAMP:
3757                 ret = stmmac_hwtstamp_get(dev, rq);
3758                 break;
3759         default:
3760                 break;
3761         }
3762
3763         return ret;
3764 }
3765
3766 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3767                                     void *cb_priv)
3768 {
3769         struct stmmac_priv *priv = cb_priv;
3770         int ret = -EOPNOTSUPP;
3771
3772         stmmac_disable_all_queues(priv);
3773
3774         switch (type) {
3775         case TC_SETUP_CLSU32:
3776                 if (tc_cls_can_offload_and_chain0(priv->dev, type_data))
3777                         ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
3778                 break;
3779         default:
3780                 break;
3781         }
3782
3783         stmmac_enable_all_queues(priv);
3784         return ret;
3785 }
3786
3787 static int stmmac_setup_tc_block(struct stmmac_priv *priv,
3788                                  struct tc_block_offload *f)
3789 {
3790         if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
3791                 return -EOPNOTSUPP;
3792
3793         switch (f->command) {
3794         case TC_BLOCK_BIND:
3795                 return tcf_block_cb_register(f->block, stmmac_setup_tc_block_cb,
3796                                 priv, priv, f->extack);
3797         case TC_BLOCK_UNBIND:
3798                 tcf_block_cb_unregister(f->block, stmmac_setup_tc_block_cb, priv);
3799                 return 0;
3800         default:
3801                 return -EOPNOTSUPP;
3802         }
3803 }
3804
3805 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
3806                            void *type_data)
3807 {
3808         struct stmmac_priv *priv = netdev_priv(ndev);
3809
3810         switch (type) {
3811         case TC_SETUP_BLOCK:
3812                 return stmmac_setup_tc_block(priv, type_data);
3813         case TC_SETUP_QDISC_CBS:
3814                 return stmmac_tc_setup_cbs(priv, priv, type_data);
3815         default:
3816                 return -EOPNOTSUPP;
3817         }
3818 }
3819
3820 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
3821 {
3822         struct stmmac_priv *priv = netdev_priv(ndev);
3823         int ret = 0;
3824
3825         ret = eth_mac_addr(ndev, addr);
3826         if (ret)
3827                 return ret;
3828
3829         stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
3830
3831         return ret;
3832 }
3833
3834 #ifdef CONFIG_DEBUG_FS
3835 static struct dentry *stmmac_fs_dir;
3836
3837 static void sysfs_display_ring(void *head, int size, int extend_desc,
3838                                struct seq_file *seq)
3839 {
3840         int i;
3841         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
3842         struct dma_desc *p = (struct dma_desc *)head;
3843
3844         for (i = 0; i < size; i++) {
3845                 if (extend_desc) {
3846                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3847                                    i, (unsigned int)virt_to_phys(ep),
3848                                    le32_to_cpu(ep->basic.des0),
3849                                    le32_to_cpu(ep->basic.des1),
3850                                    le32_to_cpu(ep->basic.des2),
3851                                    le32_to_cpu(ep->basic.des3));
3852                         ep++;
3853                 } else {
3854                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3855                                    i, (unsigned int)virt_to_phys(p),
3856                                    le32_to_cpu(p->des0), le32_to_cpu(p->des1),
3857                                    le32_to_cpu(p->des2), le32_to_cpu(p->des3));
3858                         p++;
3859                 }
3860                 seq_printf(seq, "\n");
3861         }
3862 }
3863
3864 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
3865 {
3866         struct net_device *dev = seq->private;
3867         struct stmmac_priv *priv = netdev_priv(dev);
3868         u32 rx_count = priv->plat->rx_queues_to_use;
3869         u32 tx_count = priv->plat->tx_queues_to_use;
3870         u32 queue;
3871
3872         if ((dev->flags & IFF_UP) == 0)
3873                 return 0;
3874
3875         for (queue = 0; queue < rx_count; queue++) {
3876                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3877
3878                 seq_printf(seq, "RX Queue %d:\n", queue);
3879
3880                 if (priv->extend_desc) {
3881                         seq_printf(seq, "Extended descriptor ring:\n");
3882                         sysfs_display_ring((void *)rx_q->dma_erx,
3883                                            DMA_RX_SIZE, 1, seq);
3884                 } else {
3885                         seq_printf(seq, "Descriptor ring:\n");
3886                         sysfs_display_ring((void *)rx_q->dma_rx,
3887                                            DMA_RX_SIZE, 0, seq);
3888                 }
3889         }
3890
3891         for (queue = 0; queue < tx_count; queue++) {
3892                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3893
3894                 seq_printf(seq, "TX Queue %d:\n", queue);
3895
3896                 if (priv->extend_desc) {
3897                         seq_printf(seq, "Extended descriptor ring:\n");
3898                         sysfs_display_ring((void *)tx_q->dma_etx,
3899                                            DMA_TX_SIZE, 1, seq);
3900                 } else {
3901                         seq_printf(seq, "Descriptor ring:\n");
3902                         sysfs_display_ring((void *)tx_q->dma_tx,
3903                                            DMA_TX_SIZE, 0, seq);
3904                 }
3905         }
3906
3907         return 0;
3908 }
3909 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
3910
3911 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
3912 {
3913         struct net_device *dev = seq->private;
3914         struct stmmac_priv *priv = netdev_priv(dev);
3915
3916         if (!priv->hw_cap_support) {
3917                 seq_printf(seq, "DMA HW features not supported\n");
3918                 return 0;
3919         }
3920
3921         seq_printf(seq, "==============================\n");
3922         seq_printf(seq, "\tDMA HW features\n");
3923         seq_printf(seq, "==============================\n");
3924
3925         seq_printf(seq, "\t10/100 Mbps: %s\n",
3926                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
3927         seq_printf(seq, "\t1000 Mbps: %s\n",
3928                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
3929         seq_printf(seq, "\tHalf duplex: %s\n",
3930                    (priv->dma_cap.half_duplex) ? "Y" : "N");
3931         seq_printf(seq, "\tHash Filter: %s\n",
3932                    (priv->dma_cap.hash_filter) ? "Y" : "N");
3933         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
3934                    (priv->dma_cap.multi_addr) ? "Y" : "N");
3935         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
3936                    (priv->dma_cap.pcs) ? "Y" : "N");
3937         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
3938                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
3939         seq_printf(seq, "\tPMT Remote wake up: %s\n",
3940                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
3941         seq_printf(seq, "\tPMT Magic Frame: %s\n",
3942                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
3943         seq_printf(seq, "\tRMON module: %s\n",
3944                    (priv->dma_cap.rmon) ? "Y" : "N");
3945         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
3946                    (priv->dma_cap.time_stamp) ? "Y" : "N");
3947         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
3948                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
3949         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
3950                    (priv->dma_cap.eee) ? "Y" : "N");
3951         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
3952         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
3953                    (priv->dma_cap.tx_coe) ? "Y" : "N");
3954         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3955                 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
3956                            (priv->dma_cap.rx_coe) ? "Y" : "N");
3957         } else {
3958                 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
3959                            (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
3960                 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
3961                            (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
3962         }
3963         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
3964                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
3965         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
3966                    priv->dma_cap.number_rx_channel);
3967         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
3968                    priv->dma_cap.number_tx_channel);
3969         seq_printf(seq, "\tEnhanced descriptors: %s\n",
3970                    (priv->dma_cap.enh_desc) ? "Y" : "N");
3971
3972         return 0;
3973 }
3974 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
3975
3976 static int stmmac_init_fs(struct net_device *dev)
3977 {
3978         struct stmmac_priv *priv = netdev_priv(dev);
3979
3980         /* Create per netdev entries */
3981         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
3982
3983         if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
3984                 netdev_err(priv->dev, "ERROR failed to create debugfs directory\n");
3985
3986                 return -ENOMEM;
3987         }
3988
3989         /* Entry to report DMA RX/TX rings */
3990         priv->dbgfs_rings_status =
3991                 debugfs_create_file("descriptors_status", 0444,
3992                                     priv->dbgfs_dir, dev,
3993                                     &stmmac_rings_status_fops);
3994
3995         if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
3996                 netdev_err(priv->dev, "ERROR creating stmmac ring debugfs file\n");
3997                 debugfs_remove_recursive(priv->dbgfs_dir);
3998
3999                 return -ENOMEM;
4000         }
4001
4002         /* Entry to report the DMA HW features */
4003         priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", 0444,
4004                                                   priv->dbgfs_dir,
4005                                                   dev, &stmmac_dma_cap_fops);
4006
4007         if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
4008                 netdev_err(priv->dev, "ERROR creating stmmac MMC debugfs file\n");
4009                 debugfs_remove_recursive(priv->dbgfs_dir);
4010
4011                 return -ENOMEM;
4012         }
4013
4014         return 0;
4015 }
4016
4017 static void stmmac_exit_fs(struct net_device *dev)
4018 {
4019         struct stmmac_priv *priv = netdev_priv(dev);
4020
4021         debugfs_remove_recursive(priv->dbgfs_dir);
4022 }
4023 #endif /* CONFIG_DEBUG_FS */
4024
4025 static const struct net_device_ops stmmac_netdev_ops = {
4026         .ndo_open = stmmac_open,
4027         .ndo_start_xmit = stmmac_xmit,
4028         .ndo_stop = stmmac_release,
4029         .ndo_change_mtu = stmmac_change_mtu,
4030         .ndo_fix_features = stmmac_fix_features,
4031         .ndo_set_features = stmmac_set_features,
4032         .ndo_set_rx_mode = stmmac_set_rx_mode,
4033         .ndo_tx_timeout = stmmac_tx_timeout,
4034         .ndo_do_ioctl = stmmac_ioctl,
4035         .ndo_setup_tc = stmmac_setup_tc,
4036 #ifdef CONFIG_NET_POLL_CONTROLLER
4037         .ndo_poll_controller = stmmac_poll_controller,
4038 #endif
4039         .ndo_set_mac_address = stmmac_set_mac_address,
4040 };
4041
4042 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4043 {
4044         if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4045                 return;
4046         if (test_bit(STMMAC_DOWN, &priv->state))
4047                 return;
4048
4049         netdev_err(priv->dev, "Reset adapter.\n");
4050
4051         rtnl_lock();
4052         netif_trans_update(priv->dev);
4053         while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4054                 usleep_range(1000, 2000);
4055
4056         set_bit(STMMAC_DOWN, &priv->state);
4057         dev_close(priv->dev);
4058         dev_open(priv->dev, NULL);
4059         clear_bit(STMMAC_DOWN, &priv->state);
4060         clear_bit(STMMAC_RESETING, &priv->state);
4061         rtnl_unlock();
4062 }
4063
4064 static void stmmac_service_task(struct work_struct *work)
4065 {
4066         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4067                         service_task);
4068
4069         stmmac_reset_subtask(priv);
4070         clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4071 }
4072
4073 /**
4074  *  stmmac_hw_init - Init the MAC device
4075  *  @priv: driver private structure
4076  *  Description: this function is to configure the MAC device according to
4077  *  some platform parameters or the HW capability register. It prepares the
4078  *  driver to use either ring or chain modes and to setup either enhanced or
4079  *  normal descriptors.
4080  */
4081 static int stmmac_hw_init(struct stmmac_priv *priv)
4082 {
4083         int ret;
4084
4085         /* dwmac-sun8i only work in chain mode */
4086         if (priv->plat->has_sun8i)
4087                 chain_mode = 1;
4088         priv->chain_mode = chain_mode;
4089
4090         /* Initialize HW Interface */
4091         ret = stmmac_hwif_init(priv);
4092         if (ret)
4093                 return ret;
4094
4095         /* Get the HW capability (new GMAC newer than 3.50a) */
4096         priv->hw_cap_support = stmmac_get_hw_features(priv);
4097         if (priv->hw_cap_support) {
4098                 dev_info(priv->device, "DMA HW capability register supported\n");
4099
4100                 /* We can override some gmac/dma configuration fields: e.g.
4101                  * enh_desc, tx_coe (e.g. that are passed through the
4102                  * platform) with the values from the HW capability
4103                  * register (if supported).
4104                  */
4105                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
4106                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4107                 priv->hw->pmt = priv->plat->pmt;
4108
4109                 /* TXCOE doesn't work in thresh DMA mode */
4110                 if (priv->plat->force_thresh_dma_mode)
4111                         priv->plat->tx_coe = 0;
4112                 else
4113                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
4114
4115                 /* In case of GMAC4 rx_coe is from HW cap register. */
4116                 priv->plat->rx_coe = priv->dma_cap.rx_coe;
4117
4118                 if (priv->dma_cap.rx_coe_type2)
4119                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4120                 else if (priv->dma_cap.rx_coe_type1)
4121                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4122
4123         } else {
4124                 dev_info(priv->device, "No HW DMA feature register supported\n");
4125         }
4126
4127         if (priv->plat->rx_coe) {
4128                 priv->hw->rx_csum = priv->plat->rx_coe;
4129                 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4130                 if (priv->synopsys_id < DWMAC_CORE_4_00)
4131                         dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4132         }
4133         if (priv->plat->tx_coe)
4134                 dev_info(priv->device, "TX Checksum insertion supported\n");
4135
4136         if (priv->plat->pmt) {
4137                 dev_info(priv->device, "Wake-Up On Lan supported\n");
4138                 device_set_wakeup_capable(priv->device, 1);
4139         }
4140
4141         if (priv->dma_cap.tsoen)
4142                 dev_info(priv->device, "TSO supported\n");
4143
4144         /* Run HW quirks, if any */
4145         if (priv->hwif_quirks) {
4146                 ret = priv->hwif_quirks(priv);
4147                 if (ret)
4148                         return ret;
4149         }
4150
4151         /* Rx Watchdog is available in the COREs newer than the 3.40.
4152          * In some case, for example on bugged HW this feature
4153          * has to be disable and this can be done by passing the
4154          * riwt_off field from the platform.
4155          */
4156         if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4157             (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4158                 priv->use_riwt = 1;
4159                 dev_info(priv->device,
4160                          "Enable RX Mitigation via HW Watchdog Timer\n");
4161         }
4162
4163         return 0;
4164 }
4165
4166 /**
4167  * stmmac_dvr_probe
4168  * @device: device pointer
4169  * @plat_dat: platform data pointer
4170  * @res: stmmac resource pointer
4171  * Description: this is the main probe function used to
4172  * call the alloc_etherdev, allocate the priv structure.
4173  * Return:
4174  * returns 0 on success, otherwise errno.
4175  */
4176 int stmmac_dvr_probe(struct device *device,
4177                      struct plat_stmmacenet_data *plat_dat,
4178                      struct stmmac_resources *res)
4179 {
4180         struct net_device *ndev = NULL;
4181         struct stmmac_priv *priv;
4182         u32 queue, maxq;
4183         int ret = 0;
4184
4185         ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4186                                        MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4187         if (!ndev)
4188                 return -ENOMEM;
4189
4190         SET_NETDEV_DEV(ndev, device);
4191
4192         priv = netdev_priv(ndev);
4193         priv->device = device;
4194         priv->dev = ndev;
4195
4196         stmmac_set_ethtool_ops(ndev);
4197         priv->pause = pause;
4198         priv->plat = plat_dat;
4199         priv->ioaddr = res->addr;
4200         priv->dev->base_addr = (unsigned long)res->addr;
4201
4202         priv->dev->irq = res->irq;
4203         priv->wol_irq = res->wol_irq;
4204         priv->lpi_irq = res->lpi_irq;
4205
4206         if (!IS_ERR_OR_NULL(res->mac))
4207                 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4208
4209         dev_set_drvdata(device, priv->dev);
4210
4211         /* Verify driver arguments */
4212         stmmac_verify_args();
4213
4214         /* Allocate workqueue */
4215         priv->wq = create_singlethread_workqueue("stmmac_wq");
4216         if (!priv->wq) {
4217                 dev_err(priv->device, "failed to create workqueue\n");
4218                 return -ENOMEM;
4219         }
4220
4221         INIT_WORK(&priv->service_task, stmmac_service_task);
4222
4223         /* Override with kernel parameters if supplied XXX CRS XXX
4224          * this needs to have multiple instances
4225          */
4226         if ((phyaddr >= 0) && (phyaddr <= 31))
4227                 priv->plat->phy_addr = phyaddr;
4228
4229         if (priv->plat->stmmac_rst) {
4230                 ret = reset_control_assert(priv->plat->stmmac_rst);
4231                 reset_control_deassert(priv->plat->stmmac_rst);
4232                 /* Some reset controllers have only reset callback instead of
4233                  * assert + deassert callbacks pair.
4234                  */
4235                 if (ret == -ENOTSUPP)
4236                         reset_control_reset(priv->plat->stmmac_rst);
4237         }
4238
4239         /* Init MAC and get the capabilities */
4240         ret = stmmac_hw_init(priv);
4241         if (ret)
4242                 goto error_hw_init;
4243
4244         stmmac_check_ether_addr(priv);
4245
4246         /* Configure real RX and TX queues */
4247         netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4248         netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4249
4250         ndev->netdev_ops = &stmmac_netdev_ops;
4251
4252         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4253                             NETIF_F_RXCSUM;
4254
4255         ret = stmmac_tc_init(priv, priv);
4256         if (!ret) {
4257                 ndev->hw_features |= NETIF_F_HW_TC;
4258         }
4259
4260         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4261                 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4262                 priv->tso = true;
4263                 dev_info(priv->device, "TSO feature enabled\n");
4264         }
4265         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4266         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4267 #ifdef STMMAC_VLAN_TAG_USED
4268         /* Both mac100 and gmac support receive VLAN tag detection */
4269         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4270 #endif
4271         priv->msg_enable = netif_msg_init(debug, default_msg_level);
4272
4273         /* MTU range: 46 - hw-specific max */
4274         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4275         if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4276                 ndev->max_mtu = JUMBO_LEN;
4277         else if (priv->plat->has_xgmac)
4278                 ndev->max_mtu = XGMAC_JUMBO_LEN;
4279         else
4280                 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4281         /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4282          * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4283          */
4284         if ((priv->plat->maxmtu < ndev->max_mtu) &&
4285             (priv->plat->maxmtu >= ndev->min_mtu))
4286                 ndev->max_mtu = priv->plat->maxmtu;
4287         else if (priv->plat->maxmtu < ndev->min_mtu)
4288                 dev_warn(priv->device,
4289                          "%s: warning: maxmtu having invalid value (%d)\n",
4290                          __func__, priv->plat->maxmtu);
4291
4292         if (flow_ctrl)
4293                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
4294
4295         /* Setup channels NAPI */
4296         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4297
4298         for (queue = 0; queue < maxq; queue++) {
4299                 struct stmmac_channel *ch = &priv->channel[queue];
4300
4301                 ch->priv_data = priv;
4302                 ch->index = queue;
4303
4304                 if (queue < priv->plat->rx_queues_to_use) {
4305                         netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4306                                        NAPI_POLL_WEIGHT);
4307                 }
4308                 if (queue < priv->plat->tx_queues_to_use) {
4309                         netif_napi_add(ndev, &ch->tx_napi, stmmac_napi_poll_tx,
4310                                        NAPI_POLL_WEIGHT);
4311                 }
4312         }
4313
4314         mutex_init(&priv->lock);
4315
4316         /* If a specific clk_csr value is passed from the platform
4317          * this means that the CSR Clock Range selection cannot be
4318          * changed at run-time and it is fixed. Viceversa the driver'll try to
4319          * set the MDC clock dynamically according to the csr actual
4320          * clock input.
4321          */
4322         if (priv->plat->clk_csr >= 0)
4323                 priv->clk_csr = priv->plat->clk_csr;
4324         else
4325                 stmmac_clk_csr_set(priv);
4326
4327         stmmac_check_pcs_mode(priv);
4328
4329         if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4330             priv->hw->pcs != STMMAC_PCS_TBI &&
4331             priv->hw->pcs != STMMAC_PCS_RTBI) {
4332                 /* MDIO bus Registration */
4333                 ret = stmmac_mdio_register(ndev);
4334                 if (ret < 0) {
4335                         dev_err(priv->device,
4336                                 "%s: MDIO bus (id: %d) registration failed",
4337                                 __func__, priv->plat->bus_id);
4338                         goto error_mdio_register;
4339                 }
4340         }
4341
4342         ret = stmmac_phy_setup(priv);
4343         if (ret) {
4344                 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
4345                 goto error_phy_setup;
4346         }
4347
4348         ret = register_netdev(ndev);
4349         if (ret) {
4350                 dev_err(priv->device, "%s: ERROR %i registering the device\n",
4351                         __func__, ret);
4352                 goto error_netdev_register;
4353         }
4354
4355 #ifdef CONFIG_DEBUG_FS
4356         ret = stmmac_init_fs(ndev);
4357         if (ret < 0)
4358                 netdev_warn(priv->dev, "%s: failed debugFS registration\n",
4359                             __func__);
4360 #endif
4361
4362         return ret;
4363
4364 error_netdev_register:
4365         phylink_destroy(priv->phylink);
4366 error_phy_setup:
4367         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4368             priv->hw->pcs != STMMAC_PCS_TBI &&
4369             priv->hw->pcs != STMMAC_PCS_RTBI)
4370                 stmmac_mdio_unregister(ndev);
4371 error_mdio_register:
4372         for (queue = 0; queue < maxq; queue++) {
4373                 struct stmmac_channel *ch = &priv->channel[queue];
4374
4375                 if (queue < priv->plat->rx_queues_to_use)
4376                         netif_napi_del(&ch->rx_napi);
4377                 if (queue < priv->plat->tx_queues_to_use)
4378                         netif_napi_del(&ch->tx_napi);
4379         }
4380 error_hw_init:
4381         destroy_workqueue(priv->wq);
4382
4383         return ret;
4384 }
4385 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4386
4387 /**
4388  * stmmac_dvr_remove
4389  * @dev: device pointer
4390  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4391  * changes the link status, releases the DMA descriptor rings.
4392  */
4393 int stmmac_dvr_remove(struct device *dev)
4394 {
4395         struct net_device *ndev = dev_get_drvdata(dev);
4396         struct stmmac_priv *priv = netdev_priv(ndev);
4397
4398         netdev_info(priv->dev, "%s: removing driver", __func__);
4399
4400 #ifdef CONFIG_DEBUG_FS
4401         stmmac_exit_fs(ndev);
4402 #endif
4403         stmmac_stop_all_dma(priv);
4404
4405         stmmac_mac_set(priv, priv->ioaddr, false);
4406         netif_carrier_off(ndev);
4407         unregister_netdev(ndev);
4408         phylink_destroy(priv->phylink);
4409         if (priv->plat->stmmac_rst)
4410                 reset_control_assert(priv->plat->stmmac_rst);
4411         clk_disable_unprepare(priv->plat->pclk);
4412         clk_disable_unprepare(priv->plat->stmmac_clk);
4413         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4414             priv->hw->pcs != STMMAC_PCS_TBI &&
4415             priv->hw->pcs != STMMAC_PCS_RTBI)
4416                 stmmac_mdio_unregister(ndev);
4417         destroy_workqueue(priv->wq);
4418         mutex_destroy(&priv->lock);
4419
4420         return 0;
4421 }
4422 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4423
4424 /**
4425  * stmmac_suspend - suspend callback
4426  * @dev: device pointer
4427  * Description: this is the function to suspend the device and it is called
4428  * by the platform driver to stop the network queue, release the resources,
4429  * program the PMT register (for WoL), clean and release driver resources.
4430  */
4431 int stmmac_suspend(struct device *dev)
4432 {
4433         struct net_device *ndev = dev_get_drvdata(dev);
4434         struct stmmac_priv *priv = netdev_priv(ndev);
4435
4436         if (!ndev || !netif_running(ndev))
4437                 return 0;
4438
4439         phylink_stop(priv->phylink);
4440
4441         mutex_lock(&priv->lock);
4442
4443         netif_device_detach(ndev);
4444         stmmac_stop_all_queues(priv);
4445
4446         stmmac_disable_all_queues(priv);
4447
4448         /* Stop TX/RX DMA */
4449         stmmac_stop_all_dma(priv);
4450
4451         /* Enable Power down mode by programming the PMT regs */
4452         if (device_may_wakeup(priv->device)) {
4453                 stmmac_pmt(priv, priv->hw, priv->wolopts);
4454                 priv->irq_wake = 1;
4455         } else {
4456                 stmmac_mac_set(priv, priv->ioaddr, false);
4457                 pinctrl_pm_select_sleep_state(priv->device);
4458                 /* Disable clock in case of PWM is off */
4459                 clk_disable(priv->plat->pclk);
4460                 clk_disable(priv->plat->stmmac_clk);
4461         }
4462         mutex_unlock(&priv->lock);
4463
4464         priv->speed = SPEED_UNKNOWN;
4465         return 0;
4466 }
4467 EXPORT_SYMBOL_GPL(stmmac_suspend);
4468
4469 /**
4470  * stmmac_reset_queues_param - reset queue parameters
4471  * @dev: device pointer
4472  */
4473 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4474 {
4475         u32 rx_cnt = priv->plat->rx_queues_to_use;
4476         u32 tx_cnt = priv->plat->tx_queues_to_use;
4477         u32 queue;
4478
4479         for (queue = 0; queue < rx_cnt; queue++) {
4480                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4481
4482                 rx_q->cur_rx = 0;
4483                 rx_q->dirty_rx = 0;
4484         }
4485
4486         for (queue = 0; queue < tx_cnt; queue++) {
4487                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4488
4489                 tx_q->cur_tx = 0;
4490                 tx_q->dirty_tx = 0;
4491                 tx_q->mss = 0;
4492         }
4493 }
4494
4495 /**
4496  * stmmac_resume - resume callback
4497  * @dev: device pointer
4498  * Description: when resume this function is invoked to setup the DMA and CORE
4499  * in a usable state.
4500  */
4501 int stmmac_resume(struct device *dev)
4502 {
4503         struct net_device *ndev = dev_get_drvdata(dev);
4504         struct stmmac_priv *priv = netdev_priv(ndev);
4505
4506         if (!netif_running(ndev))
4507                 return 0;
4508
4509         /* Power Down bit, into the PM register, is cleared
4510          * automatically as soon as a magic packet or a Wake-up frame
4511          * is received. Anyway, it's better to manually clear
4512          * this bit because it can generate problems while resuming
4513          * from another devices (e.g. serial console).
4514          */
4515         if (device_may_wakeup(priv->device)) {
4516                 mutex_lock(&priv->lock);
4517                 stmmac_pmt(priv, priv->hw, 0);
4518                 mutex_unlock(&priv->lock);
4519                 priv->irq_wake = 0;
4520         } else {
4521                 pinctrl_pm_select_default_state(priv->device);
4522                 /* enable the clk previously disabled */
4523                 clk_enable(priv->plat->stmmac_clk);
4524                 clk_enable(priv->plat->pclk);
4525                 /* reset the phy so that it's ready */
4526                 if (priv->mii)
4527                         stmmac_mdio_reset(priv->mii);
4528         }
4529
4530         netif_device_attach(ndev);
4531
4532         mutex_lock(&priv->lock);
4533
4534         stmmac_reset_queues_param(priv);
4535
4536         stmmac_clear_descriptors(priv);
4537
4538         stmmac_hw_setup(ndev, false);
4539         stmmac_init_tx_coalesce(priv);
4540         stmmac_set_rx_mode(ndev);
4541
4542         stmmac_enable_all_queues(priv);
4543
4544         stmmac_start_all_queues(priv);
4545
4546         mutex_unlock(&priv->lock);
4547
4548         phylink_start(priv->phylink);
4549
4550         return 0;
4551 }
4552 EXPORT_SYMBOL_GPL(stmmac_resume);
4553
4554 #ifndef MODULE
4555 static int __init stmmac_cmdline_opt(char *str)
4556 {
4557         char *opt;
4558
4559         if (!str || !*str)
4560                 return -EINVAL;
4561         while ((opt = strsep(&str, ",")) != NULL) {
4562                 if (!strncmp(opt, "debug:", 6)) {
4563                         if (kstrtoint(opt + 6, 0, &debug))
4564                                 goto err;
4565                 } else if (!strncmp(opt, "phyaddr:", 8)) {
4566                         if (kstrtoint(opt + 8, 0, &phyaddr))
4567                                 goto err;
4568                 } else if (!strncmp(opt, "buf_sz:", 7)) {
4569                         if (kstrtoint(opt + 7, 0, &buf_sz))
4570                                 goto err;
4571                 } else if (!strncmp(opt, "tc:", 3)) {
4572                         if (kstrtoint(opt + 3, 0, &tc))
4573                                 goto err;
4574                 } else if (!strncmp(opt, "watchdog:", 9)) {
4575                         if (kstrtoint(opt + 9, 0, &watchdog))
4576                                 goto err;
4577                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
4578                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
4579                                 goto err;
4580                 } else if (!strncmp(opt, "pause:", 6)) {
4581                         if (kstrtoint(opt + 6, 0, &pause))
4582                                 goto err;
4583                 } else if (!strncmp(opt, "eee_timer:", 10)) {
4584                         if (kstrtoint(opt + 10, 0, &eee_timer))
4585                                 goto err;
4586                 } else if (!strncmp(opt, "chain_mode:", 11)) {
4587                         if (kstrtoint(opt + 11, 0, &chain_mode))
4588                                 goto err;
4589                 }
4590         }
4591         return 0;
4592
4593 err:
4594         pr_err("%s: ERROR broken module parameter conversion", __func__);
4595         return -EINVAL;
4596 }
4597
4598 __setup("stmmaceth=", stmmac_cmdline_opt);
4599 #endif /* MODULE */
4600
4601 static int __init stmmac_init(void)
4602 {
4603 #ifdef CONFIG_DEBUG_FS
4604         /* Create debugfs main directory if it doesn't exist yet */
4605         if (!stmmac_fs_dir) {
4606                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
4607
4608                 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
4609                         pr_err("ERROR %s, debugfs create directory failed\n",
4610                                STMMAC_RESOURCE_NAME);
4611
4612                         return -ENOMEM;
4613                 }
4614         }
4615 #endif
4616
4617         return 0;
4618 }
4619
4620 static void __exit stmmac_exit(void)
4621 {
4622 #ifdef CONFIG_DEBUG_FS
4623         debugfs_remove_recursive(stmmac_fs_dir);
4624 #endif
4625 }
4626
4627 module_init(stmmac_init)
4628 module_exit(stmmac_exit)
4629
4630 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
4631 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
4632 MODULE_LICENSE("GPL");