Merge tag 'wireless-drivers-next-for-davem-2019-06-26' of git://git.kernel.org/pub...
[linux-2.6-microblaze.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5
6         Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11   Documentation available at:
12         http://www.stlinux.com
13   Support available at:
14         https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <net/pkt_cls.h>
40 #include "stmmac_ptp.h"
41 #include "stmmac.h"
42 #include <linux/reset.h>
43 #include <linux/of_mdio.h>
44 #include "dwmac1000.h"
45 #include "dwxgmac2.h"
46 #include "hwif.h"
47
48 #define STMMAC_ALIGN(x)         __ALIGN_KERNEL(x, SMP_CACHE_BYTES)
49 #define TSO_MAX_BUFF_SIZE       (SZ_16K - 1)
50
51 /* Module parameters */
52 #define TX_TIMEO        5000
53 static int watchdog = TX_TIMEO;
54 module_param(watchdog, int, 0644);
55 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
56
57 static int debug = -1;
58 module_param(debug, int, 0644);
59 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
60
61 static int phyaddr = -1;
62 module_param(phyaddr, int, 0444);
63 MODULE_PARM_DESC(phyaddr, "Physical device address");
64
65 #define STMMAC_TX_THRESH        (DMA_TX_SIZE / 4)
66 #define STMMAC_RX_THRESH        (DMA_RX_SIZE / 4)
67
68 static int flow_ctrl = FLOW_AUTO;
69 module_param(flow_ctrl, int, 0644);
70 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
71
72 static int pause = PAUSE_TIME;
73 module_param(pause, int, 0644);
74 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
75
76 #define TC_DEFAULT 64
77 static int tc = TC_DEFAULT;
78 module_param(tc, int, 0644);
79 MODULE_PARM_DESC(tc, "DMA threshold control value");
80
81 #define DEFAULT_BUFSIZE 1536
82 static int buf_sz = DEFAULT_BUFSIZE;
83 module_param(buf_sz, int, 0644);
84 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
85
86 #define STMMAC_RX_COPYBREAK     256
87
88 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
89                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
90                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
91
92 #define STMMAC_DEFAULT_LPI_TIMER        1000
93 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
94 module_param(eee_timer, int, 0644);
95 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
96 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
97
98 /* By default the driver will use the ring mode to manage tx and rx descriptors,
99  * but allow user to force to use the chain instead of the ring
100  */
101 static unsigned int chain_mode;
102 module_param(chain_mode, int, 0444);
103 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
104
105 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
106
107 #ifdef CONFIG_DEBUG_FS
108 static int stmmac_init_fs(struct net_device *dev);
109 static void stmmac_exit_fs(struct net_device *dev);
110 #endif
111
112 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
113
114 /**
115  * stmmac_verify_args - verify the driver parameters.
116  * Description: it checks the driver parameters and set a default in case of
117  * errors.
118  */
119 static void stmmac_verify_args(void)
120 {
121         if (unlikely(watchdog < 0))
122                 watchdog = TX_TIMEO;
123         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
124                 buf_sz = DEFAULT_BUFSIZE;
125         if (unlikely(flow_ctrl > 1))
126                 flow_ctrl = FLOW_AUTO;
127         else if (likely(flow_ctrl < 0))
128                 flow_ctrl = FLOW_OFF;
129         if (unlikely((pause < 0) || (pause > 0xffff)))
130                 pause = PAUSE_TIME;
131         if (eee_timer < 0)
132                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
133 }
134
135 /**
136  * stmmac_disable_all_queues - Disable all queues
137  * @priv: driver private structure
138  */
139 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
140 {
141         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
142         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
143         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
144         u32 queue;
145
146         for (queue = 0; queue < maxq; queue++) {
147                 struct stmmac_channel *ch = &priv->channel[queue];
148
149                 if (queue < rx_queues_cnt)
150                         napi_disable(&ch->rx_napi);
151                 if (queue < tx_queues_cnt)
152                         napi_disable(&ch->tx_napi);
153         }
154 }
155
156 /**
157  * stmmac_enable_all_queues - Enable all queues
158  * @priv: driver private structure
159  */
160 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
161 {
162         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
163         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
164         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
165         u32 queue;
166
167         for (queue = 0; queue < maxq; queue++) {
168                 struct stmmac_channel *ch = &priv->channel[queue];
169
170                 if (queue < rx_queues_cnt)
171                         napi_enable(&ch->rx_napi);
172                 if (queue < tx_queues_cnt)
173                         napi_enable(&ch->tx_napi);
174         }
175 }
176
177 /**
178  * stmmac_stop_all_queues - Stop all queues
179  * @priv: driver private structure
180  */
181 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
182 {
183         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
184         u32 queue;
185
186         for (queue = 0; queue < tx_queues_cnt; queue++)
187                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
188 }
189
190 /**
191  * stmmac_start_all_queues - Start all queues
192  * @priv: driver private structure
193  */
194 static void stmmac_start_all_queues(struct stmmac_priv *priv)
195 {
196         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
197         u32 queue;
198
199         for (queue = 0; queue < tx_queues_cnt; queue++)
200                 netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
201 }
202
203 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
204 {
205         if (!test_bit(STMMAC_DOWN, &priv->state) &&
206             !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
207                 queue_work(priv->wq, &priv->service_task);
208 }
209
210 static void stmmac_global_err(struct stmmac_priv *priv)
211 {
212         netif_carrier_off(priv->dev);
213         set_bit(STMMAC_RESET_REQUESTED, &priv->state);
214         stmmac_service_event_schedule(priv);
215 }
216
217 /**
218  * stmmac_clk_csr_set - dynamically set the MDC clock
219  * @priv: driver private structure
220  * Description: this is to dynamically set the MDC clock according to the csr
221  * clock input.
222  * Note:
223  *      If a specific clk_csr value is passed from the platform
224  *      this means that the CSR Clock Range selection cannot be
225  *      changed at run-time and it is fixed (as reported in the driver
226  *      documentation). Viceversa the driver will try to set the MDC
227  *      clock dynamically according to the actual clock input.
228  */
229 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
230 {
231         u32 clk_rate;
232
233         clk_rate = clk_get_rate(priv->plat->stmmac_clk);
234
235         /* Platform provided default clk_csr would be assumed valid
236          * for all other cases except for the below mentioned ones.
237          * For values higher than the IEEE 802.3 specified frequency
238          * we can not estimate the proper divider as it is not known
239          * the frequency of clk_csr_i. So we do not change the default
240          * divider.
241          */
242         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
243                 if (clk_rate < CSR_F_35M)
244                         priv->clk_csr = STMMAC_CSR_20_35M;
245                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
246                         priv->clk_csr = STMMAC_CSR_35_60M;
247                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
248                         priv->clk_csr = STMMAC_CSR_60_100M;
249                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
250                         priv->clk_csr = STMMAC_CSR_100_150M;
251                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
252                         priv->clk_csr = STMMAC_CSR_150_250M;
253                 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
254                         priv->clk_csr = STMMAC_CSR_250_300M;
255         }
256
257         if (priv->plat->has_sun8i) {
258                 if (clk_rate > 160000000)
259                         priv->clk_csr = 0x03;
260                 else if (clk_rate > 80000000)
261                         priv->clk_csr = 0x02;
262                 else if (clk_rate > 40000000)
263                         priv->clk_csr = 0x01;
264                 else
265                         priv->clk_csr = 0;
266         }
267
268         if (priv->plat->has_xgmac) {
269                 if (clk_rate > 400000000)
270                         priv->clk_csr = 0x5;
271                 else if (clk_rate > 350000000)
272                         priv->clk_csr = 0x4;
273                 else if (clk_rate > 300000000)
274                         priv->clk_csr = 0x3;
275                 else if (clk_rate > 250000000)
276                         priv->clk_csr = 0x2;
277                 else if (clk_rate > 150000000)
278                         priv->clk_csr = 0x1;
279                 else
280                         priv->clk_csr = 0x0;
281         }
282 }
283
284 static void print_pkt(unsigned char *buf, int len)
285 {
286         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
287         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
288 }
289
290 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
291 {
292         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
293         u32 avail;
294
295         if (tx_q->dirty_tx > tx_q->cur_tx)
296                 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
297         else
298                 avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
299
300         return avail;
301 }
302
303 /**
304  * stmmac_rx_dirty - Get RX queue dirty
305  * @priv: driver private structure
306  * @queue: RX queue index
307  */
308 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
309 {
310         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
311         u32 dirty;
312
313         if (rx_q->dirty_rx <= rx_q->cur_rx)
314                 dirty = rx_q->cur_rx - rx_q->dirty_rx;
315         else
316                 dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
317
318         return dirty;
319 }
320
321 /**
322  * stmmac_enable_eee_mode - check and enter in LPI mode
323  * @priv: driver private structure
324  * Description: this function is to verify and enter in LPI mode in case of
325  * EEE.
326  */
327 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
328 {
329         u32 tx_cnt = priv->plat->tx_queues_to_use;
330         u32 queue;
331
332         /* check if all TX queues have the work finished */
333         for (queue = 0; queue < tx_cnt; queue++) {
334                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
335
336                 if (tx_q->dirty_tx != tx_q->cur_tx)
337                         return; /* still unfinished work */
338         }
339
340         /* Check and enter in LPI mode */
341         if (!priv->tx_path_in_lpi_mode)
342                 stmmac_set_eee_mode(priv, priv->hw,
343                                 priv->plat->en_tx_lpi_clockgating);
344 }
345
346 /**
347  * stmmac_disable_eee_mode - disable and exit from LPI mode
348  * @priv: driver private structure
349  * Description: this function is to exit and disable EEE in case of
350  * LPI state is true. This is called by the xmit.
351  */
352 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
353 {
354         stmmac_reset_eee_mode(priv, priv->hw);
355         del_timer_sync(&priv->eee_ctrl_timer);
356         priv->tx_path_in_lpi_mode = false;
357 }
358
359 /**
360  * stmmac_eee_ctrl_timer - EEE TX SW timer.
361  * @arg : data hook
362  * Description:
363  *  if there is no data transfer and if we are not in LPI state,
364  *  then MAC Transmitter can be moved to LPI state.
365  */
366 static void stmmac_eee_ctrl_timer(struct timer_list *t)
367 {
368         struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
369
370         stmmac_enable_eee_mode(priv);
371         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
372 }
373
374 /**
375  * stmmac_eee_init - init EEE
376  * @priv: driver private structure
377  * Description:
378  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
379  *  can also manage EEE, this function enable the LPI state and start related
380  *  timer.
381  */
382 bool stmmac_eee_init(struct stmmac_priv *priv)
383 {
384         int tx_lpi_timer = priv->tx_lpi_timer;
385
386         /* Using PCS we cannot dial with the phy registers at this stage
387          * so we do not support extra feature like EEE.
388          */
389         if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
390             (priv->hw->pcs == STMMAC_PCS_TBI) ||
391             (priv->hw->pcs == STMMAC_PCS_RTBI))
392                 return false;
393
394         /* Check if MAC core supports the EEE feature. */
395         if (!priv->dma_cap.eee)
396                 return false;
397
398         mutex_lock(&priv->lock);
399
400         /* Check if it needs to be deactivated */
401         if (!priv->eee_active) {
402                 if (priv->eee_enabled) {
403                         netdev_dbg(priv->dev, "disable EEE\n");
404                         del_timer_sync(&priv->eee_ctrl_timer);
405                         stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer);
406                 }
407                 mutex_unlock(&priv->lock);
408                 return false;
409         }
410
411         if (priv->eee_active && !priv->eee_enabled) {
412                 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
413                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
414                 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
415                                      tx_lpi_timer);
416         }
417
418         mutex_unlock(&priv->lock);
419         netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
420         return true;
421 }
422
423 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
424  * @priv: driver private structure
425  * @p : descriptor pointer
426  * @skb : the socket buffer
427  * Description :
428  * This function will read timestamp from the descriptor & pass it to stack.
429  * and also perform some sanity checks.
430  */
431 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
432                                    struct dma_desc *p, struct sk_buff *skb)
433 {
434         struct skb_shared_hwtstamps shhwtstamp;
435         u64 ns = 0;
436
437         if (!priv->hwts_tx_en)
438                 return;
439
440         /* exit if skb doesn't support hw tstamp */
441         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
442                 return;
443
444         /* check tx tstamp status */
445         if (stmmac_get_tx_timestamp_status(priv, p)) {
446                 /* get the valid tstamp */
447                 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
448
449                 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
450                 shhwtstamp.hwtstamp = ns_to_ktime(ns);
451
452                 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
453                 /* pass tstamp to stack */
454                 skb_tstamp_tx(skb, &shhwtstamp);
455         }
456
457         return;
458 }
459
460 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
461  * @priv: driver private structure
462  * @p : descriptor pointer
463  * @np : next descriptor pointer
464  * @skb : the socket buffer
465  * Description :
466  * This function will read received packet's timestamp from the descriptor
467  * and pass it to stack. It also perform some sanity checks.
468  */
469 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
470                                    struct dma_desc *np, struct sk_buff *skb)
471 {
472         struct skb_shared_hwtstamps *shhwtstamp = NULL;
473         struct dma_desc *desc = p;
474         u64 ns = 0;
475
476         if (!priv->hwts_rx_en)
477                 return;
478         /* For GMAC4, the valid timestamp is from CTX next desc. */
479         if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
480                 desc = np;
481
482         /* Check if timestamp is available */
483         if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
484                 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
485                 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
486                 shhwtstamp = skb_hwtstamps(skb);
487                 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
488                 shhwtstamp->hwtstamp = ns_to_ktime(ns);
489         } else  {
490                 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
491         }
492 }
493
494 /**
495  *  stmmac_hwtstamp_set - control hardware timestamping.
496  *  @dev: device pointer.
497  *  @ifr: An IOCTL specific structure, that can contain a pointer to
498  *  a proprietary structure used to pass information to the driver.
499  *  Description:
500  *  This function configures the MAC to enable/disable both outgoing(TX)
501  *  and incoming(RX) packets time stamping based on user input.
502  *  Return Value:
503  *  0 on success and an appropriate -ve integer on failure.
504  */
505 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
506 {
507         struct stmmac_priv *priv = netdev_priv(dev);
508         struct hwtstamp_config config;
509         struct timespec64 now;
510         u64 temp = 0;
511         u32 ptp_v2 = 0;
512         u32 tstamp_all = 0;
513         u32 ptp_over_ipv4_udp = 0;
514         u32 ptp_over_ipv6_udp = 0;
515         u32 ptp_over_ethernet = 0;
516         u32 snap_type_sel = 0;
517         u32 ts_master_en = 0;
518         u32 ts_event_en = 0;
519         u32 sec_inc = 0;
520         u32 value = 0;
521         bool xmac;
522
523         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
524
525         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
526                 netdev_alert(priv->dev, "No support for HW time stamping\n");
527                 priv->hwts_tx_en = 0;
528                 priv->hwts_rx_en = 0;
529
530                 return -EOPNOTSUPP;
531         }
532
533         if (copy_from_user(&config, ifr->ifr_data,
534                            sizeof(config)))
535                 return -EFAULT;
536
537         netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
538                    __func__, config.flags, config.tx_type, config.rx_filter);
539
540         /* reserved for future extensions */
541         if (config.flags)
542                 return -EINVAL;
543
544         if (config.tx_type != HWTSTAMP_TX_OFF &&
545             config.tx_type != HWTSTAMP_TX_ON)
546                 return -ERANGE;
547
548         if (priv->adv_ts) {
549                 switch (config.rx_filter) {
550                 case HWTSTAMP_FILTER_NONE:
551                         /* time stamp no incoming packet at all */
552                         config.rx_filter = HWTSTAMP_FILTER_NONE;
553                         break;
554
555                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
556                         /* PTP v1, UDP, any kind of event packet */
557                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
558                         /* 'xmac' hardware can support Sync, Pdelay_Req and
559                          * Pdelay_resp by setting bit14 and bits17/16 to 01
560                          * This leaves Delay_Req timestamps out.
561                          * Enable all events *and* general purpose message
562                          * timestamping
563                          */
564                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
565                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
566                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
567                         break;
568
569                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
570                         /* PTP v1, UDP, Sync packet */
571                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
572                         /* take time stamp for SYNC messages only */
573                         ts_event_en = PTP_TCR_TSEVNTENA;
574
575                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
576                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
577                         break;
578
579                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
580                         /* PTP v1, UDP, Delay_req packet */
581                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
582                         /* take time stamp for Delay_Req messages only */
583                         ts_master_en = PTP_TCR_TSMSTRENA;
584                         ts_event_en = PTP_TCR_TSEVNTENA;
585
586                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
587                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
588                         break;
589
590                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
591                         /* PTP v2, UDP, any kind of event packet */
592                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
593                         ptp_v2 = PTP_TCR_TSVER2ENA;
594                         /* take time stamp for all event messages */
595                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
596
597                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
598                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
599                         break;
600
601                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
602                         /* PTP v2, UDP, Sync packet */
603                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
604                         ptp_v2 = PTP_TCR_TSVER2ENA;
605                         /* take time stamp for SYNC messages only */
606                         ts_event_en = PTP_TCR_TSEVNTENA;
607
608                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
609                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
610                         break;
611
612                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
613                         /* PTP v2, UDP, Delay_req packet */
614                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
615                         ptp_v2 = PTP_TCR_TSVER2ENA;
616                         /* take time stamp for Delay_Req messages only */
617                         ts_master_en = PTP_TCR_TSMSTRENA;
618                         ts_event_en = PTP_TCR_TSEVNTENA;
619
620                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
621                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
622                         break;
623
624                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
625                         /* PTP v2/802.AS1 any layer, any kind of event packet */
626                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
627                         ptp_v2 = PTP_TCR_TSVER2ENA;
628                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
629                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
630                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
631                         ptp_over_ethernet = PTP_TCR_TSIPENA;
632                         break;
633
634                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
635                         /* PTP v2/802.AS1, any layer, Sync packet */
636                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
637                         ptp_v2 = PTP_TCR_TSVER2ENA;
638                         /* take time stamp for SYNC messages only */
639                         ts_event_en = PTP_TCR_TSEVNTENA;
640
641                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
642                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
643                         ptp_over_ethernet = PTP_TCR_TSIPENA;
644                         break;
645
646                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
647                         /* PTP v2/802.AS1, any layer, Delay_req packet */
648                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
649                         ptp_v2 = PTP_TCR_TSVER2ENA;
650                         /* take time stamp for Delay_Req messages only */
651                         ts_master_en = PTP_TCR_TSMSTRENA;
652                         ts_event_en = PTP_TCR_TSEVNTENA;
653
654                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
655                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
656                         ptp_over_ethernet = PTP_TCR_TSIPENA;
657                         break;
658
659                 case HWTSTAMP_FILTER_NTP_ALL:
660                 case HWTSTAMP_FILTER_ALL:
661                         /* time stamp any incoming packet */
662                         config.rx_filter = HWTSTAMP_FILTER_ALL;
663                         tstamp_all = PTP_TCR_TSENALL;
664                         break;
665
666                 default:
667                         return -ERANGE;
668                 }
669         } else {
670                 switch (config.rx_filter) {
671                 case HWTSTAMP_FILTER_NONE:
672                         config.rx_filter = HWTSTAMP_FILTER_NONE;
673                         break;
674                 default:
675                         /* PTP v1, UDP, any kind of event packet */
676                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
677                         break;
678                 }
679         }
680         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
681         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
682
683         if (!priv->hwts_tx_en && !priv->hwts_rx_en)
684                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
685         else {
686                 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
687                          tstamp_all | ptp_v2 | ptp_over_ethernet |
688                          ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
689                          ts_master_en | snap_type_sel);
690                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
691
692                 /* program Sub Second Increment reg */
693                 stmmac_config_sub_second_increment(priv,
694                                 priv->ptpaddr, priv->plat->clk_ptp_rate,
695                                 xmac, &sec_inc);
696                 temp = div_u64(1000000000ULL, sec_inc);
697
698                 /* Store sub second increment and flags for later use */
699                 priv->sub_second_inc = sec_inc;
700                 priv->systime_flags = value;
701
702                 /* calculate default added value:
703                  * formula is :
704                  * addend = (2^32)/freq_div_ratio;
705                  * where, freq_div_ratio = 1e9ns/sec_inc
706                  */
707                 temp = (u64)(temp << 32);
708                 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
709                 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
710
711                 /* initialize system time */
712                 ktime_get_real_ts64(&now);
713
714                 /* lower 32 bits of tv_sec are safe until y2106 */
715                 stmmac_init_systime(priv, priv->ptpaddr,
716                                 (u32)now.tv_sec, now.tv_nsec);
717         }
718
719         memcpy(&priv->tstamp_config, &config, sizeof(config));
720
721         return copy_to_user(ifr->ifr_data, &config,
722                             sizeof(config)) ? -EFAULT : 0;
723 }
724
725 /**
726  *  stmmac_hwtstamp_get - read hardware timestamping.
727  *  @dev: device pointer.
728  *  @ifr: An IOCTL specific structure, that can contain a pointer to
729  *  a proprietary structure used to pass information to the driver.
730  *  Description:
731  *  This function obtain the current hardware timestamping settings
732     as requested.
733  */
734 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
735 {
736         struct stmmac_priv *priv = netdev_priv(dev);
737         struct hwtstamp_config *config = &priv->tstamp_config;
738
739         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
740                 return -EOPNOTSUPP;
741
742         return copy_to_user(ifr->ifr_data, config,
743                             sizeof(*config)) ? -EFAULT : 0;
744 }
745
746 /**
747  * stmmac_init_ptp - init PTP
748  * @priv: driver private structure
749  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
750  * This is done by looking at the HW cap. register.
751  * This function also registers the ptp driver.
752  */
753 static int stmmac_init_ptp(struct stmmac_priv *priv)
754 {
755         bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
756
757         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
758                 return -EOPNOTSUPP;
759
760         priv->adv_ts = 0;
761         /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
762         if (xmac && priv->dma_cap.atime_stamp)
763                 priv->adv_ts = 1;
764         /* Dwmac 3.x core with extend_desc can support adv_ts */
765         else if (priv->extend_desc && priv->dma_cap.atime_stamp)
766                 priv->adv_ts = 1;
767
768         if (priv->dma_cap.time_stamp)
769                 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
770
771         if (priv->adv_ts)
772                 netdev_info(priv->dev,
773                             "IEEE 1588-2008 Advanced Timestamp supported\n");
774
775         priv->hwts_tx_en = 0;
776         priv->hwts_rx_en = 0;
777
778         stmmac_ptp_register(priv);
779
780         return 0;
781 }
782
783 static void stmmac_release_ptp(struct stmmac_priv *priv)
784 {
785         if (priv->plat->clk_ptp_ref)
786                 clk_disable_unprepare(priv->plat->clk_ptp_ref);
787         stmmac_ptp_unregister(priv);
788 }
789
790 /**
791  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
792  *  @priv: driver private structure
793  *  Description: It is used for configuring the flow control in all queues
794  */
795 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
796 {
797         u32 tx_cnt = priv->plat->tx_queues_to_use;
798
799         stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
800                         priv->pause, tx_cnt);
801 }
802
803 static void stmmac_validate(struct phylink_config *config,
804                             unsigned long *supported,
805                             struct phylink_link_state *state)
806 {
807         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
808         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
809         int tx_cnt = priv->plat->tx_queues_to_use;
810         int max_speed = priv->plat->max_speed;
811
812         /* Cut down 1G if asked to */
813         if ((max_speed > 0) && (max_speed < 1000)) {
814                 phylink_set(mask, 1000baseT_Full);
815                 phylink_set(mask, 1000baseX_Full);
816         }
817
818         /* Half-Duplex can only work with single queue */
819         if (tx_cnt > 1) {
820                 phylink_set(mask, 10baseT_Half);
821                 phylink_set(mask, 100baseT_Half);
822                 phylink_set(mask, 1000baseT_Half);
823         }
824
825         bitmap_andnot(supported, supported, mask, __ETHTOOL_LINK_MODE_MASK_NBITS);
826         bitmap_andnot(state->advertising, state->advertising, mask,
827                       __ETHTOOL_LINK_MODE_MASK_NBITS);
828 }
829
830 static int stmmac_mac_link_state(struct phylink_config *config,
831                                  struct phylink_link_state *state)
832 {
833         return -EOPNOTSUPP;
834 }
835
836 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
837                               const struct phylink_link_state *state)
838 {
839         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
840         u32 ctrl;
841
842         ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
843         ctrl &= ~priv->hw->link.speed_mask;
844
845         switch (state->speed) {
846         case SPEED_1000:
847                 ctrl |= priv->hw->link.speed1000;
848                 break;
849         case SPEED_100:
850                 ctrl |= priv->hw->link.speed100;
851                 break;
852         case SPEED_10:
853                 ctrl |= priv->hw->link.speed10;
854                 break;
855         default:
856                 return;
857         }
858
859         priv->speed = state->speed;
860
861         if (priv->plat->fix_mac_speed)
862                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, state->speed);
863
864         if (!state->duplex)
865                 ctrl &= ~priv->hw->link.duplex;
866         else
867                 ctrl |= priv->hw->link.duplex;
868
869         /* Flow Control operation */
870         if (state->pause)
871                 stmmac_mac_flow_ctrl(priv, state->duplex);
872
873         writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
874 }
875
876 static void stmmac_mac_an_restart(struct phylink_config *config)
877 {
878         /* Not Supported */
879 }
880
881 static void stmmac_mac_link_down(struct phylink_config *config,
882                                  unsigned int mode, phy_interface_t interface)
883 {
884         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
885
886         stmmac_mac_set(priv, priv->ioaddr, false);
887         priv->eee_active = false;
888         stmmac_eee_init(priv);
889         stmmac_set_eee_pls(priv, priv->hw, false);
890 }
891
892 static void stmmac_mac_link_up(struct phylink_config *config,
893                                unsigned int mode, phy_interface_t interface,
894                                struct phy_device *phy)
895 {
896         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
897
898         stmmac_mac_set(priv, priv->ioaddr, true);
899         if (phy) {
900                 priv->eee_active = phy_init_eee(phy, 1) >= 0;
901                 priv->eee_enabled = stmmac_eee_init(priv);
902                 stmmac_set_eee_pls(priv, priv->hw, true);
903         }
904 }
905
906 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
907         .validate = stmmac_validate,
908         .mac_link_state = stmmac_mac_link_state,
909         .mac_config = stmmac_mac_config,
910         .mac_an_restart = stmmac_mac_an_restart,
911         .mac_link_down = stmmac_mac_link_down,
912         .mac_link_up = stmmac_mac_link_up,
913 };
914
915 /**
916  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
917  * @priv: driver private structure
918  * Description: this is to verify if the HW supports the PCS.
919  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
920  * configured for the TBI, RTBI, or SGMII PHY interface.
921  */
922 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
923 {
924         int interface = priv->plat->interface;
925
926         if (priv->dma_cap.pcs) {
927                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
928                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
929                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
930                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
931                         netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
932                         priv->hw->pcs = STMMAC_PCS_RGMII;
933                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
934                         netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
935                         priv->hw->pcs = STMMAC_PCS_SGMII;
936                 }
937         }
938 }
939
940 /**
941  * stmmac_init_phy - PHY initialization
942  * @dev: net device structure
943  * Description: it initializes the driver's PHY state, and attaches the PHY
944  * to the mac driver.
945  *  Return value:
946  *  0 on success
947  */
948 static int stmmac_init_phy(struct net_device *dev)
949 {
950         struct stmmac_priv *priv = netdev_priv(dev);
951         struct device_node *node;
952         int ret;
953
954         node = priv->plat->phylink_node;
955
956         if (node) {
957                 ret = phylink_of_phy_connect(priv->phylink, node, 0);
958         } else {
959                 int addr = priv->plat->phy_addr;
960                 struct phy_device *phydev;
961
962                 phydev = mdiobus_get_phy(priv->mii, addr);
963                 if (!phydev) {
964                         netdev_err(priv->dev, "no phy at addr %d\n", addr);
965                         return -ENODEV;
966                 }
967
968                 ret = phylink_connect_phy(priv->phylink, phydev);
969         }
970
971         return ret;
972 }
973
974 static int stmmac_phy_setup(struct stmmac_priv *priv)
975 {
976         struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
977         int mode = priv->plat->interface;
978         struct phylink *phylink;
979
980         priv->phylink_config.dev = &priv->dev->dev;
981         priv->phylink_config.type = PHYLINK_NETDEV;
982
983         phylink = phylink_create(&priv->phylink_config, fwnode,
984                                  mode, &stmmac_phylink_mac_ops);
985         if (IS_ERR(phylink))
986                 return PTR_ERR(phylink);
987
988         priv->phylink = phylink;
989         return 0;
990 }
991
992 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
993 {
994         u32 rx_cnt = priv->plat->rx_queues_to_use;
995         void *head_rx;
996         u32 queue;
997
998         /* Display RX rings */
999         for (queue = 0; queue < rx_cnt; queue++) {
1000                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1001
1002                 pr_info("\tRX Queue %u rings\n", queue);
1003
1004                 if (priv->extend_desc)
1005                         head_rx = (void *)rx_q->dma_erx;
1006                 else
1007                         head_rx = (void *)rx_q->dma_rx;
1008
1009                 /* Display RX ring */
1010                 stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1011         }
1012 }
1013
1014 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1015 {
1016         u32 tx_cnt = priv->plat->tx_queues_to_use;
1017         void *head_tx;
1018         u32 queue;
1019
1020         /* Display TX rings */
1021         for (queue = 0; queue < tx_cnt; queue++) {
1022                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1023
1024                 pr_info("\tTX Queue %d rings\n", queue);
1025
1026                 if (priv->extend_desc)
1027                         head_tx = (void *)tx_q->dma_etx;
1028                 else
1029                         head_tx = (void *)tx_q->dma_tx;
1030
1031                 stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1032         }
1033 }
1034
1035 static void stmmac_display_rings(struct stmmac_priv *priv)
1036 {
1037         /* Display RX ring */
1038         stmmac_display_rx_rings(priv);
1039
1040         /* Display TX ring */
1041         stmmac_display_tx_rings(priv);
1042 }
1043
1044 static int stmmac_set_bfsize(int mtu, int bufsize)
1045 {
1046         int ret = bufsize;
1047
1048         if (mtu >= BUF_SIZE_4KiB)
1049                 ret = BUF_SIZE_8KiB;
1050         else if (mtu >= BUF_SIZE_2KiB)
1051                 ret = BUF_SIZE_4KiB;
1052         else if (mtu > DEFAULT_BUFSIZE)
1053                 ret = BUF_SIZE_2KiB;
1054         else
1055                 ret = DEFAULT_BUFSIZE;
1056
1057         return ret;
1058 }
1059
1060 /**
1061  * stmmac_clear_rx_descriptors - clear RX descriptors
1062  * @priv: driver private structure
1063  * @queue: RX queue index
1064  * Description: this function is called to clear the RX descriptors
1065  * in case of both basic and extended descriptors are used.
1066  */
1067 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1068 {
1069         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1070         int i;
1071
1072         /* Clear the RX descriptors */
1073         for (i = 0; i < DMA_RX_SIZE; i++)
1074                 if (priv->extend_desc)
1075                         stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1076                                         priv->use_riwt, priv->mode,
1077                                         (i == DMA_RX_SIZE - 1),
1078                                         priv->dma_buf_sz);
1079                 else
1080                         stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1081                                         priv->use_riwt, priv->mode,
1082                                         (i == DMA_RX_SIZE - 1),
1083                                         priv->dma_buf_sz);
1084 }
1085
1086 /**
1087  * stmmac_clear_tx_descriptors - clear tx descriptors
1088  * @priv: driver private structure
1089  * @queue: TX queue index.
1090  * Description: this function is called to clear the TX descriptors
1091  * in case of both basic and extended descriptors are used.
1092  */
1093 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1094 {
1095         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1096         int i;
1097
1098         /* Clear the TX descriptors */
1099         for (i = 0; i < DMA_TX_SIZE; i++)
1100                 if (priv->extend_desc)
1101                         stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1102                                         priv->mode, (i == DMA_TX_SIZE - 1));
1103                 else
1104                         stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1105                                         priv->mode, (i == DMA_TX_SIZE - 1));
1106 }
1107
1108 /**
1109  * stmmac_clear_descriptors - clear descriptors
1110  * @priv: driver private structure
1111  * Description: this function is called to clear the TX and RX descriptors
1112  * in case of both basic and extended descriptors are used.
1113  */
1114 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1115 {
1116         u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1117         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1118         u32 queue;
1119
1120         /* Clear the RX descriptors */
1121         for (queue = 0; queue < rx_queue_cnt; queue++)
1122                 stmmac_clear_rx_descriptors(priv, queue);
1123
1124         /* Clear the TX descriptors */
1125         for (queue = 0; queue < tx_queue_cnt; queue++)
1126                 stmmac_clear_tx_descriptors(priv, queue);
1127 }
1128
1129 /**
1130  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1131  * @priv: driver private structure
1132  * @p: descriptor pointer
1133  * @i: descriptor index
1134  * @flags: gfp flag
1135  * @queue: RX queue index
1136  * Description: this function is called to allocate a receive buffer, perform
1137  * the DMA mapping and init the descriptor.
1138  */
1139 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1140                                   int i, gfp_t flags, u32 queue)
1141 {
1142         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1143         struct sk_buff *skb;
1144
1145         skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
1146         if (!skb) {
1147                 netdev_err(priv->dev,
1148                            "%s: Rx init fails; skb is NULL\n", __func__);
1149                 return -ENOMEM;
1150         }
1151         rx_q->rx_skbuff[i] = skb;
1152         rx_q->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
1153                                                 priv->dma_buf_sz,
1154                                                 DMA_FROM_DEVICE);
1155         if (dma_mapping_error(priv->device, rx_q->rx_skbuff_dma[i])) {
1156                 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
1157                 dev_kfree_skb_any(skb);
1158                 return -EINVAL;
1159         }
1160
1161         stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[i]);
1162
1163         if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1164                 stmmac_init_desc3(priv, p);
1165
1166         return 0;
1167 }
1168
1169 /**
1170  * stmmac_free_rx_buffer - free RX dma buffers
1171  * @priv: private structure
1172  * @queue: RX queue index
1173  * @i: buffer index.
1174  */
1175 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1176 {
1177         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1178
1179         if (rx_q->rx_skbuff[i]) {
1180                 dma_unmap_single(priv->device, rx_q->rx_skbuff_dma[i],
1181                                  priv->dma_buf_sz, DMA_FROM_DEVICE);
1182                 dev_kfree_skb_any(rx_q->rx_skbuff[i]);
1183         }
1184         rx_q->rx_skbuff[i] = NULL;
1185 }
1186
1187 /**
1188  * stmmac_free_tx_buffer - free RX dma buffers
1189  * @priv: private structure
1190  * @queue: RX queue index
1191  * @i: buffer index.
1192  */
1193 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1194 {
1195         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1196
1197         if (tx_q->tx_skbuff_dma[i].buf) {
1198                 if (tx_q->tx_skbuff_dma[i].map_as_page)
1199                         dma_unmap_page(priv->device,
1200                                        tx_q->tx_skbuff_dma[i].buf,
1201                                        tx_q->tx_skbuff_dma[i].len,
1202                                        DMA_TO_DEVICE);
1203                 else
1204                         dma_unmap_single(priv->device,
1205                                          tx_q->tx_skbuff_dma[i].buf,
1206                                          tx_q->tx_skbuff_dma[i].len,
1207                                          DMA_TO_DEVICE);
1208         }
1209
1210         if (tx_q->tx_skbuff[i]) {
1211                 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1212                 tx_q->tx_skbuff[i] = NULL;
1213                 tx_q->tx_skbuff_dma[i].buf = 0;
1214                 tx_q->tx_skbuff_dma[i].map_as_page = false;
1215         }
1216 }
1217
1218 /**
1219  * init_dma_rx_desc_rings - init the RX descriptor rings
1220  * @dev: net device structure
1221  * @flags: gfp flag.
1222  * Description: this function initializes the DMA RX descriptors
1223  * and allocates the socket buffers. It supports the chained and ring
1224  * modes.
1225  */
1226 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1227 {
1228         struct stmmac_priv *priv = netdev_priv(dev);
1229         u32 rx_count = priv->plat->rx_queues_to_use;
1230         int ret = -ENOMEM;
1231         int bfsize = 0;
1232         int queue;
1233         int i;
1234
1235         bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
1236         if (bfsize < 0)
1237                 bfsize = 0;
1238
1239         if (bfsize < BUF_SIZE_16KiB)
1240                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1241
1242         priv->dma_buf_sz = bfsize;
1243
1244         /* RX INITIALIZATION */
1245         netif_dbg(priv, probe, priv->dev,
1246                   "SKB addresses:\nskb\t\tskb data\tdma data\n");
1247
1248         for (queue = 0; queue < rx_count; queue++) {
1249                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1250
1251                 netif_dbg(priv, probe, priv->dev,
1252                           "(%s) dma_rx_phy=0x%08x\n", __func__,
1253                           (u32)rx_q->dma_rx_phy);
1254
1255                 for (i = 0; i < DMA_RX_SIZE; i++) {
1256                         struct dma_desc *p;
1257
1258                         if (priv->extend_desc)
1259                                 p = &((rx_q->dma_erx + i)->basic);
1260                         else
1261                                 p = rx_q->dma_rx + i;
1262
1263                         ret = stmmac_init_rx_buffers(priv, p, i, flags,
1264                                                      queue);
1265                         if (ret)
1266                                 goto err_init_rx_buffers;
1267
1268                         netif_dbg(priv, probe, priv->dev, "[%p]\t[%p]\t[%x]\n",
1269                                   rx_q->rx_skbuff[i], rx_q->rx_skbuff[i]->data,
1270                                   (unsigned int)rx_q->rx_skbuff_dma[i]);
1271                 }
1272
1273                 rx_q->cur_rx = 0;
1274                 rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1275
1276                 stmmac_clear_rx_descriptors(priv, queue);
1277
1278                 /* Setup the chained descriptor addresses */
1279                 if (priv->mode == STMMAC_CHAIN_MODE) {
1280                         if (priv->extend_desc)
1281                                 stmmac_mode_init(priv, rx_q->dma_erx,
1282                                                 rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1283                         else
1284                                 stmmac_mode_init(priv, rx_q->dma_rx,
1285                                                 rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1286                 }
1287         }
1288
1289         buf_sz = bfsize;
1290
1291         return 0;
1292
1293 err_init_rx_buffers:
1294         while (queue >= 0) {
1295                 while (--i >= 0)
1296                         stmmac_free_rx_buffer(priv, queue, i);
1297
1298                 if (queue == 0)
1299                         break;
1300
1301                 i = DMA_RX_SIZE;
1302                 queue--;
1303         }
1304
1305         return ret;
1306 }
1307
1308 /**
1309  * init_dma_tx_desc_rings - init the TX descriptor rings
1310  * @dev: net device structure.
1311  * Description: this function initializes the DMA TX descriptors
1312  * and allocates the socket buffers. It supports the chained and ring
1313  * modes.
1314  */
1315 static int init_dma_tx_desc_rings(struct net_device *dev)
1316 {
1317         struct stmmac_priv *priv = netdev_priv(dev);
1318         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1319         u32 queue;
1320         int i;
1321
1322         for (queue = 0; queue < tx_queue_cnt; queue++) {
1323                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1324
1325                 netif_dbg(priv, probe, priv->dev,
1326                           "(%s) dma_tx_phy=0x%08x\n", __func__,
1327                          (u32)tx_q->dma_tx_phy);
1328
1329                 /* Setup the chained descriptor addresses */
1330                 if (priv->mode == STMMAC_CHAIN_MODE) {
1331                         if (priv->extend_desc)
1332                                 stmmac_mode_init(priv, tx_q->dma_etx,
1333                                                 tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1334                         else
1335                                 stmmac_mode_init(priv, tx_q->dma_tx,
1336                                                 tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1337                 }
1338
1339                 for (i = 0; i < DMA_TX_SIZE; i++) {
1340                         struct dma_desc *p;
1341                         if (priv->extend_desc)
1342                                 p = &((tx_q->dma_etx + i)->basic);
1343                         else
1344                                 p = tx_q->dma_tx + i;
1345
1346                         stmmac_clear_desc(priv, p);
1347
1348                         tx_q->tx_skbuff_dma[i].buf = 0;
1349                         tx_q->tx_skbuff_dma[i].map_as_page = false;
1350                         tx_q->tx_skbuff_dma[i].len = 0;
1351                         tx_q->tx_skbuff_dma[i].last_segment = false;
1352                         tx_q->tx_skbuff[i] = NULL;
1353                 }
1354
1355                 tx_q->dirty_tx = 0;
1356                 tx_q->cur_tx = 0;
1357                 tx_q->mss = 0;
1358
1359                 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1360         }
1361
1362         return 0;
1363 }
1364
1365 /**
1366  * init_dma_desc_rings - init the RX/TX descriptor rings
1367  * @dev: net device structure
1368  * @flags: gfp flag.
1369  * Description: this function initializes the DMA RX/TX descriptors
1370  * and allocates the socket buffers. It supports the chained and ring
1371  * modes.
1372  */
1373 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1374 {
1375         struct stmmac_priv *priv = netdev_priv(dev);
1376         int ret;
1377
1378         ret = init_dma_rx_desc_rings(dev, flags);
1379         if (ret)
1380                 return ret;
1381
1382         ret = init_dma_tx_desc_rings(dev);
1383
1384         stmmac_clear_descriptors(priv);
1385
1386         if (netif_msg_hw(priv))
1387                 stmmac_display_rings(priv);
1388
1389         return ret;
1390 }
1391
1392 /**
1393  * dma_free_rx_skbufs - free RX dma buffers
1394  * @priv: private structure
1395  * @queue: RX queue index
1396  */
1397 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1398 {
1399         int i;
1400
1401         for (i = 0; i < DMA_RX_SIZE; i++)
1402                 stmmac_free_rx_buffer(priv, queue, i);
1403 }
1404
1405 /**
1406  * dma_free_tx_skbufs - free TX dma buffers
1407  * @priv: private structure
1408  * @queue: TX queue index
1409  */
1410 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1411 {
1412         int i;
1413
1414         for (i = 0; i < DMA_TX_SIZE; i++)
1415                 stmmac_free_tx_buffer(priv, queue, i);
1416 }
1417
1418 /**
1419  * free_dma_rx_desc_resources - free RX dma desc resources
1420  * @priv: private structure
1421  */
1422 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1423 {
1424         u32 rx_count = priv->plat->rx_queues_to_use;
1425         u32 queue;
1426
1427         /* Free RX queue resources */
1428         for (queue = 0; queue < rx_count; queue++) {
1429                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1430
1431                 /* Release the DMA RX socket buffers */
1432                 dma_free_rx_skbufs(priv, queue);
1433
1434                 /* Free DMA regions of consistent memory previously allocated */
1435                 if (!priv->extend_desc)
1436                         dma_free_coherent(priv->device,
1437                                           DMA_RX_SIZE * sizeof(struct dma_desc),
1438                                           rx_q->dma_rx, rx_q->dma_rx_phy);
1439                 else
1440                         dma_free_coherent(priv->device, DMA_RX_SIZE *
1441                                           sizeof(struct dma_extended_desc),
1442                                           rx_q->dma_erx, rx_q->dma_rx_phy);
1443
1444                 kfree(rx_q->rx_skbuff_dma);
1445                 kfree(rx_q->rx_skbuff);
1446         }
1447 }
1448
1449 /**
1450  * free_dma_tx_desc_resources - free TX dma desc resources
1451  * @priv: private structure
1452  */
1453 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1454 {
1455         u32 tx_count = priv->plat->tx_queues_to_use;
1456         u32 queue;
1457
1458         /* Free TX queue resources */
1459         for (queue = 0; queue < tx_count; queue++) {
1460                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1461
1462                 /* Release the DMA TX socket buffers */
1463                 dma_free_tx_skbufs(priv, queue);
1464
1465                 /* Free DMA regions of consistent memory previously allocated */
1466                 if (!priv->extend_desc)
1467                         dma_free_coherent(priv->device,
1468                                           DMA_TX_SIZE * sizeof(struct dma_desc),
1469                                           tx_q->dma_tx, tx_q->dma_tx_phy);
1470                 else
1471                         dma_free_coherent(priv->device, DMA_TX_SIZE *
1472                                           sizeof(struct dma_extended_desc),
1473                                           tx_q->dma_etx, tx_q->dma_tx_phy);
1474
1475                 kfree(tx_q->tx_skbuff_dma);
1476                 kfree(tx_q->tx_skbuff);
1477         }
1478 }
1479
1480 /**
1481  * alloc_dma_rx_desc_resources - alloc RX resources.
1482  * @priv: private structure
1483  * Description: according to which descriptor can be used (extend or basic)
1484  * this function allocates the resources for TX and RX paths. In case of
1485  * reception, for example, it pre-allocated the RX socket buffer in order to
1486  * allow zero-copy mechanism.
1487  */
1488 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1489 {
1490         u32 rx_count = priv->plat->rx_queues_to_use;
1491         int ret = -ENOMEM;
1492         u32 queue;
1493
1494         /* RX queues buffers and DMA */
1495         for (queue = 0; queue < rx_count; queue++) {
1496                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1497
1498                 rx_q->queue_index = queue;
1499                 rx_q->priv_data = priv;
1500
1501                 rx_q->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE,
1502                                                     sizeof(dma_addr_t),
1503                                                     GFP_KERNEL);
1504                 if (!rx_q->rx_skbuff_dma)
1505                         goto err_dma;
1506
1507                 rx_q->rx_skbuff = kmalloc_array(DMA_RX_SIZE,
1508                                                 sizeof(struct sk_buff *),
1509                                                 GFP_KERNEL);
1510                 if (!rx_q->rx_skbuff)
1511                         goto err_dma;
1512
1513                 if (priv->extend_desc) {
1514                         rx_q->dma_erx = dma_alloc_coherent(priv->device,
1515                                                            DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1516                                                            &rx_q->dma_rx_phy,
1517                                                            GFP_KERNEL);
1518                         if (!rx_q->dma_erx)
1519                                 goto err_dma;
1520
1521                 } else {
1522                         rx_q->dma_rx = dma_alloc_coherent(priv->device,
1523                                                           DMA_RX_SIZE * sizeof(struct dma_desc),
1524                                                           &rx_q->dma_rx_phy,
1525                                                           GFP_KERNEL);
1526                         if (!rx_q->dma_rx)
1527                                 goto err_dma;
1528                 }
1529         }
1530
1531         return 0;
1532
1533 err_dma:
1534         free_dma_rx_desc_resources(priv);
1535
1536         return ret;
1537 }
1538
1539 /**
1540  * alloc_dma_tx_desc_resources - alloc TX resources.
1541  * @priv: private structure
1542  * Description: according to which descriptor can be used (extend or basic)
1543  * this function allocates the resources for TX and RX paths. In case of
1544  * reception, for example, it pre-allocated the RX socket buffer in order to
1545  * allow zero-copy mechanism.
1546  */
1547 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1548 {
1549         u32 tx_count = priv->plat->tx_queues_to_use;
1550         int ret = -ENOMEM;
1551         u32 queue;
1552
1553         /* TX queues buffers and DMA */
1554         for (queue = 0; queue < tx_count; queue++) {
1555                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1556
1557                 tx_q->queue_index = queue;
1558                 tx_q->priv_data = priv;
1559
1560                 tx_q->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1561                                                     sizeof(*tx_q->tx_skbuff_dma),
1562                                                     GFP_KERNEL);
1563                 if (!tx_q->tx_skbuff_dma)
1564                         goto err_dma;
1565
1566                 tx_q->tx_skbuff = kmalloc_array(DMA_TX_SIZE,
1567                                                 sizeof(struct sk_buff *),
1568                                                 GFP_KERNEL);
1569                 if (!tx_q->tx_skbuff)
1570                         goto err_dma;
1571
1572                 if (priv->extend_desc) {
1573                         tx_q->dma_etx = dma_alloc_coherent(priv->device,
1574                                                            DMA_TX_SIZE * sizeof(struct dma_extended_desc),
1575                                                            &tx_q->dma_tx_phy,
1576                                                            GFP_KERNEL);
1577                         if (!tx_q->dma_etx)
1578                                 goto err_dma;
1579                 } else {
1580                         tx_q->dma_tx = dma_alloc_coherent(priv->device,
1581                                                           DMA_TX_SIZE * sizeof(struct dma_desc),
1582                                                           &tx_q->dma_tx_phy,
1583                                                           GFP_KERNEL);
1584                         if (!tx_q->dma_tx)
1585                                 goto err_dma;
1586                 }
1587         }
1588
1589         return 0;
1590
1591 err_dma:
1592         free_dma_tx_desc_resources(priv);
1593
1594         return ret;
1595 }
1596
1597 /**
1598  * alloc_dma_desc_resources - alloc TX/RX resources.
1599  * @priv: private structure
1600  * Description: according to which descriptor can be used (extend or basic)
1601  * this function allocates the resources for TX and RX paths. In case of
1602  * reception, for example, it pre-allocated the RX socket buffer in order to
1603  * allow zero-copy mechanism.
1604  */
1605 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1606 {
1607         /* RX Allocation */
1608         int ret = alloc_dma_rx_desc_resources(priv);
1609
1610         if (ret)
1611                 return ret;
1612
1613         ret = alloc_dma_tx_desc_resources(priv);
1614
1615         return ret;
1616 }
1617
1618 /**
1619  * free_dma_desc_resources - free dma desc resources
1620  * @priv: private structure
1621  */
1622 static void free_dma_desc_resources(struct stmmac_priv *priv)
1623 {
1624         /* Release the DMA RX socket buffers */
1625         free_dma_rx_desc_resources(priv);
1626
1627         /* Release the DMA TX socket buffers */
1628         free_dma_tx_desc_resources(priv);
1629 }
1630
1631 /**
1632  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1633  *  @priv: driver private structure
1634  *  Description: It is used for enabling the rx queues in the MAC
1635  */
1636 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1637 {
1638         u32 rx_queues_count = priv->plat->rx_queues_to_use;
1639         int queue;
1640         u8 mode;
1641
1642         for (queue = 0; queue < rx_queues_count; queue++) {
1643                 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1644                 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1645         }
1646 }
1647
1648 /**
1649  * stmmac_start_rx_dma - start RX DMA channel
1650  * @priv: driver private structure
1651  * @chan: RX channel index
1652  * Description:
1653  * This starts a RX DMA channel
1654  */
1655 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1656 {
1657         netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1658         stmmac_start_rx(priv, priv->ioaddr, chan);
1659 }
1660
1661 /**
1662  * stmmac_start_tx_dma - start TX DMA channel
1663  * @priv: driver private structure
1664  * @chan: TX channel index
1665  * Description:
1666  * This starts a TX DMA channel
1667  */
1668 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1669 {
1670         netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1671         stmmac_start_tx(priv, priv->ioaddr, chan);
1672 }
1673
1674 /**
1675  * stmmac_stop_rx_dma - stop RX DMA channel
1676  * @priv: driver private structure
1677  * @chan: RX channel index
1678  * Description:
1679  * This stops a RX DMA channel
1680  */
1681 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1682 {
1683         netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1684         stmmac_stop_rx(priv, priv->ioaddr, chan);
1685 }
1686
1687 /**
1688  * stmmac_stop_tx_dma - stop TX DMA channel
1689  * @priv: driver private structure
1690  * @chan: TX channel index
1691  * Description:
1692  * This stops a TX DMA channel
1693  */
1694 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1695 {
1696         netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1697         stmmac_stop_tx(priv, priv->ioaddr, chan);
1698 }
1699
1700 /**
1701  * stmmac_start_all_dma - start all RX and TX DMA channels
1702  * @priv: driver private structure
1703  * Description:
1704  * This starts all the RX and TX DMA channels
1705  */
1706 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1707 {
1708         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1709         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1710         u32 chan = 0;
1711
1712         for (chan = 0; chan < rx_channels_count; chan++)
1713                 stmmac_start_rx_dma(priv, chan);
1714
1715         for (chan = 0; chan < tx_channels_count; chan++)
1716                 stmmac_start_tx_dma(priv, chan);
1717 }
1718
1719 /**
1720  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1721  * @priv: driver private structure
1722  * Description:
1723  * This stops the RX and TX DMA channels
1724  */
1725 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1726 {
1727         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1728         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1729         u32 chan = 0;
1730
1731         for (chan = 0; chan < rx_channels_count; chan++)
1732                 stmmac_stop_rx_dma(priv, chan);
1733
1734         for (chan = 0; chan < tx_channels_count; chan++)
1735                 stmmac_stop_tx_dma(priv, chan);
1736 }
1737
1738 /**
1739  *  stmmac_dma_operation_mode - HW DMA operation mode
1740  *  @priv: driver private structure
1741  *  Description: it is used for configuring the DMA operation mode register in
1742  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1743  */
1744 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1745 {
1746         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1747         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1748         int rxfifosz = priv->plat->rx_fifo_size;
1749         int txfifosz = priv->plat->tx_fifo_size;
1750         u32 txmode = 0;
1751         u32 rxmode = 0;
1752         u32 chan = 0;
1753         u8 qmode = 0;
1754
1755         if (rxfifosz == 0)
1756                 rxfifosz = priv->dma_cap.rx_fifo_size;
1757         if (txfifosz == 0)
1758                 txfifosz = priv->dma_cap.tx_fifo_size;
1759
1760         /* Adjust for real per queue fifo size */
1761         rxfifosz /= rx_channels_count;
1762         txfifosz /= tx_channels_count;
1763
1764         if (priv->plat->force_thresh_dma_mode) {
1765                 txmode = tc;
1766                 rxmode = tc;
1767         } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1768                 /*
1769                  * In case of GMAC, SF mode can be enabled
1770                  * to perform the TX COE in HW. This depends on:
1771                  * 1) TX COE if actually supported
1772                  * 2) There is no bugged Jumbo frame support
1773                  *    that needs to not insert csum in the TDES.
1774                  */
1775                 txmode = SF_DMA_MODE;
1776                 rxmode = SF_DMA_MODE;
1777                 priv->xstats.threshold = SF_DMA_MODE;
1778         } else {
1779                 txmode = tc;
1780                 rxmode = SF_DMA_MODE;
1781         }
1782
1783         /* configure all channels */
1784         for (chan = 0; chan < rx_channels_count; chan++) {
1785                 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1786
1787                 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1788                                 rxfifosz, qmode);
1789                 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1790                                 chan);
1791         }
1792
1793         for (chan = 0; chan < tx_channels_count; chan++) {
1794                 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1795
1796                 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1797                                 txfifosz, qmode);
1798         }
1799 }
1800
1801 /**
1802  * stmmac_tx_clean - to manage the transmission completion
1803  * @priv: driver private structure
1804  * @queue: TX queue index
1805  * Description: it reclaims the transmit resources after transmission completes.
1806  */
1807 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1808 {
1809         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1810         unsigned int bytes_compl = 0, pkts_compl = 0;
1811         unsigned int entry, count = 0;
1812
1813         __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1814
1815         priv->xstats.tx_clean++;
1816
1817         entry = tx_q->dirty_tx;
1818         while ((entry != tx_q->cur_tx) && (count < budget)) {
1819                 struct sk_buff *skb = tx_q->tx_skbuff[entry];
1820                 struct dma_desc *p;
1821                 int status;
1822
1823                 if (priv->extend_desc)
1824                         p = (struct dma_desc *)(tx_q->dma_etx + entry);
1825                 else
1826                         p = tx_q->dma_tx + entry;
1827
1828                 status = stmmac_tx_status(priv, &priv->dev->stats,
1829                                 &priv->xstats, p, priv->ioaddr);
1830                 /* Check if the descriptor is owned by the DMA */
1831                 if (unlikely(status & tx_dma_own))
1832                         break;
1833
1834                 count++;
1835
1836                 /* Make sure descriptor fields are read after reading
1837                  * the own bit.
1838                  */
1839                 dma_rmb();
1840
1841                 /* Just consider the last segment and ...*/
1842                 if (likely(!(status & tx_not_ls))) {
1843                         /* ... verify the status error condition */
1844                         if (unlikely(status & tx_err)) {
1845                                 priv->dev->stats.tx_errors++;
1846                         } else {
1847                                 priv->dev->stats.tx_packets++;
1848                                 priv->xstats.tx_pkt_n++;
1849                         }
1850                         stmmac_get_tx_hwtstamp(priv, p, skb);
1851                 }
1852
1853                 if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1854                         if (tx_q->tx_skbuff_dma[entry].map_as_page)
1855                                 dma_unmap_page(priv->device,
1856                                                tx_q->tx_skbuff_dma[entry].buf,
1857                                                tx_q->tx_skbuff_dma[entry].len,
1858                                                DMA_TO_DEVICE);
1859                         else
1860                                 dma_unmap_single(priv->device,
1861                                                  tx_q->tx_skbuff_dma[entry].buf,
1862                                                  tx_q->tx_skbuff_dma[entry].len,
1863                                                  DMA_TO_DEVICE);
1864                         tx_q->tx_skbuff_dma[entry].buf = 0;
1865                         tx_q->tx_skbuff_dma[entry].len = 0;
1866                         tx_q->tx_skbuff_dma[entry].map_as_page = false;
1867                 }
1868
1869                 stmmac_clean_desc3(priv, tx_q, p);
1870
1871                 tx_q->tx_skbuff_dma[entry].last_segment = false;
1872                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1873
1874                 if (likely(skb != NULL)) {
1875                         pkts_compl++;
1876                         bytes_compl += skb->len;
1877                         dev_consume_skb_any(skb);
1878                         tx_q->tx_skbuff[entry] = NULL;
1879                 }
1880
1881                 stmmac_release_tx_desc(priv, p, priv->mode);
1882
1883                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1884         }
1885         tx_q->dirty_tx = entry;
1886
1887         netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1888                                   pkts_compl, bytes_compl);
1889
1890         if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1891                                                                 queue))) &&
1892             stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1893
1894                 netif_dbg(priv, tx_done, priv->dev,
1895                           "%s: restart transmit\n", __func__);
1896                 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1897         }
1898
1899         if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1900                 stmmac_enable_eee_mode(priv);
1901                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1902         }
1903
1904         /* We still have pending packets, let's call for a new scheduling */
1905         if (tx_q->dirty_tx != tx_q->cur_tx)
1906                 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
1907
1908         __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1909
1910         return count;
1911 }
1912
1913 /**
1914  * stmmac_tx_err - to manage the tx error
1915  * @priv: driver private structure
1916  * @chan: channel index
1917  * Description: it cleans the descriptors and restarts the transmission
1918  * in case of transmission errors.
1919  */
1920 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1921 {
1922         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1923         int i;
1924
1925         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1926
1927         stmmac_stop_tx_dma(priv, chan);
1928         dma_free_tx_skbufs(priv, chan);
1929         for (i = 0; i < DMA_TX_SIZE; i++)
1930                 if (priv->extend_desc)
1931                         stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1932                                         priv->mode, (i == DMA_TX_SIZE - 1));
1933                 else
1934                         stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1935                                         priv->mode, (i == DMA_TX_SIZE - 1));
1936         tx_q->dirty_tx = 0;
1937         tx_q->cur_tx = 0;
1938         tx_q->mss = 0;
1939         netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
1940         stmmac_start_tx_dma(priv, chan);
1941
1942         priv->dev->stats.tx_errors++;
1943         netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
1944 }
1945
1946 /**
1947  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
1948  *  @priv: driver private structure
1949  *  @txmode: TX operating mode
1950  *  @rxmode: RX operating mode
1951  *  @chan: channel index
1952  *  Description: it is used for configuring of the DMA operation mode in
1953  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
1954  *  mode.
1955  */
1956 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
1957                                           u32 rxmode, u32 chan)
1958 {
1959         u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1960         u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1961         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1962         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1963         int rxfifosz = priv->plat->rx_fifo_size;
1964         int txfifosz = priv->plat->tx_fifo_size;
1965
1966         if (rxfifosz == 0)
1967                 rxfifosz = priv->dma_cap.rx_fifo_size;
1968         if (txfifosz == 0)
1969                 txfifosz = priv->dma_cap.tx_fifo_size;
1970
1971         /* Adjust for real per queue fifo size */
1972         rxfifosz /= rx_channels_count;
1973         txfifosz /= tx_channels_count;
1974
1975         stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
1976         stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
1977 }
1978
1979 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
1980 {
1981         int ret;
1982
1983         ret = stmmac_safety_feat_irq_status(priv, priv->dev,
1984                         priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
1985         if (ret && (ret != -EINVAL)) {
1986                 stmmac_global_err(priv);
1987                 return true;
1988         }
1989
1990         return false;
1991 }
1992
1993 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
1994 {
1995         int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
1996                                                  &priv->xstats, chan);
1997         struct stmmac_channel *ch = &priv->channel[chan];
1998
1999         if (status)
2000                 status |= handle_rx | handle_tx;
2001
2002         if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2003                 stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2004                 napi_schedule_irqoff(&ch->rx_napi);
2005         }
2006
2007         if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2008                 stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2009                 napi_schedule_irqoff(&ch->tx_napi);
2010         }
2011
2012         return status;
2013 }
2014
2015 /**
2016  * stmmac_dma_interrupt - DMA ISR
2017  * @priv: driver private structure
2018  * Description: this is the DMA ISR. It is called by the main ISR.
2019  * It calls the dwmac dma routine and schedule poll method in case of some
2020  * work can be done.
2021  */
2022 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2023 {
2024         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2025         u32 rx_channel_count = priv->plat->rx_queues_to_use;
2026         u32 channels_to_check = tx_channel_count > rx_channel_count ?
2027                                 tx_channel_count : rx_channel_count;
2028         u32 chan;
2029         int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2030
2031         /* Make sure we never check beyond our status buffer. */
2032         if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2033                 channels_to_check = ARRAY_SIZE(status);
2034
2035         for (chan = 0; chan < channels_to_check; chan++)
2036                 status[chan] = stmmac_napi_check(priv, chan);
2037
2038         for (chan = 0; chan < tx_channel_count; chan++) {
2039                 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2040                         /* Try to bump up the dma threshold on this failure */
2041                         if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2042                             (tc <= 256)) {
2043                                 tc += 64;
2044                                 if (priv->plat->force_thresh_dma_mode)
2045                                         stmmac_set_dma_operation_mode(priv,
2046                                                                       tc,
2047                                                                       tc,
2048                                                                       chan);
2049                                 else
2050                                         stmmac_set_dma_operation_mode(priv,
2051                                                                     tc,
2052                                                                     SF_DMA_MODE,
2053                                                                     chan);
2054                                 priv->xstats.threshold = tc;
2055                         }
2056                 } else if (unlikely(status[chan] == tx_hard_error)) {
2057                         stmmac_tx_err(priv, chan);
2058                 }
2059         }
2060 }
2061
2062 /**
2063  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2064  * @priv: driver private structure
2065  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2066  */
2067 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2068 {
2069         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2070                             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2071
2072         stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2073
2074         if (priv->dma_cap.rmon) {
2075                 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2076                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2077         } else
2078                 netdev_info(priv->dev, "No MAC Management Counters available\n");
2079 }
2080
2081 /**
2082  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2083  * @priv: driver private structure
2084  * Description:
2085  *  new GMAC chip generations have a new register to indicate the
2086  *  presence of the optional feature/functions.
2087  *  This can be also used to override the value passed through the
2088  *  platform and necessary for old MAC10/100 and GMAC chips.
2089  */
2090 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2091 {
2092         return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2093 }
2094
2095 /**
2096  * stmmac_check_ether_addr - check if the MAC addr is valid
2097  * @priv: driver private structure
2098  * Description:
2099  * it is to verify if the MAC address is valid, in case of failures it
2100  * generates a random MAC address
2101  */
2102 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2103 {
2104         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2105                 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2106                 if (!is_valid_ether_addr(priv->dev->dev_addr))
2107                         eth_hw_addr_random(priv->dev);
2108                 dev_info(priv->device, "device MAC address %pM\n",
2109                          priv->dev->dev_addr);
2110         }
2111 }
2112
2113 /**
2114  * stmmac_init_dma_engine - DMA init.
2115  * @priv: driver private structure
2116  * Description:
2117  * It inits the DMA invoking the specific MAC/GMAC callback.
2118  * Some DMA parameters can be passed from the platform;
2119  * in case of these are not passed a default is kept for the MAC or GMAC.
2120  */
2121 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2122 {
2123         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2124         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2125         u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2126         struct stmmac_rx_queue *rx_q;
2127         struct stmmac_tx_queue *tx_q;
2128         u32 chan = 0;
2129         int atds = 0;
2130         int ret = 0;
2131
2132         if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2133                 dev_err(priv->device, "Invalid DMA configuration\n");
2134                 return -EINVAL;
2135         }
2136
2137         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2138                 atds = 1;
2139
2140         ret = stmmac_reset(priv, priv->ioaddr);
2141         if (ret) {
2142                 dev_err(priv->device, "Failed to reset the dma\n");
2143                 return ret;
2144         }
2145
2146         /* DMA Configuration */
2147         stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2148
2149         if (priv->plat->axi)
2150                 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2151
2152         /* DMA CSR Channel configuration */
2153         for (chan = 0; chan < dma_csr_ch; chan++)
2154                 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2155
2156         /* DMA RX Channel Configuration */
2157         for (chan = 0; chan < rx_channels_count; chan++) {
2158                 rx_q = &priv->rx_queue[chan];
2159
2160                 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2161                                     rx_q->dma_rx_phy, chan);
2162
2163                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2164                             (DMA_RX_SIZE * sizeof(struct dma_desc));
2165                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2166                                        rx_q->rx_tail_addr, chan);
2167         }
2168
2169         /* DMA TX Channel Configuration */
2170         for (chan = 0; chan < tx_channels_count; chan++) {
2171                 tx_q = &priv->tx_queue[chan];
2172
2173                 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2174                                     tx_q->dma_tx_phy, chan);
2175
2176                 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2177                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2178                                        tx_q->tx_tail_addr, chan);
2179         }
2180
2181         return ret;
2182 }
2183
2184 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2185 {
2186         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2187
2188         mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2189 }
2190
2191 /**
2192  * stmmac_tx_timer - mitigation sw timer for tx.
2193  * @data: data pointer
2194  * Description:
2195  * This is the timer handler to directly invoke the stmmac_tx_clean.
2196  */
2197 static void stmmac_tx_timer(struct timer_list *t)
2198 {
2199         struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2200         struct stmmac_priv *priv = tx_q->priv_data;
2201         struct stmmac_channel *ch;
2202
2203         ch = &priv->channel[tx_q->queue_index];
2204
2205         /*
2206          * If NAPI is already running we can miss some events. Let's rearm
2207          * the timer and try again.
2208          */
2209         if (likely(napi_schedule_prep(&ch->tx_napi)))
2210                 __napi_schedule(&ch->tx_napi);
2211         else
2212                 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
2213 }
2214
2215 /**
2216  * stmmac_init_tx_coalesce - init tx mitigation options.
2217  * @priv: driver private structure
2218  * Description:
2219  * This inits the transmit coalesce parameters: i.e. timer rate,
2220  * timer handler and default threshold used for enabling the
2221  * interrupt on completion bit.
2222  */
2223 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
2224 {
2225         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2226         u32 chan;
2227
2228         priv->tx_coal_frames = STMMAC_TX_FRAMES;
2229         priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2230
2231         for (chan = 0; chan < tx_channel_count; chan++) {
2232                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2233
2234                 timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2235         }
2236 }
2237
2238 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2239 {
2240         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2241         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2242         u32 chan;
2243
2244         /* set TX ring length */
2245         for (chan = 0; chan < tx_channels_count; chan++)
2246                 stmmac_set_tx_ring_len(priv, priv->ioaddr,
2247                                 (DMA_TX_SIZE - 1), chan);
2248
2249         /* set RX ring length */
2250         for (chan = 0; chan < rx_channels_count; chan++)
2251                 stmmac_set_rx_ring_len(priv, priv->ioaddr,
2252                                 (DMA_RX_SIZE - 1), chan);
2253 }
2254
2255 /**
2256  *  stmmac_set_tx_queue_weight - Set TX queue weight
2257  *  @priv: driver private structure
2258  *  Description: It is used for setting TX queues weight
2259  */
2260 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2261 {
2262         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2263         u32 weight;
2264         u32 queue;
2265
2266         for (queue = 0; queue < tx_queues_count; queue++) {
2267                 weight = priv->plat->tx_queues_cfg[queue].weight;
2268                 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2269         }
2270 }
2271
2272 /**
2273  *  stmmac_configure_cbs - Configure CBS in TX queue
2274  *  @priv: driver private structure
2275  *  Description: It is used for configuring CBS in AVB TX queues
2276  */
2277 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2278 {
2279         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2280         u32 mode_to_use;
2281         u32 queue;
2282
2283         /* queue 0 is reserved for legacy traffic */
2284         for (queue = 1; queue < tx_queues_count; queue++) {
2285                 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2286                 if (mode_to_use == MTL_QUEUE_DCB)
2287                         continue;
2288
2289                 stmmac_config_cbs(priv, priv->hw,
2290                                 priv->plat->tx_queues_cfg[queue].send_slope,
2291                                 priv->plat->tx_queues_cfg[queue].idle_slope,
2292                                 priv->plat->tx_queues_cfg[queue].high_credit,
2293                                 priv->plat->tx_queues_cfg[queue].low_credit,
2294                                 queue);
2295         }
2296 }
2297
2298 /**
2299  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2300  *  @priv: driver private structure
2301  *  Description: It is used for mapping RX queues to RX dma channels
2302  */
2303 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2304 {
2305         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2306         u32 queue;
2307         u32 chan;
2308
2309         for (queue = 0; queue < rx_queues_count; queue++) {
2310                 chan = priv->plat->rx_queues_cfg[queue].chan;
2311                 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2312         }
2313 }
2314
2315 /**
2316  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2317  *  @priv: driver private structure
2318  *  Description: It is used for configuring the RX Queue Priority
2319  */
2320 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2321 {
2322         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2323         u32 queue;
2324         u32 prio;
2325
2326         for (queue = 0; queue < rx_queues_count; queue++) {
2327                 if (!priv->plat->rx_queues_cfg[queue].use_prio)
2328                         continue;
2329
2330                 prio = priv->plat->rx_queues_cfg[queue].prio;
2331                 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2332         }
2333 }
2334
2335 /**
2336  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2337  *  @priv: driver private structure
2338  *  Description: It is used for configuring the TX Queue Priority
2339  */
2340 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2341 {
2342         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2343         u32 queue;
2344         u32 prio;
2345
2346         for (queue = 0; queue < tx_queues_count; queue++) {
2347                 if (!priv->plat->tx_queues_cfg[queue].use_prio)
2348                         continue;
2349
2350                 prio = priv->plat->tx_queues_cfg[queue].prio;
2351                 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2352         }
2353 }
2354
2355 /**
2356  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2357  *  @priv: driver private structure
2358  *  Description: It is used for configuring the RX queue routing
2359  */
2360 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2361 {
2362         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2363         u32 queue;
2364         u8 packet;
2365
2366         for (queue = 0; queue < rx_queues_count; queue++) {
2367                 /* no specific packet type routing specified for the queue */
2368                 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2369                         continue;
2370
2371                 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2372                 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2373         }
2374 }
2375
2376 /**
2377  *  stmmac_mtl_configuration - Configure MTL
2378  *  @priv: driver private structure
2379  *  Description: It is used for configurring MTL
2380  */
2381 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2382 {
2383         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2384         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2385
2386         if (tx_queues_count > 1)
2387                 stmmac_set_tx_queue_weight(priv);
2388
2389         /* Configure MTL RX algorithms */
2390         if (rx_queues_count > 1)
2391                 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2392                                 priv->plat->rx_sched_algorithm);
2393
2394         /* Configure MTL TX algorithms */
2395         if (tx_queues_count > 1)
2396                 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2397                                 priv->plat->tx_sched_algorithm);
2398
2399         /* Configure CBS in AVB TX queues */
2400         if (tx_queues_count > 1)
2401                 stmmac_configure_cbs(priv);
2402
2403         /* Map RX MTL to DMA channels */
2404         stmmac_rx_queue_dma_chan_map(priv);
2405
2406         /* Enable MAC RX Queues */
2407         stmmac_mac_enable_rx_queues(priv);
2408
2409         /* Set RX priorities */
2410         if (rx_queues_count > 1)
2411                 stmmac_mac_config_rx_queues_prio(priv);
2412
2413         /* Set TX priorities */
2414         if (tx_queues_count > 1)
2415                 stmmac_mac_config_tx_queues_prio(priv);
2416
2417         /* Set RX routing */
2418         if (rx_queues_count > 1)
2419                 stmmac_mac_config_rx_queues_routing(priv);
2420 }
2421
2422 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2423 {
2424         if (priv->dma_cap.asp) {
2425                 netdev_info(priv->dev, "Enabling Safety Features\n");
2426                 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2427         } else {
2428                 netdev_info(priv->dev, "No Safety Features support found\n");
2429         }
2430 }
2431
2432 /**
2433  * stmmac_hw_setup - setup mac in a usable state.
2434  *  @dev : pointer to the device structure.
2435  *  Description:
2436  *  this is the main function to setup the HW in a usable state because the
2437  *  dma engine is reset, the core registers are configured (e.g. AXI,
2438  *  Checksum features, timers). The DMA is ready to start receiving and
2439  *  transmitting.
2440  *  Return value:
2441  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2442  *  file on failure.
2443  */
2444 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2445 {
2446         struct stmmac_priv *priv = netdev_priv(dev);
2447         u32 rx_cnt = priv->plat->rx_queues_to_use;
2448         u32 tx_cnt = priv->plat->tx_queues_to_use;
2449         u32 chan;
2450         int ret;
2451
2452         /* DMA initialization and SW reset */
2453         ret = stmmac_init_dma_engine(priv);
2454         if (ret < 0) {
2455                 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2456                            __func__);
2457                 return ret;
2458         }
2459
2460         /* Copy the MAC addr into the HW  */
2461         stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2462
2463         /* PS and related bits will be programmed according to the speed */
2464         if (priv->hw->pcs) {
2465                 int speed = priv->plat->mac_port_sel_speed;
2466
2467                 if ((speed == SPEED_10) || (speed == SPEED_100) ||
2468                     (speed == SPEED_1000)) {
2469                         priv->hw->ps = speed;
2470                 } else {
2471                         dev_warn(priv->device, "invalid port speed\n");
2472                         priv->hw->ps = 0;
2473                 }
2474         }
2475
2476         /* Initialize the MAC Core */
2477         stmmac_core_init(priv, priv->hw, dev);
2478
2479         /* Initialize MTL*/
2480         stmmac_mtl_configuration(priv);
2481
2482         /* Initialize Safety Features */
2483         stmmac_safety_feat_configuration(priv);
2484
2485         ret = stmmac_rx_ipc(priv, priv->hw);
2486         if (!ret) {
2487                 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2488                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2489                 priv->hw->rx_csum = 0;
2490         }
2491
2492         /* Enable the MAC Rx/Tx */
2493         stmmac_mac_set(priv, priv->ioaddr, true);
2494
2495         /* Set the HW DMA mode and the COE */
2496         stmmac_dma_operation_mode(priv);
2497
2498         stmmac_mmc_setup(priv);
2499
2500         if (init_ptp) {
2501                 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2502                 if (ret < 0)
2503                         netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2504
2505                 ret = stmmac_init_ptp(priv);
2506                 if (ret == -EOPNOTSUPP)
2507                         netdev_warn(priv->dev, "PTP not supported by HW\n");
2508                 else if (ret)
2509                         netdev_warn(priv->dev, "PTP init failed\n");
2510         }
2511
2512         priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2513
2514         if (priv->use_riwt) {
2515                 ret = stmmac_rx_watchdog(priv, priv->ioaddr, MAX_DMA_RIWT, rx_cnt);
2516                 if (!ret)
2517                         priv->rx_riwt = MAX_DMA_RIWT;
2518         }
2519
2520         if (priv->hw->pcs)
2521                 stmmac_pcs_ctrl_ane(priv, priv->hw, 1, priv->hw->ps, 0);
2522
2523         /* set TX and RX rings length */
2524         stmmac_set_rings_length(priv);
2525
2526         /* Enable TSO */
2527         if (priv->tso) {
2528                 for (chan = 0; chan < tx_cnt; chan++)
2529                         stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2530         }
2531
2532         /* Start the ball rolling... */
2533         stmmac_start_all_dma(priv);
2534
2535         return 0;
2536 }
2537
2538 static void stmmac_hw_teardown(struct net_device *dev)
2539 {
2540         struct stmmac_priv *priv = netdev_priv(dev);
2541
2542         clk_disable_unprepare(priv->plat->clk_ptp_ref);
2543 }
2544
2545 /**
2546  *  stmmac_open - open entry point of the driver
2547  *  @dev : pointer to the device structure.
2548  *  Description:
2549  *  This function is the open entry point of the driver.
2550  *  Return value:
2551  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2552  *  file on failure.
2553  */
2554 static int stmmac_open(struct net_device *dev)
2555 {
2556         struct stmmac_priv *priv = netdev_priv(dev);
2557         u32 chan;
2558         int ret;
2559
2560         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2561             priv->hw->pcs != STMMAC_PCS_TBI &&
2562             priv->hw->pcs != STMMAC_PCS_RTBI) {
2563                 ret = stmmac_init_phy(dev);
2564                 if (ret) {
2565                         netdev_err(priv->dev,
2566                                    "%s: Cannot attach to PHY (error: %d)\n",
2567                                    __func__, ret);
2568                         return ret;
2569                 }
2570         }
2571
2572         /* Extra statistics */
2573         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2574         priv->xstats.threshold = tc;
2575
2576         priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2577         priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2578
2579         ret = alloc_dma_desc_resources(priv);
2580         if (ret < 0) {
2581                 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2582                            __func__);
2583                 goto dma_desc_error;
2584         }
2585
2586         ret = init_dma_desc_rings(dev, GFP_KERNEL);
2587         if (ret < 0) {
2588                 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2589                            __func__);
2590                 goto init_error;
2591         }
2592
2593         ret = stmmac_hw_setup(dev, true);
2594         if (ret < 0) {
2595                 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2596                 goto init_error;
2597         }
2598
2599         stmmac_init_tx_coalesce(priv);
2600
2601         phylink_start(priv->phylink);
2602
2603         /* Request the IRQ lines */
2604         ret = request_irq(dev->irq, stmmac_interrupt,
2605                           IRQF_SHARED, dev->name, dev);
2606         if (unlikely(ret < 0)) {
2607                 netdev_err(priv->dev,
2608                            "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2609                            __func__, dev->irq, ret);
2610                 goto irq_error;
2611         }
2612
2613         /* Request the Wake IRQ in case of another line is used for WoL */
2614         if (priv->wol_irq != dev->irq) {
2615                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
2616                                   IRQF_SHARED, dev->name, dev);
2617                 if (unlikely(ret < 0)) {
2618                         netdev_err(priv->dev,
2619                                    "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2620                                    __func__, priv->wol_irq, ret);
2621                         goto wolirq_error;
2622                 }
2623         }
2624
2625         /* Request the IRQ lines */
2626         if (priv->lpi_irq > 0) {
2627                 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2628                                   dev->name, dev);
2629                 if (unlikely(ret < 0)) {
2630                         netdev_err(priv->dev,
2631                                    "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2632                                    __func__, priv->lpi_irq, ret);
2633                         goto lpiirq_error;
2634                 }
2635         }
2636
2637         stmmac_enable_all_queues(priv);
2638         stmmac_start_all_queues(priv);
2639
2640         return 0;
2641
2642 lpiirq_error:
2643         if (priv->wol_irq != dev->irq)
2644                 free_irq(priv->wol_irq, dev);
2645 wolirq_error:
2646         free_irq(dev->irq, dev);
2647 irq_error:
2648         phylink_stop(priv->phylink);
2649
2650         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2651                 del_timer_sync(&priv->tx_queue[chan].txtimer);
2652
2653         stmmac_hw_teardown(dev);
2654 init_error:
2655         free_dma_desc_resources(priv);
2656 dma_desc_error:
2657         phylink_disconnect_phy(priv->phylink);
2658         return ret;
2659 }
2660
2661 /**
2662  *  stmmac_release - close entry point of the driver
2663  *  @dev : device pointer.
2664  *  Description:
2665  *  This is the stop entry point of the driver.
2666  */
2667 static int stmmac_release(struct net_device *dev)
2668 {
2669         struct stmmac_priv *priv = netdev_priv(dev);
2670         u32 chan;
2671
2672         if (priv->eee_enabled)
2673                 del_timer_sync(&priv->eee_ctrl_timer);
2674
2675         /* Stop and disconnect the PHY */
2676         phylink_stop(priv->phylink);
2677         phylink_disconnect_phy(priv->phylink);
2678
2679         stmmac_stop_all_queues(priv);
2680
2681         stmmac_disable_all_queues(priv);
2682
2683         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2684                 del_timer_sync(&priv->tx_queue[chan].txtimer);
2685
2686         /* Free the IRQ lines */
2687         free_irq(dev->irq, dev);
2688         if (priv->wol_irq != dev->irq)
2689                 free_irq(priv->wol_irq, dev);
2690         if (priv->lpi_irq > 0)
2691                 free_irq(priv->lpi_irq, dev);
2692
2693         /* Stop TX/RX DMA and clear the descriptors */
2694         stmmac_stop_all_dma(priv);
2695
2696         /* Release and free the Rx/Tx resources */
2697         free_dma_desc_resources(priv);
2698
2699         /* Disable the MAC Rx/Tx */
2700         stmmac_mac_set(priv, priv->ioaddr, false);
2701
2702         netif_carrier_off(dev);
2703
2704         stmmac_release_ptp(priv);
2705
2706         return 0;
2707 }
2708
2709 /**
2710  *  stmmac_tso_allocator - close entry point of the driver
2711  *  @priv: driver private structure
2712  *  @des: buffer start address
2713  *  @total_len: total length to fill in descriptors
2714  *  @last_segmant: condition for the last descriptor
2715  *  @queue: TX queue index
2716  *  Description:
2717  *  This function fills descriptor and request new descriptors according to
2718  *  buffer length to fill
2719  */
2720 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
2721                                  int total_len, bool last_segment, u32 queue)
2722 {
2723         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2724         struct dma_desc *desc;
2725         u32 buff_size;
2726         int tmp_len;
2727
2728         tmp_len = total_len;
2729
2730         while (tmp_len > 0) {
2731                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2732                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2733                 desc = tx_q->dma_tx + tx_q->cur_tx;
2734
2735                 desc->des0 = cpu_to_le32(des + (total_len - tmp_len));
2736                 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2737                             TSO_MAX_BUFF_SIZE : tmp_len;
2738
2739                 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2740                                 0, 1,
2741                                 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2742                                 0, 0);
2743
2744                 tmp_len -= TSO_MAX_BUFF_SIZE;
2745         }
2746 }
2747
2748 /**
2749  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2750  *  @skb : the socket buffer
2751  *  @dev : device pointer
2752  *  Description: this is the transmit function that is called on TSO frames
2753  *  (support available on GMAC4 and newer chips).
2754  *  Diagram below show the ring programming in case of TSO frames:
2755  *
2756  *  First Descriptor
2757  *   --------
2758  *   | DES0 |---> buffer1 = L2/L3/L4 header
2759  *   | DES1 |---> TCP Payload (can continue on next descr...)
2760  *   | DES2 |---> buffer 1 and 2 len
2761  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2762  *   --------
2763  *      |
2764  *     ...
2765  *      |
2766  *   --------
2767  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2768  *   | DES1 | --|
2769  *   | DES2 | --> buffer 1 and 2 len
2770  *   | DES3 |
2771  *   --------
2772  *
2773  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2774  */
2775 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2776 {
2777         struct dma_desc *desc, *first, *mss_desc = NULL;
2778         struct stmmac_priv *priv = netdev_priv(dev);
2779         int nfrags = skb_shinfo(skb)->nr_frags;
2780         u32 queue = skb_get_queue_mapping(skb);
2781         unsigned int first_entry, des;
2782         struct stmmac_tx_queue *tx_q;
2783         int tmp_pay_len = 0;
2784         u32 pay_len, mss;
2785         u8 proto_hdr_len;
2786         int i;
2787
2788         tx_q = &priv->tx_queue[queue];
2789
2790         /* Compute header lengths */
2791         proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2792
2793         /* Desc availability based on threshold should be enough safe */
2794         if (unlikely(stmmac_tx_avail(priv, queue) <
2795                 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2796                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2797                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2798                                                                 queue));
2799                         /* This is a hard error, log it. */
2800                         netdev_err(priv->dev,
2801                                    "%s: Tx Ring full when queue awake\n",
2802                                    __func__);
2803                 }
2804                 return NETDEV_TX_BUSY;
2805         }
2806
2807         pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2808
2809         mss = skb_shinfo(skb)->gso_size;
2810
2811         /* set new MSS value if needed */
2812         if (mss != tx_q->mss) {
2813                 mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2814                 stmmac_set_mss(priv, mss_desc, mss);
2815                 tx_q->mss = mss;
2816                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2817                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2818         }
2819
2820         if (netif_msg_tx_queued(priv)) {
2821                 pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2822                         __func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2823                 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2824                         skb->data_len);
2825         }
2826
2827         first_entry = tx_q->cur_tx;
2828         WARN_ON(tx_q->tx_skbuff[first_entry]);
2829
2830         desc = tx_q->dma_tx + first_entry;
2831         first = desc;
2832
2833         /* first descriptor: fill Headers on Buf1 */
2834         des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2835                              DMA_TO_DEVICE);
2836         if (dma_mapping_error(priv->device, des))
2837                 goto dma_map_err;
2838
2839         tx_q->tx_skbuff_dma[first_entry].buf = des;
2840         tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2841
2842         first->des0 = cpu_to_le32(des);
2843
2844         /* Fill start of payload in buff2 of first descriptor */
2845         if (pay_len)
2846                 first->des1 = cpu_to_le32(des + proto_hdr_len);
2847
2848         /* If needed take extra descriptors to fill the remaining payload */
2849         tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2850
2851         stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
2852
2853         /* Prepare fragments */
2854         for (i = 0; i < nfrags; i++) {
2855                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2856
2857                 des = skb_frag_dma_map(priv->device, frag, 0,
2858                                        skb_frag_size(frag),
2859                                        DMA_TO_DEVICE);
2860                 if (dma_mapping_error(priv->device, des))
2861                         goto dma_map_err;
2862
2863                 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2864                                      (i == nfrags - 1), queue);
2865
2866                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
2867                 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
2868                 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
2869         }
2870
2871         tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
2872
2873         /* Only the last descriptor gets to point to the skb. */
2874         tx_q->tx_skbuff[tx_q->cur_tx] = skb;
2875
2876         /* We've used all descriptors we need for this skb, however,
2877          * advance cur_tx so that it references a fresh descriptor.
2878          * ndo_start_xmit will fill this descriptor the next time it's
2879          * called and stmmac_tx_clean may clean up to this descriptor.
2880          */
2881         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2882
2883         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
2884                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
2885                           __func__);
2886                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
2887         }
2888
2889         dev->stats.tx_bytes += skb->len;
2890         priv->xstats.tx_tso_frames++;
2891         priv->xstats.tx_tso_nfrags += nfrags;
2892
2893         /* Manage tx mitigation */
2894         tx_q->tx_count_frames += nfrags + 1;
2895         if (priv->tx_coal_frames <= tx_q->tx_count_frames) {
2896                 stmmac_set_tx_ic(priv, desc);
2897                 priv->xstats.tx_set_ic_bit++;
2898                 tx_q->tx_count_frames = 0;
2899         } else {
2900                 stmmac_tx_timer_arm(priv, queue);
2901         }
2902
2903         skb_tx_timestamp(skb);
2904
2905         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2906                      priv->hwts_tx_en)) {
2907                 /* declare that device is doing timestamping */
2908                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2909                 stmmac_enable_tx_timestamp(priv, first);
2910         }
2911
2912         /* Complete the first descriptor before granting the DMA */
2913         stmmac_prepare_tso_tx_desc(priv, first, 1,
2914                         proto_hdr_len,
2915                         pay_len,
2916                         1, tx_q->tx_skbuff_dma[first_entry].last_segment,
2917                         tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2918
2919         /* If context desc is used to change MSS */
2920         if (mss_desc) {
2921                 /* Make sure that first descriptor has been completely
2922                  * written, including its own bit. This is because MSS is
2923                  * actually before first descriptor, so we need to make
2924                  * sure that MSS's own bit is the last thing written.
2925                  */
2926                 dma_wmb();
2927                 stmmac_set_tx_owner(priv, mss_desc);
2928         }
2929
2930         /* The own bit must be the latest setting done when prepare the
2931          * descriptor and then barrier is needed to make sure that
2932          * all is coherent before granting the DMA engine.
2933          */
2934         wmb();
2935
2936         if (netif_msg_pktdata(priv)) {
2937                 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
2938                         __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
2939                         tx_q->cur_tx, first, nfrags);
2940
2941                 stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
2942
2943                 pr_info(">>> frame to be transmitted: ");
2944                 print_pkt(skb->data, skb_headlen(skb));
2945         }
2946
2947         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
2948
2949         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
2950         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
2951
2952         return NETDEV_TX_OK;
2953
2954 dma_map_err:
2955         dev_err(priv->device, "Tx dma map failed\n");
2956         dev_kfree_skb(skb);
2957         priv->dev->stats.tx_dropped++;
2958         return NETDEV_TX_OK;
2959 }
2960
2961 /**
2962  *  stmmac_xmit - Tx entry point of the driver
2963  *  @skb : the socket buffer
2964  *  @dev : device pointer
2965  *  Description : this is the tx entry point of the driver.
2966  *  It programs the chain or the ring and supports oversized frames
2967  *  and SG feature.
2968  */
2969 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
2970 {
2971         struct stmmac_priv *priv = netdev_priv(dev);
2972         unsigned int nopaged_len = skb_headlen(skb);
2973         int i, csum_insertion = 0, is_jumbo = 0;
2974         u32 queue = skb_get_queue_mapping(skb);
2975         int nfrags = skb_shinfo(skb)->nr_frags;
2976         int entry;
2977         unsigned int first_entry;
2978         struct dma_desc *desc, *first;
2979         struct stmmac_tx_queue *tx_q;
2980         unsigned int enh_desc;
2981         unsigned int des;
2982
2983         tx_q = &priv->tx_queue[queue];
2984
2985         if (priv->tx_path_in_lpi_mode)
2986                 stmmac_disable_eee_mode(priv);
2987
2988         /* Manage oversized TCP frames for GMAC4 device */
2989         if (skb_is_gso(skb) && priv->tso) {
2990                 if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
2991                         /*
2992                          * There is no way to determine the number of TSO
2993                          * capable Queues. Let's use always the Queue 0
2994                          * because if TSO is supported then at least this
2995                          * one will be capable.
2996                          */
2997                         skb_set_queue_mapping(skb, 0);
2998
2999                         return stmmac_tso_xmit(skb, dev);
3000                 }
3001         }
3002
3003         if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3004                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3005                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3006                                                                 queue));
3007                         /* This is a hard error, log it. */
3008                         netdev_err(priv->dev,
3009                                    "%s: Tx Ring full when queue awake\n",
3010                                    __func__);
3011                 }
3012                 return NETDEV_TX_BUSY;
3013         }
3014
3015         entry = tx_q->cur_tx;
3016         first_entry = entry;
3017         WARN_ON(tx_q->tx_skbuff[first_entry]);
3018
3019         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3020
3021         if (likely(priv->extend_desc))
3022                 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3023         else
3024                 desc = tx_q->dma_tx + entry;
3025
3026         first = desc;
3027
3028         enh_desc = priv->plat->enh_desc;
3029         /* To program the descriptors according to the size of the frame */
3030         if (enh_desc)
3031                 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3032
3033         if (unlikely(is_jumbo)) {
3034                 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3035                 if (unlikely(entry < 0) && (entry != -EINVAL))
3036                         goto dma_map_err;
3037         }
3038
3039         for (i = 0; i < nfrags; i++) {
3040                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3041                 int len = skb_frag_size(frag);
3042                 bool last_segment = (i == (nfrags - 1));
3043
3044                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3045                 WARN_ON(tx_q->tx_skbuff[entry]);
3046
3047                 if (likely(priv->extend_desc))
3048                         desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3049                 else
3050                         desc = tx_q->dma_tx + entry;
3051
3052                 des = skb_frag_dma_map(priv->device, frag, 0, len,
3053                                        DMA_TO_DEVICE);
3054                 if (dma_mapping_error(priv->device, des))
3055                         goto dma_map_err; /* should reuse desc w/o issues */
3056
3057                 tx_q->tx_skbuff_dma[entry].buf = des;
3058
3059                 stmmac_set_desc_addr(priv, desc, des);
3060
3061                 tx_q->tx_skbuff_dma[entry].map_as_page = true;
3062                 tx_q->tx_skbuff_dma[entry].len = len;
3063                 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3064
3065                 /* Prepare the descriptor and set the own bit too */
3066                 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3067                                 priv->mode, 1, last_segment, skb->len);
3068         }
3069
3070         /* Only the last descriptor gets to point to the skb. */
3071         tx_q->tx_skbuff[entry] = skb;
3072
3073         /* We've used all descriptors we need for this skb, however,
3074          * advance cur_tx so that it references a fresh descriptor.
3075          * ndo_start_xmit will fill this descriptor the next time it's
3076          * called and stmmac_tx_clean may clean up to this descriptor.
3077          */
3078         entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3079         tx_q->cur_tx = entry;
3080
3081         if (netif_msg_pktdata(priv)) {
3082                 void *tx_head;
3083
3084                 netdev_dbg(priv->dev,
3085                            "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3086                            __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3087                            entry, first, nfrags);
3088
3089                 if (priv->extend_desc)
3090                         tx_head = (void *)tx_q->dma_etx;
3091                 else
3092                         tx_head = (void *)tx_q->dma_tx;
3093
3094                 stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3095
3096                 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3097                 print_pkt(skb->data, skb->len);
3098         }
3099
3100         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3101                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3102                           __func__);
3103                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3104         }
3105
3106         dev->stats.tx_bytes += skb->len;
3107
3108         /* According to the coalesce parameter the IC bit for the latest
3109          * segment is reset and the timer re-started to clean the tx status.
3110          * This approach takes care about the fragments: desc is the first
3111          * element in case of no SG.
3112          */
3113         tx_q->tx_count_frames += nfrags + 1;
3114         if (priv->tx_coal_frames <= tx_q->tx_count_frames) {
3115                 stmmac_set_tx_ic(priv, desc);
3116                 priv->xstats.tx_set_ic_bit++;
3117                 tx_q->tx_count_frames = 0;
3118         } else {
3119                 stmmac_tx_timer_arm(priv, queue);
3120         }
3121
3122         skb_tx_timestamp(skb);
3123
3124         /* Ready to fill the first descriptor and set the OWN bit w/o any
3125          * problems because all the descriptors are actually ready to be
3126          * passed to the DMA engine.
3127          */
3128         if (likely(!is_jumbo)) {
3129                 bool last_segment = (nfrags == 0);
3130
3131                 des = dma_map_single(priv->device, skb->data,
3132                                      nopaged_len, DMA_TO_DEVICE);
3133                 if (dma_mapping_error(priv->device, des))
3134                         goto dma_map_err;
3135
3136                 tx_q->tx_skbuff_dma[first_entry].buf = des;
3137
3138                 stmmac_set_desc_addr(priv, first, des);
3139
3140                 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3141                 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3142
3143                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3144                              priv->hwts_tx_en)) {
3145                         /* declare that device is doing timestamping */
3146                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3147                         stmmac_enable_tx_timestamp(priv, first);
3148                 }
3149
3150                 /* Prepare the first descriptor setting the OWN bit too */
3151                 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3152                                 csum_insertion, priv->mode, 1, last_segment,
3153                                 skb->len);
3154         } else {
3155                 stmmac_set_tx_owner(priv, first);
3156         }
3157
3158         /* The own bit must be the latest setting done when prepare the
3159          * descriptor and then barrier is needed to make sure that
3160          * all is coherent before granting the DMA engine.
3161          */
3162         wmb();
3163
3164         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3165
3166         stmmac_enable_dma_transmission(priv, priv->ioaddr);
3167
3168         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3169         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3170
3171         return NETDEV_TX_OK;
3172
3173 dma_map_err:
3174         netdev_err(priv->dev, "Tx DMA map failed\n");
3175         dev_kfree_skb(skb);
3176         priv->dev->stats.tx_dropped++;
3177         return NETDEV_TX_OK;
3178 }
3179
3180 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3181 {
3182         struct vlan_ethhdr *veth;
3183         __be16 vlan_proto;
3184         u16 vlanid;
3185
3186         veth = (struct vlan_ethhdr *)skb->data;
3187         vlan_proto = veth->h_vlan_proto;
3188
3189         if ((vlan_proto == htons(ETH_P_8021Q) &&
3190              dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3191             (vlan_proto == htons(ETH_P_8021AD) &&
3192              dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3193                 /* pop the vlan tag */
3194                 vlanid = ntohs(veth->h_vlan_TCI);
3195                 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3196                 skb_pull(skb, VLAN_HLEN);
3197                 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3198         }
3199 }
3200
3201
3202 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3203 {
3204         if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3205                 return 0;
3206
3207         return 1;
3208 }
3209
3210 /**
3211  * stmmac_rx_refill - refill used skb preallocated buffers
3212  * @priv: driver private structure
3213  * @queue: RX queue index
3214  * Description : this is to reallocate the skb for the reception process
3215  * that is based on zero-copy.
3216  */
3217 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3218 {
3219         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3220         int dirty = stmmac_rx_dirty(priv, queue);
3221         unsigned int entry = rx_q->dirty_rx;
3222
3223         int bfsize = priv->dma_buf_sz;
3224
3225         while (dirty-- > 0) {
3226                 struct dma_desc *p;
3227
3228                 if (priv->extend_desc)
3229                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
3230                 else
3231                         p = rx_q->dma_rx + entry;
3232
3233                 if (likely(!rx_q->rx_skbuff[entry])) {
3234                         struct sk_buff *skb;
3235
3236                         skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
3237                         if (unlikely(!skb)) {
3238                                 /* so for a while no zero-copy! */
3239                                 rx_q->rx_zeroc_thresh = STMMAC_RX_THRESH;
3240                                 if (unlikely(net_ratelimit()))
3241                                         dev_err(priv->device,
3242                                                 "fail to alloc skb entry %d\n",
3243                                                 entry);
3244                                 break;
3245                         }
3246
3247                         rx_q->rx_skbuff[entry] = skb;
3248                         rx_q->rx_skbuff_dma[entry] =
3249                             dma_map_single(priv->device, skb->data, bfsize,
3250                                            DMA_FROM_DEVICE);
3251                         if (dma_mapping_error(priv->device,
3252                                               rx_q->rx_skbuff_dma[entry])) {
3253                                 netdev_err(priv->dev, "Rx DMA map failed\n");
3254                                 dev_kfree_skb(skb);
3255                                 break;
3256                         }
3257
3258                         stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[entry]);
3259                         stmmac_refill_desc3(priv, rx_q, p);
3260
3261                         if (rx_q->rx_zeroc_thresh > 0)
3262                                 rx_q->rx_zeroc_thresh--;
3263
3264                         netif_dbg(priv, rx_status, priv->dev,
3265                                   "refill entry #%d\n", entry);
3266                 }
3267                 dma_wmb();
3268
3269                 stmmac_set_rx_owner(priv, p, priv->use_riwt);
3270
3271                 dma_wmb();
3272
3273                 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3274         }
3275         rx_q->dirty_rx = entry;
3276         stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3277 }
3278
3279 /**
3280  * stmmac_rx - manage the receive process
3281  * @priv: driver private structure
3282  * @limit: napi bugget
3283  * @queue: RX queue index.
3284  * Description :  this the function called by the napi poll method.
3285  * It gets all the frames inside the ring.
3286  */
3287 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3288 {
3289         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3290         struct stmmac_channel *ch = &priv->channel[queue];
3291         unsigned int next_entry = rx_q->cur_rx;
3292         int coe = priv->hw->rx_csum;
3293         unsigned int count = 0;
3294         bool xmac;
3295
3296         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3297
3298         if (netif_msg_rx_status(priv)) {
3299                 void *rx_head;
3300
3301                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3302                 if (priv->extend_desc)
3303                         rx_head = (void *)rx_q->dma_erx;
3304                 else
3305                         rx_head = (void *)rx_q->dma_rx;
3306
3307                 stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3308         }
3309         while (count < limit) {
3310                 int entry, status;
3311                 struct dma_desc *p;
3312                 struct dma_desc *np;
3313
3314                 entry = next_entry;
3315
3316                 if (priv->extend_desc)
3317                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
3318                 else
3319                         p = rx_q->dma_rx + entry;
3320
3321                 /* read the status of the incoming frame */
3322                 status = stmmac_rx_status(priv, &priv->dev->stats,
3323                                 &priv->xstats, p);
3324                 /* check if managed by the DMA otherwise go ahead */
3325                 if (unlikely(status & dma_own))
3326                         break;
3327
3328                 count++;
3329
3330                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3331                 next_entry = rx_q->cur_rx;
3332
3333                 if (priv->extend_desc)
3334                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3335                 else
3336                         np = rx_q->dma_rx + next_entry;
3337
3338                 prefetch(np);
3339
3340                 if (priv->extend_desc)
3341                         stmmac_rx_extended_status(priv, &priv->dev->stats,
3342                                         &priv->xstats, rx_q->dma_erx + entry);
3343                 if (unlikely(status == discard_frame)) {
3344                         priv->dev->stats.rx_errors++;
3345                         if (priv->hwts_rx_en && !priv->extend_desc) {
3346                                 /* DESC2 & DESC3 will be overwritten by device
3347                                  * with timestamp value, hence reinitialize
3348                                  * them in stmmac_rx_refill() function so that
3349                                  * device can reuse it.
3350                                  */
3351                                 dev_kfree_skb_any(rx_q->rx_skbuff[entry]);
3352                                 rx_q->rx_skbuff[entry] = NULL;
3353                                 dma_unmap_single(priv->device,
3354                                                  rx_q->rx_skbuff_dma[entry],
3355                                                  priv->dma_buf_sz,
3356                                                  DMA_FROM_DEVICE);
3357                         }
3358                 } else {
3359                         struct sk_buff *skb;
3360                         int frame_len;
3361                         unsigned int des;
3362
3363                         stmmac_get_desc_addr(priv, p, &des);
3364                         frame_len = stmmac_get_rx_frame_len(priv, p, coe);
3365
3366                         /*  If frame length is greater than skb buffer size
3367                          *  (preallocated during init) then the packet is
3368                          *  ignored
3369                          */
3370                         if (frame_len > priv->dma_buf_sz) {
3371                                 if (net_ratelimit())
3372                                         netdev_err(priv->dev,
3373                                                    "len %d larger than size (%d)\n",
3374                                                    frame_len, priv->dma_buf_sz);
3375                                 priv->dev->stats.rx_length_errors++;
3376                                 continue;
3377                         }
3378
3379                         /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3380                          * Type frames (LLC/LLC-SNAP)
3381                          *
3382                          * llc_snap is never checked in GMAC >= 4, so this ACS
3383                          * feature is always disabled and packets need to be
3384                          * stripped manually.
3385                          */
3386                         if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3387                             unlikely(status != llc_snap))
3388                                 frame_len -= ETH_FCS_LEN;
3389
3390                         if (netif_msg_rx_status(priv)) {
3391                                 netdev_dbg(priv->dev, "\tdesc: %p [entry %d] buff=0x%x\n",
3392                                            p, entry, des);
3393                                 netdev_dbg(priv->dev, "frame size %d, COE: %d\n",
3394                                            frame_len, status);
3395                         }
3396
3397                         /* The zero-copy is always used for all the sizes
3398                          * in case of GMAC4 because it needs
3399                          * to refill the used descriptors, always.
3400                          */
3401                         if (unlikely(!xmac &&
3402                                      ((frame_len < priv->rx_copybreak) ||
3403                                      stmmac_rx_threshold_count(rx_q)))) {
3404                                 skb = netdev_alloc_skb_ip_align(priv->dev,
3405                                                                 frame_len);
3406                                 if (unlikely(!skb)) {
3407                                         if (net_ratelimit())
3408                                                 dev_warn(priv->device,
3409                                                          "packet dropped\n");
3410                                         priv->dev->stats.rx_dropped++;
3411                                         continue;
3412                                 }
3413
3414                                 dma_sync_single_for_cpu(priv->device,
3415                                                         rx_q->rx_skbuff_dma
3416                                                         [entry], frame_len,
3417                                                         DMA_FROM_DEVICE);
3418                                 skb_copy_to_linear_data(skb,
3419                                                         rx_q->
3420                                                         rx_skbuff[entry]->data,
3421                                                         frame_len);
3422
3423                                 skb_put(skb, frame_len);
3424                                 dma_sync_single_for_device(priv->device,
3425                                                            rx_q->rx_skbuff_dma
3426                                                            [entry], frame_len,
3427                                                            DMA_FROM_DEVICE);
3428                         } else {
3429                                 skb = rx_q->rx_skbuff[entry];
3430                                 if (unlikely(!skb)) {
3431                                         if (net_ratelimit())
3432                                                 netdev_err(priv->dev,
3433                                                            "%s: Inconsistent Rx chain\n",
3434                                                            priv->dev->name);
3435                                         priv->dev->stats.rx_dropped++;
3436                                         continue;
3437                                 }
3438                                 prefetch(skb->data - NET_IP_ALIGN);
3439                                 rx_q->rx_skbuff[entry] = NULL;
3440                                 rx_q->rx_zeroc_thresh++;
3441
3442                                 skb_put(skb, frame_len);
3443                                 dma_unmap_single(priv->device,
3444                                                  rx_q->rx_skbuff_dma[entry],
3445                                                  priv->dma_buf_sz,
3446                                                  DMA_FROM_DEVICE);
3447                         }
3448
3449                         if (netif_msg_pktdata(priv)) {
3450                                 netdev_dbg(priv->dev, "frame received (%dbytes)",
3451                                            frame_len);
3452                                 print_pkt(skb->data, frame_len);
3453                         }
3454
3455                         stmmac_get_rx_hwtstamp(priv, p, np, skb);
3456
3457                         stmmac_rx_vlan(priv->dev, skb);
3458
3459                         skb->protocol = eth_type_trans(skb, priv->dev);
3460
3461                         if (unlikely(!coe))
3462                                 skb_checksum_none_assert(skb);
3463                         else
3464                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3465
3466                         napi_gro_receive(&ch->rx_napi, skb);
3467
3468                         priv->dev->stats.rx_packets++;
3469                         priv->dev->stats.rx_bytes += frame_len;
3470                 }
3471         }
3472
3473         stmmac_rx_refill(priv, queue);
3474
3475         priv->xstats.rx_pkt_n += count;
3476
3477         return count;
3478 }
3479
3480 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3481 {
3482         struct stmmac_channel *ch =
3483                 container_of(napi, struct stmmac_channel, rx_napi);
3484         struct stmmac_priv *priv = ch->priv_data;
3485         u32 chan = ch->index;
3486         int work_done;
3487
3488         priv->xstats.napi_poll++;
3489
3490         work_done = stmmac_rx(priv, budget, chan);
3491         if (work_done < budget && napi_complete_done(napi, work_done))
3492                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3493         return work_done;
3494 }
3495
3496 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3497 {
3498         struct stmmac_channel *ch =
3499                 container_of(napi, struct stmmac_channel, tx_napi);
3500         struct stmmac_priv *priv = ch->priv_data;
3501         struct stmmac_tx_queue *tx_q;
3502         u32 chan = ch->index;
3503         int work_done;
3504
3505         priv->xstats.napi_poll++;
3506
3507         work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3508         work_done = min(work_done, budget);
3509
3510         if (work_done < budget && napi_complete_done(napi, work_done))
3511                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3512
3513         /* Force transmission restart */
3514         tx_q = &priv->tx_queue[chan];
3515         if (tx_q->cur_tx != tx_q->dirty_tx) {
3516                 stmmac_enable_dma_transmission(priv, priv->ioaddr);
3517                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr,
3518                                        chan);
3519         }
3520
3521         return work_done;
3522 }
3523
3524 /**
3525  *  stmmac_tx_timeout
3526  *  @dev : Pointer to net device structure
3527  *  Description: this function is called when a packet transmission fails to
3528  *   complete within a reasonable time. The driver will mark the error in the
3529  *   netdev structure and arrange for the device to be reset to a sane state
3530  *   in order to transmit a new packet.
3531  */
3532 static void stmmac_tx_timeout(struct net_device *dev)
3533 {
3534         struct stmmac_priv *priv = netdev_priv(dev);
3535
3536         stmmac_global_err(priv);
3537 }
3538
3539 /**
3540  *  stmmac_set_rx_mode - entry point for multicast addressing
3541  *  @dev : pointer to the device structure
3542  *  Description:
3543  *  This function is a driver entry point which gets called by the kernel
3544  *  whenever multicast addresses must be enabled/disabled.
3545  *  Return value:
3546  *  void.
3547  */
3548 static void stmmac_set_rx_mode(struct net_device *dev)
3549 {
3550         struct stmmac_priv *priv = netdev_priv(dev);
3551
3552         stmmac_set_filter(priv, priv->hw, dev);
3553 }
3554
3555 /**
3556  *  stmmac_change_mtu - entry point to change MTU size for the device.
3557  *  @dev : device pointer.
3558  *  @new_mtu : the new MTU size for the device.
3559  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3560  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3561  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3562  *  Return value:
3563  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3564  *  file on failure.
3565  */
3566 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3567 {
3568         struct stmmac_priv *priv = netdev_priv(dev);
3569
3570         if (netif_running(dev)) {
3571                 netdev_err(priv->dev, "must be stopped to change its MTU\n");
3572                 return -EBUSY;
3573         }
3574
3575         dev->mtu = new_mtu;
3576
3577         netdev_update_features(dev);
3578
3579         return 0;
3580 }
3581
3582 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3583                                              netdev_features_t features)
3584 {
3585         struct stmmac_priv *priv = netdev_priv(dev);
3586
3587         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3588                 features &= ~NETIF_F_RXCSUM;
3589
3590         if (!priv->plat->tx_coe)
3591                 features &= ~NETIF_F_CSUM_MASK;
3592
3593         /* Some GMAC devices have a bugged Jumbo frame support that
3594          * needs to have the Tx COE disabled for oversized frames
3595          * (due to limited buffer sizes). In this case we disable
3596          * the TX csum insertion in the TDES and not use SF.
3597          */
3598         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3599                 features &= ~NETIF_F_CSUM_MASK;
3600
3601         /* Disable tso if asked by ethtool */
3602         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3603                 if (features & NETIF_F_TSO)
3604                         priv->tso = true;
3605                 else
3606                         priv->tso = false;
3607         }
3608
3609         return features;
3610 }
3611
3612 static int stmmac_set_features(struct net_device *netdev,
3613                                netdev_features_t features)
3614 {
3615         struct stmmac_priv *priv = netdev_priv(netdev);
3616
3617         /* Keep the COE Type in case of csum is supporting */
3618         if (features & NETIF_F_RXCSUM)
3619                 priv->hw->rx_csum = priv->plat->rx_coe;
3620         else
3621                 priv->hw->rx_csum = 0;
3622         /* No check needed because rx_coe has been set before and it will be
3623          * fixed in case of issue.
3624          */
3625         stmmac_rx_ipc(priv, priv->hw);
3626
3627         return 0;
3628 }
3629
3630 /**
3631  *  stmmac_interrupt - main ISR
3632  *  @irq: interrupt number.
3633  *  @dev_id: to pass the net device pointer.
3634  *  Description: this is the main driver interrupt service routine.
3635  *  It can call:
3636  *  o DMA service routine (to manage incoming frame reception and transmission
3637  *    status)
3638  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3639  *    interrupts.
3640  */
3641 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3642 {
3643         struct net_device *dev = (struct net_device *)dev_id;
3644         struct stmmac_priv *priv = netdev_priv(dev);
3645         u32 rx_cnt = priv->plat->rx_queues_to_use;
3646         u32 tx_cnt = priv->plat->tx_queues_to_use;
3647         u32 queues_count;
3648         u32 queue;
3649         bool xmac;
3650
3651         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3652         queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3653
3654         if (priv->irq_wake)
3655                 pm_wakeup_event(priv->device, 0);
3656
3657         if (unlikely(!dev)) {
3658                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3659                 return IRQ_NONE;
3660         }
3661
3662         /* Check if adapter is up */
3663         if (test_bit(STMMAC_DOWN, &priv->state))
3664                 return IRQ_HANDLED;
3665         /* Check if a fatal error happened */
3666         if (stmmac_safety_feat_interrupt(priv))
3667                 return IRQ_HANDLED;
3668
3669         /* To handle GMAC own interrupts */
3670         if ((priv->plat->has_gmac) || xmac) {
3671                 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3672                 int mtl_status;
3673
3674                 if (unlikely(status)) {
3675                         /* For LPI we need to save the tx status */
3676                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3677                                 priv->tx_path_in_lpi_mode = true;
3678                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3679                                 priv->tx_path_in_lpi_mode = false;
3680                 }
3681
3682                 for (queue = 0; queue < queues_count; queue++) {
3683                         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3684
3685                         mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3686                                                                 queue);
3687                         if (mtl_status != -EINVAL)
3688                                 status |= mtl_status;
3689
3690                         if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3691                                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3692                                                        rx_q->rx_tail_addr,
3693                                                        queue);
3694                 }
3695
3696                 /* PCS link status */
3697                 if (priv->hw->pcs) {
3698                         if (priv->xstats.pcs_link)
3699                                 netif_carrier_on(dev);
3700                         else
3701                                 netif_carrier_off(dev);
3702                 }
3703         }
3704
3705         /* To handle DMA interrupts */
3706         stmmac_dma_interrupt(priv);
3707
3708         return IRQ_HANDLED;
3709 }
3710
3711 #ifdef CONFIG_NET_POLL_CONTROLLER
3712 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3713  * to allow network I/O with interrupts disabled.
3714  */
3715 static void stmmac_poll_controller(struct net_device *dev)
3716 {
3717         disable_irq(dev->irq);
3718         stmmac_interrupt(dev->irq, dev);
3719         enable_irq(dev->irq);
3720 }
3721 #endif
3722
3723 /**
3724  *  stmmac_ioctl - Entry point for the Ioctl
3725  *  @dev: Device pointer.
3726  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3727  *  a proprietary structure used to pass information to the driver.
3728  *  @cmd: IOCTL command
3729  *  Description:
3730  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3731  */
3732 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3733 {
3734         struct stmmac_priv *priv = netdev_priv (dev);
3735         int ret = -EOPNOTSUPP;
3736
3737         if (!netif_running(dev))
3738                 return -EINVAL;
3739
3740         switch (cmd) {
3741         case SIOCGMIIPHY:
3742         case SIOCGMIIREG:
3743         case SIOCSMIIREG:
3744                 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
3745                 break;
3746         case SIOCSHWTSTAMP:
3747                 ret = stmmac_hwtstamp_set(dev, rq);
3748                 break;
3749         case SIOCGHWTSTAMP:
3750                 ret = stmmac_hwtstamp_get(dev, rq);
3751                 break;
3752         default:
3753                 break;
3754         }
3755
3756         return ret;
3757 }
3758
3759 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3760                                     void *cb_priv)
3761 {
3762         struct stmmac_priv *priv = cb_priv;
3763         int ret = -EOPNOTSUPP;
3764
3765         stmmac_disable_all_queues(priv);
3766
3767         switch (type) {
3768         case TC_SETUP_CLSU32:
3769                 if (tc_cls_can_offload_and_chain0(priv->dev, type_data))
3770                         ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
3771                 break;
3772         default:
3773                 break;
3774         }
3775
3776         stmmac_enable_all_queues(priv);
3777         return ret;
3778 }
3779
3780 static int stmmac_setup_tc_block(struct stmmac_priv *priv,
3781                                  struct tc_block_offload *f)
3782 {
3783         if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
3784                 return -EOPNOTSUPP;
3785
3786         switch (f->command) {
3787         case TC_BLOCK_BIND:
3788                 return tcf_block_cb_register(f->block, stmmac_setup_tc_block_cb,
3789                                 priv, priv, f->extack);
3790         case TC_BLOCK_UNBIND:
3791                 tcf_block_cb_unregister(f->block, stmmac_setup_tc_block_cb, priv);
3792                 return 0;
3793         default:
3794                 return -EOPNOTSUPP;
3795         }
3796 }
3797
3798 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
3799                            void *type_data)
3800 {
3801         struct stmmac_priv *priv = netdev_priv(ndev);
3802
3803         switch (type) {
3804         case TC_SETUP_BLOCK:
3805                 return stmmac_setup_tc_block(priv, type_data);
3806         case TC_SETUP_QDISC_CBS:
3807                 return stmmac_tc_setup_cbs(priv, priv, type_data);
3808         default:
3809                 return -EOPNOTSUPP;
3810         }
3811 }
3812
3813 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
3814 {
3815         struct stmmac_priv *priv = netdev_priv(ndev);
3816         int ret = 0;
3817
3818         ret = eth_mac_addr(ndev, addr);
3819         if (ret)
3820                 return ret;
3821
3822         stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
3823
3824         return ret;
3825 }
3826
3827 #ifdef CONFIG_DEBUG_FS
3828 static struct dentry *stmmac_fs_dir;
3829
3830 static void sysfs_display_ring(void *head, int size, int extend_desc,
3831                                struct seq_file *seq)
3832 {
3833         int i;
3834         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
3835         struct dma_desc *p = (struct dma_desc *)head;
3836
3837         for (i = 0; i < size; i++) {
3838                 if (extend_desc) {
3839                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3840                                    i, (unsigned int)virt_to_phys(ep),
3841                                    le32_to_cpu(ep->basic.des0),
3842                                    le32_to_cpu(ep->basic.des1),
3843                                    le32_to_cpu(ep->basic.des2),
3844                                    le32_to_cpu(ep->basic.des3));
3845                         ep++;
3846                 } else {
3847                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3848                                    i, (unsigned int)virt_to_phys(p),
3849                                    le32_to_cpu(p->des0), le32_to_cpu(p->des1),
3850                                    le32_to_cpu(p->des2), le32_to_cpu(p->des3));
3851                         p++;
3852                 }
3853                 seq_printf(seq, "\n");
3854         }
3855 }
3856
3857 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
3858 {
3859         struct net_device *dev = seq->private;
3860         struct stmmac_priv *priv = netdev_priv(dev);
3861         u32 rx_count = priv->plat->rx_queues_to_use;
3862         u32 tx_count = priv->plat->tx_queues_to_use;
3863         u32 queue;
3864
3865         if ((dev->flags & IFF_UP) == 0)
3866                 return 0;
3867
3868         for (queue = 0; queue < rx_count; queue++) {
3869                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3870
3871                 seq_printf(seq, "RX Queue %d:\n", queue);
3872
3873                 if (priv->extend_desc) {
3874                         seq_printf(seq, "Extended descriptor ring:\n");
3875                         sysfs_display_ring((void *)rx_q->dma_erx,
3876                                            DMA_RX_SIZE, 1, seq);
3877                 } else {
3878                         seq_printf(seq, "Descriptor ring:\n");
3879                         sysfs_display_ring((void *)rx_q->dma_rx,
3880                                            DMA_RX_SIZE, 0, seq);
3881                 }
3882         }
3883
3884         for (queue = 0; queue < tx_count; queue++) {
3885                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3886
3887                 seq_printf(seq, "TX Queue %d:\n", queue);
3888
3889                 if (priv->extend_desc) {
3890                         seq_printf(seq, "Extended descriptor ring:\n");
3891                         sysfs_display_ring((void *)tx_q->dma_etx,
3892                                            DMA_TX_SIZE, 1, seq);
3893                 } else {
3894                         seq_printf(seq, "Descriptor ring:\n");
3895                         sysfs_display_ring((void *)tx_q->dma_tx,
3896                                            DMA_TX_SIZE, 0, seq);
3897                 }
3898         }
3899
3900         return 0;
3901 }
3902 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
3903
3904 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
3905 {
3906         struct net_device *dev = seq->private;
3907         struct stmmac_priv *priv = netdev_priv(dev);
3908
3909         if (!priv->hw_cap_support) {
3910                 seq_printf(seq, "DMA HW features not supported\n");
3911                 return 0;
3912         }
3913
3914         seq_printf(seq, "==============================\n");
3915         seq_printf(seq, "\tDMA HW features\n");
3916         seq_printf(seq, "==============================\n");
3917
3918         seq_printf(seq, "\t10/100 Mbps: %s\n",
3919                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
3920         seq_printf(seq, "\t1000 Mbps: %s\n",
3921                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
3922         seq_printf(seq, "\tHalf duplex: %s\n",
3923                    (priv->dma_cap.half_duplex) ? "Y" : "N");
3924         seq_printf(seq, "\tHash Filter: %s\n",
3925                    (priv->dma_cap.hash_filter) ? "Y" : "N");
3926         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
3927                    (priv->dma_cap.multi_addr) ? "Y" : "N");
3928         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
3929                    (priv->dma_cap.pcs) ? "Y" : "N");
3930         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
3931                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
3932         seq_printf(seq, "\tPMT Remote wake up: %s\n",
3933                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
3934         seq_printf(seq, "\tPMT Magic Frame: %s\n",
3935                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
3936         seq_printf(seq, "\tRMON module: %s\n",
3937                    (priv->dma_cap.rmon) ? "Y" : "N");
3938         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
3939                    (priv->dma_cap.time_stamp) ? "Y" : "N");
3940         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
3941                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
3942         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
3943                    (priv->dma_cap.eee) ? "Y" : "N");
3944         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
3945         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
3946                    (priv->dma_cap.tx_coe) ? "Y" : "N");
3947         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3948                 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
3949                            (priv->dma_cap.rx_coe) ? "Y" : "N");
3950         } else {
3951                 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
3952                            (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
3953                 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
3954                            (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
3955         }
3956         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
3957                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
3958         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
3959                    priv->dma_cap.number_rx_channel);
3960         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
3961                    priv->dma_cap.number_tx_channel);
3962         seq_printf(seq, "\tEnhanced descriptors: %s\n",
3963                    (priv->dma_cap.enh_desc) ? "Y" : "N");
3964
3965         return 0;
3966 }
3967 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
3968
3969 static int stmmac_init_fs(struct net_device *dev)
3970 {
3971         struct stmmac_priv *priv = netdev_priv(dev);
3972
3973         /* Create per netdev entries */
3974         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
3975
3976         if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
3977                 netdev_err(priv->dev, "ERROR failed to create debugfs directory\n");
3978
3979                 return -ENOMEM;
3980         }
3981
3982         /* Entry to report DMA RX/TX rings */
3983         priv->dbgfs_rings_status =
3984                 debugfs_create_file("descriptors_status", 0444,
3985                                     priv->dbgfs_dir, dev,
3986                                     &stmmac_rings_status_fops);
3987
3988         if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
3989                 netdev_err(priv->dev, "ERROR creating stmmac ring debugfs file\n");
3990                 debugfs_remove_recursive(priv->dbgfs_dir);
3991
3992                 return -ENOMEM;
3993         }
3994
3995         /* Entry to report the DMA HW features */
3996         priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", 0444,
3997                                                   priv->dbgfs_dir,
3998                                                   dev, &stmmac_dma_cap_fops);
3999
4000         if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
4001                 netdev_err(priv->dev, "ERROR creating stmmac MMC debugfs file\n");
4002                 debugfs_remove_recursive(priv->dbgfs_dir);
4003
4004                 return -ENOMEM;
4005         }
4006
4007         return 0;
4008 }
4009
4010 static void stmmac_exit_fs(struct net_device *dev)
4011 {
4012         struct stmmac_priv *priv = netdev_priv(dev);
4013
4014         debugfs_remove_recursive(priv->dbgfs_dir);
4015 }
4016 #endif /* CONFIG_DEBUG_FS */
4017
4018 static const struct net_device_ops stmmac_netdev_ops = {
4019         .ndo_open = stmmac_open,
4020         .ndo_start_xmit = stmmac_xmit,
4021         .ndo_stop = stmmac_release,
4022         .ndo_change_mtu = stmmac_change_mtu,
4023         .ndo_fix_features = stmmac_fix_features,
4024         .ndo_set_features = stmmac_set_features,
4025         .ndo_set_rx_mode = stmmac_set_rx_mode,
4026         .ndo_tx_timeout = stmmac_tx_timeout,
4027         .ndo_do_ioctl = stmmac_ioctl,
4028         .ndo_setup_tc = stmmac_setup_tc,
4029 #ifdef CONFIG_NET_POLL_CONTROLLER
4030         .ndo_poll_controller = stmmac_poll_controller,
4031 #endif
4032         .ndo_set_mac_address = stmmac_set_mac_address,
4033 };
4034
4035 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4036 {
4037         if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4038                 return;
4039         if (test_bit(STMMAC_DOWN, &priv->state))
4040                 return;
4041
4042         netdev_err(priv->dev, "Reset adapter.\n");
4043
4044         rtnl_lock();
4045         netif_trans_update(priv->dev);
4046         while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4047                 usleep_range(1000, 2000);
4048
4049         set_bit(STMMAC_DOWN, &priv->state);
4050         dev_close(priv->dev);
4051         dev_open(priv->dev, NULL);
4052         clear_bit(STMMAC_DOWN, &priv->state);
4053         clear_bit(STMMAC_RESETING, &priv->state);
4054         rtnl_unlock();
4055 }
4056
4057 static void stmmac_service_task(struct work_struct *work)
4058 {
4059         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4060                         service_task);
4061
4062         stmmac_reset_subtask(priv);
4063         clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4064 }
4065
4066 /**
4067  *  stmmac_hw_init - Init the MAC device
4068  *  @priv: driver private structure
4069  *  Description: this function is to configure the MAC device according to
4070  *  some platform parameters or the HW capability register. It prepares the
4071  *  driver to use either ring or chain modes and to setup either enhanced or
4072  *  normal descriptors.
4073  */
4074 static int stmmac_hw_init(struct stmmac_priv *priv)
4075 {
4076         int ret;
4077
4078         /* dwmac-sun8i only work in chain mode */
4079         if (priv->plat->has_sun8i)
4080                 chain_mode = 1;
4081         priv->chain_mode = chain_mode;
4082
4083         /* Initialize HW Interface */
4084         ret = stmmac_hwif_init(priv);
4085         if (ret)
4086                 return ret;
4087
4088         /* Get the HW capability (new GMAC newer than 3.50a) */
4089         priv->hw_cap_support = stmmac_get_hw_features(priv);
4090         if (priv->hw_cap_support) {
4091                 dev_info(priv->device, "DMA HW capability register supported\n");
4092
4093                 /* We can override some gmac/dma configuration fields: e.g.
4094                  * enh_desc, tx_coe (e.g. that are passed through the
4095                  * platform) with the values from the HW capability
4096                  * register (if supported).
4097                  */
4098                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
4099                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4100                 priv->hw->pmt = priv->plat->pmt;
4101
4102                 /* TXCOE doesn't work in thresh DMA mode */
4103                 if (priv->plat->force_thresh_dma_mode)
4104                         priv->plat->tx_coe = 0;
4105                 else
4106                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
4107
4108                 /* In case of GMAC4 rx_coe is from HW cap register. */
4109                 priv->plat->rx_coe = priv->dma_cap.rx_coe;
4110
4111                 if (priv->dma_cap.rx_coe_type2)
4112                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4113                 else if (priv->dma_cap.rx_coe_type1)
4114                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4115
4116         } else {
4117                 dev_info(priv->device, "No HW DMA feature register supported\n");
4118         }
4119
4120         if (priv->plat->rx_coe) {
4121                 priv->hw->rx_csum = priv->plat->rx_coe;
4122                 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4123                 if (priv->synopsys_id < DWMAC_CORE_4_00)
4124                         dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4125         }
4126         if (priv->plat->tx_coe)
4127                 dev_info(priv->device, "TX Checksum insertion supported\n");
4128
4129         if (priv->plat->pmt) {
4130                 dev_info(priv->device, "Wake-Up On Lan supported\n");
4131                 device_set_wakeup_capable(priv->device, 1);
4132         }
4133
4134         if (priv->dma_cap.tsoen)
4135                 dev_info(priv->device, "TSO supported\n");
4136
4137         /* Run HW quirks, if any */
4138         if (priv->hwif_quirks) {
4139                 ret = priv->hwif_quirks(priv);
4140                 if (ret)
4141                         return ret;
4142         }
4143
4144         /* Rx Watchdog is available in the COREs newer than the 3.40.
4145          * In some case, for example on bugged HW this feature
4146          * has to be disable and this can be done by passing the
4147          * riwt_off field from the platform.
4148          */
4149         if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4150             (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4151                 priv->use_riwt = 1;
4152                 dev_info(priv->device,
4153                          "Enable RX Mitigation via HW Watchdog Timer\n");
4154         }
4155
4156         return 0;
4157 }
4158
4159 /**
4160  * stmmac_dvr_probe
4161  * @device: device pointer
4162  * @plat_dat: platform data pointer
4163  * @res: stmmac resource pointer
4164  * Description: this is the main probe function used to
4165  * call the alloc_etherdev, allocate the priv structure.
4166  * Return:
4167  * returns 0 on success, otherwise errno.
4168  */
4169 int stmmac_dvr_probe(struct device *device,
4170                      struct plat_stmmacenet_data *plat_dat,
4171                      struct stmmac_resources *res)
4172 {
4173         struct net_device *ndev = NULL;
4174         struct stmmac_priv *priv;
4175         u32 queue, maxq;
4176         int ret = 0;
4177
4178         ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4179                                        MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4180         if (!ndev)
4181                 return -ENOMEM;
4182
4183         SET_NETDEV_DEV(ndev, device);
4184
4185         priv = netdev_priv(ndev);
4186         priv->device = device;
4187         priv->dev = ndev;
4188
4189         stmmac_set_ethtool_ops(ndev);
4190         priv->pause = pause;
4191         priv->plat = plat_dat;
4192         priv->ioaddr = res->addr;
4193         priv->dev->base_addr = (unsigned long)res->addr;
4194
4195         priv->dev->irq = res->irq;
4196         priv->wol_irq = res->wol_irq;
4197         priv->lpi_irq = res->lpi_irq;
4198
4199         if (!IS_ERR_OR_NULL(res->mac))
4200                 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4201
4202         dev_set_drvdata(device, priv->dev);
4203
4204         /* Verify driver arguments */
4205         stmmac_verify_args();
4206
4207         /* Allocate workqueue */
4208         priv->wq = create_singlethread_workqueue("stmmac_wq");
4209         if (!priv->wq) {
4210                 dev_err(priv->device, "failed to create workqueue\n");
4211                 return -ENOMEM;
4212         }
4213
4214         INIT_WORK(&priv->service_task, stmmac_service_task);
4215
4216         /* Override with kernel parameters if supplied XXX CRS XXX
4217          * this needs to have multiple instances
4218          */
4219         if ((phyaddr >= 0) && (phyaddr <= 31))
4220                 priv->plat->phy_addr = phyaddr;
4221
4222         if (priv->plat->stmmac_rst) {
4223                 ret = reset_control_assert(priv->plat->stmmac_rst);
4224                 reset_control_deassert(priv->plat->stmmac_rst);
4225                 /* Some reset controllers have only reset callback instead of
4226                  * assert + deassert callbacks pair.
4227                  */
4228                 if (ret == -ENOTSUPP)
4229                         reset_control_reset(priv->plat->stmmac_rst);
4230         }
4231
4232         /* Init MAC and get the capabilities */
4233         ret = stmmac_hw_init(priv);
4234         if (ret)
4235                 goto error_hw_init;
4236
4237         stmmac_check_ether_addr(priv);
4238
4239         /* Configure real RX and TX queues */
4240         netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4241         netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4242
4243         ndev->netdev_ops = &stmmac_netdev_ops;
4244
4245         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4246                             NETIF_F_RXCSUM;
4247
4248         ret = stmmac_tc_init(priv, priv);
4249         if (!ret) {
4250                 ndev->hw_features |= NETIF_F_HW_TC;
4251         }
4252
4253         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4254                 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4255                 priv->tso = true;
4256                 dev_info(priv->device, "TSO feature enabled\n");
4257         }
4258         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4259         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4260 #ifdef STMMAC_VLAN_TAG_USED
4261         /* Both mac100 and gmac support receive VLAN tag detection */
4262         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4263 #endif
4264         priv->msg_enable = netif_msg_init(debug, default_msg_level);
4265
4266         /* MTU range: 46 - hw-specific max */
4267         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4268         if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4269                 ndev->max_mtu = JUMBO_LEN;
4270         else if (priv->plat->has_xgmac)
4271                 ndev->max_mtu = XGMAC_JUMBO_LEN;
4272         else
4273                 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4274         /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4275          * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4276          */
4277         if ((priv->plat->maxmtu < ndev->max_mtu) &&
4278             (priv->plat->maxmtu >= ndev->min_mtu))
4279                 ndev->max_mtu = priv->plat->maxmtu;
4280         else if (priv->plat->maxmtu < ndev->min_mtu)
4281                 dev_warn(priv->device,
4282                          "%s: warning: maxmtu having invalid value (%d)\n",
4283                          __func__, priv->plat->maxmtu);
4284
4285         if (flow_ctrl)
4286                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
4287
4288         /* Setup channels NAPI */
4289         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4290
4291         for (queue = 0; queue < maxq; queue++) {
4292                 struct stmmac_channel *ch = &priv->channel[queue];
4293
4294                 ch->priv_data = priv;
4295                 ch->index = queue;
4296
4297                 if (queue < priv->plat->rx_queues_to_use) {
4298                         netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4299                                        NAPI_POLL_WEIGHT);
4300                 }
4301                 if (queue < priv->plat->tx_queues_to_use) {
4302                         netif_napi_add(ndev, &ch->tx_napi, stmmac_napi_poll_tx,
4303                                        NAPI_POLL_WEIGHT);
4304                 }
4305         }
4306
4307         mutex_init(&priv->lock);
4308
4309         /* If a specific clk_csr value is passed from the platform
4310          * this means that the CSR Clock Range selection cannot be
4311          * changed at run-time and it is fixed. Viceversa the driver'll try to
4312          * set the MDC clock dynamically according to the csr actual
4313          * clock input.
4314          */
4315         if (priv->plat->clk_csr >= 0)
4316                 priv->clk_csr = priv->plat->clk_csr;
4317         else
4318                 stmmac_clk_csr_set(priv);
4319
4320         stmmac_check_pcs_mode(priv);
4321
4322         if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4323             priv->hw->pcs != STMMAC_PCS_TBI &&
4324             priv->hw->pcs != STMMAC_PCS_RTBI) {
4325                 /* MDIO bus Registration */
4326                 ret = stmmac_mdio_register(ndev);
4327                 if (ret < 0) {
4328                         dev_err(priv->device,
4329                                 "%s: MDIO bus (id: %d) registration failed",
4330                                 __func__, priv->plat->bus_id);
4331                         goto error_mdio_register;
4332                 }
4333         }
4334
4335         ret = stmmac_phy_setup(priv);
4336         if (ret) {
4337                 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
4338                 goto error_phy_setup;
4339         }
4340
4341         ret = register_netdev(ndev);
4342         if (ret) {
4343                 dev_err(priv->device, "%s: ERROR %i registering the device\n",
4344                         __func__, ret);
4345                 goto error_netdev_register;
4346         }
4347
4348 #ifdef CONFIG_DEBUG_FS
4349         ret = stmmac_init_fs(ndev);
4350         if (ret < 0)
4351                 netdev_warn(priv->dev, "%s: failed debugFS registration\n",
4352                             __func__);
4353 #endif
4354
4355         return ret;
4356
4357 error_netdev_register:
4358         phylink_destroy(priv->phylink);
4359 error_phy_setup:
4360         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4361             priv->hw->pcs != STMMAC_PCS_TBI &&
4362             priv->hw->pcs != STMMAC_PCS_RTBI)
4363                 stmmac_mdio_unregister(ndev);
4364 error_mdio_register:
4365         for (queue = 0; queue < maxq; queue++) {
4366                 struct stmmac_channel *ch = &priv->channel[queue];
4367
4368                 if (queue < priv->plat->rx_queues_to_use)
4369                         netif_napi_del(&ch->rx_napi);
4370                 if (queue < priv->plat->tx_queues_to_use)
4371                         netif_napi_del(&ch->tx_napi);
4372         }
4373 error_hw_init:
4374         destroy_workqueue(priv->wq);
4375
4376         return ret;
4377 }
4378 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4379
4380 /**
4381  * stmmac_dvr_remove
4382  * @dev: device pointer
4383  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4384  * changes the link status, releases the DMA descriptor rings.
4385  */
4386 int stmmac_dvr_remove(struct device *dev)
4387 {
4388         struct net_device *ndev = dev_get_drvdata(dev);
4389         struct stmmac_priv *priv = netdev_priv(ndev);
4390
4391         netdev_info(priv->dev, "%s: removing driver", __func__);
4392
4393 #ifdef CONFIG_DEBUG_FS
4394         stmmac_exit_fs(ndev);
4395 #endif
4396         stmmac_stop_all_dma(priv);
4397
4398         stmmac_mac_set(priv, priv->ioaddr, false);
4399         netif_carrier_off(ndev);
4400         unregister_netdev(ndev);
4401         phylink_destroy(priv->phylink);
4402         if (priv->plat->stmmac_rst)
4403                 reset_control_assert(priv->plat->stmmac_rst);
4404         clk_disable_unprepare(priv->plat->pclk);
4405         clk_disable_unprepare(priv->plat->stmmac_clk);
4406         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4407             priv->hw->pcs != STMMAC_PCS_TBI &&
4408             priv->hw->pcs != STMMAC_PCS_RTBI)
4409                 stmmac_mdio_unregister(ndev);
4410         destroy_workqueue(priv->wq);
4411         mutex_destroy(&priv->lock);
4412
4413         return 0;
4414 }
4415 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4416
4417 /**
4418  * stmmac_suspend - suspend callback
4419  * @dev: device pointer
4420  * Description: this is the function to suspend the device and it is called
4421  * by the platform driver to stop the network queue, release the resources,
4422  * program the PMT register (for WoL), clean and release driver resources.
4423  */
4424 int stmmac_suspend(struct device *dev)
4425 {
4426         struct net_device *ndev = dev_get_drvdata(dev);
4427         struct stmmac_priv *priv = netdev_priv(ndev);
4428
4429         if (!ndev || !netif_running(ndev))
4430                 return 0;
4431
4432         phylink_stop(priv->phylink);
4433
4434         mutex_lock(&priv->lock);
4435
4436         netif_device_detach(ndev);
4437         stmmac_stop_all_queues(priv);
4438
4439         stmmac_disable_all_queues(priv);
4440
4441         /* Stop TX/RX DMA */
4442         stmmac_stop_all_dma(priv);
4443
4444         /* Enable Power down mode by programming the PMT regs */
4445         if (device_may_wakeup(priv->device)) {
4446                 stmmac_pmt(priv, priv->hw, priv->wolopts);
4447                 priv->irq_wake = 1;
4448         } else {
4449                 stmmac_mac_set(priv, priv->ioaddr, false);
4450                 pinctrl_pm_select_sleep_state(priv->device);
4451                 /* Disable clock in case of PWM is off */
4452                 clk_disable(priv->plat->pclk);
4453                 clk_disable(priv->plat->stmmac_clk);
4454         }
4455         mutex_unlock(&priv->lock);
4456
4457         priv->speed = SPEED_UNKNOWN;
4458         return 0;
4459 }
4460 EXPORT_SYMBOL_GPL(stmmac_suspend);
4461
4462 /**
4463  * stmmac_reset_queues_param - reset queue parameters
4464  * @dev: device pointer
4465  */
4466 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4467 {
4468         u32 rx_cnt = priv->plat->rx_queues_to_use;
4469         u32 tx_cnt = priv->plat->tx_queues_to_use;
4470         u32 queue;
4471
4472         for (queue = 0; queue < rx_cnt; queue++) {
4473                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4474
4475                 rx_q->cur_rx = 0;
4476                 rx_q->dirty_rx = 0;
4477         }
4478
4479         for (queue = 0; queue < tx_cnt; queue++) {
4480                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4481
4482                 tx_q->cur_tx = 0;
4483                 tx_q->dirty_tx = 0;
4484                 tx_q->mss = 0;
4485         }
4486 }
4487
4488 /**
4489  * stmmac_resume - resume callback
4490  * @dev: device pointer
4491  * Description: when resume this function is invoked to setup the DMA and CORE
4492  * in a usable state.
4493  */
4494 int stmmac_resume(struct device *dev)
4495 {
4496         struct net_device *ndev = dev_get_drvdata(dev);
4497         struct stmmac_priv *priv = netdev_priv(ndev);
4498
4499         if (!netif_running(ndev))
4500                 return 0;
4501
4502         /* Power Down bit, into the PM register, is cleared
4503          * automatically as soon as a magic packet or a Wake-up frame
4504          * is received. Anyway, it's better to manually clear
4505          * this bit because it can generate problems while resuming
4506          * from another devices (e.g. serial console).
4507          */
4508         if (device_may_wakeup(priv->device)) {
4509                 mutex_lock(&priv->lock);
4510                 stmmac_pmt(priv, priv->hw, 0);
4511                 mutex_unlock(&priv->lock);
4512                 priv->irq_wake = 0;
4513         } else {
4514                 pinctrl_pm_select_default_state(priv->device);
4515                 /* enable the clk previously disabled */
4516                 clk_enable(priv->plat->stmmac_clk);
4517                 clk_enable(priv->plat->pclk);
4518                 /* reset the phy so that it's ready */
4519                 if (priv->mii)
4520                         stmmac_mdio_reset(priv->mii);
4521         }
4522
4523         netif_device_attach(ndev);
4524
4525         mutex_lock(&priv->lock);
4526
4527         stmmac_reset_queues_param(priv);
4528
4529         stmmac_clear_descriptors(priv);
4530
4531         stmmac_hw_setup(ndev, false);
4532         stmmac_init_tx_coalesce(priv);
4533         stmmac_set_rx_mode(ndev);
4534
4535         stmmac_enable_all_queues(priv);
4536
4537         stmmac_start_all_queues(priv);
4538
4539         mutex_unlock(&priv->lock);
4540
4541         phylink_start(priv->phylink);
4542
4543         return 0;
4544 }
4545 EXPORT_SYMBOL_GPL(stmmac_resume);
4546
4547 #ifndef MODULE
4548 static int __init stmmac_cmdline_opt(char *str)
4549 {
4550         char *opt;
4551
4552         if (!str || !*str)
4553                 return -EINVAL;
4554         while ((opt = strsep(&str, ",")) != NULL) {
4555                 if (!strncmp(opt, "debug:", 6)) {
4556                         if (kstrtoint(opt + 6, 0, &debug))
4557                                 goto err;
4558                 } else if (!strncmp(opt, "phyaddr:", 8)) {
4559                         if (kstrtoint(opt + 8, 0, &phyaddr))
4560                                 goto err;
4561                 } else if (!strncmp(opt, "buf_sz:", 7)) {
4562                         if (kstrtoint(opt + 7, 0, &buf_sz))
4563                                 goto err;
4564                 } else if (!strncmp(opt, "tc:", 3)) {
4565                         if (kstrtoint(opt + 3, 0, &tc))
4566                                 goto err;
4567                 } else if (!strncmp(opt, "watchdog:", 9)) {
4568                         if (kstrtoint(opt + 9, 0, &watchdog))
4569                                 goto err;
4570                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
4571                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
4572                                 goto err;
4573                 } else if (!strncmp(opt, "pause:", 6)) {
4574                         if (kstrtoint(opt + 6, 0, &pause))
4575                                 goto err;
4576                 } else if (!strncmp(opt, "eee_timer:", 10)) {
4577                         if (kstrtoint(opt + 10, 0, &eee_timer))
4578                                 goto err;
4579                 } else if (!strncmp(opt, "chain_mode:", 11)) {
4580                         if (kstrtoint(opt + 11, 0, &chain_mode))
4581                                 goto err;
4582                 }
4583         }
4584         return 0;
4585
4586 err:
4587         pr_err("%s: ERROR broken module parameter conversion", __func__);
4588         return -EINVAL;
4589 }
4590
4591 __setup("stmmaceth=", stmmac_cmdline_opt);
4592 #endif /* MODULE */
4593
4594 static int __init stmmac_init(void)
4595 {
4596 #ifdef CONFIG_DEBUG_FS
4597         /* Create debugfs main directory if it doesn't exist yet */
4598         if (!stmmac_fs_dir) {
4599                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
4600
4601                 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
4602                         pr_err("ERROR %s, debugfs create directory failed\n",
4603                                STMMAC_RESOURCE_NAME);
4604
4605                         return -ENOMEM;
4606                 }
4607         }
4608 #endif
4609
4610         return 0;
4611 }
4612
4613 static void __exit stmmac_exit(void)
4614 {
4615 #ifdef CONFIG_DEBUG_FS
4616         debugfs_remove_recursive(stmmac_fs_dir);
4617 #endif
4618 }
4619
4620 module_init(stmmac_init)
4621 module_exit(stmmac_exit)
4622
4623 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
4624 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
4625 MODULE_LICENSE("GPL");