Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux-2.6-microblaze.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5
6         Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11   Documentation available at:
12         http://www.stlinux.com
13   Support available at:
14         https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <net/pkt_cls.h>
40 #include "stmmac_ptp.h"
41 #include "stmmac.h"
42 #include <linux/reset.h>
43 #include <linux/of_mdio.h>
44 #include "dwmac1000.h"
45 #include "dwxgmac2.h"
46 #include "hwif.h"
47
48 #define STMMAC_ALIGN(x)         __ALIGN_KERNEL(x, SMP_CACHE_BYTES)
49 #define TSO_MAX_BUFF_SIZE       (SZ_16K - 1)
50
51 /* Module parameters */
52 #define TX_TIMEO        5000
53 static int watchdog = TX_TIMEO;
54 module_param(watchdog, int, 0644);
55 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
56
57 static int debug = -1;
58 module_param(debug, int, 0644);
59 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
60
61 static int phyaddr = -1;
62 module_param(phyaddr, int, 0444);
63 MODULE_PARM_DESC(phyaddr, "Physical device address");
64
65 #define STMMAC_TX_THRESH        (DMA_TX_SIZE / 4)
66 #define STMMAC_RX_THRESH        (DMA_RX_SIZE / 4)
67
68 static int flow_ctrl = FLOW_AUTO;
69 module_param(flow_ctrl, int, 0644);
70 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
71
72 static int pause = PAUSE_TIME;
73 module_param(pause, int, 0644);
74 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
75
76 #define TC_DEFAULT 64
77 static int tc = TC_DEFAULT;
78 module_param(tc, int, 0644);
79 MODULE_PARM_DESC(tc, "DMA threshold control value");
80
81 #define DEFAULT_BUFSIZE 1536
82 static int buf_sz = DEFAULT_BUFSIZE;
83 module_param(buf_sz, int, 0644);
84 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
85
86 #define STMMAC_RX_COPYBREAK     256
87
88 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
89                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
90                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
91
92 #define STMMAC_DEFAULT_LPI_TIMER        1000
93 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
94 module_param(eee_timer, int, 0644);
95 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
96 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
97
98 /* By default the driver will use the ring mode to manage tx and rx descriptors,
99  * but allow user to force to use the chain instead of the ring
100  */
101 static unsigned int chain_mode;
102 module_param(chain_mode, int, 0444);
103 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
104
105 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
106
107 #ifdef CONFIG_DEBUG_FS
108 static int stmmac_init_fs(struct net_device *dev);
109 static void stmmac_exit_fs(struct net_device *dev);
110 #endif
111
112 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
113
114 /**
115  * stmmac_verify_args - verify the driver parameters.
116  * Description: it checks the driver parameters and set a default in case of
117  * errors.
118  */
119 static void stmmac_verify_args(void)
120 {
121         if (unlikely(watchdog < 0))
122                 watchdog = TX_TIMEO;
123         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
124                 buf_sz = DEFAULT_BUFSIZE;
125         if (unlikely(flow_ctrl > 1))
126                 flow_ctrl = FLOW_AUTO;
127         else if (likely(flow_ctrl < 0))
128                 flow_ctrl = FLOW_OFF;
129         if (unlikely((pause < 0) || (pause > 0xffff)))
130                 pause = PAUSE_TIME;
131         if (eee_timer < 0)
132                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
133 }
134
135 /**
136  * stmmac_disable_all_queues - Disable all queues
137  * @priv: driver private structure
138  */
139 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
140 {
141         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
142         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
143         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
144         u32 queue;
145
146         for (queue = 0; queue < maxq; queue++) {
147                 struct stmmac_channel *ch = &priv->channel[queue];
148
149                 if (queue < rx_queues_cnt)
150                         napi_disable(&ch->rx_napi);
151                 if (queue < tx_queues_cnt)
152                         napi_disable(&ch->tx_napi);
153         }
154 }
155
156 /**
157  * stmmac_enable_all_queues - Enable all queues
158  * @priv: driver private structure
159  */
160 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
161 {
162         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
163         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
164         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
165         u32 queue;
166
167         for (queue = 0; queue < maxq; queue++) {
168                 struct stmmac_channel *ch = &priv->channel[queue];
169
170                 if (queue < rx_queues_cnt)
171                         napi_enable(&ch->rx_napi);
172                 if (queue < tx_queues_cnt)
173                         napi_enable(&ch->tx_napi);
174         }
175 }
176
177 /**
178  * stmmac_stop_all_queues - Stop all queues
179  * @priv: driver private structure
180  */
181 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
182 {
183         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
184         u32 queue;
185
186         for (queue = 0; queue < tx_queues_cnt; queue++)
187                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
188 }
189
190 /**
191  * stmmac_start_all_queues - Start all queues
192  * @priv: driver private structure
193  */
194 static void stmmac_start_all_queues(struct stmmac_priv *priv)
195 {
196         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
197         u32 queue;
198
199         for (queue = 0; queue < tx_queues_cnt; queue++)
200                 netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
201 }
202
203 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
204 {
205         if (!test_bit(STMMAC_DOWN, &priv->state) &&
206             !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
207                 queue_work(priv->wq, &priv->service_task);
208 }
209
210 static void stmmac_global_err(struct stmmac_priv *priv)
211 {
212         netif_carrier_off(priv->dev);
213         set_bit(STMMAC_RESET_REQUESTED, &priv->state);
214         stmmac_service_event_schedule(priv);
215 }
216
217 /**
218  * stmmac_clk_csr_set - dynamically set the MDC clock
219  * @priv: driver private structure
220  * Description: this is to dynamically set the MDC clock according to the csr
221  * clock input.
222  * Note:
223  *      If a specific clk_csr value is passed from the platform
224  *      this means that the CSR Clock Range selection cannot be
225  *      changed at run-time and it is fixed (as reported in the driver
226  *      documentation). Viceversa the driver will try to set the MDC
227  *      clock dynamically according to the actual clock input.
228  */
229 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
230 {
231         u32 clk_rate;
232
233         clk_rate = clk_get_rate(priv->plat->stmmac_clk);
234
235         /* Platform provided default clk_csr would be assumed valid
236          * for all other cases except for the below mentioned ones.
237          * For values higher than the IEEE 802.3 specified frequency
238          * we can not estimate the proper divider as it is not known
239          * the frequency of clk_csr_i. So we do not change the default
240          * divider.
241          */
242         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
243                 if (clk_rate < CSR_F_35M)
244                         priv->clk_csr = STMMAC_CSR_20_35M;
245                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
246                         priv->clk_csr = STMMAC_CSR_35_60M;
247                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
248                         priv->clk_csr = STMMAC_CSR_60_100M;
249                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
250                         priv->clk_csr = STMMAC_CSR_100_150M;
251                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
252                         priv->clk_csr = STMMAC_CSR_150_250M;
253                 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
254                         priv->clk_csr = STMMAC_CSR_250_300M;
255         }
256
257         if (priv->plat->has_sun8i) {
258                 if (clk_rate > 160000000)
259                         priv->clk_csr = 0x03;
260                 else if (clk_rate > 80000000)
261                         priv->clk_csr = 0x02;
262                 else if (clk_rate > 40000000)
263                         priv->clk_csr = 0x01;
264                 else
265                         priv->clk_csr = 0;
266         }
267
268         if (priv->plat->has_xgmac) {
269                 if (clk_rate > 400000000)
270                         priv->clk_csr = 0x5;
271                 else if (clk_rate > 350000000)
272                         priv->clk_csr = 0x4;
273                 else if (clk_rate > 300000000)
274                         priv->clk_csr = 0x3;
275                 else if (clk_rate > 250000000)
276                         priv->clk_csr = 0x2;
277                 else if (clk_rate > 150000000)
278                         priv->clk_csr = 0x1;
279                 else
280                         priv->clk_csr = 0x0;
281         }
282 }
283
284 static void print_pkt(unsigned char *buf, int len)
285 {
286         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
287         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
288 }
289
290 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
291 {
292         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
293         u32 avail;
294
295         if (tx_q->dirty_tx > tx_q->cur_tx)
296                 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
297         else
298                 avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
299
300         return avail;
301 }
302
303 /**
304  * stmmac_rx_dirty - Get RX queue dirty
305  * @priv: driver private structure
306  * @queue: RX queue index
307  */
308 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
309 {
310         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
311         u32 dirty;
312
313         if (rx_q->dirty_rx <= rx_q->cur_rx)
314                 dirty = rx_q->cur_rx - rx_q->dirty_rx;
315         else
316                 dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
317
318         return dirty;
319 }
320
321 /**
322  * stmmac_enable_eee_mode - check and enter in LPI mode
323  * @priv: driver private structure
324  * Description: this function is to verify and enter in LPI mode in case of
325  * EEE.
326  */
327 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
328 {
329         u32 tx_cnt = priv->plat->tx_queues_to_use;
330         u32 queue;
331
332         /* check if all TX queues have the work finished */
333         for (queue = 0; queue < tx_cnt; queue++) {
334                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
335
336                 if (tx_q->dirty_tx != tx_q->cur_tx)
337                         return; /* still unfinished work */
338         }
339
340         /* Check and enter in LPI mode */
341         if (!priv->tx_path_in_lpi_mode)
342                 stmmac_set_eee_mode(priv, priv->hw,
343                                 priv->plat->en_tx_lpi_clockgating);
344 }
345
346 /**
347  * stmmac_disable_eee_mode - disable and exit from LPI mode
348  * @priv: driver private structure
349  * Description: this function is to exit and disable EEE in case of
350  * LPI state is true. This is called by the xmit.
351  */
352 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
353 {
354         stmmac_reset_eee_mode(priv, priv->hw);
355         del_timer_sync(&priv->eee_ctrl_timer);
356         priv->tx_path_in_lpi_mode = false;
357 }
358
359 /**
360  * stmmac_eee_ctrl_timer - EEE TX SW timer.
361  * @arg : data hook
362  * Description:
363  *  if there is no data transfer and if we are not in LPI state,
364  *  then MAC Transmitter can be moved to LPI state.
365  */
366 static void stmmac_eee_ctrl_timer(struct timer_list *t)
367 {
368         struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
369
370         stmmac_enable_eee_mode(priv);
371         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
372 }
373
374 /**
375  * stmmac_eee_init - init EEE
376  * @priv: driver private structure
377  * Description:
378  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
379  *  can also manage EEE, this function enable the LPI state and start related
380  *  timer.
381  */
382 bool stmmac_eee_init(struct stmmac_priv *priv)
383 {
384         int tx_lpi_timer = priv->tx_lpi_timer;
385
386         /* Using PCS we cannot dial with the phy registers at this stage
387          * so we do not support extra feature like EEE.
388          */
389         if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
390             (priv->hw->pcs == STMMAC_PCS_TBI) ||
391             (priv->hw->pcs == STMMAC_PCS_RTBI))
392                 return false;
393
394         /* Check if MAC core supports the EEE feature. */
395         if (!priv->dma_cap.eee)
396                 return false;
397
398         mutex_lock(&priv->lock);
399
400         /* Check if it needs to be deactivated */
401         if (!priv->eee_active && priv->eee_enabled) {
402                 netdev_dbg(priv->dev, "disable EEE\n");
403                 del_timer_sync(&priv->eee_ctrl_timer);
404                 stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer);
405                 return false;
406         }
407
408         if (priv->eee_active && !priv->eee_enabled) {
409                 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
410                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
411                 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
412                                      tx_lpi_timer);
413         }
414
415         mutex_unlock(&priv->lock);
416         netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
417         return true;
418 }
419
420 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
421  * @priv: driver private structure
422  * @p : descriptor pointer
423  * @skb : the socket buffer
424  * Description :
425  * This function will read timestamp from the descriptor & pass it to stack.
426  * and also perform some sanity checks.
427  */
428 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
429                                    struct dma_desc *p, struct sk_buff *skb)
430 {
431         struct skb_shared_hwtstamps shhwtstamp;
432         u64 ns = 0;
433
434         if (!priv->hwts_tx_en)
435                 return;
436
437         /* exit if skb doesn't support hw tstamp */
438         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
439                 return;
440
441         /* check tx tstamp status */
442         if (stmmac_get_tx_timestamp_status(priv, p)) {
443                 /* get the valid tstamp */
444                 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
445
446                 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
447                 shhwtstamp.hwtstamp = ns_to_ktime(ns);
448
449                 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
450                 /* pass tstamp to stack */
451                 skb_tstamp_tx(skb, &shhwtstamp);
452         }
453
454         return;
455 }
456
457 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
458  * @priv: driver private structure
459  * @p : descriptor pointer
460  * @np : next descriptor pointer
461  * @skb : the socket buffer
462  * Description :
463  * This function will read received packet's timestamp from the descriptor
464  * and pass it to stack. It also perform some sanity checks.
465  */
466 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
467                                    struct dma_desc *np, struct sk_buff *skb)
468 {
469         struct skb_shared_hwtstamps *shhwtstamp = NULL;
470         struct dma_desc *desc = p;
471         u64 ns = 0;
472
473         if (!priv->hwts_rx_en)
474                 return;
475         /* For GMAC4, the valid timestamp is from CTX next desc. */
476         if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
477                 desc = np;
478
479         /* Check if timestamp is available */
480         if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
481                 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
482                 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
483                 shhwtstamp = skb_hwtstamps(skb);
484                 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
485                 shhwtstamp->hwtstamp = ns_to_ktime(ns);
486         } else  {
487                 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
488         }
489 }
490
491 /**
492  *  stmmac_hwtstamp_set - control hardware timestamping.
493  *  @dev: device pointer.
494  *  @ifr: An IOCTL specific structure, that can contain a pointer to
495  *  a proprietary structure used to pass information to the driver.
496  *  Description:
497  *  This function configures the MAC to enable/disable both outgoing(TX)
498  *  and incoming(RX) packets time stamping based on user input.
499  *  Return Value:
500  *  0 on success and an appropriate -ve integer on failure.
501  */
502 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
503 {
504         struct stmmac_priv *priv = netdev_priv(dev);
505         struct hwtstamp_config config;
506         struct timespec64 now;
507         u64 temp = 0;
508         u32 ptp_v2 = 0;
509         u32 tstamp_all = 0;
510         u32 ptp_over_ipv4_udp = 0;
511         u32 ptp_over_ipv6_udp = 0;
512         u32 ptp_over_ethernet = 0;
513         u32 snap_type_sel = 0;
514         u32 ts_master_en = 0;
515         u32 ts_event_en = 0;
516         u32 sec_inc = 0;
517         u32 value = 0;
518         bool xmac;
519
520         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
521
522         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
523                 netdev_alert(priv->dev, "No support for HW time stamping\n");
524                 priv->hwts_tx_en = 0;
525                 priv->hwts_rx_en = 0;
526
527                 return -EOPNOTSUPP;
528         }
529
530         if (copy_from_user(&config, ifr->ifr_data,
531                            sizeof(config)))
532                 return -EFAULT;
533
534         netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
535                    __func__, config.flags, config.tx_type, config.rx_filter);
536
537         /* reserved for future extensions */
538         if (config.flags)
539                 return -EINVAL;
540
541         if (config.tx_type != HWTSTAMP_TX_OFF &&
542             config.tx_type != HWTSTAMP_TX_ON)
543                 return -ERANGE;
544
545         if (priv->adv_ts) {
546                 switch (config.rx_filter) {
547                 case HWTSTAMP_FILTER_NONE:
548                         /* time stamp no incoming packet at all */
549                         config.rx_filter = HWTSTAMP_FILTER_NONE;
550                         break;
551
552                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
553                         /* PTP v1, UDP, any kind of event packet */
554                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
555                         /* 'xmac' hardware can support Sync, Pdelay_Req and
556                          * Pdelay_resp by setting bit14 and bits17/16 to 01
557                          * This leaves Delay_Req timestamps out.
558                          * Enable all events *and* general purpose message
559                          * timestamping
560                          */
561                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
562                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
563                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
564                         break;
565
566                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
567                         /* PTP v1, UDP, Sync packet */
568                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
569                         /* take time stamp for SYNC messages only */
570                         ts_event_en = PTP_TCR_TSEVNTENA;
571
572                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
573                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
574                         break;
575
576                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
577                         /* PTP v1, UDP, Delay_req packet */
578                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
579                         /* take time stamp for Delay_Req messages only */
580                         ts_master_en = PTP_TCR_TSMSTRENA;
581                         ts_event_en = PTP_TCR_TSEVNTENA;
582
583                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
584                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
585                         break;
586
587                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
588                         /* PTP v2, UDP, any kind of event packet */
589                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
590                         ptp_v2 = PTP_TCR_TSVER2ENA;
591                         /* take time stamp for all event messages */
592                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
593
594                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
595                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
596                         break;
597
598                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
599                         /* PTP v2, UDP, Sync packet */
600                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
601                         ptp_v2 = PTP_TCR_TSVER2ENA;
602                         /* take time stamp for SYNC messages only */
603                         ts_event_en = PTP_TCR_TSEVNTENA;
604
605                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
606                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
607                         break;
608
609                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
610                         /* PTP v2, UDP, Delay_req packet */
611                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
612                         ptp_v2 = PTP_TCR_TSVER2ENA;
613                         /* take time stamp for Delay_Req messages only */
614                         ts_master_en = PTP_TCR_TSMSTRENA;
615                         ts_event_en = PTP_TCR_TSEVNTENA;
616
617                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
618                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
619                         break;
620
621                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
622                         /* PTP v2/802.AS1 any layer, any kind of event packet */
623                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
624                         ptp_v2 = PTP_TCR_TSVER2ENA;
625                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
626                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
627                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
628                         ptp_over_ethernet = PTP_TCR_TSIPENA;
629                         break;
630
631                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
632                         /* PTP v2/802.AS1, any layer, Sync packet */
633                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
634                         ptp_v2 = PTP_TCR_TSVER2ENA;
635                         /* take time stamp for SYNC messages only */
636                         ts_event_en = PTP_TCR_TSEVNTENA;
637
638                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
639                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
640                         ptp_over_ethernet = PTP_TCR_TSIPENA;
641                         break;
642
643                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
644                         /* PTP v2/802.AS1, any layer, Delay_req packet */
645                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
646                         ptp_v2 = PTP_TCR_TSVER2ENA;
647                         /* take time stamp for Delay_Req messages only */
648                         ts_master_en = PTP_TCR_TSMSTRENA;
649                         ts_event_en = PTP_TCR_TSEVNTENA;
650
651                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
652                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
653                         ptp_over_ethernet = PTP_TCR_TSIPENA;
654                         break;
655
656                 case HWTSTAMP_FILTER_NTP_ALL:
657                 case HWTSTAMP_FILTER_ALL:
658                         /* time stamp any incoming packet */
659                         config.rx_filter = HWTSTAMP_FILTER_ALL;
660                         tstamp_all = PTP_TCR_TSENALL;
661                         break;
662
663                 default:
664                         return -ERANGE;
665                 }
666         } else {
667                 switch (config.rx_filter) {
668                 case HWTSTAMP_FILTER_NONE:
669                         config.rx_filter = HWTSTAMP_FILTER_NONE;
670                         break;
671                 default:
672                         /* PTP v1, UDP, any kind of event packet */
673                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
674                         break;
675                 }
676         }
677         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
678         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
679
680         if (!priv->hwts_tx_en && !priv->hwts_rx_en)
681                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
682         else {
683                 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
684                          tstamp_all | ptp_v2 | ptp_over_ethernet |
685                          ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
686                          ts_master_en | snap_type_sel);
687                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
688
689                 /* program Sub Second Increment reg */
690                 stmmac_config_sub_second_increment(priv,
691                                 priv->ptpaddr, priv->plat->clk_ptp_rate,
692                                 xmac, &sec_inc);
693                 temp = div_u64(1000000000ULL, sec_inc);
694
695                 /* Store sub second increment and flags for later use */
696                 priv->sub_second_inc = sec_inc;
697                 priv->systime_flags = value;
698
699                 /* calculate default added value:
700                  * formula is :
701                  * addend = (2^32)/freq_div_ratio;
702                  * where, freq_div_ratio = 1e9ns/sec_inc
703                  */
704                 temp = (u64)(temp << 32);
705                 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
706                 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
707
708                 /* initialize system time */
709                 ktime_get_real_ts64(&now);
710
711                 /* lower 32 bits of tv_sec are safe until y2106 */
712                 stmmac_init_systime(priv, priv->ptpaddr,
713                                 (u32)now.tv_sec, now.tv_nsec);
714         }
715
716         memcpy(&priv->tstamp_config, &config, sizeof(config));
717
718         return copy_to_user(ifr->ifr_data, &config,
719                             sizeof(config)) ? -EFAULT : 0;
720 }
721
722 /**
723  *  stmmac_hwtstamp_get - read hardware timestamping.
724  *  @dev: device pointer.
725  *  @ifr: An IOCTL specific structure, that can contain a pointer to
726  *  a proprietary structure used to pass information to the driver.
727  *  Description:
728  *  This function obtain the current hardware timestamping settings
729     as requested.
730  */
731 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
732 {
733         struct stmmac_priv *priv = netdev_priv(dev);
734         struct hwtstamp_config *config = &priv->tstamp_config;
735
736         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
737                 return -EOPNOTSUPP;
738
739         return copy_to_user(ifr->ifr_data, config,
740                             sizeof(*config)) ? -EFAULT : 0;
741 }
742
743 /**
744  * stmmac_init_ptp - init PTP
745  * @priv: driver private structure
746  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
747  * This is done by looking at the HW cap. register.
748  * This function also registers the ptp driver.
749  */
750 static int stmmac_init_ptp(struct stmmac_priv *priv)
751 {
752         bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
753
754         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
755                 return -EOPNOTSUPP;
756
757         priv->adv_ts = 0;
758         /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
759         if (xmac && priv->dma_cap.atime_stamp)
760                 priv->adv_ts = 1;
761         /* Dwmac 3.x core with extend_desc can support adv_ts */
762         else if (priv->extend_desc && priv->dma_cap.atime_stamp)
763                 priv->adv_ts = 1;
764
765         if (priv->dma_cap.time_stamp)
766                 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
767
768         if (priv->adv_ts)
769                 netdev_info(priv->dev,
770                             "IEEE 1588-2008 Advanced Timestamp supported\n");
771
772         priv->hwts_tx_en = 0;
773         priv->hwts_rx_en = 0;
774
775         stmmac_ptp_register(priv);
776
777         return 0;
778 }
779
780 static void stmmac_release_ptp(struct stmmac_priv *priv)
781 {
782         if (priv->plat->clk_ptp_ref)
783                 clk_disable_unprepare(priv->plat->clk_ptp_ref);
784         stmmac_ptp_unregister(priv);
785 }
786
787 /**
788  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
789  *  @priv: driver private structure
790  *  Description: It is used for configuring the flow control in all queues
791  */
792 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
793 {
794         u32 tx_cnt = priv->plat->tx_queues_to_use;
795
796         stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
797                         priv->pause, tx_cnt);
798 }
799
800 static void stmmac_validate(struct phylink_config *config,
801                             unsigned long *supported,
802                             struct phylink_link_state *state)
803 {
804         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
805         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
806         int tx_cnt = priv->plat->tx_queues_to_use;
807         int max_speed = priv->plat->max_speed;
808
809         /* Cut down 1G if asked to */
810         if ((max_speed > 0) && (max_speed < 1000)) {
811                 phylink_set(mask, 1000baseT_Full);
812                 phylink_set(mask, 1000baseX_Full);
813         }
814
815         /* Half-Duplex can only work with single queue */
816         if (tx_cnt > 1) {
817                 phylink_set(mask, 10baseT_Half);
818                 phylink_set(mask, 100baseT_Half);
819                 phylink_set(mask, 1000baseT_Half);
820         }
821
822         bitmap_andnot(supported, supported, mask, __ETHTOOL_LINK_MODE_MASK_NBITS);
823         bitmap_andnot(state->advertising, state->advertising, mask,
824                       __ETHTOOL_LINK_MODE_MASK_NBITS);
825 }
826
827 static int stmmac_mac_link_state(struct phylink_config *config,
828                                  struct phylink_link_state *state)
829 {
830         return -EOPNOTSUPP;
831 }
832
833 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
834                               const struct phylink_link_state *state)
835 {
836         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
837         u32 ctrl;
838
839         ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
840         ctrl &= ~priv->hw->link.speed_mask;
841
842         switch (state->speed) {
843         case SPEED_1000:
844                 ctrl |= priv->hw->link.speed1000;
845                 break;
846         case SPEED_100:
847                 ctrl |= priv->hw->link.speed100;
848                 break;
849         case SPEED_10:
850                 ctrl |= priv->hw->link.speed10;
851                 break;
852         default:
853                 return;
854         }
855
856         priv->speed = state->speed;
857
858         if (priv->plat->fix_mac_speed)
859                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, state->speed);
860
861         if (!state->duplex)
862                 ctrl &= ~priv->hw->link.duplex;
863         else
864                 ctrl |= priv->hw->link.duplex;
865
866         /* Flow Control operation */
867         if (state->pause)
868                 stmmac_mac_flow_ctrl(priv, state->duplex);
869
870         writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
871 }
872
873 static void stmmac_mac_an_restart(struct phylink_config *config)
874 {
875         /* Not Supported */
876 }
877
878 static void stmmac_mac_link_down(struct phylink_config *config,
879                                  unsigned int mode, phy_interface_t interface)
880 {
881         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
882
883         stmmac_mac_set(priv, priv->ioaddr, false);
884         priv->eee_active = false;
885         stmmac_eee_init(priv);
886         stmmac_set_eee_pls(priv, priv->hw, false);
887 }
888
889 static void stmmac_mac_link_up(struct phylink_config *config,
890                                unsigned int mode, phy_interface_t interface,
891                                struct phy_device *phy)
892 {
893         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
894
895         stmmac_mac_set(priv, priv->ioaddr, true);
896         if (phy) {
897                 priv->eee_active = phy_init_eee(phy, 1) >= 0;
898                 priv->eee_enabled = stmmac_eee_init(priv);
899                 stmmac_set_eee_pls(priv, priv->hw, true);
900         }
901 }
902
903 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
904         .validate = stmmac_validate,
905         .mac_link_state = stmmac_mac_link_state,
906         .mac_config = stmmac_mac_config,
907         .mac_an_restart = stmmac_mac_an_restart,
908         .mac_link_down = stmmac_mac_link_down,
909         .mac_link_up = stmmac_mac_link_up,
910 };
911
912 /**
913  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
914  * @priv: driver private structure
915  * Description: this is to verify if the HW supports the PCS.
916  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
917  * configured for the TBI, RTBI, or SGMII PHY interface.
918  */
919 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
920 {
921         int interface = priv->plat->interface;
922
923         if (priv->dma_cap.pcs) {
924                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
925                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
926                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
927                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
928                         netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
929                         priv->hw->pcs = STMMAC_PCS_RGMII;
930                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
931                         netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
932                         priv->hw->pcs = STMMAC_PCS_SGMII;
933                 }
934         }
935 }
936
937 /**
938  * stmmac_init_phy - PHY initialization
939  * @dev: net device structure
940  * Description: it initializes the driver's PHY state, and attaches the PHY
941  * to the mac driver.
942  *  Return value:
943  *  0 on success
944  */
945 static int stmmac_init_phy(struct net_device *dev)
946 {
947         struct stmmac_priv *priv = netdev_priv(dev);
948         struct device_node *node;
949         int ret;
950
951         node = priv->plat->phylink_node;
952
953         if (node) {
954                 ret = phylink_of_phy_connect(priv->phylink, node, 0);
955         } else {
956                 int addr = priv->plat->phy_addr;
957                 struct phy_device *phydev;
958
959                 phydev = mdiobus_get_phy(priv->mii, addr);
960                 if (!phydev) {
961                         netdev_err(priv->dev, "no phy at addr %d\n", addr);
962                         return -ENODEV;
963                 }
964
965                 ret = phylink_connect_phy(priv->phylink, phydev);
966         }
967
968         return ret;
969 }
970
971 static int stmmac_phy_setup(struct stmmac_priv *priv)
972 {
973         struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
974         int mode = priv->plat->interface;
975         struct phylink *phylink;
976
977         priv->phylink_config.dev = &priv->dev->dev;
978         priv->phylink_config.type = PHYLINK_NETDEV;
979
980         phylink = phylink_create(&priv->phylink_config, fwnode,
981                                  mode, &stmmac_phylink_mac_ops);
982         if (IS_ERR(phylink))
983                 return PTR_ERR(phylink);
984
985         priv->phylink = phylink;
986         return 0;
987 }
988
989 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
990 {
991         u32 rx_cnt = priv->plat->rx_queues_to_use;
992         void *head_rx;
993         u32 queue;
994
995         /* Display RX rings */
996         for (queue = 0; queue < rx_cnt; queue++) {
997                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
998
999                 pr_info("\tRX Queue %u rings\n", queue);
1000
1001                 if (priv->extend_desc)
1002                         head_rx = (void *)rx_q->dma_erx;
1003                 else
1004                         head_rx = (void *)rx_q->dma_rx;
1005
1006                 /* Display RX ring */
1007                 stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1008         }
1009 }
1010
1011 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1012 {
1013         u32 tx_cnt = priv->plat->tx_queues_to_use;
1014         void *head_tx;
1015         u32 queue;
1016
1017         /* Display TX rings */
1018         for (queue = 0; queue < tx_cnt; queue++) {
1019                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1020
1021                 pr_info("\tTX Queue %d rings\n", queue);
1022
1023                 if (priv->extend_desc)
1024                         head_tx = (void *)tx_q->dma_etx;
1025                 else
1026                         head_tx = (void *)tx_q->dma_tx;
1027
1028                 stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1029         }
1030 }
1031
1032 static void stmmac_display_rings(struct stmmac_priv *priv)
1033 {
1034         /* Display RX ring */
1035         stmmac_display_rx_rings(priv);
1036
1037         /* Display TX ring */
1038         stmmac_display_tx_rings(priv);
1039 }
1040
1041 static int stmmac_set_bfsize(int mtu, int bufsize)
1042 {
1043         int ret = bufsize;
1044
1045         if (mtu >= BUF_SIZE_4KiB)
1046                 ret = BUF_SIZE_8KiB;
1047         else if (mtu >= BUF_SIZE_2KiB)
1048                 ret = BUF_SIZE_4KiB;
1049         else if (mtu > DEFAULT_BUFSIZE)
1050                 ret = BUF_SIZE_2KiB;
1051         else
1052                 ret = DEFAULT_BUFSIZE;
1053
1054         return ret;
1055 }
1056
1057 /**
1058  * stmmac_clear_rx_descriptors - clear RX descriptors
1059  * @priv: driver private structure
1060  * @queue: RX queue index
1061  * Description: this function is called to clear the RX descriptors
1062  * in case of both basic and extended descriptors are used.
1063  */
1064 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1065 {
1066         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1067         int i;
1068
1069         /* Clear the RX descriptors */
1070         for (i = 0; i < DMA_RX_SIZE; i++)
1071                 if (priv->extend_desc)
1072                         stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1073                                         priv->use_riwt, priv->mode,
1074                                         (i == DMA_RX_SIZE - 1),
1075                                         priv->dma_buf_sz);
1076                 else
1077                         stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1078                                         priv->use_riwt, priv->mode,
1079                                         (i == DMA_RX_SIZE - 1),
1080                                         priv->dma_buf_sz);
1081 }
1082
1083 /**
1084  * stmmac_clear_tx_descriptors - clear tx descriptors
1085  * @priv: driver private structure
1086  * @queue: TX queue index.
1087  * Description: this function is called to clear the TX descriptors
1088  * in case of both basic and extended descriptors are used.
1089  */
1090 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1091 {
1092         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1093         int i;
1094
1095         /* Clear the TX descriptors */
1096         for (i = 0; i < DMA_TX_SIZE; i++)
1097                 if (priv->extend_desc)
1098                         stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1099                                         priv->mode, (i == DMA_TX_SIZE - 1));
1100                 else
1101                         stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1102                                         priv->mode, (i == DMA_TX_SIZE - 1));
1103 }
1104
1105 /**
1106  * stmmac_clear_descriptors - clear descriptors
1107  * @priv: driver private structure
1108  * Description: this function is called to clear the TX and RX descriptors
1109  * in case of both basic and extended descriptors are used.
1110  */
1111 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1112 {
1113         u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1114         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1115         u32 queue;
1116
1117         /* Clear the RX descriptors */
1118         for (queue = 0; queue < rx_queue_cnt; queue++)
1119                 stmmac_clear_rx_descriptors(priv, queue);
1120
1121         /* Clear the TX descriptors */
1122         for (queue = 0; queue < tx_queue_cnt; queue++)
1123                 stmmac_clear_tx_descriptors(priv, queue);
1124 }
1125
1126 /**
1127  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1128  * @priv: driver private structure
1129  * @p: descriptor pointer
1130  * @i: descriptor index
1131  * @flags: gfp flag
1132  * @queue: RX queue index
1133  * Description: this function is called to allocate a receive buffer, perform
1134  * the DMA mapping and init the descriptor.
1135  */
1136 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1137                                   int i, gfp_t flags, u32 queue)
1138 {
1139         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1140         struct sk_buff *skb;
1141
1142         skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
1143         if (!skb) {
1144                 netdev_err(priv->dev,
1145                            "%s: Rx init fails; skb is NULL\n", __func__);
1146                 return -ENOMEM;
1147         }
1148         rx_q->rx_skbuff[i] = skb;
1149         rx_q->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
1150                                                 priv->dma_buf_sz,
1151                                                 DMA_FROM_DEVICE);
1152         if (dma_mapping_error(priv->device, rx_q->rx_skbuff_dma[i])) {
1153                 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
1154                 dev_kfree_skb_any(skb);
1155                 return -EINVAL;
1156         }
1157
1158         stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[i]);
1159
1160         if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1161                 stmmac_init_desc3(priv, p);
1162
1163         return 0;
1164 }
1165
1166 /**
1167  * stmmac_free_rx_buffer - free RX dma buffers
1168  * @priv: private structure
1169  * @queue: RX queue index
1170  * @i: buffer index.
1171  */
1172 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1173 {
1174         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1175
1176         if (rx_q->rx_skbuff[i]) {
1177                 dma_unmap_single(priv->device, rx_q->rx_skbuff_dma[i],
1178                                  priv->dma_buf_sz, DMA_FROM_DEVICE);
1179                 dev_kfree_skb_any(rx_q->rx_skbuff[i]);
1180         }
1181         rx_q->rx_skbuff[i] = NULL;
1182 }
1183
1184 /**
1185  * stmmac_free_tx_buffer - free RX dma buffers
1186  * @priv: private structure
1187  * @queue: RX queue index
1188  * @i: buffer index.
1189  */
1190 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1191 {
1192         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1193
1194         if (tx_q->tx_skbuff_dma[i].buf) {
1195                 if (tx_q->tx_skbuff_dma[i].map_as_page)
1196                         dma_unmap_page(priv->device,
1197                                        tx_q->tx_skbuff_dma[i].buf,
1198                                        tx_q->tx_skbuff_dma[i].len,
1199                                        DMA_TO_DEVICE);
1200                 else
1201                         dma_unmap_single(priv->device,
1202                                          tx_q->tx_skbuff_dma[i].buf,
1203                                          tx_q->tx_skbuff_dma[i].len,
1204                                          DMA_TO_DEVICE);
1205         }
1206
1207         if (tx_q->tx_skbuff[i]) {
1208                 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1209                 tx_q->tx_skbuff[i] = NULL;
1210                 tx_q->tx_skbuff_dma[i].buf = 0;
1211                 tx_q->tx_skbuff_dma[i].map_as_page = false;
1212         }
1213 }
1214
1215 /**
1216  * init_dma_rx_desc_rings - init the RX descriptor rings
1217  * @dev: net device structure
1218  * @flags: gfp flag.
1219  * Description: this function initializes the DMA RX descriptors
1220  * and allocates the socket buffers. It supports the chained and ring
1221  * modes.
1222  */
1223 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1224 {
1225         struct stmmac_priv *priv = netdev_priv(dev);
1226         u32 rx_count = priv->plat->rx_queues_to_use;
1227         int ret = -ENOMEM;
1228         int bfsize = 0;
1229         int queue;
1230         int i;
1231
1232         bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
1233         if (bfsize < 0)
1234                 bfsize = 0;
1235
1236         if (bfsize < BUF_SIZE_16KiB)
1237                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1238
1239         priv->dma_buf_sz = bfsize;
1240
1241         /* RX INITIALIZATION */
1242         netif_dbg(priv, probe, priv->dev,
1243                   "SKB addresses:\nskb\t\tskb data\tdma data\n");
1244
1245         for (queue = 0; queue < rx_count; queue++) {
1246                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1247
1248                 netif_dbg(priv, probe, priv->dev,
1249                           "(%s) dma_rx_phy=0x%08x\n", __func__,
1250                           (u32)rx_q->dma_rx_phy);
1251
1252                 for (i = 0; i < DMA_RX_SIZE; i++) {
1253                         struct dma_desc *p;
1254
1255                         if (priv->extend_desc)
1256                                 p = &((rx_q->dma_erx + i)->basic);
1257                         else
1258                                 p = rx_q->dma_rx + i;
1259
1260                         ret = stmmac_init_rx_buffers(priv, p, i, flags,
1261                                                      queue);
1262                         if (ret)
1263                                 goto err_init_rx_buffers;
1264
1265                         netif_dbg(priv, probe, priv->dev, "[%p]\t[%p]\t[%x]\n",
1266                                   rx_q->rx_skbuff[i], rx_q->rx_skbuff[i]->data,
1267                                   (unsigned int)rx_q->rx_skbuff_dma[i]);
1268                 }
1269
1270                 rx_q->cur_rx = 0;
1271                 rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1272
1273                 stmmac_clear_rx_descriptors(priv, queue);
1274
1275                 /* Setup the chained descriptor addresses */
1276                 if (priv->mode == STMMAC_CHAIN_MODE) {
1277                         if (priv->extend_desc)
1278                                 stmmac_mode_init(priv, rx_q->dma_erx,
1279                                                 rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1280                         else
1281                                 stmmac_mode_init(priv, rx_q->dma_rx,
1282                                                 rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1283                 }
1284         }
1285
1286         buf_sz = bfsize;
1287
1288         return 0;
1289
1290 err_init_rx_buffers:
1291         while (queue >= 0) {
1292                 while (--i >= 0)
1293                         stmmac_free_rx_buffer(priv, queue, i);
1294
1295                 if (queue == 0)
1296                         break;
1297
1298                 i = DMA_RX_SIZE;
1299                 queue--;
1300         }
1301
1302         return ret;
1303 }
1304
1305 /**
1306  * init_dma_tx_desc_rings - init the TX descriptor rings
1307  * @dev: net device structure.
1308  * Description: this function initializes the DMA TX descriptors
1309  * and allocates the socket buffers. It supports the chained and ring
1310  * modes.
1311  */
1312 static int init_dma_tx_desc_rings(struct net_device *dev)
1313 {
1314         struct stmmac_priv *priv = netdev_priv(dev);
1315         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1316         u32 queue;
1317         int i;
1318
1319         for (queue = 0; queue < tx_queue_cnt; queue++) {
1320                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1321
1322                 netif_dbg(priv, probe, priv->dev,
1323                           "(%s) dma_tx_phy=0x%08x\n", __func__,
1324                          (u32)tx_q->dma_tx_phy);
1325
1326                 /* Setup the chained descriptor addresses */
1327                 if (priv->mode == STMMAC_CHAIN_MODE) {
1328                         if (priv->extend_desc)
1329                                 stmmac_mode_init(priv, tx_q->dma_etx,
1330                                                 tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1331                         else
1332                                 stmmac_mode_init(priv, tx_q->dma_tx,
1333                                                 tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1334                 }
1335
1336                 for (i = 0; i < DMA_TX_SIZE; i++) {
1337                         struct dma_desc *p;
1338                         if (priv->extend_desc)
1339                                 p = &((tx_q->dma_etx + i)->basic);
1340                         else
1341                                 p = tx_q->dma_tx + i;
1342
1343                         stmmac_clear_desc(priv, p);
1344
1345                         tx_q->tx_skbuff_dma[i].buf = 0;
1346                         tx_q->tx_skbuff_dma[i].map_as_page = false;
1347                         tx_q->tx_skbuff_dma[i].len = 0;
1348                         tx_q->tx_skbuff_dma[i].last_segment = false;
1349                         tx_q->tx_skbuff[i] = NULL;
1350                 }
1351
1352                 tx_q->dirty_tx = 0;
1353                 tx_q->cur_tx = 0;
1354                 tx_q->mss = 0;
1355
1356                 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1357         }
1358
1359         return 0;
1360 }
1361
1362 /**
1363  * init_dma_desc_rings - init the RX/TX descriptor rings
1364  * @dev: net device structure
1365  * @flags: gfp flag.
1366  * Description: this function initializes the DMA RX/TX descriptors
1367  * and allocates the socket buffers. It supports the chained and ring
1368  * modes.
1369  */
1370 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1371 {
1372         struct stmmac_priv *priv = netdev_priv(dev);
1373         int ret;
1374
1375         ret = init_dma_rx_desc_rings(dev, flags);
1376         if (ret)
1377                 return ret;
1378
1379         ret = init_dma_tx_desc_rings(dev);
1380
1381         stmmac_clear_descriptors(priv);
1382
1383         if (netif_msg_hw(priv))
1384                 stmmac_display_rings(priv);
1385
1386         return ret;
1387 }
1388
1389 /**
1390  * dma_free_rx_skbufs - free RX dma buffers
1391  * @priv: private structure
1392  * @queue: RX queue index
1393  */
1394 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1395 {
1396         int i;
1397
1398         for (i = 0; i < DMA_RX_SIZE; i++)
1399                 stmmac_free_rx_buffer(priv, queue, i);
1400 }
1401
1402 /**
1403  * dma_free_tx_skbufs - free TX dma buffers
1404  * @priv: private structure
1405  * @queue: TX queue index
1406  */
1407 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1408 {
1409         int i;
1410
1411         for (i = 0; i < DMA_TX_SIZE; i++)
1412                 stmmac_free_tx_buffer(priv, queue, i);
1413 }
1414
1415 /**
1416  * free_dma_rx_desc_resources - free RX dma desc resources
1417  * @priv: private structure
1418  */
1419 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1420 {
1421         u32 rx_count = priv->plat->rx_queues_to_use;
1422         u32 queue;
1423
1424         /* Free RX queue resources */
1425         for (queue = 0; queue < rx_count; queue++) {
1426                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1427
1428                 /* Release the DMA RX socket buffers */
1429                 dma_free_rx_skbufs(priv, queue);
1430
1431                 /* Free DMA regions of consistent memory previously allocated */
1432                 if (!priv->extend_desc)
1433                         dma_free_coherent(priv->device,
1434                                           DMA_RX_SIZE * sizeof(struct dma_desc),
1435                                           rx_q->dma_rx, rx_q->dma_rx_phy);
1436                 else
1437                         dma_free_coherent(priv->device, DMA_RX_SIZE *
1438                                           sizeof(struct dma_extended_desc),
1439                                           rx_q->dma_erx, rx_q->dma_rx_phy);
1440
1441                 kfree(rx_q->rx_skbuff_dma);
1442                 kfree(rx_q->rx_skbuff);
1443         }
1444 }
1445
1446 /**
1447  * free_dma_tx_desc_resources - free TX dma desc resources
1448  * @priv: private structure
1449  */
1450 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1451 {
1452         u32 tx_count = priv->plat->tx_queues_to_use;
1453         u32 queue;
1454
1455         /* Free TX queue resources */
1456         for (queue = 0; queue < tx_count; queue++) {
1457                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1458
1459                 /* Release the DMA TX socket buffers */
1460                 dma_free_tx_skbufs(priv, queue);
1461
1462                 /* Free DMA regions of consistent memory previously allocated */
1463                 if (!priv->extend_desc)
1464                         dma_free_coherent(priv->device,
1465                                           DMA_TX_SIZE * sizeof(struct dma_desc),
1466                                           tx_q->dma_tx, tx_q->dma_tx_phy);
1467                 else
1468                         dma_free_coherent(priv->device, DMA_TX_SIZE *
1469                                           sizeof(struct dma_extended_desc),
1470                                           tx_q->dma_etx, tx_q->dma_tx_phy);
1471
1472                 kfree(tx_q->tx_skbuff_dma);
1473                 kfree(tx_q->tx_skbuff);
1474         }
1475 }
1476
1477 /**
1478  * alloc_dma_rx_desc_resources - alloc RX resources.
1479  * @priv: private structure
1480  * Description: according to which descriptor can be used (extend or basic)
1481  * this function allocates the resources for TX and RX paths. In case of
1482  * reception, for example, it pre-allocated the RX socket buffer in order to
1483  * allow zero-copy mechanism.
1484  */
1485 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1486 {
1487         u32 rx_count = priv->plat->rx_queues_to_use;
1488         int ret = -ENOMEM;
1489         u32 queue;
1490
1491         /* RX queues buffers and DMA */
1492         for (queue = 0; queue < rx_count; queue++) {
1493                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1494
1495                 rx_q->queue_index = queue;
1496                 rx_q->priv_data = priv;
1497
1498                 rx_q->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE,
1499                                                     sizeof(dma_addr_t),
1500                                                     GFP_KERNEL);
1501                 if (!rx_q->rx_skbuff_dma)
1502                         goto err_dma;
1503
1504                 rx_q->rx_skbuff = kmalloc_array(DMA_RX_SIZE,
1505                                                 sizeof(struct sk_buff *),
1506                                                 GFP_KERNEL);
1507                 if (!rx_q->rx_skbuff)
1508                         goto err_dma;
1509
1510                 if (priv->extend_desc) {
1511                         rx_q->dma_erx = dma_alloc_coherent(priv->device,
1512                                                            DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1513                                                            &rx_q->dma_rx_phy,
1514                                                            GFP_KERNEL);
1515                         if (!rx_q->dma_erx)
1516                                 goto err_dma;
1517
1518                 } else {
1519                         rx_q->dma_rx = dma_alloc_coherent(priv->device,
1520                                                           DMA_RX_SIZE * sizeof(struct dma_desc),
1521                                                           &rx_q->dma_rx_phy,
1522                                                           GFP_KERNEL);
1523                         if (!rx_q->dma_rx)
1524                                 goto err_dma;
1525                 }
1526         }
1527
1528         return 0;
1529
1530 err_dma:
1531         free_dma_rx_desc_resources(priv);
1532
1533         return ret;
1534 }
1535
1536 /**
1537  * alloc_dma_tx_desc_resources - alloc TX resources.
1538  * @priv: private structure
1539  * Description: according to which descriptor can be used (extend or basic)
1540  * this function allocates the resources for TX and RX paths. In case of
1541  * reception, for example, it pre-allocated the RX socket buffer in order to
1542  * allow zero-copy mechanism.
1543  */
1544 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1545 {
1546         u32 tx_count = priv->plat->tx_queues_to_use;
1547         int ret = -ENOMEM;
1548         u32 queue;
1549
1550         /* TX queues buffers and DMA */
1551         for (queue = 0; queue < tx_count; queue++) {
1552                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1553
1554                 tx_q->queue_index = queue;
1555                 tx_q->priv_data = priv;
1556
1557                 tx_q->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1558                                                     sizeof(*tx_q->tx_skbuff_dma),
1559                                                     GFP_KERNEL);
1560                 if (!tx_q->tx_skbuff_dma)
1561                         goto err_dma;
1562
1563                 tx_q->tx_skbuff = kmalloc_array(DMA_TX_SIZE,
1564                                                 sizeof(struct sk_buff *),
1565                                                 GFP_KERNEL);
1566                 if (!tx_q->tx_skbuff)
1567                         goto err_dma;
1568
1569                 if (priv->extend_desc) {
1570                         tx_q->dma_etx = dma_alloc_coherent(priv->device,
1571                                                            DMA_TX_SIZE * sizeof(struct dma_extended_desc),
1572                                                            &tx_q->dma_tx_phy,
1573                                                            GFP_KERNEL);
1574                         if (!tx_q->dma_etx)
1575                                 goto err_dma;
1576                 } else {
1577                         tx_q->dma_tx = dma_alloc_coherent(priv->device,
1578                                                           DMA_TX_SIZE * sizeof(struct dma_desc),
1579                                                           &tx_q->dma_tx_phy,
1580                                                           GFP_KERNEL);
1581                         if (!tx_q->dma_tx)
1582                                 goto err_dma;
1583                 }
1584         }
1585
1586         return 0;
1587
1588 err_dma:
1589         free_dma_tx_desc_resources(priv);
1590
1591         return ret;
1592 }
1593
1594 /**
1595  * alloc_dma_desc_resources - alloc TX/RX resources.
1596  * @priv: private structure
1597  * Description: according to which descriptor can be used (extend or basic)
1598  * this function allocates the resources for TX and RX paths. In case of
1599  * reception, for example, it pre-allocated the RX socket buffer in order to
1600  * allow zero-copy mechanism.
1601  */
1602 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1603 {
1604         /* RX Allocation */
1605         int ret = alloc_dma_rx_desc_resources(priv);
1606
1607         if (ret)
1608                 return ret;
1609
1610         ret = alloc_dma_tx_desc_resources(priv);
1611
1612         return ret;
1613 }
1614
1615 /**
1616  * free_dma_desc_resources - free dma desc resources
1617  * @priv: private structure
1618  */
1619 static void free_dma_desc_resources(struct stmmac_priv *priv)
1620 {
1621         /* Release the DMA RX socket buffers */
1622         free_dma_rx_desc_resources(priv);
1623
1624         /* Release the DMA TX socket buffers */
1625         free_dma_tx_desc_resources(priv);
1626 }
1627
1628 /**
1629  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1630  *  @priv: driver private structure
1631  *  Description: It is used for enabling the rx queues in the MAC
1632  */
1633 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1634 {
1635         u32 rx_queues_count = priv->plat->rx_queues_to_use;
1636         int queue;
1637         u8 mode;
1638
1639         for (queue = 0; queue < rx_queues_count; queue++) {
1640                 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1641                 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1642         }
1643 }
1644
1645 /**
1646  * stmmac_start_rx_dma - start RX DMA channel
1647  * @priv: driver private structure
1648  * @chan: RX channel index
1649  * Description:
1650  * This starts a RX DMA channel
1651  */
1652 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1653 {
1654         netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1655         stmmac_start_rx(priv, priv->ioaddr, chan);
1656 }
1657
1658 /**
1659  * stmmac_start_tx_dma - start TX DMA channel
1660  * @priv: driver private structure
1661  * @chan: TX channel index
1662  * Description:
1663  * This starts a TX DMA channel
1664  */
1665 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1666 {
1667         netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1668         stmmac_start_tx(priv, priv->ioaddr, chan);
1669 }
1670
1671 /**
1672  * stmmac_stop_rx_dma - stop RX DMA channel
1673  * @priv: driver private structure
1674  * @chan: RX channel index
1675  * Description:
1676  * This stops a RX DMA channel
1677  */
1678 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1679 {
1680         netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1681         stmmac_stop_rx(priv, priv->ioaddr, chan);
1682 }
1683
1684 /**
1685  * stmmac_stop_tx_dma - stop TX DMA channel
1686  * @priv: driver private structure
1687  * @chan: TX channel index
1688  * Description:
1689  * This stops a TX DMA channel
1690  */
1691 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1692 {
1693         netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1694         stmmac_stop_tx(priv, priv->ioaddr, chan);
1695 }
1696
1697 /**
1698  * stmmac_start_all_dma - start all RX and TX DMA channels
1699  * @priv: driver private structure
1700  * Description:
1701  * This starts all the RX and TX DMA channels
1702  */
1703 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1704 {
1705         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1706         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1707         u32 chan = 0;
1708
1709         for (chan = 0; chan < rx_channels_count; chan++)
1710                 stmmac_start_rx_dma(priv, chan);
1711
1712         for (chan = 0; chan < tx_channels_count; chan++)
1713                 stmmac_start_tx_dma(priv, chan);
1714 }
1715
1716 /**
1717  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1718  * @priv: driver private structure
1719  * Description:
1720  * This stops the RX and TX DMA channels
1721  */
1722 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1723 {
1724         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1725         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1726         u32 chan = 0;
1727
1728         for (chan = 0; chan < rx_channels_count; chan++)
1729                 stmmac_stop_rx_dma(priv, chan);
1730
1731         for (chan = 0; chan < tx_channels_count; chan++)
1732                 stmmac_stop_tx_dma(priv, chan);
1733 }
1734
1735 /**
1736  *  stmmac_dma_operation_mode - HW DMA operation mode
1737  *  @priv: driver private structure
1738  *  Description: it is used for configuring the DMA operation mode register in
1739  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1740  */
1741 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1742 {
1743         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1744         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1745         int rxfifosz = priv->plat->rx_fifo_size;
1746         int txfifosz = priv->plat->tx_fifo_size;
1747         u32 txmode = 0;
1748         u32 rxmode = 0;
1749         u32 chan = 0;
1750         u8 qmode = 0;
1751
1752         if (rxfifosz == 0)
1753                 rxfifosz = priv->dma_cap.rx_fifo_size;
1754         if (txfifosz == 0)
1755                 txfifosz = priv->dma_cap.tx_fifo_size;
1756
1757         /* Adjust for real per queue fifo size */
1758         rxfifosz /= rx_channels_count;
1759         txfifosz /= tx_channels_count;
1760
1761         if (priv->plat->force_thresh_dma_mode) {
1762                 txmode = tc;
1763                 rxmode = tc;
1764         } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1765                 /*
1766                  * In case of GMAC, SF mode can be enabled
1767                  * to perform the TX COE in HW. This depends on:
1768                  * 1) TX COE if actually supported
1769                  * 2) There is no bugged Jumbo frame support
1770                  *    that needs to not insert csum in the TDES.
1771                  */
1772                 txmode = SF_DMA_MODE;
1773                 rxmode = SF_DMA_MODE;
1774                 priv->xstats.threshold = SF_DMA_MODE;
1775         } else {
1776                 txmode = tc;
1777                 rxmode = SF_DMA_MODE;
1778         }
1779
1780         /* configure all channels */
1781         for (chan = 0; chan < rx_channels_count; chan++) {
1782                 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1783
1784                 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1785                                 rxfifosz, qmode);
1786                 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1787                                 chan);
1788         }
1789
1790         for (chan = 0; chan < tx_channels_count; chan++) {
1791                 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1792
1793                 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1794                                 txfifosz, qmode);
1795         }
1796 }
1797
1798 /**
1799  * stmmac_tx_clean - to manage the transmission completion
1800  * @priv: driver private structure
1801  * @queue: TX queue index
1802  * Description: it reclaims the transmit resources after transmission completes.
1803  */
1804 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1805 {
1806         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1807         unsigned int bytes_compl = 0, pkts_compl = 0;
1808         unsigned int entry, count = 0;
1809
1810         __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1811
1812         priv->xstats.tx_clean++;
1813
1814         entry = tx_q->dirty_tx;
1815         while ((entry != tx_q->cur_tx) && (count < budget)) {
1816                 struct sk_buff *skb = tx_q->tx_skbuff[entry];
1817                 struct dma_desc *p;
1818                 int status;
1819
1820                 if (priv->extend_desc)
1821                         p = (struct dma_desc *)(tx_q->dma_etx + entry);
1822                 else
1823                         p = tx_q->dma_tx + entry;
1824
1825                 status = stmmac_tx_status(priv, &priv->dev->stats,
1826                                 &priv->xstats, p, priv->ioaddr);
1827                 /* Check if the descriptor is owned by the DMA */
1828                 if (unlikely(status & tx_dma_own))
1829                         break;
1830
1831                 count++;
1832
1833                 /* Make sure descriptor fields are read after reading
1834                  * the own bit.
1835                  */
1836                 dma_rmb();
1837
1838                 /* Just consider the last segment and ...*/
1839                 if (likely(!(status & tx_not_ls))) {
1840                         /* ... verify the status error condition */
1841                         if (unlikely(status & tx_err)) {
1842                                 priv->dev->stats.tx_errors++;
1843                         } else {
1844                                 priv->dev->stats.tx_packets++;
1845                                 priv->xstats.tx_pkt_n++;
1846                         }
1847                         stmmac_get_tx_hwtstamp(priv, p, skb);
1848                 }
1849
1850                 if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1851                         if (tx_q->tx_skbuff_dma[entry].map_as_page)
1852                                 dma_unmap_page(priv->device,
1853                                                tx_q->tx_skbuff_dma[entry].buf,
1854                                                tx_q->tx_skbuff_dma[entry].len,
1855                                                DMA_TO_DEVICE);
1856                         else
1857                                 dma_unmap_single(priv->device,
1858                                                  tx_q->tx_skbuff_dma[entry].buf,
1859                                                  tx_q->tx_skbuff_dma[entry].len,
1860                                                  DMA_TO_DEVICE);
1861                         tx_q->tx_skbuff_dma[entry].buf = 0;
1862                         tx_q->tx_skbuff_dma[entry].len = 0;
1863                         tx_q->tx_skbuff_dma[entry].map_as_page = false;
1864                 }
1865
1866                 stmmac_clean_desc3(priv, tx_q, p);
1867
1868                 tx_q->tx_skbuff_dma[entry].last_segment = false;
1869                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1870
1871                 if (likely(skb != NULL)) {
1872                         pkts_compl++;
1873                         bytes_compl += skb->len;
1874                         dev_consume_skb_any(skb);
1875                         tx_q->tx_skbuff[entry] = NULL;
1876                 }
1877
1878                 stmmac_release_tx_desc(priv, p, priv->mode);
1879
1880                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1881         }
1882         tx_q->dirty_tx = entry;
1883
1884         netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1885                                   pkts_compl, bytes_compl);
1886
1887         if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1888                                                                 queue))) &&
1889             stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1890
1891                 netif_dbg(priv, tx_done, priv->dev,
1892                           "%s: restart transmit\n", __func__);
1893                 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1894         }
1895
1896         if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1897                 stmmac_enable_eee_mode(priv);
1898                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1899         }
1900
1901         /* We still have pending packets, let's call for a new scheduling */
1902         if (tx_q->dirty_tx != tx_q->cur_tx)
1903                 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
1904
1905         __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1906
1907         return count;
1908 }
1909
1910 /**
1911  * stmmac_tx_err - to manage the tx error
1912  * @priv: driver private structure
1913  * @chan: channel index
1914  * Description: it cleans the descriptors and restarts the transmission
1915  * in case of transmission errors.
1916  */
1917 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1918 {
1919         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1920         int i;
1921
1922         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1923
1924         stmmac_stop_tx_dma(priv, chan);
1925         dma_free_tx_skbufs(priv, chan);
1926         for (i = 0; i < DMA_TX_SIZE; i++)
1927                 if (priv->extend_desc)
1928                         stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1929                                         priv->mode, (i == DMA_TX_SIZE - 1));
1930                 else
1931                         stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1932                                         priv->mode, (i == DMA_TX_SIZE - 1));
1933         tx_q->dirty_tx = 0;
1934         tx_q->cur_tx = 0;
1935         tx_q->mss = 0;
1936         netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
1937         stmmac_start_tx_dma(priv, chan);
1938
1939         priv->dev->stats.tx_errors++;
1940         netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
1941 }
1942
1943 /**
1944  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
1945  *  @priv: driver private structure
1946  *  @txmode: TX operating mode
1947  *  @rxmode: RX operating mode
1948  *  @chan: channel index
1949  *  Description: it is used for configuring of the DMA operation mode in
1950  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
1951  *  mode.
1952  */
1953 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
1954                                           u32 rxmode, u32 chan)
1955 {
1956         u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1957         u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1958         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1959         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1960         int rxfifosz = priv->plat->rx_fifo_size;
1961         int txfifosz = priv->plat->tx_fifo_size;
1962
1963         if (rxfifosz == 0)
1964                 rxfifosz = priv->dma_cap.rx_fifo_size;
1965         if (txfifosz == 0)
1966                 txfifosz = priv->dma_cap.tx_fifo_size;
1967
1968         /* Adjust for real per queue fifo size */
1969         rxfifosz /= rx_channels_count;
1970         txfifosz /= tx_channels_count;
1971
1972         stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
1973         stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
1974 }
1975
1976 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
1977 {
1978         int ret;
1979
1980         ret = stmmac_safety_feat_irq_status(priv, priv->dev,
1981                         priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
1982         if (ret && (ret != -EINVAL)) {
1983                 stmmac_global_err(priv);
1984                 return true;
1985         }
1986
1987         return false;
1988 }
1989
1990 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
1991 {
1992         int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
1993                                                  &priv->xstats, chan);
1994         struct stmmac_channel *ch = &priv->channel[chan];
1995
1996         if (status)
1997                 status |= handle_rx | handle_tx;
1998
1999         if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2000                 stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2001                 napi_schedule_irqoff(&ch->rx_napi);
2002         }
2003
2004         if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2005                 stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2006                 napi_schedule_irqoff(&ch->tx_napi);
2007         }
2008
2009         return status;
2010 }
2011
2012 /**
2013  * stmmac_dma_interrupt - DMA ISR
2014  * @priv: driver private structure
2015  * Description: this is the DMA ISR. It is called by the main ISR.
2016  * It calls the dwmac dma routine and schedule poll method in case of some
2017  * work can be done.
2018  */
2019 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2020 {
2021         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2022         u32 rx_channel_count = priv->plat->rx_queues_to_use;
2023         u32 channels_to_check = tx_channel_count > rx_channel_count ?
2024                                 tx_channel_count : rx_channel_count;
2025         u32 chan;
2026         int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2027
2028         /* Make sure we never check beyond our status buffer. */
2029         if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2030                 channels_to_check = ARRAY_SIZE(status);
2031
2032         for (chan = 0; chan < channels_to_check; chan++)
2033                 status[chan] = stmmac_napi_check(priv, chan);
2034
2035         for (chan = 0; chan < tx_channel_count; chan++) {
2036                 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2037                         /* Try to bump up the dma threshold on this failure */
2038                         if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2039                             (tc <= 256)) {
2040                                 tc += 64;
2041                                 if (priv->plat->force_thresh_dma_mode)
2042                                         stmmac_set_dma_operation_mode(priv,
2043                                                                       tc,
2044                                                                       tc,
2045                                                                       chan);
2046                                 else
2047                                         stmmac_set_dma_operation_mode(priv,
2048                                                                     tc,
2049                                                                     SF_DMA_MODE,
2050                                                                     chan);
2051                                 priv->xstats.threshold = tc;
2052                         }
2053                 } else if (unlikely(status[chan] == tx_hard_error)) {
2054                         stmmac_tx_err(priv, chan);
2055                 }
2056         }
2057 }
2058
2059 /**
2060  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2061  * @priv: driver private structure
2062  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2063  */
2064 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2065 {
2066         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2067                             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2068
2069         stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2070
2071         if (priv->dma_cap.rmon) {
2072                 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2073                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2074         } else
2075                 netdev_info(priv->dev, "No MAC Management Counters available\n");
2076 }
2077
2078 /**
2079  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2080  * @priv: driver private structure
2081  * Description:
2082  *  new GMAC chip generations have a new register to indicate the
2083  *  presence of the optional feature/functions.
2084  *  This can be also used to override the value passed through the
2085  *  platform and necessary for old MAC10/100 and GMAC chips.
2086  */
2087 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2088 {
2089         return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2090 }
2091
2092 /**
2093  * stmmac_check_ether_addr - check if the MAC addr is valid
2094  * @priv: driver private structure
2095  * Description:
2096  * it is to verify if the MAC address is valid, in case of failures it
2097  * generates a random MAC address
2098  */
2099 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2100 {
2101         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2102                 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2103                 if (!is_valid_ether_addr(priv->dev->dev_addr))
2104                         eth_hw_addr_random(priv->dev);
2105                 dev_info(priv->device, "device MAC address %pM\n",
2106                          priv->dev->dev_addr);
2107         }
2108 }
2109
2110 /**
2111  * stmmac_init_dma_engine - DMA init.
2112  * @priv: driver private structure
2113  * Description:
2114  * It inits the DMA invoking the specific MAC/GMAC callback.
2115  * Some DMA parameters can be passed from the platform;
2116  * in case of these are not passed a default is kept for the MAC or GMAC.
2117  */
2118 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2119 {
2120         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2121         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2122         u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2123         struct stmmac_rx_queue *rx_q;
2124         struct stmmac_tx_queue *tx_q;
2125         u32 chan = 0;
2126         int atds = 0;
2127         int ret = 0;
2128
2129         if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2130                 dev_err(priv->device, "Invalid DMA configuration\n");
2131                 return -EINVAL;
2132         }
2133
2134         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2135                 atds = 1;
2136
2137         ret = stmmac_reset(priv, priv->ioaddr);
2138         if (ret) {
2139                 dev_err(priv->device, "Failed to reset the dma\n");
2140                 return ret;
2141         }
2142
2143         /* DMA Configuration */
2144         stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2145
2146         if (priv->plat->axi)
2147                 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2148
2149         /* DMA CSR Channel configuration */
2150         for (chan = 0; chan < dma_csr_ch; chan++)
2151                 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2152
2153         /* DMA RX Channel Configuration */
2154         for (chan = 0; chan < rx_channels_count; chan++) {
2155                 rx_q = &priv->rx_queue[chan];
2156
2157                 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2158                                     rx_q->dma_rx_phy, chan);
2159
2160                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2161                             (DMA_RX_SIZE * sizeof(struct dma_desc));
2162                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2163                                        rx_q->rx_tail_addr, chan);
2164         }
2165
2166         /* DMA TX Channel Configuration */
2167         for (chan = 0; chan < tx_channels_count; chan++) {
2168                 tx_q = &priv->tx_queue[chan];
2169
2170                 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2171                                     tx_q->dma_tx_phy, chan);
2172
2173                 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2174                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2175                                        tx_q->tx_tail_addr, chan);
2176         }
2177
2178         return ret;
2179 }
2180
2181 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2182 {
2183         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2184
2185         mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2186 }
2187
2188 /**
2189  * stmmac_tx_timer - mitigation sw timer for tx.
2190  * @data: data pointer
2191  * Description:
2192  * This is the timer handler to directly invoke the stmmac_tx_clean.
2193  */
2194 static void stmmac_tx_timer(struct timer_list *t)
2195 {
2196         struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2197         struct stmmac_priv *priv = tx_q->priv_data;
2198         struct stmmac_channel *ch;
2199
2200         ch = &priv->channel[tx_q->queue_index];
2201
2202         /*
2203          * If NAPI is already running we can miss some events. Let's rearm
2204          * the timer and try again.
2205          */
2206         if (likely(napi_schedule_prep(&ch->tx_napi)))
2207                 __napi_schedule(&ch->tx_napi);
2208         else
2209                 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
2210 }
2211
2212 /**
2213  * stmmac_init_tx_coalesce - init tx mitigation options.
2214  * @priv: driver private structure
2215  * Description:
2216  * This inits the transmit coalesce parameters: i.e. timer rate,
2217  * timer handler and default threshold used for enabling the
2218  * interrupt on completion bit.
2219  */
2220 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
2221 {
2222         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2223         u32 chan;
2224
2225         priv->tx_coal_frames = STMMAC_TX_FRAMES;
2226         priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2227
2228         for (chan = 0; chan < tx_channel_count; chan++) {
2229                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2230
2231                 timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2232         }
2233 }
2234
2235 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2236 {
2237         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2238         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2239         u32 chan;
2240
2241         /* set TX ring length */
2242         for (chan = 0; chan < tx_channels_count; chan++)
2243                 stmmac_set_tx_ring_len(priv, priv->ioaddr,
2244                                 (DMA_TX_SIZE - 1), chan);
2245
2246         /* set RX ring length */
2247         for (chan = 0; chan < rx_channels_count; chan++)
2248                 stmmac_set_rx_ring_len(priv, priv->ioaddr,
2249                                 (DMA_RX_SIZE - 1), chan);
2250 }
2251
2252 /**
2253  *  stmmac_set_tx_queue_weight - Set TX queue weight
2254  *  @priv: driver private structure
2255  *  Description: It is used for setting TX queues weight
2256  */
2257 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2258 {
2259         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2260         u32 weight;
2261         u32 queue;
2262
2263         for (queue = 0; queue < tx_queues_count; queue++) {
2264                 weight = priv->plat->tx_queues_cfg[queue].weight;
2265                 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2266         }
2267 }
2268
2269 /**
2270  *  stmmac_configure_cbs - Configure CBS in TX queue
2271  *  @priv: driver private structure
2272  *  Description: It is used for configuring CBS in AVB TX queues
2273  */
2274 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2275 {
2276         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2277         u32 mode_to_use;
2278         u32 queue;
2279
2280         /* queue 0 is reserved for legacy traffic */
2281         for (queue = 1; queue < tx_queues_count; queue++) {
2282                 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2283                 if (mode_to_use == MTL_QUEUE_DCB)
2284                         continue;
2285
2286                 stmmac_config_cbs(priv, priv->hw,
2287                                 priv->plat->tx_queues_cfg[queue].send_slope,
2288                                 priv->plat->tx_queues_cfg[queue].idle_slope,
2289                                 priv->plat->tx_queues_cfg[queue].high_credit,
2290                                 priv->plat->tx_queues_cfg[queue].low_credit,
2291                                 queue);
2292         }
2293 }
2294
2295 /**
2296  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2297  *  @priv: driver private structure
2298  *  Description: It is used for mapping RX queues to RX dma channels
2299  */
2300 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2301 {
2302         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2303         u32 queue;
2304         u32 chan;
2305
2306         for (queue = 0; queue < rx_queues_count; queue++) {
2307                 chan = priv->plat->rx_queues_cfg[queue].chan;
2308                 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2309         }
2310 }
2311
2312 /**
2313  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2314  *  @priv: driver private structure
2315  *  Description: It is used for configuring the RX Queue Priority
2316  */
2317 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2318 {
2319         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2320         u32 queue;
2321         u32 prio;
2322
2323         for (queue = 0; queue < rx_queues_count; queue++) {
2324                 if (!priv->plat->rx_queues_cfg[queue].use_prio)
2325                         continue;
2326
2327                 prio = priv->plat->rx_queues_cfg[queue].prio;
2328                 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2329         }
2330 }
2331
2332 /**
2333  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2334  *  @priv: driver private structure
2335  *  Description: It is used for configuring the TX Queue Priority
2336  */
2337 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2338 {
2339         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2340         u32 queue;
2341         u32 prio;
2342
2343         for (queue = 0; queue < tx_queues_count; queue++) {
2344                 if (!priv->plat->tx_queues_cfg[queue].use_prio)
2345                         continue;
2346
2347                 prio = priv->plat->tx_queues_cfg[queue].prio;
2348                 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2349         }
2350 }
2351
2352 /**
2353  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2354  *  @priv: driver private structure
2355  *  Description: It is used for configuring the RX queue routing
2356  */
2357 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2358 {
2359         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2360         u32 queue;
2361         u8 packet;
2362
2363         for (queue = 0; queue < rx_queues_count; queue++) {
2364                 /* no specific packet type routing specified for the queue */
2365                 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2366                         continue;
2367
2368                 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2369                 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2370         }
2371 }
2372
2373 /**
2374  *  stmmac_mtl_configuration - Configure MTL
2375  *  @priv: driver private structure
2376  *  Description: It is used for configurring MTL
2377  */
2378 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2379 {
2380         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2381         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2382
2383         if (tx_queues_count > 1)
2384                 stmmac_set_tx_queue_weight(priv);
2385
2386         /* Configure MTL RX algorithms */
2387         if (rx_queues_count > 1)
2388                 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2389                                 priv->plat->rx_sched_algorithm);
2390
2391         /* Configure MTL TX algorithms */
2392         if (tx_queues_count > 1)
2393                 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2394                                 priv->plat->tx_sched_algorithm);
2395
2396         /* Configure CBS in AVB TX queues */
2397         if (tx_queues_count > 1)
2398                 stmmac_configure_cbs(priv);
2399
2400         /* Map RX MTL to DMA channels */
2401         stmmac_rx_queue_dma_chan_map(priv);
2402
2403         /* Enable MAC RX Queues */
2404         stmmac_mac_enable_rx_queues(priv);
2405
2406         /* Set RX priorities */
2407         if (rx_queues_count > 1)
2408                 stmmac_mac_config_rx_queues_prio(priv);
2409
2410         /* Set TX priorities */
2411         if (tx_queues_count > 1)
2412                 stmmac_mac_config_tx_queues_prio(priv);
2413
2414         /* Set RX routing */
2415         if (rx_queues_count > 1)
2416                 stmmac_mac_config_rx_queues_routing(priv);
2417 }
2418
2419 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2420 {
2421         if (priv->dma_cap.asp) {
2422                 netdev_info(priv->dev, "Enabling Safety Features\n");
2423                 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2424         } else {
2425                 netdev_info(priv->dev, "No Safety Features support found\n");
2426         }
2427 }
2428
2429 /**
2430  * stmmac_hw_setup - setup mac in a usable state.
2431  *  @dev : pointer to the device structure.
2432  *  Description:
2433  *  this is the main function to setup the HW in a usable state because the
2434  *  dma engine is reset, the core registers are configured (e.g. AXI,
2435  *  Checksum features, timers). The DMA is ready to start receiving and
2436  *  transmitting.
2437  *  Return value:
2438  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2439  *  file on failure.
2440  */
2441 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2442 {
2443         struct stmmac_priv *priv = netdev_priv(dev);
2444         u32 rx_cnt = priv->plat->rx_queues_to_use;
2445         u32 tx_cnt = priv->plat->tx_queues_to_use;
2446         u32 chan;
2447         int ret;
2448
2449         /* DMA initialization and SW reset */
2450         ret = stmmac_init_dma_engine(priv);
2451         if (ret < 0) {
2452                 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2453                            __func__);
2454                 return ret;
2455         }
2456
2457         /* Copy the MAC addr into the HW  */
2458         stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2459
2460         /* PS and related bits will be programmed according to the speed */
2461         if (priv->hw->pcs) {
2462                 int speed = priv->plat->mac_port_sel_speed;
2463
2464                 if ((speed == SPEED_10) || (speed == SPEED_100) ||
2465                     (speed == SPEED_1000)) {
2466                         priv->hw->ps = speed;
2467                 } else {
2468                         dev_warn(priv->device, "invalid port speed\n");
2469                         priv->hw->ps = 0;
2470                 }
2471         }
2472
2473         /* Initialize the MAC Core */
2474         stmmac_core_init(priv, priv->hw, dev);
2475
2476         /* Initialize MTL*/
2477         stmmac_mtl_configuration(priv);
2478
2479         /* Initialize Safety Features */
2480         stmmac_safety_feat_configuration(priv);
2481
2482         ret = stmmac_rx_ipc(priv, priv->hw);
2483         if (!ret) {
2484                 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2485                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2486                 priv->hw->rx_csum = 0;
2487         }
2488
2489         /* Enable the MAC Rx/Tx */
2490         stmmac_mac_set(priv, priv->ioaddr, true);
2491
2492         /* Set the HW DMA mode and the COE */
2493         stmmac_dma_operation_mode(priv);
2494
2495         stmmac_mmc_setup(priv);
2496
2497         if (init_ptp) {
2498                 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2499                 if (ret < 0)
2500                         netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2501
2502                 ret = stmmac_init_ptp(priv);
2503                 if (ret == -EOPNOTSUPP)
2504                         netdev_warn(priv->dev, "PTP not supported by HW\n");
2505                 else if (ret)
2506                         netdev_warn(priv->dev, "PTP init failed\n");
2507         }
2508
2509         priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2510
2511         if (priv->use_riwt) {
2512                 ret = stmmac_rx_watchdog(priv, priv->ioaddr, MAX_DMA_RIWT, rx_cnt);
2513                 if (!ret)
2514                         priv->rx_riwt = MAX_DMA_RIWT;
2515         }
2516
2517         if (priv->hw->pcs)
2518                 stmmac_pcs_ctrl_ane(priv, priv->hw, 1, priv->hw->ps, 0);
2519
2520         /* set TX and RX rings length */
2521         stmmac_set_rings_length(priv);
2522
2523         /* Enable TSO */
2524         if (priv->tso) {
2525                 for (chan = 0; chan < tx_cnt; chan++)
2526                         stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2527         }
2528
2529         /* Start the ball rolling... */
2530         stmmac_start_all_dma(priv);
2531
2532         return 0;
2533 }
2534
2535 static void stmmac_hw_teardown(struct net_device *dev)
2536 {
2537         struct stmmac_priv *priv = netdev_priv(dev);
2538
2539         clk_disable_unprepare(priv->plat->clk_ptp_ref);
2540 }
2541
2542 /**
2543  *  stmmac_open - open entry point of the driver
2544  *  @dev : pointer to the device structure.
2545  *  Description:
2546  *  This function is the open entry point of the driver.
2547  *  Return value:
2548  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2549  *  file on failure.
2550  */
2551 static int stmmac_open(struct net_device *dev)
2552 {
2553         struct stmmac_priv *priv = netdev_priv(dev);
2554         u32 chan;
2555         int ret;
2556
2557         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2558             priv->hw->pcs != STMMAC_PCS_TBI &&
2559             priv->hw->pcs != STMMAC_PCS_RTBI) {
2560                 ret = stmmac_init_phy(dev);
2561                 if (ret) {
2562                         netdev_err(priv->dev,
2563                                    "%s: Cannot attach to PHY (error: %d)\n",
2564                                    __func__, ret);
2565                         return ret;
2566                 }
2567         }
2568
2569         /* Extra statistics */
2570         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2571         priv->xstats.threshold = tc;
2572
2573         priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2574         priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2575
2576         ret = alloc_dma_desc_resources(priv);
2577         if (ret < 0) {
2578                 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2579                            __func__);
2580                 goto dma_desc_error;
2581         }
2582
2583         ret = init_dma_desc_rings(dev, GFP_KERNEL);
2584         if (ret < 0) {
2585                 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2586                            __func__);
2587                 goto init_error;
2588         }
2589
2590         ret = stmmac_hw_setup(dev, true);
2591         if (ret < 0) {
2592                 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2593                 goto init_error;
2594         }
2595
2596         stmmac_init_tx_coalesce(priv);
2597
2598         phylink_start(priv->phylink);
2599
2600         /* Request the IRQ lines */
2601         ret = request_irq(dev->irq, stmmac_interrupt,
2602                           IRQF_SHARED, dev->name, dev);
2603         if (unlikely(ret < 0)) {
2604                 netdev_err(priv->dev,
2605                            "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2606                            __func__, dev->irq, ret);
2607                 goto irq_error;
2608         }
2609
2610         /* Request the Wake IRQ in case of another line is used for WoL */
2611         if (priv->wol_irq != dev->irq) {
2612                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
2613                                   IRQF_SHARED, dev->name, dev);
2614                 if (unlikely(ret < 0)) {
2615                         netdev_err(priv->dev,
2616                                    "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2617                                    __func__, priv->wol_irq, ret);
2618                         goto wolirq_error;
2619                 }
2620         }
2621
2622         /* Request the IRQ lines */
2623         if (priv->lpi_irq > 0) {
2624                 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2625                                   dev->name, dev);
2626                 if (unlikely(ret < 0)) {
2627                         netdev_err(priv->dev,
2628                                    "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2629                                    __func__, priv->lpi_irq, ret);
2630                         goto lpiirq_error;
2631                 }
2632         }
2633
2634         stmmac_enable_all_queues(priv);
2635         stmmac_start_all_queues(priv);
2636
2637         return 0;
2638
2639 lpiirq_error:
2640         if (priv->wol_irq != dev->irq)
2641                 free_irq(priv->wol_irq, dev);
2642 wolirq_error:
2643         free_irq(dev->irq, dev);
2644 irq_error:
2645         phylink_stop(priv->phylink);
2646
2647         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2648                 del_timer_sync(&priv->tx_queue[chan].txtimer);
2649
2650         stmmac_hw_teardown(dev);
2651 init_error:
2652         free_dma_desc_resources(priv);
2653 dma_desc_error:
2654         phylink_disconnect_phy(priv->phylink);
2655         return ret;
2656 }
2657
2658 /**
2659  *  stmmac_release - close entry point of the driver
2660  *  @dev : device pointer.
2661  *  Description:
2662  *  This is the stop entry point of the driver.
2663  */
2664 static int stmmac_release(struct net_device *dev)
2665 {
2666         struct stmmac_priv *priv = netdev_priv(dev);
2667         u32 chan;
2668
2669         if (priv->eee_enabled)
2670                 del_timer_sync(&priv->eee_ctrl_timer);
2671
2672         /* Stop and disconnect the PHY */
2673         phylink_stop(priv->phylink);
2674         phylink_disconnect_phy(priv->phylink);
2675
2676         stmmac_stop_all_queues(priv);
2677
2678         stmmac_disable_all_queues(priv);
2679
2680         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2681                 del_timer_sync(&priv->tx_queue[chan].txtimer);
2682
2683         /* Free the IRQ lines */
2684         free_irq(dev->irq, dev);
2685         if (priv->wol_irq != dev->irq)
2686                 free_irq(priv->wol_irq, dev);
2687         if (priv->lpi_irq > 0)
2688                 free_irq(priv->lpi_irq, dev);
2689
2690         /* Stop TX/RX DMA and clear the descriptors */
2691         stmmac_stop_all_dma(priv);
2692
2693         /* Release and free the Rx/Tx resources */
2694         free_dma_desc_resources(priv);
2695
2696         /* Disable the MAC Rx/Tx */
2697         stmmac_mac_set(priv, priv->ioaddr, false);
2698
2699         netif_carrier_off(dev);
2700
2701         stmmac_release_ptp(priv);
2702
2703         return 0;
2704 }
2705
2706 /**
2707  *  stmmac_tso_allocator - close entry point of the driver
2708  *  @priv: driver private structure
2709  *  @des: buffer start address
2710  *  @total_len: total length to fill in descriptors
2711  *  @last_segmant: condition for the last descriptor
2712  *  @queue: TX queue index
2713  *  Description:
2714  *  This function fills descriptor and request new descriptors according to
2715  *  buffer length to fill
2716  */
2717 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
2718                                  int total_len, bool last_segment, u32 queue)
2719 {
2720         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2721         struct dma_desc *desc;
2722         u32 buff_size;
2723         int tmp_len;
2724
2725         tmp_len = total_len;
2726
2727         while (tmp_len > 0) {
2728                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2729                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2730                 desc = tx_q->dma_tx + tx_q->cur_tx;
2731
2732                 desc->des0 = cpu_to_le32(des + (total_len - tmp_len));
2733                 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2734                             TSO_MAX_BUFF_SIZE : tmp_len;
2735
2736                 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2737                                 0, 1,
2738                                 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2739                                 0, 0);
2740
2741                 tmp_len -= TSO_MAX_BUFF_SIZE;
2742         }
2743 }
2744
2745 /**
2746  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2747  *  @skb : the socket buffer
2748  *  @dev : device pointer
2749  *  Description: this is the transmit function that is called on TSO frames
2750  *  (support available on GMAC4 and newer chips).
2751  *  Diagram below show the ring programming in case of TSO frames:
2752  *
2753  *  First Descriptor
2754  *   --------
2755  *   | DES0 |---> buffer1 = L2/L3/L4 header
2756  *   | DES1 |---> TCP Payload (can continue on next descr...)
2757  *   | DES2 |---> buffer 1 and 2 len
2758  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2759  *   --------
2760  *      |
2761  *     ...
2762  *      |
2763  *   --------
2764  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2765  *   | DES1 | --|
2766  *   | DES2 | --> buffer 1 and 2 len
2767  *   | DES3 |
2768  *   --------
2769  *
2770  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2771  */
2772 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2773 {
2774         struct dma_desc *desc, *first, *mss_desc = NULL;
2775         struct stmmac_priv *priv = netdev_priv(dev);
2776         int nfrags = skb_shinfo(skb)->nr_frags;
2777         u32 queue = skb_get_queue_mapping(skb);
2778         unsigned int first_entry, des;
2779         struct stmmac_tx_queue *tx_q;
2780         int tmp_pay_len = 0;
2781         u32 pay_len, mss;
2782         u8 proto_hdr_len;
2783         int i;
2784
2785         tx_q = &priv->tx_queue[queue];
2786
2787         /* Compute header lengths */
2788         proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2789
2790         /* Desc availability based on threshold should be enough safe */
2791         if (unlikely(stmmac_tx_avail(priv, queue) <
2792                 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2793                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2794                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2795                                                                 queue));
2796                         /* This is a hard error, log it. */
2797                         netdev_err(priv->dev,
2798                                    "%s: Tx Ring full when queue awake\n",
2799                                    __func__);
2800                 }
2801                 return NETDEV_TX_BUSY;
2802         }
2803
2804         pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2805
2806         mss = skb_shinfo(skb)->gso_size;
2807
2808         /* set new MSS value if needed */
2809         if (mss != tx_q->mss) {
2810                 mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2811                 stmmac_set_mss(priv, mss_desc, mss);
2812                 tx_q->mss = mss;
2813                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2814                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2815         }
2816
2817         if (netif_msg_tx_queued(priv)) {
2818                 pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2819                         __func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2820                 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2821                         skb->data_len);
2822         }
2823
2824         first_entry = tx_q->cur_tx;
2825         WARN_ON(tx_q->tx_skbuff[first_entry]);
2826
2827         desc = tx_q->dma_tx + first_entry;
2828         first = desc;
2829
2830         /* first descriptor: fill Headers on Buf1 */
2831         des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2832                              DMA_TO_DEVICE);
2833         if (dma_mapping_error(priv->device, des))
2834                 goto dma_map_err;
2835
2836         tx_q->tx_skbuff_dma[first_entry].buf = des;
2837         tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2838
2839         first->des0 = cpu_to_le32(des);
2840
2841         /* Fill start of payload in buff2 of first descriptor */
2842         if (pay_len)
2843                 first->des1 = cpu_to_le32(des + proto_hdr_len);
2844
2845         /* If needed take extra descriptors to fill the remaining payload */
2846         tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2847
2848         stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
2849
2850         /* Prepare fragments */
2851         for (i = 0; i < nfrags; i++) {
2852                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2853
2854                 des = skb_frag_dma_map(priv->device, frag, 0,
2855                                        skb_frag_size(frag),
2856                                        DMA_TO_DEVICE);
2857                 if (dma_mapping_error(priv->device, des))
2858                         goto dma_map_err;
2859
2860                 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2861                                      (i == nfrags - 1), queue);
2862
2863                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
2864                 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
2865                 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
2866         }
2867
2868         tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
2869
2870         /* Only the last descriptor gets to point to the skb. */
2871         tx_q->tx_skbuff[tx_q->cur_tx] = skb;
2872
2873         /* We've used all descriptors we need for this skb, however,
2874          * advance cur_tx so that it references a fresh descriptor.
2875          * ndo_start_xmit will fill this descriptor the next time it's
2876          * called and stmmac_tx_clean may clean up to this descriptor.
2877          */
2878         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2879
2880         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
2881                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
2882                           __func__);
2883                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
2884         }
2885
2886         dev->stats.tx_bytes += skb->len;
2887         priv->xstats.tx_tso_frames++;
2888         priv->xstats.tx_tso_nfrags += nfrags;
2889
2890         /* Manage tx mitigation */
2891         tx_q->tx_count_frames += nfrags + 1;
2892         if (priv->tx_coal_frames <= tx_q->tx_count_frames) {
2893                 stmmac_set_tx_ic(priv, desc);
2894                 priv->xstats.tx_set_ic_bit++;
2895                 tx_q->tx_count_frames = 0;
2896         } else {
2897                 stmmac_tx_timer_arm(priv, queue);
2898         }
2899
2900         skb_tx_timestamp(skb);
2901
2902         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2903                      priv->hwts_tx_en)) {
2904                 /* declare that device is doing timestamping */
2905                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2906                 stmmac_enable_tx_timestamp(priv, first);
2907         }
2908
2909         /* Complete the first descriptor before granting the DMA */
2910         stmmac_prepare_tso_tx_desc(priv, first, 1,
2911                         proto_hdr_len,
2912                         pay_len,
2913                         1, tx_q->tx_skbuff_dma[first_entry].last_segment,
2914                         tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2915
2916         /* If context desc is used to change MSS */
2917         if (mss_desc) {
2918                 /* Make sure that first descriptor has been completely
2919                  * written, including its own bit. This is because MSS is
2920                  * actually before first descriptor, so we need to make
2921                  * sure that MSS's own bit is the last thing written.
2922                  */
2923                 dma_wmb();
2924                 stmmac_set_tx_owner(priv, mss_desc);
2925         }
2926
2927         /* The own bit must be the latest setting done when prepare the
2928          * descriptor and then barrier is needed to make sure that
2929          * all is coherent before granting the DMA engine.
2930          */
2931         wmb();
2932
2933         if (netif_msg_pktdata(priv)) {
2934                 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
2935                         __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
2936                         tx_q->cur_tx, first, nfrags);
2937
2938                 stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
2939
2940                 pr_info(">>> frame to be transmitted: ");
2941                 print_pkt(skb->data, skb_headlen(skb));
2942         }
2943
2944         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
2945
2946         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
2947         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
2948
2949         return NETDEV_TX_OK;
2950
2951 dma_map_err:
2952         dev_err(priv->device, "Tx dma map failed\n");
2953         dev_kfree_skb(skb);
2954         priv->dev->stats.tx_dropped++;
2955         return NETDEV_TX_OK;
2956 }
2957
2958 /**
2959  *  stmmac_xmit - Tx entry point of the driver
2960  *  @skb : the socket buffer
2961  *  @dev : device pointer
2962  *  Description : this is the tx entry point of the driver.
2963  *  It programs the chain or the ring and supports oversized frames
2964  *  and SG feature.
2965  */
2966 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
2967 {
2968         struct stmmac_priv *priv = netdev_priv(dev);
2969         unsigned int nopaged_len = skb_headlen(skb);
2970         int i, csum_insertion = 0, is_jumbo = 0;
2971         u32 queue = skb_get_queue_mapping(skb);
2972         int nfrags = skb_shinfo(skb)->nr_frags;
2973         int entry;
2974         unsigned int first_entry;
2975         struct dma_desc *desc, *first;
2976         struct stmmac_tx_queue *tx_q;
2977         unsigned int enh_desc;
2978         unsigned int des;
2979
2980         tx_q = &priv->tx_queue[queue];
2981
2982         if (priv->tx_path_in_lpi_mode)
2983                 stmmac_disable_eee_mode(priv);
2984
2985         /* Manage oversized TCP frames for GMAC4 device */
2986         if (skb_is_gso(skb) && priv->tso) {
2987                 if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
2988                         /*
2989                          * There is no way to determine the number of TSO
2990                          * capable Queues. Let's use always the Queue 0
2991                          * because if TSO is supported then at least this
2992                          * one will be capable.
2993                          */
2994                         skb_set_queue_mapping(skb, 0);
2995
2996                         return stmmac_tso_xmit(skb, dev);
2997                 }
2998         }
2999
3000         if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3001                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3002                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3003                                                                 queue));
3004                         /* This is a hard error, log it. */
3005                         netdev_err(priv->dev,
3006                                    "%s: Tx Ring full when queue awake\n",
3007                                    __func__);
3008                 }
3009                 return NETDEV_TX_BUSY;
3010         }
3011
3012         entry = tx_q->cur_tx;
3013         first_entry = entry;
3014         WARN_ON(tx_q->tx_skbuff[first_entry]);
3015
3016         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3017
3018         if (likely(priv->extend_desc))
3019                 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3020         else
3021                 desc = tx_q->dma_tx + entry;
3022
3023         first = desc;
3024
3025         enh_desc = priv->plat->enh_desc;
3026         /* To program the descriptors according to the size of the frame */
3027         if (enh_desc)
3028                 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3029
3030         if (unlikely(is_jumbo)) {
3031                 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3032                 if (unlikely(entry < 0) && (entry != -EINVAL))
3033                         goto dma_map_err;
3034         }
3035
3036         for (i = 0; i < nfrags; i++) {
3037                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3038                 int len = skb_frag_size(frag);
3039                 bool last_segment = (i == (nfrags - 1));
3040
3041                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3042                 WARN_ON(tx_q->tx_skbuff[entry]);
3043
3044                 if (likely(priv->extend_desc))
3045                         desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3046                 else
3047                         desc = tx_q->dma_tx + entry;
3048
3049                 des = skb_frag_dma_map(priv->device, frag, 0, len,
3050                                        DMA_TO_DEVICE);
3051                 if (dma_mapping_error(priv->device, des))
3052                         goto dma_map_err; /* should reuse desc w/o issues */
3053
3054                 tx_q->tx_skbuff_dma[entry].buf = des;
3055
3056                 stmmac_set_desc_addr(priv, desc, des);
3057
3058                 tx_q->tx_skbuff_dma[entry].map_as_page = true;
3059                 tx_q->tx_skbuff_dma[entry].len = len;
3060                 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3061
3062                 /* Prepare the descriptor and set the own bit too */
3063                 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3064                                 priv->mode, 1, last_segment, skb->len);
3065         }
3066
3067         /* Only the last descriptor gets to point to the skb. */
3068         tx_q->tx_skbuff[entry] = skb;
3069
3070         /* We've used all descriptors we need for this skb, however,
3071          * advance cur_tx so that it references a fresh descriptor.
3072          * ndo_start_xmit will fill this descriptor the next time it's
3073          * called and stmmac_tx_clean may clean up to this descriptor.
3074          */
3075         entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3076         tx_q->cur_tx = entry;
3077
3078         if (netif_msg_pktdata(priv)) {
3079                 void *tx_head;
3080
3081                 netdev_dbg(priv->dev,
3082                            "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3083                            __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3084                            entry, first, nfrags);
3085
3086                 if (priv->extend_desc)
3087                         tx_head = (void *)tx_q->dma_etx;
3088                 else
3089                         tx_head = (void *)tx_q->dma_tx;
3090
3091                 stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3092
3093                 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3094                 print_pkt(skb->data, skb->len);
3095         }
3096
3097         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3098                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3099                           __func__);
3100                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3101         }
3102
3103         dev->stats.tx_bytes += skb->len;
3104
3105         /* According to the coalesce parameter the IC bit for the latest
3106          * segment is reset and the timer re-started to clean the tx status.
3107          * This approach takes care about the fragments: desc is the first
3108          * element in case of no SG.
3109          */
3110         tx_q->tx_count_frames += nfrags + 1;
3111         if (priv->tx_coal_frames <= tx_q->tx_count_frames) {
3112                 stmmac_set_tx_ic(priv, desc);
3113                 priv->xstats.tx_set_ic_bit++;
3114                 tx_q->tx_count_frames = 0;
3115         } else {
3116                 stmmac_tx_timer_arm(priv, queue);
3117         }
3118
3119         skb_tx_timestamp(skb);
3120
3121         /* Ready to fill the first descriptor and set the OWN bit w/o any
3122          * problems because all the descriptors are actually ready to be
3123          * passed to the DMA engine.
3124          */
3125         if (likely(!is_jumbo)) {
3126                 bool last_segment = (nfrags == 0);
3127
3128                 des = dma_map_single(priv->device, skb->data,
3129                                      nopaged_len, DMA_TO_DEVICE);
3130                 if (dma_mapping_error(priv->device, des))
3131                         goto dma_map_err;
3132
3133                 tx_q->tx_skbuff_dma[first_entry].buf = des;
3134
3135                 stmmac_set_desc_addr(priv, first, des);
3136
3137                 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3138                 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3139
3140                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3141                              priv->hwts_tx_en)) {
3142                         /* declare that device is doing timestamping */
3143                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3144                         stmmac_enable_tx_timestamp(priv, first);
3145                 }
3146
3147                 /* Prepare the first descriptor setting the OWN bit too */
3148                 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3149                                 csum_insertion, priv->mode, 1, last_segment,
3150                                 skb->len);
3151         } else {
3152                 stmmac_set_tx_owner(priv, first);
3153         }
3154
3155         /* The own bit must be the latest setting done when prepare the
3156          * descriptor and then barrier is needed to make sure that
3157          * all is coherent before granting the DMA engine.
3158          */
3159         wmb();
3160
3161         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3162
3163         stmmac_enable_dma_transmission(priv, priv->ioaddr);
3164
3165         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3166         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3167
3168         return NETDEV_TX_OK;
3169
3170 dma_map_err:
3171         netdev_err(priv->dev, "Tx DMA map failed\n");
3172         dev_kfree_skb(skb);
3173         priv->dev->stats.tx_dropped++;
3174         return NETDEV_TX_OK;
3175 }
3176
3177 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3178 {
3179         struct vlan_ethhdr *veth;
3180         __be16 vlan_proto;
3181         u16 vlanid;
3182
3183         veth = (struct vlan_ethhdr *)skb->data;
3184         vlan_proto = veth->h_vlan_proto;
3185
3186         if ((vlan_proto == htons(ETH_P_8021Q) &&
3187              dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3188             (vlan_proto == htons(ETH_P_8021AD) &&
3189              dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3190                 /* pop the vlan tag */
3191                 vlanid = ntohs(veth->h_vlan_TCI);
3192                 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3193                 skb_pull(skb, VLAN_HLEN);
3194                 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3195         }
3196 }
3197
3198
3199 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3200 {
3201         if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3202                 return 0;
3203
3204         return 1;
3205 }
3206
3207 /**
3208  * stmmac_rx_refill - refill used skb preallocated buffers
3209  * @priv: driver private structure
3210  * @queue: RX queue index
3211  * Description : this is to reallocate the skb for the reception process
3212  * that is based on zero-copy.
3213  */
3214 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3215 {
3216         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3217         int dirty = stmmac_rx_dirty(priv, queue);
3218         unsigned int entry = rx_q->dirty_rx;
3219
3220         int bfsize = priv->dma_buf_sz;
3221
3222         while (dirty-- > 0) {
3223                 struct dma_desc *p;
3224
3225                 if (priv->extend_desc)
3226                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
3227                 else
3228                         p = rx_q->dma_rx + entry;
3229
3230                 if (likely(!rx_q->rx_skbuff[entry])) {
3231                         struct sk_buff *skb;
3232
3233                         skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
3234                         if (unlikely(!skb)) {
3235                                 /* so for a while no zero-copy! */
3236                                 rx_q->rx_zeroc_thresh = STMMAC_RX_THRESH;
3237                                 if (unlikely(net_ratelimit()))
3238                                         dev_err(priv->device,
3239                                                 "fail to alloc skb entry %d\n",
3240                                                 entry);
3241                                 break;
3242                         }
3243
3244                         rx_q->rx_skbuff[entry] = skb;
3245                         rx_q->rx_skbuff_dma[entry] =
3246                             dma_map_single(priv->device, skb->data, bfsize,
3247                                            DMA_FROM_DEVICE);
3248                         if (dma_mapping_error(priv->device,
3249                                               rx_q->rx_skbuff_dma[entry])) {
3250                                 netdev_err(priv->dev, "Rx DMA map failed\n");
3251                                 dev_kfree_skb(skb);
3252                                 break;
3253                         }
3254
3255                         stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[entry]);
3256                         stmmac_refill_desc3(priv, rx_q, p);
3257
3258                         if (rx_q->rx_zeroc_thresh > 0)
3259                                 rx_q->rx_zeroc_thresh--;
3260
3261                         netif_dbg(priv, rx_status, priv->dev,
3262                                   "refill entry #%d\n", entry);
3263                 }
3264                 dma_wmb();
3265
3266                 stmmac_set_rx_owner(priv, p, priv->use_riwt);
3267
3268                 dma_wmb();
3269
3270                 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3271         }
3272         rx_q->dirty_rx = entry;
3273         stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3274 }
3275
3276 /**
3277  * stmmac_rx - manage the receive process
3278  * @priv: driver private structure
3279  * @limit: napi bugget
3280  * @queue: RX queue index.
3281  * Description :  this the function called by the napi poll method.
3282  * It gets all the frames inside the ring.
3283  */
3284 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3285 {
3286         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3287         struct stmmac_channel *ch = &priv->channel[queue];
3288         unsigned int next_entry = rx_q->cur_rx;
3289         int coe = priv->hw->rx_csum;
3290         unsigned int count = 0;
3291         bool xmac;
3292
3293         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3294
3295         if (netif_msg_rx_status(priv)) {
3296                 void *rx_head;
3297
3298                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3299                 if (priv->extend_desc)
3300                         rx_head = (void *)rx_q->dma_erx;
3301                 else
3302                         rx_head = (void *)rx_q->dma_rx;
3303
3304                 stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3305         }
3306         while (count < limit) {
3307                 int entry, status;
3308                 struct dma_desc *p;
3309                 struct dma_desc *np;
3310
3311                 entry = next_entry;
3312
3313                 if (priv->extend_desc)
3314                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
3315                 else
3316                         p = rx_q->dma_rx + entry;
3317
3318                 /* read the status of the incoming frame */
3319                 status = stmmac_rx_status(priv, &priv->dev->stats,
3320                                 &priv->xstats, p);
3321                 /* check if managed by the DMA otherwise go ahead */
3322                 if (unlikely(status & dma_own))
3323                         break;
3324
3325                 count++;
3326
3327                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3328                 next_entry = rx_q->cur_rx;
3329
3330                 if (priv->extend_desc)
3331                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3332                 else
3333                         np = rx_q->dma_rx + next_entry;
3334
3335                 prefetch(np);
3336
3337                 if (priv->extend_desc)
3338                         stmmac_rx_extended_status(priv, &priv->dev->stats,
3339                                         &priv->xstats, rx_q->dma_erx + entry);
3340                 if (unlikely(status == discard_frame)) {
3341                         priv->dev->stats.rx_errors++;
3342                         if (priv->hwts_rx_en && !priv->extend_desc) {
3343                                 /* DESC2 & DESC3 will be overwritten by device
3344                                  * with timestamp value, hence reinitialize
3345                                  * them in stmmac_rx_refill() function so that
3346                                  * device can reuse it.
3347                                  */
3348                                 dev_kfree_skb_any(rx_q->rx_skbuff[entry]);
3349                                 rx_q->rx_skbuff[entry] = NULL;
3350                                 dma_unmap_single(priv->device,
3351                                                  rx_q->rx_skbuff_dma[entry],
3352                                                  priv->dma_buf_sz,
3353                                                  DMA_FROM_DEVICE);
3354                         }
3355                 } else {
3356                         struct sk_buff *skb;
3357                         int frame_len;
3358                         unsigned int des;
3359
3360                         stmmac_get_desc_addr(priv, p, &des);
3361                         frame_len = stmmac_get_rx_frame_len(priv, p, coe);
3362
3363                         /*  If frame length is greater than skb buffer size
3364                          *  (preallocated during init) then the packet is
3365                          *  ignored
3366                          */
3367                         if (frame_len > priv->dma_buf_sz) {
3368                                 if (net_ratelimit())
3369                                         netdev_err(priv->dev,
3370                                                    "len %d larger than size (%d)\n",
3371                                                    frame_len, priv->dma_buf_sz);
3372                                 priv->dev->stats.rx_length_errors++;
3373                                 continue;
3374                         }
3375
3376                         /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3377                          * Type frames (LLC/LLC-SNAP)
3378                          *
3379                          * llc_snap is never checked in GMAC >= 4, so this ACS
3380                          * feature is always disabled and packets need to be
3381                          * stripped manually.
3382                          */
3383                         if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3384                             unlikely(status != llc_snap))
3385                                 frame_len -= ETH_FCS_LEN;
3386
3387                         if (netif_msg_rx_status(priv)) {
3388                                 netdev_dbg(priv->dev, "\tdesc: %p [entry %d] buff=0x%x\n",
3389                                            p, entry, des);
3390                                 netdev_dbg(priv->dev, "frame size %d, COE: %d\n",
3391                                            frame_len, status);
3392                         }
3393
3394                         /* The zero-copy is always used for all the sizes
3395                          * in case of GMAC4 because it needs
3396                          * to refill the used descriptors, always.
3397                          */
3398                         if (unlikely(!xmac &&
3399                                      ((frame_len < priv->rx_copybreak) ||
3400                                      stmmac_rx_threshold_count(rx_q)))) {
3401                                 skb = netdev_alloc_skb_ip_align(priv->dev,
3402                                                                 frame_len);
3403                                 if (unlikely(!skb)) {
3404                                         if (net_ratelimit())
3405                                                 dev_warn(priv->device,
3406                                                          "packet dropped\n");
3407                                         priv->dev->stats.rx_dropped++;
3408                                         continue;
3409                                 }
3410
3411                                 dma_sync_single_for_cpu(priv->device,
3412                                                         rx_q->rx_skbuff_dma
3413                                                         [entry], frame_len,
3414                                                         DMA_FROM_DEVICE);
3415                                 skb_copy_to_linear_data(skb,
3416                                                         rx_q->
3417                                                         rx_skbuff[entry]->data,
3418                                                         frame_len);
3419
3420                                 skb_put(skb, frame_len);
3421                                 dma_sync_single_for_device(priv->device,
3422                                                            rx_q->rx_skbuff_dma
3423                                                            [entry], frame_len,
3424                                                            DMA_FROM_DEVICE);
3425                         } else {
3426                                 skb = rx_q->rx_skbuff[entry];
3427                                 if (unlikely(!skb)) {
3428                                         if (net_ratelimit())
3429                                                 netdev_err(priv->dev,
3430                                                            "%s: Inconsistent Rx chain\n",
3431                                                            priv->dev->name);
3432                                         priv->dev->stats.rx_dropped++;
3433                                         continue;
3434                                 }
3435                                 prefetch(skb->data - NET_IP_ALIGN);
3436                                 rx_q->rx_skbuff[entry] = NULL;
3437                                 rx_q->rx_zeroc_thresh++;
3438
3439                                 skb_put(skb, frame_len);
3440                                 dma_unmap_single(priv->device,
3441                                                  rx_q->rx_skbuff_dma[entry],
3442                                                  priv->dma_buf_sz,
3443                                                  DMA_FROM_DEVICE);
3444                         }
3445
3446                         if (netif_msg_pktdata(priv)) {
3447                                 netdev_dbg(priv->dev, "frame received (%dbytes)",
3448                                            frame_len);
3449                                 print_pkt(skb->data, frame_len);
3450                         }
3451
3452                         stmmac_get_rx_hwtstamp(priv, p, np, skb);
3453
3454                         stmmac_rx_vlan(priv->dev, skb);
3455
3456                         skb->protocol = eth_type_trans(skb, priv->dev);
3457
3458                         if (unlikely(!coe))
3459                                 skb_checksum_none_assert(skb);
3460                         else
3461                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3462
3463                         napi_gro_receive(&ch->rx_napi, skb);
3464
3465                         priv->dev->stats.rx_packets++;
3466                         priv->dev->stats.rx_bytes += frame_len;
3467                 }
3468         }
3469
3470         stmmac_rx_refill(priv, queue);
3471
3472         priv->xstats.rx_pkt_n += count;
3473
3474         return count;
3475 }
3476
3477 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3478 {
3479         struct stmmac_channel *ch =
3480                 container_of(napi, struct stmmac_channel, rx_napi);
3481         struct stmmac_priv *priv = ch->priv_data;
3482         u32 chan = ch->index;
3483         int work_done;
3484
3485         priv->xstats.napi_poll++;
3486
3487         work_done = stmmac_rx(priv, budget, chan);
3488         if (work_done < budget && napi_complete_done(napi, work_done))
3489                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3490         return work_done;
3491 }
3492
3493 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3494 {
3495         struct stmmac_channel *ch =
3496                 container_of(napi, struct stmmac_channel, tx_napi);
3497         struct stmmac_priv *priv = ch->priv_data;
3498         struct stmmac_tx_queue *tx_q;
3499         u32 chan = ch->index;
3500         int work_done;
3501
3502         priv->xstats.napi_poll++;
3503
3504         work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3505         work_done = min(work_done, budget);
3506
3507         if (work_done < budget && napi_complete_done(napi, work_done))
3508                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3509
3510         /* Force transmission restart */
3511         tx_q = &priv->tx_queue[chan];
3512         if (tx_q->cur_tx != tx_q->dirty_tx) {
3513                 stmmac_enable_dma_transmission(priv, priv->ioaddr);
3514                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr,
3515                                        chan);
3516         }
3517
3518         return work_done;
3519 }
3520
3521 /**
3522  *  stmmac_tx_timeout
3523  *  @dev : Pointer to net device structure
3524  *  Description: this function is called when a packet transmission fails to
3525  *   complete within a reasonable time. The driver will mark the error in the
3526  *   netdev structure and arrange for the device to be reset to a sane state
3527  *   in order to transmit a new packet.
3528  */
3529 static void stmmac_tx_timeout(struct net_device *dev)
3530 {
3531         struct stmmac_priv *priv = netdev_priv(dev);
3532
3533         stmmac_global_err(priv);
3534 }
3535
3536 /**
3537  *  stmmac_set_rx_mode - entry point for multicast addressing
3538  *  @dev : pointer to the device structure
3539  *  Description:
3540  *  This function is a driver entry point which gets called by the kernel
3541  *  whenever multicast addresses must be enabled/disabled.
3542  *  Return value:
3543  *  void.
3544  */
3545 static void stmmac_set_rx_mode(struct net_device *dev)
3546 {
3547         struct stmmac_priv *priv = netdev_priv(dev);
3548
3549         stmmac_set_filter(priv, priv->hw, dev);
3550 }
3551
3552 /**
3553  *  stmmac_change_mtu - entry point to change MTU size for the device.
3554  *  @dev : device pointer.
3555  *  @new_mtu : the new MTU size for the device.
3556  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3557  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3558  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3559  *  Return value:
3560  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3561  *  file on failure.
3562  */
3563 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3564 {
3565         struct stmmac_priv *priv = netdev_priv(dev);
3566
3567         if (netif_running(dev)) {
3568                 netdev_err(priv->dev, "must be stopped to change its MTU\n");
3569                 return -EBUSY;
3570         }
3571
3572         dev->mtu = new_mtu;
3573
3574         netdev_update_features(dev);
3575
3576         return 0;
3577 }
3578
3579 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3580                                              netdev_features_t features)
3581 {
3582         struct stmmac_priv *priv = netdev_priv(dev);
3583
3584         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3585                 features &= ~NETIF_F_RXCSUM;
3586
3587         if (!priv->plat->tx_coe)
3588                 features &= ~NETIF_F_CSUM_MASK;
3589
3590         /* Some GMAC devices have a bugged Jumbo frame support that
3591          * needs to have the Tx COE disabled for oversized frames
3592          * (due to limited buffer sizes). In this case we disable
3593          * the TX csum insertion in the TDES and not use SF.
3594          */
3595         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3596                 features &= ~NETIF_F_CSUM_MASK;
3597
3598         /* Disable tso if asked by ethtool */
3599         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3600                 if (features & NETIF_F_TSO)
3601                         priv->tso = true;
3602                 else
3603                         priv->tso = false;
3604         }
3605
3606         return features;
3607 }
3608
3609 static int stmmac_set_features(struct net_device *netdev,
3610                                netdev_features_t features)
3611 {
3612         struct stmmac_priv *priv = netdev_priv(netdev);
3613
3614         /* Keep the COE Type in case of csum is supporting */
3615         if (features & NETIF_F_RXCSUM)
3616                 priv->hw->rx_csum = priv->plat->rx_coe;
3617         else
3618                 priv->hw->rx_csum = 0;
3619         /* No check needed because rx_coe has been set before and it will be
3620          * fixed in case of issue.
3621          */
3622         stmmac_rx_ipc(priv, priv->hw);
3623
3624         return 0;
3625 }
3626
3627 /**
3628  *  stmmac_interrupt - main ISR
3629  *  @irq: interrupt number.
3630  *  @dev_id: to pass the net device pointer.
3631  *  Description: this is the main driver interrupt service routine.
3632  *  It can call:
3633  *  o DMA service routine (to manage incoming frame reception and transmission
3634  *    status)
3635  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3636  *    interrupts.
3637  */
3638 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3639 {
3640         struct net_device *dev = (struct net_device *)dev_id;
3641         struct stmmac_priv *priv = netdev_priv(dev);
3642         u32 rx_cnt = priv->plat->rx_queues_to_use;
3643         u32 tx_cnt = priv->plat->tx_queues_to_use;
3644         u32 queues_count;
3645         u32 queue;
3646         bool xmac;
3647
3648         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3649         queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3650
3651         if (priv->irq_wake)
3652                 pm_wakeup_event(priv->device, 0);
3653
3654         if (unlikely(!dev)) {
3655                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3656                 return IRQ_NONE;
3657         }
3658
3659         /* Check if adapter is up */
3660         if (test_bit(STMMAC_DOWN, &priv->state))
3661                 return IRQ_HANDLED;
3662         /* Check if a fatal error happened */
3663         if (stmmac_safety_feat_interrupt(priv))
3664                 return IRQ_HANDLED;
3665
3666         /* To handle GMAC own interrupts */
3667         if ((priv->plat->has_gmac) || xmac) {
3668                 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3669                 int mtl_status;
3670
3671                 if (unlikely(status)) {
3672                         /* For LPI we need to save the tx status */
3673                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3674                                 priv->tx_path_in_lpi_mode = true;
3675                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3676                                 priv->tx_path_in_lpi_mode = false;
3677                 }
3678
3679                 for (queue = 0; queue < queues_count; queue++) {
3680                         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3681
3682                         mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3683                                                                 queue);
3684                         if (mtl_status != -EINVAL)
3685                                 status |= mtl_status;
3686
3687                         if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3688                                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3689                                                        rx_q->rx_tail_addr,
3690                                                        queue);
3691                 }
3692
3693                 /* PCS link status */
3694                 if (priv->hw->pcs) {
3695                         if (priv->xstats.pcs_link)
3696                                 netif_carrier_on(dev);
3697                         else
3698                                 netif_carrier_off(dev);
3699                 }
3700         }
3701
3702         /* To handle DMA interrupts */
3703         stmmac_dma_interrupt(priv);
3704
3705         return IRQ_HANDLED;
3706 }
3707
3708 #ifdef CONFIG_NET_POLL_CONTROLLER
3709 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3710  * to allow network I/O with interrupts disabled.
3711  */
3712 static void stmmac_poll_controller(struct net_device *dev)
3713 {
3714         disable_irq(dev->irq);
3715         stmmac_interrupt(dev->irq, dev);
3716         enable_irq(dev->irq);
3717 }
3718 #endif
3719
3720 /**
3721  *  stmmac_ioctl - Entry point for the Ioctl
3722  *  @dev: Device pointer.
3723  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3724  *  a proprietary structure used to pass information to the driver.
3725  *  @cmd: IOCTL command
3726  *  Description:
3727  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3728  */
3729 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3730 {
3731         struct stmmac_priv *priv = netdev_priv (dev);
3732         int ret = -EOPNOTSUPP;
3733
3734         if (!netif_running(dev))
3735                 return -EINVAL;
3736
3737         switch (cmd) {
3738         case SIOCGMIIPHY:
3739         case SIOCGMIIREG:
3740         case SIOCSMIIREG:
3741                 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
3742                 break;
3743         case SIOCSHWTSTAMP:
3744                 ret = stmmac_hwtstamp_set(dev, rq);
3745                 break;
3746         case SIOCGHWTSTAMP:
3747                 ret = stmmac_hwtstamp_get(dev, rq);
3748                 break;
3749         default:
3750                 break;
3751         }
3752
3753         return ret;
3754 }
3755
3756 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3757                                     void *cb_priv)
3758 {
3759         struct stmmac_priv *priv = cb_priv;
3760         int ret = -EOPNOTSUPP;
3761
3762         stmmac_disable_all_queues(priv);
3763
3764         switch (type) {
3765         case TC_SETUP_CLSU32:
3766                 if (tc_cls_can_offload_and_chain0(priv->dev, type_data))
3767                         ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
3768                 break;
3769         default:
3770                 break;
3771         }
3772
3773         stmmac_enable_all_queues(priv);
3774         return ret;
3775 }
3776
3777 static int stmmac_setup_tc_block(struct stmmac_priv *priv,
3778                                  struct tc_block_offload *f)
3779 {
3780         if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
3781                 return -EOPNOTSUPP;
3782
3783         switch (f->command) {
3784         case TC_BLOCK_BIND:
3785                 return tcf_block_cb_register(f->block, stmmac_setup_tc_block_cb,
3786                                 priv, priv, f->extack);
3787         case TC_BLOCK_UNBIND:
3788                 tcf_block_cb_unregister(f->block, stmmac_setup_tc_block_cb, priv);
3789                 return 0;
3790         default:
3791                 return -EOPNOTSUPP;
3792         }
3793 }
3794
3795 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
3796                            void *type_data)
3797 {
3798         struct stmmac_priv *priv = netdev_priv(ndev);
3799
3800         switch (type) {
3801         case TC_SETUP_BLOCK:
3802                 return stmmac_setup_tc_block(priv, type_data);
3803         case TC_SETUP_QDISC_CBS:
3804                 return stmmac_tc_setup_cbs(priv, priv, type_data);
3805         default:
3806                 return -EOPNOTSUPP;
3807         }
3808 }
3809
3810 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
3811 {
3812         struct stmmac_priv *priv = netdev_priv(ndev);
3813         int ret = 0;
3814
3815         ret = eth_mac_addr(ndev, addr);
3816         if (ret)
3817                 return ret;
3818
3819         stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
3820
3821         return ret;
3822 }
3823
3824 #ifdef CONFIG_DEBUG_FS
3825 static struct dentry *stmmac_fs_dir;
3826
3827 static void sysfs_display_ring(void *head, int size, int extend_desc,
3828                                struct seq_file *seq)
3829 {
3830         int i;
3831         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
3832         struct dma_desc *p = (struct dma_desc *)head;
3833
3834         for (i = 0; i < size; i++) {
3835                 if (extend_desc) {
3836                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3837                                    i, (unsigned int)virt_to_phys(ep),
3838                                    le32_to_cpu(ep->basic.des0),
3839                                    le32_to_cpu(ep->basic.des1),
3840                                    le32_to_cpu(ep->basic.des2),
3841                                    le32_to_cpu(ep->basic.des3));
3842                         ep++;
3843                 } else {
3844                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3845                                    i, (unsigned int)virt_to_phys(p),
3846                                    le32_to_cpu(p->des0), le32_to_cpu(p->des1),
3847                                    le32_to_cpu(p->des2), le32_to_cpu(p->des3));
3848                         p++;
3849                 }
3850                 seq_printf(seq, "\n");
3851         }
3852 }
3853
3854 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
3855 {
3856         struct net_device *dev = seq->private;
3857         struct stmmac_priv *priv = netdev_priv(dev);
3858         u32 rx_count = priv->plat->rx_queues_to_use;
3859         u32 tx_count = priv->plat->tx_queues_to_use;
3860         u32 queue;
3861
3862         if ((dev->flags & IFF_UP) == 0)
3863                 return 0;
3864
3865         for (queue = 0; queue < rx_count; queue++) {
3866                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3867
3868                 seq_printf(seq, "RX Queue %d:\n", queue);
3869
3870                 if (priv->extend_desc) {
3871                         seq_printf(seq, "Extended descriptor ring:\n");
3872                         sysfs_display_ring((void *)rx_q->dma_erx,
3873                                            DMA_RX_SIZE, 1, seq);
3874                 } else {
3875                         seq_printf(seq, "Descriptor ring:\n");
3876                         sysfs_display_ring((void *)rx_q->dma_rx,
3877                                            DMA_RX_SIZE, 0, seq);
3878                 }
3879         }
3880
3881         for (queue = 0; queue < tx_count; queue++) {
3882                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3883
3884                 seq_printf(seq, "TX Queue %d:\n", queue);
3885
3886                 if (priv->extend_desc) {
3887                         seq_printf(seq, "Extended descriptor ring:\n");
3888                         sysfs_display_ring((void *)tx_q->dma_etx,
3889                                            DMA_TX_SIZE, 1, seq);
3890                 } else {
3891                         seq_printf(seq, "Descriptor ring:\n");
3892                         sysfs_display_ring((void *)tx_q->dma_tx,
3893                                            DMA_TX_SIZE, 0, seq);
3894                 }
3895         }
3896
3897         return 0;
3898 }
3899 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
3900
3901 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
3902 {
3903         struct net_device *dev = seq->private;
3904         struct stmmac_priv *priv = netdev_priv(dev);
3905
3906         if (!priv->hw_cap_support) {
3907                 seq_printf(seq, "DMA HW features not supported\n");
3908                 return 0;
3909         }
3910
3911         seq_printf(seq, "==============================\n");
3912         seq_printf(seq, "\tDMA HW features\n");
3913         seq_printf(seq, "==============================\n");
3914
3915         seq_printf(seq, "\t10/100 Mbps: %s\n",
3916                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
3917         seq_printf(seq, "\t1000 Mbps: %s\n",
3918                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
3919         seq_printf(seq, "\tHalf duplex: %s\n",
3920                    (priv->dma_cap.half_duplex) ? "Y" : "N");
3921         seq_printf(seq, "\tHash Filter: %s\n",
3922                    (priv->dma_cap.hash_filter) ? "Y" : "N");
3923         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
3924                    (priv->dma_cap.multi_addr) ? "Y" : "N");
3925         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
3926                    (priv->dma_cap.pcs) ? "Y" : "N");
3927         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
3928                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
3929         seq_printf(seq, "\tPMT Remote wake up: %s\n",
3930                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
3931         seq_printf(seq, "\tPMT Magic Frame: %s\n",
3932                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
3933         seq_printf(seq, "\tRMON module: %s\n",
3934                    (priv->dma_cap.rmon) ? "Y" : "N");
3935         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
3936                    (priv->dma_cap.time_stamp) ? "Y" : "N");
3937         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
3938                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
3939         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
3940                    (priv->dma_cap.eee) ? "Y" : "N");
3941         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
3942         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
3943                    (priv->dma_cap.tx_coe) ? "Y" : "N");
3944         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3945                 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
3946                            (priv->dma_cap.rx_coe) ? "Y" : "N");
3947         } else {
3948                 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
3949                            (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
3950                 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
3951                            (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
3952         }
3953         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
3954                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
3955         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
3956                    priv->dma_cap.number_rx_channel);
3957         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
3958                    priv->dma_cap.number_tx_channel);
3959         seq_printf(seq, "\tEnhanced descriptors: %s\n",
3960                    (priv->dma_cap.enh_desc) ? "Y" : "N");
3961
3962         return 0;
3963 }
3964 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
3965
3966 static int stmmac_init_fs(struct net_device *dev)
3967 {
3968         struct stmmac_priv *priv = netdev_priv(dev);
3969
3970         /* Create per netdev entries */
3971         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
3972
3973         if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
3974                 netdev_err(priv->dev, "ERROR failed to create debugfs directory\n");
3975
3976                 return -ENOMEM;
3977         }
3978
3979         /* Entry to report DMA RX/TX rings */
3980         priv->dbgfs_rings_status =
3981                 debugfs_create_file("descriptors_status", 0444,
3982                                     priv->dbgfs_dir, dev,
3983                                     &stmmac_rings_status_fops);
3984
3985         if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
3986                 netdev_err(priv->dev, "ERROR creating stmmac ring debugfs file\n");
3987                 debugfs_remove_recursive(priv->dbgfs_dir);
3988
3989                 return -ENOMEM;
3990         }
3991
3992         /* Entry to report the DMA HW features */
3993         priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", 0444,
3994                                                   priv->dbgfs_dir,
3995                                                   dev, &stmmac_dma_cap_fops);
3996
3997         if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
3998                 netdev_err(priv->dev, "ERROR creating stmmac MMC debugfs file\n");
3999                 debugfs_remove_recursive(priv->dbgfs_dir);
4000
4001                 return -ENOMEM;
4002         }
4003
4004         return 0;
4005 }
4006
4007 static void stmmac_exit_fs(struct net_device *dev)
4008 {
4009         struct stmmac_priv *priv = netdev_priv(dev);
4010
4011         debugfs_remove_recursive(priv->dbgfs_dir);
4012 }
4013 #endif /* CONFIG_DEBUG_FS */
4014
4015 static const struct net_device_ops stmmac_netdev_ops = {
4016         .ndo_open = stmmac_open,
4017         .ndo_start_xmit = stmmac_xmit,
4018         .ndo_stop = stmmac_release,
4019         .ndo_change_mtu = stmmac_change_mtu,
4020         .ndo_fix_features = stmmac_fix_features,
4021         .ndo_set_features = stmmac_set_features,
4022         .ndo_set_rx_mode = stmmac_set_rx_mode,
4023         .ndo_tx_timeout = stmmac_tx_timeout,
4024         .ndo_do_ioctl = stmmac_ioctl,
4025         .ndo_setup_tc = stmmac_setup_tc,
4026 #ifdef CONFIG_NET_POLL_CONTROLLER
4027         .ndo_poll_controller = stmmac_poll_controller,
4028 #endif
4029         .ndo_set_mac_address = stmmac_set_mac_address,
4030 };
4031
4032 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4033 {
4034         if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4035                 return;
4036         if (test_bit(STMMAC_DOWN, &priv->state))
4037                 return;
4038
4039         netdev_err(priv->dev, "Reset adapter.\n");
4040
4041         rtnl_lock();
4042         netif_trans_update(priv->dev);
4043         while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4044                 usleep_range(1000, 2000);
4045
4046         set_bit(STMMAC_DOWN, &priv->state);
4047         dev_close(priv->dev);
4048         dev_open(priv->dev, NULL);
4049         clear_bit(STMMAC_DOWN, &priv->state);
4050         clear_bit(STMMAC_RESETING, &priv->state);
4051         rtnl_unlock();
4052 }
4053
4054 static void stmmac_service_task(struct work_struct *work)
4055 {
4056         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4057                         service_task);
4058
4059         stmmac_reset_subtask(priv);
4060         clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4061 }
4062
4063 /**
4064  *  stmmac_hw_init - Init the MAC device
4065  *  @priv: driver private structure
4066  *  Description: this function is to configure the MAC device according to
4067  *  some platform parameters or the HW capability register. It prepares the
4068  *  driver to use either ring or chain modes and to setup either enhanced or
4069  *  normal descriptors.
4070  */
4071 static int stmmac_hw_init(struct stmmac_priv *priv)
4072 {
4073         int ret;
4074
4075         /* dwmac-sun8i only work in chain mode */
4076         if (priv->plat->has_sun8i)
4077                 chain_mode = 1;
4078         priv->chain_mode = chain_mode;
4079
4080         /* Initialize HW Interface */
4081         ret = stmmac_hwif_init(priv);
4082         if (ret)
4083                 return ret;
4084
4085         /* Get the HW capability (new GMAC newer than 3.50a) */
4086         priv->hw_cap_support = stmmac_get_hw_features(priv);
4087         if (priv->hw_cap_support) {
4088                 dev_info(priv->device, "DMA HW capability register supported\n");
4089
4090                 /* We can override some gmac/dma configuration fields: e.g.
4091                  * enh_desc, tx_coe (e.g. that are passed through the
4092                  * platform) with the values from the HW capability
4093                  * register (if supported).
4094                  */
4095                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
4096                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4097                 priv->hw->pmt = priv->plat->pmt;
4098
4099                 /* TXCOE doesn't work in thresh DMA mode */
4100                 if (priv->plat->force_thresh_dma_mode)
4101                         priv->plat->tx_coe = 0;
4102                 else
4103                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
4104
4105                 /* In case of GMAC4 rx_coe is from HW cap register. */
4106                 priv->plat->rx_coe = priv->dma_cap.rx_coe;
4107
4108                 if (priv->dma_cap.rx_coe_type2)
4109                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4110                 else if (priv->dma_cap.rx_coe_type1)
4111                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4112
4113         } else {
4114                 dev_info(priv->device, "No HW DMA feature register supported\n");
4115         }
4116
4117         if (priv->plat->rx_coe) {
4118                 priv->hw->rx_csum = priv->plat->rx_coe;
4119                 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4120                 if (priv->synopsys_id < DWMAC_CORE_4_00)
4121                         dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4122         }
4123         if (priv->plat->tx_coe)
4124                 dev_info(priv->device, "TX Checksum insertion supported\n");
4125
4126         if (priv->plat->pmt) {
4127                 dev_info(priv->device, "Wake-Up On Lan supported\n");
4128                 device_set_wakeup_capable(priv->device, 1);
4129         }
4130
4131         if (priv->dma_cap.tsoen)
4132                 dev_info(priv->device, "TSO supported\n");
4133
4134         /* Run HW quirks, if any */
4135         if (priv->hwif_quirks) {
4136                 ret = priv->hwif_quirks(priv);
4137                 if (ret)
4138                         return ret;
4139         }
4140
4141         /* Rx Watchdog is available in the COREs newer than the 3.40.
4142          * In some case, for example on bugged HW this feature
4143          * has to be disable and this can be done by passing the
4144          * riwt_off field from the platform.
4145          */
4146         if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4147             (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4148                 priv->use_riwt = 1;
4149                 dev_info(priv->device,
4150                          "Enable RX Mitigation via HW Watchdog Timer\n");
4151         }
4152
4153         return 0;
4154 }
4155
4156 /**
4157  * stmmac_dvr_probe
4158  * @device: device pointer
4159  * @plat_dat: platform data pointer
4160  * @res: stmmac resource pointer
4161  * Description: this is the main probe function used to
4162  * call the alloc_etherdev, allocate the priv structure.
4163  * Return:
4164  * returns 0 on success, otherwise errno.
4165  */
4166 int stmmac_dvr_probe(struct device *device,
4167                      struct plat_stmmacenet_data *plat_dat,
4168                      struct stmmac_resources *res)
4169 {
4170         struct net_device *ndev = NULL;
4171         struct stmmac_priv *priv;
4172         u32 queue, maxq;
4173         int ret = 0;
4174
4175         ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4176                                        MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4177         if (!ndev)
4178                 return -ENOMEM;
4179
4180         SET_NETDEV_DEV(ndev, device);
4181
4182         priv = netdev_priv(ndev);
4183         priv->device = device;
4184         priv->dev = ndev;
4185
4186         stmmac_set_ethtool_ops(ndev);
4187         priv->pause = pause;
4188         priv->plat = plat_dat;
4189         priv->ioaddr = res->addr;
4190         priv->dev->base_addr = (unsigned long)res->addr;
4191
4192         priv->dev->irq = res->irq;
4193         priv->wol_irq = res->wol_irq;
4194         priv->lpi_irq = res->lpi_irq;
4195
4196         if (!IS_ERR_OR_NULL(res->mac))
4197                 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4198
4199         dev_set_drvdata(device, priv->dev);
4200
4201         /* Verify driver arguments */
4202         stmmac_verify_args();
4203
4204         /* Allocate workqueue */
4205         priv->wq = create_singlethread_workqueue("stmmac_wq");
4206         if (!priv->wq) {
4207                 dev_err(priv->device, "failed to create workqueue\n");
4208                 return -ENOMEM;
4209         }
4210
4211         INIT_WORK(&priv->service_task, stmmac_service_task);
4212
4213         /* Override with kernel parameters if supplied XXX CRS XXX
4214          * this needs to have multiple instances
4215          */
4216         if ((phyaddr >= 0) && (phyaddr <= 31))
4217                 priv->plat->phy_addr = phyaddr;
4218
4219         if (priv->plat->stmmac_rst) {
4220                 ret = reset_control_assert(priv->plat->stmmac_rst);
4221                 reset_control_deassert(priv->plat->stmmac_rst);
4222                 /* Some reset controllers have only reset callback instead of
4223                  * assert + deassert callbacks pair.
4224                  */
4225                 if (ret == -ENOTSUPP)
4226                         reset_control_reset(priv->plat->stmmac_rst);
4227         }
4228
4229         /* Init MAC and get the capabilities */
4230         ret = stmmac_hw_init(priv);
4231         if (ret)
4232                 goto error_hw_init;
4233
4234         stmmac_check_ether_addr(priv);
4235
4236         /* Configure real RX and TX queues */
4237         netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4238         netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4239
4240         ndev->netdev_ops = &stmmac_netdev_ops;
4241
4242         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4243                             NETIF_F_RXCSUM;
4244
4245         ret = stmmac_tc_init(priv, priv);
4246         if (!ret) {
4247                 ndev->hw_features |= NETIF_F_HW_TC;
4248         }
4249
4250         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4251                 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4252                 priv->tso = true;
4253                 dev_info(priv->device, "TSO feature enabled\n");
4254         }
4255         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4256         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4257 #ifdef STMMAC_VLAN_TAG_USED
4258         /* Both mac100 and gmac support receive VLAN tag detection */
4259         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4260 #endif
4261         priv->msg_enable = netif_msg_init(debug, default_msg_level);
4262
4263         /* MTU range: 46 - hw-specific max */
4264         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4265         if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4266                 ndev->max_mtu = JUMBO_LEN;
4267         else if (priv->plat->has_xgmac)
4268                 ndev->max_mtu = XGMAC_JUMBO_LEN;
4269         else
4270                 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4271         /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4272          * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4273          */
4274         if ((priv->plat->maxmtu < ndev->max_mtu) &&
4275             (priv->plat->maxmtu >= ndev->min_mtu))
4276                 ndev->max_mtu = priv->plat->maxmtu;
4277         else if (priv->plat->maxmtu < ndev->min_mtu)
4278                 dev_warn(priv->device,
4279                          "%s: warning: maxmtu having invalid value (%d)\n",
4280                          __func__, priv->plat->maxmtu);
4281
4282         if (flow_ctrl)
4283                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
4284
4285         /* Setup channels NAPI */
4286         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4287
4288         for (queue = 0; queue < maxq; queue++) {
4289                 struct stmmac_channel *ch = &priv->channel[queue];
4290
4291                 ch->priv_data = priv;
4292                 ch->index = queue;
4293
4294                 if (queue < priv->plat->rx_queues_to_use) {
4295                         netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4296                                        NAPI_POLL_WEIGHT);
4297                 }
4298                 if (queue < priv->plat->tx_queues_to_use) {
4299                         netif_napi_add(ndev, &ch->tx_napi, stmmac_napi_poll_tx,
4300                                        NAPI_POLL_WEIGHT);
4301                 }
4302         }
4303
4304         mutex_init(&priv->lock);
4305
4306         /* If a specific clk_csr value is passed from the platform
4307          * this means that the CSR Clock Range selection cannot be
4308          * changed at run-time and it is fixed. Viceversa the driver'll try to
4309          * set the MDC clock dynamically according to the csr actual
4310          * clock input.
4311          */
4312         if (priv->plat->clk_csr >= 0)
4313                 priv->clk_csr = priv->plat->clk_csr;
4314         else
4315                 stmmac_clk_csr_set(priv);
4316
4317         stmmac_check_pcs_mode(priv);
4318
4319         if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4320             priv->hw->pcs != STMMAC_PCS_TBI &&
4321             priv->hw->pcs != STMMAC_PCS_RTBI) {
4322                 /* MDIO bus Registration */
4323                 ret = stmmac_mdio_register(ndev);
4324                 if (ret < 0) {
4325                         dev_err(priv->device,
4326                                 "%s: MDIO bus (id: %d) registration failed",
4327                                 __func__, priv->plat->bus_id);
4328                         goto error_mdio_register;
4329                 }
4330         }
4331
4332         ret = stmmac_phy_setup(priv);
4333         if (ret) {
4334                 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
4335                 goto error_phy_setup;
4336         }
4337
4338         ret = register_netdev(ndev);
4339         if (ret) {
4340                 dev_err(priv->device, "%s: ERROR %i registering the device\n",
4341                         __func__, ret);
4342                 goto error_netdev_register;
4343         }
4344
4345 #ifdef CONFIG_DEBUG_FS
4346         ret = stmmac_init_fs(ndev);
4347         if (ret < 0)
4348                 netdev_warn(priv->dev, "%s: failed debugFS registration\n",
4349                             __func__);
4350 #endif
4351
4352         return ret;
4353
4354 error_netdev_register:
4355         phylink_destroy(priv->phylink);
4356 error_phy_setup:
4357         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4358             priv->hw->pcs != STMMAC_PCS_TBI &&
4359             priv->hw->pcs != STMMAC_PCS_RTBI)
4360                 stmmac_mdio_unregister(ndev);
4361 error_mdio_register:
4362         for (queue = 0; queue < maxq; queue++) {
4363                 struct stmmac_channel *ch = &priv->channel[queue];
4364
4365                 if (queue < priv->plat->rx_queues_to_use)
4366                         netif_napi_del(&ch->rx_napi);
4367                 if (queue < priv->plat->tx_queues_to_use)
4368                         netif_napi_del(&ch->tx_napi);
4369         }
4370 error_hw_init:
4371         destroy_workqueue(priv->wq);
4372
4373         return ret;
4374 }
4375 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4376
4377 /**
4378  * stmmac_dvr_remove
4379  * @dev: device pointer
4380  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4381  * changes the link status, releases the DMA descriptor rings.
4382  */
4383 int stmmac_dvr_remove(struct device *dev)
4384 {
4385         struct net_device *ndev = dev_get_drvdata(dev);
4386         struct stmmac_priv *priv = netdev_priv(ndev);
4387
4388         netdev_info(priv->dev, "%s: removing driver", __func__);
4389
4390 #ifdef CONFIG_DEBUG_FS
4391         stmmac_exit_fs(ndev);
4392 #endif
4393         stmmac_stop_all_dma(priv);
4394
4395         stmmac_mac_set(priv, priv->ioaddr, false);
4396         netif_carrier_off(ndev);
4397         unregister_netdev(ndev);
4398         phylink_destroy(priv->phylink);
4399         if (priv->plat->stmmac_rst)
4400                 reset_control_assert(priv->plat->stmmac_rst);
4401         clk_disable_unprepare(priv->plat->pclk);
4402         clk_disable_unprepare(priv->plat->stmmac_clk);
4403         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4404             priv->hw->pcs != STMMAC_PCS_TBI &&
4405             priv->hw->pcs != STMMAC_PCS_RTBI)
4406                 stmmac_mdio_unregister(ndev);
4407         destroy_workqueue(priv->wq);
4408         mutex_destroy(&priv->lock);
4409
4410         return 0;
4411 }
4412 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4413
4414 /**
4415  * stmmac_suspend - suspend callback
4416  * @dev: device pointer
4417  * Description: this is the function to suspend the device and it is called
4418  * by the platform driver to stop the network queue, release the resources,
4419  * program the PMT register (for WoL), clean and release driver resources.
4420  */
4421 int stmmac_suspend(struct device *dev)
4422 {
4423         struct net_device *ndev = dev_get_drvdata(dev);
4424         struct stmmac_priv *priv = netdev_priv(ndev);
4425
4426         if (!ndev || !netif_running(ndev))
4427                 return 0;
4428
4429         phylink_stop(priv->phylink);
4430
4431         mutex_lock(&priv->lock);
4432
4433         netif_device_detach(ndev);
4434         stmmac_stop_all_queues(priv);
4435
4436         stmmac_disable_all_queues(priv);
4437
4438         /* Stop TX/RX DMA */
4439         stmmac_stop_all_dma(priv);
4440
4441         /* Enable Power down mode by programming the PMT regs */
4442         if (device_may_wakeup(priv->device)) {
4443                 stmmac_pmt(priv, priv->hw, priv->wolopts);
4444                 priv->irq_wake = 1;
4445         } else {
4446                 stmmac_mac_set(priv, priv->ioaddr, false);
4447                 pinctrl_pm_select_sleep_state(priv->device);
4448                 /* Disable clock in case of PWM is off */
4449                 clk_disable(priv->plat->pclk);
4450                 clk_disable(priv->plat->stmmac_clk);
4451         }
4452         mutex_unlock(&priv->lock);
4453
4454         priv->speed = SPEED_UNKNOWN;
4455         return 0;
4456 }
4457 EXPORT_SYMBOL_GPL(stmmac_suspend);
4458
4459 /**
4460  * stmmac_reset_queues_param - reset queue parameters
4461  * @dev: device pointer
4462  */
4463 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4464 {
4465         u32 rx_cnt = priv->plat->rx_queues_to_use;
4466         u32 tx_cnt = priv->plat->tx_queues_to_use;
4467         u32 queue;
4468
4469         for (queue = 0; queue < rx_cnt; queue++) {
4470                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4471
4472                 rx_q->cur_rx = 0;
4473                 rx_q->dirty_rx = 0;
4474         }
4475
4476         for (queue = 0; queue < tx_cnt; queue++) {
4477                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4478
4479                 tx_q->cur_tx = 0;
4480                 tx_q->dirty_tx = 0;
4481                 tx_q->mss = 0;
4482         }
4483 }
4484
4485 /**
4486  * stmmac_resume - resume callback
4487  * @dev: device pointer
4488  * Description: when resume this function is invoked to setup the DMA and CORE
4489  * in a usable state.
4490  */
4491 int stmmac_resume(struct device *dev)
4492 {
4493         struct net_device *ndev = dev_get_drvdata(dev);
4494         struct stmmac_priv *priv = netdev_priv(ndev);
4495
4496         if (!netif_running(ndev))
4497                 return 0;
4498
4499         /* Power Down bit, into the PM register, is cleared
4500          * automatically as soon as a magic packet or a Wake-up frame
4501          * is received. Anyway, it's better to manually clear
4502          * this bit because it can generate problems while resuming
4503          * from another devices (e.g. serial console).
4504          */
4505         if (device_may_wakeup(priv->device)) {
4506                 mutex_lock(&priv->lock);
4507                 stmmac_pmt(priv, priv->hw, 0);
4508                 mutex_unlock(&priv->lock);
4509                 priv->irq_wake = 0;
4510         } else {
4511                 pinctrl_pm_select_default_state(priv->device);
4512                 /* enable the clk previously disabled */
4513                 clk_enable(priv->plat->stmmac_clk);
4514                 clk_enable(priv->plat->pclk);
4515                 /* reset the phy so that it's ready */
4516                 if (priv->mii)
4517                         stmmac_mdio_reset(priv->mii);
4518         }
4519
4520         netif_device_attach(ndev);
4521
4522         mutex_lock(&priv->lock);
4523
4524         stmmac_reset_queues_param(priv);
4525
4526         stmmac_clear_descriptors(priv);
4527
4528         stmmac_hw_setup(ndev, false);
4529         stmmac_init_tx_coalesce(priv);
4530         stmmac_set_rx_mode(ndev);
4531
4532         stmmac_enable_all_queues(priv);
4533
4534         stmmac_start_all_queues(priv);
4535
4536         mutex_unlock(&priv->lock);
4537
4538         phylink_start(priv->phylink);
4539
4540         return 0;
4541 }
4542 EXPORT_SYMBOL_GPL(stmmac_resume);
4543
4544 #ifndef MODULE
4545 static int __init stmmac_cmdline_opt(char *str)
4546 {
4547         char *opt;
4548
4549         if (!str || !*str)
4550                 return -EINVAL;
4551         while ((opt = strsep(&str, ",")) != NULL) {
4552                 if (!strncmp(opt, "debug:", 6)) {
4553                         if (kstrtoint(opt + 6, 0, &debug))
4554                                 goto err;
4555                 } else if (!strncmp(opt, "phyaddr:", 8)) {
4556                         if (kstrtoint(opt + 8, 0, &phyaddr))
4557                                 goto err;
4558                 } else if (!strncmp(opt, "buf_sz:", 7)) {
4559                         if (kstrtoint(opt + 7, 0, &buf_sz))
4560                                 goto err;
4561                 } else if (!strncmp(opt, "tc:", 3)) {
4562                         if (kstrtoint(opt + 3, 0, &tc))
4563                                 goto err;
4564                 } else if (!strncmp(opt, "watchdog:", 9)) {
4565                         if (kstrtoint(opt + 9, 0, &watchdog))
4566                                 goto err;
4567                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
4568                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
4569                                 goto err;
4570                 } else if (!strncmp(opt, "pause:", 6)) {
4571                         if (kstrtoint(opt + 6, 0, &pause))
4572                                 goto err;
4573                 } else if (!strncmp(opt, "eee_timer:", 10)) {
4574                         if (kstrtoint(opt + 10, 0, &eee_timer))
4575                                 goto err;
4576                 } else if (!strncmp(opt, "chain_mode:", 11)) {
4577                         if (kstrtoint(opt + 11, 0, &chain_mode))
4578                                 goto err;
4579                 }
4580         }
4581         return 0;
4582
4583 err:
4584         pr_err("%s: ERROR broken module parameter conversion", __func__);
4585         return -EINVAL;
4586 }
4587
4588 __setup("stmmaceth=", stmmac_cmdline_opt);
4589 #endif /* MODULE */
4590
4591 static int __init stmmac_init(void)
4592 {
4593 #ifdef CONFIG_DEBUG_FS
4594         /* Create debugfs main directory if it doesn't exist yet */
4595         if (!stmmac_fs_dir) {
4596                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
4597
4598                 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
4599                         pr_err("ERROR %s, debugfs create directory failed\n",
4600                                STMMAC_RESOURCE_NAME);
4601
4602                         return -ENOMEM;
4603                 }
4604         }
4605 #endif
4606
4607         return 0;
4608 }
4609
4610 static void __exit stmmac_exit(void)
4611 {
4612 #ifdef CONFIG_DEBUG_FS
4613         debugfs_remove_recursive(stmmac_fs_dir);
4614 #endif
4615 }
4616
4617 module_init(stmmac_init)
4618 module_exit(stmmac_exit)
4619
4620 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
4621 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
4622 MODULE_LICENSE("GPL");