Merge tag 'sound-5.15-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[linux-2.6-microblaze.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5
6         Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11   Documentation available at:
12         http://www.stlinux.com
13   Support available at:
14         https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52
53 #define STMMAC_ALIGN(x)         ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
54 #define TSO_MAX_BUFF_SIZE       (SZ_16K - 1)
55
56 /* Module parameters */
57 #define TX_TIMEO        5000
58 static int watchdog = TX_TIMEO;
59 module_param(watchdog, int, 0644);
60 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
61
62 static int debug = -1;
63 module_param(debug, int, 0644);
64 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
65
66 static int phyaddr = -1;
67 module_param(phyaddr, int, 0444);
68 MODULE_PARM_DESC(phyaddr, "Physical device address");
69
70 #define STMMAC_TX_THRESH(x)     ((x)->dma_tx_size / 4)
71 #define STMMAC_RX_THRESH(x)     ((x)->dma_rx_size / 4)
72
73 /* Limit to make sure XDP TX and slow path can coexist */
74 #define STMMAC_XSK_TX_BUDGET_MAX        256
75 #define STMMAC_TX_XSK_AVAIL             16
76 #define STMMAC_RX_FILL_BATCH            16
77
78 #define STMMAC_XDP_PASS         0
79 #define STMMAC_XDP_CONSUMED     BIT(0)
80 #define STMMAC_XDP_TX           BIT(1)
81 #define STMMAC_XDP_REDIRECT     BIT(2)
82
83 static int flow_ctrl = FLOW_AUTO;
84 module_param(flow_ctrl, int, 0644);
85 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
86
87 static int pause = PAUSE_TIME;
88 module_param(pause, int, 0644);
89 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
90
91 #define TC_DEFAULT 64
92 static int tc = TC_DEFAULT;
93 module_param(tc, int, 0644);
94 MODULE_PARM_DESC(tc, "DMA threshold control value");
95
96 #define DEFAULT_BUFSIZE 1536
97 static int buf_sz = DEFAULT_BUFSIZE;
98 module_param(buf_sz, int, 0644);
99 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
100
101 #define STMMAC_RX_COPYBREAK     256
102
103 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
104                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
105                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
106
107 #define STMMAC_DEFAULT_LPI_TIMER        1000
108 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
109 module_param(eee_timer, int, 0644);
110 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
111 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
112
113 /* By default the driver will use the ring mode to manage tx and rx descriptors,
114  * but allow user to force to use the chain instead of the ring
115  */
116 static unsigned int chain_mode;
117 module_param(chain_mode, int, 0444);
118 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
119
120 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
121 /* For MSI interrupts handling */
122 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
123 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
124 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
125 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
126 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
127 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
128
129 #ifdef CONFIG_DEBUG_FS
130 static const struct net_device_ops stmmac_netdev_ops;
131 static void stmmac_init_fs(struct net_device *dev);
132 static void stmmac_exit_fs(struct net_device *dev);
133 #endif
134
135 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
136
137 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
138 {
139         int ret = 0;
140
141         if (enabled) {
142                 ret = clk_prepare_enable(priv->plat->stmmac_clk);
143                 if (ret)
144                         return ret;
145                 ret = clk_prepare_enable(priv->plat->pclk);
146                 if (ret) {
147                         clk_disable_unprepare(priv->plat->stmmac_clk);
148                         return ret;
149                 }
150                 if (priv->plat->clks_config) {
151                         ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
152                         if (ret) {
153                                 clk_disable_unprepare(priv->plat->stmmac_clk);
154                                 clk_disable_unprepare(priv->plat->pclk);
155                                 return ret;
156                         }
157                 }
158         } else {
159                 clk_disable_unprepare(priv->plat->stmmac_clk);
160                 clk_disable_unprepare(priv->plat->pclk);
161                 if (priv->plat->clks_config)
162                         priv->plat->clks_config(priv->plat->bsp_priv, enabled);
163         }
164
165         return ret;
166 }
167 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
168
169 /**
170  * stmmac_verify_args - verify the driver parameters.
171  * Description: it checks the driver parameters and set a default in case of
172  * errors.
173  */
174 static void stmmac_verify_args(void)
175 {
176         if (unlikely(watchdog < 0))
177                 watchdog = TX_TIMEO;
178         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
179                 buf_sz = DEFAULT_BUFSIZE;
180         if (unlikely(flow_ctrl > 1))
181                 flow_ctrl = FLOW_AUTO;
182         else if (likely(flow_ctrl < 0))
183                 flow_ctrl = FLOW_OFF;
184         if (unlikely((pause < 0) || (pause > 0xffff)))
185                 pause = PAUSE_TIME;
186         if (eee_timer < 0)
187                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
188 }
189
190 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
191 {
192         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
193         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
194         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
195         u32 queue;
196
197         for (queue = 0; queue < maxq; queue++) {
198                 struct stmmac_channel *ch = &priv->channel[queue];
199
200                 if (stmmac_xdp_is_enabled(priv) &&
201                     test_bit(queue, priv->af_xdp_zc_qps)) {
202                         napi_disable(&ch->rxtx_napi);
203                         continue;
204                 }
205
206                 if (queue < rx_queues_cnt)
207                         napi_disable(&ch->rx_napi);
208                 if (queue < tx_queues_cnt)
209                         napi_disable(&ch->tx_napi);
210         }
211 }
212
213 /**
214  * stmmac_disable_all_queues - Disable all queues
215  * @priv: driver private structure
216  */
217 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
218 {
219         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
220         struct stmmac_rx_queue *rx_q;
221         u32 queue;
222
223         /* synchronize_rcu() needed for pending XDP buffers to drain */
224         for (queue = 0; queue < rx_queues_cnt; queue++) {
225                 rx_q = &priv->rx_queue[queue];
226                 if (rx_q->xsk_pool) {
227                         synchronize_rcu();
228                         break;
229                 }
230         }
231
232         __stmmac_disable_all_queues(priv);
233 }
234
235 /**
236  * stmmac_enable_all_queues - Enable all queues
237  * @priv: driver private structure
238  */
239 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
240 {
241         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
242         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
243         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
244         u32 queue;
245
246         for (queue = 0; queue < maxq; queue++) {
247                 struct stmmac_channel *ch = &priv->channel[queue];
248
249                 if (stmmac_xdp_is_enabled(priv) &&
250                     test_bit(queue, priv->af_xdp_zc_qps)) {
251                         napi_enable(&ch->rxtx_napi);
252                         continue;
253                 }
254
255                 if (queue < rx_queues_cnt)
256                         napi_enable(&ch->rx_napi);
257                 if (queue < tx_queues_cnt)
258                         napi_enable(&ch->tx_napi);
259         }
260 }
261
262 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
263 {
264         if (!test_bit(STMMAC_DOWN, &priv->state) &&
265             !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
266                 queue_work(priv->wq, &priv->service_task);
267 }
268
269 static void stmmac_global_err(struct stmmac_priv *priv)
270 {
271         netif_carrier_off(priv->dev);
272         set_bit(STMMAC_RESET_REQUESTED, &priv->state);
273         stmmac_service_event_schedule(priv);
274 }
275
276 /**
277  * stmmac_clk_csr_set - dynamically set the MDC clock
278  * @priv: driver private structure
279  * Description: this is to dynamically set the MDC clock according to the csr
280  * clock input.
281  * Note:
282  *      If a specific clk_csr value is passed from the platform
283  *      this means that the CSR Clock Range selection cannot be
284  *      changed at run-time and it is fixed (as reported in the driver
285  *      documentation). Viceversa the driver will try to set the MDC
286  *      clock dynamically according to the actual clock input.
287  */
288 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
289 {
290         u32 clk_rate;
291
292         clk_rate = clk_get_rate(priv->plat->stmmac_clk);
293
294         /* Platform provided default clk_csr would be assumed valid
295          * for all other cases except for the below mentioned ones.
296          * For values higher than the IEEE 802.3 specified frequency
297          * we can not estimate the proper divider as it is not known
298          * the frequency of clk_csr_i. So we do not change the default
299          * divider.
300          */
301         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
302                 if (clk_rate < CSR_F_35M)
303                         priv->clk_csr = STMMAC_CSR_20_35M;
304                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
305                         priv->clk_csr = STMMAC_CSR_35_60M;
306                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
307                         priv->clk_csr = STMMAC_CSR_60_100M;
308                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
309                         priv->clk_csr = STMMAC_CSR_100_150M;
310                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
311                         priv->clk_csr = STMMAC_CSR_150_250M;
312                 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
313                         priv->clk_csr = STMMAC_CSR_250_300M;
314         }
315
316         if (priv->plat->has_sun8i) {
317                 if (clk_rate > 160000000)
318                         priv->clk_csr = 0x03;
319                 else if (clk_rate > 80000000)
320                         priv->clk_csr = 0x02;
321                 else if (clk_rate > 40000000)
322                         priv->clk_csr = 0x01;
323                 else
324                         priv->clk_csr = 0;
325         }
326
327         if (priv->plat->has_xgmac) {
328                 if (clk_rate > 400000000)
329                         priv->clk_csr = 0x5;
330                 else if (clk_rate > 350000000)
331                         priv->clk_csr = 0x4;
332                 else if (clk_rate > 300000000)
333                         priv->clk_csr = 0x3;
334                 else if (clk_rate > 250000000)
335                         priv->clk_csr = 0x2;
336                 else if (clk_rate > 150000000)
337                         priv->clk_csr = 0x1;
338                 else
339                         priv->clk_csr = 0x0;
340         }
341 }
342
343 static void print_pkt(unsigned char *buf, int len)
344 {
345         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
346         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
347 }
348
349 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
350 {
351         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
352         u32 avail;
353
354         if (tx_q->dirty_tx > tx_q->cur_tx)
355                 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
356         else
357                 avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
358
359         return avail;
360 }
361
362 /**
363  * stmmac_rx_dirty - Get RX queue dirty
364  * @priv: driver private structure
365  * @queue: RX queue index
366  */
367 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
368 {
369         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
370         u32 dirty;
371
372         if (rx_q->dirty_rx <= rx_q->cur_rx)
373                 dirty = rx_q->cur_rx - rx_q->dirty_rx;
374         else
375                 dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
376
377         return dirty;
378 }
379
380 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
381 {
382         int tx_lpi_timer;
383
384         /* Clear/set the SW EEE timer flag based on LPI ET enablement */
385         priv->eee_sw_timer_en = en ? 0 : 1;
386         tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
387         stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
388 }
389
390 /**
391  * stmmac_enable_eee_mode - check and enter in LPI mode
392  * @priv: driver private structure
393  * Description: this function is to verify and enter in LPI mode in case of
394  * EEE.
395  */
396 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
397 {
398         u32 tx_cnt = priv->plat->tx_queues_to_use;
399         u32 queue;
400
401         /* check if all TX queues have the work finished */
402         for (queue = 0; queue < tx_cnt; queue++) {
403                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
404
405                 if (tx_q->dirty_tx != tx_q->cur_tx)
406                         return; /* still unfinished work */
407         }
408
409         /* Check and enter in LPI mode */
410         if (!priv->tx_path_in_lpi_mode)
411                 stmmac_set_eee_mode(priv, priv->hw,
412                                 priv->plat->en_tx_lpi_clockgating);
413 }
414
415 /**
416  * stmmac_disable_eee_mode - disable and exit from LPI mode
417  * @priv: driver private structure
418  * Description: this function is to exit and disable EEE in case of
419  * LPI state is true. This is called by the xmit.
420  */
421 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
422 {
423         if (!priv->eee_sw_timer_en) {
424                 stmmac_lpi_entry_timer_config(priv, 0);
425                 return;
426         }
427
428         stmmac_reset_eee_mode(priv, priv->hw);
429         del_timer_sync(&priv->eee_ctrl_timer);
430         priv->tx_path_in_lpi_mode = false;
431 }
432
433 /**
434  * stmmac_eee_ctrl_timer - EEE TX SW timer.
435  * @t:  timer_list struct containing private info
436  * Description:
437  *  if there is no data transfer and if we are not in LPI state,
438  *  then MAC Transmitter can be moved to LPI state.
439  */
440 static void stmmac_eee_ctrl_timer(struct timer_list *t)
441 {
442         struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
443
444         stmmac_enable_eee_mode(priv);
445         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
446 }
447
448 /**
449  * stmmac_eee_init - init EEE
450  * @priv: driver private structure
451  * Description:
452  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
453  *  can also manage EEE, this function enable the LPI state and start related
454  *  timer.
455  */
456 bool stmmac_eee_init(struct stmmac_priv *priv)
457 {
458         int eee_tw_timer = priv->eee_tw_timer;
459
460         /* Using PCS we cannot dial with the phy registers at this stage
461          * so we do not support extra feature like EEE.
462          */
463         if (priv->hw->pcs == STMMAC_PCS_TBI ||
464             priv->hw->pcs == STMMAC_PCS_RTBI)
465                 return false;
466
467         /* Check if MAC core supports the EEE feature. */
468         if (!priv->dma_cap.eee)
469                 return false;
470
471         mutex_lock(&priv->lock);
472
473         /* Check if it needs to be deactivated */
474         if (!priv->eee_active) {
475                 if (priv->eee_enabled) {
476                         netdev_dbg(priv->dev, "disable EEE\n");
477                         stmmac_lpi_entry_timer_config(priv, 0);
478                         del_timer_sync(&priv->eee_ctrl_timer);
479                         stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
480                         if (priv->hw->xpcs)
481                                 xpcs_config_eee(priv->hw->xpcs,
482                                                 priv->plat->mult_fact_100ns,
483                                                 false);
484                 }
485                 mutex_unlock(&priv->lock);
486                 return false;
487         }
488
489         if (priv->eee_active && !priv->eee_enabled) {
490                 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
491                 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
492                                      eee_tw_timer);
493                 if (priv->hw->xpcs)
494                         xpcs_config_eee(priv->hw->xpcs,
495                                         priv->plat->mult_fact_100ns,
496                                         true);
497         }
498
499         if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
500                 del_timer_sync(&priv->eee_ctrl_timer);
501                 priv->tx_path_in_lpi_mode = false;
502                 stmmac_lpi_entry_timer_config(priv, 1);
503         } else {
504                 stmmac_lpi_entry_timer_config(priv, 0);
505                 mod_timer(&priv->eee_ctrl_timer,
506                           STMMAC_LPI_T(priv->tx_lpi_timer));
507         }
508
509         mutex_unlock(&priv->lock);
510         netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
511         return true;
512 }
513
514 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
515  * @priv: driver private structure
516  * @p : descriptor pointer
517  * @skb : the socket buffer
518  * Description :
519  * This function will read timestamp from the descriptor & pass it to stack.
520  * and also perform some sanity checks.
521  */
522 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
523                                    struct dma_desc *p, struct sk_buff *skb)
524 {
525         struct skb_shared_hwtstamps shhwtstamp;
526         bool found = false;
527         s64 adjust = 0;
528         u64 ns = 0;
529
530         if (!priv->hwts_tx_en)
531                 return;
532
533         /* exit if skb doesn't support hw tstamp */
534         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
535                 return;
536
537         /* check tx tstamp status */
538         if (stmmac_get_tx_timestamp_status(priv, p)) {
539                 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
540                 found = true;
541         } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
542                 found = true;
543         }
544
545         if (found) {
546                 /* Correct the clk domain crossing(CDC) error */
547                 if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) {
548                         adjust += -(2 * (NSEC_PER_SEC /
549                                          priv->plat->clk_ptp_rate));
550                         ns += adjust;
551                 }
552
553                 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
554                 shhwtstamp.hwtstamp = ns_to_ktime(ns);
555
556                 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
557                 /* pass tstamp to stack */
558                 skb_tstamp_tx(skb, &shhwtstamp);
559         }
560 }
561
562 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
563  * @priv: driver private structure
564  * @p : descriptor pointer
565  * @np : next descriptor pointer
566  * @skb : the socket buffer
567  * Description :
568  * This function will read received packet's timestamp from the descriptor
569  * and pass it to stack. It also perform some sanity checks.
570  */
571 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
572                                    struct dma_desc *np, struct sk_buff *skb)
573 {
574         struct skb_shared_hwtstamps *shhwtstamp = NULL;
575         struct dma_desc *desc = p;
576         u64 adjust = 0;
577         u64 ns = 0;
578
579         if (!priv->hwts_rx_en)
580                 return;
581         /* For GMAC4, the valid timestamp is from CTX next desc. */
582         if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
583                 desc = np;
584
585         /* Check if timestamp is available */
586         if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
587                 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
588
589                 /* Correct the clk domain crossing(CDC) error */
590                 if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) {
591                         adjust += 2 * (NSEC_PER_SEC / priv->plat->clk_ptp_rate);
592                         ns -= adjust;
593                 }
594
595                 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
596                 shhwtstamp = skb_hwtstamps(skb);
597                 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
598                 shhwtstamp->hwtstamp = ns_to_ktime(ns);
599         } else  {
600                 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
601         }
602 }
603
604 /**
605  *  stmmac_hwtstamp_set - control hardware timestamping.
606  *  @dev: device pointer.
607  *  @ifr: An IOCTL specific structure, that can contain a pointer to
608  *  a proprietary structure used to pass information to the driver.
609  *  Description:
610  *  This function configures the MAC to enable/disable both outgoing(TX)
611  *  and incoming(RX) packets time stamping based on user input.
612  *  Return Value:
613  *  0 on success and an appropriate -ve integer on failure.
614  */
615 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
616 {
617         struct stmmac_priv *priv = netdev_priv(dev);
618         struct hwtstamp_config config;
619         struct timespec64 now;
620         u64 temp = 0;
621         u32 ptp_v2 = 0;
622         u32 tstamp_all = 0;
623         u32 ptp_over_ipv4_udp = 0;
624         u32 ptp_over_ipv6_udp = 0;
625         u32 ptp_over_ethernet = 0;
626         u32 snap_type_sel = 0;
627         u32 ts_master_en = 0;
628         u32 ts_event_en = 0;
629         u32 sec_inc = 0;
630         u32 value = 0;
631         bool xmac;
632
633         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
634
635         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
636                 netdev_alert(priv->dev, "No support for HW time stamping\n");
637                 priv->hwts_tx_en = 0;
638                 priv->hwts_rx_en = 0;
639
640                 return -EOPNOTSUPP;
641         }
642
643         if (copy_from_user(&config, ifr->ifr_data,
644                            sizeof(config)))
645                 return -EFAULT;
646
647         netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
648                    __func__, config.flags, config.tx_type, config.rx_filter);
649
650         /* reserved for future extensions */
651         if (config.flags)
652                 return -EINVAL;
653
654         if (config.tx_type != HWTSTAMP_TX_OFF &&
655             config.tx_type != HWTSTAMP_TX_ON)
656                 return -ERANGE;
657
658         if (priv->adv_ts) {
659                 switch (config.rx_filter) {
660                 case HWTSTAMP_FILTER_NONE:
661                         /* time stamp no incoming packet at all */
662                         config.rx_filter = HWTSTAMP_FILTER_NONE;
663                         break;
664
665                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
666                         /* PTP v1, UDP, any kind of event packet */
667                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
668                         /* 'xmac' hardware can support Sync, Pdelay_Req and
669                          * Pdelay_resp by setting bit14 and bits17/16 to 01
670                          * This leaves Delay_Req timestamps out.
671                          * Enable all events *and* general purpose message
672                          * timestamping
673                          */
674                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
675                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
676                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
677                         break;
678
679                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
680                         /* PTP v1, UDP, Sync packet */
681                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
682                         /* take time stamp for SYNC messages only */
683                         ts_event_en = PTP_TCR_TSEVNTENA;
684
685                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
686                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
687                         break;
688
689                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
690                         /* PTP v1, UDP, Delay_req packet */
691                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
692                         /* take time stamp for Delay_Req messages only */
693                         ts_master_en = PTP_TCR_TSMSTRENA;
694                         ts_event_en = PTP_TCR_TSEVNTENA;
695
696                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
697                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
698                         break;
699
700                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
701                         /* PTP v2, UDP, any kind of event packet */
702                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
703                         ptp_v2 = PTP_TCR_TSVER2ENA;
704                         /* take time stamp for all event messages */
705                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
706
707                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
708                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
709                         break;
710
711                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
712                         /* PTP v2, UDP, Sync packet */
713                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
714                         ptp_v2 = PTP_TCR_TSVER2ENA;
715                         /* take time stamp for SYNC messages only */
716                         ts_event_en = PTP_TCR_TSEVNTENA;
717
718                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
719                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
720                         break;
721
722                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
723                         /* PTP v2, UDP, Delay_req packet */
724                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
725                         ptp_v2 = PTP_TCR_TSVER2ENA;
726                         /* take time stamp for Delay_Req messages only */
727                         ts_master_en = PTP_TCR_TSMSTRENA;
728                         ts_event_en = PTP_TCR_TSEVNTENA;
729
730                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
731                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
732                         break;
733
734                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
735                         /* PTP v2/802.AS1 any layer, any kind of event packet */
736                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
737                         ptp_v2 = PTP_TCR_TSVER2ENA;
738                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
739                         if (priv->synopsys_id != DWMAC_CORE_5_10)
740                                 ts_event_en = PTP_TCR_TSEVNTENA;
741                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
742                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
743                         ptp_over_ethernet = PTP_TCR_TSIPENA;
744                         break;
745
746                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
747                         /* PTP v2/802.AS1, any layer, Sync packet */
748                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
749                         ptp_v2 = PTP_TCR_TSVER2ENA;
750                         /* take time stamp for SYNC messages only */
751                         ts_event_en = PTP_TCR_TSEVNTENA;
752
753                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
754                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
755                         ptp_over_ethernet = PTP_TCR_TSIPENA;
756                         break;
757
758                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
759                         /* PTP v2/802.AS1, any layer, Delay_req packet */
760                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
761                         ptp_v2 = PTP_TCR_TSVER2ENA;
762                         /* take time stamp for Delay_Req messages only */
763                         ts_master_en = PTP_TCR_TSMSTRENA;
764                         ts_event_en = PTP_TCR_TSEVNTENA;
765
766                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
767                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
768                         ptp_over_ethernet = PTP_TCR_TSIPENA;
769                         break;
770
771                 case HWTSTAMP_FILTER_NTP_ALL:
772                 case HWTSTAMP_FILTER_ALL:
773                         /* time stamp any incoming packet */
774                         config.rx_filter = HWTSTAMP_FILTER_ALL;
775                         tstamp_all = PTP_TCR_TSENALL;
776                         break;
777
778                 default:
779                         return -ERANGE;
780                 }
781         } else {
782                 switch (config.rx_filter) {
783                 case HWTSTAMP_FILTER_NONE:
784                         config.rx_filter = HWTSTAMP_FILTER_NONE;
785                         break;
786                 default:
787                         /* PTP v1, UDP, any kind of event packet */
788                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
789                         break;
790                 }
791         }
792         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
793         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
794
795         if (!priv->hwts_tx_en && !priv->hwts_rx_en)
796                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
797         else {
798                 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
799                          tstamp_all | ptp_v2 | ptp_over_ethernet |
800                          ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
801                          ts_master_en | snap_type_sel);
802                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
803
804                 /* program Sub Second Increment reg */
805                 stmmac_config_sub_second_increment(priv,
806                                 priv->ptpaddr, priv->plat->clk_ptp_rate,
807                                 xmac, &sec_inc);
808                 temp = div_u64(1000000000ULL, sec_inc);
809
810                 /* Store sub second increment and flags for later use */
811                 priv->sub_second_inc = sec_inc;
812                 priv->systime_flags = value;
813
814                 /* calculate default added value:
815                  * formula is :
816                  * addend = (2^32)/freq_div_ratio;
817                  * where, freq_div_ratio = 1e9ns/sec_inc
818                  */
819                 temp = (u64)(temp << 32);
820                 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
821                 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
822
823                 /* initialize system time */
824                 ktime_get_real_ts64(&now);
825
826                 /* lower 32 bits of tv_sec are safe until y2106 */
827                 stmmac_init_systime(priv, priv->ptpaddr,
828                                 (u32)now.tv_sec, now.tv_nsec);
829         }
830
831         memcpy(&priv->tstamp_config, &config, sizeof(config));
832
833         return copy_to_user(ifr->ifr_data, &config,
834                             sizeof(config)) ? -EFAULT : 0;
835 }
836
837 /**
838  *  stmmac_hwtstamp_get - read hardware timestamping.
839  *  @dev: device pointer.
840  *  @ifr: An IOCTL specific structure, that can contain a pointer to
841  *  a proprietary structure used to pass information to the driver.
842  *  Description:
843  *  This function obtain the current hardware timestamping settings
844  *  as requested.
845  */
846 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
847 {
848         struct stmmac_priv *priv = netdev_priv(dev);
849         struct hwtstamp_config *config = &priv->tstamp_config;
850
851         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
852                 return -EOPNOTSUPP;
853
854         return copy_to_user(ifr->ifr_data, config,
855                             sizeof(*config)) ? -EFAULT : 0;
856 }
857
858 /**
859  * stmmac_init_ptp - init PTP
860  * @priv: driver private structure
861  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
862  * This is done by looking at the HW cap. register.
863  * This function also registers the ptp driver.
864  */
865 static int stmmac_init_ptp(struct stmmac_priv *priv)
866 {
867         bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
868
869         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
870                 return -EOPNOTSUPP;
871
872         priv->adv_ts = 0;
873         /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
874         if (xmac && priv->dma_cap.atime_stamp)
875                 priv->adv_ts = 1;
876         /* Dwmac 3.x core with extend_desc can support adv_ts */
877         else if (priv->extend_desc && priv->dma_cap.atime_stamp)
878                 priv->adv_ts = 1;
879
880         if (priv->dma_cap.time_stamp)
881                 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
882
883         if (priv->adv_ts)
884                 netdev_info(priv->dev,
885                             "IEEE 1588-2008 Advanced Timestamp supported\n");
886
887         priv->hwts_tx_en = 0;
888         priv->hwts_rx_en = 0;
889
890         stmmac_ptp_register(priv);
891
892         return 0;
893 }
894
895 static void stmmac_release_ptp(struct stmmac_priv *priv)
896 {
897         clk_disable_unprepare(priv->plat->clk_ptp_ref);
898         stmmac_ptp_unregister(priv);
899 }
900
901 /**
902  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
903  *  @priv: driver private structure
904  *  @duplex: duplex passed to the next function
905  *  Description: It is used for configuring the flow control in all queues
906  */
907 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
908 {
909         u32 tx_cnt = priv->plat->tx_queues_to_use;
910
911         stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
912                         priv->pause, tx_cnt);
913 }
914
915 static void stmmac_validate(struct phylink_config *config,
916                             unsigned long *supported,
917                             struct phylink_link_state *state)
918 {
919         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
920         __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
921         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
922         int tx_cnt = priv->plat->tx_queues_to_use;
923         int max_speed = priv->plat->max_speed;
924
925         phylink_set(mac_supported, 10baseT_Half);
926         phylink_set(mac_supported, 10baseT_Full);
927         phylink_set(mac_supported, 100baseT_Half);
928         phylink_set(mac_supported, 100baseT_Full);
929         phylink_set(mac_supported, 1000baseT_Half);
930         phylink_set(mac_supported, 1000baseT_Full);
931         phylink_set(mac_supported, 1000baseKX_Full);
932
933         phylink_set(mac_supported, Autoneg);
934         phylink_set(mac_supported, Pause);
935         phylink_set(mac_supported, Asym_Pause);
936         phylink_set_port_modes(mac_supported);
937
938         /* Cut down 1G if asked to */
939         if ((max_speed > 0) && (max_speed < 1000)) {
940                 phylink_set(mask, 1000baseT_Full);
941                 phylink_set(mask, 1000baseX_Full);
942         } else if (priv->plat->has_gmac4) {
943                 if (!max_speed || max_speed >= 2500) {
944                         phylink_set(mac_supported, 2500baseT_Full);
945                         phylink_set(mac_supported, 2500baseX_Full);
946                 }
947         } else if (priv->plat->has_xgmac) {
948                 if (!max_speed || (max_speed >= 2500)) {
949                         phylink_set(mac_supported, 2500baseT_Full);
950                         phylink_set(mac_supported, 2500baseX_Full);
951                 }
952                 if (!max_speed || (max_speed >= 5000)) {
953                         phylink_set(mac_supported, 5000baseT_Full);
954                 }
955                 if (!max_speed || (max_speed >= 10000)) {
956                         phylink_set(mac_supported, 10000baseSR_Full);
957                         phylink_set(mac_supported, 10000baseLR_Full);
958                         phylink_set(mac_supported, 10000baseER_Full);
959                         phylink_set(mac_supported, 10000baseLRM_Full);
960                         phylink_set(mac_supported, 10000baseT_Full);
961                         phylink_set(mac_supported, 10000baseKX4_Full);
962                         phylink_set(mac_supported, 10000baseKR_Full);
963                 }
964                 if (!max_speed || (max_speed >= 25000)) {
965                         phylink_set(mac_supported, 25000baseCR_Full);
966                         phylink_set(mac_supported, 25000baseKR_Full);
967                         phylink_set(mac_supported, 25000baseSR_Full);
968                 }
969                 if (!max_speed || (max_speed >= 40000)) {
970                         phylink_set(mac_supported, 40000baseKR4_Full);
971                         phylink_set(mac_supported, 40000baseCR4_Full);
972                         phylink_set(mac_supported, 40000baseSR4_Full);
973                         phylink_set(mac_supported, 40000baseLR4_Full);
974                 }
975                 if (!max_speed || (max_speed >= 50000)) {
976                         phylink_set(mac_supported, 50000baseCR2_Full);
977                         phylink_set(mac_supported, 50000baseKR2_Full);
978                         phylink_set(mac_supported, 50000baseSR2_Full);
979                         phylink_set(mac_supported, 50000baseKR_Full);
980                         phylink_set(mac_supported, 50000baseSR_Full);
981                         phylink_set(mac_supported, 50000baseCR_Full);
982                         phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
983                         phylink_set(mac_supported, 50000baseDR_Full);
984                 }
985                 if (!max_speed || (max_speed >= 100000)) {
986                         phylink_set(mac_supported, 100000baseKR4_Full);
987                         phylink_set(mac_supported, 100000baseSR4_Full);
988                         phylink_set(mac_supported, 100000baseCR4_Full);
989                         phylink_set(mac_supported, 100000baseLR4_ER4_Full);
990                         phylink_set(mac_supported, 100000baseKR2_Full);
991                         phylink_set(mac_supported, 100000baseSR2_Full);
992                         phylink_set(mac_supported, 100000baseCR2_Full);
993                         phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
994                         phylink_set(mac_supported, 100000baseDR2_Full);
995                 }
996         }
997
998         /* Half-Duplex can only work with single queue */
999         if (tx_cnt > 1) {
1000                 phylink_set(mask, 10baseT_Half);
1001                 phylink_set(mask, 100baseT_Half);
1002                 phylink_set(mask, 1000baseT_Half);
1003         }
1004
1005         linkmode_and(supported, supported, mac_supported);
1006         linkmode_andnot(supported, supported, mask);
1007
1008         linkmode_and(state->advertising, state->advertising, mac_supported);
1009         linkmode_andnot(state->advertising, state->advertising, mask);
1010
1011         /* If PCS is supported, check which modes it supports. */
1012         if (priv->hw->xpcs)
1013                 xpcs_validate(priv->hw->xpcs, supported, state);
1014 }
1015
1016 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
1017                               const struct phylink_link_state *state)
1018 {
1019         /* Nothing to do, xpcs_config() handles everything */
1020 }
1021
1022 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
1023 {
1024         struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
1025         enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
1026         enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
1027         bool *hs_enable = &fpe_cfg->hs_enable;
1028
1029         if (is_up && *hs_enable) {
1030                 stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
1031         } else {
1032                 *lo_state = FPE_STATE_OFF;
1033                 *lp_state = FPE_STATE_OFF;
1034         }
1035 }
1036
1037 static void stmmac_mac_link_down(struct phylink_config *config,
1038                                  unsigned int mode, phy_interface_t interface)
1039 {
1040         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
1041
1042         stmmac_mac_set(priv, priv->ioaddr, false);
1043         priv->eee_active = false;
1044         priv->tx_lpi_enabled = false;
1045         priv->eee_enabled = stmmac_eee_init(priv);
1046         stmmac_set_eee_pls(priv, priv->hw, false);
1047
1048         if (priv->dma_cap.fpesel)
1049                 stmmac_fpe_link_state_handle(priv, false);
1050 }
1051
1052 static void stmmac_mac_link_up(struct phylink_config *config,
1053                                struct phy_device *phy,
1054                                unsigned int mode, phy_interface_t interface,
1055                                int speed, int duplex,
1056                                bool tx_pause, bool rx_pause)
1057 {
1058         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
1059         u32 ctrl;
1060
1061         ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
1062         ctrl &= ~priv->hw->link.speed_mask;
1063
1064         if (interface == PHY_INTERFACE_MODE_USXGMII) {
1065                 switch (speed) {
1066                 case SPEED_10000:
1067                         ctrl |= priv->hw->link.xgmii.speed10000;
1068                         break;
1069                 case SPEED_5000:
1070                         ctrl |= priv->hw->link.xgmii.speed5000;
1071                         break;
1072                 case SPEED_2500:
1073                         ctrl |= priv->hw->link.xgmii.speed2500;
1074                         break;
1075                 default:
1076                         return;
1077                 }
1078         } else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1079                 switch (speed) {
1080                 case SPEED_100000:
1081                         ctrl |= priv->hw->link.xlgmii.speed100000;
1082                         break;
1083                 case SPEED_50000:
1084                         ctrl |= priv->hw->link.xlgmii.speed50000;
1085                         break;
1086                 case SPEED_40000:
1087                         ctrl |= priv->hw->link.xlgmii.speed40000;
1088                         break;
1089                 case SPEED_25000:
1090                         ctrl |= priv->hw->link.xlgmii.speed25000;
1091                         break;
1092                 case SPEED_10000:
1093                         ctrl |= priv->hw->link.xgmii.speed10000;
1094                         break;
1095                 case SPEED_2500:
1096                         ctrl |= priv->hw->link.speed2500;
1097                         break;
1098                 case SPEED_1000:
1099                         ctrl |= priv->hw->link.speed1000;
1100                         break;
1101                 default:
1102                         return;
1103                 }
1104         } else {
1105                 switch (speed) {
1106                 case SPEED_2500:
1107                         ctrl |= priv->hw->link.speed2500;
1108                         break;
1109                 case SPEED_1000:
1110                         ctrl |= priv->hw->link.speed1000;
1111                         break;
1112                 case SPEED_100:
1113                         ctrl |= priv->hw->link.speed100;
1114                         break;
1115                 case SPEED_10:
1116                         ctrl |= priv->hw->link.speed10;
1117                         break;
1118                 default:
1119                         return;
1120                 }
1121         }
1122
1123         priv->speed = speed;
1124
1125         if (priv->plat->fix_mac_speed)
1126                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1127
1128         if (!duplex)
1129                 ctrl &= ~priv->hw->link.duplex;
1130         else
1131                 ctrl |= priv->hw->link.duplex;
1132
1133         /* Flow Control operation */
1134         if (tx_pause && rx_pause)
1135                 stmmac_mac_flow_ctrl(priv, duplex);
1136
1137         writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1138
1139         stmmac_mac_set(priv, priv->ioaddr, true);
1140         if (phy && priv->dma_cap.eee) {
1141                 priv->eee_active = phy_init_eee(phy, 1) >= 0;
1142                 priv->eee_enabled = stmmac_eee_init(priv);
1143                 priv->tx_lpi_enabled = priv->eee_enabled;
1144                 stmmac_set_eee_pls(priv, priv->hw, true);
1145         }
1146
1147         if (priv->dma_cap.fpesel)
1148                 stmmac_fpe_link_state_handle(priv, true);
1149 }
1150
1151 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1152         .validate = stmmac_validate,
1153         .mac_config = stmmac_mac_config,
1154         .mac_link_down = stmmac_mac_link_down,
1155         .mac_link_up = stmmac_mac_link_up,
1156 };
1157
1158 /**
1159  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1160  * @priv: driver private structure
1161  * Description: this is to verify if the HW supports the PCS.
1162  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1163  * configured for the TBI, RTBI, or SGMII PHY interface.
1164  */
1165 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1166 {
1167         int interface = priv->plat->interface;
1168
1169         if (priv->dma_cap.pcs) {
1170                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1171                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1172                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1173                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1174                         netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1175                         priv->hw->pcs = STMMAC_PCS_RGMII;
1176                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
1177                         netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1178                         priv->hw->pcs = STMMAC_PCS_SGMII;
1179                 }
1180         }
1181 }
1182
1183 /**
1184  * stmmac_init_phy - PHY initialization
1185  * @dev: net device structure
1186  * Description: it initializes the driver's PHY state, and attaches the PHY
1187  * to the mac driver.
1188  *  Return value:
1189  *  0 on success
1190  */
1191 static int stmmac_init_phy(struct net_device *dev)
1192 {
1193         struct stmmac_priv *priv = netdev_priv(dev);
1194         struct device_node *node;
1195         int ret;
1196
1197         node = priv->plat->phylink_node;
1198
1199         if (node)
1200                 ret = phylink_of_phy_connect(priv->phylink, node, 0);
1201
1202         /* Some DT bindings do not set-up the PHY handle. Let's try to
1203          * manually parse it
1204          */
1205         if (!node || ret) {
1206                 int addr = priv->plat->phy_addr;
1207                 struct phy_device *phydev;
1208
1209                 phydev = mdiobus_get_phy(priv->mii, addr);
1210                 if (!phydev) {
1211                         netdev_err(priv->dev, "no phy at addr %d\n", addr);
1212                         return -ENODEV;
1213                 }
1214
1215                 ret = phylink_connect_phy(priv->phylink, phydev);
1216         }
1217
1218         if (!priv->plat->pmt) {
1219                 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1220
1221                 phylink_ethtool_get_wol(priv->phylink, &wol);
1222                 device_set_wakeup_capable(priv->device, !!wol.supported);
1223         }
1224
1225         return ret;
1226 }
1227
1228 static int stmmac_phy_setup(struct stmmac_priv *priv)
1229 {
1230         struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1231         struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1232         int mode = priv->plat->phy_interface;
1233         struct phylink *phylink;
1234
1235         priv->phylink_config.dev = &priv->dev->dev;
1236         priv->phylink_config.type = PHYLINK_NETDEV;
1237         priv->phylink_config.pcs_poll = true;
1238         if (priv->plat->mdio_bus_data)
1239                 priv->phylink_config.ovr_an_inband =
1240                         mdio_bus_data->xpcs_an_inband;
1241
1242         if (!fwnode)
1243                 fwnode = dev_fwnode(priv->device);
1244
1245         phylink = phylink_create(&priv->phylink_config, fwnode,
1246                                  mode, &stmmac_phylink_mac_ops);
1247         if (IS_ERR(phylink))
1248                 return PTR_ERR(phylink);
1249
1250         if (priv->hw->xpcs)
1251                 phylink_set_pcs(phylink, &priv->hw->xpcs->pcs);
1252
1253         priv->phylink = phylink;
1254         return 0;
1255 }
1256
1257 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1258 {
1259         u32 rx_cnt = priv->plat->rx_queues_to_use;
1260         unsigned int desc_size;
1261         void *head_rx;
1262         u32 queue;
1263
1264         /* Display RX rings */
1265         for (queue = 0; queue < rx_cnt; queue++) {
1266                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1267
1268                 pr_info("\tRX Queue %u rings\n", queue);
1269
1270                 if (priv->extend_desc) {
1271                         head_rx = (void *)rx_q->dma_erx;
1272                         desc_size = sizeof(struct dma_extended_desc);
1273                 } else {
1274                         head_rx = (void *)rx_q->dma_rx;
1275                         desc_size = sizeof(struct dma_desc);
1276                 }
1277
1278                 /* Display RX ring */
1279                 stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true,
1280                                     rx_q->dma_rx_phy, desc_size);
1281         }
1282 }
1283
1284 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1285 {
1286         u32 tx_cnt = priv->plat->tx_queues_to_use;
1287         unsigned int desc_size;
1288         void *head_tx;
1289         u32 queue;
1290
1291         /* Display TX rings */
1292         for (queue = 0; queue < tx_cnt; queue++) {
1293                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1294
1295                 pr_info("\tTX Queue %d rings\n", queue);
1296
1297                 if (priv->extend_desc) {
1298                         head_tx = (void *)tx_q->dma_etx;
1299                         desc_size = sizeof(struct dma_extended_desc);
1300                 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1301                         head_tx = (void *)tx_q->dma_entx;
1302                         desc_size = sizeof(struct dma_edesc);
1303                 } else {
1304                         head_tx = (void *)tx_q->dma_tx;
1305                         desc_size = sizeof(struct dma_desc);
1306                 }
1307
1308                 stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false,
1309                                     tx_q->dma_tx_phy, desc_size);
1310         }
1311 }
1312
1313 static void stmmac_display_rings(struct stmmac_priv *priv)
1314 {
1315         /* Display RX ring */
1316         stmmac_display_rx_rings(priv);
1317
1318         /* Display TX ring */
1319         stmmac_display_tx_rings(priv);
1320 }
1321
1322 static int stmmac_set_bfsize(int mtu, int bufsize)
1323 {
1324         int ret = bufsize;
1325
1326         if (mtu >= BUF_SIZE_8KiB)
1327                 ret = BUF_SIZE_16KiB;
1328         else if (mtu >= BUF_SIZE_4KiB)
1329                 ret = BUF_SIZE_8KiB;
1330         else if (mtu >= BUF_SIZE_2KiB)
1331                 ret = BUF_SIZE_4KiB;
1332         else if (mtu > DEFAULT_BUFSIZE)
1333                 ret = BUF_SIZE_2KiB;
1334         else
1335                 ret = DEFAULT_BUFSIZE;
1336
1337         return ret;
1338 }
1339
1340 /**
1341  * stmmac_clear_rx_descriptors - clear RX descriptors
1342  * @priv: driver private structure
1343  * @queue: RX queue index
1344  * Description: this function is called to clear the RX descriptors
1345  * in case of both basic and extended descriptors are used.
1346  */
1347 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1348 {
1349         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1350         int i;
1351
1352         /* Clear the RX descriptors */
1353         for (i = 0; i < priv->dma_rx_size; i++)
1354                 if (priv->extend_desc)
1355                         stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1356                                         priv->use_riwt, priv->mode,
1357                                         (i == priv->dma_rx_size - 1),
1358                                         priv->dma_buf_sz);
1359                 else
1360                         stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1361                                         priv->use_riwt, priv->mode,
1362                                         (i == priv->dma_rx_size - 1),
1363                                         priv->dma_buf_sz);
1364 }
1365
1366 /**
1367  * stmmac_clear_tx_descriptors - clear tx descriptors
1368  * @priv: driver private structure
1369  * @queue: TX queue index.
1370  * Description: this function is called to clear the TX descriptors
1371  * in case of both basic and extended descriptors are used.
1372  */
1373 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1374 {
1375         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1376         int i;
1377
1378         /* Clear the TX descriptors */
1379         for (i = 0; i < priv->dma_tx_size; i++) {
1380                 int last = (i == (priv->dma_tx_size - 1));
1381                 struct dma_desc *p;
1382
1383                 if (priv->extend_desc)
1384                         p = &tx_q->dma_etx[i].basic;
1385                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1386                         p = &tx_q->dma_entx[i].basic;
1387                 else
1388                         p = &tx_q->dma_tx[i];
1389
1390                 stmmac_init_tx_desc(priv, p, priv->mode, last);
1391         }
1392 }
1393
1394 /**
1395  * stmmac_clear_descriptors - clear descriptors
1396  * @priv: driver private structure
1397  * Description: this function is called to clear the TX and RX descriptors
1398  * in case of both basic and extended descriptors are used.
1399  */
1400 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1401 {
1402         u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1403         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1404         u32 queue;
1405
1406         /* Clear the RX descriptors */
1407         for (queue = 0; queue < rx_queue_cnt; queue++)
1408                 stmmac_clear_rx_descriptors(priv, queue);
1409
1410         /* Clear the TX descriptors */
1411         for (queue = 0; queue < tx_queue_cnt; queue++)
1412                 stmmac_clear_tx_descriptors(priv, queue);
1413 }
1414
1415 /**
1416  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1417  * @priv: driver private structure
1418  * @p: descriptor pointer
1419  * @i: descriptor index
1420  * @flags: gfp flag
1421  * @queue: RX queue index
1422  * Description: this function is called to allocate a receive buffer, perform
1423  * the DMA mapping and init the descriptor.
1424  */
1425 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1426                                   int i, gfp_t flags, u32 queue)
1427 {
1428         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1429         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1430
1431         if (!buf->page) {
1432                 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1433                 if (!buf->page)
1434                         return -ENOMEM;
1435                 buf->page_offset = stmmac_rx_offset(priv);
1436         }
1437
1438         if (priv->sph && !buf->sec_page) {
1439                 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1440                 if (!buf->sec_page)
1441                         return -ENOMEM;
1442
1443                 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1444                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1445         } else {
1446                 buf->sec_page = NULL;
1447                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1448         }
1449
1450         buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1451
1452         stmmac_set_desc_addr(priv, p, buf->addr);
1453         if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1454                 stmmac_init_desc3(priv, p);
1455
1456         return 0;
1457 }
1458
1459 /**
1460  * stmmac_free_rx_buffer - free RX dma buffers
1461  * @priv: private structure
1462  * @queue: RX queue index
1463  * @i: buffer index.
1464  */
1465 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1466 {
1467         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1468         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1469
1470         if (buf->page)
1471                 page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1472         buf->page = NULL;
1473
1474         if (buf->sec_page)
1475                 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1476         buf->sec_page = NULL;
1477 }
1478
1479 /**
1480  * stmmac_free_tx_buffer - free RX dma buffers
1481  * @priv: private structure
1482  * @queue: RX queue index
1483  * @i: buffer index.
1484  */
1485 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1486 {
1487         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1488
1489         if (tx_q->tx_skbuff_dma[i].buf &&
1490             tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1491                 if (tx_q->tx_skbuff_dma[i].map_as_page)
1492                         dma_unmap_page(priv->device,
1493                                        tx_q->tx_skbuff_dma[i].buf,
1494                                        tx_q->tx_skbuff_dma[i].len,
1495                                        DMA_TO_DEVICE);
1496                 else
1497                         dma_unmap_single(priv->device,
1498                                          tx_q->tx_skbuff_dma[i].buf,
1499                                          tx_q->tx_skbuff_dma[i].len,
1500                                          DMA_TO_DEVICE);
1501         }
1502
1503         if (tx_q->xdpf[i] &&
1504             (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1505              tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1506                 xdp_return_frame(tx_q->xdpf[i]);
1507                 tx_q->xdpf[i] = NULL;
1508         }
1509
1510         if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1511                 tx_q->xsk_frames_done++;
1512
1513         if (tx_q->tx_skbuff[i] &&
1514             tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1515                 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1516                 tx_q->tx_skbuff[i] = NULL;
1517         }
1518
1519         tx_q->tx_skbuff_dma[i].buf = 0;
1520         tx_q->tx_skbuff_dma[i].map_as_page = false;
1521 }
1522
1523 /**
1524  * dma_free_rx_skbufs - free RX dma buffers
1525  * @priv: private structure
1526  * @queue: RX queue index
1527  */
1528 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1529 {
1530         int i;
1531
1532         for (i = 0; i < priv->dma_rx_size; i++)
1533                 stmmac_free_rx_buffer(priv, queue, i);
1534 }
1535
1536 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue,
1537                                    gfp_t flags)
1538 {
1539         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1540         int i;
1541
1542         for (i = 0; i < priv->dma_rx_size; i++) {
1543                 struct dma_desc *p;
1544                 int ret;
1545
1546                 if (priv->extend_desc)
1547                         p = &((rx_q->dma_erx + i)->basic);
1548                 else
1549                         p = rx_q->dma_rx + i;
1550
1551                 ret = stmmac_init_rx_buffers(priv, p, i, flags,
1552                                              queue);
1553                 if (ret)
1554                         return ret;
1555
1556                 rx_q->buf_alloc_num++;
1557         }
1558
1559         return 0;
1560 }
1561
1562 /**
1563  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1564  * @priv: private structure
1565  * @queue: RX queue index
1566  */
1567 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue)
1568 {
1569         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1570         int i;
1571
1572         for (i = 0; i < priv->dma_rx_size; i++) {
1573                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1574
1575                 if (!buf->xdp)
1576                         continue;
1577
1578                 xsk_buff_free(buf->xdp);
1579                 buf->xdp = NULL;
1580         }
1581 }
1582
1583 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue)
1584 {
1585         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1586         int i;
1587
1588         for (i = 0; i < priv->dma_rx_size; i++) {
1589                 struct stmmac_rx_buffer *buf;
1590                 dma_addr_t dma_addr;
1591                 struct dma_desc *p;
1592
1593                 if (priv->extend_desc)
1594                         p = (struct dma_desc *)(rx_q->dma_erx + i);
1595                 else
1596                         p = rx_q->dma_rx + i;
1597
1598                 buf = &rx_q->buf_pool[i];
1599
1600                 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1601                 if (!buf->xdp)
1602                         return -ENOMEM;
1603
1604                 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1605                 stmmac_set_desc_addr(priv, p, dma_addr);
1606                 rx_q->buf_alloc_num++;
1607         }
1608
1609         return 0;
1610 }
1611
1612 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1613 {
1614         if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1615                 return NULL;
1616
1617         return xsk_get_pool_from_qid(priv->dev, queue);
1618 }
1619
1620 /**
1621  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1622  * @priv: driver private structure
1623  * @queue: RX queue index
1624  * @flags: gfp flag.
1625  * Description: this function initializes the DMA RX descriptors
1626  * and allocates the socket buffers. It supports the chained and ring
1627  * modes.
1628  */
1629 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags)
1630 {
1631         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1632         int ret;
1633
1634         netif_dbg(priv, probe, priv->dev,
1635                   "(%s) dma_rx_phy=0x%08x\n", __func__,
1636                   (u32)rx_q->dma_rx_phy);
1637
1638         stmmac_clear_rx_descriptors(priv, queue);
1639
1640         xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1641
1642         rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1643
1644         if (rx_q->xsk_pool) {
1645                 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1646                                                    MEM_TYPE_XSK_BUFF_POOL,
1647                                                    NULL));
1648                 netdev_info(priv->dev,
1649                             "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1650                             rx_q->queue_index);
1651                 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1652         } else {
1653                 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1654                                                    MEM_TYPE_PAGE_POOL,
1655                                                    rx_q->page_pool));
1656                 netdev_info(priv->dev,
1657                             "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1658                             rx_q->queue_index);
1659         }
1660
1661         if (rx_q->xsk_pool) {
1662                 /* RX XDP ZC buffer pool may not be populated, e.g.
1663                  * xdpsock TX-only.
1664                  */
1665                 stmmac_alloc_rx_buffers_zc(priv, queue);
1666         } else {
1667                 ret = stmmac_alloc_rx_buffers(priv, queue, flags);
1668                 if (ret < 0)
1669                         return -ENOMEM;
1670         }
1671
1672         rx_q->cur_rx = 0;
1673         rx_q->dirty_rx = 0;
1674
1675         /* Setup the chained descriptor addresses */
1676         if (priv->mode == STMMAC_CHAIN_MODE) {
1677                 if (priv->extend_desc)
1678                         stmmac_mode_init(priv, rx_q->dma_erx,
1679                                          rx_q->dma_rx_phy,
1680                                          priv->dma_rx_size, 1);
1681                 else
1682                         stmmac_mode_init(priv, rx_q->dma_rx,
1683                                          rx_q->dma_rx_phy,
1684                                          priv->dma_rx_size, 0);
1685         }
1686
1687         return 0;
1688 }
1689
1690 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1691 {
1692         struct stmmac_priv *priv = netdev_priv(dev);
1693         u32 rx_count = priv->plat->rx_queues_to_use;
1694         u32 queue;
1695         int ret;
1696
1697         /* RX INITIALIZATION */
1698         netif_dbg(priv, probe, priv->dev,
1699                   "SKB addresses:\nskb\t\tskb data\tdma data\n");
1700
1701         for (queue = 0; queue < rx_count; queue++) {
1702                 ret = __init_dma_rx_desc_rings(priv, queue, flags);
1703                 if (ret)
1704                         goto err_init_rx_buffers;
1705         }
1706
1707         return 0;
1708
1709 err_init_rx_buffers:
1710         while (queue >= 0) {
1711                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1712
1713                 if (rx_q->xsk_pool)
1714                         dma_free_rx_xskbufs(priv, queue);
1715                 else
1716                         dma_free_rx_skbufs(priv, queue);
1717
1718                 rx_q->buf_alloc_num = 0;
1719                 rx_q->xsk_pool = NULL;
1720
1721                 if (queue == 0)
1722                         break;
1723
1724                 queue--;
1725         }
1726
1727         return ret;
1728 }
1729
1730 /**
1731  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1732  * @priv: driver private structure
1733  * @queue : TX queue index
1734  * Description: this function initializes the DMA TX descriptors
1735  * and allocates the socket buffers. It supports the chained and ring
1736  * modes.
1737  */
1738 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue)
1739 {
1740         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1741         int i;
1742
1743         netif_dbg(priv, probe, priv->dev,
1744                   "(%s) dma_tx_phy=0x%08x\n", __func__,
1745                   (u32)tx_q->dma_tx_phy);
1746
1747         /* Setup the chained descriptor addresses */
1748         if (priv->mode == STMMAC_CHAIN_MODE) {
1749                 if (priv->extend_desc)
1750                         stmmac_mode_init(priv, tx_q->dma_etx,
1751                                          tx_q->dma_tx_phy,
1752                                          priv->dma_tx_size, 1);
1753                 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1754                         stmmac_mode_init(priv, tx_q->dma_tx,
1755                                          tx_q->dma_tx_phy,
1756                                          priv->dma_tx_size, 0);
1757         }
1758
1759         tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1760
1761         for (i = 0; i < priv->dma_tx_size; i++) {
1762                 struct dma_desc *p;
1763
1764                 if (priv->extend_desc)
1765                         p = &((tx_q->dma_etx + i)->basic);
1766                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1767                         p = &((tx_q->dma_entx + i)->basic);
1768                 else
1769                         p = tx_q->dma_tx + i;
1770
1771                 stmmac_clear_desc(priv, p);
1772
1773                 tx_q->tx_skbuff_dma[i].buf = 0;
1774                 tx_q->tx_skbuff_dma[i].map_as_page = false;
1775                 tx_q->tx_skbuff_dma[i].len = 0;
1776                 tx_q->tx_skbuff_dma[i].last_segment = false;
1777                 tx_q->tx_skbuff[i] = NULL;
1778         }
1779
1780         tx_q->dirty_tx = 0;
1781         tx_q->cur_tx = 0;
1782         tx_q->mss = 0;
1783
1784         netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1785
1786         return 0;
1787 }
1788
1789 static int init_dma_tx_desc_rings(struct net_device *dev)
1790 {
1791         struct stmmac_priv *priv = netdev_priv(dev);
1792         u32 tx_queue_cnt;
1793         u32 queue;
1794
1795         tx_queue_cnt = priv->plat->tx_queues_to_use;
1796
1797         for (queue = 0; queue < tx_queue_cnt; queue++)
1798                 __init_dma_tx_desc_rings(priv, queue);
1799
1800         return 0;
1801 }
1802
1803 /**
1804  * init_dma_desc_rings - init the RX/TX descriptor rings
1805  * @dev: net device structure
1806  * @flags: gfp flag.
1807  * Description: this function initializes the DMA RX/TX descriptors
1808  * and allocates the socket buffers. It supports the chained and ring
1809  * modes.
1810  */
1811 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1812 {
1813         struct stmmac_priv *priv = netdev_priv(dev);
1814         int ret;
1815
1816         ret = init_dma_rx_desc_rings(dev, flags);
1817         if (ret)
1818                 return ret;
1819
1820         ret = init_dma_tx_desc_rings(dev);
1821
1822         stmmac_clear_descriptors(priv);
1823
1824         if (netif_msg_hw(priv))
1825                 stmmac_display_rings(priv);
1826
1827         return ret;
1828 }
1829
1830 /**
1831  * dma_free_tx_skbufs - free TX dma buffers
1832  * @priv: private structure
1833  * @queue: TX queue index
1834  */
1835 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1836 {
1837         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1838         int i;
1839
1840         tx_q->xsk_frames_done = 0;
1841
1842         for (i = 0; i < priv->dma_tx_size; i++)
1843                 stmmac_free_tx_buffer(priv, queue, i);
1844
1845         if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1846                 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1847                 tx_q->xsk_frames_done = 0;
1848                 tx_q->xsk_pool = NULL;
1849         }
1850 }
1851
1852 /**
1853  * stmmac_free_tx_skbufs - free TX skb buffers
1854  * @priv: private structure
1855  */
1856 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1857 {
1858         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1859         u32 queue;
1860
1861         for (queue = 0; queue < tx_queue_cnt; queue++)
1862                 dma_free_tx_skbufs(priv, queue);
1863 }
1864
1865 /**
1866  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1867  * @priv: private structure
1868  * @queue: RX queue index
1869  */
1870 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1871 {
1872         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1873
1874         /* Release the DMA RX socket buffers */
1875         if (rx_q->xsk_pool)
1876                 dma_free_rx_xskbufs(priv, queue);
1877         else
1878                 dma_free_rx_skbufs(priv, queue);
1879
1880         rx_q->buf_alloc_num = 0;
1881         rx_q->xsk_pool = NULL;
1882
1883         /* Free DMA regions of consistent memory previously allocated */
1884         if (!priv->extend_desc)
1885                 dma_free_coherent(priv->device, priv->dma_rx_size *
1886                                   sizeof(struct dma_desc),
1887                                   rx_q->dma_rx, rx_q->dma_rx_phy);
1888         else
1889                 dma_free_coherent(priv->device, priv->dma_rx_size *
1890                                   sizeof(struct dma_extended_desc),
1891                                   rx_q->dma_erx, rx_q->dma_rx_phy);
1892
1893         if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1894                 xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1895
1896         kfree(rx_q->buf_pool);
1897         if (rx_q->page_pool)
1898                 page_pool_destroy(rx_q->page_pool);
1899 }
1900
1901 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1902 {
1903         u32 rx_count = priv->plat->rx_queues_to_use;
1904         u32 queue;
1905
1906         /* Free RX queue resources */
1907         for (queue = 0; queue < rx_count; queue++)
1908                 __free_dma_rx_desc_resources(priv, queue);
1909 }
1910
1911 /**
1912  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1913  * @priv: private structure
1914  * @queue: TX queue index
1915  */
1916 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
1917 {
1918         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1919         size_t size;
1920         void *addr;
1921
1922         /* Release the DMA TX socket buffers */
1923         dma_free_tx_skbufs(priv, queue);
1924
1925         if (priv->extend_desc) {
1926                 size = sizeof(struct dma_extended_desc);
1927                 addr = tx_q->dma_etx;
1928         } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1929                 size = sizeof(struct dma_edesc);
1930                 addr = tx_q->dma_entx;
1931         } else {
1932                 size = sizeof(struct dma_desc);
1933                 addr = tx_q->dma_tx;
1934         }
1935
1936         size *= priv->dma_tx_size;
1937
1938         dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1939
1940         kfree(tx_q->tx_skbuff_dma);
1941         kfree(tx_q->tx_skbuff);
1942 }
1943
1944 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1945 {
1946         u32 tx_count = priv->plat->tx_queues_to_use;
1947         u32 queue;
1948
1949         /* Free TX queue resources */
1950         for (queue = 0; queue < tx_count; queue++)
1951                 __free_dma_tx_desc_resources(priv, queue);
1952 }
1953
1954 /**
1955  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1956  * @priv: private structure
1957  * @queue: RX queue index
1958  * Description: according to which descriptor can be used (extend or basic)
1959  * this function allocates the resources for TX and RX paths. In case of
1960  * reception, for example, it pre-allocated the RX socket buffer in order to
1961  * allow zero-copy mechanism.
1962  */
1963 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1964 {
1965         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1966         struct stmmac_channel *ch = &priv->channel[queue];
1967         bool xdp_prog = stmmac_xdp_is_enabled(priv);
1968         struct page_pool_params pp_params = { 0 };
1969         unsigned int num_pages;
1970         unsigned int napi_id;
1971         int ret;
1972
1973         rx_q->queue_index = queue;
1974         rx_q->priv_data = priv;
1975
1976         pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
1977         pp_params.pool_size = priv->dma_rx_size;
1978         num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1979         pp_params.order = ilog2(num_pages);
1980         pp_params.nid = dev_to_node(priv->device);
1981         pp_params.dev = priv->device;
1982         pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
1983         pp_params.offset = stmmac_rx_offset(priv);
1984         pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
1985
1986         rx_q->page_pool = page_pool_create(&pp_params);
1987         if (IS_ERR(rx_q->page_pool)) {
1988                 ret = PTR_ERR(rx_q->page_pool);
1989                 rx_q->page_pool = NULL;
1990                 return ret;
1991         }
1992
1993         rx_q->buf_pool = kcalloc(priv->dma_rx_size,
1994                                  sizeof(*rx_q->buf_pool),
1995                                  GFP_KERNEL);
1996         if (!rx_q->buf_pool)
1997                 return -ENOMEM;
1998
1999         if (priv->extend_desc) {
2000                 rx_q->dma_erx = dma_alloc_coherent(priv->device,
2001                                                    priv->dma_rx_size *
2002                                                    sizeof(struct dma_extended_desc),
2003                                                    &rx_q->dma_rx_phy,
2004                                                    GFP_KERNEL);
2005                 if (!rx_q->dma_erx)
2006                         return -ENOMEM;
2007
2008         } else {
2009                 rx_q->dma_rx = dma_alloc_coherent(priv->device,
2010                                                   priv->dma_rx_size *
2011                                                   sizeof(struct dma_desc),
2012                                                   &rx_q->dma_rx_phy,
2013                                                   GFP_KERNEL);
2014                 if (!rx_q->dma_rx)
2015                         return -ENOMEM;
2016         }
2017
2018         if (stmmac_xdp_is_enabled(priv) &&
2019             test_bit(queue, priv->af_xdp_zc_qps))
2020                 napi_id = ch->rxtx_napi.napi_id;
2021         else
2022                 napi_id = ch->rx_napi.napi_id;
2023
2024         ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2025                                rx_q->queue_index,
2026                                napi_id);
2027         if (ret) {
2028                 netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2029                 return -EINVAL;
2030         }
2031
2032         return 0;
2033 }
2034
2035 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
2036 {
2037         u32 rx_count = priv->plat->rx_queues_to_use;
2038         u32 queue;
2039         int ret;
2040
2041         /* RX queues buffers and DMA */
2042         for (queue = 0; queue < rx_count; queue++) {
2043                 ret = __alloc_dma_rx_desc_resources(priv, queue);
2044                 if (ret)
2045                         goto err_dma;
2046         }
2047
2048         return 0;
2049
2050 err_dma:
2051         free_dma_rx_desc_resources(priv);
2052
2053         return ret;
2054 }
2055
2056 /**
2057  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2058  * @priv: private structure
2059  * @queue: TX queue index
2060  * Description: according to which descriptor can be used (extend or basic)
2061  * this function allocates the resources for TX and RX paths. In case of
2062  * reception, for example, it pre-allocated the RX socket buffer in order to
2063  * allow zero-copy mechanism.
2064  */
2065 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
2066 {
2067         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2068         size_t size;
2069         void *addr;
2070
2071         tx_q->queue_index = queue;
2072         tx_q->priv_data = priv;
2073
2074         tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
2075                                       sizeof(*tx_q->tx_skbuff_dma),
2076                                       GFP_KERNEL);
2077         if (!tx_q->tx_skbuff_dma)
2078                 return -ENOMEM;
2079
2080         tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
2081                                   sizeof(struct sk_buff *),
2082                                   GFP_KERNEL);
2083         if (!tx_q->tx_skbuff)
2084                 return -ENOMEM;
2085
2086         if (priv->extend_desc)
2087                 size = sizeof(struct dma_extended_desc);
2088         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2089                 size = sizeof(struct dma_edesc);
2090         else
2091                 size = sizeof(struct dma_desc);
2092
2093         size *= priv->dma_tx_size;
2094
2095         addr = dma_alloc_coherent(priv->device, size,
2096                                   &tx_q->dma_tx_phy, GFP_KERNEL);
2097         if (!addr)
2098                 return -ENOMEM;
2099
2100         if (priv->extend_desc)
2101                 tx_q->dma_etx = addr;
2102         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2103                 tx_q->dma_entx = addr;
2104         else
2105                 tx_q->dma_tx = addr;
2106
2107         return 0;
2108 }
2109
2110 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
2111 {
2112         u32 tx_count = priv->plat->tx_queues_to_use;
2113         u32 queue;
2114         int ret;
2115
2116         /* TX queues buffers and DMA */
2117         for (queue = 0; queue < tx_count; queue++) {
2118                 ret = __alloc_dma_tx_desc_resources(priv, queue);
2119                 if (ret)
2120                         goto err_dma;
2121         }
2122
2123         return 0;
2124
2125 err_dma:
2126         free_dma_tx_desc_resources(priv);
2127         return ret;
2128 }
2129
2130 /**
2131  * alloc_dma_desc_resources - alloc TX/RX resources.
2132  * @priv: private structure
2133  * Description: according to which descriptor can be used (extend or basic)
2134  * this function allocates the resources for TX and RX paths. In case of
2135  * reception, for example, it pre-allocated the RX socket buffer in order to
2136  * allow zero-copy mechanism.
2137  */
2138 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
2139 {
2140         /* RX Allocation */
2141         int ret = alloc_dma_rx_desc_resources(priv);
2142
2143         if (ret)
2144                 return ret;
2145
2146         ret = alloc_dma_tx_desc_resources(priv);
2147
2148         return ret;
2149 }
2150
2151 /**
2152  * free_dma_desc_resources - free dma desc resources
2153  * @priv: private structure
2154  */
2155 static void free_dma_desc_resources(struct stmmac_priv *priv)
2156 {
2157         /* Release the DMA TX socket buffers */
2158         free_dma_tx_desc_resources(priv);
2159
2160         /* Release the DMA RX socket buffers later
2161          * to ensure all pending XDP_TX buffers are returned.
2162          */
2163         free_dma_rx_desc_resources(priv);
2164 }
2165
2166 /**
2167  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2168  *  @priv: driver private structure
2169  *  Description: It is used for enabling the rx queues in the MAC
2170  */
2171 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2172 {
2173         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2174         int queue;
2175         u8 mode;
2176
2177         for (queue = 0; queue < rx_queues_count; queue++) {
2178                 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2179                 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2180         }
2181 }
2182
2183 /**
2184  * stmmac_start_rx_dma - start RX DMA channel
2185  * @priv: driver private structure
2186  * @chan: RX channel index
2187  * Description:
2188  * This starts a RX DMA channel
2189  */
2190 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2191 {
2192         netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2193         stmmac_start_rx(priv, priv->ioaddr, chan);
2194 }
2195
2196 /**
2197  * stmmac_start_tx_dma - start TX DMA channel
2198  * @priv: driver private structure
2199  * @chan: TX channel index
2200  * Description:
2201  * This starts a TX DMA channel
2202  */
2203 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2204 {
2205         netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2206         stmmac_start_tx(priv, priv->ioaddr, chan);
2207 }
2208
2209 /**
2210  * stmmac_stop_rx_dma - stop RX DMA channel
2211  * @priv: driver private structure
2212  * @chan: RX channel index
2213  * Description:
2214  * This stops a RX DMA channel
2215  */
2216 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2217 {
2218         netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2219         stmmac_stop_rx(priv, priv->ioaddr, chan);
2220 }
2221
2222 /**
2223  * stmmac_stop_tx_dma - stop TX DMA channel
2224  * @priv: driver private structure
2225  * @chan: TX channel index
2226  * Description:
2227  * This stops a TX DMA channel
2228  */
2229 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2230 {
2231         netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2232         stmmac_stop_tx(priv, priv->ioaddr, chan);
2233 }
2234
2235 /**
2236  * stmmac_start_all_dma - start all RX and TX DMA channels
2237  * @priv: driver private structure
2238  * Description:
2239  * This starts all the RX and TX DMA channels
2240  */
2241 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2242 {
2243         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2244         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2245         u32 chan = 0;
2246
2247         for (chan = 0; chan < rx_channels_count; chan++)
2248                 stmmac_start_rx_dma(priv, chan);
2249
2250         for (chan = 0; chan < tx_channels_count; chan++)
2251                 stmmac_start_tx_dma(priv, chan);
2252 }
2253
2254 /**
2255  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2256  * @priv: driver private structure
2257  * Description:
2258  * This stops the RX and TX DMA channels
2259  */
2260 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2261 {
2262         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2263         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2264         u32 chan = 0;
2265
2266         for (chan = 0; chan < rx_channels_count; chan++)
2267                 stmmac_stop_rx_dma(priv, chan);
2268
2269         for (chan = 0; chan < tx_channels_count; chan++)
2270                 stmmac_stop_tx_dma(priv, chan);
2271 }
2272
2273 /**
2274  *  stmmac_dma_operation_mode - HW DMA operation mode
2275  *  @priv: driver private structure
2276  *  Description: it is used for configuring the DMA operation mode register in
2277  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2278  */
2279 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2280 {
2281         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2282         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2283         int rxfifosz = priv->plat->rx_fifo_size;
2284         int txfifosz = priv->plat->tx_fifo_size;
2285         u32 txmode = 0;
2286         u32 rxmode = 0;
2287         u32 chan = 0;
2288         u8 qmode = 0;
2289
2290         if (rxfifosz == 0)
2291                 rxfifosz = priv->dma_cap.rx_fifo_size;
2292         if (txfifosz == 0)
2293                 txfifosz = priv->dma_cap.tx_fifo_size;
2294
2295         /* Adjust for real per queue fifo size */
2296         rxfifosz /= rx_channels_count;
2297         txfifosz /= tx_channels_count;
2298
2299         if (priv->plat->force_thresh_dma_mode) {
2300                 txmode = tc;
2301                 rxmode = tc;
2302         } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2303                 /*
2304                  * In case of GMAC, SF mode can be enabled
2305                  * to perform the TX COE in HW. This depends on:
2306                  * 1) TX COE if actually supported
2307                  * 2) There is no bugged Jumbo frame support
2308                  *    that needs to not insert csum in the TDES.
2309                  */
2310                 txmode = SF_DMA_MODE;
2311                 rxmode = SF_DMA_MODE;
2312                 priv->xstats.threshold = SF_DMA_MODE;
2313         } else {
2314                 txmode = tc;
2315                 rxmode = SF_DMA_MODE;
2316         }
2317
2318         /* configure all channels */
2319         for (chan = 0; chan < rx_channels_count; chan++) {
2320                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2321                 u32 buf_size;
2322
2323                 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2324
2325                 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2326                                 rxfifosz, qmode);
2327
2328                 if (rx_q->xsk_pool) {
2329                         buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2330                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
2331                                               buf_size,
2332                                               chan);
2333                 } else {
2334                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
2335                                               priv->dma_buf_sz,
2336                                               chan);
2337                 }
2338         }
2339
2340         for (chan = 0; chan < tx_channels_count; chan++) {
2341                 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2342
2343                 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2344                                 txfifosz, qmode);
2345         }
2346 }
2347
2348 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2349 {
2350         struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2351         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2352         struct xsk_buff_pool *pool = tx_q->xsk_pool;
2353         unsigned int entry = tx_q->cur_tx;
2354         struct dma_desc *tx_desc = NULL;
2355         struct xdp_desc xdp_desc;
2356         bool work_done = true;
2357
2358         /* Avoids TX time-out as we are sharing with slow path */
2359         nq->trans_start = jiffies;
2360
2361         budget = min(budget, stmmac_tx_avail(priv, queue));
2362
2363         while (budget-- > 0) {
2364                 dma_addr_t dma_addr;
2365                 bool set_ic;
2366
2367                 /* We are sharing with slow path and stop XSK TX desc submission when
2368                  * available TX ring is less than threshold.
2369                  */
2370                 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2371                     !netif_carrier_ok(priv->dev)) {
2372                         work_done = false;
2373                         break;
2374                 }
2375
2376                 if (!xsk_tx_peek_desc(pool, &xdp_desc))
2377                         break;
2378
2379                 if (likely(priv->extend_desc))
2380                         tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2381                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2382                         tx_desc = &tx_q->dma_entx[entry].basic;
2383                 else
2384                         tx_desc = tx_q->dma_tx + entry;
2385
2386                 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2387                 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2388
2389                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2390
2391                 /* To return XDP buffer to XSK pool, we simple call
2392                  * xsk_tx_completed(), so we don't need to fill up
2393                  * 'buf' and 'xdpf'.
2394                  */
2395                 tx_q->tx_skbuff_dma[entry].buf = 0;
2396                 tx_q->xdpf[entry] = NULL;
2397
2398                 tx_q->tx_skbuff_dma[entry].map_as_page = false;
2399                 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2400                 tx_q->tx_skbuff_dma[entry].last_segment = true;
2401                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2402
2403                 stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2404
2405                 tx_q->tx_count_frames++;
2406
2407                 if (!priv->tx_coal_frames[queue])
2408                         set_ic = false;
2409                 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2410                         set_ic = true;
2411                 else
2412                         set_ic = false;
2413
2414                 if (set_ic) {
2415                         tx_q->tx_count_frames = 0;
2416                         stmmac_set_tx_ic(priv, tx_desc);
2417                         priv->xstats.tx_set_ic_bit++;
2418                 }
2419
2420                 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2421                                        true, priv->mode, true, true,
2422                                        xdp_desc.len);
2423
2424                 stmmac_enable_dma_transmission(priv, priv->ioaddr);
2425
2426                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
2427                 entry = tx_q->cur_tx;
2428         }
2429
2430         if (tx_desc) {
2431                 stmmac_flush_tx_descriptors(priv, queue);
2432                 xsk_tx_release(pool);
2433         }
2434
2435         /* Return true if all of the 3 conditions are met
2436          *  a) TX Budget is still available
2437          *  b) work_done = true when XSK TX desc peek is empty (no more
2438          *     pending XSK TX for transmission)
2439          */
2440         return !!budget && work_done;
2441 }
2442
2443 /**
2444  * stmmac_tx_clean - to manage the transmission completion
2445  * @priv: driver private structure
2446  * @budget: napi budget limiting this functions packet handling
2447  * @queue: TX queue index
2448  * Description: it reclaims the transmit resources after transmission completes.
2449  */
2450 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2451 {
2452         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2453         unsigned int bytes_compl = 0, pkts_compl = 0;
2454         unsigned int entry, xmits = 0, count = 0;
2455
2456         __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2457
2458         priv->xstats.tx_clean++;
2459
2460         tx_q->xsk_frames_done = 0;
2461
2462         entry = tx_q->dirty_tx;
2463
2464         /* Try to clean all TX complete frame in 1 shot */
2465         while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) {
2466                 struct xdp_frame *xdpf;
2467                 struct sk_buff *skb;
2468                 struct dma_desc *p;
2469                 int status;
2470
2471                 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2472                     tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2473                         xdpf = tx_q->xdpf[entry];
2474                         skb = NULL;
2475                 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2476                         xdpf = NULL;
2477                         skb = tx_q->tx_skbuff[entry];
2478                 } else {
2479                         xdpf = NULL;
2480                         skb = NULL;
2481                 }
2482
2483                 if (priv->extend_desc)
2484                         p = (struct dma_desc *)(tx_q->dma_etx + entry);
2485                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2486                         p = &tx_q->dma_entx[entry].basic;
2487                 else
2488                         p = tx_q->dma_tx + entry;
2489
2490                 status = stmmac_tx_status(priv, &priv->dev->stats,
2491                                 &priv->xstats, p, priv->ioaddr);
2492                 /* Check if the descriptor is owned by the DMA */
2493                 if (unlikely(status & tx_dma_own))
2494                         break;
2495
2496                 count++;
2497
2498                 /* Make sure descriptor fields are read after reading
2499                  * the own bit.
2500                  */
2501                 dma_rmb();
2502
2503                 /* Just consider the last segment and ...*/
2504                 if (likely(!(status & tx_not_ls))) {
2505                         /* ... verify the status error condition */
2506                         if (unlikely(status & tx_err)) {
2507                                 priv->dev->stats.tx_errors++;
2508                         } else {
2509                                 priv->dev->stats.tx_packets++;
2510                                 priv->xstats.tx_pkt_n++;
2511                                 priv->xstats.txq_stats[queue].tx_pkt_n++;
2512                         }
2513                         if (skb)
2514                                 stmmac_get_tx_hwtstamp(priv, p, skb);
2515                 }
2516
2517                 if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2518                            tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2519                         if (tx_q->tx_skbuff_dma[entry].map_as_page)
2520                                 dma_unmap_page(priv->device,
2521                                                tx_q->tx_skbuff_dma[entry].buf,
2522                                                tx_q->tx_skbuff_dma[entry].len,
2523                                                DMA_TO_DEVICE);
2524                         else
2525                                 dma_unmap_single(priv->device,
2526                                                  tx_q->tx_skbuff_dma[entry].buf,
2527                                                  tx_q->tx_skbuff_dma[entry].len,
2528                                                  DMA_TO_DEVICE);
2529                         tx_q->tx_skbuff_dma[entry].buf = 0;
2530                         tx_q->tx_skbuff_dma[entry].len = 0;
2531                         tx_q->tx_skbuff_dma[entry].map_as_page = false;
2532                 }
2533
2534                 stmmac_clean_desc3(priv, tx_q, p);
2535
2536                 tx_q->tx_skbuff_dma[entry].last_segment = false;
2537                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2538
2539                 if (xdpf &&
2540                     tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2541                         xdp_return_frame_rx_napi(xdpf);
2542                         tx_q->xdpf[entry] = NULL;
2543                 }
2544
2545                 if (xdpf &&
2546                     tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2547                         xdp_return_frame(xdpf);
2548                         tx_q->xdpf[entry] = NULL;
2549                 }
2550
2551                 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2552                         tx_q->xsk_frames_done++;
2553
2554                 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2555                         if (likely(skb)) {
2556                                 pkts_compl++;
2557                                 bytes_compl += skb->len;
2558                                 dev_consume_skb_any(skb);
2559                                 tx_q->tx_skbuff[entry] = NULL;
2560                         }
2561                 }
2562
2563                 stmmac_release_tx_desc(priv, p, priv->mode);
2564
2565                 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2566         }
2567         tx_q->dirty_tx = entry;
2568
2569         netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2570                                   pkts_compl, bytes_compl);
2571
2572         if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2573                                                                 queue))) &&
2574             stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2575
2576                 netif_dbg(priv, tx_done, priv->dev,
2577                           "%s: restart transmit\n", __func__);
2578                 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2579         }
2580
2581         if (tx_q->xsk_pool) {
2582                 bool work_done;
2583
2584                 if (tx_q->xsk_frames_done)
2585                         xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2586
2587                 if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2588                         xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2589
2590                 /* For XSK TX, we try to send as many as possible.
2591                  * If XSK work done (XSK TX desc empty and budget still
2592                  * available), return "budget - 1" to reenable TX IRQ.
2593                  * Else, return "budget" to make NAPI continue polling.
2594                  */
2595                 work_done = stmmac_xdp_xmit_zc(priv, queue,
2596                                                STMMAC_XSK_TX_BUDGET_MAX);
2597                 if (work_done)
2598                         xmits = budget - 1;
2599                 else
2600                         xmits = budget;
2601         }
2602
2603         if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2604             priv->eee_sw_timer_en) {
2605                 stmmac_enable_eee_mode(priv);
2606                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2607         }
2608
2609         /* We still have pending packets, let's call for a new scheduling */
2610         if (tx_q->dirty_tx != tx_q->cur_tx)
2611                 hrtimer_start(&tx_q->txtimer,
2612                               STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2613                               HRTIMER_MODE_REL);
2614
2615         __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2616
2617         /* Combine decisions from TX clean and XSK TX */
2618         return max(count, xmits);
2619 }
2620
2621 /**
2622  * stmmac_tx_err - to manage the tx error
2623  * @priv: driver private structure
2624  * @chan: channel index
2625  * Description: it cleans the descriptors and restarts the transmission
2626  * in case of transmission errors.
2627  */
2628 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2629 {
2630         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2631
2632         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2633
2634         stmmac_stop_tx_dma(priv, chan);
2635         dma_free_tx_skbufs(priv, chan);
2636         stmmac_clear_tx_descriptors(priv, chan);
2637         tx_q->dirty_tx = 0;
2638         tx_q->cur_tx = 0;
2639         tx_q->mss = 0;
2640         netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2641         stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2642                             tx_q->dma_tx_phy, chan);
2643         stmmac_start_tx_dma(priv, chan);
2644
2645         priv->dev->stats.tx_errors++;
2646         netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2647 }
2648
2649 /**
2650  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2651  *  @priv: driver private structure
2652  *  @txmode: TX operating mode
2653  *  @rxmode: RX operating mode
2654  *  @chan: channel index
2655  *  Description: it is used for configuring of the DMA operation mode in
2656  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2657  *  mode.
2658  */
2659 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2660                                           u32 rxmode, u32 chan)
2661 {
2662         u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2663         u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2664         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2665         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2666         int rxfifosz = priv->plat->rx_fifo_size;
2667         int txfifosz = priv->plat->tx_fifo_size;
2668
2669         if (rxfifosz == 0)
2670                 rxfifosz = priv->dma_cap.rx_fifo_size;
2671         if (txfifosz == 0)
2672                 txfifosz = priv->dma_cap.tx_fifo_size;
2673
2674         /* Adjust for real per queue fifo size */
2675         rxfifosz /= rx_channels_count;
2676         txfifosz /= tx_channels_count;
2677
2678         stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2679         stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2680 }
2681
2682 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2683 {
2684         int ret;
2685
2686         ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2687                         priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2688         if (ret && (ret != -EINVAL)) {
2689                 stmmac_global_err(priv);
2690                 return true;
2691         }
2692
2693         return false;
2694 }
2695
2696 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2697 {
2698         int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2699                                                  &priv->xstats, chan, dir);
2700         struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2701         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2702         struct stmmac_channel *ch = &priv->channel[chan];
2703         struct napi_struct *rx_napi;
2704         struct napi_struct *tx_napi;
2705         unsigned long flags;
2706
2707         rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2708         tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2709
2710         if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2711                 if (napi_schedule_prep(rx_napi)) {
2712                         spin_lock_irqsave(&ch->lock, flags);
2713                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2714                         spin_unlock_irqrestore(&ch->lock, flags);
2715                         __napi_schedule(rx_napi);
2716                 }
2717         }
2718
2719         if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2720                 if (napi_schedule_prep(tx_napi)) {
2721                         spin_lock_irqsave(&ch->lock, flags);
2722                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2723                         spin_unlock_irqrestore(&ch->lock, flags);
2724                         __napi_schedule(tx_napi);
2725                 }
2726         }
2727
2728         return status;
2729 }
2730
2731 /**
2732  * stmmac_dma_interrupt - DMA ISR
2733  * @priv: driver private structure
2734  * Description: this is the DMA ISR. It is called by the main ISR.
2735  * It calls the dwmac dma routine and schedule poll method in case of some
2736  * work can be done.
2737  */
2738 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2739 {
2740         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2741         u32 rx_channel_count = priv->plat->rx_queues_to_use;
2742         u32 channels_to_check = tx_channel_count > rx_channel_count ?
2743                                 tx_channel_count : rx_channel_count;
2744         u32 chan;
2745         int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2746
2747         /* Make sure we never check beyond our status buffer. */
2748         if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2749                 channels_to_check = ARRAY_SIZE(status);
2750
2751         for (chan = 0; chan < channels_to_check; chan++)
2752                 status[chan] = stmmac_napi_check(priv, chan,
2753                                                  DMA_DIR_RXTX);
2754
2755         for (chan = 0; chan < tx_channel_count; chan++) {
2756                 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2757                         /* Try to bump up the dma threshold on this failure */
2758                         if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2759                             (tc <= 256)) {
2760                                 tc += 64;
2761                                 if (priv->plat->force_thresh_dma_mode)
2762                                         stmmac_set_dma_operation_mode(priv,
2763                                                                       tc,
2764                                                                       tc,
2765                                                                       chan);
2766                                 else
2767                                         stmmac_set_dma_operation_mode(priv,
2768                                                                     tc,
2769                                                                     SF_DMA_MODE,
2770                                                                     chan);
2771                                 priv->xstats.threshold = tc;
2772                         }
2773                 } else if (unlikely(status[chan] == tx_hard_error)) {
2774                         stmmac_tx_err(priv, chan);
2775                 }
2776         }
2777 }
2778
2779 /**
2780  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2781  * @priv: driver private structure
2782  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2783  */
2784 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2785 {
2786         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2787                             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2788
2789         stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2790
2791         if (priv->dma_cap.rmon) {
2792                 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2793                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2794         } else
2795                 netdev_info(priv->dev, "No MAC Management Counters available\n");
2796 }
2797
2798 /**
2799  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2800  * @priv: driver private structure
2801  * Description:
2802  *  new GMAC chip generations have a new register to indicate the
2803  *  presence of the optional feature/functions.
2804  *  This can be also used to override the value passed through the
2805  *  platform and necessary for old MAC10/100 and GMAC chips.
2806  */
2807 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2808 {
2809         return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2810 }
2811
2812 /**
2813  * stmmac_check_ether_addr - check if the MAC addr is valid
2814  * @priv: driver private structure
2815  * Description:
2816  * it is to verify if the MAC address is valid, in case of failures it
2817  * generates a random MAC address
2818  */
2819 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2820 {
2821         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2822                 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2823                 if (!is_valid_ether_addr(priv->dev->dev_addr))
2824                         eth_hw_addr_random(priv->dev);
2825                 dev_info(priv->device, "device MAC address %pM\n",
2826                          priv->dev->dev_addr);
2827         }
2828 }
2829
2830 /**
2831  * stmmac_init_dma_engine - DMA init.
2832  * @priv: driver private structure
2833  * Description:
2834  * It inits the DMA invoking the specific MAC/GMAC callback.
2835  * Some DMA parameters can be passed from the platform;
2836  * in case of these are not passed a default is kept for the MAC or GMAC.
2837  */
2838 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2839 {
2840         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2841         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2842         u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2843         struct stmmac_rx_queue *rx_q;
2844         struct stmmac_tx_queue *tx_q;
2845         u32 chan = 0;
2846         int atds = 0;
2847         int ret = 0;
2848
2849         if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2850                 dev_err(priv->device, "Invalid DMA configuration\n");
2851                 return -EINVAL;
2852         }
2853
2854         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2855                 atds = 1;
2856
2857         ret = stmmac_reset(priv, priv->ioaddr);
2858         if (ret) {
2859                 dev_err(priv->device, "Failed to reset the dma\n");
2860                 return ret;
2861         }
2862
2863         /* DMA Configuration */
2864         stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2865
2866         if (priv->plat->axi)
2867                 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2868
2869         /* DMA CSR Channel configuration */
2870         for (chan = 0; chan < dma_csr_ch; chan++)
2871                 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2872
2873         /* DMA RX Channel Configuration */
2874         for (chan = 0; chan < rx_channels_count; chan++) {
2875                 rx_q = &priv->rx_queue[chan];
2876
2877                 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2878                                     rx_q->dma_rx_phy, chan);
2879
2880                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2881                                      (rx_q->buf_alloc_num *
2882                                       sizeof(struct dma_desc));
2883                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2884                                        rx_q->rx_tail_addr, chan);
2885         }
2886
2887         /* DMA TX Channel Configuration */
2888         for (chan = 0; chan < tx_channels_count; chan++) {
2889                 tx_q = &priv->tx_queue[chan];
2890
2891                 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2892                                     tx_q->dma_tx_phy, chan);
2893
2894                 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2895                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2896                                        tx_q->tx_tail_addr, chan);
2897         }
2898
2899         return ret;
2900 }
2901
2902 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2903 {
2904         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2905
2906         hrtimer_start(&tx_q->txtimer,
2907                       STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2908                       HRTIMER_MODE_REL);
2909 }
2910
2911 /**
2912  * stmmac_tx_timer - mitigation sw timer for tx.
2913  * @t: data pointer
2914  * Description:
2915  * This is the timer handler to directly invoke the stmmac_tx_clean.
2916  */
2917 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2918 {
2919         struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2920         struct stmmac_priv *priv = tx_q->priv_data;
2921         struct stmmac_channel *ch;
2922         struct napi_struct *napi;
2923
2924         ch = &priv->channel[tx_q->queue_index];
2925         napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2926
2927         if (likely(napi_schedule_prep(napi))) {
2928                 unsigned long flags;
2929
2930                 spin_lock_irqsave(&ch->lock, flags);
2931                 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2932                 spin_unlock_irqrestore(&ch->lock, flags);
2933                 __napi_schedule(napi);
2934         }
2935
2936         return HRTIMER_NORESTART;
2937 }
2938
2939 /**
2940  * stmmac_init_coalesce - init mitigation options.
2941  * @priv: driver private structure
2942  * Description:
2943  * This inits the coalesce parameters: i.e. timer rate,
2944  * timer handler and default threshold used for enabling the
2945  * interrupt on completion bit.
2946  */
2947 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2948 {
2949         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2950         u32 rx_channel_count = priv->plat->rx_queues_to_use;
2951         u32 chan;
2952
2953         for (chan = 0; chan < tx_channel_count; chan++) {
2954                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2955
2956                 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
2957                 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
2958
2959                 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2960                 tx_q->txtimer.function = stmmac_tx_timer;
2961         }
2962
2963         for (chan = 0; chan < rx_channel_count; chan++)
2964                 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
2965 }
2966
2967 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2968 {
2969         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2970         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2971         u32 chan;
2972
2973         /* set TX ring length */
2974         for (chan = 0; chan < tx_channels_count; chan++)
2975                 stmmac_set_tx_ring_len(priv, priv->ioaddr,
2976                                        (priv->dma_tx_size - 1), chan);
2977
2978         /* set RX ring length */
2979         for (chan = 0; chan < rx_channels_count; chan++)
2980                 stmmac_set_rx_ring_len(priv, priv->ioaddr,
2981                                        (priv->dma_rx_size - 1), chan);
2982 }
2983
2984 /**
2985  *  stmmac_set_tx_queue_weight - Set TX queue weight
2986  *  @priv: driver private structure
2987  *  Description: It is used for setting TX queues weight
2988  */
2989 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2990 {
2991         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2992         u32 weight;
2993         u32 queue;
2994
2995         for (queue = 0; queue < tx_queues_count; queue++) {
2996                 weight = priv->plat->tx_queues_cfg[queue].weight;
2997                 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2998         }
2999 }
3000
3001 /**
3002  *  stmmac_configure_cbs - Configure CBS in TX queue
3003  *  @priv: driver private structure
3004  *  Description: It is used for configuring CBS in AVB TX queues
3005  */
3006 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3007 {
3008         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3009         u32 mode_to_use;
3010         u32 queue;
3011
3012         /* queue 0 is reserved for legacy traffic */
3013         for (queue = 1; queue < tx_queues_count; queue++) {
3014                 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3015                 if (mode_to_use == MTL_QUEUE_DCB)
3016                         continue;
3017
3018                 stmmac_config_cbs(priv, priv->hw,
3019                                 priv->plat->tx_queues_cfg[queue].send_slope,
3020                                 priv->plat->tx_queues_cfg[queue].idle_slope,
3021                                 priv->plat->tx_queues_cfg[queue].high_credit,
3022                                 priv->plat->tx_queues_cfg[queue].low_credit,
3023                                 queue);
3024         }
3025 }
3026
3027 /**
3028  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3029  *  @priv: driver private structure
3030  *  Description: It is used for mapping RX queues to RX dma channels
3031  */
3032 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3033 {
3034         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3035         u32 queue;
3036         u32 chan;
3037
3038         for (queue = 0; queue < rx_queues_count; queue++) {
3039                 chan = priv->plat->rx_queues_cfg[queue].chan;
3040                 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3041         }
3042 }
3043
3044 /**
3045  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3046  *  @priv: driver private structure
3047  *  Description: It is used for configuring the RX Queue Priority
3048  */
3049 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3050 {
3051         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3052         u32 queue;
3053         u32 prio;
3054
3055         for (queue = 0; queue < rx_queues_count; queue++) {
3056                 if (!priv->plat->rx_queues_cfg[queue].use_prio)
3057                         continue;
3058
3059                 prio = priv->plat->rx_queues_cfg[queue].prio;
3060                 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3061         }
3062 }
3063
3064 /**
3065  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3066  *  @priv: driver private structure
3067  *  Description: It is used for configuring the TX Queue Priority
3068  */
3069 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3070 {
3071         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3072         u32 queue;
3073         u32 prio;
3074
3075         for (queue = 0; queue < tx_queues_count; queue++) {
3076                 if (!priv->plat->tx_queues_cfg[queue].use_prio)
3077                         continue;
3078
3079                 prio = priv->plat->tx_queues_cfg[queue].prio;
3080                 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3081         }
3082 }
3083
3084 /**
3085  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3086  *  @priv: driver private structure
3087  *  Description: It is used for configuring the RX queue routing
3088  */
3089 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3090 {
3091         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3092         u32 queue;
3093         u8 packet;
3094
3095         for (queue = 0; queue < rx_queues_count; queue++) {
3096                 /* no specific packet type routing specified for the queue */
3097                 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3098                         continue;
3099
3100                 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3101                 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3102         }
3103 }
3104
3105 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3106 {
3107         if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3108                 priv->rss.enable = false;
3109                 return;
3110         }
3111
3112         if (priv->dev->features & NETIF_F_RXHASH)
3113                 priv->rss.enable = true;
3114         else
3115                 priv->rss.enable = false;
3116
3117         stmmac_rss_configure(priv, priv->hw, &priv->rss,
3118                              priv->plat->rx_queues_to_use);
3119 }
3120
3121 /**
3122  *  stmmac_mtl_configuration - Configure MTL
3123  *  @priv: driver private structure
3124  *  Description: It is used for configurring MTL
3125  */
3126 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3127 {
3128         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3129         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3130
3131         if (tx_queues_count > 1)
3132                 stmmac_set_tx_queue_weight(priv);
3133
3134         /* Configure MTL RX algorithms */
3135         if (rx_queues_count > 1)
3136                 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3137                                 priv->plat->rx_sched_algorithm);
3138
3139         /* Configure MTL TX algorithms */
3140         if (tx_queues_count > 1)
3141                 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3142                                 priv->plat->tx_sched_algorithm);
3143
3144         /* Configure CBS in AVB TX queues */
3145         if (tx_queues_count > 1)
3146                 stmmac_configure_cbs(priv);
3147
3148         /* Map RX MTL to DMA channels */
3149         stmmac_rx_queue_dma_chan_map(priv);
3150
3151         /* Enable MAC RX Queues */
3152         stmmac_mac_enable_rx_queues(priv);
3153
3154         /* Set RX priorities */
3155         if (rx_queues_count > 1)
3156                 stmmac_mac_config_rx_queues_prio(priv);
3157
3158         /* Set TX priorities */
3159         if (tx_queues_count > 1)
3160                 stmmac_mac_config_tx_queues_prio(priv);
3161
3162         /* Set RX routing */
3163         if (rx_queues_count > 1)
3164                 stmmac_mac_config_rx_queues_routing(priv);
3165
3166         /* Receive Side Scaling */
3167         if (rx_queues_count > 1)
3168                 stmmac_mac_config_rss(priv);
3169 }
3170
3171 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3172 {
3173         if (priv->dma_cap.asp) {
3174                 netdev_info(priv->dev, "Enabling Safety Features\n");
3175                 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3176                                           priv->plat->safety_feat_cfg);
3177         } else {
3178                 netdev_info(priv->dev, "No Safety Features support found\n");
3179         }
3180 }
3181
3182 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3183 {
3184         char *name;
3185
3186         clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3187         clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3188
3189         name = priv->wq_name;
3190         sprintf(name, "%s-fpe", priv->dev->name);
3191
3192         priv->fpe_wq = create_singlethread_workqueue(name);
3193         if (!priv->fpe_wq) {
3194                 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3195
3196                 return -ENOMEM;
3197         }
3198         netdev_info(priv->dev, "FPE workqueue start");
3199
3200         return 0;
3201 }
3202
3203 /**
3204  * stmmac_hw_setup - setup mac in a usable state.
3205  *  @dev : pointer to the device structure.
3206  *  @init_ptp: initialize PTP if set
3207  *  Description:
3208  *  this is the main function to setup the HW in a usable state because the
3209  *  dma engine is reset, the core registers are configured (e.g. AXI,
3210  *  Checksum features, timers). The DMA is ready to start receiving and
3211  *  transmitting.
3212  *  Return value:
3213  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3214  *  file on failure.
3215  */
3216 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
3217 {
3218         struct stmmac_priv *priv = netdev_priv(dev);
3219         u32 rx_cnt = priv->plat->rx_queues_to_use;
3220         u32 tx_cnt = priv->plat->tx_queues_to_use;
3221         bool sph_en;
3222         u32 chan;
3223         int ret;
3224
3225         /* DMA initialization and SW reset */
3226         ret = stmmac_init_dma_engine(priv);
3227         if (ret < 0) {
3228                 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3229                            __func__);
3230                 return ret;
3231         }
3232
3233         /* Copy the MAC addr into the HW  */
3234         stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3235
3236         /* PS and related bits will be programmed according to the speed */
3237         if (priv->hw->pcs) {
3238                 int speed = priv->plat->mac_port_sel_speed;
3239
3240                 if ((speed == SPEED_10) || (speed == SPEED_100) ||
3241                     (speed == SPEED_1000)) {
3242                         priv->hw->ps = speed;
3243                 } else {
3244                         dev_warn(priv->device, "invalid port speed\n");
3245                         priv->hw->ps = 0;
3246                 }
3247         }
3248
3249         /* Initialize the MAC Core */
3250         stmmac_core_init(priv, priv->hw, dev);
3251
3252         /* Initialize MTL*/
3253         stmmac_mtl_configuration(priv);
3254
3255         /* Initialize Safety Features */
3256         stmmac_safety_feat_configuration(priv);
3257
3258         ret = stmmac_rx_ipc(priv, priv->hw);
3259         if (!ret) {
3260                 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3261                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3262                 priv->hw->rx_csum = 0;
3263         }
3264
3265         /* Enable the MAC Rx/Tx */
3266         stmmac_mac_set(priv, priv->ioaddr, true);
3267
3268         /* Set the HW DMA mode and the COE */
3269         stmmac_dma_operation_mode(priv);
3270
3271         stmmac_mmc_setup(priv);
3272
3273         if (init_ptp) {
3274                 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3275                 if (ret < 0)
3276                         netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
3277
3278                 ret = stmmac_init_ptp(priv);
3279                 if (ret == -EOPNOTSUPP)
3280                         netdev_warn(priv->dev, "PTP not supported by HW\n");
3281                 else if (ret)
3282                         netdev_warn(priv->dev, "PTP init failed\n");
3283         }
3284
3285         priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3286
3287         /* Convert the timer from msec to usec */
3288         if (!priv->tx_lpi_timer)
3289                 priv->tx_lpi_timer = eee_timer * 1000;
3290
3291         if (priv->use_riwt) {
3292                 u32 queue;
3293
3294                 for (queue = 0; queue < rx_cnt; queue++) {
3295                         if (!priv->rx_riwt[queue])
3296                                 priv->rx_riwt[queue] = DEF_DMA_RIWT;
3297
3298                         stmmac_rx_watchdog(priv, priv->ioaddr,
3299                                            priv->rx_riwt[queue], queue);
3300                 }
3301         }
3302
3303         if (priv->hw->pcs)
3304                 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3305
3306         /* set TX and RX rings length */
3307         stmmac_set_rings_length(priv);
3308
3309         /* Enable TSO */
3310         if (priv->tso) {
3311                 for (chan = 0; chan < tx_cnt; chan++) {
3312                         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3313
3314                         /* TSO and TBS cannot co-exist */
3315                         if (tx_q->tbs & STMMAC_TBS_AVAIL)
3316                                 continue;
3317
3318                         stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3319                 }
3320         }
3321
3322         /* Enable Split Header */
3323         sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3324         for (chan = 0; chan < rx_cnt; chan++)
3325                 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3326
3327
3328         /* VLAN Tag Insertion */
3329         if (priv->dma_cap.vlins)
3330                 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3331
3332         /* TBS */
3333         for (chan = 0; chan < tx_cnt; chan++) {
3334                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3335                 int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3336
3337                 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3338         }
3339
3340         /* Configure real RX and TX queues */
3341         netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3342         netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3343
3344         /* Start the ball rolling... */
3345         stmmac_start_all_dma(priv);
3346
3347         if (priv->dma_cap.fpesel) {
3348                 stmmac_fpe_start_wq(priv);
3349
3350                 if (priv->plat->fpe_cfg->enable)
3351                         stmmac_fpe_handshake(priv, true);
3352         }
3353
3354         return 0;
3355 }
3356
3357 static void stmmac_hw_teardown(struct net_device *dev)
3358 {
3359         struct stmmac_priv *priv = netdev_priv(dev);
3360
3361         clk_disable_unprepare(priv->plat->clk_ptp_ref);
3362 }
3363
3364 static void stmmac_free_irq(struct net_device *dev,
3365                             enum request_irq_err irq_err, int irq_idx)
3366 {
3367         struct stmmac_priv *priv = netdev_priv(dev);
3368         int j;
3369
3370         switch (irq_err) {
3371         case REQ_IRQ_ERR_ALL:
3372                 irq_idx = priv->plat->tx_queues_to_use;
3373                 fallthrough;
3374         case REQ_IRQ_ERR_TX:
3375                 for (j = irq_idx - 1; j >= 0; j--) {
3376                         if (priv->tx_irq[j] > 0) {
3377                                 irq_set_affinity_hint(priv->tx_irq[j], NULL);
3378                                 free_irq(priv->tx_irq[j], &priv->tx_queue[j]);
3379                         }
3380                 }
3381                 irq_idx = priv->plat->rx_queues_to_use;
3382                 fallthrough;
3383         case REQ_IRQ_ERR_RX:
3384                 for (j = irq_idx - 1; j >= 0; j--) {
3385                         if (priv->rx_irq[j] > 0) {
3386                                 irq_set_affinity_hint(priv->rx_irq[j], NULL);
3387                                 free_irq(priv->rx_irq[j], &priv->rx_queue[j]);
3388                         }
3389                 }
3390
3391                 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3392                         free_irq(priv->sfty_ue_irq, dev);
3393                 fallthrough;
3394         case REQ_IRQ_ERR_SFTY_UE:
3395                 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3396                         free_irq(priv->sfty_ce_irq, dev);
3397                 fallthrough;
3398         case REQ_IRQ_ERR_SFTY_CE:
3399                 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3400                         free_irq(priv->lpi_irq, dev);
3401                 fallthrough;
3402         case REQ_IRQ_ERR_LPI:
3403                 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3404                         free_irq(priv->wol_irq, dev);
3405                 fallthrough;
3406         case REQ_IRQ_ERR_WOL:
3407                 free_irq(dev->irq, dev);
3408                 fallthrough;
3409         case REQ_IRQ_ERR_MAC:
3410         case REQ_IRQ_ERR_NO:
3411                 /* If MAC IRQ request error, no more IRQ to free */
3412                 break;
3413         }
3414 }
3415
3416 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3417 {
3418         struct stmmac_priv *priv = netdev_priv(dev);
3419         enum request_irq_err irq_err;
3420         cpumask_t cpu_mask;
3421         int irq_idx = 0;
3422         char *int_name;
3423         int ret;
3424         int i;
3425
3426         /* For common interrupt */
3427         int_name = priv->int_name_mac;
3428         sprintf(int_name, "%s:%s", dev->name, "mac");
3429         ret = request_irq(dev->irq, stmmac_mac_interrupt,
3430                           0, int_name, dev);
3431         if (unlikely(ret < 0)) {
3432                 netdev_err(priv->dev,
3433                            "%s: alloc mac MSI %d (error: %d)\n",
3434                            __func__, dev->irq, ret);
3435                 irq_err = REQ_IRQ_ERR_MAC;
3436                 goto irq_error;
3437         }
3438
3439         /* Request the Wake IRQ in case of another line
3440          * is used for WoL
3441          */
3442         if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3443                 int_name = priv->int_name_wol;
3444                 sprintf(int_name, "%s:%s", dev->name, "wol");
3445                 ret = request_irq(priv->wol_irq,
3446                                   stmmac_mac_interrupt,
3447                                   0, int_name, dev);
3448                 if (unlikely(ret < 0)) {
3449                         netdev_err(priv->dev,
3450                                    "%s: alloc wol MSI %d (error: %d)\n",
3451                                    __func__, priv->wol_irq, ret);
3452                         irq_err = REQ_IRQ_ERR_WOL;
3453                         goto irq_error;
3454                 }
3455         }
3456
3457         /* Request the LPI IRQ in case of another line
3458          * is used for LPI
3459          */
3460         if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3461                 int_name = priv->int_name_lpi;
3462                 sprintf(int_name, "%s:%s", dev->name, "lpi");
3463                 ret = request_irq(priv->lpi_irq,
3464                                   stmmac_mac_interrupt,
3465                                   0, int_name, dev);
3466                 if (unlikely(ret < 0)) {
3467                         netdev_err(priv->dev,
3468                                    "%s: alloc lpi MSI %d (error: %d)\n",
3469                                    __func__, priv->lpi_irq, ret);
3470                         irq_err = REQ_IRQ_ERR_LPI;
3471                         goto irq_error;
3472                 }
3473         }
3474
3475         /* Request the Safety Feature Correctible Error line in
3476          * case of another line is used
3477          */
3478         if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3479                 int_name = priv->int_name_sfty_ce;
3480                 sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3481                 ret = request_irq(priv->sfty_ce_irq,
3482                                   stmmac_safety_interrupt,
3483                                   0, int_name, dev);
3484                 if (unlikely(ret < 0)) {
3485                         netdev_err(priv->dev,
3486                                    "%s: alloc sfty ce MSI %d (error: %d)\n",
3487                                    __func__, priv->sfty_ce_irq, ret);
3488                         irq_err = REQ_IRQ_ERR_SFTY_CE;
3489                         goto irq_error;
3490                 }
3491         }
3492
3493         /* Request the Safety Feature Uncorrectible Error line in
3494          * case of another line is used
3495          */
3496         if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3497                 int_name = priv->int_name_sfty_ue;
3498                 sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3499                 ret = request_irq(priv->sfty_ue_irq,
3500                                   stmmac_safety_interrupt,
3501                                   0, int_name, dev);
3502                 if (unlikely(ret < 0)) {
3503                         netdev_err(priv->dev,
3504                                    "%s: alloc sfty ue MSI %d (error: %d)\n",
3505                                    __func__, priv->sfty_ue_irq, ret);
3506                         irq_err = REQ_IRQ_ERR_SFTY_UE;
3507                         goto irq_error;
3508                 }
3509         }
3510
3511         /* Request Rx MSI irq */
3512         for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3513                 if (priv->rx_irq[i] == 0)
3514                         continue;
3515
3516                 int_name = priv->int_name_rx_irq[i];
3517                 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3518                 ret = request_irq(priv->rx_irq[i],
3519                                   stmmac_msi_intr_rx,
3520                                   0, int_name, &priv->rx_queue[i]);
3521                 if (unlikely(ret < 0)) {
3522                         netdev_err(priv->dev,
3523                                    "%s: alloc rx-%d  MSI %d (error: %d)\n",
3524                                    __func__, i, priv->rx_irq[i], ret);
3525                         irq_err = REQ_IRQ_ERR_RX;
3526                         irq_idx = i;
3527                         goto irq_error;
3528                 }
3529                 cpumask_clear(&cpu_mask);
3530                 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3531                 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3532         }
3533
3534         /* Request Tx MSI irq */
3535         for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3536                 if (priv->tx_irq[i] == 0)
3537                         continue;
3538
3539                 int_name = priv->int_name_tx_irq[i];
3540                 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3541                 ret = request_irq(priv->tx_irq[i],
3542                                   stmmac_msi_intr_tx,
3543                                   0, int_name, &priv->tx_queue[i]);
3544                 if (unlikely(ret < 0)) {
3545                         netdev_err(priv->dev,
3546                                    "%s: alloc tx-%d  MSI %d (error: %d)\n",
3547                                    __func__, i, priv->tx_irq[i], ret);
3548                         irq_err = REQ_IRQ_ERR_TX;
3549                         irq_idx = i;
3550                         goto irq_error;
3551                 }
3552                 cpumask_clear(&cpu_mask);
3553                 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3554                 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3555         }
3556
3557         return 0;
3558
3559 irq_error:
3560         stmmac_free_irq(dev, irq_err, irq_idx);
3561         return ret;
3562 }
3563
3564 static int stmmac_request_irq_single(struct net_device *dev)
3565 {
3566         struct stmmac_priv *priv = netdev_priv(dev);
3567         enum request_irq_err irq_err;
3568         int ret;
3569
3570         ret = request_irq(dev->irq, stmmac_interrupt,
3571                           IRQF_SHARED, dev->name, dev);
3572         if (unlikely(ret < 0)) {
3573                 netdev_err(priv->dev,
3574                            "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3575                            __func__, dev->irq, ret);
3576                 irq_err = REQ_IRQ_ERR_MAC;
3577                 goto irq_error;
3578         }
3579
3580         /* Request the Wake IRQ in case of another line
3581          * is used for WoL
3582          */
3583         if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3584                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
3585                                   IRQF_SHARED, dev->name, dev);
3586                 if (unlikely(ret < 0)) {
3587                         netdev_err(priv->dev,
3588                                    "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3589                                    __func__, priv->wol_irq, ret);
3590                         irq_err = REQ_IRQ_ERR_WOL;
3591                         goto irq_error;
3592                 }
3593         }
3594
3595         /* Request the IRQ lines */
3596         if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3597                 ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3598                                   IRQF_SHARED, dev->name, dev);
3599                 if (unlikely(ret < 0)) {
3600                         netdev_err(priv->dev,
3601                                    "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3602                                    __func__, priv->lpi_irq, ret);
3603                         irq_err = REQ_IRQ_ERR_LPI;
3604                         goto irq_error;
3605                 }
3606         }
3607
3608         return 0;
3609
3610 irq_error:
3611         stmmac_free_irq(dev, irq_err, 0);
3612         return ret;
3613 }
3614
3615 static int stmmac_request_irq(struct net_device *dev)
3616 {
3617         struct stmmac_priv *priv = netdev_priv(dev);
3618         int ret;
3619
3620         /* Request the IRQ lines */
3621         if (priv->plat->multi_msi_en)
3622                 ret = stmmac_request_irq_multi_msi(dev);
3623         else
3624                 ret = stmmac_request_irq_single(dev);
3625
3626         return ret;
3627 }
3628
3629 /**
3630  *  stmmac_open - open entry point of the driver
3631  *  @dev : pointer to the device structure.
3632  *  Description:
3633  *  This function is the open entry point of the driver.
3634  *  Return value:
3635  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3636  *  file on failure.
3637  */
3638 int stmmac_open(struct net_device *dev)
3639 {
3640         struct stmmac_priv *priv = netdev_priv(dev);
3641         int mode = priv->plat->phy_interface;
3642         int bfsize = 0;
3643         u32 chan;
3644         int ret;
3645
3646         ret = pm_runtime_get_sync(priv->device);
3647         if (ret < 0) {
3648                 pm_runtime_put_noidle(priv->device);
3649                 return ret;
3650         }
3651
3652         if (priv->hw->pcs != STMMAC_PCS_TBI &&
3653             priv->hw->pcs != STMMAC_PCS_RTBI &&
3654             (!priv->hw->xpcs ||
3655              xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3656                 ret = stmmac_init_phy(dev);
3657                 if (ret) {
3658                         netdev_err(priv->dev,
3659                                    "%s: Cannot attach to PHY (error: %d)\n",
3660                                    __func__, ret);
3661                         goto init_phy_error;
3662                 }
3663         }
3664
3665         /* Extra statistics */
3666         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3667         priv->xstats.threshold = tc;
3668
3669         bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
3670         if (bfsize < 0)
3671                 bfsize = 0;
3672
3673         if (bfsize < BUF_SIZE_16KiB)
3674                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
3675
3676         priv->dma_buf_sz = bfsize;
3677         buf_sz = bfsize;
3678
3679         priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3680
3681         if (!priv->dma_tx_size)
3682                 priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3683         if (!priv->dma_rx_size)
3684                 priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3685
3686         /* Earlier check for TBS */
3687         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3688                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3689                 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3690
3691                 /* Setup per-TXQ tbs flag before TX descriptor alloc */
3692                 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3693         }
3694
3695         ret = alloc_dma_desc_resources(priv);
3696         if (ret < 0) {
3697                 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3698                            __func__);
3699                 goto dma_desc_error;
3700         }
3701
3702         ret = init_dma_desc_rings(dev, GFP_KERNEL);
3703         if (ret < 0) {
3704                 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3705                            __func__);
3706                 goto init_error;
3707         }
3708
3709         ret = stmmac_hw_setup(dev, true);
3710         if (ret < 0) {
3711                 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3712                 goto init_error;
3713         }
3714
3715         stmmac_init_coalesce(priv);
3716
3717         phylink_start(priv->phylink);
3718         /* We may have called phylink_speed_down before */
3719         phylink_speed_up(priv->phylink);
3720
3721         ret = stmmac_request_irq(dev);
3722         if (ret)
3723                 goto irq_error;
3724
3725         stmmac_enable_all_queues(priv);
3726         netif_tx_start_all_queues(priv->dev);
3727
3728         return 0;
3729
3730 irq_error:
3731         phylink_stop(priv->phylink);
3732
3733         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3734                 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3735
3736         stmmac_hw_teardown(dev);
3737 init_error:
3738         free_dma_desc_resources(priv);
3739 dma_desc_error:
3740         phylink_disconnect_phy(priv->phylink);
3741 init_phy_error:
3742         pm_runtime_put(priv->device);
3743         return ret;
3744 }
3745
3746 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3747 {
3748         set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3749
3750         if (priv->fpe_wq)
3751                 destroy_workqueue(priv->fpe_wq);
3752
3753         netdev_info(priv->dev, "FPE workqueue stop");
3754 }
3755
3756 /**
3757  *  stmmac_release - close entry point of the driver
3758  *  @dev : device pointer.
3759  *  Description:
3760  *  This is the stop entry point of the driver.
3761  */
3762 int stmmac_release(struct net_device *dev)
3763 {
3764         struct stmmac_priv *priv = netdev_priv(dev);
3765         u32 chan;
3766
3767         if (device_may_wakeup(priv->device))
3768                 phylink_speed_down(priv->phylink, false);
3769         /* Stop and disconnect the PHY */
3770         phylink_stop(priv->phylink);
3771         phylink_disconnect_phy(priv->phylink);
3772
3773         stmmac_disable_all_queues(priv);
3774
3775         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3776                 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3777
3778         /* Free the IRQ lines */
3779         stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3780
3781         if (priv->eee_enabled) {
3782                 priv->tx_path_in_lpi_mode = false;
3783                 del_timer_sync(&priv->eee_ctrl_timer);
3784         }
3785
3786         /* Stop TX/RX DMA and clear the descriptors */
3787         stmmac_stop_all_dma(priv);
3788
3789         /* Release and free the Rx/Tx resources */
3790         free_dma_desc_resources(priv);
3791
3792         /* Disable the MAC Rx/Tx */
3793         stmmac_mac_set(priv, priv->ioaddr, false);
3794
3795         netif_carrier_off(dev);
3796
3797         stmmac_release_ptp(priv);
3798
3799         pm_runtime_put(priv->device);
3800
3801         if (priv->dma_cap.fpesel)
3802                 stmmac_fpe_stop_wq(priv);
3803
3804         return 0;
3805 }
3806
3807 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3808                                struct stmmac_tx_queue *tx_q)
3809 {
3810         u16 tag = 0x0, inner_tag = 0x0;
3811         u32 inner_type = 0x0;
3812         struct dma_desc *p;
3813
3814         if (!priv->dma_cap.vlins)
3815                 return false;
3816         if (!skb_vlan_tag_present(skb))
3817                 return false;
3818         if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3819                 inner_tag = skb_vlan_tag_get(skb);
3820                 inner_type = STMMAC_VLAN_INSERT;
3821         }
3822
3823         tag = skb_vlan_tag_get(skb);
3824
3825         if (tx_q->tbs & STMMAC_TBS_AVAIL)
3826                 p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3827         else
3828                 p = &tx_q->dma_tx[tx_q->cur_tx];
3829
3830         if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3831                 return false;
3832
3833         stmmac_set_tx_owner(priv, p);
3834         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3835         return true;
3836 }
3837
3838 /**
3839  *  stmmac_tso_allocator - close entry point of the driver
3840  *  @priv: driver private structure
3841  *  @des: buffer start address
3842  *  @total_len: total length to fill in descriptors
3843  *  @last_segment: condition for the last descriptor
3844  *  @queue: TX queue index
3845  *  Description:
3846  *  This function fills descriptor and request new descriptors according to
3847  *  buffer length to fill
3848  */
3849 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3850                                  int total_len, bool last_segment, u32 queue)
3851 {
3852         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3853         struct dma_desc *desc;
3854         u32 buff_size;
3855         int tmp_len;
3856
3857         tmp_len = total_len;
3858
3859         while (tmp_len > 0) {
3860                 dma_addr_t curr_addr;
3861
3862                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3863                                                 priv->dma_tx_size);
3864                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3865
3866                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3867                         desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3868                 else
3869                         desc = &tx_q->dma_tx[tx_q->cur_tx];
3870
3871                 curr_addr = des + (total_len - tmp_len);
3872                 if (priv->dma_cap.addr64 <= 32)
3873                         desc->des0 = cpu_to_le32(curr_addr);
3874                 else
3875                         stmmac_set_desc_addr(priv, desc, curr_addr);
3876
3877                 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3878                             TSO_MAX_BUFF_SIZE : tmp_len;
3879
3880                 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3881                                 0, 1,
3882                                 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3883                                 0, 0);
3884
3885                 tmp_len -= TSO_MAX_BUFF_SIZE;
3886         }
3887 }
3888
3889 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
3890 {
3891         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3892         int desc_size;
3893
3894         if (likely(priv->extend_desc))
3895                 desc_size = sizeof(struct dma_extended_desc);
3896         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3897                 desc_size = sizeof(struct dma_edesc);
3898         else
3899                 desc_size = sizeof(struct dma_desc);
3900
3901         /* The own bit must be the latest setting done when prepare the
3902          * descriptor and then barrier is needed to make sure that
3903          * all is coherent before granting the DMA engine.
3904          */
3905         wmb();
3906
3907         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3908         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3909 }
3910
3911 /**
3912  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3913  *  @skb : the socket buffer
3914  *  @dev : device pointer
3915  *  Description: this is the transmit function that is called on TSO frames
3916  *  (support available on GMAC4 and newer chips).
3917  *  Diagram below show the ring programming in case of TSO frames:
3918  *
3919  *  First Descriptor
3920  *   --------
3921  *   | DES0 |---> buffer1 = L2/L3/L4 header
3922  *   | DES1 |---> TCP Payload (can continue on next descr...)
3923  *   | DES2 |---> buffer 1 and 2 len
3924  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3925  *   --------
3926  *      |
3927  *     ...
3928  *      |
3929  *   --------
3930  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
3931  *   | DES1 | --|
3932  *   | DES2 | --> buffer 1 and 2 len
3933  *   | DES3 |
3934  *   --------
3935  *
3936  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3937  */
3938 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3939 {
3940         struct dma_desc *desc, *first, *mss_desc = NULL;
3941         struct stmmac_priv *priv = netdev_priv(dev);
3942         int nfrags = skb_shinfo(skb)->nr_frags;
3943         u32 queue = skb_get_queue_mapping(skb);
3944         unsigned int first_entry, tx_packets;
3945         int tmp_pay_len = 0, first_tx;
3946         struct stmmac_tx_queue *tx_q;
3947         bool has_vlan, set_ic;
3948         u8 proto_hdr_len, hdr;
3949         u32 pay_len, mss;
3950         dma_addr_t des;
3951         int i;
3952
3953         tx_q = &priv->tx_queue[queue];
3954         first_tx = tx_q->cur_tx;
3955
3956         /* Compute header lengths */
3957         if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3958                 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3959                 hdr = sizeof(struct udphdr);
3960         } else {
3961                 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3962                 hdr = tcp_hdrlen(skb);
3963         }
3964
3965         /* Desc availability based on threshold should be enough safe */
3966         if (unlikely(stmmac_tx_avail(priv, queue) <
3967                 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3968                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3969                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3970                                                                 queue));
3971                         /* This is a hard error, log it. */
3972                         netdev_err(priv->dev,
3973                                    "%s: Tx Ring full when queue awake\n",
3974                                    __func__);
3975                 }
3976                 return NETDEV_TX_BUSY;
3977         }
3978
3979         pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3980
3981         mss = skb_shinfo(skb)->gso_size;
3982
3983         /* set new MSS value if needed */
3984         if (mss != tx_q->mss) {
3985                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3986                         mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3987                 else
3988                         mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3989
3990                 stmmac_set_mss(priv, mss_desc, mss);
3991                 tx_q->mss = mss;
3992                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3993                                                 priv->dma_tx_size);
3994                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3995         }
3996
3997         if (netif_msg_tx_queued(priv)) {
3998                 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
3999                         __func__, hdr, proto_hdr_len, pay_len, mss);
4000                 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4001                         skb->data_len);
4002         }
4003
4004         /* Check if VLAN can be inserted by HW */
4005         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4006
4007         first_entry = tx_q->cur_tx;
4008         WARN_ON(tx_q->tx_skbuff[first_entry]);
4009
4010         if (tx_q->tbs & STMMAC_TBS_AVAIL)
4011                 desc = &tx_q->dma_entx[first_entry].basic;
4012         else
4013                 desc = &tx_q->dma_tx[first_entry];
4014         first = desc;
4015
4016         if (has_vlan)
4017                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4018
4019         /* first descriptor: fill Headers on Buf1 */
4020         des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4021                              DMA_TO_DEVICE);
4022         if (dma_mapping_error(priv->device, des))
4023                 goto dma_map_err;
4024
4025         tx_q->tx_skbuff_dma[first_entry].buf = des;
4026         tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4027         tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4028         tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4029
4030         if (priv->dma_cap.addr64 <= 32) {
4031                 first->des0 = cpu_to_le32(des);
4032
4033                 /* Fill start of payload in buff2 of first descriptor */
4034                 if (pay_len)
4035                         first->des1 = cpu_to_le32(des + proto_hdr_len);
4036
4037                 /* If needed take extra descriptors to fill the remaining payload */
4038                 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4039         } else {
4040                 stmmac_set_desc_addr(priv, first, des);
4041                 tmp_pay_len = pay_len;
4042                 des += proto_hdr_len;
4043                 pay_len = 0;
4044         }
4045
4046         stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4047
4048         /* Prepare fragments */
4049         for (i = 0; i < nfrags; i++) {
4050                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4051
4052                 des = skb_frag_dma_map(priv->device, frag, 0,
4053                                        skb_frag_size(frag),
4054                                        DMA_TO_DEVICE);
4055                 if (dma_mapping_error(priv->device, des))
4056                         goto dma_map_err;
4057
4058                 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4059                                      (i == nfrags - 1), queue);
4060
4061                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4062                 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4063                 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4064                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4065         }
4066
4067         tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4068
4069         /* Only the last descriptor gets to point to the skb. */
4070         tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4071         tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4072
4073         /* Manage tx mitigation */
4074         tx_packets = (tx_q->cur_tx + 1) - first_tx;
4075         tx_q->tx_count_frames += tx_packets;
4076
4077         if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4078                 set_ic = true;
4079         else if (!priv->tx_coal_frames[queue])
4080                 set_ic = false;
4081         else if (tx_packets > priv->tx_coal_frames[queue])
4082                 set_ic = true;
4083         else if ((tx_q->tx_count_frames %
4084                   priv->tx_coal_frames[queue]) < tx_packets)
4085                 set_ic = true;
4086         else
4087                 set_ic = false;
4088
4089         if (set_ic) {
4090                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4091                         desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4092                 else
4093                         desc = &tx_q->dma_tx[tx_q->cur_tx];
4094
4095                 tx_q->tx_count_frames = 0;
4096                 stmmac_set_tx_ic(priv, desc);
4097                 priv->xstats.tx_set_ic_bit++;
4098         }
4099
4100         /* We've used all descriptors we need for this skb, however,
4101          * advance cur_tx so that it references a fresh descriptor.
4102          * ndo_start_xmit will fill this descriptor the next time it's
4103          * called and stmmac_tx_clean may clean up to this descriptor.
4104          */
4105         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
4106
4107         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4108                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4109                           __func__);
4110                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4111         }
4112
4113         dev->stats.tx_bytes += skb->len;
4114         priv->xstats.tx_tso_frames++;
4115         priv->xstats.tx_tso_nfrags += nfrags;
4116
4117         if (priv->sarc_type)
4118                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4119
4120         skb_tx_timestamp(skb);
4121
4122         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4123                      priv->hwts_tx_en)) {
4124                 /* declare that device is doing timestamping */
4125                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4126                 stmmac_enable_tx_timestamp(priv, first);
4127         }
4128
4129         /* Complete the first descriptor before granting the DMA */
4130         stmmac_prepare_tso_tx_desc(priv, first, 1,
4131                         proto_hdr_len,
4132                         pay_len,
4133                         1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4134                         hdr / 4, (skb->len - proto_hdr_len));
4135
4136         /* If context desc is used to change MSS */
4137         if (mss_desc) {
4138                 /* Make sure that first descriptor has been completely
4139                  * written, including its own bit. This is because MSS is
4140                  * actually before first descriptor, so we need to make
4141                  * sure that MSS's own bit is the last thing written.
4142                  */
4143                 dma_wmb();
4144                 stmmac_set_tx_owner(priv, mss_desc);
4145         }
4146
4147         if (netif_msg_pktdata(priv)) {
4148                 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4149                         __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4150                         tx_q->cur_tx, first, nfrags);
4151                 pr_info(">>> frame to be transmitted: ");
4152                 print_pkt(skb->data, skb_headlen(skb));
4153         }
4154
4155         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4156
4157         stmmac_flush_tx_descriptors(priv, queue);
4158         stmmac_tx_timer_arm(priv, queue);
4159
4160         return NETDEV_TX_OK;
4161
4162 dma_map_err:
4163         dev_err(priv->device, "Tx dma map failed\n");
4164         dev_kfree_skb(skb);
4165         priv->dev->stats.tx_dropped++;
4166         return NETDEV_TX_OK;
4167 }
4168
4169 /**
4170  *  stmmac_xmit - Tx entry point of the driver
4171  *  @skb : the socket buffer
4172  *  @dev : device pointer
4173  *  Description : this is the tx entry point of the driver.
4174  *  It programs the chain or the ring and supports oversized frames
4175  *  and SG feature.
4176  */
4177 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4178 {
4179         unsigned int first_entry, tx_packets, enh_desc;
4180         struct stmmac_priv *priv = netdev_priv(dev);
4181         unsigned int nopaged_len = skb_headlen(skb);
4182         int i, csum_insertion = 0, is_jumbo = 0;
4183         u32 queue = skb_get_queue_mapping(skb);
4184         int nfrags = skb_shinfo(skb)->nr_frags;
4185         int gso = skb_shinfo(skb)->gso_type;
4186         struct dma_edesc *tbs_desc = NULL;
4187         struct dma_desc *desc, *first;
4188         struct stmmac_tx_queue *tx_q;
4189         bool has_vlan, set_ic;
4190         int entry, first_tx;
4191         dma_addr_t des;
4192
4193         tx_q = &priv->tx_queue[queue];
4194         first_tx = tx_q->cur_tx;
4195
4196         if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4197                 stmmac_disable_eee_mode(priv);
4198
4199         /* Manage oversized TCP frames for GMAC4 device */
4200         if (skb_is_gso(skb) && priv->tso) {
4201                 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4202                         return stmmac_tso_xmit(skb, dev);
4203                 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4204                         return stmmac_tso_xmit(skb, dev);
4205         }
4206
4207         if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4208                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4209                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4210                                                                 queue));
4211                         /* This is a hard error, log it. */
4212                         netdev_err(priv->dev,
4213                                    "%s: Tx Ring full when queue awake\n",
4214                                    __func__);
4215                 }
4216                 return NETDEV_TX_BUSY;
4217         }
4218
4219         /* Check if VLAN can be inserted by HW */
4220         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4221
4222         entry = tx_q->cur_tx;
4223         first_entry = entry;
4224         WARN_ON(tx_q->tx_skbuff[first_entry]);
4225
4226         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4227
4228         if (likely(priv->extend_desc))
4229                 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4230         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4231                 desc = &tx_q->dma_entx[entry].basic;
4232         else
4233                 desc = tx_q->dma_tx + entry;
4234
4235         first = desc;
4236
4237         if (has_vlan)
4238                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4239
4240         enh_desc = priv->plat->enh_desc;
4241         /* To program the descriptors according to the size of the frame */
4242         if (enh_desc)
4243                 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4244
4245         if (unlikely(is_jumbo)) {
4246                 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4247                 if (unlikely(entry < 0) && (entry != -EINVAL))
4248                         goto dma_map_err;
4249         }
4250
4251         for (i = 0; i < nfrags; i++) {
4252                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4253                 int len = skb_frag_size(frag);
4254                 bool last_segment = (i == (nfrags - 1));
4255
4256                 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4257                 WARN_ON(tx_q->tx_skbuff[entry]);
4258
4259                 if (likely(priv->extend_desc))
4260                         desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4261                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4262                         desc = &tx_q->dma_entx[entry].basic;
4263                 else
4264                         desc = tx_q->dma_tx + entry;
4265
4266                 des = skb_frag_dma_map(priv->device, frag, 0, len,
4267                                        DMA_TO_DEVICE);
4268                 if (dma_mapping_error(priv->device, des))
4269                         goto dma_map_err; /* should reuse desc w/o issues */
4270
4271                 tx_q->tx_skbuff_dma[entry].buf = des;
4272
4273                 stmmac_set_desc_addr(priv, desc, des);
4274
4275                 tx_q->tx_skbuff_dma[entry].map_as_page = true;
4276                 tx_q->tx_skbuff_dma[entry].len = len;
4277                 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4278                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4279
4280                 /* Prepare the descriptor and set the own bit too */
4281                 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4282                                 priv->mode, 1, last_segment, skb->len);
4283         }
4284
4285         /* Only the last descriptor gets to point to the skb. */
4286         tx_q->tx_skbuff[entry] = skb;
4287         tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4288
4289         /* According to the coalesce parameter the IC bit for the latest
4290          * segment is reset and the timer re-started to clean the tx status.
4291          * This approach takes care about the fragments: desc is the first
4292          * element in case of no SG.
4293          */
4294         tx_packets = (entry + 1) - first_tx;
4295         tx_q->tx_count_frames += tx_packets;
4296
4297         if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4298                 set_ic = true;
4299         else if (!priv->tx_coal_frames[queue])
4300                 set_ic = false;
4301         else if (tx_packets > priv->tx_coal_frames[queue])
4302                 set_ic = true;
4303         else if ((tx_q->tx_count_frames %
4304                   priv->tx_coal_frames[queue]) < tx_packets)
4305                 set_ic = true;
4306         else
4307                 set_ic = false;
4308
4309         if (set_ic) {
4310                 if (likely(priv->extend_desc))
4311                         desc = &tx_q->dma_etx[entry].basic;
4312                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4313                         desc = &tx_q->dma_entx[entry].basic;
4314                 else
4315                         desc = &tx_q->dma_tx[entry];
4316
4317                 tx_q->tx_count_frames = 0;
4318                 stmmac_set_tx_ic(priv, desc);
4319                 priv->xstats.tx_set_ic_bit++;
4320         }
4321
4322         /* We've used all descriptors we need for this skb, however,
4323          * advance cur_tx so that it references a fresh descriptor.
4324          * ndo_start_xmit will fill this descriptor the next time it's
4325          * called and stmmac_tx_clean may clean up to this descriptor.
4326          */
4327         entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4328         tx_q->cur_tx = entry;
4329
4330         if (netif_msg_pktdata(priv)) {
4331                 netdev_dbg(priv->dev,
4332                            "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4333                            __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4334                            entry, first, nfrags);
4335
4336                 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4337                 print_pkt(skb->data, skb->len);
4338         }
4339
4340         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4341                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4342                           __func__);
4343                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4344         }
4345
4346         dev->stats.tx_bytes += skb->len;
4347
4348         if (priv->sarc_type)
4349                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4350
4351         skb_tx_timestamp(skb);
4352
4353         /* Ready to fill the first descriptor and set the OWN bit w/o any
4354          * problems because all the descriptors are actually ready to be
4355          * passed to the DMA engine.
4356          */
4357         if (likely(!is_jumbo)) {
4358                 bool last_segment = (nfrags == 0);
4359
4360                 des = dma_map_single(priv->device, skb->data,
4361                                      nopaged_len, DMA_TO_DEVICE);
4362                 if (dma_mapping_error(priv->device, des))
4363                         goto dma_map_err;
4364
4365                 tx_q->tx_skbuff_dma[first_entry].buf = des;
4366                 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4367                 tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4368
4369                 stmmac_set_desc_addr(priv, first, des);
4370
4371                 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4372                 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4373
4374                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4375                              priv->hwts_tx_en)) {
4376                         /* declare that device is doing timestamping */
4377                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4378                         stmmac_enable_tx_timestamp(priv, first);
4379                 }
4380
4381                 /* Prepare the first descriptor setting the OWN bit too */
4382                 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4383                                 csum_insertion, priv->mode, 0, last_segment,
4384                                 skb->len);
4385         }
4386
4387         if (tx_q->tbs & STMMAC_TBS_EN) {
4388                 struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4389
4390                 tbs_desc = &tx_q->dma_entx[first_entry];
4391                 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4392         }
4393
4394         stmmac_set_tx_owner(priv, first);
4395
4396         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4397
4398         stmmac_enable_dma_transmission(priv, priv->ioaddr);
4399
4400         stmmac_flush_tx_descriptors(priv, queue);
4401         stmmac_tx_timer_arm(priv, queue);
4402
4403         return NETDEV_TX_OK;
4404
4405 dma_map_err:
4406         netdev_err(priv->dev, "Tx DMA map failed\n");
4407         dev_kfree_skb(skb);
4408         priv->dev->stats.tx_dropped++;
4409         return NETDEV_TX_OK;
4410 }
4411
4412 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4413 {
4414         struct vlan_ethhdr *veth;
4415         __be16 vlan_proto;
4416         u16 vlanid;
4417
4418         veth = (struct vlan_ethhdr *)skb->data;
4419         vlan_proto = veth->h_vlan_proto;
4420
4421         if ((vlan_proto == htons(ETH_P_8021Q) &&
4422              dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4423             (vlan_proto == htons(ETH_P_8021AD) &&
4424              dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4425                 /* pop the vlan tag */
4426                 vlanid = ntohs(veth->h_vlan_TCI);
4427                 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4428                 skb_pull(skb, VLAN_HLEN);
4429                 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4430         }
4431 }
4432
4433 /**
4434  * stmmac_rx_refill - refill used skb preallocated buffers
4435  * @priv: driver private structure
4436  * @queue: RX queue index
4437  * Description : this is to reallocate the skb for the reception process
4438  * that is based on zero-copy.
4439  */
4440 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4441 {
4442         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4443         int dirty = stmmac_rx_dirty(priv, queue);
4444         unsigned int entry = rx_q->dirty_rx;
4445
4446         while (dirty-- > 0) {
4447                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4448                 struct dma_desc *p;
4449                 bool use_rx_wd;
4450
4451                 if (priv->extend_desc)
4452                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
4453                 else
4454                         p = rx_q->dma_rx + entry;
4455
4456                 if (!buf->page) {
4457                         buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
4458                         if (!buf->page)
4459                                 break;
4460                 }
4461
4462                 if (priv->sph && !buf->sec_page) {
4463                         buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
4464                         if (!buf->sec_page)
4465                                 break;
4466
4467                         buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4468                 }
4469
4470                 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4471
4472                 stmmac_set_desc_addr(priv, p, buf->addr);
4473                 if (priv->sph)
4474                         stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4475                 else
4476                         stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4477                 stmmac_refill_desc3(priv, rx_q, p);
4478
4479                 rx_q->rx_count_frames++;
4480                 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4481                 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4482                         rx_q->rx_count_frames = 0;
4483
4484                 use_rx_wd = !priv->rx_coal_frames[queue];
4485                 use_rx_wd |= rx_q->rx_count_frames > 0;
4486                 if (!priv->use_riwt)
4487                         use_rx_wd = false;
4488
4489                 dma_wmb();
4490                 stmmac_set_rx_owner(priv, p, use_rx_wd);
4491
4492                 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4493         }
4494         rx_q->dirty_rx = entry;
4495         rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4496                             (rx_q->dirty_rx * sizeof(struct dma_desc));
4497         stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4498 }
4499
4500 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4501                                        struct dma_desc *p,
4502                                        int status, unsigned int len)
4503 {
4504         unsigned int plen = 0, hlen = 0;
4505         int coe = priv->hw->rx_csum;
4506
4507         /* Not first descriptor, buffer is always zero */
4508         if (priv->sph && len)
4509                 return 0;
4510
4511         /* First descriptor, get split header length */
4512         stmmac_get_rx_header_len(priv, p, &hlen);
4513         if (priv->sph && hlen) {
4514                 priv->xstats.rx_split_hdr_pkt_n++;
4515                 return hlen;
4516         }
4517
4518         /* First descriptor, not last descriptor and not split header */
4519         if (status & rx_not_ls)
4520                 return priv->dma_buf_sz;
4521
4522         plen = stmmac_get_rx_frame_len(priv, p, coe);
4523
4524         /* First descriptor and last descriptor and not split header */
4525         return min_t(unsigned int, priv->dma_buf_sz, plen);
4526 }
4527
4528 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4529                                        struct dma_desc *p,
4530                                        int status, unsigned int len)
4531 {
4532         int coe = priv->hw->rx_csum;
4533         unsigned int plen = 0;
4534
4535         /* Not split header, buffer is not available */
4536         if (!priv->sph)
4537                 return 0;
4538
4539         /* Not last descriptor */
4540         if (status & rx_not_ls)
4541                 return priv->dma_buf_sz;
4542
4543         plen = stmmac_get_rx_frame_len(priv, p, coe);
4544
4545         /* Last descriptor */
4546         return plen - len;
4547 }
4548
4549 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4550                                 struct xdp_frame *xdpf, bool dma_map)
4551 {
4552         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4553         unsigned int entry = tx_q->cur_tx;
4554         struct dma_desc *tx_desc;
4555         dma_addr_t dma_addr;
4556         bool set_ic;
4557
4558         if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4559                 return STMMAC_XDP_CONSUMED;
4560
4561         if (likely(priv->extend_desc))
4562                 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4563         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4564                 tx_desc = &tx_q->dma_entx[entry].basic;
4565         else
4566                 tx_desc = tx_q->dma_tx + entry;
4567
4568         if (dma_map) {
4569                 dma_addr = dma_map_single(priv->device, xdpf->data,
4570                                           xdpf->len, DMA_TO_DEVICE);
4571                 if (dma_mapping_error(priv->device, dma_addr))
4572                         return STMMAC_XDP_CONSUMED;
4573
4574                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4575         } else {
4576                 struct page *page = virt_to_page(xdpf->data);
4577
4578                 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4579                            xdpf->headroom;
4580                 dma_sync_single_for_device(priv->device, dma_addr,
4581                                            xdpf->len, DMA_BIDIRECTIONAL);
4582
4583                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4584         }
4585
4586         tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4587         tx_q->tx_skbuff_dma[entry].map_as_page = false;
4588         tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4589         tx_q->tx_skbuff_dma[entry].last_segment = true;
4590         tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4591
4592         tx_q->xdpf[entry] = xdpf;
4593
4594         stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4595
4596         stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4597                                true, priv->mode, true, true,
4598                                xdpf->len);
4599
4600         tx_q->tx_count_frames++;
4601
4602         if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4603                 set_ic = true;
4604         else
4605                 set_ic = false;
4606
4607         if (set_ic) {
4608                 tx_q->tx_count_frames = 0;
4609                 stmmac_set_tx_ic(priv, tx_desc);
4610                 priv->xstats.tx_set_ic_bit++;
4611         }
4612
4613         stmmac_enable_dma_transmission(priv, priv->ioaddr);
4614
4615         entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4616         tx_q->cur_tx = entry;
4617
4618         return STMMAC_XDP_TX;
4619 }
4620
4621 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4622                                    int cpu)
4623 {
4624         int index = cpu;
4625
4626         if (unlikely(index < 0))
4627                 index = 0;
4628
4629         while (index >= priv->plat->tx_queues_to_use)
4630                 index -= priv->plat->tx_queues_to_use;
4631
4632         return index;
4633 }
4634
4635 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4636                                 struct xdp_buff *xdp)
4637 {
4638         struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4639         int cpu = smp_processor_id();
4640         struct netdev_queue *nq;
4641         int queue;
4642         int res;
4643
4644         if (unlikely(!xdpf))
4645                 return STMMAC_XDP_CONSUMED;
4646
4647         queue = stmmac_xdp_get_tx_queue(priv, cpu);
4648         nq = netdev_get_tx_queue(priv->dev, queue);
4649
4650         __netif_tx_lock(nq, cpu);
4651         /* Avoids TX time-out as we are sharing with slow path */
4652         nq->trans_start = jiffies;
4653
4654         res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4655         if (res == STMMAC_XDP_TX)
4656                 stmmac_flush_tx_descriptors(priv, queue);
4657
4658         __netif_tx_unlock(nq);
4659
4660         return res;
4661 }
4662
4663 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4664                                  struct bpf_prog *prog,
4665                                  struct xdp_buff *xdp)
4666 {
4667         u32 act;
4668         int res;
4669
4670         act = bpf_prog_run_xdp(prog, xdp);
4671         switch (act) {
4672         case XDP_PASS:
4673                 res = STMMAC_XDP_PASS;
4674                 break;
4675         case XDP_TX:
4676                 res = stmmac_xdp_xmit_back(priv, xdp);
4677                 break;
4678         case XDP_REDIRECT:
4679                 if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4680                         res = STMMAC_XDP_CONSUMED;
4681                 else
4682                         res = STMMAC_XDP_REDIRECT;
4683                 break;
4684         default:
4685                 bpf_warn_invalid_xdp_action(act);
4686                 fallthrough;
4687         case XDP_ABORTED:
4688                 trace_xdp_exception(priv->dev, prog, act);
4689                 fallthrough;
4690         case XDP_DROP:
4691                 res = STMMAC_XDP_CONSUMED;
4692                 break;
4693         }
4694
4695         return res;
4696 }
4697
4698 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4699                                            struct xdp_buff *xdp)
4700 {
4701         struct bpf_prog *prog;
4702         int res;
4703
4704         prog = READ_ONCE(priv->xdp_prog);
4705         if (!prog) {
4706                 res = STMMAC_XDP_PASS;
4707                 goto out;
4708         }
4709
4710         res = __stmmac_xdp_run_prog(priv, prog, xdp);
4711 out:
4712         return ERR_PTR(-res);
4713 }
4714
4715 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4716                                    int xdp_status)
4717 {
4718         int cpu = smp_processor_id();
4719         int queue;
4720
4721         queue = stmmac_xdp_get_tx_queue(priv, cpu);
4722
4723         if (xdp_status & STMMAC_XDP_TX)
4724                 stmmac_tx_timer_arm(priv, queue);
4725
4726         if (xdp_status & STMMAC_XDP_REDIRECT)
4727                 xdp_do_flush();
4728 }
4729
4730 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4731                                                struct xdp_buff *xdp)
4732 {
4733         unsigned int metasize = xdp->data - xdp->data_meta;
4734         unsigned int datasize = xdp->data_end - xdp->data;
4735         struct sk_buff *skb;
4736
4737         skb = __napi_alloc_skb(&ch->rxtx_napi,
4738                                xdp->data_end - xdp->data_hard_start,
4739                                GFP_ATOMIC | __GFP_NOWARN);
4740         if (unlikely(!skb))
4741                 return NULL;
4742
4743         skb_reserve(skb, xdp->data - xdp->data_hard_start);
4744         memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4745         if (metasize)
4746                 skb_metadata_set(skb, metasize);
4747
4748         return skb;
4749 }
4750
4751 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4752                                    struct dma_desc *p, struct dma_desc *np,
4753                                    struct xdp_buff *xdp)
4754 {
4755         struct stmmac_channel *ch = &priv->channel[queue];
4756         unsigned int len = xdp->data_end - xdp->data;
4757         enum pkt_hash_types hash_type;
4758         int coe = priv->hw->rx_csum;
4759         struct sk_buff *skb;
4760         u32 hash;
4761
4762         skb = stmmac_construct_skb_zc(ch, xdp);
4763         if (!skb) {
4764                 priv->dev->stats.rx_dropped++;
4765                 return;
4766         }
4767
4768         stmmac_get_rx_hwtstamp(priv, p, np, skb);
4769         stmmac_rx_vlan(priv->dev, skb);
4770         skb->protocol = eth_type_trans(skb, priv->dev);
4771
4772         if (unlikely(!coe))
4773                 skb_checksum_none_assert(skb);
4774         else
4775                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4776
4777         if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4778                 skb_set_hash(skb, hash, hash_type);
4779
4780         skb_record_rx_queue(skb, queue);
4781         napi_gro_receive(&ch->rxtx_napi, skb);
4782
4783         priv->dev->stats.rx_packets++;
4784         priv->dev->stats.rx_bytes += len;
4785 }
4786
4787 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4788 {
4789         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4790         unsigned int entry = rx_q->dirty_rx;
4791         struct dma_desc *rx_desc = NULL;
4792         bool ret = true;
4793
4794         budget = min(budget, stmmac_rx_dirty(priv, queue));
4795
4796         while (budget-- > 0 && entry != rx_q->cur_rx) {
4797                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4798                 dma_addr_t dma_addr;
4799                 bool use_rx_wd;
4800
4801                 if (!buf->xdp) {
4802                         buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4803                         if (!buf->xdp) {
4804                                 ret = false;
4805                                 break;
4806                         }
4807                 }
4808
4809                 if (priv->extend_desc)
4810                         rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4811                 else
4812                         rx_desc = rx_q->dma_rx + entry;
4813
4814                 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4815                 stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4816                 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4817                 stmmac_refill_desc3(priv, rx_q, rx_desc);
4818
4819                 rx_q->rx_count_frames++;
4820                 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4821                 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4822                         rx_q->rx_count_frames = 0;
4823
4824                 use_rx_wd = !priv->rx_coal_frames[queue];
4825                 use_rx_wd |= rx_q->rx_count_frames > 0;
4826                 if (!priv->use_riwt)
4827                         use_rx_wd = false;
4828
4829                 dma_wmb();
4830                 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4831
4832                 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4833         }
4834
4835         if (rx_desc) {
4836                 rx_q->dirty_rx = entry;
4837                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4838                                      (rx_q->dirty_rx * sizeof(struct dma_desc));
4839                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4840         }
4841
4842         return ret;
4843 }
4844
4845 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4846 {
4847         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4848         unsigned int count = 0, error = 0, len = 0;
4849         int dirty = stmmac_rx_dirty(priv, queue);
4850         unsigned int next_entry = rx_q->cur_rx;
4851         unsigned int desc_size;
4852         struct bpf_prog *prog;
4853         bool failure = false;
4854         int xdp_status = 0;
4855         int status = 0;
4856
4857         if (netif_msg_rx_status(priv)) {
4858                 void *rx_head;
4859
4860                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
4861                 if (priv->extend_desc) {
4862                         rx_head = (void *)rx_q->dma_erx;
4863                         desc_size = sizeof(struct dma_extended_desc);
4864                 } else {
4865                         rx_head = (void *)rx_q->dma_rx;
4866                         desc_size = sizeof(struct dma_desc);
4867                 }
4868
4869                 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
4870                                     rx_q->dma_rx_phy, desc_size);
4871         }
4872         while (count < limit) {
4873                 struct stmmac_rx_buffer *buf;
4874                 unsigned int buf1_len = 0;
4875                 struct dma_desc *np, *p;
4876                 int entry;
4877                 int res;
4878
4879                 if (!count && rx_q->state_saved) {
4880                         error = rx_q->state.error;
4881                         len = rx_q->state.len;
4882                 } else {
4883                         rx_q->state_saved = false;
4884                         error = 0;
4885                         len = 0;
4886                 }
4887
4888                 if (count >= limit)
4889                         break;
4890
4891 read_again:
4892                 buf1_len = 0;
4893                 entry = next_entry;
4894                 buf = &rx_q->buf_pool[entry];
4895
4896                 if (dirty >= STMMAC_RX_FILL_BATCH) {
4897                         failure = failure ||
4898                                   !stmmac_rx_refill_zc(priv, queue, dirty);
4899                         dirty = 0;
4900                 }
4901
4902                 if (priv->extend_desc)
4903                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
4904                 else
4905                         p = rx_q->dma_rx + entry;
4906
4907                 /* read the status of the incoming frame */
4908                 status = stmmac_rx_status(priv, &priv->dev->stats,
4909                                           &priv->xstats, p);
4910                 /* check if managed by the DMA otherwise go ahead */
4911                 if (unlikely(status & dma_own))
4912                         break;
4913
4914                 /* Prefetch the next RX descriptor */
4915                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
4916                                                 priv->dma_rx_size);
4917                 next_entry = rx_q->cur_rx;
4918
4919                 if (priv->extend_desc)
4920                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
4921                 else
4922                         np = rx_q->dma_rx + next_entry;
4923
4924                 prefetch(np);
4925
4926                 /* Ensure a valid XSK buffer before proceed */
4927                 if (!buf->xdp)
4928                         break;
4929
4930                 if (priv->extend_desc)
4931                         stmmac_rx_extended_status(priv, &priv->dev->stats,
4932                                                   &priv->xstats,
4933                                                   rx_q->dma_erx + entry);
4934                 if (unlikely(status == discard_frame)) {
4935                         xsk_buff_free(buf->xdp);
4936                         buf->xdp = NULL;
4937                         dirty++;
4938                         error = 1;
4939                         if (!priv->hwts_rx_en)
4940                                 priv->dev->stats.rx_errors++;
4941                 }
4942
4943                 if (unlikely(error && (status & rx_not_ls)))
4944                         goto read_again;
4945                 if (unlikely(error)) {
4946                         count++;
4947                         continue;
4948                 }
4949
4950                 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */
4951                 if (likely(status & rx_not_ls)) {
4952                         xsk_buff_free(buf->xdp);
4953                         buf->xdp = NULL;
4954                         dirty++;
4955                         count++;
4956                         goto read_again;
4957                 }
4958
4959                 /* XDP ZC Frame only support primary buffers for now */
4960                 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
4961                 len += buf1_len;
4962
4963                 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
4964                  * Type frames (LLC/LLC-SNAP)
4965                  *
4966                  * llc_snap is never checked in GMAC >= 4, so this ACS
4967                  * feature is always disabled and packets need to be
4968                  * stripped manually.
4969                  */
4970                 if (likely(!(status & rx_not_ls)) &&
4971                     (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
4972                      unlikely(status != llc_snap))) {
4973                         buf1_len -= ETH_FCS_LEN;
4974                         len -= ETH_FCS_LEN;
4975                 }
4976
4977                 /* RX buffer is good and fit into a XSK pool buffer */
4978                 buf->xdp->data_end = buf->xdp->data + buf1_len;
4979                 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
4980
4981                 prog = READ_ONCE(priv->xdp_prog);
4982                 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
4983
4984                 switch (res) {
4985                 case STMMAC_XDP_PASS:
4986                         stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
4987                         xsk_buff_free(buf->xdp);
4988                         break;
4989                 case STMMAC_XDP_CONSUMED:
4990                         xsk_buff_free(buf->xdp);
4991                         priv->dev->stats.rx_dropped++;
4992                         break;
4993                 case STMMAC_XDP_TX:
4994                 case STMMAC_XDP_REDIRECT:
4995                         xdp_status |= res;
4996                         break;
4997                 }
4998
4999                 buf->xdp = NULL;
5000                 dirty++;
5001                 count++;
5002         }
5003
5004         if (status & rx_not_ls) {
5005                 rx_q->state_saved = true;
5006                 rx_q->state.error = error;
5007                 rx_q->state.len = len;
5008         }
5009
5010         stmmac_finalize_xdp_rx(priv, xdp_status);
5011
5012         priv->xstats.rx_pkt_n += count;
5013         priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5014
5015         if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5016                 if (failure || stmmac_rx_dirty(priv, queue) > 0)
5017                         xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5018                 else
5019                         xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5020
5021                 return (int)count;
5022         }
5023
5024         return failure ? limit : (int)count;
5025 }
5026
5027 /**
5028  * stmmac_rx - manage the receive process
5029  * @priv: driver private structure
5030  * @limit: napi bugget
5031  * @queue: RX queue index.
5032  * Description :  this the function called by the napi poll method.
5033  * It gets all the frames inside the ring.
5034  */
5035 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5036 {
5037         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5038         struct stmmac_channel *ch = &priv->channel[queue];
5039         unsigned int count = 0, error = 0, len = 0;
5040         int status = 0, coe = priv->hw->rx_csum;
5041         unsigned int next_entry = rx_q->cur_rx;
5042         enum dma_data_direction dma_dir;
5043         unsigned int desc_size;
5044         struct sk_buff *skb = NULL;
5045         struct xdp_buff xdp;
5046         int xdp_status = 0;
5047         int buf_sz;
5048
5049         dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5050         buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5051
5052         if (netif_msg_rx_status(priv)) {
5053                 void *rx_head;
5054
5055                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5056                 if (priv->extend_desc) {
5057                         rx_head = (void *)rx_q->dma_erx;
5058                         desc_size = sizeof(struct dma_extended_desc);
5059                 } else {
5060                         rx_head = (void *)rx_q->dma_rx;
5061                         desc_size = sizeof(struct dma_desc);
5062                 }
5063
5064                 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
5065                                     rx_q->dma_rx_phy, desc_size);
5066         }
5067         while (count < limit) {
5068                 unsigned int buf1_len = 0, buf2_len = 0;
5069                 enum pkt_hash_types hash_type;
5070                 struct stmmac_rx_buffer *buf;
5071                 struct dma_desc *np, *p;
5072                 int entry;
5073                 u32 hash;
5074
5075                 if (!count && rx_q->state_saved) {
5076                         skb = rx_q->state.skb;
5077                         error = rx_q->state.error;
5078                         len = rx_q->state.len;
5079                 } else {
5080                         rx_q->state_saved = false;
5081                         skb = NULL;
5082                         error = 0;
5083                         len = 0;
5084                 }
5085
5086                 if (count >= limit)
5087                         break;
5088
5089 read_again:
5090                 buf1_len = 0;
5091                 buf2_len = 0;
5092                 entry = next_entry;
5093                 buf = &rx_q->buf_pool[entry];
5094
5095                 if (priv->extend_desc)
5096                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
5097                 else
5098                         p = rx_q->dma_rx + entry;
5099
5100                 /* read the status of the incoming frame */
5101                 status = stmmac_rx_status(priv, &priv->dev->stats,
5102                                 &priv->xstats, p);
5103                 /* check if managed by the DMA otherwise go ahead */
5104                 if (unlikely(status & dma_own))
5105                         break;
5106
5107                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5108                                                 priv->dma_rx_size);
5109                 next_entry = rx_q->cur_rx;
5110
5111                 if (priv->extend_desc)
5112                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5113                 else
5114                         np = rx_q->dma_rx + next_entry;
5115
5116                 prefetch(np);
5117
5118                 if (priv->extend_desc)
5119                         stmmac_rx_extended_status(priv, &priv->dev->stats,
5120                                         &priv->xstats, rx_q->dma_erx + entry);
5121                 if (unlikely(status == discard_frame)) {
5122                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
5123                         buf->page = NULL;
5124                         error = 1;
5125                         if (!priv->hwts_rx_en)
5126                                 priv->dev->stats.rx_errors++;
5127                 }
5128
5129                 if (unlikely(error && (status & rx_not_ls)))
5130                         goto read_again;
5131                 if (unlikely(error)) {
5132                         dev_kfree_skb(skb);
5133                         skb = NULL;
5134                         count++;
5135                         continue;
5136                 }
5137
5138                 /* Buffer is good. Go on. */
5139
5140                 prefetch(page_address(buf->page) + buf->page_offset);
5141                 if (buf->sec_page)
5142                         prefetch(page_address(buf->sec_page));
5143
5144                 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5145                 len += buf1_len;
5146                 buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5147                 len += buf2_len;
5148
5149                 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
5150                  * Type frames (LLC/LLC-SNAP)
5151                  *
5152                  * llc_snap is never checked in GMAC >= 4, so this ACS
5153                  * feature is always disabled and packets need to be
5154                  * stripped manually.
5155                  */
5156                 if (likely(!(status & rx_not_ls)) &&
5157                     (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
5158                      unlikely(status != llc_snap))) {
5159                         if (buf2_len)
5160                                 buf2_len -= ETH_FCS_LEN;
5161                         else
5162                                 buf1_len -= ETH_FCS_LEN;
5163
5164                         len -= ETH_FCS_LEN;
5165                 }
5166
5167                 if (!skb) {
5168                         unsigned int pre_len, sync_len;
5169
5170                         dma_sync_single_for_cpu(priv->device, buf->addr,
5171                                                 buf1_len, dma_dir);
5172
5173                         xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5174                         xdp_prepare_buff(&xdp, page_address(buf->page),
5175                                          buf->page_offset, buf1_len, false);
5176
5177                         pre_len = xdp.data_end - xdp.data_hard_start -
5178                                   buf->page_offset;
5179                         skb = stmmac_xdp_run_prog(priv, &xdp);
5180                         /* Due xdp_adjust_tail: DMA sync for_device
5181                          * cover max len CPU touch
5182                          */
5183                         sync_len = xdp.data_end - xdp.data_hard_start -
5184                                    buf->page_offset;
5185                         sync_len = max(sync_len, pre_len);
5186
5187                         /* For Not XDP_PASS verdict */
5188                         if (IS_ERR(skb)) {
5189                                 unsigned int xdp_res = -PTR_ERR(skb);
5190
5191                                 if (xdp_res & STMMAC_XDP_CONSUMED) {
5192                                         page_pool_put_page(rx_q->page_pool,
5193                                                            virt_to_head_page(xdp.data),
5194                                                            sync_len, true);
5195                                         buf->page = NULL;
5196                                         priv->dev->stats.rx_dropped++;
5197
5198                                         /* Clear skb as it was set as
5199                                          * status by XDP program.
5200                                          */
5201                                         skb = NULL;
5202
5203                                         if (unlikely((status & rx_not_ls)))
5204                                                 goto read_again;
5205
5206                                         count++;
5207                                         continue;
5208                                 } else if (xdp_res & (STMMAC_XDP_TX |
5209                                                       STMMAC_XDP_REDIRECT)) {
5210                                         xdp_status |= xdp_res;
5211                                         buf->page = NULL;
5212                                         skb = NULL;
5213                                         count++;
5214                                         continue;
5215                                 }
5216                         }
5217                 }
5218
5219                 if (!skb) {
5220                         /* XDP program may expand or reduce tail */
5221                         buf1_len = xdp.data_end - xdp.data;
5222
5223                         skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5224                         if (!skb) {
5225                                 priv->dev->stats.rx_dropped++;
5226                                 count++;
5227                                 goto drain_data;
5228                         }
5229
5230                         /* XDP program may adjust header */
5231                         skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5232                         skb_put(skb, buf1_len);
5233
5234                         /* Data payload copied into SKB, page ready for recycle */
5235                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
5236                         buf->page = NULL;
5237                 } else if (buf1_len) {
5238                         dma_sync_single_for_cpu(priv->device, buf->addr,
5239                                                 buf1_len, dma_dir);
5240                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5241                                         buf->page, buf->page_offset, buf1_len,
5242                                         priv->dma_buf_sz);
5243
5244                         /* Data payload appended into SKB */
5245                         page_pool_release_page(rx_q->page_pool, buf->page);
5246                         buf->page = NULL;
5247                 }
5248
5249                 if (buf2_len) {
5250                         dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5251                                                 buf2_len, dma_dir);
5252                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5253                                         buf->sec_page, 0, buf2_len,
5254                                         priv->dma_buf_sz);
5255
5256                         /* Data payload appended into SKB */
5257                         page_pool_release_page(rx_q->page_pool, buf->sec_page);
5258                         buf->sec_page = NULL;
5259                 }
5260
5261 drain_data:
5262                 if (likely(status & rx_not_ls))
5263                         goto read_again;
5264                 if (!skb)
5265                         continue;
5266
5267                 /* Got entire packet into SKB. Finish it. */
5268
5269                 stmmac_get_rx_hwtstamp(priv, p, np, skb);
5270                 stmmac_rx_vlan(priv->dev, skb);
5271                 skb->protocol = eth_type_trans(skb, priv->dev);
5272
5273                 if (unlikely(!coe))
5274                         skb_checksum_none_assert(skb);
5275                 else
5276                         skb->ip_summed = CHECKSUM_UNNECESSARY;
5277
5278                 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5279                         skb_set_hash(skb, hash, hash_type);
5280
5281                 skb_record_rx_queue(skb, queue);
5282                 napi_gro_receive(&ch->rx_napi, skb);
5283                 skb = NULL;
5284
5285                 priv->dev->stats.rx_packets++;
5286                 priv->dev->stats.rx_bytes += len;
5287                 count++;
5288         }
5289
5290         if (status & rx_not_ls || skb) {
5291                 rx_q->state_saved = true;
5292                 rx_q->state.skb = skb;
5293                 rx_q->state.error = error;
5294                 rx_q->state.len = len;
5295         }
5296
5297         stmmac_finalize_xdp_rx(priv, xdp_status);
5298
5299         stmmac_rx_refill(priv, queue);
5300
5301         priv->xstats.rx_pkt_n += count;
5302         priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5303
5304         return count;
5305 }
5306
5307 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5308 {
5309         struct stmmac_channel *ch =
5310                 container_of(napi, struct stmmac_channel, rx_napi);
5311         struct stmmac_priv *priv = ch->priv_data;
5312         u32 chan = ch->index;
5313         int work_done;
5314
5315         priv->xstats.napi_poll++;
5316
5317         work_done = stmmac_rx(priv, budget, chan);
5318         if (work_done < budget && napi_complete_done(napi, work_done)) {
5319                 unsigned long flags;
5320
5321                 spin_lock_irqsave(&ch->lock, flags);
5322                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5323                 spin_unlock_irqrestore(&ch->lock, flags);
5324         }
5325
5326         return work_done;
5327 }
5328
5329 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5330 {
5331         struct stmmac_channel *ch =
5332                 container_of(napi, struct stmmac_channel, tx_napi);
5333         struct stmmac_priv *priv = ch->priv_data;
5334         u32 chan = ch->index;
5335         int work_done;
5336
5337         priv->xstats.napi_poll++;
5338
5339         work_done = stmmac_tx_clean(priv, budget, chan);
5340         work_done = min(work_done, budget);
5341
5342         if (work_done < budget && napi_complete_done(napi, work_done)) {
5343                 unsigned long flags;
5344
5345                 spin_lock_irqsave(&ch->lock, flags);
5346                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5347                 spin_unlock_irqrestore(&ch->lock, flags);
5348         }
5349
5350         return work_done;
5351 }
5352
5353 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5354 {
5355         struct stmmac_channel *ch =
5356                 container_of(napi, struct stmmac_channel, rxtx_napi);
5357         struct stmmac_priv *priv = ch->priv_data;
5358         int rx_done, tx_done, rxtx_done;
5359         u32 chan = ch->index;
5360
5361         priv->xstats.napi_poll++;
5362
5363         tx_done = stmmac_tx_clean(priv, budget, chan);
5364         tx_done = min(tx_done, budget);
5365
5366         rx_done = stmmac_rx_zc(priv, budget, chan);
5367
5368         rxtx_done = max(tx_done, rx_done);
5369
5370         /* If either TX or RX work is not complete, return budget
5371          * and keep pooling
5372          */
5373         if (rxtx_done >= budget)
5374                 return budget;
5375
5376         /* all work done, exit the polling mode */
5377         if (napi_complete_done(napi, rxtx_done)) {
5378                 unsigned long flags;
5379
5380                 spin_lock_irqsave(&ch->lock, flags);
5381                 /* Both RX and TX work done are compelte,
5382                  * so enable both RX & TX IRQs.
5383                  */
5384                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5385                 spin_unlock_irqrestore(&ch->lock, flags);
5386         }
5387
5388         return min(rxtx_done, budget - 1);
5389 }
5390
5391 /**
5392  *  stmmac_tx_timeout
5393  *  @dev : Pointer to net device structure
5394  *  @txqueue: the index of the hanging transmit queue
5395  *  Description: this function is called when a packet transmission fails to
5396  *   complete within a reasonable time. The driver will mark the error in the
5397  *   netdev structure and arrange for the device to be reset to a sane state
5398  *   in order to transmit a new packet.
5399  */
5400 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5401 {
5402         struct stmmac_priv *priv = netdev_priv(dev);
5403
5404         stmmac_global_err(priv);
5405 }
5406
5407 /**
5408  *  stmmac_set_rx_mode - entry point for multicast addressing
5409  *  @dev : pointer to the device structure
5410  *  Description:
5411  *  This function is a driver entry point which gets called by the kernel
5412  *  whenever multicast addresses must be enabled/disabled.
5413  *  Return value:
5414  *  void.
5415  */
5416 static void stmmac_set_rx_mode(struct net_device *dev)
5417 {
5418         struct stmmac_priv *priv = netdev_priv(dev);
5419
5420         stmmac_set_filter(priv, priv->hw, dev);
5421 }
5422
5423 /**
5424  *  stmmac_change_mtu - entry point to change MTU size for the device.
5425  *  @dev : device pointer.
5426  *  @new_mtu : the new MTU size for the device.
5427  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5428  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5429  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5430  *  Return value:
5431  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5432  *  file on failure.
5433  */
5434 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5435 {
5436         struct stmmac_priv *priv = netdev_priv(dev);
5437         int txfifosz = priv->plat->tx_fifo_size;
5438         const int mtu = new_mtu;
5439
5440         if (txfifosz == 0)
5441                 txfifosz = priv->dma_cap.tx_fifo_size;
5442
5443         txfifosz /= priv->plat->tx_queues_to_use;
5444
5445         if (netif_running(dev)) {
5446                 netdev_err(priv->dev, "must be stopped to change its MTU\n");
5447                 return -EBUSY;
5448         }
5449
5450         if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5451                 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5452                 return -EINVAL;
5453         }
5454
5455         new_mtu = STMMAC_ALIGN(new_mtu);
5456
5457         /* If condition true, FIFO is too small or MTU too large */
5458         if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5459                 return -EINVAL;
5460
5461         dev->mtu = mtu;
5462
5463         netdev_update_features(dev);
5464
5465         return 0;
5466 }
5467
5468 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5469                                              netdev_features_t features)
5470 {
5471         struct stmmac_priv *priv = netdev_priv(dev);
5472
5473         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5474                 features &= ~NETIF_F_RXCSUM;
5475
5476         if (!priv->plat->tx_coe)
5477                 features &= ~NETIF_F_CSUM_MASK;
5478
5479         /* Some GMAC devices have a bugged Jumbo frame support that
5480          * needs to have the Tx COE disabled for oversized frames
5481          * (due to limited buffer sizes). In this case we disable
5482          * the TX csum insertion in the TDES and not use SF.
5483          */
5484         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5485                 features &= ~NETIF_F_CSUM_MASK;
5486
5487         /* Disable tso if asked by ethtool */
5488         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5489                 if (features & NETIF_F_TSO)
5490                         priv->tso = true;
5491                 else
5492                         priv->tso = false;
5493         }
5494
5495         return features;
5496 }
5497
5498 static int stmmac_set_features(struct net_device *netdev,
5499                                netdev_features_t features)
5500 {
5501         struct stmmac_priv *priv = netdev_priv(netdev);
5502         bool sph_en;
5503         u32 chan;
5504
5505         /* Keep the COE Type in case of csum is supporting */
5506         if (features & NETIF_F_RXCSUM)
5507                 priv->hw->rx_csum = priv->plat->rx_coe;
5508         else
5509                 priv->hw->rx_csum = 0;
5510         /* No check needed because rx_coe has been set before and it will be
5511          * fixed in case of issue.
5512          */
5513         stmmac_rx_ipc(priv, priv->hw);
5514
5515         sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5516
5517         for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5518                 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5519
5520         return 0;
5521 }
5522
5523 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5524 {
5525         struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5526         enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5527         enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5528         bool *hs_enable = &fpe_cfg->hs_enable;
5529
5530         if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5531                 return;
5532
5533         /* If LP has sent verify mPacket, LP is FPE capable */
5534         if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5535                 if (*lp_state < FPE_STATE_CAPABLE)
5536                         *lp_state = FPE_STATE_CAPABLE;
5537
5538                 /* If user has requested FPE enable, quickly response */
5539                 if (*hs_enable)
5540                         stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5541                                                 MPACKET_RESPONSE);
5542         }
5543
5544         /* If Local has sent verify mPacket, Local is FPE capable */
5545         if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5546                 if (*lo_state < FPE_STATE_CAPABLE)
5547                         *lo_state = FPE_STATE_CAPABLE;
5548         }
5549
5550         /* If LP has sent response mPacket, LP is entering FPE ON */
5551         if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5552                 *lp_state = FPE_STATE_ENTERING_ON;
5553
5554         /* If Local has sent response mPacket, Local is entering FPE ON */
5555         if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5556                 *lo_state = FPE_STATE_ENTERING_ON;
5557
5558         if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5559             !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5560             priv->fpe_wq) {
5561                 queue_work(priv->fpe_wq, &priv->fpe_task);
5562         }
5563 }
5564
5565 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5566 {
5567         u32 rx_cnt = priv->plat->rx_queues_to_use;
5568         u32 tx_cnt = priv->plat->tx_queues_to_use;
5569         u32 queues_count;
5570         u32 queue;
5571         bool xmac;
5572
5573         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5574         queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5575
5576         if (priv->irq_wake)
5577                 pm_wakeup_event(priv->device, 0);
5578
5579         if (priv->dma_cap.estsel)
5580                 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5581                                       &priv->xstats, tx_cnt);
5582
5583         if (priv->dma_cap.fpesel) {
5584                 int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5585                                                    priv->dev);
5586
5587                 stmmac_fpe_event_status(priv, status);
5588         }
5589
5590         /* To handle GMAC own interrupts */
5591         if ((priv->plat->has_gmac) || xmac) {
5592                 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5593
5594                 if (unlikely(status)) {
5595                         /* For LPI we need to save the tx status */
5596                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5597                                 priv->tx_path_in_lpi_mode = true;
5598                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5599                                 priv->tx_path_in_lpi_mode = false;
5600                 }
5601
5602                 for (queue = 0; queue < queues_count; queue++) {
5603                         status = stmmac_host_mtl_irq_status(priv, priv->hw,
5604                                                             queue);
5605                 }
5606
5607                 /* PCS link status */
5608                 if (priv->hw->pcs) {
5609                         if (priv->xstats.pcs_link)
5610                                 netif_carrier_on(priv->dev);
5611                         else
5612                                 netif_carrier_off(priv->dev);
5613                 }
5614
5615                 stmmac_timestamp_interrupt(priv, priv);
5616         }
5617 }
5618
5619 /**
5620  *  stmmac_interrupt - main ISR
5621  *  @irq: interrupt number.
5622  *  @dev_id: to pass the net device pointer.
5623  *  Description: this is the main driver interrupt service routine.
5624  *  It can call:
5625  *  o DMA service routine (to manage incoming frame reception and transmission
5626  *    status)
5627  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5628  *    interrupts.
5629  */
5630 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5631 {
5632         struct net_device *dev = (struct net_device *)dev_id;
5633         struct stmmac_priv *priv = netdev_priv(dev);
5634
5635         /* Check if adapter is up */
5636         if (test_bit(STMMAC_DOWN, &priv->state))
5637                 return IRQ_HANDLED;
5638
5639         /* Check if a fatal error happened */
5640         if (stmmac_safety_feat_interrupt(priv))
5641                 return IRQ_HANDLED;
5642
5643         /* To handle Common interrupts */
5644         stmmac_common_interrupt(priv);
5645
5646         /* To handle DMA interrupts */
5647         stmmac_dma_interrupt(priv);
5648
5649         return IRQ_HANDLED;
5650 }
5651
5652 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5653 {
5654         struct net_device *dev = (struct net_device *)dev_id;
5655         struct stmmac_priv *priv = netdev_priv(dev);
5656
5657         if (unlikely(!dev)) {
5658                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5659                 return IRQ_NONE;
5660         }
5661
5662         /* Check if adapter is up */
5663         if (test_bit(STMMAC_DOWN, &priv->state))
5664                 return IRQ_HANDLED;
5665
5666         /* To handle Common interrupts */
5667         stmmac_common_interrupt(priv);
5668
5669         return IRQ_HANDLED;
5670 }
5671
5672 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5673 {
5674         struct net_device *dev = (struct net_device *)dev_id;
5675         struct stmmac_priv *priv = netdev_priv(dev);
5676
5677         if (unlikely(!dev)) {
5678                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5679                 return IRQ_NONE;
5680         }
5681
5682         /* Check if adapter is up */
5683         if (test_bit(STMMAC_DOWN, &priv->state))
5684                 return IRQ_HANDLED;
5685
5686         /* Check if a fatal error happened */
5687         stmmac_safety_feat_interrupt(priv);
5688
5689         return IRQ_HANDLED;
5690 }
5691
5692 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5693 {
5694         struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5695         int chan = tx_q->queue_index;
5696         struct stmmac_priv *priv;
5697         int status;
5698
5699         priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]);
5700
5701         if (unlikely(!data)) {
5702                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5703                 return IRQ_NONE;
5704         }
5705
5706         /* Check if adapter is up */
5707         if (test_bit(STMMAC_DOWN, &priv->state))
5708                 return IRQ_HANDLED;
5709
5710         status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5711
5712         if (unlikely(status & tx_hard_error_bump_tc)) {
5713                 /* Try to bump up the dma threshold on this failure */
5714                 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
5715                     tc <= 256) {
5716                         tc += 64;
5717                         if (priv->plat->force_thresh_dma_mode)
5718                                 stmmac_set_dma_operation_mode(priv,
5719                                                               tc,
5720                                                               tc,
5721                                                               chan);
5722                         else
5723                                 stmmac_set_dma_operation_mode(priv,
5724                                                               tc,
5725                                                               SF_DMA_MODE,
5726                                                               chan);
5727                         priv->xstats.threshold = tc;
5728                 }
5729         } else if (unlikely(status == tx_hard_error)) {
5730                 stmmac_tx_err(priv, chan);
5731         }
5732
5733         return IRQ_HANDLED;
5734 }
5735
5736 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5737 {
5738         struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5739         int chan = rx_q->queue_index;
5740         struct stmmac_priv *priv;
5741
5742         priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]);
5743
5744         if (unlikely(!data)) {
5745                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5746                 return IRQ_NONE;
5747         }
5748
5749         /* Check if adapter is up */
5750         if (test_bit(STMMAC_DOWN, &priv->state))
5751                 return IRQ_HANDLED;
5752
5753         stmmac_napi_check(priv, chan, DMA_DIR_RX);
5754
5755         return IRQ_HANDLED;
5756 }
5757
5758 #ifdef CONFIG_NET_POLL_CONTROLLER
5759 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5760  * to allow network I/O with interrupts disabled.
5761  */
5762 static void stmmac_poll_controller(struct net_device *dev)
5763 {
5764         struct stmmac_priv *priv = netdev_priv(dev);
5765         int i;
5766
5767         /* If adapter is down, do nothing */
5768         if (test_bit(STMMAC_DOWN, &priv->state))
5769                 return;
5770
5771         if (priv->plat->multi_msi_en) {
5772                 for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5773                         stmmac_msi_intr_rx(0, &priv->rx_queue[i]);
5774
5775                 for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5776                         stmmac_msi_intr_tx(0, &priv->tx_queue[i]);
5777         } else {
5778                 disable_irq(dev->irq);
5779                 stmmac_interrupt(dev->irq, dev);
5780                 enable_irq(dev->irq);
5781         }
5782 }
5783 #endif
5784
5785 /**
5786  *  stmmac_ioctl - Entry point for the Ioctl
5787  *  @dev: Device pointer.
5788  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5789  *  a proprietary structure used to pass information to the driver.
5790  *  @cmd: IOCTL command
5791  *  Description:
5792  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5793  */
5794 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5795 {
5796         struct stmmac_priv *priv = netdev_priv (dev);
5797         int ret = -EOPNOTSUPP;
5798
5799         if (!netif_running(dev))
5800                 return -EINVAL;
5801
5802         switch (cmd) {
5803         case SIOCGMIIPHY:
5804         case SIOCGMIIREG:
5805         case SIOCSMIIREG:
5806                 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5807                 break;
5808         case SIOCSHWTSTAMP:
5809                 ret = stmmac_hwtstamp_set(dev, rq);
5810                 break;
5811         case SIOCGHWTSTAMP:
5812                 ret = stmmac_hwtstamp_get(dev, rq);
5813                 break;
5814         default:
5815                 break;
5816         }
5817
5818         return ret;
5819 }
5820
5821 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5822                                     void *cb_priv)
5823 {
5824         struct stmmac_priv *priv = cb_priv;
5825         int ret = -EOPNOTSUPP;
5826
5827         if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5828                 return ret;
5829
5830         __stmmac_disable_all_queues(priv);
5831
5832         switch (type) {
5833         case TC_SETUP_CLSU32:
5834                 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5835                 break;
5836         case TC_SETUP_CLSFLOWER:
5837                 ret = stmmac_tc_setup_cls(priv, priv, type_data);
5838                 break;
5839         default:
5840                 break;
5841         }
5842
5843         stmmac_enable_all_queues(priv);
5844         return ret;
5845 }
5846
5847 static LIST_HEAD(stmmac_block_cb_list);
5848
5849 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5850                            void *type_data)
5851 {
5852         struct stmmac_priv *priv = netdev_priv(ndev);
5853
5854         switch (type) {
5855         case TC_SETUP_BLOCK:
5856                 return flow_block_cb_setup_simple(type_data,
5857                                                   &stmmac_block_cb_list,
5858                                                   stmmac_setup_tc_block_cb,
5859                                                   priv, priv, true);
5860         case TC_SETUP_QDISC_CBS:
5861                 return stmmac_tc_setup_cbs(priv, priv, type_data);
5862         case TC_SETUP_QDISC_TAPRIO:
5863                 return stmmac_tc_setup_taprio(priv, priv, type_data);
5864         case TC_SETUP_QDISC_ETF:
5865                 return stmmac_tc_setup_etf(priv, priv, type_data);
5866         default:
5867                 return -EOPNOTSUPP;
5868         }
5869 }
5870
5871 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
5872                                struct net_device *sb_dev)
5873 {
5874         int gso = skb_shinfo(skb)->gso_type;
5875
5876         if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
5877                 /*
5878                  * There is no way to determine the number of TSO/USO
5879                  * capable Queues. Let's use always the Queue 0
5880                  * because if TSO/USO is supported then at least this
5881                  * one will be capable.
5882                  */
5883                 return 0;
5884         }
5885
5886         return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
5887 }
5888
5889 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
5890 {
5891         struct stmmac_priv *priv = netdev_priv(ndev);
5892         int ret = 0;
5893
5894         ret = pm_runtime_get_sync(priv->device);
5895         if (ret < 0) {
5896                 pm_runtime_put_noidle(priv->device);
5897                 return ret;
5898         }
5899
5900         ret = eth_mac_addr(ndev, addr);
5901         if (ret)
5902                 goto set_mac_error;
5903
5904         stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
5905
5906 set_mac_error:
5907         pm_runtime_put(priv->device);
5908
5909         return ret;
5910 }
5911
5912 #ifdef CONFIG_DEBUG_FS
5913 static struct dentry *stmmac_fs_dir;
5914
5915 static void sysfs_display_ring(void *head, int size, int extend_desc,
5916                                struct seq_file *seq, dma_addr_t dma_phy_addr)
5917 {
5918         int i;
5919         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
5920         struct dma_desc *p = (struct dma_desc *)head;
5921         dma_addr_t dma_addr;
5922
5923         for (i = 0; i < size; i++) {
5924                 if (extend_desc) {
5925                         dma_addr = dma_phy_addr + i * sizeof(*ep);
5926                         seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5927                                    i, &dma_addr,
5928                                    le32_to_cpu(ep->basic.des0),
5929                                    le32_to_cpu(ep->basic.des1),
5930                                    le32_to_cpu(ep->basic.des2),
5931                                    le32_to_cpu(ep->basic.des3));
5932                         ep++;
5933                 } else {
5934                         dma_addr = dma_phy_addr + i * sizeof(*p);
5935                         seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5936                                    i, &dma_addr,
5937                                    le32_to_cpu(p->des0), le32_to_cpu(p->des1),
5938                                    le32_to_cpu(p->des2), le32_to_cpu(p->des3));
5939                         p++;
5940                 }
5941                 seq_printf(seq, "\n");
5942         }
5943 }
5944
5945 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
5946 {
5947         struct net_device *dev = seq->private;
5948         struct stmmac_priv *priv = netdev_priv(dev);
5949         u32 rx_count = priv->plat->rx_queues_to_use;
5950         u32 tx_count = priv->plat->tx_queues_to_use;
5951         u32 queue;
5952
5953         if ((dev->flags & IFF_UP) == 0)
5954                 return 0;
5955
5956         for (queue = 0; queue < rx_count; queue++) {
5957                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5958
5959                 seq_printf(seq, "RX Queue %d:\n", queue);
5960
5961                 if (priv->extend_desc) {
5962                         seq_printf(seq, "Extended descriptor ring:\n");
5963                         sysfs_display_ring((void *)rx_q->dma_erx,
5964                                            priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy);
5965                 } else {
5966                         seq_printf(seq, "Descriptor ring:\n");
5967                         sysfs_display_ring((void *)rx_q->dma_rx,
5968                                            priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy);
5969                 }
5970         }
5971
5972         for (queue = 0; queue < tx_count; queue++) {
5973                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5974
5975                 seq_printf(seq, "TX Queue %d:\n", queue);
5976
5977                 if (priv->extend_desc) {
5978                         seq_printf(seq, "Extended descriptor ring:\n");
5979                         sysfs_display_ring((void *)tx_q->dma_etx,
5980                                            priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy);
5981                 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
5982                         seq_printf(seq, "Descriptor ring:\n");
5983                         sysfs_display_ring((void *)tx_q->dma_tx,
5984                                            priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy);
5985                 }
5986         }
5987
5988         return 0;
5989 }
5990 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
5991
5992 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
5993 {
5994         struct net_device *dev = seq->private;
5995         struct stmmac_priv *priv = netdev_priv(dev);
5996
5997         if (!priv->hw_cap_support) {
5998                 seq_printf(seq, "DMA HW features not supported\n");
5999                 return 0;
6000         }
6001
6002         seq_printf(seq, "==============================\n");
6003         seq_printf(seq, "\tDMA HW features\n");
6004         seq_printf(seq, "==============================\n");
6005
6006         seq_printf(seq, "\t10/100 Mbps: %s\n",
6007                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6008         seq_printf(seq, "\t1000 Mbps: %s\n",
6009                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
6010         seq_printf(seq, "\tHalf duplex: %s\n",
6011                    (priv->dma_cap.half_duplex) ? "Y" : "N");
6012         seq_printf(seq, "\tHash Filter: %s\n",
6013                    (priv->dma_cap.hash_filter) ? "Y" : "N");
6014         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6015                    (priv->dma_cap.multi_addr) ? "Y" : "N");
6016         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6017                    (priv->dma_cap.pcs) ? "Y" : "N");
6018         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6019                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
6020         seq_printf(seq, "\tPMT Remote wake up: %s\n",
6021                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6022         seq_printf(seq, "\tPMT Magic Frame: %s\n",
6023                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6024         seq_printf(seq, "\tRMON module: %s\n",
6025                    (priv->dma_cap.rmon) ? "Y" : "N");
6026         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6027                    (priv->dma_cap.time_stamp) ? "Y" : "N");
6028         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6029                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
6030         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6031                    (priv->dma_cap.eee) ? "Y" : "N");
6032         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6033         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6034                    (priv->dma_cap.tx_coe) ? "Y" : "N");
6035         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6036                 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6037                            (priv->dma_cap.rx_coe) ? "Y" : "N");
6038         } else {
6039                 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6040                            (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6041                 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6042                            (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6043         }
6044         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6045                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6046         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6047                    priv->dma_cap.number_rx_channel);
6048         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6049                    priv->dma_cap.number_tx_channel);
6050         seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6051                    priv->dma_cap.number_rx_queues);
6052         seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6053                    priv->dma_cap.number_tx_queues);
6054         seq_printf(seq, "\tEnhanced descriptors: %s\n",
6055                    (priv->dma_cap.enh_desc) ? "Y" : "N");
6056         seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6057         seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6058         seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6059         seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6060         seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6061                    priv->dma_cap.pps_out_num);
6062         seq_printf(seq, "\tSafety Features: %s\n",
6063                    priv->dma_cap.asp ? "Y" : "N");
6064         seq_printf(seq, "\tFlexible RX Parser: %s\n",
6065                    priv->dma_cap.frpsel ? "Y" : "N");
6066         seq_printf(seq, "\tEnhanced Addressing: %d\n",
6067                    priv->dma_cap.addr64);
6068         seq_printf(seq, "\tReceive Side Scaling: %s\n",
6069                    priv->dma_cap.rssen ? "Y" : "N");
6070         seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6071                    priv->dma_cap.vlhash ? "Y" : "N");
6072         seq_printf(seq, "\tSplit Header: %s\n",
6073                    priv->dma_cap.sphen ? "Y" : "N");
6074         seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6075                    priv->dma_cap.vlins ? "Y" : "N");
6076         seq_printf(seq, "\tDouble VLAN: %s\n",
6077                    priv->dma_cap.dvlan ? "Y" : "N");
6078         seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6079                    priv->dma_cap.l3l4fnum);
6080         seq_printf(seq, "\tARP Offloading: %s\n",
6081                    priv->dma_cap.arpoffsel ? "Y" : "N");
6082         seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6083                    priv->dma_cap.estsel ? "Y" : "N");
6084         seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6085                    priv->dma_cap.fpesel ? "Y" : "N");
6086         seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6087                    priv->dma_cap.tbssel ? "Y" : "N");
6088         return 0;
6089 }
6090 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6091
6092 /* Use network device events to rename debugfs file entries.
6093  */
6094 static int stmmac_device_event(struct notifier_block *unused,
6095                                unsigned long event, void *ptr)
6096 {
6097         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6098         struct stmmac_priv *priv = netdev_priv(dev);
6099
6100         if (dev->netdev_ops != &stmmac_netdev_ops)
6101                 goto done;
6102
6103         switch (event) {
6104         case NETDEV_CHANGENAME:
6105                 if (priv->dbgfs_dir)
6106                         priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6107                                                          priv->dbgfs_dir,
6108                                                          stmmac_fs_dir,
6109                                                          dev->name);
6110                 break;
6111         }
6112 done:
6113         return NOTIFY_DONE;
6114 }
6115
6116 static struct notifier_block stmmac_notifier = {
6117         .notifier_call = stmmac_device_event,
6118 };
6119
6120 static void stmmac_init_fs(struct net_device *dev)
6121 {
6122         struct stmmac_priv *priv = netdev_priv(dev);
6123
6124         rtnl_lock();
6125
6126         /* Create per netdev entries */
6127         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6128
6129         /* Entry to report DMA RX/TX rings */
6130         debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6131                             &stmmac_rings_status_fops);
6132
6133         /* Entry to report the DMA HW features */
6134         debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6135                             &stmmac_dma_cap_fops);
6136
6137         rtnl_unlock();
6138 }
6139
6140 static void stmmac_exit_fs(struct net_device *dev)
6141 {
6142         struct stmmac_priv *priv = netdev_priv(dev);
6143
6144         debugfs_remove_recursive(priv->dbgfs_dir);
6145 }
6146 #endif /* CONFIG_DEBUG_FS */
6147
6148 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6149 {
6150         unsigned char *data = (unsigned char *)&vid_le;
6151         unsigned char data_byte = 0;
6152         u32 crc = ~0x0;
6153         u32 temp = 0;
6154         int i, bits;
6155
6156         bits = get_bitmask_order(VLAN_VID_MASK);
6157         for (i = 0; i < bits; i++) {
6158                 if ((i % 8) == 0)
6159                         data_byte = data[i / 8];
6160
6161                 temp = ((crc & 1) ^ data_byte) & 1;
6162                 crc >>= 1;
6163                 data_byte >>= 1;
6164
6165                 if (temp)
6166                         crc ^= 0xedb88320;
6167         }
6168
6169         return crc;
6170 }
6171
6172 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6173 {
6174         u32 crc, hash = 0;
6175         __le16 pmatch = 0;
6176         int count = 0;
6177         u16 vid = 0;
6178
6179         for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6180                 __le16 vid_le = cpu_to_le16(vid);
6181                 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6182                 hash |= (1 << crc);
6183                 count++;
6184         }
6185
6186         if (!priv->dma_cap.vlhash) {
6187                 if (count > 2) /* VID = 0 always passes filter */
6188                         return -EOPNOTSUPP;
6189
6190                 pmatch = cpu_to_le16(vid);
6191                 hash = 0;
6192         }
6193
6194         return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6195 }
6196
6197 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6198 {
6199         struct stmmac_priv *priv = netdev_priv(ndev);
6200         bool is_double = false;
6201         int ret;
6202
6203         if (be16_to_cpu(proto) == ETH_P_8021AD)
6204                 is_double = true;
6205
6206         set_bit(vid, priv->active_vlans);
6207         ret = stmmac_vlan_update(priv, is_double);
6208         if (ret) {
6209                 clear_bit(vid, priv->active_vlans);
6210                 return ret;
6211         }
6212
6213         if (priv->hw->num_vlan) {
6214                 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6215                 if (ret)
6216                         return ret;
6217         }
6218
6219         return 0;
6220 }
6221
6222 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6223 {
6224         struct stmmac_priv *priv = netdev_priv(ndev);
6225         bool is_double = false;
6226         int ret;
6227
6228         ret = pm_runtime_get_sync(priv->device);
6229         if (ret < 0) {
6230                 pm_runtime_put_noidle(priv->device);
6231                 return ret;
6232         }
6233
6234         if (be16_to_cpu(proto) == ETH_P_8021AD)
6235                 is_double = true;
6236
6237         clear_bit(vid, priv->active_vlans);
6238
6239         if (priv->hw->num_vlan) {
6240                 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6241                 if (ret)
6242                         goto del_vlan_error;
6243         }
6244
6245         ret = stmmac_vlan_update(priv, is_double);
6246
6247 del_vlan_error:
6248         pm_runtime_put(priv->device);
6249
6250         return ret;
6251 }
6252
6253 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6254 {
6255         struct stmmac_priv *priv = netdev_priv(dev);
6256
6257         switch (bpf->command) {
6258         case XDP_SETUP_PROG:
6259                 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6260         case XDP_SETUP_XSK_POOL:
6261                 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6262                                              bpf->xsk.queue_id);
6263         default:
6264                 return -EOPNOTSUPP;
6265         }
6266 }
6267
6268 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6269                            struct xdp_frame **frames, u32 flags)
6270 {
6271         struct stmmac_priv *priv = netdev_priv(dev);
6272         int cpu = smp_processor_id();
6273         struct netdev_queue *nq;
6274         int i, nxmit = 0;
6275         int queue;
6276
6277         if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6278                 return -ENETDOWN;
6279
6280         if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6281                 return -EINVAL;
6282
6283         queue = stmmac_xdp_get_tx_queue(priv, cpu);
6284         nq = netdev_get_tx_queue(priv->dev, queue);
6285
6286         __netif_tx_lock(nq, cpu);
6287         /* Avoids TX time-out as we are sharing with slow path */
6288         nq->trans_start = jiffies;
6289
6290         for (i = 0; i < num_frames; i++) {
6291                 int res;
6292
6293                 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6294                 if (res == STMMAC_XDP_CONSUMED)
6295                         break;
6296
6297                 nxmit++;
6298         }
6299
6300         if (flags & XDP_XMIT_FLUSH) {
6301                 stmmac_flush_tx_descriptors(priv, queue);
6302                 stmmac_tx_timer_arm(priv, queue);
6303         }
6304
6305         __netif_tx_unlock(nq);
6306
6307         return nxmit;
6308 }
6309
6310 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6311 {
6312         struct stmmac_channel *ch = &priv->channel[queue];
6313         unsigned long flags;
6314
6315         spin_lock_irqsave(&ch->lock, flags);
6316         stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6317         spin_unlock_irqrestore(&ch->lock, flags);
6318
6319         stmmac_stop_rx_dma(priv, queue);
6320         __free_dma_rx_desc_resources(priv, queue);
6321 }
6322
6323 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6324 {
6325         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
6326         struct stmmac_channel *ch = &priv->channel[queue];
6327         unsigned long flags;
6328         u32 buf_size;
6329         int ret;
6330
6331         ret = __alloc_dma_rx_desc_resources(priv, queue);
6332         if (ret) {
6333                 netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6334                 return;
6335         }
6336
6337         ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL);
6338         if (ret) {
6339                 __free_dma_rx_desc_resources(priv, queue);
6340                 netdev_err(priv->dev, "Failed to init RX desc.\n");
6341                 return;
6342         }
6343
6344         stmmac_clear_rx_descriptors(priv, queue);
6345
6346         stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6347                             rx_q->dma_rx_phy, rx_q->queue_index);
6348
6349         rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6350                              sizeof(struct dma_desc));
6351         stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6352                                rx_q->rx_tail_addr, rx_q->queue_index);
6353
6354         if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6355                 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6356                 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6357                                       buf_size,
6358                                       rx_q->queue_index);
6359         } else {
6360                 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6361                                       priv->dma_buf_sz,
6362                                       rx_q->queue_index);
6363         }
6364
6365         stmmac_start_rx_dma(priv, queue);
6366
6367         spin_lock_irqsave(&ch->lock, flags);
6368         stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6369         spin_unlock_irqrestore(&ch->lock, flags);
6370 }
6371
6372 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6373 {
6374         struct stmmac_channel *ch = &priv->channel[queue];
6375         unsigned long flags;
6376
6377         spin_lock_irqsave(&ch->lock, flags);
6378         stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6379         spin_unlock_irqrestore(&ch->lock, flags);
6380
6381         stmmac_stop_tx_dma(priv, queue);
6382         __free_dma_tx_desc_resources(priv, queue);
6383 }
6384
6385 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6386 {
6387         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
6388         struct stmmac_channel *ch = &priv->channel[queue];
6389         unsigned long flags;
6390         int ret;
6391
6392         ret = __alloc_dma_tx_desc_resources(priv, queue);
6393         if (ret) {
6394                 netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6395                 return;
6396         }
6397
6398         ret = __init_dma_tx_desc_rings(priv, queue);
6399         if (ret) {
6400                 __free_dma_tx_desc_resources(priv, queue);
6401                 netdev_err(priv->dev, "Failed to init TX desc.\n");
6402                 return;
6403         }
6404
6405         stmmac_clear_tx_descriptors(priv, queue);
6406
6407         stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6408                             tx_q->dma_tx_phy, tx_q->queue_index);
6409
6410         if (tx_q->tbs & STMMAC_TBS_AVAIL)
6411                 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6412
6413         tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6414         stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6415                                tx_q->tx_tail_addr, tx_q->queue_index);
6416
6417         stmmac_start_tx_dma(priv, queue);
6418
6419         spin_lock_irqsave(&ch->lock, flags);
6420         stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6421         spin_unlock_irqrestore(&ch->lock, flags);
6422 }
6423
6424 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6425 {
6426         struct stmmac_priv *priv = netdev_priv(dev);
6427         struct stmmac_rx_queue *rx_q;
6428         struct stmmac_tx_queue *tx_q;
6429         struct stmmac_channel *ch;
6430
6431         if (test_bit(STMMAC_DOWN, &priv->state) ||
6432             !netif_carrier_ok(priv->dev))
6433                 return -ENETDOWN;
6434
6435         if (!stmmac_xdp_is_enabled(priv))
6436                 return -ENXIO;
6437
6438         if (queue >= priv->plat->rx_queues_to_use ||
6439             queue >= priv->plat->tx_queues_to_use)
6440                 return -EINVAL;
6441
6442         rx_q = &priv->rx_queue[queue];
6443         tx_q = &priv->tx_queue[queue];
6444         ch = &priv->channel[queue];
6445
6446         if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6447                 return -ENXIO;
6448
6449         if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6450                 /* EQoS does not have per-DMA channel SW interrupt,
6451                  * so we schedule RX Napi straight-away.
6452                  */
6453                 if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6454                         __napi_schedule(&ch->rxtx_napi);
6455         }
6456
6457         return 0;
6458 }
6459
6460 static const struct net_device_ops stmmac_netdev_ops = {
6461         .ndo_open = stmmac_open,
6462         .ndo_start_xmit = stmmac_xmit,
6463         .ndo_stop = stmmac_release,
6464         .ndo_change_mtu = stmmac_change_mtu,
6465         .ndo_fix_features = stmmac_fix_features,
6466         .ndo_set_features = stmmac_set_features,
6467         .ndo_set_rx_mode = stmmac_set_rx_mode,
6468         .ndo_tx_timeout = stmmac_tx_timeout,
6469         .ndo_eth_ioctl = stmmac_ioctl,
6470         .ndo_setup_tc = stmmac_setup_tc,
6471         .ndo_select_queue = stmmac_select_queue,
6472 #ifdef CONFIG_NET_POLL_CONTROLLER
6473         .ndo_poll_controller = stmmac_poll_controller,
6474 #endif
6475         .ndo_set_mac_address = stmmac_set_mac_address,
6476         .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6477         .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6478         .ndo_bpf = stmmac_bpf,
6479         .ndo_xdp_xmit = stmmac_xdp_xmit,
6480         .ndo_xsk_wakeup = stmmac_xsk_wakeup,
6481 };
6482
6483 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6484 {
6485         if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6486                 return;
6487         if (test_bit(STMMAC_DOWN, &priv->state))
6488                 return;
6489
6490         netdev_err(priv->dev, "Reset adapter.\n");
6491
6492         rtnl_lock();
6493         netif_trans_update(priv->dev);
6494         while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6495                 usleep_range(1000, 2000);
6496
6497         set_bit(STMMAC_DOWN, &priv->state);
6498         dev_close(priv->dev);
6499         dev_open(priv->dev, NULL);
6500         clear_bit(STMMAC_DOWN, &priv->state);
6501         clear_bit(STMMAC_RESETING, &priv->state);
6502         rtnl_unlock();
6503 }
6504
6505 static void stmmac_service_task(struct work_struct *work)
6506 {
6507         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6508                         service_task);
6509
6510         stmmac_reset_subtask(priv);
6511         clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6512 }
6513
6514 /**
6515  *  stmmac_hw_init - Init the MAC device
6516  *  @priv: driver private structure
6517  *  Description: this function is to configure the MAC device according to
6518  *  some platform parameters or the HW capability register. It prepares the
6519  *  driver to use either ring or chain modes and to setup either enhanced or
6520  *  normal descriptors.
6521  */
6522 static int stmmac_hw_init(struct stmmac_priv *priv)
6523 {
6524         int ret;
6525
6526         /* dwmac-sun8i only work in chain mode */
6527         if (priv->plat->has_sun8i)
6528                 chain_mode = 1;
6529         priv->chain_mode = chain_mode;
6530
6531         /* Initialize HW Interface */
6532         ret = stmmac_hwif_init(priv);
6533         if (ret)
6534                 return ret;
6535
6536         /* Get the HW capability (new GMAC newer than 3.50a) */
6537         priv->hw_cap_support = stmmac_get_hw_features(priv);
6538         if (priv->hw_cap_support) {
6539                 dev_info(priv->device, "DMA HW capability register supported\n");
6540
6541                 /* We can override some gmac/dma configuration fields: e.g.
6542                  * enh_desc, tx_coe (e.g. that are passed through the
6543                  * platform) with the values from the HW capability
6544                  * register (if supported).
6545                  */
6546                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
6547                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6548                                 !priv->plat->use_phy_wol;
6549                 priv->hw->pmt = priv->plat->pmt;
6550                 if (priv->dma_cap.hash_tb_sz) {
6551                         priv->hw->multicast_filter_bins =
6552                                         (BIT(priv->dma_cap.hash_tb_sz) << 5);
6553                         priv->hw->mcast_bits_log2 =
6554                                         ilog2(priv->hw->multicast_filter_bins);
6555                 }
6556
6557                 /* TXCOE doesn't work in thresh DMA mode */
6558                 if (priv->plat->force_thresh_dma_mode)
6559                         priv->plat->tx_coe = 0;
6560                 else
6561                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
6562
6563                 /* In case of GMAC4 rx_coe is from HW cap register. */
6564                 priv->plat->rx_coe = priv->dma_cap.rx_coe;
6565
6566                 if (priv->dma_cap.rx_coe_type2)
6567                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6568                 else if (priv->dma_cap.rx_coe_type1)
6569                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6570
6571         } else {
6572                 dev_info(priv->device, "No HW DMA feature register supported\n");
6573         }
6574
6575         if (priv->plat->rx_coe) {
6576                 priv->hw->rx_csum = priv->plat->rx_coe;
6577                 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6578                 if (priv->synopsys_id < DWMAC_CORE_4_00)
6579                         dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6580         }
6581         if (priv->plat->tx_coe)
6582                 dev_info(priv->device, "TX Checksum insertion supported\n");
6583
6584         if (priv->plat->pmt) {
6585                 dev_info(priv->device, "Wake-Up On Lan supported\n");
6586                 device_set_wakeup_capable(priv->device, 1);
6587         }
6588
6589         if (priv->dma_cap.tsoen)
6590                 dev_info(priv->device, "TSO supported\n");
6591
6592         priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6593         priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6594
6595         /* Run HW quirks, if any */
6596         if (priv->hwif_quirks) {
6597                 ret = priv->hwif_quirks(priv);
6598                 if (ret)
6599                         return ret;
6600         }
6601
6602         /* Rx Watchdog is available in the COREs newer than the 3.40.
6603          * In some case, for example on bugged HW this feature
6604          * has to be disable and this can be done by passing the
6605          * riwt_off field from the platform.
6606          */
6607         if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6608             (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6609                 priv->use_riwt = 1;
6610                 dev_info(priv->device,
6611                          "Enable RX Mitigation via HW Watchdog Timer\n");
6612         }
6613
6614         return 0;
6615 }
6616
6617 static void stmmac_napi_add(struct net_device *dev)
6618 {
6619         struct stmmac_priv *priv = netdev_priv(dev);
6620         u32 queue, maxq;
6621
6622         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6623
6624         for (queue = 0; queue < maxq; queue++) {
6625                 struct stmmac_channel *ch = &priv->channel[queue];
6626
6627                 ch->priv_data = priv;
6628                 ch->index = queue;
6629                 spin_lock_init(&ch->lock);
6630
6631                 if (queue < priv->plat->rx_queues_to_use) {
6632                         netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
6633                                        NAPI_POLL_WEIGHT);
6634                 }
6635                 if (queue < priv->plat->tx_queues_to_use) {
6636                         netif_tx_napi_add(dev, &ch->tx_napi,
6637                                           stmmac_napi_poll_tx,
6638                                           NAPI_POLL_WEIGHT);
6639                 }
6640                 if (queue < priv->plat->rx_queues_to_use &&
6641                     queue < priv->plat->tx_queues_to_use) {
6642                         netif_napi_add(dev, &ch->rxtx_napi,
6643                                        stmmac_napi_poll_rxtx,
6644                                        NAPI_POLL_WEIGHT);
6645                 }
6646         }
6647 }
6648
6649 static void stmmac_napi_del(struct net_device *dev)
6650 {
6651         struct stmmac_priv *priv = netdev_priv(dev);
6652         u32 queue, maxq;
6653
6654         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6655
6656         for (queue = 0; queue < maxq; queue++) {
6657                 struct stmmac_channel *ch = &priv->channel[queue];
6658
6659                 if (queue < priv->plat->rx_queues_to_use)
6660                         netif_napi_del(&ch->rx_napi);
6661                 if (queue < priv->plat->tx_queues_to_use)
6662                         netif_napi_del(&ch->tx_napi);
6663                 if (queue < priv->plat->rx_queues_to_use &&
6664                     queue < priv->plat->tx_queues_to_use) {
6665                         netif_napi_del(&ch->rxtx_napi);
6666                 }
6667         }
6668 }
6669
6670 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6671 {
6672         struct stmmac_priv *priv = netdev_priv(dev);
6673         int ret = 0;
6674
6675         if (netif_running(dev))
6676                 stmmac_release(dev);
6677
6678         stmmac_napi_del(dev);
6679
6680         priv->plat->rx_queues_to_use = rx_cnt;
6681         priv->plat->tx_queues_to_use = tx_cnt;
6682
6683         stmmac_napi_add(dev);
6684
6685         if (netif_running(dev))
6686                 ret = stmmac_open(dev);
6687
6688         return ret;
6689 }
6690
6691 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6692 {
6693         struct stmmac_priv *priv = netdev_priv(dev);
6694         int ret = 0;
6695
6696         if (netif_running(dev))
6697                 stmmac_release(dev);
6698
6699         priv->dma_rx_size = rx_size;
6700         priv->dma_tx_size = tx_size;
6701
6702         if (netif_running(dev))
6703                 ret = stmmac_open(dev);
6704
6705         return ret;
6706 }
6707
6708 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6709 static void stmmac_fpe_lp_task(struct work_struct *work)
6710 {
6711         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6712                                                 fpe_task);
6713         struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6714         enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6715         enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6716         bool *hs_enable = &fpe_cfg->hs_enable;
6717         bool *enable = &fpe_cfg->enable;
6718         int retries = 20;
6719
6720         while (retries-- > 0) {
6721                 /* Bail out immediately if FPE handshake is OFF */
6722                 if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6723                         break;
6724
6725                 if (*lo_state == FPE_STATE_ENTERING_ON &&
6726                     *lp_state == FPE_STATE_ENTERING_ON) {
6727                         stmmac_fpe_configure(priv, priv->ioaddr,
6728                                              priv->plat->tx_queues_to_use,
6729                                              priv->plat->rx_queues_to_use,
6730                                              *enable);
6731
6732                         netdev_info(priv->dev, "configured FPE\n");
6733
6734                         *lo_state = FPE_STATE_ON;
6735                         *lp_state = FPE_STATE_ON;
6736                         netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
6737                         break;
6738                 }
6739
6740                 if ((*lo_state == FPE_STATE_CAPABLE ||
6741                      *lo_state == FPE_STATE_ENTERING_ON) &&
6742                      *lp_state != FPE_STATE_ON) {
6743                         netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
6744                                     *lo_state, *lp_state);
6745                         stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6746                                                 MPACKET_VERIFY);
6747                 }
6748                 /* Sleep then retry */
6749                 msleep(500);
6750         }
6751
6752         clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
6753 }
6754
6755 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
6756 {
6757         if (priv->plat->fpe_cfg->hs_enable != enable) {
6758                 if (enable) {
6759                         stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6760                                                 MPACKET_VERIFY);
6761                 } else {
6762                         priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
6763                         priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
6764                 }
6765
6766                 priv->plat->fpe_cfg->hs_enable = enable;
6767         }
6768 }
6769
6770 /**
6771  * stmmac_dvr_probe
6772  * @device: device pointer
6773  * @plat_dat: platform data pointer
6774  * @res: stmmac resource pointer
6775  * Description: this is the main probe function used to
6776  * call the alloc_etherdev, allocate the priv structure.
6777  * Return:
6778  * returns 0 on success, otherwise errno.
6779  */
6780 int stmmac_dvr_probe(struct device *device,
6781                      struct plat_stmmacenet_data *plat_dat,
6782                      struct stmmac_resources *res)
6783 {
6784         struct net_device *ndev = NULL;
6785         struct stmmac_priv *priv;
6786         u32 rxq;
6787         int i, ret = 0;
6788
6789         ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
6790                                        MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
6791         if (!ndev)
6792                 return -ENOMEM;
6793
6794         SET_NETDEV_DEV(ndev, device);
6795
6796         priv = netdev_priv(ndev);
6797         priv->device = device;
6798         priv->dev = ndev;
6799
6800         stmmac_set_ethtool_ops(ndev);
6801         priv->pause = pause;
6802         priv->plat = plat_dat;
6803         priv->ioaddr = res->addr;
6804         priv->dev->base_addr = (unsigned long)res->addr;
6805         priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
6806
6807         priv->dev->irq = res->irq;
6808         priv->wol_irq = res->wol_irq;
6809         priv->lpi_irq = res->lpi_irq;
6810         priv->sfty_ce_irq = res->sfty_ce_irq;
6811         priv->sfty_ue_irq = res->sfty_ue_irq;
6812         for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
6813                 priv->rx_irq[i] = res->rx_irq[i];
6814         for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
6815                 priv->tx_irq[i] = res->tx_irq[i];
6816
6817         if (!is_zero_ether_addr(res->mac))
6818                 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
6819
6820         dev_set_drvdata(device, priv->dev);
6821
6822         /* Verify driver arguments */
6823         stmmac_verify_args();
6824
6825         priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
6826         if (!priv->af_xdp_zc_qps)
6827                 return -ENOMEM;
6828
6829         /* Allocate workqueue */
6830         priv->wq = create_singlethread_workqueue("stmmac_wq");
6831         if (!priv->wq) {
6832                 dev_err(priv->device, "failed to create workqueue\n");
6833                 return -ENOMEM;
6834         }
6835
6836         INIT_WORK(&priv->service_task, stmmac_service_task);
6837
6838         /* Initialize Link Partner FPE workqueue */
6839         INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
6840
6841         /* Override with kernel parameters if supplied XXX CRS XXX
6842          * this needs to have multiple instances
6843          */
6844         if ((phyaddr >= 0) && (phyaddr <= 31))
6845                 priv->plat->phy_addr = phyaddr;
6846
6847         if (priv->plat->stmmac_rst) {
6848                 ret = reset_control_assert(priv->plat->stmmac_rst);
6849                 reset_control_deassert(priv->plat->stmmac_rst);
6850                 /* Some reset controllers have only reset callback instead of
6851                  * assert + deassert callbacks pair.
6852                  */
6853                 if (ret == -ENOTSUPP)
6854                         reset_control_reset(priv->plat->stmmac_rst);
6855         }
6856
6857         ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
6858         if (ret == -ENOTSUPP)
6859                 dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
6860                         ERR_PTR(ret));
6861
6862         /* Init MAC and get the capabilities */
6863         ret = stmmac_hw_init(priv);
6864         if (ret)
6865                 goto error_hw_init;
6866
6867         /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
6868          */
6869         if (priv->synopsys_id < DWMAC_CORE_5_20)
6870                 priv->plat->dma_cfg->dche = false;
6871
6872         stmmac_check_ether_addr(priv);
6873
6874         ndev->netdev_ops = &stmmac_netdev_ops;
6875
6876         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6877                             NETIF_F_RXCSUM;
6878
6879         ret = stmmac_tc_init(priv, priv);
6880         if (!ret) {
6881                 ndev->hw_features |= NETIF_F_HW_TC;
6882         }
6883
6884         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
6885                 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
6886                 if (priv->plat->has_gmac4)
6887                         ndev->hw_features |= NETIF_F_GSO_UDP_L4;
6888                 priv->tso = true;
6889                 dev_info(priv->device, "TSO feature enabled\n");
6890         }
6891
6892         if (priv->dma_cap.sphen) {
6893                 ndev->hw_features |= NETIF_F_GRO;
6894                 priv->sph_cap = true;
6895                 priv->sph = priv->sph_cap;
6896                 dev_info(priv->device, "SPH feature enabled\n");
6897         }
6898
6899         /* The current IP register MAC_HW_Feature1[ADDR64] only define
6900          * 32/40/64 bit width, but some SOC support others like i.MX8MP
6901          * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
6902          * So overwrite dma_cap.addr64 according to HW real design.
6903          */
6904         if (priv->plat->addr64)
6905                 priv->dma_cap.addr64 = priv->plat->addr64;
6906
6907         if (priv->dma_cap.addr64) {
6908                 ret = dma_set_mask_and_coherent(device,
6909                                 DMA_BIT_MASK(priv->dma_cap.addr64));
6910                 if (!ret) {
6911                         dev_info(priv->device, "Using %d bits DMA width\n",
6912                                  priv->dma_cap.addr64);
6913
6914                         /*
6915                          * If more than 32 bits can be addressed, make sure to
6916                          * enable enhanced addressing mode.
6917                          */
6918                         if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
6919                                 priv->plat->dma_cfg->eame = true;
6920                 } else {
6921                         ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
6922                         if (ret) {
6923                                 dev_err(priv->device, "Failed to set DMA Mask\n");
6924                                 goto error_hw_init;
6925                         }
6926
6927                         priv->dma_cap.addr64 = 32;
6928                 }
6929         }
6930
6931         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
6932         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
6933 #ifdef STMMAC_VLAN_TAG_USED
6934         /* Both mac100 and gmac support receive VLAN tag detection */
6935         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
6936         if (priv->dma_cap.vlhash) {
6937                 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6938                 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
6939         }
6940         if (priv->dma_cap.vlins) {
6941                 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
6942                 if (priv->dma_cap.dvlan)
6943                         ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
6944         }
6945 #endif
6946         priv->msg_enable = netif_msg_init(debug, default_msg_level);
6947
6948         /* Initialize RSS */
6949         rxq = priv->plat->rx_queues_to_use;
6950         netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
6951         for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
6952                 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
6953
6954         if (priv->dma_cap.rssen && priv->plat->rss_en)
6955                 ndev->features |= NETIF_F_RXHASH;
6956
6957         /* MTU range: 46 - hw-specific max */
6958         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
6959         if (priv->plat->has_xgmac)
6960                 ndev->max_mtu = XGMAC_JUMBO_LEN;
6961         else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
6962                 ndev->max_mtu = JUMBO_LEN;
6963         else
6964                 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
6965         /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
6966          * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
6967          */
6968         if ((priv->plat->maxmtu < ndev->max_mtu) &&
6969             (priv->plat->maxmtu >= ndev->min_mtu))
6970                 ndev->max_mtu = priv->plat->maxmtu;
6971         else if (priv->plat->maxmtu < ndev->min_mtu)
6972                 dev_warn(priv->device,
6973                          "%s: warning: maxmtu having invalid value (%d)\n",
6974                          __func__, priv->plat->maxmtu);
6975
6976         if (flow_ctrl)
6977                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
6978
6979         /* Setup channels NAPI */
6980         stmmac_napi_add(ndev);
6981
6982         mutex_init(&priv->lock);
6983
6984         /* If a specific clk_csr value is passed from the platform
6985          * this means that the CSR Clock Range selection cannot be
6986          * changed at run-time and it is fixed. Viceversa the driver'll try to
6987          * set the MDC clock dynamically according to the csr actual
6988          * clock input.
6989          */
6990         if (priv->plat->clk_csr >= 0)
6991                 priv->clk_csr = priv->plat->clk_csr;
6992         else
6993                 stmmac_clk_csr_set(priv);
6994
6995         stmmac_check_pcs_mode(priv);
6996
6997         pm_runtime_get_noresume(device);
6998         pm_runtime_set_active(device);
6999         pm_runtime_enable(device);
7000
7001         if (priv->hw->pcs != STMMAC_PCS_TBI &&
7002             priv->hw->pcs != STMMAC_PCS_RTBI) {
7003                 /* MDIO bus Registration */
7004                 ret = stmmac_mdio_register(ndev);
7005                 if (ret < 0) {
7006                         dev_err(priv->device,
7007                                 "%s: MDIO bus (id: %d) registration failed",
7008                                 __func__, priv->plat->bus_id);
7009                         goto error_mdio_register;
7010                 }
7011         }
7012
7013         if (priv->plat->speed_mode_2500)
7014                 priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7015
7016         if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7017                 ret = stmmac_xpcs_setup(priv->mii);
7018                 if (ret)
7019                         goto error_xpcs_setup;
7020         }
7021
7022         ret = stmmac_phy_setup(priv);
7023         if (ret) {
7024                 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7025                 goto error_phy_setup;
7026         }
7027
7028         ret = register_netdev(ndev);
7029         if (ret) {
7030                 dev_err(priv->device, "%s: ERROR %i registering the device\n",
7031                         __func__, ret);
7032                 goto error_netdev_register;
7033         }
7034
7035         if (priv->plat->serdes_powerup) {
7036                 ret = priv->plat->serdes_powerup(ndev,
7037                                                  priv->plat->bsp_priv);
7038
7039                 if (ret < 0)
7040                         goto error_serdes_powerup;
7041         }
7042
7043 #ifdef CONFIG_DEBUG_FS
7044         stmmac_init_fs(ndev);
7045 #endif
7046
7047         /* Let pm_runtime_put() disable the clocks.
7048          * If CONFIG_PM is not enabled, the clocks will stay powered.
7049          */
7050         pm_runtime_put(device);
7051
7052         return ret;
7053
7054 error_serdes_powerup:
7055         unregister_netdev(ndev);
7056 error_netdev_register:
7057         phylink_destroy(priv->phylink);
7058 error_xpcs_setup:
7059 error_phy_setup:
7060         if (priv->hw->pcs != STMMAC_PCS_TBI &&
7061             priv->hw->pcs != STMMAC_PCS_RTBI)
7062                 stmmac_mdio_unregister(ndev);
7063 error_mdio_register:
7064         stmmac_napi_del(ndev);
7065 error_hw_init:
7066         destroy_workqueue(priv->wq);
7067         bitmap_free(priv->af_xdp_zc_qps);
7068
7069         return ret;
7070 }
7071 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7072
7073 /**
7074  * stmmac_dvr_remove
7075  * @dev: device pointer
7076  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7077  * changes the link status, releases the DMA descriptor rings.
7078  */
7079 int stmmac_dvr_remove(struct device *dev)
7080 {
7081         struct net_device *ndev = dev_get_drvdata(dev);
7082         struct stmmac_priv *priv = netdev_priv(ndev);
7083
7084         netdev_info(priv->dev, "%s: removing driver", __func__);
7085
7086         stmmac_stop_all_dma(priv);
7087         stmmac_mac_set(priv, priv->ioaddr, false);
7088         netif_carrier_off(ndev);
7089         unregister_netdev(ndev);
7090
7091         /* Serdes power down needs to happen after VLAN filter
7092          * is deleted that is triggered by unregister_netdev().
7093          */
7094         if (priv->plat->serdes_powerdown)
7095                 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7096
7097 #ifdef CONFIG_DEBUG_FS
7098         stmmac_exit_fs(ndev);
7099 #endif
7100         phylink_destroy(priv->phylink);
7101         if (priv->plat->stmmac_rst)
7102                 reset_control_assert(priv->plat->stmmac_rst);
7103         reset_control_assert(priv->plat->stmmac_ahb_rst);
7104         pm_runtime_put(dev);
7105         pm_runtime_disable(dev);
7106         if (priv->hw->pcs != STMMAC_PCS_TBI &&
7107             priv->hw->pcs != STMMAC_PCS_RTBI)
7108                 stmmac_mdio_unregister(ndev);
7109         destroy_workqueue(priv->wq);
7110         mutex_destroy(&priv->lock);
7111         bitmap_free(priv->af_xdp_zc_qps);
7112
7113         return 0;
7114 }
7115 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7116
7117 /**
7118  * stmmac_suspend - suspend callback
7119  * @dev: device pointer
7120  * Description: this is the function to suspend the device and it is called
7121  * by the platform driver to stop the network queue, release the resources,
7122  * program the PMT register (for WoL), clean and release driver resources.
7123  */
7124 int stmmac_suspend(struct device *dev)
7125 {
7126         struct net_device *ndev = dev_get_drvdata(dev);
7127         struct stmmac_priv *priv = netdev_priv(ndev);
7128         u32 chan;
7129
7130         if (!ndev || !netif_running(ndev))
7131                 return 0;
7132
7133         mutex_lock(&priv->lock);
7134
7135         netif_device_detach(ndev);
7136
7137         stmmac_disable_all_queues(priv);
7138
7139         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7140                 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
7141
7142         if (priv->eee_enabled) {
7143                 priv->tx_path_in_lpi_mode = false;
7144                 del_timer_sync(&priv->eee_ctrl_timer);
7145         }
7146
7147         /* Stop TX/RX DMA */
7148         stmmac_stop_all_dma(priv);
7149
7150         if (priv->plat->serdes_powerdown)
7151                 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7152
7153         /* Enable Power down mode by programming the PMT regs */
7154         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7155                 stmmac_pmt(priv, priv->hw, priv->wolopts);
7156                 priv->irq_wake = 1;
7157         } else {
7158                 stmmac_mac_set(priv, priv->ioaddr, false);
7159                 pinctrl_pm_select_sleep_state(priv->device);
7160         }
7161
7162         mutex_unlock(&priv->lock);
7163
7164         rtnl_lock();
7165         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7166                 phylink_suspend(priv->phylink, true);
7167         } else {
7168                 if (device_may_wakeup(priv->device))
7169                         phylink_speed_down(priv->phylink, false);
7170                 phylink_suspend(priv->phylink, false);
7171         }
7172         rtnl_unlock();
7173
7174         if (priv->dma_cap.fpesel) {
7175                 /* Disable FPE */
7176                 stmmac_fpe_configure(priv, priv->ioaddr,
7177                                      priv->plat->tx_queues_to_use,
7178                                      priv->plat->rx_queues_to_use, false);
7179
7180                 stmmac_fpe_handshake(priv, false);
7181                 stmmac_fpe_stop_wq(priv);
7182         }
7183
7184         priv->speed = SPEED_UNKNOWN;
7185         return 0;
7186 }
7187 EXPORT_SYMBOL_GPL(stmmac_suspend);
7188
7189 /**
7190  * stmmac_reset_queues_param - reset queue parameters
7191  * @priv: device pointer
7192  */
7193 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7194 {
7195         u32 rx_cnt = priv->plat->rx_queues_to_use;
7196         u32 tx_cnt = priv->plat->tx_queues_to_use;
7197         u32 queue;
7198
7199         for (queue = 0; queue < rx_cnt; queue++) {
7200                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
7201
7202                 rx_q->cur_rx = 0;
7203                 rx_q->dirty_rx = 0;
7204         }
7205
7206         for (queue = 0; queue < tx_cnt; queue++) {
7207                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
7208
7209                 tx_q->cur_tx = 0;
7210                 tx_q->dirty_tx = 0;
7211                 tx_q->mss = 0;
7212
7213                 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7214         }
7215 }
7216
7217 /**
7218  * stmmac_resume - resume callback
7219  * @dev: device pointer
7220  * Description: when resume this function is invoked to setup the DMA and CORE
7221  * in a usable state.
7222  */
7223 int stmmac_resume(struct device *dev)
7224 {
7225         struct net_device *ndev = dev_get_drvdata(dev);
7226         struct stmmac_priv *priv = netdev_priv(ndev);
7227         int ret;
7228
7229         if (!netif_running(ndev))
7230                 return 0;
7231
7232         /* Power Down bit, into the PM register, is cleared
7233          * automatically as soon as a magic packet or a Wake-up frame
7234          * is received. Anyway, it's better to manually clear
7235          * this bit because it can generate problems while resuming
7236          * from another devices (e.g. serial console).
7237          */
7238         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7239                 mutex_lock(&priv->lock);
7240                 stmmac_pmt(priv, priv->hw, 0);
7241                 mutex_unlock(&priv->lock);
7242                 priv->irq_wake = 0;
7243         } else {
7244                 pinctrl_pm_select_default_state(priv->device);
7245                 /* reset the phy so that it's ready */
7246                 if (priv->mii)
7247                         stmmac_mdio_reset(priv->mii);
7248         }
7249
7250         if (priv->plat->serdes_powerup) {
7251                 ret = priv->plat->serdes_powerup(ndev,
7252                                                  priv->plat->bsp_priv);
7253
7254                 if (ret < 0)
7255                         return ret;
7256         }
7257
7258         rtnl_lock();
7259         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7260                 phylink_resume(priv->phylink);
7261         } else {
7262                 phylink_resume(priv->phylink);
7263                 if (device_may_wakeup(priv->device))
7264                         phylink_speed_up(priv->phylink);
7265         }
7266         rtnl_unlock();
7267
7268         rtnl_lock();
7269         mutex_lock(&priv->lock);
7270
7271         stmmac_reset_queues_param(priv);
7272
7273         stmmac_free_tx_skbufs(priv);
7274         stmmac_clear_descriptors(priv);
7275
7276         stmmac_hw_setup(ndev, false);
7277         stmmac_init_coalesce(priv);
7278         stmmac_set_rx_mode(ndev);
7279
7280         stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7281
7282         stmmac_enable_all_queues(priv);
7283
7284         mutex_unlock(&priv->lock);
7285         rtnl_unlock();
7286
7287         netif_device_attach(ndev);
7288
7289         return 0;
7290 }
7291 EXPORT_SYMBOL_GPL(stmmac_resume);
7292
7293 #ifndef MODULE
7294 static int __init stmmac_cmdline_opt(char *str)
7295 {
7296         char *opt;
7297
7298         if (!str || !*str)
7299                 return -EINVAL;
7300         while ((opt = strsep(&str, ",")) != NULL) {
7301                 if (!strncmp(opt, "debug:", 6)) {
7302                         if (kstrtoint(opt + 6, 0, &debug))
7303                                 goto err;
7304                 } else if (!strncmp(opt, "phyaddr:", 8)) {
7305                         if (kstrtoint(opt + 8, 0, &phyaddr))
7306                                 goto err;
7307                 } else if (!strncmp(opt, "buf_sz:", 7)) {
7308                         if (kstrtoint(opt + 7, 0, &buf_sz))
7309                                 goto err;
7310                 } else if (!strncmp(opt, "tc:", 3)) {
7311                         if (kstrtoint(opt + 3, 0, &tc))
7312                                 goto err;
7313                 } else if (!strncmp(opt, "watchdog:", 9)) {
7314                         if (kstrtoint(opt + 9, 0, &watchdog))
7315                                 goto err;
7316                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
7317                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
7318                                 goto err;
7319                 } else if (!strncmp(opt, "pause:", 6)) {
7320                         if (kstrtoint(opt + 6, 0, &pause))
7321                                 goto err;
7322                 } else if (!strncmp(opt, "eee_timer:", 10)) {
7323                         if (kstrtoint(opt + 10, 0, &eee_timer))
7324                                 goto err;
7325                 } else if (!strncmp(opt, "chain_mode:", 11)) {
7326                         if (kstrtoint(opt + 11, 0, &chain_mode))
7327                                 goto err;
7328                 }
7329         }
7330         return 0;
7331
7332 err:
7333         pr_err("%s: ERROR broken module parameter conversion", __func__);
7334         return -EINVAL;
7335 }
7336
7337 __setup("stmmaceth=", stmmac_cmdline_opt);
7338 #endif /* MODULE */
7339
7340 static int __init stmmac_init(void)
7341 {
7342 #ifdef CONFIG_DEBUG_FS
7343         /* Create debugfs main directory if it doesn't exist yet */
7344         if (!stmmac_fs_dir)
7345                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7346         register_netdevice_notifier(&stmmac_notifier);
7347 #endif
7348
7349         return 0;
7350 }
7351
7352 static void __exit stmmac_exit(void)
7353 {
7354 #ifdef CONFIG_DEBUG_FS
7355         unregister_netdevice_notifier(&stmmac_notifier);
7356         debugfs_remove_recursive(stmmac_fs_dir);
7357 #endif
7358 }
7359
7360 module_init(stmmac_init)
7361 module_exit(stmmac_exit)
7362
7363 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7364 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7365 MODULE_LICENSE("GPL");