Merge tag 'zynqmp-soc-for-v5.7' of https://github.com/Xilinx/linux-xlnx into arm/soc
[linux-2.6-microblaze.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5
6         Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11   Documentation available at:
12         http://www.stlinux.com
13   Support available at:
14         https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <linux/udp.h>
40 #include <net/pkt_cls.h>
41 #include "stmmac_ptp.h"
42 #include "stmmac.h"
43 #include <linux/reset.h>
44 #include <linux/of_mdio.h>
45 #include "dwmac1000.h"
46 #include "dwxgmac2.h"
47 #include "hwif.h"
48
49 #define STMMAC_ALIGN(x)         ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
50 #define TSO_MAX_BUFF_SIZE       (SZ_16K - 1)
51
52 /* Module parameters */
53 #define TX_TIMEO        5000
54 static int watchdog = TX_TIMEO;
55 module_param(watchdog, int, 0644);
56 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
57
58 static int debug = -1;
59 module_param(debug, int, 0644);
60 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
61
62 static int phyaddr = -1;
63 module_param(phyaddr, int, 0444);
64 MODULE_PARM_DESC(phyaddr, "Physical device address");
65
66 #define STMMAC_TX_THRESH        (DMA_TX_SIZE / 4)
67 #define STMMAC_RX_THRESH        (DMA_RX_SIZE / 4)
68
69 static int flow_ctrl = FLOW_AUTO;
70 module_param(flow_ctrl, int, 0644);
71 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
72
73 static int pause = PAUSE_TIME;
74 module_param(pause, int, 0644);
75 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
76
77 #define TC_DEFAULT 64
78 static int tc = TC_DEFAULT;
79 module_param(tc, int, 0644);
80 MODULE_PARM_DESC(tc, "DMA threshold control value");
81
82 #define DEFAULT_BUFSIZE 1536
83 static int buf_sz = DEFAULT_BUFSIZE;
84 module_param(buf_sz, int, 0644);
85 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
86
87 #define STMMAC_RX_COPYBREAK     256
88
89 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
90                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
91                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
92
93 #define STMMAC_DEFAULT_LPI_TIMER        1000
94 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
95 module_param(eee_timer, int, 0644);
96 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
97 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
98
99 /* By default the driver will use the ring mode to manage tx and rx descriptors,
100  * but allow user to force to use the chain instead of the ring
101  */
102 static unsigned int chain_mode;
103 module_param(chain_mode, int, 0444);
104 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
105
106 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
107
108 #ifdef CONFIG_DEBUG_FS
109 static const struct net_device_ops stmmac_netdev_ops;
110 static void stmmac_init_fs(struct net_device *dev);
111 static void stmmac_exit_fs(struct net_device *dev);
112 #endif
113
114 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
115
116 /**
117  * stmmac_verify_args - verify the driver parameters.
118  * Description: it checks the driver parameters and set a default in case of
119  * errors.
120  */
121 static void stmmac_verify_args(void)
122 {
123         if (unlikely(watchdog < 0))
124                 watchdog = TX_TIMEO;
125         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
126                 buf_sz = DEFAULT_BUFSIZE;
127         if (unlikely(flow_ctrl > 1))
128                 flow_ctrl = FLOW_AUTO;
129         else if (likely(flow_ctrl < 0))
130                 flow_ctrl = FLOW_OFF;
131         if (unlikely((pause < 0) || (pause > 0xffff)))
132                 pause = PAUSE_TIME;
133         if (eee_timer < 0)
134                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
135 }
136
137 /**
138  * stmmac_disable_all_queues - Disable all queues
139  * @priv: driver private structure
140  */
141 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
142 {
143         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
144         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
145         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
146         u32 queue;
147
148         for (queue = 0; queue < maxq; queue++) {
149                 struct stmmac_channel *ch = &priv->channel[queue];
150
151                 if (queue < rx_queues_cnt)
152                         napi_disable(&ch->rx_napi);
153                 if (queue < tx_queues_cnt)
154                         napi_disable(&ch->tx_napi);
155         }
156 }
157
158 /**
159  * stmmac_enable_all_queues - Enable all queues
160  * @priv: driver private structure
161  */
162 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
163 {
164         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
165         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
166         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
167         u32 queue;
168
169         for (queue = 0; queue < maxq; queue++) {
170                 struct stmmac_channel *ch = &priv->channel[queue];
171
172                 if (queue < rx_queues_cnt)
173                         napi_enable(&ch->rx_napi);
174                 if (queue < tx_queues_cnt)
175                         napi_enable(&ch->tx_napi);
176         }
177 }
178
179 /**
180  * stmmac_stop_all_queues - Stop all queues
181  * @priv: driver private structure
182  */
183 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
184 {
185         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
186         u32 queue;
187
188         for (queue = 0; queue < tx_queues_cnt; queue++)
189                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
190 }
191
192 /**
193  * stmmac_start_all_queues - Start all queues
194  * @priv: driver private structure
195  */
196 static void stmmac_start_all_queues(struct stmmac_priv *priv)
197 {
198         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
199         u32 queue;
200
201         for (queue = 0; queue < tx_queues_cnt; queue++)
202                 netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
203 }
204
205 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
206 {
207         if (!test_bit(STMMAC_DOWN, &priv->state) &&
208             !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
209                 queue_work(priv->wq, &priv->service_task);
210 }
211
212 static void stmmac_global_err(struct stmmac_priv *priv)
213 {
214         netif_carrier_off(priv->dev);
215         set_bit(STMMAC_RESET_REQUESTED, &priv->state);
216         stmmac_service_event_schedule(priv);
217 }
218
219 /**
220  * stmmac_clk_csr_set - dynamically set the MDC clock
221  * @priv: driver private structure
222  * Description: this is to dynamically set the MDC clock according to the csr
223  * clock input.
224  * Note:
225  *      If a specific clk_csr value is passed from the platform
226  *      this means that the CSR Clock Range selection cannot be
227  *      changed at run-time and it is fixed (as reported in the driver
228  *      documentation). Viceversa the driver will try to set the MDC
229  *      clock dynamically according to the actual clock input.
230  */
231 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
232 {
233         u32 clk_rate;
234
235         clk_rate = clk_get_rate(priv->plat->stmmac_clk);
236
237         /* Platform provided default clk_csr would be assumed valid
238          * for all other cases except for the below mentioned ones.
239          * For values higher than the IEEE 802.3 specified frequency
240          * we can not estimate the proper divider as it is not known
241          * the frequency of clk_csr_i. So we do not change the default
242          * divider.
243          */
244         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
245                 if (clk_rate < CSR_F_35M)
246                         priv->clk_csr = STMMAC_CSR_20_35M;
247                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
248                         priv->clk_csr = STMMAC_CSR_35_60M;
249                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
250                         priv->clk_csr = STMMAC_CSR_60_100M;
251                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
252                         priv->clk_csr = STMMAC_CSR_100_150M;
253                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
254                         priv->clk_csr = STMMAC_CSR_150_250M;
255                 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
256                         priv->clk_csr = STMMAC_CSR_250_300M;
257         }
258
259         if (priv->plat->has_sun8i) {
260                 if (clk_rate > 160000000)
261                         priv->clk_csr = 0x03;
262                 else if (clk_rate > 80000000)
263                         priv->clk_csr = 0x02;
264                 else if (clk_rate > 40000000)
265                         priv->clk_csr = 0x01;
266                 else
267                         priv->clk_csr = 0;
268         }
269
270         if (priv->plat->has_xgmac) {
271                 if (clk_rate > 400000000)
272                         priv->clk_csr = 0x5;
273                 else if (clk_rate > 350000000)
274                         priv->clk_csr = 0x4;
275                 else if (clk_rate > 300000000)
276                         priv->clk_csr = 0x3;
277                 else if (clk_rate > 250000000)
278                         priv->clk_csr = 0x2;
279                 else if (clk_rate > 150000000)
280                         priv->clk_csr = 0x1;
281                 else
282                         priv->clk_csr = 0x0;
283         }
284 }
285
286 static void print_pkt(unsigned char *buf, int len)
287 {
288         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
289         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
290 }
291
292 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
293 {
294         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
295         u32 avail;
296
297         if (tx_q->dirty_tx > tx_q->cur_tx)
298                 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
299         else
300                 avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
301
302         return avail;
303 }
304
305 /**
306  * stmmac_rx_dirty - Get RX queue dirty
307  * @priv: driver private structure
308  * @queue: RX queue index
309  */
310 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
311 {
312         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
313         u32 dirty;
314
315         if (rx_q->dirty_rx <= rx_q->cur_rx)
316                 dirty = rx_q->cur_rx - rx_q->dirty_rx;
317         else
318                 dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
319
320         return dirty;
321 }
322
323 /**
324  * stmmac_enable_eee_mode - check and enter in LPI mode
325  * @priv: driver private structure
326  * Description: this function is to verify and enter in LPI mode in case of
327  * EEE.
328  */
329 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
330 {
331         u32 tx_cnt = priv->plat->tx_queues_to_use;
332         u32 queue;
333
334         /* check if all TX queues have the work finished */
335         for (queue = 0; queue < tx_cnt; queue++) {
336                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
337
338                 if (tx_q->dirty_tx != tx_q->cur_tx)
339                         return; /* still unfinished work */
340         }
341
342         /* Check and enter in LPI mode */
343         if (!priv->tx_path_in_lpi_mode)
344                 stmmac_set_eee_mode(priv, priv->hw,
345                                 priv->plat->en_tx_lpi_clockgating);
346 }
347
348 /**
349  * stmmac_disable_eee_mode - disable and exit from LPI mode
350  * @priv: driver private structure
351  * Description: this function is to exit and disable EEE in case of
352  * LPI state is true. This is called by the xmit.
353  */
354 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
355 {
356         stmmac_reset_eee_mode(priv, priv->hw);
357         del_timer_sync(&priv->eee_ctrl_timer);
358         priv->tx_path_in_lpi_mode = false;
359 }
360
361 /**
362  * stmmac_eee_ctrl_timer - EEE TX SW timer.
363  * @arg : data hook
364  * Description:
365  *  if there is no data transfer and if we are not in LPI state,
366  *  then MAC Transmitter can be moved to LPI state.
367  */
368 static void stmmac_eee_ctrl_timer(struct timer_list *t)
369 {
370         struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
371
372         stmmac_enable_eee_mode(priv);
373         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
374 }
375
376 /**
377  * stmmac_eee_init - init EEE
378  * @priv: driver private structure
379  * Description:
380  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
381  *  can also manage EEE, this function enable the LPI state and start related
382  *  timer.
383  */
384 bool stmmac_eee_init(struct stmmac_priv *priv)
385 {
386         int tx_lpi_timer = priv->tx_lpi_timer;
387
388         /* Using PCS we cannot dial with the phy registers at this stage
389          * so we do not support extra feature like EEE.
390          */
391         if (priv->hw->pcs == STMMAC_PCS_TBI ||
392             priv->hw->pcs == STMMAC_PCS_RTBI)
393                 return false;
394
395         /* Check if MAC core supports the EEE feature. */
396         if (!priv->dma_cap.eee)
397                 return false;
398
399         mutex_lock(&priv->lock);
400
401         /* Check if it needs to be deactivated */
402         if (!priv->eee_active) {
403                 if (priv->eee_enabled) {
404                         netdev_dbg(priv->dev, "disable EEE\n");
405                         del_timer_sync(&priv->eee_ctrl_timer);
406                         stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer);
407                 }
408                 mutex_unlock(&priv->lock);
409                 return false;
410         }
411
412         if (priv->eee_active && !priv->eee_enabled) {
413                 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
414                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
415                 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
416                                      tx_lpi_timer);
417         }
418
419         mutex_unlock(&priv->lock);
420         netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
421         return true;
422 }
423
424 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
425  * @priv: driver private structure
426  * @p : descriptor pointer
427  * @skb : the socket buffer
428  * Description :
429  * This function will read timestamp from the descriptor & pass it to stack.
430  * and also perform some sanity checks.
431  */
432 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
433                                    struct dma_desc *p, struct sk_buff *skb)
434 {
435         struct skb_shared_hwtstamps shhwtstamp;
436         bool found = false;
437         u64 ns = 0;
438
439         if (!priv->hwts_tx_en)
440                 return;
441
442         /* exit if skb doesn't support hw tstamp */
443         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
444                 return;
445
446         /* check tx tstamp status */
447         if (stmmac_get_tx_timestamp_status(priv, p)) {
448                 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
449                 found = true;
450         } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
451                 found = true;
452         }
453
454         if (found) {
455                 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
456                 shhwtstamp.hwtstamp = ns_to_ktime(ns);
457
458                 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
459                 /* pass tstamp to stack */
460                 skb_tstamp_tx(skb, &shhwtstamp);
461         }
462 }
463
464 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
465  * @priv: driver private structure
466  * @p : descriptor pointer
467  * @np : next descriptor pointer
468  * @skb : the socket buffer
469  * Description :
470  * This function will read received packet's timestamp from the descriptor
471  * and pass it to stack. It also perform some sanity checks.
472  */
473 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
474                                    struct dma_desc *np, struct sk_buff *skb)
475 {
476         struct skb_shared_hwtstamps *shhwtstamp = NULL;
477         struct dma_desc *desc = p;
478         u64 ns = 0;
479
480         if (!priv->hwts_rx_en)
481                 return;
482         /* For GMAC4, the valid timestamp is from CTX next desc. */
483         if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
484                 desc = np;
485
486         /* Check if timestamp is available */
487         if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
488                 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
489                 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
490                 shhwtstamp = skb_hwtstamps(skb);
491                 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
492                 shhwtstamp->hwtstamp = ns_to_ktime(ns);
493         } else  {
494                 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
495         }
496 }
497
498 /**
499  *  stmmac_hwtstamp_set - control hardware timestamping.
500  *  @dev: device pointer.
501  *  @ifr: An IOCTL specific structure, that can contain a pointer to
502  *  a proprietary structure used to pass information to the driver.
503  *  Description:
504  *  This function configures the MAC to enable/disable both outgoing(TX)
505  *  and incoming(RX) packets time stamping based on user input.
506  *  Return Value:
507  *  0 on success and an appropriate -ve integer on failure.
508  */
509 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
510 {
511         struct stmmac_priv *priv = netdev_priv(dev);
512         struct hwtstamp_config config;
513         struct timespec64 now;
514         u64 temp = 0;
515         u32 ptp_v2 = 0;
516         u32 tstamp_all = 0;
517         u32 ptp_over_ipv4_udp = 0;
518         u32 ptp_over_ipv6_udp = 0;
519         u32 ptp_over_ethernet = 0;
520         u32 snap_type_sel = 0;
521         u32 ts_master_en = 0;
522         u32 ts_event_en = 0;
523         u32 sec_inc = 0;
524         u32 value = 0;
525         bool xmac;
526
527         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
528
529         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
530                 netdev_alert(priv->dev, "No support for HW time stamping\n");
531                 priv->hwts_tx_en = 0;
532                 priv->hwts_rx_en = 0;
533
534                 return -EOPNOTSUPP;
535         }
536
537         if (copy_from_user(&config, ifr->ifr_data,
538                            sizeof(config)))
539                 return -EFAULT;
540
541         netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
542                    __func__, config.flags, config.tx_type, config.rx_filter);
543
544         /* reserved for future extensions */
545         if (config.flags)
546                 return -EINVAL;
547
548         if (config.tx_type != HWTSTAMP_TX_OFF &&
549             config.tx_type != HWTSTAMP_TX_ON)
550                 return -ERANGE;
551
552         if (priv->adv_ts) {
553                 switch (config.rx_filter) {
554                 case HWTSTAMP_FILTER_NONE:
555                         /* time stamp no incoming packet at all */
556                         config.rx_filter = HWTSTAMP_FILTER_NONE;
557                         break;
558
559                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
560                         /* PTP v1, UDP, any kind of event packet */
561                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
562                         /* 'xmac' hardware can support Sync, Pdelay_Req and
563                          * Pdelay_resp by setting bit14 and bits17/16 to 01
564                          * This leaves Delay_Req timestamps out.
565                          * Enable all events *and* general purpose message
566                          * timestamping
567                          */
568                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
569                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
570                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
571                         break;
572
573                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
574                         /* PTP v1, UDP, Sync packet */
575                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
576                         /* take time stamp for SYNC messages only */
577                         ts_event_en = PTP_TCR_TSEVNTENA;
578
579                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
580                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
581                         break;
582
583                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
584                         /* PTP v1, UDP, Delay_req packet */
585                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
586                         /* take time stamp for Delay_Req messages only */
587                         ts_master_en = PTP_TCR_TSMSTRENA;
588                         ts_event_en = PTP_TCR_TSEVNTENA;
589
590                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
591                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
592                         break;
593
594                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
595                         /* PTP v2, UDP, any kind of event packet */
596                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
597                         ptp_v2 = PTP_TCR_TSVER2ENA;
598                         /* take time stamp for all event messages */
599                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
600
601                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
602                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
603                         break;
604
605                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
606                         /* PTP v2, UDP, Sync packet */
607                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
608                         ptp_v2 = PTP_TCR_TSVER2ENA;
609                         /* take time stamp for SYNC messages only */
610                         ts_event_en = PTP_TCR_TSEVNTENA;
611
612                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
613                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
614                         break;
615
616                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
617                         /* PTP v2, UDP, Delay_req packet */
618                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
619                         ptp_v2 = PTP_TCR_TSVER2ENA;
620                         /* take time stamp for Delay_Req messages only */
621                         ts_master_en = PTP_TCR_TSMSTRENA;
622                         ts_event_en = PTP_TCR_TSEVNTENA;
623
624                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
625                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
626                         break;
627
628                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
629                         /* PTP v2/802.AS1 any layer, any kind of event packet */
630                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
631                         ptp_v2 = PTP_TCR_TSVER2ENA;
632                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
633                         ts_event_en = PTP_TCR_TSEVNTENA;
634                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
635                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
636                         ptp_over_ethernet = PTP_TCR_TSIPENA;
637                         break;
638
639                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
640                         /* PTP v2/802.AS1, any layer, Sync packet */
641                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
642                         ptp_v2 = PTP_TCR_TSVER2ENA;
643                         /* take time stamp for SYNC messages only */
644                         ts_event_en = PTP_TCR_TSEVNTENA;
645
646                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
647                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
648                         ptp_over_ethernet = PTP_TCR_TSIPENA;
649                         break;
650
651                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
652                         /* PTP v2/802.AS1, any layer, Delay_req packet */
653                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
654                         ptp_v2 = PTP_TCR_TSVER2ENA;
655                         /* take time stamp for Delay_Req messages only */
656                         ts_master_en = PTP_TCR_TSMSTRENA;
657                         ts_event_en = PTP_TCR_TSEVNTENA;
658
659                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
660                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
661                         ptp_over_ethernet = PTP_TCR_TSIPENA;
662                         break;
663
664                 case HWTSTAMP_FILTER_NTP_ALL:
665                 case HWTSTAMP_FILTER_ALL:
666                         /* time stamp any incoming packet */
667                         config.rx_filter = HWTSTAMP_FILTER_ALL;
668                         tstamp_all = PTP_TCR_TSENALL;
669                         break;
670
671                 default:
672                         return -ERANGE;
673                 }
674         } else {
675                 switch (config.rx_filter) {
676                 case HWTSTAMP_FILTER_NONE:
677                         config.rx_filter = HWTSTAMP_FILTER_NONE;
678                         break;
679                 default:
680                         /* PTP v1, UDP, any kind of event packet */
681                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
682                         break;
683                 }
684         }
685         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
686         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
687
688         if (!priv->hwts_tx_en && !priv->hwts_rx_en)
689                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
690         else {
691                 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
692                          tstamp_all | ptp_v2 | ptp_over_ethernet |
693                          ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
694                          ts_master_en | snap_type_sel);
695                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
696
697                 /* program Sub Second Increment reg */
698                 stmmac_config_sub_second_increment(priv,
699                                 priv->ptpaddr, priv->plat->clk_ptp_rate,
700                                 xmac, &sec_inc);
701                 temp = div_u64(1000000000ULL, sec_inc);
702
703                 /* Store sub second increment and flags for later use */
704                 priv->sub_second_inc = sec_inc;
705                 priv->systime_flags = value;
706
707                 /* calculate default added value:
708                  * formula is :
709                  * addend = (2^32)/freq_div_ratio;
710                  * where, freq_div_ratio = 1e9ns/sec_inc
711                  */
712                 temp = (u64)(temp << 32);
713                 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
714                 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
715
716                 /* initialize system time */
717                 ktime_get_real_ts64(&now);
718
719                 /* lower 32 bits of tv_sec are safe until y2106 */
720                 stmmac_init_systime(priv, priv->ptpaddr,
721                                 (u32)now.tv_sec, now.tv_nsec);
722         }
723
724         memcpy(&priv->tstamp_config, &config, sizeof(config));
725
726         return copy_to_user(ifr->ifr_data, &config,
727                             sizeof(config)) ? -EFAULT : 0;
728 }
729
730 /**
731  *  stmmac_hwtstamp_get - read hardware timestamping.
732  *  @dev: device pointer.
733  *  @ifr: An IOCTL specific structure, that can contain a pointer to
734  *  a proprietary structure used to pass information to the driver.
735  *  Description:
736  *  This function obtain the current hardware timestamping settings
737     as requested.
738  */
739 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
740 {
741         struct stmmac_priv *priv = netdev_priv(dev);
742         struct hwtstamp_config *config = &priv->tstamp_config;
743
744         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
745                 return -EOPNOTSUPP;
746
747         return copy_to_user(ifr->ifr_data, config,
748                             sizeof(*config)) ? -EFAULT : 0;
749 }
750
751 /**
752  * stmmac_init_ptp - init PTP
753  * @priv: driver private structure
754  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
755  * This is done by looking at the HW cap. register.
756  * This function also registers the ptp driver.
757  */
758 static int stmmac_init_ptp(struct stmmac_priv *priv)
759 {
760         bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
761
762         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
763                 return -EOPNOTSUPP;
764
765         priv->adv_ts = 0;
766         /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
767         if (xmac && priv->dma_cap.atime_stamp)
768                 priv->adv_ts = 1;
769         /* Dwmac 3.x core with extend_desc can support adv_ts */
770         else if (priv->extend_desc && priv->dma_cap.atime_stamp)
771                 priv->adv_ts = 1;
772
773         if (priv->dma_cap.time_stamp)
774                 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
775
776         if (priv->adv_ts)
777                 netdev_info(priv->dev,
778                             "IEEE 1588-2008 Advanced Timestamp supported\n");
779
780         priv->hwts_tx_en = 0;
781         priv->hwts_rx_en = 0;
782
783         stmmac_ptp_register(priv);
784
785         return 0;
786 }
787
788 static void stmmac_release_ptp(struct stmmac_priv *priv)
789 {
790         if (priv->plat->clk_ptp_ref)
791                 clk_disable_unprepare(priv->plat->clk_ptp_ref);
792         stmmac_ptp_unregister(priv);
793 }
794
795 /**
796  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
797  *  @priv: driver private structure
798  *  Description: It is used for configuring the flow control in all queues
799  */
800 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
801 {
802         u32 tx_cnt = priv->plat->tx_queues_to_use;
803
804         stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
805                         priv->pause, tx_cnt);
806 }
807
808 static void stmmac_validate(struct phylink_config *config,
809                             unsigned long *supported,
810                             struct phylink_link_state *state)
811 {
812         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
813         __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
814         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
815         int tx_cnt = priv->plat->tx_queues_to_use;
816         int max_speed = priv->plat->max_speed;
817
818         phylink_set(mac_supported, 10baseT_Half);
819         phylink_set(mac_supported, 10baseT_Full);
820         phylink_set(mac_supported, 100baseT_Half);
821         phylink_set(mac_supported, 100baseT_Full);
822         phylink_set(mac_supported, 1000baseT_Half);
823         phylink_set(mac_supported, 1000baseT_Full);
824         phylink_set(mac_supported, 1000baseKX_Full);
825
826         phylink_set(mac_supported, Autoneg);
827         phylink_set(mac_supported, Pause);
828         phylink_set(mac_supported, Asym_Pause);
829         phylink_set_port_modes(mac_supported);
830
831         /* Cut down 1G if asked to */
832         if ((max_speed > 0) && (max_speed < 1000)) {
833                 phylink_set(mask, 1000baseT_Full);
834                 phylink_set(mask, 1000baseX_Full);
835         } else if (priv->plat->has_xgmac) {
836                 if (!max_speed || (max_speed >= 2500)) {
837                         phylink_set(mac_supported, 2500baseT_Full);
838                         phylink_set(mac_supported, 2500baseX_Full);
839                 }
840                 if (!max_speed || (max_speed >= 5000)) {
841                         phylink_set(mac_supported, 5000baseT_Full);
842                 }
843                 if (!max_speed || (max_speed >= 10000)) {
844                         phylink_set(mac_supported, 10000baseSR_Full);
845                         phylink_set(mac_supported, 10000baseLR_Full);
846                         phylink_set(mac_supported, 10000baseER_Full);
847                         phylink_set(mac_supported, 10000baseLRM_Full);
848                         phylink_set(mac_supported, 10000baseT_Full);
849                         phylink_set(mac_supported, 10000baseKX4_Full);
850                         phylink_set(mac_supported, 10000baseKR_Full);
851                 }
852         }
853
854         /* Half-Duplex can only work with single queue */
855         if (tx_cnt > 1) {
856                 phylink_set(mask, 10baseT_Half);
857                 phylink_set(mask, 100baseT_Half);
858                 phylink_set(mask, 1000baseT_Half);
859         }
860
861         bitmap_and(supported, supported, mac_supported,
862                    __ETHTOOL_LINK_MODE_MASK_NBITS);
863         bitmap_andnot(supported, supported, mask,
864                       __ETHTOOL_LINK_MODE_MASK_NBITS);
865         bitmap_and(state->advertising, state->advertising, mac_supported,
866                    __ETHTOOL_LINK_MODE_MASK_NBITS);
867         bitmap_andnot(state->advertising, state->advertising, mask,
868                       __ETHTOOL_LINK_MODE_MASK_NBITS);
869 }
870
871 static void stmmac_mac_pcs_get_state(struct phylink_config *config,
872                                      struct phylink_link_state *state)
873 {
874         state->link = 0;
875 }
876
877 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
878                               const struct phylink_link_state *state)
879 {
880         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
881         u32 ctrl;
882
883         ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
884         ctrl &= ~priv->hw->link.speed_mask;
885
886         if (state->interface == PHY_INTERFACE_MODE_USXGMII) {
887                 switch (state->speed) {
888                 case SPEED_10000:
889                         ctrl |= priv->hw->link.xgmii.speed10000;
890                         break;
891                 case SPEED_5000:
892                         ctrl |= priv->hw->link.xgmii.speed5000;
893                         break;
894                 case SPEED_2500:
895                         ctrl |= priv->hw->link.xgmii.speed2500;
896                         break;
897                 default:
898                         return;
899                 }
900         } else {
901                 switch (state->speed) {
902                 case SPEED_2500:
903                         ctrl |= priv->hw->link.speed2500;
904                         break;
905                 case SPEED_1000:
906                         ctrl |= priv->hw->link.speed1000;
907                         break;
908                 case SPEED_100:
909                         ctrl |= priv->hw->link.speed100;
910                         break;
911                 case SPEED_10:
912                         ctrl |= priv->hw->link.speed10;
913                         break;
914                 default:
915                         return;
916                 }
917         }
918
919         priv->speed = state->speed;
920
921         if (priv->plat->fix_mac_speed)
922                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, state->speed);
923
924         if (!state->duplex)
925                 ctrl &= ~priv->hw->link.duplex;
926         else
927                 ctrl |= priv->hw->link.duplex;
928
929         /* Flow Control operation */
930         if (state->pause)
931                 stmmac_mac_flow_ctrl(priv, state->duplex);
932
933         writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
934 }
935
936 static void stmmac_mac_an_restart(struct phylink_config *config)
937 {
938         /* Not Supported */
939 }
940
941 static void stmmac_mac_link_down(struct phylink_config *config,
942                                  unsigned int mode, phy_interface_t interface)
943 {
944         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
945
946         stmmac_mac_set(priv, priv->ioaddr, false);
947         priv->eee_active = false;
948         stmmac_eee_init(priv);
949         stmmac_set_eee_pls(priv, priv->hw, false);
950 }
951
952 static void stmmac_mac_link_up(struct phylink_config *config,
953                                unsigned int mode, phy_interface_t interface,
954                                struct phy_device *phy)
955 {
956         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
957
958         stmmac_mac_set(priv, priv->ioaddr, true);
959         if (phy && priv->dma_cap.eee) {
960                 priv->eee_active = phy_init_eee(phy, 1) >= 0;
961                 priv->eee_enabled = stmmac_eee_init(priv);
962                 stmmac_set_eee_pls(priv, priv->hw, true);
963         }
964 }
965
966 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
967         .validate = stmmac_validate,
968         .mac_pcs_get_state = stmmac_mac_pcs_get_state,
969         .mac_config = stmmac_mac_config,
970         .mac_an_restart = stmmac_mac_an_restart,
971         .mac_link_down = stmmac_mac_link_down,
972         .mac_link_up = stmmac_mac_link_up,
973 };
974
975 /**
976  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
977  * @priv: driver private structure
978  * Description: this is to verify if the HW supports the PCS.
979  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
980  * configured for the TBI, RTBI, or SGMII PHY interface.
981  */
982 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
983 {
984         int interface = priv->plat->interface;
985
986         if (priv->dma_cap.pcs) {
987                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
988                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
989                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
990                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
991                         netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
992                         priv->hw->pcs = STMMAC_PCS_RGMII;
993                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
994                         netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
995                         priv->hw->pcs = STMMAC_PCS_SGMII;
996                 }
997         }
998 }
999
1000 /**
1001  * stmmac_init_phy - PHY initialization
1002  * @dev: net device structure
1003  * Description: it initializes the driver's PHY state, and attaches the PHY
1004  * to the mac driver.
1005  *  Return value:
1006  *  0 on success
1007  */
1008 static int stmmac_init_phy(struct net_device *dev)
1009 {
1010         struct stmmac_priv *priv = netdev_priv(dev);
1011         struct device_node *node;
1012         int ret;
1013
1014         node = priv->plat->phylink_node;
1015
1016         if (node)
1017                 ret = phylink_of_phy_connect(priv->phylink, node, 0);
1018
1019         /* Some DT bindings do not set-up the PHY handle. Let's try to
1020          * manually parse it
1021          */
1022         if (!node || ret) {
1023                 int addr = priv->plat->phy_addr;
1024                 struct phy_device *phydev;
1025
1026                 phydev = mdiobus_get_phy(priv->mii, addr);
1027                 if (!phydev) {
1028                         netdev_err(priv->dev, "no phy at addr %d\n", addr);
1029                         return -ENODEV;
1030                 }
1031
1032                 ret = phylink_connect_phy(priv->phylink, phydev);
1033         }
1034
1035         return ret;
1036 }
1037
1038 static int stmmac_phy_setup(struct stmmac_priv *priv)
1039 {
1040         struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1041         int mode = priv->plat->phy_interface;
1042         struct phylink *phylink;
1043
1044         priv->phylink_config.dev = &priv->dev->dev;
1045         priv->phylink_config.type = PHYLINK_NETDEV;
1046
1047         phylink = phylink_create(&priv->phylink_config, fwnode,
1048                                  mode, &stmmac_phylink_mac_ops);
1049         if (IS_ERR(phylink))
1050                 return PTR_ERR(phylink);
1051
1052         priv->phylink = phylink;
1053         return 0;
1054 }
1055
1056 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1057 {
1058         u32 rx_cnt = priv->plat->rx_queues_to_use;
1059         void *head_rx;
1060         u32 queue;
1061
1062         /* Display RX rings */
1063         for (queue = 0; queue < rx_cnt; queue++) {
1064                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1065
1066                 pr_info("\tRX Queue %u rings\n", queue);
1067
1068                 if (priv->extend_desc)
1069                         head_rx = (void *)rx_q->dma_erx;
1070                 else
1071                         head_rx = (void *)rx_q->dma_rx;
1072
1073                 /* Display RX ring */
1074                 stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1075         }
1076 }
1077
1078 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1079 {
1080         u32 tx_cnt = priv->plat->tx_queues_to_use;
1081         void *head_tx;
1082         u32 queue;
1083
1084         /* Display TX rings */
1085         for (queue = 0; queue < tx_cnt; queue++) {
1086                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1087
1088                 pr_info("\tTX Queue %d rings\n", queue);
1089
1090                 if (priv->extend_desc)
1091                         head_tx = (void *)tx_q->dma_etx;
1092                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1093                         head_tx = (void *)tx_q->dma_entx;
1094                 else
1095                         head_tx = (void *)tx_q->dma_tx;
1096
1097                 stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1098         }
1099 }
1100
1101 static void stmmac_display_rings(struct stmmac_priv *priv)
1102 {
1103         /* Display RX ring */
1104         stmmac_display_rx_rings(priv);
1105
1106         /* Display TX ring */
1107         stmmac_display_tx_rings(priv);
1108 }
1109
1110 static int stmmac_set_bfsize(int mtu, int bufsize)
1111 {
1112         int ret = bufsize;
1113
1114         if (mtu >= BUF_SIZE_8KiB)
1115                 ret = BUF_SIZE_16KiB;
1116         else if (mtu >= BUF_SIZE_4KiB)
1117                 ret = BUF_SIZE_8KiB;
1118         else if (mtu >= BUF_SIZE_2KiB)
1119                 ret = BUF_SIZE_4KiB;
1120         else if (mtu > DEFAULT_BUFSIZE)
1121                 ret = BUF_SIZE_2KiB;
1122         else
1123                 ret = DEFAULT_BUFSIZE;
1124
1125         return ret;
1126 }
1127
1128 /**
1129  * stmmac_clear_rx_descriptors - clear RX descriptors
1130  * @priv: driver private structure
1131  * @queue: RX queue index
1132  * Description: this function is called to clear the RX descriptors
1133  * in case of both basic and extended descriptors are used.
1134  */
1135 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1136 {
1137         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1138         int i;
1139
1140         /* Clear the RX descriptors */
1141         for (i = 0; i < DMA_RX_SIZE; i++)
1142                 if (priv->extend_desc)
1143                         stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1144                                         priv->use_riwt, priv->mode,
1145                                         (i == DMA_RX_SIZE - 1),
1146                                         priv->dma_buf_sz);
1147                 else
1148                         stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1149                                         priv->use_riwt, priv->mode,
1150                                         (i == DMA_RX_SIZE - 1),
1151                                         priv->dma_buf_sz);
1152 }
1153
1154 /**
1155  * stmmac_clear_tx_descriptors - clear tx descriptors
1156  * @priv: driver private structure
1157  * @queue: TX queue index.
1158  * Description: this function is called to clear the TX descriptors
1159  * in case of both basic and extended descriptors are used.
1160  */
1161 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1162 {
1163         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1164         int i;
1165
1166         /* Clear the TX descriptors */
1167         for (i = 0; i < DMA_TX_SIZE; i++) {
1168                 int last = (i == (DMA_TX_SIZE - 1));
1169                 struct dma_desc *p;
1170
1171                 if (priv->extend_desc)
1172                         p = &tx_q->dma_etx[i].basic;
1173                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1174                         p = &tx_q->dma_entx[i].basic;
1175                 else
1176                         p = &tx_q->dma_tx[i];
1177
1178                 stmmac_init_tx_desc(priv, p, priv->mode, last);
1179         }
1180 }
1181
1182 /**
1183  * stmmac_clear_descriptors - clear descriptors
1184  * @priv: driver private structure
1185  * Description: this function is called to clear the TX and RX descriptors
1186  * in case of both basic and extended descriptors are used.
1187  */
1188 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1189 {
1190         u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1191         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1192         u32 queue;
1193
1194         /* Clear the RX descriptors */
1195         for (queue = 0; queue < rx_queue_cnt; queue++)
1196                 stmmac_clear_rx_descriptors(priv, queue);
1197
1198         /* Clear the TX descriptors */
1199         for (queue = 0; queue < tx_queue_cnt; queue++)
1200                 stmmac_clear_tx_descriptors(priv, queue);
1201 }
1202
1203 /**
1204  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1205  * @priv: driver private structure
1206  * @p: descriptor pointer
1207  * @i: descriptor index
1208  * @flags: gfp flag
1209  * @queue: RX queue index
1210  * Description: this function is called to allocate a receive buffer, perform
1211  * the DMA mapping and init the descriptor.
1212  */
1213 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1214                                   int i, gfp_t flags, u32 queue)
1215 {
1216         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1217         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1218
1219         buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1220         if (!buf->page)
1221                 return -ENOMEM;
1222
1223         if (priv->sph) {
1224                 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1225                 if (!buf->sec_page)
1226                         return -ENOMEM;
1227
1228                 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1229                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
1230         } else {
1231                 buf->sec_page = NULL;
1232         }
1233
1234         buf->addr = page_pool_get_dma_addr(buf->page);
1235         stmmac_set_desc_addr(priv, p, buf->addr);
1236         if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1237                 stmmac_init_desc3(priv, p);
1238
1239         return 0;
1240 }
1241
1242 /**
1243  * stmmac_free_rx_buffer - free RX dma buffers
1244  * @priv: private structure
1245  * @queue: RX queue index
1246  * @i: buffer index.
1247  */
1248 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1249 {
1250         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1251         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1252
1253         if (buf->page)
1254                 page_pool_put_page(rx_q->page_pool, buf->page, false);
1255         buf->page = NULL;
1256
1257         if (buf->sec_page)
1258                 page_pool_put_page(rx_q->page_pool, buf->sec_page, false);
1259         buf->sec_page = NULL;
1260 }
1261
1262 /**
1263  * stmmac_free_tx_buffer - free RX dma buffers
1264  * @priv: private structure
1265  * @queue: RX queue index
1266  * @i: buffer index.
1267  */
1268 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1269 {
1270         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1271
1272         if (tx_q->tx_skbuff_dma[i].buf) {
1273                 if (tx_q->tx_skbuff_dma[i].map_as_page)
1274                         dma_unmap_page(priv->device,
1275                                        tx_q->tx_skbuff_dma[i].buf,
1276                                        tx_q->tx_skbuff_dma[i].len,
1277                                        DMA_TO_DEVICE);
1278                 else
1279                         dma_unmap_single(priv->device,
1280                                          tx_q->tx_skbuff_dma[i].buf,
1281                                          tx_q->tx_skbuff_dma[i].len,
1282                                          DMA_TO_DEVICE);
1283         }
1284
1285         if (tx_q->tx_skbuff[i]) {
1286                 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1287                 tx_q->tx_skbuff[i] = NULL;
1288                 tx_q->tx_skbuff_dma[i].buf = 0;
1289                 tx_q->tx_skbuff_dma[i].map_as_page = false;
1290         }
1291 }
1292
1293 /**
1294  * init_dma_rx_desc_rings - init the RX descriptor rings
1295  * @dev: net device structure
1296  * @flags: gfp flag.
1297  * Description: this function initializes the DMA RX descriptors
1298  * and allocates the socket buffers. It supports the chained and ring
1299  * modes.
1300  */
1301 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1302 {
1303         struct stmmac_priv *priv = netdev_priv(dev);
1304         u32 rx_count = priv->plat->rx_queues_to_use;
1305         int ret = -ENOMEM;
1306         int queue;
1307         int i;
1308
1309         /* RX INITIALIZATION */
1310         netif_dbg(priv, probe, priv->dev,
1311                   "SKB addresses:\nskb\t\tskb data\tdma data\n");
1312
1313         for (queue = 0; queue < rx_count; queue++) {
1314                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1315
1316                 netif_dbg(priv, probe, priv->dev,
1317                           "(%s) dma_rx_phy=0x%08x\n", __func__,
1318                           (u32)rx_q->dma_rx_phy);
1319
1320                 stmmac_clear_rx_descriptors(priv, queue);
1321
1322                 for (i = 0; i < DMA_RX_SIZE; i++) {
1323                         struct dma_desc *p;
1324
1325                         if (priv->extend_desc)
1326                                 p = &((rx_q->dma_erx + i)->basic);
1327                         else
1328                                 p = rx_q->dma_rx + i;
1329
1330                         ret = stmmac_init_rx_buffers(priv, p, i, flags,
1331                                                      queue);
1332                         if (ret)
1333                                 goto err_init_rx_buffers;
1334                 }
1335
1336                 rx_q->cur_rx = 0;
1337                 rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1338
1339                 /* Setup the chained descriptor addresses */
1340                 if (priv->mode == STMMAC_CHAIN_MODE) {
1341                         if (priv->extend_desc)
1342                                 stmmac_mode_init(priv, rx_q->dma_erx,
1343                                                 rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1344                         else
1345                                 stmmac_mode_init(priv, rx_q->dma_rx,
1346                                                 rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1347                 }
1348         }
1349
1350         return 0;
1351
1352 err_init_rx_buffers:
1353         while (queue >= 0) {
1354                 while (--i >= 0)
1355                         stmmac_free_rx_buffer(priv, queue, i);
1356
1357                 if (queue == 0)
1358                         break;
1359
1360                 i = DMA_RX_SIZE;
1361                 queue--;
1362         }
1363
1364         return ret;
1365 }
1366
1367 /**
1368  * init_dma_tx_desc_rings - init the TX descriptor rings
1369  * @dev: net device structure.
1370  * Description: this function initializes the DMA TX descriptors
1371  * and allocates the socket buffers. It supports the chained and ring
1372  * modes.
1373  */
1374 static int init_dma_tx_desc_rings(struct net_device *dev)
1375 {
1376         struct stmmac_priv *priv = netdev_priv(dev);
1377         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1378         u32 queue;
1379         int i;
1380
1381         for (queue = 0; queue < tx_queue_cnt; queue++) {
1382                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1383
1384                 netif_dbg(priv, probe, priv->dev,
1385                           "(%s) dma_tx_phy=0x%08x\n", __func__,
1386                          (u32)tx_q->dma_tx_phy);
1387
1388                 /* Setup the chained descriptor addresses */
1389                 if (priv->mode == STMMAC_CHAIN_MODE) {
1390                         if (priv->extend_desc)
1391                                 stmmac_mode_init(priv, tx_q->dma_etx,
1392                                                 tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1393                         else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1394                                 stmmac_mode_init(priv, tx_q->dma_tx,
1395                                                 tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1396                 }
1397
1398                 for (i = 0; i < DMA_TX_SIZE; i++) {
1399                         struct dma_desc *p;
1400                         if (priv->extend_desc)
1401                                 p = &((tx_q->dma_etx + i)->basic);
1402                         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1403                                 p = &((tx_q->dma_entx + i)->basic);
1404                         else
1405                                 p = tx_q->dma_tx + i;
1406
1407                         stmmac_clear_desc(priv, p);
1408
1409                         tx_q->tx_skbuff_dma[i].buf = 0;
1410                         tx_q->tx_skbuff_dma[i].map_as_page = false;
1411                         tx_q->tx_skbuff_dma[i].len = 0;
1412                         tx_q->tx_skbuff_dma[i].last_segment = false;
1413                         tx_q->tx_skbuff[i] = NULL;
1414                 }
1415
1416                 tx_q->dirty_tx = 0;
1417                 tx_q->cur_tx = 0;
1418                 tx_q->mss = 0;
1419
1420                 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1421         }
1422
1423         return 0;
1424 }
1425
1426 /**
1427  * init_dma_desc_rings - init the RX/TX descriptor rings
1428  * @dev: net device structure
1429  * @flags: gfp flag.
1430  * Description: this function initializes the DMA RX/TX descriptors
1431  * and allocates the socket buffers. It supports the chained and ring
1432  * modes.
1433  */
1434 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1435 {
1436         struct stmmac_priv *priv = netdev_priv(dev);
1437         int ret;
1438
1439         ret = init_dma_rx_desc_rings(dev, flags);
1440         if (ret)
1441                 return ret;
1442
1443         ret = init_dma_tx_desc_rings(dev);
1444
1445         stmmac_clear_descriptors(priv);
1446
1447         if (netif_msg_hw(priv))
1448                 stmmac_display_rings(priv);
1449
1450         return ret;
1451 }
1452
1453 /**
1454  * dma_free_rx_skbufs - free RX dma buffers
1455  * @priv: private structure
1456  * @queue: RX queue index
1457  */
1458 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1459 {
1460         int i;
1461
1462         for (i = 0; i < DMA_RX_SIZE; i++)
1463                 stmmac_free_rx_buffer(priv, queue, i);
1464 }
1465
1466 /**
1467  * dma_free_tx_skbufs - free TX dma buffers
1468  * @priv: private structure
1469  * @queue: TX queue index
1470  */
1471 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1472 {
1473         int i;
1474
1475         for (i = 0; i < DMA_TX_SIZE; i++)
1476                 stmmac_free_tx_buffer(priv, queue, i);
1477 }
1478
1479 /**
1480  * free_dma_rx_desc_resources - free RX dma desc resources
1481  * @priv: private structure
1482  */
1483 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1484 {
1485         u32 rx_count = priv->plat->rx_queues_to_use;
1486         u32 queue;
1487
1488         /* Free RX queue resources */
1489         for (queue = 0; queue < rx_count; queue++) {
1490                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1491
1492                 /* Release the DMA RX socket buffers */
1493                 dma_free_rx_skbufs(priv, queue);
1494
1495                 /* Free DMA regions of consistent memory previously allocated */
1496                 if (!priv->extend_desc)
1497                         dma_free_coherent(priv->device,
1498                                           DMA_RX_SIZE * sizeof(struct dma_desc),
1499                                           rx_q->dma_rx, rx_q->dma_rx_phy);
1500                 else
1501                         dma_free_coherent(priv->device, DMA_RX_SIZE *
1502                                           sizeof(struct dma_extended_desc),
1503                                           rx_q->dma_erx, rx_q->dma_rx_phy);
1504
1505                 kfree(rx_q->buf_pool);
1506                 if (rx_q->page_pool)
1507                         page_pool_destroy(rx_q->page_pool);
1508         }
1509 }
1510
1511 /**
1512  * free_dma_tx_desc_resources - free TX dma desc resources
1513  * @priv: private structure
1514  */
1515 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1516 {
1517         u32 tx_count = priv->plat->tx_queues_to_use;
1518         u32 queue;
1519
1520         /* Free TX queue resources */
1521         for (queue = 0; queue < tx_count; queue++) {
1522                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1523                 size_t size;
1524                 void *addr;
1525
1526                 /* Release the DMA TX socket buffers */
1527                 dma_free_tx_skbufs(priv, queue);
1528
1529                 if (priv->extend_desc) {
1530                         size = sizeof(struct dma_extended_desc);
1531                         addr = tx_q->dma_etx;
1532                 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1533                         size = sizeof(struct dma_edesc);
1534                         addr = tx_q->dma_entx;
1535                 } else {
1536                         size = sizeof(struct dma_desc);
1537                         addr = tx_q->dma_tx;
1538                 }
1539
1540                 size *= DMA_TX_SIZE;
1541
1542                 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1543
1544                 kfree(tx_q->tx_skbuff_dma);
1545                 kfree(tx_q->tx_skbuff);
1546         }
1547 }
1548
1549 /**
1550  * alloc_dma_rx_desc_resources - alloc RX resources.
1551  * @priv: private structure
1552  * Description: according to which descriptor can be used (extend or basic)
1553  * this function allocates the resources for TX and RX paths. In case of
1554  * reception, for example, it pre-allocated the RX socket buffer in order to
1555  * allow zero-copy mechanism.
1556  */
1557 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1558 {
1559         u32 rx_count = priv->plat->rx_queues_to_use;
1560         int ret = -ENOMEM;
1561         u32 queue;
1562
1563         /* RX queues buffers and DMA */
1564         for (queue = 0; queue < rx_count; queue++) {
1565                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1566                 struct page_pool_params pp_params = { 0 };
1567                 unsigned int num_pages;
1568
1569                 rx_q->queue_index = queue;
1570                 rx_q->priv_data = priv;
1571
1572                 pp_params.flags = PP_FLAG_DMA_MAP;
1573                 pp_params.pool_size = DMA_RX_SIZE;
1574                 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1575                 pp_params.order = ilog2(num_pages);
1576                 pp_params.nid = dev_to_node(priv->device);
1577                 pp_params.dev = priv->device;
1578                 pp_params.dma_dir = DMA_FROM_DEVICE;
1579
1580                 rx_q->page_pool = page_pool_create(&pp_params);
1581                 if (IS_ERR(rx_q->page_pool)) {
1582                         ret = PTR_ERR(rx_q->page_pool);
1583                         rx_q->page_pool = NULL;
1584                         goto err_dma;
1585                 }
1586
1587                 rx_q->buf_pool = kcalloc(DMA_RX_SIZE, sizeof(*rx_q->buf_pool),
1588                                          GFP_KERNEL);
1589                 if (!rx_q->buf_pool)
1590                         goto err_dma;
1591
1592                 if (priv->extend_desc) {
1593                         rx_q->dma_erx = dma_alloc_coherent(priv->device,
1594                                                            DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1595                                                            &rx_q->dma_rx_phy,
1596                                                            GFP_KERNEL);
1597                         if (!rx_q->dma_erx)
1598                                 goto err_dma;
1599
1600                 } else {
1601                         rx_q->dma_rx = dma_alloc_coherent(priv->device,
1602                                                           DMA_RX_SIZE * sizeof(struct dma_desc),
1603                                                           &rx_q->dma_rx_phy,
1604                                                           GFP_KERNEL);
1605                         if (!rx_q->dma_rx)
1606                                 goto err_dma;
1607                 }
1608         }
1609
1610         return 0;
1611
1612 err_dma:
1613         free_dma_rx_desc_resources(priv);
1614
1615         return ret;
1616 }
1617
1618 /**
1619  * alloc_dma_tx_desc_resources - alloc TX resources.
1620  * @priv: private structure
1621  * Description: according to which descriptor can be used (extend or basic)
1622  * this function allocates the resources for TX and RX paths. In case of
1623  * reception, for example, it pre-allocated the RX socket buffer in order to
1624  * allow zero-copy mechanism.
1625  */
1626 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1627 {
1628         u32 tx_count = priv->plat->tx_queues_to_use;
1629         int ret = -ENOMEM;
1630         u32 queue;
1631
1632         /* TX queues buffers and DMA */
1633         for (queue = 0; queue < tx_count; queue++) {
1634                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1635                 size_t size;
1636                 void *addr;
1637
1638                 tx_q->queue_index = queue;
1639                 tx_q->priv_data = priv;
1640
1641                 tx_q->tx_skbuff_dma = kcalloc(DMA_TX_SIZE,
1642                                               sizeof(*tx_q->tx_skbuff_dma),
1643                                               GFP_KERNEL);
1644                 if (!tx_q->tx_skbuff_dma)
1645                         goto err_dma;
1646
1647                 tx_q->tx_skbuff = kcalloc(DMA_TX_SIZE,
1648                                           sizeof(struct sk_buff *),
1649                                           GFP_KERNEL);
1650                 if (!tx_q->tx_skbuff)
1651                         goto err_dma;
1652
1653                 if (priv->extend_desc)
1654                         size = sizeof(struct dma_extended_desc);
1655                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1656                         size = sizeof(struct dma_edesc);
1657                 else
1658                         size = sizeof(struct dma_desc);
1659
1660                 size *= DMA_TX_SIZE;
1661
1662                 addr = dma_alloc_coherent(priv->device, size,
1663                                           &tx_q->dma_tx_phy, GFP_KERNEL);
1664                 if (!addr)
1665                         goto err_dma;
1666
1667                 if (priv->extend_desc)
1668                         tx_q->dma_etx = addr;
1669                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1670                         tx_q->dma_entx = addr;
1671                 else
1672                         tx_q->dma_tx = addr;
1673         }
1674
1675         return 0;
1676
1677 err_dma:
1678         free_dma_tx_desc_resources(priv);
1679         return ret;
1680 }
1681
1682 /**
1683  * alloc_dma_desc_resources - alloc TX/RX resources.
1684  * @priv: private structure
1685  * Description: according to which descriptor can be used (extend or basic)
1686  * this function allocates the resources for TX and RX paths. In case of
1687  * reception, for example, it pre-allocated the RX socket buffer in order to
1688  * allow zero-copy mechanism.
1689  */
1690 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1691 {
1692         /* RX Allocation */
1693         int ret = alloc_dma_rx_desc_resources(priv);
1694
1695         if (ret)
1696                 return ret;
1697
1698         ret = alloc_dma_tx_desc_resources(priv);
1699
1700         return ret;
1701 }
1702
1703 /**
1704  * free_dma_desc_resources - free dma desc resources
1705  * @priv: private structure
1706  */
1707 static void free_dma_desc_resources(struct stmmac_priv *priv)
1708 {
1709         /* Release the DMA RX socket buffers */
1710         free_dma_rx_desc_resources(priv);
1711
1712         /* Release the DMA TX socket buffers */
1713         free_dma_tx_desc_resources(priv);
1714 }
1715
1716 /**
1717  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1718  *  @priv: driver private structure
1719  *  Description: It is used for enabling the rx queues in the MAC
1720  */
1721 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1722 {
1723         u32 rx_queues_count = priv->plat->rx_queues_to_use;
1724         int queue;
1725         u8 mode;
1726
1727         for (queue = 0; queue < rx_queues_count; queue++) {
1728                 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1729                 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1730         }
1731 }
1732
1733 /**
1734  * stmmac_start_rx_dma - start RX DMA channel
1735  * @priv: driver private structure
1736  * @chan: RX channel index
1737  * Description:
1738  * This starts a RX DMA channel
1739  */
1740 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1741 {
1742         netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1743         stmmac_start_rx(priv, priv->ioaddr, chan);
1744 }
1745
1746 /**
1747  * stmmac_start_tx_dma - start TX DMA channel
1748  * @priv: driver private structure
1749  * @chan: TX channel index
1750  * Description:
1751  * This starts a TX DMA channel
1752  */
1753 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1754 {
1755         netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1756         stmmac_start_tx(priv, priv->ioaddr, chan);
1757 }
1758
1759 /**
1760  * stmmac_stop_rx_dma - stop RX DMA channel
1761  * @priv: driver private structure
1762  * @chan: RX channel index
1763  * Description:
1764  * This stops a RX DMA channel
1765  */
1766 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1767 {
1768         netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1769         stmmac_stop_rx(priv, priv->ioaddr, chan);
1770 }
1771
1772 /**
1773  * stmmac_stop_tx_dma - stop TX DMA channel
1774  * @priv: driver private structure
1775  * @chan: TX channel index
1776  * Description:
1777  * This stops a TX DMA channel
1778  */
1779 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1780 {
1781         netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1782         stmmac_stop_tx(priv, priv->ioaddr, chan);
1783 }
1784
1785 /**
1786  * stmmac_start_all_dma - start all RX and TX DMA channels
1787  * @priv: driver private structure
1788  * Description:
1789  * This starts all the RX and TX DMA channels
1790  */
1791 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1792 {
1793         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1794         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1795         u32 chan = 0;
1796
1797         for (chan = 0; chan < rx_channels_count; chan++)
1798                 stmmac_start_rx_dma(priv, chan);
1799
1800         for (chan = 0; chan < tx_channels_count; chan++)
1801                 stmmac_start_tx_dma(priv, chan);
1802 }
1803
1804 /**
1805  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1806  * @priv: driver private structure
1807  * Description:
1808  * This stops the RX and TX DMA channels
1809  */
1810 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1811 {
1812         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1813         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1814         u32 chan = 0;
1815
1816         for (chan = 0; chan < rx_channels_count; chan++)
1817                 stmmac_stop_rx_dma(priv, chan);
1818
1819         for (chan = 0; chan < tx_channels_count; chan++)
1820                 stmmac_stop_tx_dma(priv, chan);
1821 }
1822
1823 /**
1824  *  stmmac_dma_operation_mode - HW DMA operation mode
1825  *  @priv: driver private structure
1826  *  Description: it is used for configuring the DMA operation mode register in
1827  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1828  */
1829 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1830 {
1831         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1832         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1833         int rxfifosz = priv->plat->rx_fifo_size;
1834         int txfifosz = priv->plat->tx_fifo_size;
1835         u32 txmode = 0;
1836         u32 rxmode = 0;
1837         u32 chan = 0;
1838         u8 qmode = 0;
1839
1840         if (rxfifosz == 0)
1841                 rxfifosz = priv->dma_cap.rx_fifo_size;
1842         if (txfifosz == 0)
1843                 txfifosz = priv->dma_cap.tx_fifo_size;
1844
1845         /* Adjust for real per queue fifo size */
1846         rxfifosz /= rx_channels_count;
1847         txfifosz /= tx_channels_count;
1848
1849         if (priv->plat->force_thresh_dma_mode) {
1850                 txmode = tc;
1851                 rxmode = tc;
1852         } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1853                 /*
1854                  * In case of GMAC, SF mode can be enabled
1855                  * to perform the TX COE in HW. This depends on:
1856                  * 1) TX COE if actually supported
1857                  * 2) There is no bugged Jumbo frame support
1858                  *    that needs to not insert csum in the TDES.
1859                  */
1860                 txmode = SF_DMA_MODE;
1861                 rxmode = SF_DMA_MODE;
1862                 priv->xstats.threshold = SF_DMA_MODE;
1863         } else {
1864                 txmode = tc;
1865                 rxmode = SF_DMA_MODE;
1866         }
1867
1868         /* configure all channels */
1869         for (chan = 0; chan < rx_channels_count; chan++) {
1870                 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1871
1872                 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1873                                 rxfifosz, qmode);
1874                 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1875                                 chan);
1876         }
1877
1878         for (chan = 0; chan < tx_channels_count; chan++) {
1879                 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1880
1881                 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1882                                 txfifosz, qmode);
1883         }
1884 }
1885
1886 /**
1887  * stmmac_tx_clean - to manage the transmission completion
1888  * @priv: driver private structure
1889  * @queue: TX queue index
1890  * Description: it reclaims the transmit resources after transmission completes.
1891  */
1892 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1893 {
1894         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1895         unsigned int bytes_compl = 0, pkts_compl = 0;
1896         unsigned int entry, count = 0;
1897
1898         __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1899
1900         priv->xstats.tx_clean++;
1901
1902         entry = tx_q->dirty_tx;
1903         while ((entry != tx_q->cur_tx) && (count < budget)) {
1904                 struct sk_buff *skb = tx_q->tx_skbuff[entry];
1905                 struct dma_desc *p;
1906                 int status;
1907
1908                 if (priv->extend_desc)
1909                         p = (struct dma_desc *)(tx_q->dma_etx + entry);
1910                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1911                         p = &tx_q->dma_entx[entry].basic;
1912                 else
1913                         p = tx_q->dma_tx + entry;
1914
1915                 status = stmmac_tx_status(priv, &priv->dev->stats,
1916                                 &priv->xstats, p, priv->ioaddr);
1917                 /* Check if the descriptor is owned by the DMA */
1918                 if (unlikely(status & tx_dma_own))
1919                         break;
1920
1921                 count++;
1922
1923                 /* Make sure descriptor fields are read after reading
1924                  * the own bit.
1925                  */
1926                 dma_rmb();
1927
1928                 /* Just consider the last segment and ...*/
1929                 if (likely(!(status & tx_not_ls))) {
1930                         /* ... verify the status error condition */
1931                         if (unlikely(status & tx_err)) {
1932                                 priv->dev->stats.tx_errors++;
1933                         } else {
1934                                 priv->dev->stats.tx_packets++;
1935                                 priv->xstats.tx_pkt_n++;
1936                         }
1937                         stmmac_get_tx_hwtstamp(priv, p, skb);
1938                 }
1939
1940                 if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1941                         if (tx_q->tx_skbuff_dma[entry].map_as_page)
1942                                 dma_unmap_page(priv->device,
1943                                                tx_q->tx_skbuff_dma[entry].buf,
1944                                                tx_q->tx_skbuff_dma[entry].len,
1945                                                DMA_TO_DEVICE);
1946                         else
1947                                 dma_unmap_single(priv->device,
1948                                                  tx_q->tx_skbuff_dma[entry].buf,
1949                                                  tx_q->tx_skbuff_dma[entry].len,
1950                                                  DMA_TO_DEVICE);
1951                         tx_q->tx_skbuff_dma[entry].buf = 0;
1952                         tx_q->tx_skbuff_dma[entry].len = 0;
1953                         tx_q->tx_skbuff_dma[entry].map_as_page = false;
1954                 }
1955
1956                 stmmac_clean_desc3(priv, tx_q, p);
1957
1958                 tx_q->tx_skbuff_dma[entry].last_segment = false;
1959                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1960
1961                 if (likely(skb != NULL)) {
1962                         pkts_compl++;
1963                         bytes_compl += skb->len;
1964                         dev_consume_skb_any(skb);
1965                         tx_q->tx_skbuff[entry] = NULL;
1966                 }
1967
1968                 stmmac_release_tx_desc(priv, p, priv->mode);
1969
1970                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1971         }
1972         tx_q->dirty_tx = entry;
1973
1974         netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1975                                   pkts_compl, bytes_compl);
1976
1977         if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1978                                                                 queue))) &&
1979             stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1980
1981                 netif_dbg(priv, tx_done, priv->dev,
1982                           "%s: restart transmit\n", __func__);
1983                 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1984         }
1985
1986         if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1987                 stmmac_enable_eee_mode(priv);
1988                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1989         }
1990
1991         /* We still have pending packets, let's call for a new scheduling */
1992         if (tx_q->dirty_tx != tx_q->cur_tx)
1993                 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
1994
1995         __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1996
1997         return count;
1998 }
1999
2000 /**
2001  * stmmac_tx_err - to manage the tx error
2002  * @priv: driver private structure
2003  * @chan: channel index
2004  * Description: it cleans the descriptors and restarts the transmission
2005  * in case of transmission errors.
2006  */
2007 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2008 {
2009         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2010
2011         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2012
2013         stmmac_stop_tx_dma(priv, chan);
2014         dma_free_tx_skbufs(priv, chan);
2015         stmmac_clear_tx_descriptors(priv, chan);
2016         tx_q->dirty_tx = 0;
2017         tx_q->cur_tx = 0;
2018         tx_q->mss = 0;
2019         netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2020         stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2021                             tx_q->dma_tx_phy, chan);
2022         stmmac_start_tx_dma(priv, chan);
2023
2024         priv->dev->stats.tx_errors++;
2025         netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2026 }
2027
2028 /**
2029  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2030  *  @priv: driver private structure
2031  *  @txmode: TX operating mode
2032  *  @rxmode: RX operating mode
2033  *  @chan: channel index
2034  *  Description: it is used for configuring of the DMA operation mode in
2035  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2036  *  mode.
2037  */
2038 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2039                                           u32 rxmode, u32 chan)
2040 {
2041         u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2042         u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2043         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2044         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2045         int rxfifosz = priv->plat->rx_fifo_size;
2046         int txfifosz = priv->plat->tx_fifo_size;
2047
2048         if (rxfifosz == 0)
2049                 rxfifosz = priv->dma_cap.rx_fifo_size;
2050         if (txfifosz == 0)
2051                 txfifosz = priv->dma_cap.tx_fifo_size;
2052
2053         /* Adjust for real per queue fifo size */
2054         rxfifosz /= rx_channels_count;
2055         txfifosz /= tx_channels_count;
2056
2057         stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2058         stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2059 }
2060
2061 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2062 {
2063         int ret;
2064
2065         ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2066                         priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2067         if (ret && (ret != -EINVAL)) {
2068                 stmmac_global_err(priv);
2069                 return true;
2070         }
2071
2072         return false;
2073 }
2074
2075 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2076 {
2077         int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2078                                                  &priv->xstats, chan);
2079         struct stmmac_channel *ch = &priv->channel[chan];
2080         unsigned long flags;
2081
2082         if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2083                 if (napi_schedule_prep(&ch->rx_napi)) {
2084                         spin_lock_irqsave(&ch->lock, flags);
2085                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2086                         spin_unlock_irqrestore(&ch->lock, flags);
2087                         __napi_schedule_irqoff(&ch->rx_napi);
2088                 }
2089         }
2090
2091         if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2092                 if (napi_schedule_prep(&ch->tx_napi)) {
2093                         spin_lock_irqsave(&ch->lock, flags);
2094                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2095                         spin_unlock_irqrestore(&ch->lock, flags);
2096                         __napi_schedule_irqoff(&ch->tx_napi);
2097                 }
2098         }
2099
2100         return status;
2101 }
2102
2103 /**
2104  * stmmac_dma_interrupt - DMA ISR
2105  * @priv: driver private structure
2106  * Description: this is the DMA ISR. It is called by the main ISR.
2107  * It calls the dwmac dma routine and schedule poll method in case of some
2108  * work can be done.
2109  */
2110 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2111 {
2112         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2113         u32 rx_channel_count = priv->plat->rx_queues_to_use;
2114         u32 channels_to_check = tx_channel_count > rx_channel_count ?
2115                                 tx_channel_count : rx_channel_count;
2116         u32 chan;
2117         int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2118
2119         /* Make sure we never check beyond our status buffer. */
2120         if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2121                 channels_to_check = ARRAY_SIZE(status);
2122
2123         for (chan = 0; chan < channels_to_check; chan++)
2124                 status[chan] = stmmac_napi_check(priv, chan);
2125
2126         for (chan = 0; chan < tx_channel_count; chan++) {
2127                 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2128                         /* Try to bump up the dma threshold on this failure */
2129                         if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2130                             (tc <= 256)) {
2131                                 tc += 64;
2132                                 if (priv->plat->force_thresh_dma_mode)
2133                                         stmmac_set_dma_operation_mode(priv,
2134                                                                       tc,
2135                                                                       tc,
2136                                                                       chan);
2137                                 else
2138                                         stmmac_set_dma_operation_mode(priv,
2139                                                                     tc,
2140                                                                     SF_DMA_MODE,
2141                                                                     chan);
2142                                 priv->xstats.threshold = tc;
2143                         }
2144                 } else if (unlikely(status[chan] == tx_hard_error)) {
2145                         stmmac_tx_err(priv, chan);
2146                 }
2147         }
2148 }
2149
2150 /**
2151  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2152  * @priv: driver private structure
2153  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2154  */
2155 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2156 {
2157         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2158                             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2159
2160         stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2161
2162         if (priv->dma_cap.rmon) {
2163                 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2164                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2165         } else
2166                 netdev_info(priv->dev, "No MAC Management Counters available\n");
2167 }
2168
2169 /**
2170  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2171  * @priv: driver private structure
2172  * Description:
2173  *  new GMAC chip generations have a new register to indicate the
2174  *  presence of the optional feature/functions.
2175  *  This can be also used to override the value passed through the
2176  *  platform and necessary for old MAC10/100 and GMAC chips.
2177  */
2178 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2179 {
2180         return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2181 }
2182
2183 /**
2184  * stmmac_check_ether_addr - check if the MAC addr is valid
2185  * @priv: driver private structure
2186  * Description:
2187  * it is to verify if the MAC address is valid, in case of failures it
2188  * generates a random MAC address
2189  */
2190 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2191 {
2192         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2193                 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2194                 if (!is_valid_ether_addr(priv->dev->dev_addr))
2195                         eth_hw_addr_random(priv->dev);
2196                 dev_info(priv->device, "device MAC address %pM\n",
2197                          priv->dev->dev_addr);
2198         }
2199 }
2200
2201 /**
2202  * stmmac_init_dma_engine - DMA init.
2203  * @priv: driver private structure
2204  * Description:
2205  * It inits the DMA invoking the specific MAC/GMAC callback.
2206  * Some DMA parameters can be passed from the platform;
2207  * in case of these are not passed a default is kept for the MAC or GMAC.
2208  */
2209 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2210 {
2211         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2212         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2213         u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2214         struct stmmac_rx_queue *rx_q;
2215         struct stmmac_tx_queue *tx_q;
2216         u32 chan = 0;
2217         int atds = 0;
2218         int ret = 0;
2219
2220         if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2221                 dev_err(priv->device, "Invalid DMA configuration\n");
2222                 return -EINVAL;
2223         }
2224
2225         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2226                 atds = 1;
2227
2228         ret = stmmac_reset(priv, priv->ioaddr);
2229         if (ret) {
2230                 dev_err(priv->device, "Failed to reset the dma\n");
2231                 return ret;
2232         }
2233
2234         /* DMA Configuration */
2235         stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2236
2237         if (priv->plat->axi)
2238                 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2239
2240         /* DMA CSR Channel configuration */
2241         for (chan = 0; chan < dma_csr_ch; chan++)
2242                 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2243
2244         /* DMA RX Channel Configuration */
2245         for (chan = 0; chan < rx_channels_count; chan++) {
2246                 rx_q = &priv->rx_queue[chan];
2247
2248                 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2249                                     rx_q->dma_rx_phy, chan);
2250
2251                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2252                             (DMA_RX_SIZE * sizeof(struct dma_desc));
2253                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2254                                        rx_q->rx_tail_addr, chan);
2255         }
2256
2257         /* DMA TX Channel Configuration */
2258         for (chan = 0; chan < tx_channels_count; chan++) {
2259                 tx_q = &priv->tx_queue[chan];
2260
2261                 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2262                                     tx_q->dma_tx_phy, chan);
2263
2264                 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2265                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2266                                        tx_q->tx_tail_addr, chan);
2267         }
2268
2269         return ret;
2270 }
2271
2272 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2273 {
2274         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2275
2276         mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2277 }
2278
2279 /**
2280  * stmmac_tx_timer - mitigation sw timer for tx.
2281  * @data: data pointer
2282  * Description:
2283  * This is the timer handler to directly invoke the stmmac_tx_clean.
2284  */
2285 static void stmmac_tx_timer(struct timer_list *t)
2286 {
2287         struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2288         struct stmmac_priv *priv = tx_q->priv_data;
2289         struct stmmac_channel *ch;
2290
2291         ch = &priv->channel[tx_q->queue_index];
2292
2293         if (likely(napi_schedule_prep(&ch->tx_napi))) {
2294                 unsigned long flags;
2295
2296                 spin_lock_irqsave(&ch->lock, flags);
2297                 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2298                 spin_unlock_irqrestore(&ch->lock, flags);
2299                 __napi_schedule(&ch->tx_napi);
2300         }
2301 }
2302
2303 /**
2304  * stmmac_init_coalesce - init mitigation options.
2305  * @priv: driver private structure
2306  * Description:
2307  * This inits the coalesce parameters: i.e. timer rate,
2308  * timer handler and default threshold used for enabling the
2309  * interrupt on completion bit.
2310  */
2311 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2312 {
2313         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2314         u32 chan;
2315
2316         priv->tx_coal_frames = STMMAC_TX_FRAMES;
2317         priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2318         priv->rx_coal_frames = STMMAC_RX_FRAMES;
2319
2320         for (chan = 0; chan < tx_channel_count; chan++) {
2321                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2322
2323                 timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2324         }
2325 }
2326
2327 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2328 {
2329         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2330         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2331         u32 chan;
2332
2333         /* set TX ring length */
2334         for (chan = 0; chan < tx_channels_count; chan++)
2335                 stmmac_set_tx_ring_len(priv, priv->ioaddr,
2336                                 (DMA_TX_SIZE - 1), chan);
2337
2338         /* set RX ring length */
2339         for (chan = 0; chan < rx_channels_count; chan++)
2340                 stmmac_set_rx_ring_len(priv, priv->ioaddr,
2341                                 (DMA_RX_SIZE - 1), chan);
2342 }
2343
2344 /**
2345  *  stmmac_set_tx_queue_weight - Set TX queue weight
2346  *  @priv: driver private structure
2347  *  Description: It is used for setting TX queues weight
2348  */
2349 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2350 {
2351         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2352         u32 weight;
2353         u32 queue;
2354
2355         for (queue = 0; queue < tx_queues_count; queue++) {
2356                 weight = priv->plat->tx_queues_cfg[queue].weight;
2357                 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2358         }
2359 }
2360
2361 /**
2362  *  stmmac_configure_cbs - Configure CBS in TX queue
2363  *  @priv: driver private structure
2364  *  Description: It is used for configuring CBS in AVB TX queues
2365  */
2366 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2367 {
2368         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2369         u32 mode_to_use;
2370         u32 queue;
2371
2372         /* queue 0 is reserved for legacy traffic */
2373         for (queue = 1; queue < tx_queues_count; queue++) {
2374                 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2375                 if (mode_to_use == MTL_QUEUE_DCB)
2376                         continue;
2377
2378                 stmmac_config_cbs(priv, priv->hw,
2379                                 priv->plat->tx_queues_cfg[queue].send_slope,
2380                                 priv->plat->tx_queues_cfg[queue].idle_slope,
2381                                 priv->plat->tx_queues_cfg[queue].high_credit,
2382                                 priv->plat->tx_queues_cfg[queue].low_credit,
2383                                 queue);
2384         }
2385 }
2386
2387 /**
2388  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2389  *  @priv: driver private structure
2390  *  Description: It is used for mapping RX queues to RX dma channels
2391  */
2392 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2393 {
2394         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2395         u32 queue;
2396         u32 chan;
2397
2398         for (queue = 0; queue < rx_queues_count; queue++) {
2399                 chan = priv->plat->rx_queues_cfg[queue].chan;
2400                 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2401         }
2402 }
2403
2404 /**
2405  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2406  *  @priv: driver private structure
2407  *  Description: It is used for configuring the RX Queue Priority
2408  */
2409 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2410 {
2411         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2412         u32 queue;
2413         u32 prio;
2414
2415         for (queue = 0; queue < rx_queues_count; queue++) {
2416                 if (!priv->plat->rx_queues_cfg[queue].use_prio)
2417                         continue;
2418
2419                 prio = priv->plat->rx_queues_cfg[queue].prio;
2420                 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2421         }
2422 }
2423
2424 /**
2425  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2426  *  @priv: driver private structure
2427  *  Description: It is used for configuring the TX Queue Priority
2428  */
2429 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2430 {
2431         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2432         u32 queue;
2433         u32 prio;
2434
2435         for (queue = 0; queue < tx_queues_count; queue++) {
2436                 if (!priv->plat->tx_queues_cfg[queue].use_prio)
2437                         continue;
2438
2439                 prio = priv->plat->tx_queues_cfg[queue].prio;
2440                 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2441         }
2442 }
2443
2444 /**
2445  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2446  *  @priv: driver private structure
2447  *  Description: It is used for configuring the RX queue routing
2448  */
2449 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2450 {
2451         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2452         u32 queue;
2453         u8 packet;
2454
2455         for (queue = 0; queue < rx_queues_count; queue++) {
2456                 /* no specific packet type routing specified for the queue */
2457                 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2458                         continue;
2459
2460                 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2461                 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2462         }
2463 }
2464
2465 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2466 {
2467         if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2468                 priv->rss.enable = false;
2469                 return;
2470         }
2471
2472         if (priv->dev->features & NETIF_F_RXHASH)
2473                 priv->rss.enable = true;
2474         else
2475                 priv->rss.enable = false;
2476
2477         stmmac_rss_configure(priv, priv->hw, &priv->rss,
2478                              priv->plat->rx_queues_to_use);
2479 }
2480
2481 /**
2482  *  stmmac_mtl_configuration - Configure MTL
2483  *  @priv: driver private structure
2484  *  Description: It is used for configurring MTL
2485  */
2486 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2487 {
2488         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2489         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2490
2491         if (tx_queues_count > 1)
2492                 stmmac_set_tx_queue_weight(priv);
2493
2494         /* Configure MTL RX algorithms */
2495         if (rx_queues_count > 1)
2496                 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2497                                 priv->plat->rx_sched_algorithm);
2498
2499         /* Configure MTL TX algorithms */
2500         if (tx_queues_count > 1)
2501                 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2502                                 priv->plat->tx_sched_algorithm);
2503
2504         /* Configure CBS in AVB TX queues */
2505         if (tx_queues_count > 1)
2506                 stmmac_configure_cbs(priv);
2507
2508         /* Map RX MTL to DMA channels */
2509         stmmac_rx_queue_dma_chan_map(priv);
2510
2511         /* Enable MAC RX Queues */
2512         stmmac_mac_enable_rx_queues(priv);
2513
2514         /* Set RX priorities */
2515         if (rx_queues_count > 1)
2516                 stmmac_mac_config_rx_queues_prio(priv);
2517
2518         /* Set TX priorities */
2519         if (tx_queues_count > 1)
2520                 stmmac_mac_config_tx_queues_prio(priv);
2521
2522         /* Set RX routing */
2523         if (rx_queues_count > 1)
2524                 stmmac_mac_config_rx_queues_routing(priv);
2525
2526         /* Receive Side Scaling */
2527         if (rx_queues_count > 1)
2528                 stmmac_mac_config_rss(priv);
2529 }
2530
2531 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2532 {
2533         if (priv->dma_cap.asp) {
2534                 netdev_info(priv->dev, "Enabling Safety Features\n");
2535                 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2536         } else {
2537                 netdev_info(priv->dev, "No Safety Features support found\n");
2538         }
2539 }
2540
2541 /**
2542  * stmmac_hw_setup - setup mac in a usable state.
2543  *  @dev : pointer to the device structure.
2544  *  Description:
2545  *  this is the main function to setup the HW in a usable state because the
2546  *  dma engine is reset, the core registers are configured (e.g. AXI,
2547  *  Checksum features, timers). The DMA is ready to start receiving and
2548  *  transmitting.
2549  *  Return value:
2550  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2551  *  file on failure.
2552  */
2553 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2554 {
2555         struct stmmac_priv *priv = netdev_priv(dev);
2556         u32 rx_cnt = priv->plat->rx_queues_to_use;
2557         u32 tx_cnt = priv->plat->tx_queues_to_use;
2558         u32 chan;
2559         int ret;
2560
2561         /* DMA initialization and SW reset */
2562         ret = stmmac_init_dma_engine(priv);
2563         if (ret < 0) {
2564                 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2565                            __func__);
2566                 return ret;
2567         }
2568
2569         /* Copy the MAC addr into the HW  */
2570         stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2571
2572         /* PS and related bits will be programmed according to the speed */
2573         if (priv->hw->pcs) {
2574                 int speed = priv->plat->mac_port_sel_speed;
2575
2576                 if ((speed == SPEED_10) || (speed == SPEED_100) ||
2577                     (speed == SPEED_1000)) {
2578                         priv->hw->ps = speed;
2579                 } else {
2580                         dev_warn(priv->device, "invalid port speed\n");
2581                         priv->hw->ps = 0;
2582                 }
2583         }
2584
2585         /* Initialize the MAC Core */
2586         stmmac_core_init(priv, priv->hw, dev);
2587
2588         /* Initialize MTL*/
2589         stmmac_mtl_configuration(priv);
2590
2591         /* Initialize Safety Features */
2592         stmmac_safety_feat_configuration(priv);
2593
2594         ret = stmmac_rx_ipc(priv, priv->hw);
2595         if (!ret) {
2596                 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2597                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2598                 priv->hw->rx_csum = 0;
2599         }
2600
2601         /* Enable the MAC Rx/Tx */
2602         stmmac_mac_set(priv, priv->ioaddr, true);
2603
2604         /* Set the HW DMA mode and the COE */
2605         stmmac_dma_operation_mode(priv);
2606
2607         stmmac_mmc_setup(priv);
2608
2609         if (init_ptp) {
2610                 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2611                 if (ret < 0)
2612                         netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2613
2614                 ret = stmmac_init_ptp(priv);
2615                 if (ret == -EOPNOTSUPP)
2616                         netdev_warn(priv->dev, "PTP not supported by HW\n");
2617                 else if (ret)
2618                         netdev_warn(priv->dev, "PTP init failed\n");
2619         }
2620
2621         priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2622
2623         if (priv->use_riwt) {
2624                 if (!priv->rx_riwt)
2625                         priv->rx_riwt = DEF_DMA_RIWT;
2626
2627                 ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt);
2628         }
2629
2630         if (priv->hw->pcs)
2631                 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
2632
2633         /* set TX and RX rings length */
2634         stmmac_set_rings_length(priv);
2635
2636         /* Enable TSO */
2637         if (priv->tso) {
2638                 for (chan = 0; chan < tx_cnt; chan++)
2639                         stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2640         }
2641
2642         /* Enable Split Header */
2643         if (priv->sph && priv->hw->rx_csum) {
2644                 for (chan = 0; chan < rx_cnt; chan++)
2645                         stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2646         }
2647
2648         /* VLAN Tag Insertion */
2649         if (priv->dma_cap.vlins)
2650                 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2651
2652         /* TBS */
2653         for (chan = 0; chan < tx_cnt; chan++) {
2654                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2655                 int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
2656
2657                 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
2658         }
2659
2660         /* Start the ball rolling... */
2661         stmmac_start_all_dma(priv);
2662
2663         return 0;
2664 }
2665
2666 static void stmmac_hw_teardown(struct net_device *dev)
2667 {
2668         struct stmmac_priv *priv = netdev_priv(dev);
2669
2670         clk_disable_unprepare(priv->plat->clk_ptp_ref);
2671 }
2672
2673 /**
2674  *  stmmac_open - open entry point of the driver
2675  *  @dev : pointer to the device structure.
2676  *  Description:
2677  *  This function is the open entry point of the driver.
2678  *  Return value:
2679  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2680  *  file on failure.
2681  */
2682 static int stmmac_open(struct net_device *dev)
2683 {
2684         struct stmmac_priv *priv = netdev_priv(dev);
2685         int bfsize = 0;
2686         u32 chan;
2687         int ret;
2688
2689         if (priv->hw->pcs != STMMAC_PCS_TBI &&
2690             priv->hw->pcs != STMMAC_PCS_RTBI) {
2691                 ret = stmmac_init_phy(dev);
2692                 if (ret) {
2693                         netdev_err(priv->dev,
2694                                    "%s: Cannot attach to PHY (error: %d)\n",
2695                                    __func__, ret);
2696                         return ret;
2697                 }
2698         }
2699
2700         /* Extra statistics */
2701         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2702         priv->xstats.threshold = tc;
2703
2704         bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
2705         if (bfsize < 0)
2706                 bfsize = 0;
2707
2708         if (bfsize < BUF_SIZE_16KiB)
2709                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
2710
2711         priv->dma_buf_sz = bfsize;
2712         buf_sz = bfsize;
2713
2714         priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2715
2716         /* Earlier check for TBS */
2717         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
2718                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2719                 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
2720
2721                 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
2722                 if (stmmac_enable_tbs(priv, priv->ioaddr, tbs_en, chan))
2723                         tx_q->tbs &= ~STMMAC_TBS_AVAIL;
2724         }
2725
2726         ret = alloc_dma_desc_resources(priv);
2727         if (ret < 0) {
2728                 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2729                            __func__);
2730                 goto dma_desc_error;
2731         }
2732
2733         ret = init_dma_desc_rings(dev, GFP_KERNEL);
2734         if (ret < 0) {
2735                 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2736                            __func__);
2737                 goto init_error;
2738         }
2739
2740         ret = stmmac_hw_setup(dev, true);
2741         if (ret < 0) {
2742                 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2743                 goto init_error;
2744         }
2745
2746         stmmac_init_coalesce(priv);
2747
2748         phylink_start(priv->phylink);
2749
2750         /* Request the IRQ lines */
2751         ret = request_irq(dev->irq, stmmac_interrupt,
2752                           IRQF_SHARED, dev->name, dev);
2753         if (unlikely(ret < 0)) {
2754                 netdev_err(priv->dev,
2755                            "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2756                            __func__, dev->irq, ret);
2757                 goto irq_error;
2758         }
2759
2760         /* Request the Wake IRQ in case of another line is used for WoL */
2761         if (priv->wol_irq != dev->irq) {
2762                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
2763                                   IRQF_SHARED, dev->name, dev);
2764                 if (unlikely(ret < 0)) {
2765                         netdev_err(priv->dev,
2766                                    "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2767                                    __func__, priv->wol_irq, ret);
2768                         goto wolirq_error;
2769                 }
2770         }
2771
2772         /* Request the IRQ lines */
2773         if (priv->lpi_irq > 0) {
2774                 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2775                                   dev->name, dev);
2776                 if (unlikely(ret < 0)) {
2777                         netdev_err(priv->dev,
2778                                    "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2779                                    __func__, priv->lpi_irq, ret);
2780                         goto lpiirq_error;
2781                 }
2782         }
2783
2784         stmmac_enable_all_queues(priv);
2785         stmmac_start_all_queues(priv);
2786
2787         return 0;
2788
2789 lpiirq_error:
2790         if (priv->wol_irq != dev->irq)
2791                 free_irq(priv->wol_irq, dev);
2792 wolirq_error:
2793         free_irq(dev->irq, dev);
2794 irq_error:
2795         phylink_stop(priv->phylink);
2796
2797         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2798                 del_timer_sync(&priv->tx_queue[chan].txtimer);
2799
2800         stmmac_hw_teardown(dev);
2801 init_error:
2802         free_dma_desc_resources(priv);
2803 dma_desc_error:
2804         phylink_disconnect_phy(priv->phylink);
2805         return ret;
2806 }
2807
2808 /**
2809  *  stmmac_release - close entry point of the driver
2810  *  @dev : device pointer.
2811  *  Description:
2812  *  This is the stop entry point of the driver.
2813  */
2814 static int stmmac_release(struct net_device *dev)
2815 {
2816         struct stmmac_priv *priv = netdev_priv(dev);
2817         u32 chan;
2818
2819         if (priv->eee_enabled)
2820                 del_timer_sync(&priv->eee_ctrl_timer);
2821
2822         /* Stop and disconnect the PHY */
2823         phylink_stop(priv->phylink);
2824         phylink_disconnect_phy(priv->phylink);
2825
2826         stmmac_stop_all_queues(priv);
2827
2828         stmmac_disable_all_queues(priv);
2829
2830         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2831                 del_timer_sync(&priv->tx_queue[chan].txtimer);
2832
2833         /* Free the IRQ lines */
2834         free_irq(dev->irq, dev);
2835         if (priv->wol_irq != dev->irq)
2836                 free_irq(priv->wol_irq, dev);
2837         if (priv->lpi_irq > 0)
2838                 free_irq(priv->lpi_irq, dev);
2839
2840         /* Stop TX/RX DMA and clear the descriptors */
2841         stmmac_stop_all_dma(priv);
2842
2843         /* Release and free the Rx/Tx resources */
2844         free_dma_desc_resources(priv);
2845
2846         /* Disable the MAC Rx/Tx */
2847         stmmac_mac_set(priv, priv->ioaddr, false);
2848
2849         netif_carrier_off(dev);
2850
2851         stmmac_release_ptp(priv);
2852
2853         return 0;
2854 }
2855
2856 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
2857                                struct stmmac_tx_queue *tx_q)
2858 {
2859         u16 tag = 0x0, inner_tag = 0x0;
2860         u32 inner_type = 0x0;
2861         struct dma_desc *p;
2862
2863         if (!priv->dma_cap.vlins)
2864                 return false;
2865         if (!skb_vlan_tag_present(skb))
2866                 return false;
2867         if (skb->vlan_proto == htons(ETH_P_8021AD)) {
2868                 inner_tag = skb_vlan_tag_get(skb);
2869                 inner_type = STMMAC_VLAN_INSERT;
2870         }
2871
2872         tag = skb_vlan_tag_get(skb);
2873
2874         if (tx_q->tbs & STMMAC_TBS_AVAIL)
2875                 p = &tx_q->dma_entx[tx_q->cur_tx].basic;
2876         else
2877                 p = &tx_q->dma_tx[tx_q->cur_tx];
2878
2879         if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
2880                 return false;
2881
2882         stmmac_set_tx_owner(priv, p);
2883         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2884         return true;
2885 }
2886
2887 /**
2888  *  stmmac_tso_allocator - close entry point of the driver
2889  *  @priv: driver private structure
2890  *  @des: buffer start address
2891  *  @total_len: total length to fill in descriptors
2892  *  @last_segmant: condition for the last descriptor
2893  *  @queue: TX queue index
2894  *  Description:
2895  *  This function fills descriptor and request new descriptors according to
2896  *  buffer length to fill
2897  */
2898 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
2899                                  int total_len, bool last_segment, u32 queue)
2900 {
2901         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2902         struct dma_desc *desc;
2903         u32 buff_size;
2904         int tmp_len;
2905
2906         tmp_len = total_len;
2907
2908         while (tmp_len > 0) {
2909                 dma_addr_t curr_addr;
2910
2911                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2912                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2913
2914                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
2915                         desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
2916                 else
2917                         desc = &tx_q->dma_tx[tx_q->cur_tx];
2918
2919                 curr_addr = des + (total_len - tmp_len);
2920                 if (priv->dma_cap.addr64 <= 32)
2921                         desc->des0 = cpu_to_le32(curr_addr);
2922                 else
2923                         stmmac_set_desc_addr(priv, desc, curr_addr);
2924
2925                 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2926                             TSO_MAX_BUFF_SIZE : tmp_len;
2927
2928                 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2929                                 0, 1,
2930                                 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2931                                 0, 0);
2932
2933                 tmp_len -= TSO_MAX_BUFF_SIZE;
2934         }
2935 }
2936
2937 /**
2938  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2939  *  @skb : the socket buffer
2940  *  @dev : device pointer
2941  *  Description: this is the transmit function that is called on TSO frames
2942  *  (support available on GMAC4 and newer chips).
2943  *  Diagram below show the ring programming in case of TSO frames:
2944  *
2945  *  First Descriptor
2946  *   --------
2947  *   | DES0 |---> buffer1 = L2/L3/L4 header
2948  *   | DES1 |---> TCP Payload (can continue on next descr...)
2949  *   | DES2 |---> buffer 1 and 2 len
2950  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2951  *   --------
2952  *      |
2953  *     ...
2954  *      |
2955  *   --------
2956  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2957  *   | DES1 | --|
2958  *   | DES2 | --> buffer 1 and 2 len
2959  *   | DES3 |
2960  *   --------
2961  *
2962  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2963  */
2964 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2965 {
2966         struct dma_desc *desc, *first, *mss_desc = NULL;
2967         struct stmmac_priv *priv = netdev_priv(dev);
2968         int desc_size, tmp_pay_len = 0, first_tx;
2969         int nfrags = skb_shinfo(skb)->nr_frags;
2970         u32 queue = skb_get_queue_mapping(skb);
2971         unsigned int first_entry, tx_packets;
2972         struct stmmac_tx_queue *tx_q;
2973         bool has_vlan, set_ic;
2974         u8 proto_hdr_len, hdr;
2975         u32 pay_len, mss;
2976         dma_addr_t des;
2977         int i;
2978
2979         tx_q = &priv->tx_queue[queue];
2980         first_tx = tx_q->cur_tx;
2981
2982         /* Compute header lengths */
2983         if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2984                 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
2985                 hdr = sizeof(struct udphdr);
2986         } else {
2987                 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2988                 hdr = tcp_hdrlen(skb);
2989         }
2990
2991         /* Desc availability based on threshold should be enough safe */
2992         if (unlikely(stmmac_tx_avail(priv, queue) <
2993                 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2994                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2995                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2996                                                                 queue));
2997                         /* This is a hard error, log it. */
2998                         netdev_err(priv->dev,
2999                                    "%s: Tx Ring full when queue awake\n",
3000                                    __func__);
3001                 }
3002                 return NETDEV_TX_BUSY;
3003         }
3004
3005         pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3006
3007         mss = skb_shinfo(skb)->gso_size;
3008
3009         /* set new MSS value if needed */
3010         if (mss != tx_q->mss) {
3011                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3012                         mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3013                 else
3014                         mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3015
3016                 stmmac_set_mss(priv, mss_desc, mss);
3017                 tx_q->mss = mss;
3018                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3019                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3020         }
3021
3022         if (netif_msg_tx_queued(priv)) {
3023                 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
3024                         __func__, hdr, proto_hdr_len, pay_len, mss);
3025                 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
3026                         skb->data_len);
3027         }
3028
3029         /* Check if VLAN can be inserted by HW */
3030         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3031
3032         first_entry = tx_q->cur_tx;
3033         WARN_ON(tx_q->tx_skbuff[first_entry]);
3034
3035         if (tx_q->tbs & STMMAC_TBS_AVAIL)
3036                 desc = &tx_q->dma_entx[first_entry].basic;
3037         else
3038                 desc = &tx_q->dma_tx[first_entry];
3039         first = desc;
3040
3041         if (has_vlan)
3042                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3043
3044         /* first descriptor: fill Headers on Buf1 */
3045         des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
3046                              DMA_TO_DEVICE);
3047         if (dma_mapping_error(priv->device, des))
3048                 goto dma_map_err;
3049
3050         tx_q->tx_skbuff_dma[first_entry].buf = des;
3051         tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
3052
3053         if (priv->dma_cap.addr64 <= 32) {
3054                 first->des0 = cpu_to_le32(des);
3055
3056                 /* Fill start of payload in buff2 of first descriptor */
3057                 if (pay_len)
3058                         first->des1 = cpu_to_le32(des + proto_hdr_len);
3059
3060                 /* If needed take extra descriptors to fill the remaining payload */
3061                 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
3062         } else {
3063                 stmmac_set_desc_addr(priv, first, des);
3064                 tmp_pay_len = pay_len;
3065                 des += proto_hdr_len;
3066                 pay_len = 0;
3067         }
3068
3069         stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3070
3071         /* Prepare fragments */
3072         for (i = 0; i < nfrags; i++) {
3073                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3074
3075                 des = skb_frag_dma_map(priv->device, frag, 0,
3076                                        skb_frag_size(frag),
3077                                        DMA_TO_DEVICE);
3078                 if (dma_mapping_error(priv->device, des))
3079                         goto dma_map_err;
3080
3081                 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3082                                      (i == nfrags - 1), queue);
3083
3084                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3085                 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3086                 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3087         }
3088
3089         tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3090
3091         /* Only the last descriptor gets to point to the skb. */
3092         tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3093
3094         /* Manage tx mitigation */
3095         tx_packets = (tx_q->cur_tx + 1) - first_tx;
3096         tx_q->tx_count_frames += tx_packets;
3097
3098         if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3099                 set_ic = true;
3100         else if (!priv->tx_coal_frames)
3101                 set_ic = false;
3102         else if (tx_packets > priv->tx_coal_frames)
3103                 set_ic = true;
3104         else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3105                 set_ic = true;
3106         else
3107                 set_ic = false;
3108
3109         if (set_ic) {
3110                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3111                         desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3112                 else
3113                         desc = &tx_q->dma_tx[tx_q->cur_tx];
3114
3115                 tx_q->tx_count_frames = 0;
3116                 stmmac_set_tx_ic(priv, desc);
3117                 priv->xstats.tx_set_ic_bit++;
3118         }
3119
3120         /* We've used all descriptors we need for this skb, however,
3121          * advance cur_tx so that it references a fresh descriptor.
3122          * ndo_start_xmit will fill this descriptor the next time it's
3123          * called and stmmac_tx_clean may clean up to this descriptor.
3124          */
3125         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3126
3127         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3128                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3129                           __func__);
3130                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3131         }
3132
3133         dev->stats.tx_bytes += skb->len;
3134         priv->xstats.tx_tso_frames++;
3135         priv->xstats.tx_tso_nfrags += nfrags;
3136
3137         if (priv->sarc_type)
3138                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3139
3140         skb_tx_timestamp(skb);
3141
3142         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3143                      priv->hwts_tx_en)) {
3144                 /* declare that device is doing timestamping */
3145                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3146                 stmmac_enable_tx_timestamp(priv, first);
3147         }
3148
3149         /* Complete the first descriptor before granting the DMA */
3150         stmmac_prepare_tso_tx_desc(priv, first, 1,
3151                         proto_hdr_len,
3152                         pay_len,
3153                         1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3154                         hdr / 4, (skb->len - proto_hdr_len));
3155
3156         /* If context desc is used to change MSS */
3157         if (mss_desc) {
3158                 /* Make sure that first descriptor has been completely
3159                  * written, including its own bit. This is because MSS is
3160                  * actually before first descriptor, so we need to make
3161                  * sure that MSS's own bit is the last thing written.
3162                  */
3163                 dma_wmb();
3164                 stmmac_set_tx_owner(priv, mss_desc);
3165         }
3166
3167         /* The own bit must be the latest setting done when prepare the
3168          * descriptor and then barrier is needed to make sure that
3169          * all is coherent before granting the DMA engine.
3170          */
3171         wmb();
3172
3173         if (netif_msg_pktdata(priv)) {
3174                 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3175                         __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3176                         tx_q->cur_tx, first, nfrags);
3177                 pr_info(">>> frame to be transmitted: ");
3178                 print_pkt(skb->data, skb_headlen(skb));
3179         }
3180
3181         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3182
3183         if (tx_q->tbs & STMMAC_TBS_AVAIL)
3184                 desc_size = sizeof(struct dma_edesc);
3185         else
3186                 desc_size = sizeof(struct dma_desc);
3187
3188         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3189         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3190         stmmac_tx_timer_arm(priv, queue);
3191
3192         return NETDEV_TX_OK;
3193
3194 dma_map_err:
3195         dev_err(priv->device, "Tx dma map failed\n");
3196         dev_kfree_skb(skb);
3197         priv->dev->stats.tx_dropped++;
3198         return NETDEV_TX_OK;
3199 }
3200
3201 /**
3202  *  stmmac_xmit - Tx entry point of the driver
3203  *  @skb : the socket buffer
3204  *  @dev : device pointer
3205  *  Description : this is the tx entry point of the driver.
3206  *  It programs the chain or the ring and supports oversized frames
3207  *  and SG feature.
3208  */
3209 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3210 {
3211         unsigned int first_entry, tx_packets, enh_desc;
3212         struct stmmac_priv *priv = netdev_priv(dev);
3213         unsigned int nopaged_len = skb_headlen(skb);
3214         int i, csum_insertion = 0, is_jumbo = 0;
3215         u32 queue = skb_get_queue_mapping(skb);
3216         int nfrags = skb_shinfo(skb)->nr_frags;
3217         int gso = skb_shinfo(skb)->gso_type;
3218         struct dma_edesc *tbs_desc = NULL;
3219         int entry, desc_size, first_tx;
3220         struct dma_desc *desc, *first;
3221         struct stmmac_tx_queue *tx_q;
3222         bool has_vlan, set_ic;
3223         dma_addr_t des;
3224
3225         tx_q = &priv->tx_queue[queue];
3226         first_tx = tx_q->cur_tx;
3227
3228         if (priv->tx_path_in_lpi_mode)
3229                 stmmac_disable_eee_mode(priv);
3230
3231         /* Manage oversized TCP frames for GMAC4 device */
3232         if (skb_is_gso(skb) && priv->tso) {
3233                 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3234                         return stmmac_tso_xmit(skb, dev);
3235                 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
3236                         return stmmac_tso_xmit(skb, dev);
3237         }
3238
3239         if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3240                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3241                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3242                                                                 queue));
3243                         /* This is a hard error, log it. */
3244                         netdev_err(priv->dev,
3245                                    "%s: Tx Ring full when queue awake\n",
3246                                    __func__);
3247                 }
3248                 return NETDEV_TX_BUSY;
3249         }
3250
3251         /* Check if VLAN can be inserted by HW */
3252         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3253
3254         entry = tx_q->cur_tx;
3255         first_entry = entry;
3256         WARN_ON(tx_q->tx_skbuff[first_entry]);
3257
3258         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3259
3260         if (likely(priv->extend_desc))
3261                 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3262         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3263                 desc = &tx_q->dma_entx[entry].basic;
3264         else
3265                 desc = tx_q->dma_tx + entry;
3266
3267         first = desc;
3268
3269         if (has_vlan)
3270                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3271
3272         enh_desc = priv->plat->enh_desc;
3273         /* To program the descriptors according to the size of the frame */
3274         if (enh_desc)
3275                 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3276
3277         if (unlikely(is_jumbo)) {
3278                 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3279                 if (unlikely(entry < 0) && (entry != -EINVAL))
3280                         goto dma_map_err;
3281         }
3282
3283         for (i = 0; i < nfrags; i++) {
3284                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3285                 int len = skb_frag_size(frag);
3286                 bool last_segment = (i == (nfrags - 1));
3287
3288                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3289                 WARN_ON(tx_q->tx_skbuff[entry]);
3290
3291                 if (likely(priv->extend_desc))
3292                         desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3293                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3294                         desc = &tx_q->dma_entx[entry].basic;
3295                 else
3296                         desc = tx_q->dma_tx + entry;
3297
3298                 des = skb_frag_dma_map(priv->device, frag, 0, len,
3299                                        DMA_TO_DEVICE);
3300                 if (dma_mapping_error(priv->device, des))
3301                         goto dma_map_err; /* should reuse desc w/o issues */
3302
3303                 tx_q->tx_skbuff_dma[entry].buf = des;
3304
3305                 stmmac_set_desc_addr(priv, desc, des);
3306
3307                 tx_q->tx_skbuff_dma[entry].map_as_page = true;
3308                 tx_q->tx_skbuff_dma[entry].len = len;
3309                 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3310
3311                 /* Prepare the descriptor and set the own bit too */
3312                 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3313                                 priv->mode, 1, last_segment, skb->len);
3314         }
3315
3316         /* Only the last descriptor gets to point to the skb. */
3317         tx_q->tx_skbuff[entry] = skb;
3318
3319         /* According to the coalesce parameter the IC bit for the latest
3320          * segment is reset and the timer re-started to clean the tx status.
3321          * This approach takes care about the fragments: desc is the first
3322          * element in case of no SG.
3323          */
3324         tx_packets = (entry + 1) - first_tx;
3325         tx_q->tx_count_frames += tx_packets;
3326
3327         if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3328                 set_ic = true;
3329         else if (!priv->tx_coal_frames)
3330                 set_ic = false;
3331         else if (tx_packets > priv->tx_coal_frames)
3332                 set_ic = true;
3333         else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3334                 set_ic = true;
3335         else
3336                 set_ic = false;
3337
3338         if (set_ic) {
3339                 if (likely(priv->extend_desc))
3340                         desc = &tx_q->dma_etx[entry].basic;
3341                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3342                         desc = &tx_q->dma_entx[entry].basic;
3343                 else
3344                         desc = &tx_q->dma_tx[entry];
3345
3346                 tx_q->tx_count_frames = 0;
3347                 stmmac_set_tx_ic(priv, desc);
3348                 priv->xstats.tx_set_ic_bit++;
3349         }
3350
3351         /* We've used all descriptors we need for this skb, however,
3352          * advance cur_tx so that it references a fresh descriptor.
3353          * ndo_start_xmit will fill this descriptor the next time it's
3354          * called and stmmac_tx_clean may clean up to this descriptor.
3355          */
3356         entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3357         tx_q->cur_tx = entry;
3358
3359         if (netif_msg_pktdata(priv)) {
3360                 netdev_dbg(priv->dev,
3361                            "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3362                            __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3363                            entry, first, nfrags);
3364
3365                 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3366                 print_pkt(skb->data, skb->len);
3367         }
3368
3369         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3370                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3371                           __func__);
3372                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3373         }
3374
3375         dev->stats.tx_bytes += skb->len;
3376
3377         if (priv->sarc_type)
3378                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3379
3380         skb_tx_timestamp(skb);
3381
3382         /* Ready to fill the first descriptor and set the OWN bit w/o any
3383          * problems because all the descriptors are actually ready to be
3384          * passed to the DMA engine.
3385          */
3386         if (likely(!is_jumbo)) {
3387                 bool last_segment = (nfrags == 0);
3388
3389                 des = dma_map_single(priv->device, skb->data,
3390                                      nopaged_len, DMA_TO_DEVICE);
3391                 if (dma_mapping_error(priv->device, des))
3392                         goto dma_map_err;
3393
3394                 tx_q->tx_skbuff_dma[first_entry].buf = des;
3395
3396                 stmmac_set_desc_addr(priv, first, des);
3397
3398                 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3399                 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3400
3401                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3402                              priv->hwts_tx_en)) {
3403                         /* declare that device is doing timestamping */
3404                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3405                         stmmac_enable_tx_timestamp(priv, first);
3406                 }
3407
3408                 /* Prepare the first descriptor setting the OWN bit too */
3409                 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3410                                 csum_insertion, priv->mode, 0, last_segment,
3411                                 skb->len);
3412         }
3413
3414         if (tx_q->tbs & STMMAC_TBS_EN) {
3415                 struct timespec64 ts = ns_to_timespec64(skb->tstamp);
3416
3417                 tbs_desc = &tx_q->dma_entx[first_entry];
3418                 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
3419         }
3420
3421         stmmac_set_tx_owner(priv, first);
3422
3423         /* The own bit must be the latest setting done when prepare the
3424          * descriptor and then barrier is needed to make sure that
3425          * all is coherent before granting the DMA engine.
3426          */
3427         wmb();
3428
3429         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3430
3431         stmmac_enable_dma_transmission(priv, priv->ioaddr);
3432
3433         if (likely(priv->extend_desc))
3434                 desc_size = sizeof(struct dma_extended_desc);
3435         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3436                 desc_size = sizeof(struct dma_edesc);
3437         else
3438                 desc_size = sizeof(struct dma_desc);
3439
3440         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3441         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3442         stmmac_tx_timer_arm(priv, queue);
3443
3444         return NETDEV_TX_OK;
3445
3446 dma_map_err:
3447         netdev_err(priv->dev, "Tx DMA map failed\n");
3448         dev_kfree_skb(skb);
3449         priv->dev->stats.tx_dropped++;
3450         return NETDEV_TX_OK;
3451 }
3452
3453 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3454 {
3455         struct vlan_ethhdr *veth;
3456         __be16 vlan_proto;
3457         u16 vlanid;
3458
3459         veth = (struct vlan_ethhdr *)skb->data;
3460         vlan_proto = veth->h_vlan_proto;
3461
3462         if ((vlan_proto == htons(ETH_P_8021Q) &&
3463              dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3464             (vlan_proto == htons(ETH_P_8021AD) &&
3465              dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3466                 /* pop the vlan tag */
3467                 vlanid = ntohs(veth->h_vlan_TCI);
3468                 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3469                 skb_pull(skb, VLAN_HLEN);
3470                 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3471         }
3472 }
3473
3474
3475 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3476 {
3477         if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3478                 return 0;
3479
3480         return 1;
3481 }
3482
3483 /**
3484  * stmmac_rx_refill - refill used skb preallocated buffers
3485  * @priv: driver private structure
3486  * @queue: RX queue index
3487  * Description : this is to reallocate the skb for the reception process
3488  * that is based on zero-copy.
3489  */
3490 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3491 {
3492         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3493         int len, dirty = stmmac_rx_dirty(priv, queue);
3494         unsigned int entry = rx_q->dirty_rx;
3495
3496         len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3497
3498         while (dirty-- > 0) {
3499                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3500                 struct dma_desc *p;
3501                 bool use_rx_wd;
3502
3503                 if (priv->extend_desc)
3504                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
3505                 else
3506                         p = rx_q->dma_rx + entry;
3507
3508                 if (!buf->page) {
3509                         buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3510                         if (!buf->page)
3511                                 break;
3512                 }
3513
3514                 if (priv->sph && !buf->sec_page) {
3515                         buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3516                         if (!buf->sec_page)
3517                                 break;
3518
3519                         buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3520
3521                         dma_sync_single_for_device(priv->device, buf->sec_addr,
3522                                                    len, DMA_FROM_DEVICE);
3523                 }
3524
3525                 buf->addr = page_pool_get_dma_addr(buf->page);
3526
3527                 /* Sync whole allocation to device. This will invalidate old
3528                  * data.
3529                  */
3530                 dma_sync_single_for_device(priv->device, buf->addr, len,
3531                                            DMA_FROM_DEVICE);
3532
3533                 stmmac_set_desc_addr(priv, p, buf->addr);
3534                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
3535                 stmmac_refill_desc3(priv, rx_q, p);
3536
3537                 rx_q->rx_count_frames++;
3538                 rx_q->rx_count_frames += priv->rx_coal_frames;
3539                 if (rx_q->rx_count_frames > priv->rx_coal_frames)
3540                         rx_q->rx_count_frames = 0;
3541
3542                 use_rx_wd = !priv->rx_coal_frames;
3543                 use_rx_wd |= rx_q->rx_count_frames > 0;
3544                 if (!priv->use_riwt)
3545                         use_rx_wd = false;
3546
3547                 dma_wmb();
3548                 stmmac_set_rx_owner(priv, p, use_rx_wd);
3549
3550                 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3551         }
3552         rx_q->dirty_rx = entry;
3553         rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3554                             (rx_q->dirty_rx * sizeof(struct dma_desc));
3555         stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3556 }
3557
3558 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
3559                                        struct dma_desc *p,
3560                                        int status, unsigned int len)
3561 {
3562         int ret, coe = priv->hw->rx_csum;
3563         unsigned int plen = 0, hlen = 0;
3564
3565         /* Not first descriptor, buffer is always zero */
3566         if (priv->sph && len)
3567                 return 0;
3568
3569         /* First descriptor, get split header length */
3570         ret = stmmac_get_rx_header_len(priv, p, &hlen);
3571         if (priv->sph && hlen) {
3572                 priv->xstats.rx_split_hdr_pkt_n++;
3573                 return hlen;
3574         }
3575
3576         /* First descriptor, not last descriptor and not split header */
3577         if (status & rx_not_ls)
3578                 return priv->dma_buf_sz;
3579
3580         plen = stmmac_get_rx_frame_len(priv, p, coe);
3581
3582         /* First descriptor and last descriptor and not split header */
3583         return min_t(unsigned int, priv->dma_buf_sz, plen);
3584 }
3585
3586 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
3587                                        struct dma_desc *p,
3588                                        int status, unsigned int len)
3589 {
3590         int coe = priv->hw->rx_csum;
3591         unsigned int plen = 0;
3592
3593         /* Not split header, buffer is not available */
3594         if (!priv->sph)
3595                 return 0;
3596
3597         /* Not last descriptor */
3598         if (status & rx_not_ls)
3599                 return priv->dma_buf_sz;
3600
3601         plen = stmmac_get_rx_frame_len(priv, p, coe);
3602
3603         /* Last descriptor */
3604         return plen - len;
3605 }
3606
3607 /**
3608  * stmmac_rx - manage the receive process
3609  * @priv: driver private structure
3610  * @limit: napi bugget
3611  * @queue: RX queue index.
3612  * Description :  this the function called by the napi poll method.
3613  * It gets all the frames inside the ring.
3614  */
3615 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3616 {
3617         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3618         struct stmmac_channel *ch = &priv->channel[queue];
3619         unsigned int count = 0, error = 0, len = 0;
3620         int status = 0, coe = priv->hw->rx_csum;
3621         unsigned int next_entry = rx_q->cur_rx;
3622         struct sk_buff *skb = NULL;
3623
3624         if (netif_msg_rx_status(priv)) {
3625                 void *rx_head;
3626
3627                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3628                 if (priv->extend_desc)
3629                         rx_head = (void *)rx_q->dma_erx;
3630                 else
3631                         rx_head = (void *)rx_q->dma_rx;
3632
3633                 stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3634         }
3635         while (count < limit) {
3636                 unsigned int buf1_len = 0, buf2_len = 0;
3637                 enum pkt_hash_types hash_type;
3638                 struct stmmac_rx_buffer *buf;
3639                 struct dma_desc *np, *p;
3640                 int entry;
3641                 u32 hash;
3642
3643                 if (!count && rx_q->state_saved) {
3644                         skb = rx_q->state.skb;
3645                         error = rx_q->state.error;
3646                         len = rx_q->state.len;
3647                 } else {
3648                         rx_q->state_saved = false;
3649                         skb = NULL;
3650                         error = 0;
3651                         len = 0;
3652                 }
3653
3654                 if (count >= limit)
3655                         break;
3656
3657 read_again:
3658                 buf1_len = 0;
3659                 buf2_len = 0;
3660                 entry = next_entry;
3661                 buf = &rx_q->buf_pool[entry];
3662
3663                 if (priv->extend_desc)
3664                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
3665                 else
3666                         p = rx_q->dma_rx + entry;
3667
3668                 /* read the status of the incoming frame */
3669                 status = stmmac_rx_status(priv, &priv->dev->stats,
3670                                 &priv->xstats, p);
3671                 /* check if managed by the DMA otherwise go ahead */
3672                 if (unlikely(status & dma_own))
3673                         break;
3674
3675                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3676                 next_entry = rx_q->cur_rx;
3677
3678                 if (priv->extend_desc)
3679                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3680                 else
3681                         np = rx_q->dma_rx + next_entry;
3682
3683                 prefetch(np);
3684
3685                 if (priv->extend_desc)
3686                         stmmac_rx_extended_status(priv, &priv->dev->stats,
3687                                         &priv->xstats, rx_q->dma_erx + entry);
3688                 if (unlikely(status == discard_frame)) {
3689                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
3690                         buf->page = NULL;
3691                         error = 1;
3692                         if (!priv->hwts_rx_en)
3693                                 priv->dev->stats.rx_errors++;
3694                 }
3695
3696                 if (unlikely(error && (status & rx_not_ls)))
3697                         goto read_again;
3698                 if (unlikely(error)) {
3699                         dev_kfree_skb(skb);
3700                         skb = NULL;
3701                         count++;
3702                         continue;
3703                 }
3704
3705                 /* Buffer is good. Go on. */
3706
3707                 prefetch(page_address(buf->page));
3708                 if (buf->sec_page)
3709                         prefetch(page_address(buf->sec_page));
3710
3711                 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
3712                 len += buf1_len;
3713                 buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
3714                 len += buf2_len;
3715
3716                 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3717                  * Type frames (LLC/LLC-SNAP)
3718                  *
3719                  * llc_snap is never checked in GMAC >= 4, so this ACS
3720                  * feature is always disabled and packets need to be
3721                  * stripped manually.
3722                  */
3723                 if (likely(!(status & rx_not_ls)) &&
3724                     (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3725                      unlikely(status != llc_snap))) {
3726                         if (buf2_len)
3727                                 buf2_len -= ETH_FCS_LEN;
3728                         else
3729                                 buf1_len -= ETH_FCS_LEN;
3730
3731                         len -= ETH_FCS_LEN;
3732                 }
3733
3734                 if (!skb) {
3735                         skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
3736                         if (!skb) {
3737                                 priv->dev->stats.rx_dropped++;
3738                                 count++;
3739                                 goto drain_data;
3740                         }
3741
3742                         dma_sync_single_for_cpu(priv->device, buf->addr,
3743                                                 buf1_len, DMA_FROM_DEVICE);
3744                         skb_copy_to_linear_data(skb, page_address(buf->page),
3745                                                 buf1_len);
3746                         skb_put(skb, buf1_len);
3747
3748                         /* Data payload copied into SKB, page ready for recycle */
3749                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
3750                         buf->page = NULL;
3751                 } else if (buf1_len) {
3752                         dma_sync_single_for_cpu(priv->device, buf->addr,
3753                                                 buf1_len, DMA_FROM_DEVICE);
3754                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3755                                         buf->page, 0, buf1_len,
3756                                         priv->dma_buf_sz);
3757
3758                         /* Data payload appended into SKB */
3759                         page_pool_release_page(rx_q->page_pool, buf->page);
3760                         buf->page = NULL;
3761                 }
3762
3763                 if (buf2_len) {
3764                         dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3765                                                 buf2_len, DMA_FROM_DEVICE);
3766                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3767                                         buf->sec_page, 0, buf2_len,
3768                                         priv->dma_buf_sz);
3769
3770                         /* Data payload appended into SKB */
3771                         page_pool_release_page(rx_q->page_pool, buf->sec_page);
3772                         buf->sec_page = NULL;
3773                 }
3774
3775 drain_data:
3776                 if (likely(status & rx_not_ls))
3777                         goto read_again;
3778                 if (!skb)
3779                         continue;
3780
3781                 /* Got entire packet into SKB. Finish it. */
3782
3783                 stmmac_get_rx_hwtstamp(priv, p, np, skb);
3784                 stmmac_rx_vlan(priv->dev, skb);
3785                 skb->protocol = eth_type_trans(skb, priv->dev);
3786
3787                 if (unlikely(!coe))
3788                         skb_checksum_none_assert(skb);
3789                 else
3790                         skb->ip_summed = CHECKSUM_UNNECESSARY;
3791
3792                 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
3793                         skb_set_hash(skb, hash, hash_type);
3794
3795                 skb_record_rx_queue(skb, queue);
3796                 napi_gro_receive(&ch->rx_napi, skb);
3797                 skb = NULL;
3798
3799                 priv->dev->stats.rx_packets++;
3800                 priv->dev->stats.rx_bytes += len;
3801                 count++;
3802         }
3803
3804         if (status & rx_not_ls || skb) {
3805                 rx_q->state_saved = true;
3806                 rx_q->state.skb = skb;
3807                 rx_q->state.error = error;
3808                 rx_q->state.len = len;
3809         }
3810
3811         stmmac_rx_refill(priv, queue);
3812
3813         priv->xstats.rx_pkt_n += count;
3814
3815         return count;
3816 }
3817
3818 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3819 {
3820         struct stmmac_channel *ch =
3821                 container_of(napi, struct stmmac_channel, rx_napi);
3822         struct stmmac_priv *priv = ch->priv_data;
3823         u32 chan = ch->index;
3824         int work_done;
3825
3826         priv->xstats.napi_poll++;
3827
3828         work_done = stmmac_rx(priv, budget, chan);
3829         if (work_done < budget && napi_complete_done(napi, work_done)) {
3830                 unsigned long flags;
3831
3832                 spin_lock_irqsave(&ch->lock, flags);
3833                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
3834                 spin_unlock_irqrestore(&ch->lock, flags);
3835         }
3836
3837         return work_done;
3838 }
3839
3840 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3841 {
3842         struct stmmac_channel *ch =
3843                 container_of(napi, struct stmmac_channel, tx_napi);
3844         struct stmmac_priv *priv = ch->priv_data;
3845         u32 chan = ch->index;
3846         int work_done;
3847
3848         priv->xstats.napi_poll++;
3849
3850         work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3851         work_done = min(work_done, budget);
3852
3853         if (work_done < budget && napi_complete_done(napi, work_done)) {
3854                 unsigned long flags;
3855
3856                 spin_lock_irqsave(&ch->lock, flags);
3857                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
3858                 spin_unlock_irqrestore(&ch->lock, flags);
3859         }
3860
3861         return work_done;
3862 }
3863
3864 /**
3865  *  stmmac_tx_timeout
3866  *  @dev : Pointer to net device structure
3867  *  Description: this function is called when a packet transmission fails to
3868  *   complete within a reasonable time. The driver will mark the error in the
3869  *   netdev structure and arrange for the device to be reset to a sane state
3870  *   in order to transmit a new packet.
3871  */
3872 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
3873 {
3874         struct stmmac_priv *priv = netdev_priv(dev);
3875
3876         stmmac_global_err(priv);
3877 }
3878
3879 /**
3880  *  stmmac_set_rx_mode - entry point for multicast addressing
3881  *  @dev : pointer to the device structure
3882  *  Description:
3883  *  This function is a driver entry point which gets called by the kernel
3884  *  whenever multicast addresses must be enabled/disabled.
3885  *  Return value:
3886  *  void.
3887  */
3888 static void stmmac_set_rx_mode(struct net_device *dev)
3889 {
3890         struct stmmac_priv *priv = netdev_priv(dev);
3891
3892         stmmac_set_filter(priv, priv->hw, dev);
3893 }
3894
3895 /**
3896  *  stmmac_change_mtu - entry point to change MTU size for the device.
3897  *  @dev : device pointer.
3898  *  @new_mtu : the new MTU size for the device.
3899  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3900  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3901  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3902  *  Return value:
3903  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3904  *  file on failure.
3905  */
3906 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3907 {
3908         struct stmmac_priv *priv = netdev_priv(dev);
3909         int txfifosz = priv->plat->tx_fifo_size;
3910
3911         if (txfifosz == 0)
3912                 txfifosz = priv->dma_cap.tx_fifo_size;
3913
3914         txfifosz /= priv->plat->tx_queues_to_use;
3915
3916         if (netif_running(dev)) {
3917                 netdev_err(priv->dev, "must be stopped to change its MTU\n");
3918                 return -EBUSY;
3919         }
3920
3921         new_mtu = STMMAC_ALIGN(new_mtu);
3922
3923         /* If condition true, FIFO is too small or MTU too large */
3924         if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
3925                 return -EINVAL;
3926
3927         dev->mtu = new_mtu;
3928
3929         netdev_update_features(dev);
3930
3931         return 0;
3932 }
3933
3934 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3935                                              netdev_features_t features)
3936 {
3937         struct stmmac_priv *priv = netdev_priv(dev);
3938
3939         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3940                 features &= ~NETIF_F_RXCSUM;
3941
3942         if (!priv->plat->tx_coe)
3943                 features &= ~NETIF_F_CSUM_MASK;
3944
3945         /* Some GMAC devices have a bugged Jumbo frame support that
3946          * needs to have the Tx COE disabled for oversized frames
3947          * (due to limited buffer sizes). In this case we disable
3948          * the TX csum insertion in the TDES and not use SF.
3949          */
3950         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3951                 features &= ~NETIF_F_CSUM_MASK;
3952
3953         /* Disable tso if asked by ethtool */
3954         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3955                 if (features & NETIF_F_TSO)
3956                         priv->tso = true;
3957                 else
3958                         priv->tso = false;
3959         }
3960
3961         return features;
3962 }
3963
3964 static int stmmac_set_features(struct net_device *netdev,
3965                                netdev_features_t features)
3966 {
3967         struct stmmac_priv *priv = netdev_priv(netdev);
3968         bool sph_en;
3969         u32 chan;
3970
3971         /* Keep the COE Type in case of csum is supporting */
3972         if (features & NETIF_F_RXCSUM)
3973                 priv->hw->rx_csum = priv->plat->rx_coe;
3974         else
3975                 priv->hw->rx_csum = 0;
3976         /* No check needed because rx_coe has been set before and it will be
3977          * fixed in case of issue.
3978          */
3979         stmmac_rx_ipc(priv, priv->hw);
3980
3981         sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3982         for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
3983                 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3984
3985         return 0;
3986 }
3987
3988 /**
3989  *  stmmac_interrupt - main ISR
3990  *  @irq: interrupt number.
3991  *  @dev_id: to pass the net device pointer.
3992  *  Description: this is the main driver interrupt service routine.
3993  *  It can call:
3994  *  o DMA service routine (to manage incoming frame reception and transmission
3995  *    status)
3996  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3997  *    interrupts.
3998  */
3999 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
4000 {
4001         struct net_device *dev = (struct net_device *)dev_id;
4002         struct stmmac_priv *priv = netdev_priv(dev);
4003         u32 rx_cnt = priv->plat->rx_queues_to_use;
4004         u32 tx_cnt = priv->plat->tx_queues_to_use;
4005         u32 queues_count;
4006         u32 queue;
4007         bool xmac;
4008
4009         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
4010         queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
4011
4012         if (priv->irq_wake)
4013                 pm_wakeup_event(priv->device, 0);
4014
4015         if (unlikely(!dev)) {
4016                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
4017                 return IRQ_NONE;
4018         }
4019
4020         /* Check if adapter is up */
4021         if (test_bit(STMMAC_DOWN, &priv->state))
4022                 return IRQ_HANDLED;
4023         /* Check if a fatal error happened */
4024         if (stmmac_safety_feat_interrupt(priv))
4025                 return IRQ_HANDLED;
4026
4027         /* To handle GMAC own interrupts */
4028         if ((priv->plat->has_gmac) || xmac) {
4029                 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
4030                 int mtl_status;
4031
4032                 if (unlikely(status)) {
4033                         /* For LPI we need to save the tx status */
4034                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
4035                                 priv->tx_path_in_lpi_mode = true;
4036                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
4037                                 priv->tx_path_in_lpi_mode = false;
4038                 }
4039
4040                 for (queue = 0; queue < queues_count; queue++) {
4041                         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4042
4043                         mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
4044                                                                 queue);
4045                         if (mtl_status != -EINVAL)
4046                                 status |= mtl_status;
4047
4048                         if (status & CORE_IRQ_MTL_RX_OVERFLOW)
4049                                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
4050                                                        rx_q->rx_tail_addr,
4051                                                        queue);
4052                 }
4053
4054                 /* PCS link status */
4055                 if (priv->hw->pcs) {
4056                         if (priv->xstats.pcs_link)
4057                                 netif_carrier_on(dev);
4058                         else
4059                                 netif_carrier_off(dev);
4060                 }
4061         }
4062
4063         /* To handle DMA interrupts */
4064         stmmac_dma_interrupt(priv);
4065
4066         return IRQ_HANDLED;
4067 }
4068
4069 #ifdef CONFIG_NET_POLL_CONTROLLER
4070 /* Polling receive - used by NETCONSOLE and other diagnostic tools
4071  * to allow network I/O with interrupts disabled.
4072  */
4073 static void stmmac_poll_controller(struct net_device *dev)
4074 {
4075         disable_irq(dev->irq);
4076         stmmac_interrupt(dev->irq, dev);
4077         enable_irq(dev->irq);
4078 }
4079 #endif
4080
4081 /**
4082  *  stmmac_ioctl - Entry point for the Ioctl
4083  *  @dev: Device pointer.
4084  *  @rq: An IOCTL specefic structure, that can contain a pointer to
4085  *  a proprietary structure used to pass information to the driver.
4086  *  @cmd: IOCTL command
4087  *  Description:
4088  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
4089  */
4090 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
4091 {
4092         struct stmmac_priv *priv = netdev_priv (dev);
4093         int ret = -EOPNOTSUPP;
4094
4095         if (!netif_running(dev))
4096                 return -EINVAL;
4097
4098         switch (cmd) {
4099         case SIOCGMIIPHY:
4100         case SIOCGMIIREG:
4101         case SIOCSMIIREG:
4102                 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
4103                 break;
4104         case SIOCSHWTSTAMP:
4105                 ret = stmmac_hwtstamp_set(dev, rq);
4106                 break;
4107         case SIOCGHWTSTAMP:
4108                 ret = stmmac_hwtstamp_get(dev, rq);
4109                 break;
4110         default:
4111                 break;
4112         }
4113
4114         return ret;
4115 }
4116
4117 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4118                                     void *cb_priv)
4119 {
4120         struct stmmac_priv *priv = cb_priv;
4121         int ret = -EOPNOTSUPP;
4122
4123         if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
4124                 return ret;
4125
4126         stmmac_disable_all_queues(priv);
4127
4128         switch (type) {
4129         case TC_SETUP_CLSU32:
4130                 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
4131                 break;
4132         case TC_SETUP_CLSFLOWER:
4133                 ret = stmmac_tc_setup_cls(priv, priv, type_data);
4134                 break;
4135         default:
4136                 break;
4137         }
4138
4139         stmmac_enable_all_queues(priv);
4140         return ret;
4141 }
4142
4143 static LIST_HEAD(stmmac_block_cb_list);
4144
4145 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
4146                            void *type_data)
4147 {
4148         struct stmmac_priv *priv = netdev_priv(ndev);
4149
4150         switch (type) {
4151         case TC_SETUP_BLOCK:
4152                 return flow_block_cb_setup_simple(type_data,
4153                                                   &stmmac_block_cb_list,
4154                                                   stmmac_setup_tc_block_cb,
4155                                                   priv, priv, true);
4156         case TC_SETUP_QDISC_CBS:
4157                 return stmmac_tc_setup_cbs(priv, priv, type_data);
4158         case TC_SETUP_QDISC_TAPRIO:
4159                 return stmmac_tc_setup_taprio(priv, priv, type_data);
4160         case TC_SETUP_QDISC_ETF:
4161                 return stmmac_tc_setup_etf(priv, priv, type_data);
4162         default:
4163                 return -EOPNOTSUPP;
4164         }
4165 }
4166
4167 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
4168                                struct net_device *sb_dev)
4169 {
4170         int gso = skb_shinfo(skb)->gso_type;
4171
4172         if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
4173                 /*
4174                  * There is no way to determine the number of TSO/USO
4175                  * capable Queues. Let's use always the Queue 0
4176                  * because if TSO/USO is supported then at least this
4177                  * one will be capable.
4178                  */
4179                 return 0;
4180         }
4181
4182         return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4183 }
4184
4185 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4186 {
4187         struct stmmac_priv *priv = netdev_priv(ndev);
4188         int ret = 0;
4189
4190         ret = eth_mac_addr(ndev, addr);
4191         if (ret)
4192                 return ret;
4193
4194         stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4195
4196         return ret;
4197 }
4198
4199 #ifdef CONFIG_DEBUG_FS
4200 static struct dentry *stmmac_fs_dir;
4201
4202 static void sysfs_display_ring(void *head, int size, int extend_desc,
4203                                struct seq_file *seq)
4204 {
4205         int i;
4206         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4207         struct dma_desc *p = (struct dma_desc *)head;
4208
4209         for (i = 0; i < size; i++) {
4210                 if (extend_desc) {
4211                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4212                                    i, (unsigned int)virt_to_phys(ep),
4213                                    le32_to_cpu(ep->basic.des0),
4214                                    le32_to_cpu(ep->basic.des1),
4215                                    le32_to_cpu(ep->basic.des2),
4216                                    le32_to_cpu(ep->basic.des3));
4217                         ep++;
4218                 } else {
4219                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4220                                    i, (unsigned int)virt_to_phys(p),
4221                                    le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4222                                    le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4223                         p++;
4224                 }
4225                 seq_printf(seq, "\n");
4226         }
4227 }
4228
4229 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4230 {
4231         struct net_device *dev = seq->private;
4232         struct stmmac_priv *priv = netdev_priv(dev);
4233         u32 rx_count = priv->plat->rx_queues_to_use;
4234         u32 tx_count = priv->plat->tx_queues_to_use;
4235         u32 queue;
4236
4237         if ((dev->flags & IFF_UP) == 0)
4238                 return 0;
4239
4240         for (queue = 0; queue < rx_count; queue++) {
4241                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4242
4243                 seq_printf(seq, "RX Queue %d:\n", queue);
4244
4245                 if (priv->extend_desc) {
4246                         seq_printf(seq, "Extended descriptor ring:\n");
4247                         sysfs_display_ring((void *)rx_q->dma_erx,
4248                                            DMA_RX_SIZE, 1, seq);
4249                 } else {
4250                         seq_printf(seq, "Descriptor ring:\n");
4251                         sysfs_display_ring((void *)rx_q->dma_rx,
4252                                            DMA_RX_SIZE, 0, seq);
4253                 }
4254         }
4255
4256         for (queue = 0; queue < tx_count; queue++) {
4257                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4258
4259                 seq_printf(seq, "TX Queue %d:\n", queue);
4260
4261                 if (priv->extend_desc) {
4262                         seq_printf(seq, "Extended descriptor ring:\n");
4263                         sysfs_display_ring((void *)tx_q->dma_etx,
4264                                            DMA_TX_SIZE, 1, seq);
4265                 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
4266                         seq_printf(seq, "Descriptor ring:\n");
4267                         sysfs_display_ring((void *)tx_q->dma_tx,
4268                                            DMA_TX_SIZE, 0, seq);
4269                 }
4270         }
4271
4272         return 0;
4273 }
4274 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4275
4276 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4277 {
4278         struct net_device *dev = seq->private;
4279         struct stmmac_priv *priv = netdev_priv(dev);
4280
4281         if (!priv->hw_cap_support) {
4282                 seq_printf(seq, "DMA HW features not supported\n");
4283                 return 0;
4284         }
4285
4286         seq_printf(seq, "==============================\n");
4287         seq_printf(seq, "\tDMA HW features\n");
4288         seq_printf(seq, "==============================\n");
4289
4290         seq_printf(seq, "\t10/100 Mbps: %s\n",
4291                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4292         seq_printf(seq, "\t1000 Mbps: %s\n",
4293                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
4294         seq_printf(seq, "\tHalf duplex: %s\n",
4295                    (priv->dma_cap.half_duplex) ? "Y" : "N");
4296         seq_printf(seq, "\tHash Filter: %s\n",
4297                    (priv->dma_cap.hash_filter) ? "Y" : "N");
4298         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4299                    (priv->dma_cap.multi_addr) ? "Y" : "N");
4300         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4301                    (priv->dma_cap.pcs) ? "Y" : "N");
4302         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4303                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
4304         seq_printf(seq, "\tPMT Remote wake up: %s\n",
4305                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4306         seq_printf(seq, "\tPMT Magic Frame: %s\n",
4307                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4308         seq_printf(seq, "\tRMON module: %s\n",
4309                    (priv->dma_cap.rmon) ? "Y" : "N");
4310         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4311                    (priv->dma_cap.time_stamp) ? "Y" : "N");
4312         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4313                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
4314         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4315                    (priv->dma_cap.eee) ? "Y" : "N");
4316         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4317         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4318                    (priv->dma_cap.tx_coe) ? "Y" : "N");
4319         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4320                 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4321                            (priv->dma_cap.rx_coe) ? "Y" : "N");
4322         } else {
4323                 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4324                            (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4325                 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4326                            (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4327         }
4328         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4329                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4330         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4331                    priv->dma_cap.number_rx_channel);
4332         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4333                    priv->dma_cap.number_tx_channel);
4334         seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
4335                    priv->dma_cap.number_rx_queues);
4336         seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
4337                    priv->dma_cap.number_tx_queues);
4338         seq_printf(seq, "\tEnhanced descriptors: %s\n",
4339                    (priv->dma_cap.enh_desc) ? "Y" : "N");
4340         seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
4341         seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
4342         seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
4343         seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
4344         seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
4345                    priv->dma_cap.pps_out_num);
4346         seq_printf(seq, "\tSafety Features: %s\n",
4347                    priv->dma_cap.asp ? "Y" : "N");
4348         seq_printf(seq, "\tFlexible RX Parser: %s\n",
4349                    priv->dma_cap.frpsel ? "Y" : "N");
4350         seq_printf(seq, "\tEnhanced Addressing: %d\n",
4351                    priv->dma_cap.addr64);
4352         seq_printf(seq, "\tReceive Side Scaling: %s\n",
4353                    priv->dma_cap.rssen ? "Y" : "N");
4354         seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
4355                    priv->dma_cap.vlhash ? "Y" : "N");
4356         seq_printf(seq, "\tSplit Header: %s\n",
4357                    priv->dma_cap.sphen ? "Y" : "N");
4358         seq_printf(seq, "\tVLAN TX Insertion: %s\n",
4359                    priv->dma_cap.vlins ? "Y" : "N");
4360         seq_printf(seq, "\tDouble VLAN: %s\n",
4361                    priv->dma_cap.dvlan ? "Y" : "N");
4362         seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
4363                    priv->dma_cap.l3l4fnum);
4364         seq_printf(seq, "\tARP Offloading: %s\n",
4365                    priv->dma_cap.arpoffsel ? "Y" : "N");
4366         seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
4367                    priv->dma_cap.estsel ? "Y" : "N");
4368         seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
4369                    priv->dma_cap.fpesel ? "Y" : "N");
4370         seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
4371                    priv->dma_cap.tbssel ? "Y" : "N");
4372         return 0;
4373 }
4374 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4375
4376 /* Use network device events to rename debugfs file entries.
4377  */
4378 static int stmmac_device_event(struct notifier_block *unused,
4379                                unsigned long event, void *ptr)
4380 {
4381         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4382         struct stmmac_priv *priv = netdev_priv(dev);
4383
4384         if (dev->netdev_ops != &stmmac_netdev_ops)
4385                 goto done;
4386
4387         switch (event) {
4388         case NETDEV_CHANGENAME:
4389                 if (priv->dbgfs_dir)
4390                         priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
4391                                                          priv->dbgfs_dir,
4392                                                          stmmac_fs_dir,
4393                                                          dev->name);
4394                 break;
4395         }
4396 done:
4397         return NOTIFY_DONE;
4398 }
4399
4400 static struct notifier_block stmmac_notifier = {
4401         .notifier_call = stmmac_device_event,
4402 };
4403
4404 static void stmmac_init_fs(struct net_device *dev)
4405 {
4406         struct stmmac_priv *priv = netdev_priv(dev);
4407
4408         rtnl_lock();
4409
4410         /* Create per netdev entries */
4411         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4412
4413         /* Entry to report DMA RX/TX rings */
4414         debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4415                             &stmmac_rings_status_fops);
4416
4417         /* Entry to report the DMA HW features */
4418         debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4419                             &stmmac_dma_cap_fops);
4420
4421         rtnl_unlock();
4422 }
4423
4424 static void stmmac_exit_fs(struct net_device *dev)
4425 {
4426         struct stmmac_priv *priv = netdev_priv(dev);
4427
4428         debugfs_remove_recursive(priv->dbgfs_dir);
4429 }
4430 #endif /* CONFIG_DEBUG_FS */
4431
4432 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4433 {
4434         unsigned char *data = (unsigned char *)&vid_le;
4435         unsigned char data_byte = 0;
4436         u32 crc = ~0x0;
4437         u32 temp = 0;
4438         int i, bits;
4439
4440         bits = get_bitmask_order(VLAN_VID_MASK);
4441         for (i = 0; i < bits; i++) {
4442                 if ((i % 8) == 0)
4443                         data_byte = data[i / 8];
4444
4445                 temp = ((crc & 1) ^ data_byte) & 1;
4446                 crc >>= 1;
4447                 data_byte >>= 1;
4448
4449                 if (temp)
4450                         crc ^= 0xedb88320;
4451         }
4452
4453         return crc;
4454 }
4455
4456 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4457 {
4458         u32 crc, hash = 0;
4459         __le16 pmatch = 0;
4460         int count = 0;
4461         u16 vid = 0;
4462
4463         for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4464                 __le16 vid_le = cpu_to_le16(vid);
4465                 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4466                 hash |= (1 << crc);
4467                 count++;
4468         }
4469
4470         if (!priv->dma_cap.vlhash) {
4471                 if (count > 2) /* VID = 0 always passes filter */
4472                         return -EOPNOTSUPP;
4473
4474                 pmatch = cpu_to_le16(vid);
4475                 hash = 0;
4476         }
4477
4478         return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
4479 }
4480
4481 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4482 {
4483         struct stmmac_priv *priv = netdev_priv(ndev);
4484         bool is_double = false;
4485         int ret;
4486
4487         if (be16_to_cpu(proto) == ETH_P_8021AD)
4488                 is_double = true;
4489
4490         set_bit(vid, priv->active_vlans);
4491         ret = stmmac_vlan_update(priv, is_double);
4492         if (ret) {
4493                 clear_bit(vid, priv->active_vlans);
4494                 return ret;
4495         }
4496
4497         return ret;
4498 }
4499
4500 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4501 {
4502         struct stmmac_priv *priv = netdev_priv(ndev);
4503         bool is_double = false;
4504
4505         if (be16_to_cpu(proto) == ETH_P_8021AD)
4506                 is_double = true;
4507
4508         clear_bit(vid, priv->active_vlans);
4509         return stmmac_vlan_update(priv, is_double);
4510 }
4511
4512 static const struct net_device_ops stmmac_netdev_ops = {
4513         .ndo_open = stmmac_open,
4514         .ndo_start_xmit = stmmac_xmit,
4515         .ndo_stop = stmmac_release,
4516         .ndo_change_mtu = stmmac_change_mtu,
4517         .ndo_fix_features = stmmac_fix_features,
4518         .ndo_set_features = stmmac_set_features,
4519         .ndo_set_rx_mode = stmmac_set_rx_mode,
4520         .ndo_tx_timeout = stmmac_tx_timeout,
4521         .ndo_do_ioctl = stmmac_ioctl,
4522         .ndo_setup_tc = stmmac_setup_tc,
4523         .ndo_select_queue = stmmac_select_queue,
4524 #ifdef CONFIG_NET_POLL_CONTROLLER
4525         .ndo_poll_controller = stmmac_poll_controller,
4526 #endif
4527         .ndo_set_mac_address = stmmac_set_mac_address,
4528         .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4529         .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4530 };
4531
4532 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4533 {
4534         if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4535                 return;
4536         if (test_bit(STMMAC_DOWN, &priv->state))
4537                 return;
4538
4539         netdev_err(priv->dev, "Reset adapter.\n");
4540
4541         rtnl_lock();
4542         netif_trans_update(priv->dev);
4543         while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4544                 usleep_range(1000, 2000);
4545
4546         set_bit(STMMAC_DOWN, &priv->state);
4547         dev_close(priv->dev);
4548         dev_open(priv->dev, NULL);
4549         clear_bit(STMMAC_DOWN, &priv->state);
4550         clear_bit(STMMAC_RESETING, &priv->state);
4551         rtnl_unlock();
4552 }
4553
4554 static void stmmac_service_task(struct work_struct *work)
4555 {
4556         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4557                         service_task);
4558
4559         stmmac_reset_subtask(priv);
4560         clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4561 }
4562
4563 /**
4564  *  stmmac_hw_init - Init the MAC device
4565  *  @priv: driver private structure
4566  *  Description: this function is to configure the MAC device according to
4567  *  some platform parameters or the HW capability register. It prepares the
4568  *  driver to use either ring or chain modes and to setup either enhanced or
4569  *  normal descriptors.
4570  */
4571 static int stmmac_hw_init(struct stmmac_priv *priv)
4572 {
4573         int ret;
4574
4575         /* dwmac-sun8i only work in chain mode */
4576         if (priv->plat->has_sun8i)
4577                 chain_mode = 1;
4578         priv->chain_mode = chain_mode;
4579
4580         /* Initialize HW Interface */
4581         ret = stmmac_hwif_init(priv);
4582         if (ret)
4583                 return ret;
4584
4585         /* Get the HW capability (new GMAC newer than 3.50a) */
4586         priv->hw_cap_support = stmmac_get_hw_features(priv);
4587         if (priv->hw_cap_support) {
4588                 dev_info(priv->device, "DMA HW capability register supported\n");
4589
4590                 /* We can override some gmac/dma configuration fields: e.g.
4591                  * enh_desc, tx_coe (e.g. that are passed through the
4592                  * platform) with the values from the HW capability
4593                  * register (if supported).
4594                  */
4595                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
4596                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4597                 priv->hw->pmt = priv->plat->pmt;
4598                 if (priv->dma_cap.hash_tb_sz) {
4599                         priv->hw->multicast_filter_bins =
4600                                         (BIT(priv->dma_cap.hash_tb_sz) << 5);
4601                         priv->hw->mcast_bits_log2 =
4602                                         ilog2(priv->hw->multicast_filter_bins);
4603                 }
4604
4605                 /* TXCOE doesn't work in thresh DMA mode */
4606                 if (priv->plat->force_thresh_dma_mode)
4607                         priv->plat->tx_coe = 0;
4608                 else
4609                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
4610
4611                 /* In case of GMAC4 rx_coe is from HW cap register. */
4612                 priv->plat->rx_coe = priv->dma_cap.rx_coe;
4613
4614                 if (priv->dma_cap.rx_coe_type2)
4615                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4616                 else if (priv->dma_cap.rx_coe_type1)
4617                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4618
4619         } else {
4620                 dev_info(priv->device, "No HW DMA feature register supported\n");
4621         }
4622
4623         if (priv->plat->rx_coe) {
4624                 priv->hw->rx_csum = priv->plat->rx_coe;
4625                 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4626                 if (priv->synopsys_id < DWMAC_CORE_4_00)
4627                         dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4628         }
4629         if (priv->plat->tx_coe)
4630                 dev_info(priv->device, "TX Checksum insertion supported\n");
4631
4632         if (priv->plat->pmt) {
4633                 dev_info(priv->device, "Wake-Up On Lan supported\n");
4634                 device_set_wakeup_capable(priv->device, 1);
4635         }
4636
4637         if (priv->dma_cap.tsoen)
4638                 dev_info(priv->device, "TSO supported\n");
4639
4640         /* Run HW quirks, if any */
4641         if (priv->hwif_quirks) {
4642                 ret = priv->hwif_quirks(priv);
4643                 if (ret)
4644                         return ret;
4645         }
4646
4647         /* Rx Watchdog is available in the COREs newer than the 3.40.
4648          * In some case, for example on bugged HW this feature
4649          * has to be disable and this can be done by passing the
4650          * riwt_off field from the platform.
4651          */
4652         if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4653             (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4654                 priv->use_riwt = 1;
4655                 dev_info(priv->device,
4656                          "Enable RX Mitigation via HW Watchdog Timer\n");
4657         }
4658
4659         return 0;
4660 }
4661
4662 /**
4663  * stmmac_dvr_probe
4664  * @device: device pointer
4665  * @plat_dat: platform data pointer
4666  * @res: stmmac resource pointer
4667  * Description: this is the main probe function used to
4668  * call the alloc_etherdev, allocate the priv structure.
4669  * Return:
4670  * returns 0 on success, otherwise errno.
4671  */
4672 int stmmac_dvr_probe(struct device *device,
4673                      struct plat_stmmacenet_data *plat_dat,
4674                      struct stmmac_resources *res)
4675 {
4676         struct net_device *ndev = NULL;
4677         struct stmmac_priv *priv;
4678         u32 queue, rxq, maxq;
4679         int i, ret = 0;
4680
4681         ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4682                                        MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4683         if (!ndev)
4684                 return -ENOMEM;
4685
4686         SET_NETDEV_DEV(ndev, device);
4687
4688         priv = netdev_priv(ndev);
4689         priv->device = device;
4690         priv->dev = ndev;
4691
4692         stmmac_set_ethtool_ops(ndev);
4693         priv->pause = pause;
4694         priv->plat = plat_dat;
4695         priv->ioaddr = res->addr;
4696         priv->dev->base_addr = (unsigned long)res->addr;
4697
4698         priv->dev->irq = res->irq;
4699         priv->wol_irq = res->wol_irq;
4700         priv->lpi_irq = res->lpi_irq;
4701
4702         if (!IS_ERR_OR_NULL(res->mac))
4703                 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4704
4705         dev_set_drvdata(device, priv->dev);
4706
4707         /* Verify driver arguments */
4708         stmmac_verify_args();
4709
4710         /* Allocate workqueue */
4711         priv->wq = create_singlethread_workqueue("stmmac_wq");
4712         if (!priv->wq) {
4713                 dev_err(priv->device, "failed to create workqueue\n");
4714                 return -ENOMEM;
4715         }
4716
4717         INIT_WORK(&priv->service_task, stmmac_service_task);
4718
4719         /* Override with kernel parameters if supplied XXX CRS XXX
4720          * this needs to have multiple instances
4721          */
4722         if ((phyaddr >= 0) && (phyaddr <= 31))
4723                 priv->plat->phy_addr = phyaddr;
4724
4725         if (priv->plat->stmmac_rst) {
4726                 ret = reset_control_assert(priv->plat->stmmac_rst);
4727                 reset_control_deassert(priv->plat->stmmac_rst);
4728                 /* Some reset controllers have only reset callback instead of
4729                  * assert + deassert callbacks pair.
4730                  */
4731                 if (ret == -ENOTSUPP)
4732                         reset_control_reset(priv->plat->stmmac_rst);
4733         }
4734
4735         /* Init MAC and get the capabilities */
4736         ret = stmmac_hw_init(priv);
4737         if (ret)
4738                 goto error_hw_init;
4739
4740         stmmac_check_ether_addr(priv);
4741
4742         /* Configure real RX and TX queues */
4743         netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4744         netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4745
4746         ndev->netdev_ops = &stmmac_netdev_ops;
4747
4748         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4749                             NETIF_F_RXCSUM;
4750
4751         ret = stmmac_tc_init(priv, priv);
4752         if (!ret) {
4753                 ndev->hw_features |= NETIF_F_HW_TC;
4754         }
4755
4756         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4757                 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4758                 if (priv->plat->has_gmac4)
4759                         ndev->hw_features |= NETIF_F_GSO_UDP_L4;
4760                 priv->tso = true;
4761                 dev_info(priv->device, "TSO feature enabled\n");
4762         }
4763
4764         if (priv->dma_cap.sphen) {
4765                 ndev->hw_features |= NETIF_F_GRO;
4766                 priv->sph = true;
4767                 dev_info(priv->device, "SPH feature enabled\n");
4768         }
4769
4770         if (priv->dma_cap.addr64) {
4771                 ret = dma_set_mask_and_coherent(device,
4772                                 DMA_BIT_MASK(priv->dma_cap.addr64));
4773                 if (!ret) {
4774                         dev_info(priv->device, "Using %d bits DMA width\n",
4775                                  priv->dma_cap.addr64);
4776
4777                         /*
4778                          * If more than 32 bits can be addressed, make sure to
4779                          * enable enhanced addressing mode.
4780                          */
4781                         if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
4782                                 priv->plat->dma_cfg->eame = true;
4783                 } else {
4784                         ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
4785                         if (ret) {
4786                                 dev_err(priv->device, "Failed to set DMA Mask\n");
4787                                 goto error_hw_init;
4788                         }
4789
4790                         priv->dma_cap.addr64 = 32;
4791                 }
4792         }
4793
4794         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4795         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4796 #ifdef STMMAC_VLAN_TAG_USED
4797         /* Both mac100 and gmac support receive VLAN tag detection */
4798         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4799         if (priv->dma_cap.vlhash) {
4800                 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4801                 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
4802         }
4803         if (priv->dma_cap.vlins) {
4804                 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
4805                 if (priv->dma_cap.dvlan)
4806                         ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
4807         }
4808 #endif
4809         priv->msg_enable = netif_msg_init(debug, default_msg_level);
4810
4811         /* Initialize RSS */
4812         rxq = priv->plat->rx_queues_to_use;
4813         netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
4814         for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
4815                 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
4816
4817         if (priv->dma_cap.rssen && priv->plat->rss_en)
4818                 ndev->features |= NETIF_F_RXHASH;
4819
4820         /* MTU range: 46 - hw-specific max */
4821         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4822         if (priv->plat->has_xgmac)
4823                 ndev->max_mtu = XGMAC_JUMBO_LEN;
4824         else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4825                 ndev->max_mtu = JUMBO_LEN;
4826         else
4827                 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4828         /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4829          * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4830          */
4831         if ((priv->plat->maxmtu < ndev->max_mtu) &&
4832             (priv->plat->maxmtu >= ndev->min_mtu))
4833                 ndev->max_mtu = priv->plat->maxmtu;
4834         else if (priv->plat->maxmtu < ndev->min_mtu)
4835                 dev_warn(priv->device,
4836                          "%s: warning: maxmtu having invalid value (%d)\n",
4837                          __func__, priv->plat->maxmtu);
4838
4839         if (flow_ctrl)
4840                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
4841
4842         /* Setup channels NAPI */
4843         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4844
4845         for (queue = 0; queue < maxq; queue++) {
4846                 struct stmmac_channel *ch = &priv->channel[queue];
4847
4848                 spin_lock_init(&ch->lock);
4849                 ch->priv_data = priv;
4850                 ch->index = queue;
4851
4852                 if (queue < priv->plat->rx_queues_to_use) {
4853                         netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4854                                        NAPI_POLL_WEIGHT);
4855                 }
4856                 if (queue < priv->plat->tx_queues_to_use) {
4857                         netif_tx_napi_add(ndev, &ch->tx_napi,
4858                                           stmmac_napi_poll_tx,
4859                                           NAPI_POLL_WEIGHT);
4860                 }
4861         }
4862
4863         mutex_init(&priv->lock);
4864
4865         /* If a specific clk_csr value is passed from the platform
4866          * this means that the CSR Clock Range selection cannot be
4867          * changed at run-time and it is fixed. Viceversa the driver'll try to
4868          * set the MDC clock dynamically according to the csr actual
4869          * clock input.
4870          */
4871         if (priv->plat->clk_csr >= 0)
4872                 priv->clk_csr = priv->plat->clk_csr;
4873         else
4874                 stmmac_clk_csr_set(priv);
4875
4876         stmmac_check_pcs_mode(priv);
4877
4878         if (priv->hw->pcs != STMMAC_PCS_TBI &&
4879             priv->hw->pcs != STMMAC_PCS_RTBI) {
4880                 /* MDIO bus Registration */
4881                 ret = stmmac_mdio_register(ndev);
4882                 if (ret < 0) {
4883                         dev_err(priv->device,
4884                                 "%s: MDIO bus (id: %d) registration failed",
4885                                 __func__, priv->plat->bus_id);
4886                         goto error_mdio_register;
4887                 }
4888         }
4889
4890         ret = stmmac_phy_setup(priv);
4891         if (ret) {
4892                 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
4893                 goto error_phy_setup;
4894         }
4895
4896         ret = register_netdev(ndev);
4897         if (ret) {
4898                 dev_err(priv->device, "%s: ERROR %i registering the device\n",
4899                         __func__, ret);
4900                 goto error_netdev_register;
4901         }
4902
4903 #ifdef CONFIG_DEBUG_FS
4904         stmmac_init_fs(ndev);
4905 #endif
4906
4907         return ret;
4908
4909 error_netdev_register:
4910         phylink_destroy(priv->phylink);
4911 error_phy_setup:
4912         if (priv->hw->pcs != STMMAC_PCS_TBI &&
4913             priv->hw->pcs != STMMAC_PCS_RTBI)
4914                 stmmac_mdio_unregister(ndev);
4915 error_mdio_register:
4916         for (queue = 0; queue < maxq; queue++) {
4917                 struct stmmac_channel *ch = &priv->channel[queue];
4918
4919                 if (queue < priv->plat->rx_queues_to_use)
4920                         netif_napi_del(&ch->rx_napi);
4921                 if (queue < priv->plat->tx_queues_to_use)
4922                         netif_napi_del(&ch->tx_napi);
4923         }
4924 error_hw_init:
4925         destroy_workqueue(priv->wq);
4926
4927         return ret;
4928 }
4929 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4930
4931 /**
4932  * stmmac_dvr_remove
4933  * @dev: device pointer
4934  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4935  * changes the link status, releases the DMA descriptor rings.
4936  */
4937 int stmmac_dvr_remove(struct device *dev)
4938 {
4939         struct net_device *ndev = dev_get_drvdata(dev);
4940         struct stmmac_priv *priv = netdev_priv(ndev);
4941
4942         netdev_info(priv->dev, "%s: removing driver", __func__);
4943
4944         stmmac_stop_all_dma(priv);
4945
4946         stmmac_mac_set(priv, priv->ioaddr, false);
4947         netif_carrier_off(ndev);
4948         unregister_netdev(ndev);
4949 #ifdef CONFIG_DEBUG_FS
4950         stmmac_exit_fs(ndev);
4951 #endif
4952         phylink_destroy(priv->phylink);
4953         if (priv->plat->stmmac_rst)
4954                 reset_control_assert(priv->plat->stmmac_rst);
4955         clk_disable_unprepare(priv->plat->pclk);
4956         clk_disable_unprepare(priv->plat->stmmac_clk);
4957         if (priv->hw->pcs != STMMAC_PCS_TBI &&
4958             priv->hw->pcs != STMMAC_PCS_RTBI)
4959                 stmmac_mdio_unregister(ndev);
4960         destroy_workqueue(priv->wq);
4961         mutex_destroy(&priv->lock);
4962
4963         return 0;
4964 }
4965 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4966
4967 /**
4968  * stmmac_suspend - suspend callback
4969  * @dev: device pointer
4970  * Description: this is the function to suspend the device and it is called
4971  * by the platform driver to stop the network queue, release the resources,
4972  * program the PMT register (for WoL), clean and release driver resources.
4973  */
4974 int stmmac_suspend(struct device *dev)
4975 {
4976         struct net_device *ndev = dev_get_drvdata(dev);
4977         struct stmmac_priv *priv = netdev_priv(ndev);
4978         u32 chan;
4979
4980         if (!ndev || !netif_running(ndev))
4981                 return 0;
4982
4983         phylink_mac_change(priv->phylink, false);
4984
4985         mutex_lock(&priv->lock);
4986
4987         netif_device_detach(ndev);
4988         stmmac_stop_all_queues(priv);
4989
4990         stmmac_disable_all_queues(priv);
4991
4992         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
4993                 del_timer_sync(&priv->tx_queue[chan].txtimer);
4994
4995         /* Stop TX/RX DMA */
4996         stmmac_stop_all_dma(priv);
4997
4998         /* Enable Power down mode by programming the PMT regs */
4999         if (device_may_wakeup(priv->device)) {
5000                 stmmac_pmt(priv, priv->hw, priv->wolopts);
5001                 priv->irq_wake = 1;
5002         } else {
5003                 mutex_unlock(&priv->lock);
5004                 rtnl_lock();
5005                 phylink_stop(priv->phylink);
5006                 rtnl_unlock();
5007                 mutex_lock(&priv->lock);
5008
5009                 stmmac_mac_set(priv, priv->ioaddr, false);
5010                 pinctrl_pm_select_sleep_state(priv->device);
5011                 /* Disable clock in case of PWM is off */
5012                 if (priv->plat->clk_ptp_ref)
5013                         clk_disable_unprepare(priv->plat->clk_ptp_ref);
5014                 clk_disable_unprepare(priv->plat->pclk);
5015                 clk_disable_unprepare(priv->plat->stmmac_clk);
5016         }
5017         mutex_unlock(&priv->lock);
5018
5019         priv->speed = SPEED_UNKNOWN;
5020         return 0;
5021 }
5022 EXPORT_SYMBOL_GPL(stmmac_suspend);
5023
5024 /**
5025  * stmmac_reset_queues_param - reset queue parameters
5026  * @dev: device pointer
5027  */
5028 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
5029 {
5030         u32 rx_cnt = priv->plat->rx_queues_to_use;
5031         u32 tx_cnt = priv->plat->tx_queues_to_use;
5032         u32 queue;
5033
5034         for (queue = 0; queue < rx_cnt; queue++) {
5035                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5036
5037                 rx_q->cur_rx = 0;
5038                 rx_q->dirty_rx = 0;
5039         }
5040
5041         for (queue = 0; queue < tx_cnt; queue++) {
5042                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5043
5044                 tx_q->cur_tx = 0;
5045                 tx_q->dirty_tx = 0;
5046                 tx_q->mss = 0;
5047         }
5048 }
5049
5050 /**
5051  * stmmac_resume - resume callback
5052  * @dev: device pointer
5053  * Description: when resume this function is invoked to setup the DMA and CORE
5054  * in a usable state.
5055  */
5056 int stmmac_resume(struct device *dev)
5057 {
5058         struct net_device *ndev = dev_get_drvdata(dev);
5059         struct stmmac_priv *priv = netdev_priv(ndev);
5060
5061         if (!netif_running(ndev))
5062                 return 0;
5063
5064         /* Power Down bit, into the PM register, is cleared
5065          * automatically as soon as a magic packet or a Wake-up frame
5066          * is received. Anyway, it's better to manually clear
5067          * this bit because it can generate problems while resuming
5068          * from another devices (e.g. serial console).
5069          */
5070         if (device_may_wakeup(priv->device)) {
5071                 mutex_lock(&priv->lock);
5072                 stmmac_pmt(priv, priv->hw, 0);
5073                 mutex_unlock(&priv->lock);
5074                 priv->irq_wake = 0;
5075         } else {
5076                 pinctrl_pm_select_default_state(priv->device);
5077                 /* enable the clk previously disabled */
5078                 clk_prepare_enable(priv->plat->stmmac_clk);
5079                 clk_prepare_enable(priv->plat->pclk);
5080                 if (priv->plat->clk_ptp_ref)
5081                         clk_prepare_enable(priv->plat->clk_ptp_ref);
5082                 /* reset the phy so that it's ready */
5083                 if (priv->mii)
5084                         stmmac_mdio_reset(priv->mii);
5085         }
5086
5087         netif_device_attach(ndev);
5088
5089         mutex_lock(&priv->lock);
5090
5091         stmmac_reset_queues_param(priv);
5092
5093         stmmac_clear_descriptors(priv);
5094
5095         stmmac_hw_setup(ndev, false);
5096         stmmac_init_coalesce(priv);
5097         stmmac_set_rx_mode(ndev);
5098
5099         stmmac_enable_all_queues(priv);
5100
5101         stmmac_start_all_queues(priv);
5102
5103         mutex_unlock(&priv->lock);
5104
5105         if (!device_may_wakeup(priv->device)) {
5106                 rtnl_lock();
5107                 phylink_start(priv->phylink);
5108                 rtnl_unlock();
5109         }
5110
5111         phylink_mac_change(priv->phylink, true);
5112
5113         return 0;
5114 }
5115 EXPORT_SYMBOL_GPL(stmmac_resume);
5116
5117 #ifndef MODULE
5118 static int __init stmmac_cmdline_opt(char *str)
5119 {
5120         char *opt;
5121
5122         if (!str || !*str)
5123                 return -EINVAL;
5124         while ((opt = strsep(&str, ",")) != NULL) {
5125                 if (!strncmp(opt, "debug:", 6)) {
5126                         if (kstrtoint(opt + 6, 0, &debug))
5127                                 goto err;
5128                 } else if (!strncmp(opt, "phyaddr:", 8)) {
5129                         if (kstrtoint(opt + 8, 0, &phyaddr))
5130                                 goto err;
5131                 } else if (!strncmp(opt, "buf_sz:", 7)) {
5132                         if (kstrtoint(opt + 7, 0, &buf_sz))
5133                                 goto err;
5134                 } else if (!strncmp(opt, "tc:", 3)) {
5135                         if (kstrtoint(opt + 3, 0, &tc))
5136                                 goto err;
5137                 } else if (!strncmp(opt, "watchdog:", 9)) {
5138                         if (kstrtoint(opt + 9, 0, &watchdog))
5139                                 goto err;
5140                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
5141                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
5142                                 goto err;
5143                 } else if (!strncmp(opt, "pause:", 6)) {
5144                         if (kstrtoint(opt + 6, 0, &pause))
5145                                 goto err;
5146                 } else if (!strncmp(opt, "eee_timer:", 10)) {
5147                         if (kstrtoint(opt + 10, 0, &eee_timer))
5148                                 goto err;
5149                 } else if (!strncmp(opt, "chain_mode:", 11)) {
5150                         if (kstrtoint(opt + 11, 0, &chain_mode))
5151                                 goto err;
5152                 }
5153         }
5154         return 0;
5155
5156 err:
5157         pr_err("%s: ERROR broken module parameter conversion", __func__);
5158         return -EINVAL;
5159 }
5160
5161 __setup("stmmaceth=", stmmac_cmdline_opt);
5162 #endif /* MODULE */
5163
5164 static int __init stmmac_init(void)
5165 {
5166 #ifdef CONFIG_DEBUG_FS
5167         /* Create debugfs main directory if it doesn't exist yet */
5168         if (!stmmac_fs_dir)
5169                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
5170         register_netdevice_notifier(&stmmac_notifier);
5171 #endif
5172
5173         return 0;
5174 }
5175
5176 static void __exit stmmac_exit(void)
5177 {
5178 #ifdef CONFIG_DEBUG_FS
5179         unregister_netdevice_notifier(&stmmac_notifier);
5180         debugfs_remove_recursive(stmmac_fs_dir);
5181 #endif
5182 }
5183
5184 module_init(stmmac_init)
5185 module_exit(stmmac_exit)
5186
5187 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
5188 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
5189 MODULE_LICENSE("GPL");