f2dac83beb7d9e8a381d7497be79dd81999b9d3d
[linux-2.6-microblaze.git] / drivers / net / ethernet / sfc / tx_common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2018 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include "net_driver.h"
12 #include "efx.h"
13 #include "nic_common.h"
14 #include "tx_common.h"
15
16 static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
17 {
18         return DIV_ROUND_UP(tx_queue->ptr_mask + 1,
19                             PAGE_SIZE >> EFX_TX_CB_ORDER);
20 }
21
22 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
23 {
24         struct efx_nic *efx = tx_queue->efx;
25         unsigned int entries;
26         int rc;
27
28         /* Create the smallest power-of-two aligned ring */
29         entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
30         EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
31         tx_queue->ptr_mask = entries - 1;
32
33         netif_dbg(efx, probe, efx->net_dev,
34                   "creating TX queue %d size %#x mask %#x\n",
35                   tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
36
37         /* Allocate software ring */
38         tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
39                                    GFP_KERNEL);
40         if (!tx_queue->buffer)
41                 return -ENOMEM;
42
43         tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
44                                     sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
45         if (!tx_queue->cb_page) {
46                 rc = -ENOMEM;
47                 goto fail1;
48         }
49
50         /* Allocate hardware ring */
51         rc = efx_nic_probe_tx(tx_queue);
52         if (rc)
53                 goto fail2;
54
55         return 0;
56
57 fail2:
58         kfree(tx_queue->cb_page);
59         tx_queue->cb_page = NULL;
60 fail1:
61         kfree(tx_queue->buffer);
62         tx_queue->buffer = NULL;
63         return rc;
64 }
65
66 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
67 {
68         struct efx_nic *efx = tx_queue->efx;
69
70         netif_dbg(efx, drv, efx->net_dev,
71                   "initialising TX queue %d\n", tx_queue->queue);
72
73         tx_queue->insert_count = 0;
74         tx_queue->notify_count = 0;
75         tx_queue->write_count = 0;
76         tx_queue->packet_write_count = 0;
77         tx_queue->old_write_count = 0;
78         tx_queue->read_count = 0;
79         tx_queue->old_read_count = 0;
80         tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
81         tx_queue->xmit_pending = false;
82         tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
83                                   tx_queue->channel == efx_ptp_channel(efx));
84         tx_queue->completed_timestamp_major = 0;
85         tx_queue->completed_timestamp_minor = 0;
86
87         tx_queue->xdp_tx = efx_channel_is_xdp_tx(tx_queue->channel);
88
89         /* Set up default function pointers. These may get replaced by
90          * efx_nic_init_tx() based off NIC/queue capabilities.
91          */
92         tx_queue->handle_tso = efx_enqueue_skb_tso;
93
94         /* Set up TX descriptor ring */
95         efx_nic_init_tx(tx_queue);
96
97         tx_queue->initialised = true;
98 }
99
100 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
101 {
102         struct efx_tx_buffer *buffer;
103
104         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
105                   "shutting down TX queue %d\n", tx_queue->queue);
106
107         if (!tx_queue->buffer)
108                 return;
109
110         /* Free any buffers left in the ring */
111         while (tx_queue->read_count != tx_queue->write_count) {
112                 unsigned int pkts_compl = 0, bytes_compl = 0;
113
114                 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
115                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
116
117                 ++tx_queue->read_count;
118         }
119         tx_queue->xmit_pending = false;
120         netdev_tx_reset_queue(tx_queue->core_txq);
121 }
122
123 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
124 {
125         int i;
126
127         if (!tx_queue->buffer)
128                 return;
129
130         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
131                   "destroying TX queue %d\n", tx_queue->queue);
132         efx_nic_remove_tx(tx_queue);
133
134         if (tx_queue->cb_page) {
135                 for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
136                         efx_nic_free_buffer(tx_queue->efx,
137                                             &tx_queue->cb_page[i]);
138                 kfree(tx_queue->cb_page);
139                 tx_queue->cb_page = NULL;
140         }
141
142         kfree(tx_queue->buffer);
143         tx_queue->buffer = NULL;
144 }
145
146 void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
147                         struct efx_tx_buffer *buffer,
148                         unsigned int *pkts_compl,
149                         unsigned int *bytes_compl)
150 {
151         if (buffer->unmap_len) {
152                 struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
153                 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
154
155                 if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
156                         dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
157                                          DMA_TO_DEVICE);
158                 else
159                         dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
160                                        DMA_TO_DEVICE);
161                 buffer->unmap_len = 0;
162         }
163
164         if (buffer->flags & EFX_TX_BUF_SKB) {
165                 struct sk_buff *skb = (struct sk_buff *)buffer->skb;
166
167                 EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
168                 (*pkts_compl)++;
169                 (*bytes_compl) += skb->len;
170                 if (tx_queue->timestamping &&
171                     (tx_queue->completed_timestamp_major ||
172                      tx_queue->completed_timestamp_minor)) {
173                         struct skb_shared_hwtstamps hwtstamp;
174
175                         hwtstamp.hwtstamp =
176                                 efx_ptp_nic_to_kernel_time(tx_queue);
177                         skb_tstamp_tx(skb, &hwtstamp);
178
179                         tx_queue->completed_timestamp_major = 0;
180                         tx_queue->completed_timestamp_minor = 0;
181                 }
182                 dev_consume_skb_any((struct sk_buff *)buffer->skb);
183                 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
184                            "TX queue %d transmission id %x complete\n",
185                            tx_queue->queue, tx_queue->read_count);
186         } else if (buffer->flags & EFX_TX_BUF_XDP) {
187                 xdp_return_frame_rx_napi(buffer->xdpf);
188         }
189
190         buffer->len = 0;
191         buffer->flags = 0;
192 }
193
194 /* Remove packets from the TX queue
195  *
196  * This removes packets from the TX queue, up to and including the
197  * specified index.
198  */
199 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
200                                 unsigned int index,
201                                 unsigned int *pkts_compl,
202                                 unsigned int *bytes_compl)
203 {
204         struct efx_nic *efx = tx_queue->efx;
205         unsigned int stop_index, read_ptr;
206
207         stop_index = (index + 1) & tx_queue->ptr_mask;
208         read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
209
210         while (read_ptr != stop_index) {
211                 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
212
213                 if (!efx_tx_buffer_in_use(buffer)) {
214                         netif_err(efx, tx_err, efx->net_dev,
215                                   "TX queue %d spurious TX completion id %d\n",
216                                   tx_queue->queue, read_ptr);
217                         efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
218                         return;
219                 }
220
221                 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
222
223                 ++tx_queue->read_count;
224                 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
225         }
226 }
227
228 void efx_xmit_done_check_empty(struct efx_tx_queue *tx_queue)
229 {
230         if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
231                 tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
232                 if (tx_queue->read_count == tx_queue->old_write_count) {
233                         /* Ensure that read_count is flushed. */
234                         smp_mb();
235                         tx_queue->empty_read_count =
236                                 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
237                 }
238         }
239 }
240
241 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
242 {
243         unsigned int fill_level, pkts_compl = 0, bytes_compl = 0;
244         struct efx_nic *efx = tx_queue->efx;
245
246         EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
247
248         efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
249         tx_queue->pkts_compl += pkts_compl;
250         tx_queue->bytes_compl += bytes_compl;
251
252         if (pkts_compl > 1)
253                 ++tx_queue->merge_events;
254
255         /* See if we need to restart the netif queue.  This memory
256          * barrier ensures that we write read_count (inside
257          * efx_dequeue_buffers()) before reading the queue status.
258          */
259         smp_mb();
260         if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
261             likely(efx->port_enabled) &&
262             likely(netif_device_present(efx->net_dev))) {
263                 fill_level = efx_channel_tx_fill_level(tx_queue->channel);
264                 if (fill_level <= efx->txq_wake_thresh)
265                         netif_tx_wake_queue(tx_queue->core_txq);
266         }
267
268         efx_xmit_done_check_empty(tx_queue);
269 }
270
271 /* Remove buffers put into a tx_queue for the current packet.
272  * None of the buffers must have an skb attached.
273  */
274 void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
275                         unsigned int insert_count)
276 {
277         struct efx_tx_buffer *buffer;
278         unsigned int bytes_compl = 0;
279         unsigned int pkts_compl = 0;
280
281         /* Work backwards until we hit the original insert pointer value */
282         while (tx_queue->insert_count != insert_count) {
283                 --tx_queue->insert_count;
284                 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
285                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
286         }
287 }
288
289 struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
290                                        dma_addr_t dma_addr, size_t len)
291 {
292         const struct efx_nic_type *nic_type = tx_queue->efx->type;
293         struct efx_tx_buffer *buffer;
294         unsigned int dma_len;
295
296         /* Map the fragment taking account of NIC-dependent DMA limits. */
297         do {
298                 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
299
300                 if (nic_type->tx_limit_len)
301                         dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
302                 else
303                         dma_len = len;
304
305                 buffer->len = dma_len;
306                 buffer->dma_addr = dma_addr;
307                 buffer->flags = EFX_TX_BUF_CONT;
308                 len -= dma_len;
309                 dma_addr += dma_len;
310                 ++tx_queue->insert_count;
311         } while (len);
312
313         return buffer;
314 }
315
316 int efx_tx_tso_header_length(struct sk_buff *skb)
317 {
318         size_t header_len;
319
320         if (skb->encapsulation)
321                 header_len = skb_inner_transport_header(skb) -
322                                 skb->data +
323                                 (inner_tcp_hdr(skb)->doff << 2u);
324         else
325                 header_len = skb_transport_header(skb) - skb->data +
326                                 (tcp_hdr(skb)->doff << 2u);
327         return header_len;
328 }
329
330 /* Map all data from an SKB for DMA and create descriptors on the queue. */
331 int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
332                     unsigned int segment_count)
333 {
334         struct efx_nic *efx = tx_queue->efx;
335         struct device *dma_dev = &efx->pci_dev->dev;
336         unsigned int frag_index, nr_frags;
337         dma_addr_t dma_addr, unmap_addr;
338         unsigned short dma_flags;
339         size_t len, unmap_len;
340
341         nr_frags = skb_shinfo(skb)->nr_frags;
342         frag_index = 0;
343
344         /* Map header data. */
345         len = skb_headlen(skb);
346         dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
347         dma_flags = EFX_TX_BUF_MAP_SINGLE;
348         unmap_len = len;
349         unmap_addr = dma_addr;
350
351         if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
352                 return -EIO;
353
354         if (segment_count) {
355                 /* For TSO we need to put the header in to a separate
356                  * descriptor. Map this separately if necessary.
357                  */
358                 size_t header_len = efx_tx_tso_header_length(skb);
359
360                 if (header_len != len) {
361                         tx_queue->tso_long_headers++;
362                         efx_tx_map_chunk(tx_queue, dma_addr, header_len);
363                         len -= header_len;
364                         dma_addr += header_len;
365                 }
366         }
367
368         /* Add descriptors for each fragment. */
369         do {
370                 struct efx_tx_buffer *buffer;
371                 skb_frag_t *fragment;
372
373                 buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
374
375                 /* The final descriptor for a fragment is responsible for
376                  * unmapping the whole fragment.
377                  */
378                 buffer->flags = EFX_TX_BUF_CONT | dma_flags;
379                 buffer->unmap_len = unmap_len;
380                 buffer->dma_offset = buffer->dma_addr - unmap_addr;
381
382                 if (frag_index >= nr_frags) {
383                         /* Store SKB details with the final buffer for
384                          * the completion.
385                          */
386                         buffer->skb = skb;
387                         buffer->flags = EFX_TX_BUF_SKB | dma_flags;
388                         return 0;
389                 }
390
391                 /* Move on to the next fragment. */
392                 fragment = &skb_shinfo(skb)->frags[frag_index++];
393                 len = skb_frag_size(fragment);
394                 dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
395                                             DMA_TO_DEVICE);
396                 dma_flags = 0;
397                 unmap_len = len;
398                 unmap_addr = dma_addr;
399
400                 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
401                         return -EIO;
402         } while (1);
403 }
404
405 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
406 {
407         /* Header and payload descriptor for each output segment, plus
408          * one for every input fragment boundary within a segment
409          */
410         unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
411
412         /* Possibly one more per segment for option descriptors */
413         if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
414                 max_descs += EFX_TSO_MAX_SEGS;
415
416         /* Possibly more for PCIe page boundaries within input fragments */
417         if (PAGE_SIZE > EFX_PAGE_SIZE)
418                 max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
419                                    DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
420
421         return max_descs;
422 }
423
424 /*
425  * Fallback to software TSO.
426  *
427  * This is used if we are unable to send a GSO packet through hardware TSO.
428  * This should only ever happen due to per-queue restrictions - unsupported
429  * packets should first be filtered by the feature flags.
430  *
431  * Returns 0 on success, error code otherwise.
432  */
433 int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
434 {
435         struct sk_buff *segments, *next;
436
437         segments = skb_gso_segment(skb, 0);
438         if (IS_ERR(segments))
439                 return PTR_ERR(segments);
440
441         dev_consume_skb_any(skb);
442
443         skb_list_walk_safe(segments, skb, next) {
444                 skb_mark_not_on_list(skb);
445                 efx_enqueue_skb(tx_queue, skb);
446         }
447
448         return 0;
449 }