Merge tag 'samsung-soc-5.10' of https://git.kernel.org/pub/scm/linux/kernel/git/krzk...
[linux-2.6-microblaze.git] / drivers / net / ethernet / sfc / rx_common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2018 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include "net_driver.h"
12 #include <linux/module.h>
13 #include <linux/iommu.h>
14 #include "efx.h"
15 #include "nic.h"
16 #include "rx_common.h"
17
18 /* This is the percentage fill level below which new RX descriptors
19  * will be added to the RX descriptor ring.
20  */
21 static unsigned int rx_refill_threshold;
22 module_param(rx_refill_threshold, uint, 0444);
23 MODULE_PARM_DESC(rx_refill_threshold,
24                  "RX descriptor ring refill threshold (%)");
25
26 /* Number of RX buffers to recycle pages for.  When creating the RX page recycle
27  * ring, this number is divided by the number of buffers per page to calculate
28  * the number of pages to store in the RX page recycle ring.
29  */
30 #define EFX_RECYCLE_RING_SIZE_IOMMU 4096
31 #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
32
33 /* RX maximum head room required.
34  *
35  * This must be at least 1 to prevent overflow, plus one packet-worth
36  * to allow pipelined receives.
37  */
38 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
39
40 /* Check the RX page recycle ring for a page that can be reused. */
41 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
42 {
43         struct efx_nic *efx = rx_queue->efx;
44         struct efx_rx_page_state *state;
45         unsigned int index;
46         struct page *page;
47
48         index = rx_queue->page_remove & rx_queue->page_ptr_mask;
49         page = rx_queue->page_ring[index];
50         if (page == NULL)
51                 return NULL;
52
53         rx_queue->page_ring[index] = NULL;
54         /* page_remove cannot exceed page_add. */
55         if (rx_queue->page_remove != rx_queue->page_add)
56                 ++rx_queue->page_remove;
57
58         /* If page_count is 1 then we hold the only reference to this page. */
59         if (page_count(page) == 1) {
60                 ++rx_queue->page_recycle_count;
61                 return page;
62         } else {
63                 state = page_address(page);
64                 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
65                                PAGE_SIZE << efx->rx_buffer_order,
66                                DMA_FROM_DEVICE);
67                 put_page(page);
68                 ++rx_queue->page_recycle_failed;
69         }
70
71         return NULL;
72 }
73
74 /* Attempt to recycle the page if there is an RX recycle ring; the page can
75  * only be added if this is the final RX buffer, to prevent pages being used in
76  * the descriptor ring and appearing in the recycle ring simultaneously.
77  */
78 static void efx_recycle_rx_page(struct efx_channel *channel,
79                                 struct efx_rx_buffer *rx_buf)
80 {
81         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
82         struct efx_nic *efx = rx_queue->efx;
83         struct page *page = rx_buf->page;
84         unsigned int index;
85
86         /* Only recycle the page after processing the final buffer. */
87         if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
88                 return;
89
90         index = rx_queue->page_add & rx_queue->page_ptr_mask;
91         if (rx_queue->page_ring[index] == NULL) {
92                 unsigned int read_index = rx_queue->page_remove &
93                         rx_queue->page_ptr_mask;
94
95                 /* The next slot in the recycle ring is available, but
96                  * increment page_remove if the read pointer currently
97                  * points here.
98                  */
99                 if (read_index == index)
100                         ++rx_queue->page_remove;
101                 rx_queue->page_ring[index] = page;
102                 ++rx_queue->page_add;
103                 return;
104         }
105         ++rx_queue->page_recycle_full;
106         efx_unmap_rx_buffer(efx, rx_buf);
107         put_page(rx_buf->page);
108 }
109
110 /* Recycle the pages that are used by buffers that have just been received. */
111 void efx_recycle_rx_pages(struct efx_channel *channel,
112                           struct efx_rx_buffer *rx_buf,
113                           unsigned int n_frags)
114 {
115         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
116
117         do {
118                 efx_recycle_rx_page(channel, rx_buf);
119                 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
120         } while (--n_frags);
121 }
122
123 void efx_discard_rx_packet(struct efx_channel *channel,
124                            struct efx_rx_buffer *rx_buf,
125                            unsigned int n_frags)
126 {
127         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
128
129         efx_recycle_rx_pages(channel, rx_buf, n_frags);
130
131         efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
132 }
133
134 static void efx_init_rx_recycle_ring(struct efx_rx_queue *rx_queue)
135 {
136         unsigned int bufs_in_recycle_ring, page_ring_size;
137         struct efx_nic *efx = rx_queue->efx;
138
139         /* Set the RX recycle ring size */
140 #ifdef CONFIG_PPC64
141         bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
142 #else
143         if (iommu_present(&pci_bus_type))
144                 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
145         else
146                 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
147 #endif /* CONFIG_PPC64 */
148
149         page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
150                                             efx->rx_bufs_per_page);
151         rx_queue->page_ring = kcalloc(page_ring_size,
152                                       sizeof(*rx_queue->page_ring), GFP_KERNEL);
153         rx_queue->page_ptr_mask = page_ring_size - 1;
154 }
155
156 static void efx_fini_rx_recycle_ring(struct efx_rx_queue *rx_queue)
157 {
158         struct efx_nic *efx = rx_queue->efx;
159         int i;
160
161         /* Unmap and release the pages in the recycle ring. Remove the ring. */
162         for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
163                 struct page *page = rx_queue->page_ring[i];
164                 struct efx_rx_page_state *state;
165
166                 if (page == NULL)
167                         continue;
168
169                 state = page_address(page);
170                 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
171                                PAGE_SIZE << efx->rx_buffer_order,
172                                DMA_FROM_DEVICE);
173                 put_page(page);
174         }
175         kfree(rx_queue->page_ring);
176         rx_queue->page_ring = NULL;
177 }
178
179 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
180                                struct efx_rx_buffer *rx_buf)
181 {
182         /* Release the page reference we hold for the buffer. */
183         if (rx_buf->page)
184                 put_page(rx_buf->page);
185
186         /* If this is the last buffer in a page, unmap and free it. */
187         if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
188                 efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
189                 efx_free_rx_buffers(rx_queue, rx_buf, 1);
190         }
191         rx_buf->page = NULL;
192 }
193
194 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
195 {
196         struct efx_nic *efx = rx_queue->efx;
197         unsigned int entries;
198         int rc;
199
200         /* Create the smallest power-of-two aligned ring */
201         entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
202         EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
203         rx_queue->ptr_mask = entries - 1;
204
205         netif_dbg(efx, probe, efx->net_dev,
206                   "creating RX queue %d size %#x mask %#x\n",
207                   efx_rx_queue_index(rx_queue), efx->rxq_entries,
208                   rx_queue->ptr_mask);
209
210         /* Allocate RX buffers */
211         rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
212                                    GFP_KERNEL);
213         if (!rx_queue->buffer)
214                 return -ENOMEM;
215
216         rc = efx_nic_probe_rx(rx_queue);
217         if (rc) {
218                 kfree(rx_queue->buffer);
219                 rx_queue->buffer = NULL;
220         }
221
222         return rc;
223 }
224
225 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
226 {
227         unsigned int max_fill, trigger, max_trigger;
228         struct efx_nic *efx = rx_queue->efx;
229         int rc = 0;
230
231         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
232                   "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
233
234         /* Initialise ptr fields */
235         rx_queue->added_count = 0;
236         rx_queue->notified_count = 0;
237         rx_queue->removed_count = 0;
238         rx_queue->min_fill = -1U;
239         efx_init_rx_recycle_ring(rx_queue);
240
241         rx_queue->page_remove = 0;
242         rx_queue->page_add = rx_queue->page_ptr_mask + 1;
243         rx_queue->page_recycle_count = 0;
244         rx_queue->page_recycle_failed = 0;
245         rx_queue->page_recycle_full = 0;
246
247         /* Initialise limit fields */
248         max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
249         max_trigger =
250                 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
251         if (rx_refill_threshold != 0) {
252                 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
253                 if (trigger > max_trigger)
254                         trigger = max_trigger;
255         } else {
256                 trigger = max_trigger;
257         }
258
259         rx_queue->max_fill = max_fill;
260         rx_queue->fast_fill_trigger = trigger;
261         rx_queue->refill_enabled = true;
262
263         /* Initialise XDP queue information */
264         rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev,
265                               rx_queue->core_index);
266
267         if (rc) {
268                 netif_err(efx, rx_err, efx->net_dev,
269                           "Failure to initialise XDP queue information rc=%d\n",
270                           rc);
271                 efx->xdp_rxq_info_failed = true;
272         } else {
273                 rx_queue->xdp_rxq_info_valid = true;
274         }
275
276         /* Set up RX descriptor ring */
277         efx_nic_init_rx(rx_queue);
278 }
279
280 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
281 {
282         struct efx_rx_buffer *rx_buf;
283         int i;
284
285         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
286                   "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
287
288         del_timer_sync(&rx_queue->slow_fill);
289
290         /* Release RX buffers from the current read ptr to the write ptr */
291         if (rx_queue->buffer) {
292                 for (i = rx_queue->removed_count; i < rx_queue->added_count;
293                      i++) {
294                         unsigned int index = i & rx_queue->ptr_mask;
295
296                         rx_buf = efx_rx_buffer(rx_queue, index);
297                         efx_fini_rx_buffer(rx_queue, rx_buf);
298                 }
299         }
300
301         efx_fini_rx_recycle_ring(rx_queue);
302
303         if (rx_queue->xdp_rxq_info_valid)
304                 xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info);
305
306         rx_queue->xdp_rxq_info_valid = false;
307 }
308
309 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
310 {
311         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
312                   "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
313
314         efx_nic_remove_rx(rx_queue);
315
316         kfree(rx_queue->buffer);
317         rx_queue->buffer = NULL;
318 }
319
320 /* Unmap a DMA-mapped page.  This function is only called for the final RX
321  * buffer in a page.
322  */
323 void efx_unmap_rx_buffer(struct efx_nic *efx,
324                          struct efx_rx_buffer *rx_buf)
325 {
326         struct page *page = rx_buf->page;
327
328         if (page) {
329                 struct efx_rx_page_state *state = page_address(page);
330
331                 dma_unmap_page(&efx->pci_dev->dev,
332                                state->dma_addr,
333                                PAGE_SIZE << efx->rx_buffer_order,
334                                DMA_FROM_DEVICE);
335         }
336 }
337
338 void efx_free_rx_buffers(struct efx_rx_queue *rx_queue,
339                          struct efx_rx_buffer *rx_buf,
340                          unsigned int num_bufs)
341 {
342         do {
343                 if (rx_buf->page) {
344                         put_page(rx_buf->page);
345                         rx_buf->page = NULL;
346                 }
347                 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
348         } while (--num_bufs);
349 }
350
351 void efx_rx_slow_fill(struct timer_list *t)
352 {
353         struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill);
354
355         /* Post an event to cause NAPI to run and refill the queue */
356         efx_nic_generate_fill_event(rx_queue);
357         ++rx_queue->slow_fill_count;
358 }
359
360 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
361 {
362         mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10));
363 }
364
365 /* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
366  *
367  * @rx_queue:           Efx RX queue
368  *
369  * This allocates a batch of pages, maps them for DMA, and populates
370  * struct efx_rx_buffers for each one. Return a negative error code or
371  * 0 on success. If a single page can be used for multiple buffers,
372  * then the page will either be inserted fully, or not at all.
373  */
374 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
375 {
376         unsigned int page_offset, index, count;
377         struct efx_nic *efx = rx_queue->efx;
378         struct efx_rx_page_state *state;
379         struct efx_rx_buffer *rx_buf;
380         dma_addr_t dma_addr;
381         struct page *page;
382
383         count = 0;
384         do {
385                 page = efx_reuse_page(rx_queue);
386                 if (page == NULL) {
387                         page = alloc_pages(__GFP_COMP |
388                                            (atomic ? GFP_ATOMIC : GFP_KERNEL),
389                                            efx->rx_buffer_order);
390                         if (unlikely(page == NULL))
391                                 return -ENOMEM;
392                         dma_addr =
393                                 dma_map_page(&efx->pci_dev->dev, page, 0,
394                                              PAGE_SIZE << efx->rx_buffer_order,
395                                              DMA_FROM_DEVICE);
396                         if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
397                                                        dma_addr))) {
398                                 __free_pages(page, efx->rx_buffer_order);
399                                 return -EIO;
400                         }
401                         state = page_address(page);
402                         state->dma_addr = dma_addr;
403                 } else {
404                         state = page_address(page);
405                         dma_addr = state->dma_addr;
406                 }
407
408                 dma_addr += sizeof(struct efx_rx_page_state);
409                 page_offset = sizeof(struct efx_rx_page_state);
410
411                 do {
412                         index = rx_queue->added_count & rx_queue->ptr_mask;
413                         rx_buf = efx_rx_buffer(rx_queue, index);
414                         rx_buf->dma_addr = dma_addr + efx->rx_ip_align +
415                                            EFX_XDP_HEADROOM;
416                         rx_buf->page = page;
417                         rx_buf->page_offset = page_offset + efx->rx_ip_align +
418                                               EFX_XDP_HEADROOM;
419                         rx_buf->len = efx->rx_dma_len;
420                         rx_buf->flags = 0;
421                         ++rx_queue->added_count;
422                         get_page(page);
423                         dma_addr += efx->rx_page_buf_step;
424                         page_offset += efx->rx_page_buf_step;
425                 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
426
427                 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
428         } while (++count < efx->rx_pages_per_batch);
429
430         return 0;
431 }
432
433 void efx_rx_config_page_split(struct efx_nic *efx)
434 {
435         efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align +
436                                       EFX_XDP_HEADROOM + EFX_XDP_TAILROOM,
437                                       EFX_RX_BUF_ALIGNMENT);
438         efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
439                 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
440                 efx->rx_page_buf_step);
441         efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
442                 efx->rx_bufs_per_page;
443         efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
444                                                efx->rx_bufs_per_page);
445 }
446
447 /* efx_fast_push_rx_descriptors - push new RX descriptors quickly
448  * @rx_queue:           RX descriptor queue
449  *
450  * This will aim to fill the RX descriptor queue up to
451  * @rx_queue->@max_fill. If there is insufficient atomic
452  * memory to do so, a slow fill will be scheduled.
453  *
454  * The caller must provide serialisation (none is used here). In practise,
455  * this means this function must run from the NAPI handler, or be called
456  * when NAPI is disabled.
457  */
458 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic)
459 {
460         struct efx_nic *efx = rx_queue->efx;
461         unsigned int fill_level, batch_size;
462         int space, rc = 0;
463
464         if (!rx_queue->refill_enabled)
465                 return;
466
467         /* Calculate current fill level, and exit if we don't need to fill */
468         fill_level = (rx_queue->added_count - rx_queue->removed_count);
469         EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries);
470         if (fill_level >= rx_queue->fast_fill_trigger)
471                 goto out;
472
473         /* Record minimum fill level */
474         if (unlikely(fill_level < rx_queue->min_fill)) {
475                 if (fill_level)
476                         rx_queue->min_fill = fill_level;
477         }
478
479         batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
480         space = rx_queue->max_fill - fill_level;
481         EFX_WARN_ON_ONCE_PARANOID(space < batch_size);
482
483         netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
484                    "RX queue %d fast-filling descriptor ring from"
485                    " level %d to level %d\n",
486                    efx_rx_queue_index(rx_queue), fill_level,
487                    rx_queue->max_fill);
488
489         do {
490                 rc = efx_init_rx_buffers(rx_queue, atomic);
491                 if (unlikely(rc)) {
492                         /* Ensure that we don't leave the rx queue empty */
493                         efx_schedule_slow_fill(rx_queue);
494                         goto out;
495                 }
496         } while ((space -= batch_size) >= batch_size);
497
498         netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
499                    "RX queue %d fast-filled descriptor ring "
500                    "to level %d\n", efx_rx_queue_index(rx_queue),
501                    rx_queue->added_count - rx_queue->removed_count);
502
503  out:
504         if (rx_queue->notified_count != rx_queue->added_count)
505                 efx_nic_notify_rx_desc(rx_queue);
506 }
507
508 /* Pass a received packet up through GRO.  GRO can handle pages
509  * regardless of checksum state and skbs with a good checksum.
510  */
511 void
512 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
513                   unsigned int n_frags, u8 *eh, __wsum csum)
514 {
515         struct napi_struct *napi = &channel->napi_str;
516         struct efx_nic *efx = channel->efx;
517         struct sk_buff *skb;
518
519         skb = napi_get_frags(napi);
520         if (unlikely(!skb)) {
521                 struct efx_rx_queue *rx_queue;
522
523                 rx_queue = efx_channel_get_rx_queue(channel);
524                 efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
525                 return;
526         }
527
528         if (efx->net_dev->features & NETIF_F_RXHASH &&
529             efx_rx_buf_hash_valid(efx, eh))
530                 skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
531                              PKT_HASH_TYPE_L3);
532         if (csum) {
533                 skb->csum = csum;
534                 skb->ip_summed = CHECKSUM_COMPLETE;
535         } else {
536                 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
537                                   CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
538         }
539         skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
540
541         for (;;) {
542                 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
543                                    rx_buf->page, rx_buf->page_offset,
544                                    rx_buf->len);
545                 rx_buf->page = NULL;
546                 skb->len += rx_buf->len;
547                 if (skb_shinfo(skb)->nr_frags == n_frags)
548                         break;
549
550                 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
551         }
552
553         skb->data_len = skb->len;
554         skb->truesize += n_frags * efx->rx_buffer_truesize;
555
556         skb_record_rx_queue(skb, channel->rx_queue.core_index);
557
558         napi_gro_frags(napi);
559 }
560
561 /* RSS contexts.  We're using linked lists and crappy O(n) algorithms, because
562  * (a) this is an infrequent control-plane operation and (b) n is small (max 64)
563  */
564 struct efx_rss_context *efx_alloc_rss_context_entry(struct efx_nic *efx)
565 {
566         struct list_head *head = &efx->rss_context.list;
567         struct efx_rss_context *ctx, *new;
568         u32 id = 1; /* Don't use zero, that refers to the master RSS context */
569
570         WARN_ON(!mutex_is_locked(&efx->rss_lock));
571
572         /* Search for first gap in the numbering */
573         list_for_each_entry(ctx, head, list) {
574                 if (ctx->user_id != id)
575                         break;
576                 id++;
577                 /* Check for wrap.  If this happens, we have nearly 2^32
578                  * allocated RSS contexts, which seems unlikely.
579                  */
580                 if (WARN_ON_ONCE(!id))
581                         return NULL;
582         }
583
584         /* Create the new entry */
585         new = kmalloc(sizeof(*new), GFP_KERNEL);
586         if (!new)
587                 return NULL;
588         new->context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
589         new->rx_hash_udp_4tuple = false;
590
591         /* Insert the new entry into the gap */
592         new->user_id = id;
593         list_add_tail(&new->list, &ctx->list);
594         return new;
595 }
596
597 struct efx_rss_context *efx_find_rss_context_entry(struct efx_nic *efx, u32 id)
598 {
599         struct list_head *head = &efx->rss_context.list;
600         struct efx_rss_context *ctx;
601
602         WARN_ON(!mutex_is_locked(&efx->rss_lock));
603
604         list_for_each_entry(ctx, head, list)
605                 if (ctx->user_id == id)
606                         return ctx;
607         return NULL;
608 }
609
610 void efx_free_rss_context_entry(struct efx_rss_context *ctx)
611 {
612         list_del(&ctx->list);
613         kfree(ctx);
614 }
615
616 void efx_set_default_rx_indir_table(struct efx_nic *efx,
617                                     struct efx_rss_context *ctx)
618 {
619         size_t i;
620
621         for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++)
622                 ctx->rx_indir_table[i] =
623                         ethtool_rxfh_indir_default(i, efx->rss_spread);
624 }
625
626 /**
627  * efx_filter_is_mc_recipient - test whether spec is a multicast recipient
628  * @spec: Specification to test
629  *
630  * Return: %true if the specification is a non-drop RX filter that
631  * matches a local MAC address I/G bit value of 1 or matches a local
632  * IPv4 or IPv6 address value in the respective multicast address
633  * range.  Otherwise %false.
634  */
635 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
636 {
637         if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
638             spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
639                 return false;
640
641         if (spec->match_flags &
642             (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
643             is_multicast_ether_addr(spec->loc_mac))
644                 return true;
645
646         if ((spec->match_flags &
647              (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
648             (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
649                 if (spec->ether_type == htons(ETH_P_IP) &&
650                     ipv4_is_multicast(spec->loc_host[0]))
651                         return true;
652                 if (spec->ether_type == htons(ETH_P_IPV6) &&
653                     ((const u8 *)spec->loc_host)[0] == 0xff)
654                         return true;
655         }
656
657         return false;
658 }
659
660 bool efx_filter_spec_equal(const struct efx_filter_spec *left,
661                            const struct efx_filter_spec *right)
662 {
663         if ((left->match_flags ^ right->match_flags) |
664             ((left->flags ^ right->flags) &
665              (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
666                 return false;
667
668         return memcmp(&left->outer_vid, &right->outer_vid,
669                       sizeof(struct efx_filter_spec) -
670                       offsetof(struct efx_filter_spec, outer_vid)) == 0;
671 }
672
673 u32 efx_filter_spec_hash(const struct efx_filter_spec *spec)
674 {
675         BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
676         return jhash2((const u32 *)&spec->outer_vid,
677                       (sizeof(struct efx_filter_spec) -
678                        offsetof(struct efx_filter_spec, outer_vid)) / 4,
679                       0);
680 }
681
682 #ifdef CONFIG_RFS_ACCEL
683 bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx,
684                         bool *force)
685 {
686         if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) {
687                 /* ARFS is currently updating this entry, leave it */
688                 return false;
689         }
690         if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) {
691                 /* ARFS tried and failed to update this, so it's probably out
692                  * of date.  Remove the filter and the ARFS rule entry.
693                  */
694                 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
695                 *force = true;
696                 return true;
697         } else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */
698                 /* ARFS has moved on, so old filter is not needed.  Since we did
699                  * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will
700                  * not be removed by efx_rps_hash_del() subsequently.
701                  */
702                 *force = true;
703                 return true;
704         }
705         /* Remove it iff ARFS wants to. */
706         return true;
707 }
708
709 static
710 struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx,
711                                        const struct efx_filter_spec *spec)
712 {
713         u32 hash = efx_filter_spec_hash(spec);
714
715         lockdep_assert_held(&efx->rps_hash_lock);
716         if (!efx->rps_hash_table)
717                 return NULL;
718         return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE];
719 }
720
721 struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx,
722                                         const struct efx_filter_spec *spec)
723 {
724         struct efx_arfs_rule *rule;
725         struct hlist_head *head;
726         struct hlist_node *node;
727
728         head = efx_rps_hash_bucket(efx, spec);
729         if (!head)
730                 return NULL;
731         hlist_for_each(node, head) {
732                 rule = container_of(node, struct efx_arfs_rule, node);
733                 if (efx_filter_spec_equal(spec, &rule->spec))
734                         return rule;
735         }
736         return NULL;
737 }
738
739 struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx,
740                                        const struct efx_filter_spec *spec,
741                                        bool *new)
742 {
743         struct efx_arfs_rule *rule;
744         struct hlist_head *head;
745         struct hlist_node *node;
746
747         head = efx_rps_hash_bucket(efx, spec);
748         if (!head)
749                 return NULL;
750         hlist_for_each(node, head) {
751                 rule = container_of(node, struct efx_arfs_rule, node);
752                 if (efx_filter_spec_equal(spec, &rule->spec)) {
753                         *new = false;
754                         return rule;
755                 }
756         }
757         rule = kmalloc(sizeof(*rule), GFP_ATOMIC);
758         *new = true;
759         if (rule) {
760                 memcpy(&rule->spec, spec, sizeof(rule->spec));
761                 hlist_add_head(&rule->node, head);
762         }
763         return rule;
764 }
765
766 void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec)
767 {
768         struct efx_arfs_rule *rule;
769         struct hlist_head *head;
770         struct hlist_node *node;
771
772         head = efx_rps_hash_bucket(efx, spec);
773         if (WARN_ON(!head))
774                 return;
775         hlist_for_each(node, head) {
776                 rule = container_of(node, struct efx_arfs_rule, node);
777                 if (efx_filter_spec_equal(spec, &rule->spec)) {
778                         /* Someone already reused the entry.  We know that if
779                          * this check doesn't fire (i.e. filter_id == REMOVING)
780                          * then the REMOVING mark was put there by our caller,
781                          * because caller is holding a lock on filter table and
782                          * only holders of that lock set REMOVING.
783                          */
784                         if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING)
785                                 return;
786                         hlist_del(node);
787                         kfree(rule);
788                         return;
789                 }
790         }
791         /* We didn't find it. */
792         WARN_ON(1);
793 }
794 #endif
795
796 int efx_probe_filters(struct efx_nic *efx)
797 {
798         int rc;
799
800         init_rwsem(&efx->filter_sem);
801         mutex_lock(&efx->mac_lock);
802         down_write(&efx->filter_sem);
803         rc = efx->type->filter_table_probe(efx);
804         if (rc)
805                 goto out_unlock;
806
807 #ifdef CONFIG_RFS_ACCEL
808         if (efx->type->offload_features & NETIF_F_NTUPLE) {
809                 struct efx_channel *channel;
810                 int i, success = 1;
811
812                 efx_for_each_channel(channel, efx) {
813                         channel->rps_flow_id =
814                                 kcalloc(efx->type->max_rx_ip_filters,
815                                         sizeof(*channel->rps_flow_id),
816                                         GFP_KERNEL);
817                         if (!channel->rps_flow_id)
818                                 success = 0;
819                         else
820                                 for (i = 0;
821                                      i < efx->type->max_rx_ip_filters;
822                                      ++i)
823                                         channel->rps_flow_id[i] =
824                                                 RPS_FLOW_ID_INVALID;
825                         channel->rfs_expire_index = 0;
826                         channel->rfs_filter_count = 0;
827                 }
828
829                 if (!success) {
830                         efx_for_each_channel(channel, efx)
831                                 kfree(channel->rps_flow_id);
832                         efx->type->filter_table_remove(efx);
833                         rc = -ENOMEM;
834                         goto out_unlock;
835                 }
836         }
837 #endif
838 out_unlock:
839         up_write(&efx->filter_sem);
840         mutex_unlock(&efx->mac_lock);
841         return rc;
842 }
843
844 void efx_remove_filters(struct efx_nic *efx)
845 {
846 #ifdef CONFIG_RFS_ACCEL
847         struct efx_channel *channel;
848
849         efx_for_each_channel(channel, efx) {
850                 cancel_delayed_work_sync(&channel->filter_work);
851                 kfree(channel->rps_flow_id);
852                 channel->rps_flow_id = NULL;
853         }
854 #endif
855         down_write(&efx->filter_sem);
856         efx->type->filter_table_remove(efx);
857         up_write(&efx->filter_sem);
858 }
859
860 #ifdef CONFIG_RFS_ACCEL
861
862 static void efx_filter_rfs_work(struct work_struct *data)
863 {
864         struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion,
865                                                               work);
866         struct efx_nic *efx = netdev_priv(req->net_dev);
867         struct efx_channel *channel = efx_get_channel(efx, req->rxq_index);
868         int slot_idx = req - efx->rps_slot;
869         struct efx_arfs_rule *rule;
870         u16 arfs_id = 0;
871         int rc;
872
873         rc = efx->type->filter_insert(efx, &req->spec, true);
874         if (rc >= 0)
875                 /* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */
876                 rc %= efx->type->max_rx_ip_filters;
877         if (efx->rps_hash_table) {
878                 spin_lock_bh(&efx->rps_hash_lock);
879                 rule = efx_rps_hash_find(efx, &req->spec);
880                 /* The rule might have already gone, if someone else's request
881                  * for the same spec was already worked and then expired before
882                  * we got around to our work.  In that case we have nothing
883                  * tying us to an arfs_id, meaning that as soon as the filter
884                  * is considered for expiry it will be removed.
885                  */
886                 if (rule) {
887                         if (rc < 0)
888                                 rule->filter_id = EFX_ARFS_FILTER_ID_ERROR;
889                         else
890                                 rule->filter_id = rc;
891                         arfs_id = rule->arfs_id;
892                 }
893                 spin_unlock_bh(&efx->rps_hash_lock);
894         }
895         if (rc >= 0) {
896                 /* Remember this so we can check whether to expire the filter
897                  * later.
898                  */
899                 mutex_lock(&efx->rps_mutex);
900                 if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID)
901                         channel->rfs_filter_count++;
902                 channel->rps_flow_id[rc] = req->flow_id;
903                 mutex_unlock(&efx->rps_mutex);
904
905                 if (req->spec.ether_type == htons(ETH_P_IP))
906                         netif_info(efx, rx_status, efx->net_dev,
907                                    "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n",
908                                    (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
909                                    req->spec.rem_host, ntohs(req->spec.rem_port),
910                                    req->spec.loc_host, ntohs(req->spec.loc_port),
911                                    req->rxq_index, req->flow_id, rc, arfs_id);
912                 else
913                         netif_info(efx, rx_status, efx->net_dev,
914                                    "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n",
915                                    (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
916                                    req->spec.rem_host, ntohs(req->spec.rem_port),
917                                    req->spec.loc_host, ntohs(req->spec.loc_port),
918                                    req->rxq_index, req->flow_id, rc, arfs_id);
919                 channel->n_rfs_succeeded++;
920         } else {
921                 if (req->spec.ether_type == htons(ETH_P_IP))
922                         netif_dbg(efx, rx_status, efx->net_dev,
923                                   "failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n",
924                                   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
925                                   req->spec.rem_host, ntohs(req->spec.rem_port),
926                                   req->spec.loc_host, ntohs(req->spec.loc_port),
927                                   req->rxq_index, req->flow_id, rc, arfs_id);
928                 else
929                         netif_dbg(efx, rx_status, efx->net_dev,
930                                   "failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n",
931                                   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
932                                   req->spec.rem_host, ntohs(req->spec.rem_port),
933                                   req->spec.loc_host, ntohs(req->spec.loc_port),
934                                   req->rxq_index, req->flow_id, rc, arfs_id);
935                 channel->n_rfs_failed++;
936                 /* We're overloading the NIC's filter tables, so let's do a
937                  * chunk of extra expiry work.
938                  */
939                 __efx_filter_rfs_expire(channel, min(channel->rfs_filter_count,
940                                                      100u));
941         }
942
943         /* Release references */
944         clear_bit(slot_idx, &efx->rps_slot_map);
945         dev_put(req->net_dev);
946 }
947
948 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
949                    u16 rxq_index, u32 flow_id)
950 {
951         struct efx_nic *efx = netdev_priv(net_dev);
952         struct efx_async_filter_insertion *req;
953         struct efx_arfs_rule *rule;
954         struct flow_keys fk;
955         int slot_idx;
956         bool new;
957         int rc;
958
959         /* find a free slot */
960         for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++)
961                 if (!test_and_set_bit(slot_idx, &efx->rps_slot_map))
962                         break;
963         if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT)
964                 return -EBUSY;
965
966         if (flow_id == RPS_FLOW_ID_INVALID) {
967                 rc = -EINVAL;
968                 goto out_clear;
969         }
970
971         if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) {
972                 rc = -EPROTONOSUPPORT;
973                 goto out_clear;
974         }
975
976         if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) {
977                 rc = -EPROTONOSUPPORT;
978                 goto out_clear;
979         }
980         if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) {
981                 rc = -EPROTONOSUPPORT;
982                 goto out_clear;
983         }
984
985         req = efx->rps_slot + slot_idx;
986         efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT,
987                            efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
988                            rxq_index);
989         req->spec.match_flags =
990                 EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
991                 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
992                 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
993         req->spec.ether_type = fk.basic.n_proto;
994         req->spec.ip_proto = fk.basic.ip_proto;
995
996         if (fk.basic.n_proto == htons(ETH_P_IP)) {
997                 req->spec.rem_host[0] = fk.addrs.v4addrs.src;
998                 req->spec.loc_host[0] = fk.addrs.v4addrs.dst;
999         } else {
1000                 memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src,
1001                        sizeof(struct in6_addr));
1002                 memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst,
1003                        sizeof(struct in6_addr));
1004         }
1005
1006         req->spec.rem_port = fk.ports.src;
1007         req->spec.loc_port = fk.ports.dst;
1008
1009         if (efx->rps_hash_table) {
1010                 /* Add it to ARFS hash table */
1011                 spin_lock(&efx->rps_hash_lock);
1012                 rule = efx_rps_hash_add(efx, &req->spec, &new);
1013                 if (!rule) {
1014                         rc = -ENOMEM;
1015                         goto out_unlock;
1016                 }
1017                 if (new)
1018                         rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER;
1019                 rc = rule->arfs_id;
1020                 /* Skip if existing or pending filter already does the right thing */
1021                 if (!new && rule->rxq_index == rxq_index &&
1022                     rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING)
1023                         goto out_unlock;
1024                 rule->rxq_index = rxq_index;
1025                 rule->filter_id = EFX_ARFS_FILTER_ID_PENDING;
1026                 spin_unlock(&efx->rps_hash_lock);
1027         } else {
1028                 /* Without an ARFS hash table, we just use arfs_id 0 for all
1029                  * filters.  This means if multiple flows hash to the same
1030                  * flow_id, all but the most recently touched will be eligible
1031                  * for expiry.
1032                  */
1033                 rc = 0;
1034         }
1035
1036         /* Queue the request */
1037         dev_hold(req->net_dev = net_dev);
1038         INIT_WORK(&req->work, efx_filter_rfs_work);
1039         req->rxq_index = rxq_index;
1040         req->flow_id = flow_id;
1041         schedule_work(&req->work);
1042         return rc;
1043 out_unlock:
1044         spin_unlock(&efx->rps_hash_lock);
1045 out_clear:
1046         clear_bit(slot_idx, &efx->rps_slot_map);
1047         return rc;
1048 }
1049
1050 bool __efx_filter_rfs_expire(struct efx_channel *channel, unsigned int quota)
1051 {
1052         bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
1053         struct efx_nic *efx = channel->efx;
1054         unsigned int index, size, start;
1055         u32 flow_id;
1056
1057         if (!mutex_trylock(&efx->rps_mutex))
1058                 return false;
1059         expire_one = efx->type->filter_rfs_expire_one;
1060         index = channel->rfs_expire_index;
1061         start = index;
1062         size = efx->type->max_rx_ip_filters;
1063         while (quota) {
1064                 flow_id = channel->rps_flow_id[index];
1065
1066                 if (flow_id != RPS_FLOW_ID_INVALID) {
1067                         quota--;
1068                         if (expire_one(efx, flow_id, index)) {
1069                                 netif_info(efx, rx_status, efx->net_dev,
1070                                            "expired filter %d [channel %u flow %u]\n",
1071                                            index, channel->channel, flow_id);
1072                                 channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
1073                                 channel->rfs_filter_count--;
1074                         }
1075                 }
1076                 if (++index == size)
1077                         index = 0;
1078                 /* If we were called with a quota that exceeds the total number
1079                  * of filters in the table (which shouldn't happen, but could
1080                  * if two callers race), ensure that we don't loop forever -
1081                  * stop when we've examined every row of the table.
1082                  */
1083                 if (index == start)
1084                         break;
1085         }
1086
1087         channel->rfs_expire_index = index;
1088         mutex_unlock(&efx->rps_mutex);
1089         return true;
1090 }
1091
1092 #endif /* CONFIG_RFS_ACCEL */