sfc: don't score irq moderation points for GRO
[linux-2.6-microblaze.git] / drivers / net / ethernet / sfc / rx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7
8 #include <linux/socket.h>
9 #include <linux/in.h>
10 #include <linux/slab.h>
11 #include <linux/ip.h>
12 #include <linux/ipv6.h>
13 #include <linux/tcp.h>
14 #include <linux/udp.h>
15 #include <linux/prefetch.h>
16 #include <linux/moduleparam.h>
17 #include <linux/iommu.h>
18 #include <net/ip.h>
19 #include <net/checksum.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "filter.h"
23 #include "nic.h"
24 #include "selftest.h"
25 #include "workarounds.h"
26
27 /* Preferred number of descriptors to fill at once */
28 #define EFX_RX_PREFERRED_BATCH 8U
29
30 /* Number of RX buffers to recycle pages for.  When creating the RX page recycle
31  * ring, this number is divided by the number of buffers per page to calculate
32  * the number of pages to store in the RX page recycle ring.
33  */
34 #define EFX_RECYCLE_RING_SIZE_IOMMU 4096
35 #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
36
37 /* Size of buffer allocated for skb header area. */
38 #define EFX_SKB_HEADERS  128u
39
40 /* This is the percentage fill level below which new RX descriptors
41  * will be added to the RX descriptor ring.
42  */
43 static unsigned int rx_refill_threshold;
44
45 /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
46 #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
47                                       EFX_RX_USR_BUF_SIZE)
48
49 /*
50  * RX maximum head room required.
51  *
52  * This must be at least 1 to prevent overflow, plus one packet-worth
53  * to allow pipelined receives.
54  */
55 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
56
57 static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf)
58 {
59         return page_address(buf->page) + buf->page_offset;
60 }
61
62 static inline u32 efx_rx_buf_hash(struct efx_nic *efx, const u8 *eh)
63 {
64 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
65         return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset));
66 #else
67         const u8 *data = eh + efx->rx_packet_hash_offset;
68         return (u32)data[0]       |
69                (u32)data[1] << 8  |
70                (u32)data[2] << 16 |
71                (u32)data[3] << 24;
72 #endif
73 }
74
75 static inline struct efx_rx_buffer *
76 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
77 {
78         if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
79                 return efx_rx_buffer(rx_queue, 0);
80         else
81                 return rx_buf + 1;
82 }
83
84 static inline void efx_sync_rx_buffer(struct efx_nic *efx,
85                                       struct efx_rx_buffer *rx_buf,
86                                       unsigned int len)
87 {
88         dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
89                                 DMA_FROM_DEVICE);
90 }
91
92 void efx_rx_config_page_split(struct efx_nic *efx)
93 {
94         efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align,
95                                       EFX_RX_BUF_ALIGNMENT);
96         efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
97                 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
98                  efx->rx_page_buf_step);
99         efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
100                 efx->rx_bufs_per_page;
101         efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
102                                                efx->rx_bufs_per_page);
103 }
104
105 /* Check the RX page recycle ring for a page that can be reused. */
106 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
107 {
108         struct efx_nic *efx = rx_queue->efx;
109         struct page *page;
110         struct efx_rx_page_state *state;
111         unsigned index;
112
113         index = rx_queue->page_remove & rx_queue->page_ptr_mask;
114         page = rx_queue->page_ring[index];
115         if (page == NULL)
116                 return NULL;
117
118         rx_queue->page_ring[index] = NULL;
119         /* page_remove cannot exceed page_add. */
120         if (rx_queue->page_remove != rx_queue->page_add)
121                 ++rx_queue->page_remove;
122
123         /* If page_count is 1 then we hold the only reference to this page. */
124         if (page_count(page) == 1) {
125                 ++rx_queue->page_recycle_count;
126                 return page;
127         } else {
128                 state = page_address(page);
129                 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
130                                PAGE_SIZE << efx->rx_buffer_order,
131                                DMA_FROM_DEVICE);
132                 put_page(page);
133                 ++rx_queue->page_recycle_failed;
134         }
135
136         return NULL;
137 }
138
139 /**
140  * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
141  *
142  * @rx_queue:           Efx RX queue
143  *
144  * This allocates a batch of pages, maps them for DMA, and populates
145  * struct efx_rx_buffers for each one. Return a negative error code or
146  * 0 on success. If a single page can be used for multiple buffers,
147  * then the page will either be inserted fully, or not at all.
148  */
149 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
150 {
151         struct efx_nic *efx = rx_queue->efx;
152         struct efx_rx_buffer *rx_buf;
153         struct page *page;
154         unsigned int page_offset;
155         struct efx_rx_page_state *state;
156         dma_addr_t dma_addr;
157         unsigned index, count;
158
159         count = 0;
160         do {
161                 page = efx_reuse_page(rx_queue);
162                 if (page == NULL) {
163                         page = alloc_pages(__GFP_COMP |
164                                            (atomic ? GFP_ATOMIC : GFP_KERNEL),
165                                            efx->rx_buffer_order);
166                         if (unlikely(page == NULL))
167                                 return -ENOMEM;
168                         dma_addr =
169                                 dma_map_page(&efx->pci_dev->dev, page, 0,
170                                              PAGE_SIZE << efx->rx_buffer_order,
171                                              DMA_FROM_DEVICE);
172                         if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
173                                                        dma_addr))) {
174                                 __free_pages(page, efx->rx_buffer_order);
175                                 return -EIO;
176                         }
177                         state = page_address(page);
178                         state->dma_addr = dma_addr;
179                 } else {
180                         state = page_address(page);
181                         dma_addr = state->dma_addr;
182                 }
183
184                 dma_addr += sizeof(struct efx_rx_page_state);
185                 page_offset = sizeof(struct efx_rx_page_state);
186
187                 do {
188                         index = rx_queue->added_count & rx_queue->ptr_mask;
189                         rx_buf = efx_rx_buffer(rx_queue, index);
190                         rx_buf->dma_addr = dma_addr + efx->rx_ip_align;
191                         rx_buf->page = page;
192                         rx_buf->page_offset = page_offset + efx->rx_ip_align;
193                         rx_buf->len = efx->rx_dma_len;
194                         rx_buf->flags = 0;
195                         ++rx_queue->added_count;
196                         get_page(page);
197                         dma_addr += efx->rx_page_buf_step;
198                         page_offset += efx->rx_page_buf_step;
199                 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
200
201                 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
202         } while (++count < efx->rx_pages_per_batch);
203
204         return 0;
205 }
206
207 /* Unmap a DMA-mapped page.  This function is only called for the final RX
208  * buffer in a page.
209  */
210 static void efx_unmap_rx_buffer(struct efx_nic *efx,
211                                 struct efx_rx_buffer *rx_buf)
212 {
213         struct page *page = rx_buf->page;
214
215         if (page) {
216                 struct efx_rx_page_state *state = page_address(page);
217                 dma_unmap_page(&efx->pci_dev->dev,
218                                state->dma_addr,
219                                PAGE_SIZE << efx->rx_buffer_order,
220                                DMA_FROM_DEVICE);
221         }
222 }
223
224 static void efx_free_rx_buffers(struct efx_rx_queue *rx_queue,
225                                 struct efx_rx_buffer *rx_buf,
226                                 unsigned int num_bufs)
227 {
228         do {
229                 if (rx_buf->page) {
230                         put_page(rx_buf->page);
231                         rx_buf->page = NULL;
232                 }
233                 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
234         } while (--num_bufs);
235 }
236
237 /* Attempt to recycle the page if there is an RX recycle ring; the page can
238  * only be added if this is the final RX buffer, to prevent pages being used in
239  * the descriptor ring and appearing in the recycle ring simultaneously.
240  */
241 static void efx_recycle_rx_page(struct efx_channel *channel,
242                                 struct efx_rx_buffer *rx_buf)
243 {
244         struct page *page = rx_buf->page;
245         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
246         struct efx_nic *efx = rx_queue->efx;
247         unsigned index;
248
249         /* Only recycle the page after processing the final buffer. */
250         if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
251                 return;
252
253         index = rx_queue->page_add & rx_queue->page_ptr_mask;
254         if (rx_queue->page_ring[index] == NULL) {
255                 unsigned read_index = rx_queue->page_remove &
256                         rx_queue->page_ptr_mask;
257
258                 /* The next slot in the recycle ring is available, but
259                  * increment page_remove if the read pointer currently
260                  * points here.
261                  */
262                 if (read_index == index)
263                         ++rx_queue->page_remove;
264                 rx_queue->page_ring[index] = page;
265                 ++rx_queue->page_add;
266                 return;
267         }
268         ++rx_queue->page_recycle_full;
269         efx_unmap_rx_buffer(efx, rx_buf);
270         put_page(rx_buf->page);
271 }
272
273 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
274                                struct efx_rx_buffer *rx_buf)
275 {
276         /* Release the page reference we hold for the buffer. */
277         if (rx_buf->page)
278                 put_page(rx_buf->page);
279
280         /* If this is the last buffer in a page, unmap and free it. */
281         if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
282                 efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
283                 efx_free_rx_buffers(rx_queue, rx_buf, 1);
284         }
285         rx_buf->page = NULL;
286 }
287
288 /* Recycle the pages that are used by buffers that have just been received. */
289 static void efx_recycle_rx_pages(struct efx_channel *channel,
290                                  struct efx_rx_buffer *rx_buf,
291                                  unsigned int n_frags)
292 {
293         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
294
295         do {
296                 efx_recycle_rx_page(channel, rx_buf);
297                 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
298         } while (--n_frags);
299 }
300
301 static void efx_discard_rx_packet(struct efx_channel *channel,
302                                   struct efx_rx_buffer *rx_buf,
303                                   unsigned int n_frags)
304 {
305         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
306
307         efx_recycle_rx_pages(channel, rx_buf, n_frags);
308
309         efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
310 }
311
312 /**
313  * efx_fast_push_rx_descriptors - push new RX descriptors quickly
314  * @rx_queue:           RX descriptor queue
315  *
316  * This will aim to fill the RX descriptor queue up to
317  * @rx_queue->@max_fill. If there is insufficient atomic
318  * memory to do so, a slow fill will be scheduled.
319  *
320  * The caller must provide serialisation (none is used here). In practise,
321  * this means this function must run from the NAPI handler, or be called
322  * when NAPI is disabled.
323  */
324 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic)
325 {
326         struct efx_nic *efx = rx_queue->efx;
327         unsigned int fill_level, batch_size;
328         int space, rc = 0;
329
330         if (!rx_queue->refill_enabled)
331                 return;
332
333         /* Calculate current fill level, and exit if we don't need to fill */
334         fill_level = (rx_queue->added_count - rx_queue->removed_count);
335         EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries);
336         if (fill_level >= rx_queue->fast_fill_trigger)
337                 goto out;
338
339         /* Record minimum fill level */
340         if (unlikely(fill_level < rx_queue->min_fill)) {
341                 if (fill_level)
342                         rx_queue->min_fill = fill_level;
343         }
344
345         batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
346         space = rx_queue->max_fill - fill_level;
347         EFX_WARN_ON_ONCE_PARANOID(space < batch_size);
348
349         netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
350                    "RX queue %d fast-filling descriptor ring from"
351                    " level %d to level %d\n",
352                    efx_rx_queue_index(rx_queue), fill_level,
353                    rx_queue->max_fill);
354
355
356         do {
357                 rc = efx_init_rx_buffers(rx_queue, atomic);
358                 if (unlikely(rc)) {
359                         /* Ensure that we don't leave the rx queue empty */
360                         efx_schedule_slow_fill(rx_queue);
361                         goto out;
362                 }
363         } while ((space -= batch_size) >= batch_size);
364
365         netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
366                    "RX queue %d fast-filled descriptor ring "
367                    "to level %d\n", efx_rx_queue_index(rx_queue),
368                    rx_queue->added_count - rx_queue->removed_count);
369
370  out:
371         if (rx_queue->notified_count != rx_queue->added_count)
372                 efx_nic_notify_rx_desc(rx_queue);
373 }
374
375 void efx_rx_slow_fill(struct timer_list *t)
376 {
377         struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill);
378
379         /* Post an event to cause NAPI to run and refill the queue */
380         efx_nic_generate_fill_event(rx_queue);
381         ++rx_queue->slow_fill_count;
382 }
383
384 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
385                                      struct efx_rx_buffer *rx_buf,
386                                      int len)
387 {
388         struct efx_nic *efx = rx_queue->efx;
389         unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
390
391         if (likely(len <= max_len))
392                 return;
393
394         /* The packet must be discarded, but this is only a fatal error
395          * if the caller indicated it was
396          */
397         rx_buf->flags |= EFX_RX_PKT_DISCARD;
398
399         if (net_ratelimit())
400                 netif_err(efx, rx_err, efx->net_dev,
401                           "RX queue %d overlength RX event (%#x > %#x)\n",
402                           efx_rx_queue_index(rx_queue), len, max_len);
403
404         efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
405 }
406
407 /* Pass a received packet up through GRO.  GRO can handle pages
408  * regardless of checksum state and skbs with a good checksum.
409  */
410 static void
411 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
412                   unsigned int n_frags, u8 *eh)
413 {
414         struct napi_struct *napi = &channel->napi_str;
415         struct efx_nic *efx = channel->efx;
416         struct sk_buff *skb;
417
418         skb = napi_get_frags(napi);
419         if (unlikely(!skb)) {
420                 struct efx_rx_queue *rx_queue;
421
422                 rx_queue = efx_channel_get_rx_queue(channel);
423                 efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
424                 return;
425         }
426
427         if (efx->net_dev->features & NETIF_F_RXHASH)
428                 skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
429                              PKT_HASH_TYPE_L3);
430         skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
431                           CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
432         skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
433
434         for (;;) {
435                 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
436                                    rx_buf->page, rx_buf->page_offset,
437                                    rx_buf->len);
438                 rx_buf->page = NULL;
439                 skb->len += rx_buf->len;
440                 if (skb_shinfo(skb)->nr_frags == n_frags)
441                         break;
442
443                 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
444         }
445
446         skb->data_len = skb->len;
447         skb->truesize += n_frags * efx->rx_buffer_truesize;
448
449         skb_record_rx_queue(skb, channel->rx_queue.core_index);
450
451         napi_gro_frags(napi);
452 }
453
454 /* Allocate and construct an SKB around page fragments */
455 static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel,
456                                      struct efx_rx_buffer *rx_buf,
457                                      unsigned int n_frags,
458                                      u8 *eh, int hdr_len)
459 {
460         struct efx_nic *efx = channel->efx;
461         struct sk_buff *skb;
462
463         /* Allocate an SKB to store the headers */
464         skb = netdev_alloc_skb(efx->net_dev,
465                                efx->rx_ip_align + efx->rx_prefix_size +
466                                hdr_len);
467         if (unlikely(skb == NULL)) {
468                 atomic_inc(&efx->n_rx_noskb_drops);
469                 return NULL;
470         }
471
472         EFX_WARN_ON_ONCE_PARANOID(rx_buf->len < hdr_len);
473
474         memcpy(skb->data + efx->rx_ip_align, eh - efx->rx_prefix_size,
475                efx->rx_prefix_size + hdr_len);
476         skb_reserve(skb, efx->rx_ip_align + efx->rx_prefix_size);
477         __skb_put(skb, hdr_len);
478
479         /* Append the remaining page(s) onto the frag list */
480         if (rx_buf->len > hdr_len) {
481                 rx_buf->page_offset += hdr_len;
482                 rx_buf->len -= hdr_len;
483
484                 for (;;) {
485                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
486                                            rx_buf->page, rx_buf->page_offset,
487                                            rx_buf->len);
488                         rx_buf->page = NULL;
489                         skb->len += rx_buf->len;
490                         skb->data_len += rx_buf->len;
491                         if (skb_shinfo(skb)->nr_frags == n_frags)
492                                 break;
493
494                         rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
495                 }
496         } else {
497                 __free_pages(rx_buf->page, efx->rx_buffer_order);
498                 rx_buf->page = NULL;
499                 n_frags = 0;
500         }
501
502         skb->truesize += n_frags * efx->rx_buffer_truesize;
503
504         /* Move past the ethernet header */
505         skb->protocol = eth_type_trans(skb, efx->net_dev);
506
507         skb_mark_napi_id(skb, &channel->napi_str);
508
509         return skb;
510 }
511
512 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
513                    unsigned int n_frags, unsigned int len, u16 flags)
514 {
515         struct efx_nic *efx = rx_queue->efx;
516         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
517         struct efx_rx_buffer *rx_buf;
518
519         rx_queue->rx_packets++;
520
521         rx_buf = efx_rx_buffer(rx_queue, index);
522         rx_buf->flags |= flags;
523
524         /* Validate the number of fragments and completed length */
525         if (n_frags == 1) {
526                 if (!(flags & EFX_RX_PKT_PREFIX_LEN))
527                         efx_rx_packet__check_len(rx_queue, rx_buf, len);
528         } else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) ||
529                    unlikely(len <= (n_frags - 1) * efx->rx_dma_len) ||
530                    unlikely(len > n_frags * efx->rx_dma_len) ||
531                    unlikely(!efx->rx_scatter)) {
532                 /* If this isn't an explicit discard request, either
533                  * the hardware or the driver is broken.
534                  */
535                 WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD));
536                 rx_buf->flags |= EFX_RX_PKT_DISCARD;
537         }
538
539         netif_vdbg(efx, rx_status, efx->net_dev,
540                    "RX queue %d received ids %x-%x len %d %s%s\n",
541                    efx_rx_queue_index(rx_queue), index,
542                    (index + n_frags - 1) & rx_queue->ptr_mask, len,
543                    (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
544                    (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
545
546         /* Discard packet, if instructed to do so.  Process the
547          * previous receive first.
548          */
549         if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
550                 efx_rx_flush_packet(channel);
551                 efx_discard_rx_packet(channel, rx_buf, n_frags);
552                 return;
553         }
554
555         if (n_frags == 1 && !(flags & EFX_RX_PKT_PREFIX_LEN))
556                 rx_buf->len = len;
557
558         /* Release and/or sync the DMA mapping - assumes all RX buffers
559          * consumed in-order per RX queue.
560          */
561         efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
562
563         /* Prefetch nice and early so data will (hopefully) be in cache by
564          * the time we look at it.
565          */
566         prefetch(efx_rx_buf_va(rx_buf));
567
568         rx_buf->page_offset += efx->rx_prefix_size;
569         rx_buf->len -= efx->rx_prefix_size;
570
571         if (n_frags > 1) {
572                 /* Release/sync DMA mapping for additional fragments.
573                  * Fix length for last fragment.
574                  */
575                 unsigned int tail_frags = n_frags - 1;
576
577                 for (;;) {
578                         rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
579                         if (--tail_frags == 0)
580                                 break;
581                         efx_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len);
582                 }
583                 rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len;
584                 efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
585         }
586
587         /* All fragments have been DMA-synced, so recycle pages. */
588         rx_buf = efx_rx_buffer(rx_queue, index);
589         efx_recycle_rx_pages(channel, rx_buf, n_frags);
590
591         /* Pipeline receives so that we give time for packet headers to be
592          * prefetched into cache.
593          */
594         efx_rx_flush_packet(channel);
595         channel->rx_pkt_n_frags = n_frags;
596         channel->rx_pkt_index = index;
597 }
598
599 static void efx_rx_deliver(struct efx_channel *channel, u8 *eh,
600                            struct efx_rx_buffer *rx_buf,
601                            unsigned int n_frags)
602 {
603         struct sk_buff *skb;
604         u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS);
605
606         skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
607         if (unlikely(skb == NULL)) {
608                 struct efx_rx_queue *rx_queue;
609
610                 rx_queue = efx_channel_get_rx_queue(channel);
611                 efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
612                 return;
613         }
614         skb_record_rx_queue(skb, channel->rx_queue.core_index);
615
616         /* Set the SKB flags */
617         skb_checksum_none_assert(skb);
618         if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED)) {
619                 skb->ip_summed = CHECKSUM_UNNECESSARY;
620                 skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
621         }
622
623         efx_rx_skb_attach_timestamp(channel, skb);
624
625         if (channel->type->receive_skb)
626                 if (channel->type->receive_skb(channel, skb))
627                         return;
628
629         /* Pass the packet up */
630         if (channel->rx_list != NULL)
631                 /* Add to list, will pass up later */
632                 list_add_tail(&skb->list, channel->rx_list);
633         else
634                 /* No list, so pass it up now */
635                 netif_receive_skb(skb);
636 }
637
638 /* Handle a received packet.  Second half: Touches packet payload. */
639 void __efx_rx_packet(struct efx_channel *channel)
640 {
641         struct efx_nic *efx = channel->efx;
642         struct efx_rx_buffer *rx_buf =
643                 efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
644         u8 *eh = efx_rx_buf_va(rx_buf);
645
646         /* Read length from the prefix if necessary.  This already
647          * excludes the length of the prefix itself.
648          */
649         if (rx_buf->flags & EFX_RX_PKT_PREFIX_LEN)
650                 rx_buf->len = le16_to_cpup((__le16 *)
651                                            (eh + efx->rx_packet_len_offset));
652
653         /* If we're in loopback test, then pass the packet directly to the
654          * loopback layer, and free the rx_buf here
655          */
656         if (unlikely(efx->loopback_selftest)) {
657                 struct efx_rx_queue *rx_queue;
658
659                 efx_loopback_rx_packet(efx, eh, rx_buf->len);
660                 rx_queue = efx_channel_get_rx_queue(channel);
661                 efx_free_rx_buffers(rx_queue, rx_buf,
662                                     channel->rx_pkt_n_frags);
663                 goto out;
664         }
665
666         if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
667                 rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
668
669         if ((rx_buf->flags & EFX_RX_PKT_TCP) && !channel->type->receive_skb)
670                 efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
671         else
672                 efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
673 out:
674         channel->rx_pkt_n_frags = 0;
675 }
676
677 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
678 {
679         struct efx_nic *efx = rx_queue->efx;
680         unsigned int entries;
681         int rc;
682
683         /* Create the smallest power-of-two aligned ring */
684         entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
685         EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
686         rx_queue->ptr_mask = entries - 1;
687
688         netif_dbg(efx, probe, efx->net_dev,
689                   "creating RX queue %d size %#x mask %#x\n",
690                   efx_rx_queue_index(rx_queue), efx->rxq_entries,
691                   rx_queue->ptr_mask);
692
693         /* Allocate RX buffers */
694         rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
695                                    GFP_KERNEL);
696         if (!rx_queue->buffer)
697                 return -ENOMEM;
698
699         rc = efx_nic_probe_rx(rx_queue);
700         if (rc) {
701                 kfree(rx_queue->buffer);
702                 rx_queue->buffer = NULL;
703         }
704
705         return rc;
706 }
707
708 static void efx_init_rx_recycle_ring(struct efx_nic *efx,
709                                      struct efx_rx_queue *rx_queue)
710 {
711         unsigned int bufs_in_recycle_ring, page_ring_size;
712
713         /* Set the RX recycle ring size */
714 #ifdef CONFIG_PPC64
715         bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
716 #else
717         if (iommu_present(&pci_bus_type))
718                 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
719         else
720                 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
721 #endif /* CONFIG_PPC64 */
722
723         page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
724                                             efx->rx_bufs_per_page);
725         rx_queue->page_ring = kcalloc(page_ring_size,
726                                       sizeof(*rx_queue->page_ring), GFP_KERNEL);
727         rx_queue->page_ptr_mask = page_ring_size - 1;
728 }
729
730 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
731 {
732         struct efx_nic *efx = rx_queue->efx;
733         unsigned int max_fill, trigger, max_trigger;
734
735         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
736                   "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
737
738         /* Initialise ptr fields */
739         rx_queue->added_count = 0;
740         rx_queue->notified_count = 0;
741         rx_queue->removed_count = 0;
742         rx_queue->min_fill = -1U;
743         efx_init_rx_recycle_ring(efx, rx_queue);
744
745         rx_queue->page_remove = 0;
746         rx_queue->page_add = rx_queue->page_ptr_mask + 1;
747         rx_queue->page_recycle_count = 0;
748         rx_queue->page_recycle_failed = 0;
749         rx_queue->page_recycle_full = 0;
750
751         /* Initialise limit fields */
752         max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
753         max_trigger =
754                 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
755         if (rx_refill_threshold != 0) {
756                 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
757                 if (trigger > max_trigger)
758                         trigger = max_trigger;
759         } else {
760                 trigger = max_trigger;
761         }
762
763         rx_queue->max_fill = max_fill;
764         rx_queue->fast_fill_trigger = trigger;
765         rx_queue->refill_enabled = true;
766
767         /* Set up RX descriptor ring */
768         efx_nic_init_rx(rx_queue);
769 }
770
771 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
772 {
773         int i;
774         struct efx_nic *efx = rx_queue->efx;
775         struct efx_rx_buffer *rx_buf;
776
777         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
778                   "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
779
780         del_timer_sync(&rx_queue->slow_fill);
781
782         /* Release RX buffers from the current read ptr to the write ptr */
783         if (rx_queue->buffer) {
784                 for (i = rx_queue->removed_count; i < rx_queue->added_count;
785                      i++) {
786                         unsigned index = i & rx_queue->ptr_mask;
787                         rx_buf = efx_rx_buffer(rx_queue, index);
788                         efx_fini_rx_buffer(rx_queue, rx_buf);
789                 }
790         }
791
792         /* Unmap and release the pages in the recycle ring. Remove the ring. */
793         for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
794                 struct page *page = rx_queue->page_ring[i];
795                 struct efx_rx_page_state *state;
796
797                 if (page == NULL)
798                         continue;
799
800                 state = page_address(page);
801                 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
802                                PAGE_SIZE << efx->rx_buffer_order,
803                                DMA_FROM_DEVICE);
804                 put_page(page);
805         }
806         kfree(rx_queue->page_ring);
807         rx_queue->page_ring = NULL;
808 }
809
810 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
811 {
812         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
813                   "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
814
815         efx_nic_remove_rx(rx_queue);
816
817         kfree(rx_queue->buffer);
818         rx_queue->buffer = NULL;
819 }
820
821
822 module_param(rx_refill_threshold, uint, 0444);
823 MODULE_PARM_DESC(rx_refill_threshold,
824                  "RX descriptor ring refill threshold (%)");
825
826 #ifdef CONFIG_RFS_ACCEL
827
828 static void efx_filter_rfs_work(struct work_struct *data)
829 {
830         struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion,
831                                                               work);
832         struct efx_nic *efx = netdev_priv(req->net_dev);
833         struct efx_channel *channel = efx_get_channel(efx, req->rxq_index);
834         int slot_idx = req - efx->rps_slot;
835         struct efx_arfs_rule *rule;
836         u16 arfs_id = 0;
837         int rc;
838
839         rc = efx->type->filter_insert(efx, &req->spec, true);
840         if (rc >= 0)
841                 rc %= efx->type->max_rx_ip_filters;
842         if (efx->rps_hash_table) {
843                 spin_lock_bh(&efx->rps_hash_lock);
844                 rule = efx_rps_hash_find(efx, &req->spec);
845                 /* The rule might have already gone, if someone else's request
846                  * for the same spec was already worked and then expired before
847                  * we got around to our work.  In that case we have nothing
848                  * tying us to an arfs_id, meaning that as soon as the filter
849                  * is considered for expiry it will be removed.
850                  */
851                 if (rule) {
852                         if (rc < 0)
853                                 rule->filter_id = EFX_ARFS_FILTER_ID_ERROR;
854                         else
855                                 rule->filter_id = rc;
856                         arfs_id = rule->arfs_id;
857                 }
858                 spin_unlock_bh(&efx->rps_hash_lock);
859         }
860         if (rc >= 0) {
861                 /* Remember this so we can check whether to expire the filter
862                  * later.
863                  */
864                 mutex_lock(&efx->rps_mutex);
865                 channel->rps_flow_id[rc] = req->flow_id;
866                 ++channel->rfs_filters_added;
867                 mutex_unlock(&efx->rps_mutex);
868
869                 if (req->spec.ether_type == htons(ETH_P_IP))
870                         netif_info(efx, rx_status, efx->net_dev,
871                                    "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n",
872                                    (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
873                                    req->spec.rem_host, ntohs(req->spec.rem_port),
874                                    req->spec.loc_host, ntohs(req->spec.loc_port),
875                                    req->rxq_index, req->flow_id, rc, arfs_id);
876                 else
877                         netif_info(efx, rx_status, efx->net_dev,
878                                    "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n",
879                                    (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
880                                    req->spec.rem_host, ntohs(req->spec.rem_port),
881                                    req->spec.loc_host, ntohs(req->spec.loc_port),
882                                    req->rxq_index, req->flow_id, rc, arfs_id);
883         }
884
885         /* Release references */
886         clear_bit(slot_idx, &efx->rps_slot_map);
887         dev_put(req->net_dev);
888 }
889
890 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
891                    u16 rxq_index, u32 flow_id)
892 {
893         struct efx_nic *efx = netdev_priv(net_dev);
894         struct efx_async_filter_insertion *req;
895         struct efx_arfs_rule *rule;
896         struct flow_keys fk;
897         int slot_idx;
898         bool new;
899         int rc;
900
901         /* find a free slot */
902         for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++)
903                 if (!test_and_set_bit(slot_idx, &efx->rps_slot_map))
904                         break;
905         if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT)
906                 return -EBUSY;
907
908         if (flow_id == RPS_FLOW_ID_INVALID) {
909                 rc = -EINVAL;
910                 goto out_clear;
911         }
912
913         if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) {
914                 rc = -EPROTONOSUPPORT;
915                 goto out_clear;
916         }
917
918         if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) {
919                 rc = -EPROTONOSUPPORT;
920                 goto out_clear;
921         }
922         if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) {
923                 rc = -EPROTONOSUPPORT;
924                 goto out_clear;
925         }
926
927         req = efx->rps_slot + slot_idx;
928         efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT,
929                            efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
930                            rxq_index);
931         req->spec.match_flags =
932                 EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
933                 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
934                 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
935         req->spec.ether_type = fk.basic.n_proto;
936         req->spec.ip_proto = fk.basic.ip_proto;
937
938         if (fk.basic.n_proto == htons(ETH_P_IP)) {
939                 req->spec.rem_host[0] = fk.addrs.v4addrs.src;
940                 req->spec.loc_host[0] = fk.addrs.v4addrs.dst;
941         } else {
942                 memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src,
943                        sizeof(struct in6_addr));
944                 memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst,
945                        sizeof(struct in6_addr));
946         }
947
948         req->spec.rem_port = fk.ports.src;
949         req->spec.loc_port = fk.ports.dst;
950
951         if (efx->rps_hash_table) {
952                 /* Add it to ARFS hash table */
953                 spin_lock(&efx->rps_hash_lock);
954                 rule = efx_rps_hash_add(efx, &req->spec, &new);
955                 if (!rule) {
956                         rc = -ENOMEM;
957                         goto out_unlock;
958                 }
959                 if (new)
960                         rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER;
961                 rc = rule->arfs_id;
962                 /* Skip if existing or pending filter already does the right thing */
963                 if (!new && rule->rxq_index == rxq_index &&
964                     rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING)
965                         goto out_unlock;
966                 rule->rxq_index = rxq_index;
967                 rule->filter_id = EFX_ARFS_FILTER_ID_PENDING;
968                 spin_unlock(&efx->rps_hash_lock);
969         } else {
970                 /* Without an ARFS hash table, we just use arfs_id 0 for all
971                  * filters.  This means if multiple flows hash to the same
972                  * flow_id, all but the most recently touched will be eligible
973                  * for expiry.
974                  */
975                 rc = 0;
976         }
977
978         /* Queue the request */
979         dev_hold(req->net_dev = net_dev);
980         INIT_WORK(&req->work, efx_filter_rfs_work);
981         req->rxq_index = rxq_index;
982         req->flow_id = flow_id;
983         schedule_work(&req->work);
984         return rc;
985 out_unlock:
986         spin_unlock(&efx->rps_hash_lock);
987 out_clear:
988         clear_bit(slot_idx, &efx->rps_slot_map);
989         return rc;
990 }
991
992 bool __efx_filter_rfs_expire(struct efx_nic *efx, unsigned int quota)
993 {
994         bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
995         unsigned int channel_idx, index, size;
996         u32 flow_id;
997
998         if (!mutex_trylock(&efx->rps_mutex))
999                 return false;
1000         expire_one = efx->type->filter_rfs_expire_one;
1001         channel_idx = efx->rps_expire_channel;
1002         index = efx->rps_expire_index;
1003         size = efx->type->max_rx_ip_filters;
1004         while (quota--) {
1005                 struct efx_channel *channel = efx_get_channel(efx, channel_idx);
1006                 flow_id = channel->rps_flow_id[index];
1007
1008                 if (flow_id != RPS_FLOW_ID_INVALID &&
1009                     expire_one(efx, flow_id, index)) {
1010                         netif_info(efx, rx_status, efx->net_dev,
1011                                    "expired filter %d [queue %u flow %u]\n",
1012                                    index, channel_idx, flow_id);
1013                         channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
1014                 }
1015                 if (++index == size) {
1016                         if (++channel_idx == efx->n_channels)
1017                                 channel_idx = 0;
1018                         index = 0;
1019                 }
1020         }
1021         efx->rps_expire_channel = channel_idx;
1022         efx->rps_expire_index = index;
1023
1024         mutex_unlock(&efx->rps_mutex);
1025         return true;
1026 }
1027
1028 #endif /* CONFIG_RFS_ACCEL */
1029
1030 /**
1031  * efx_filter_is_mc_recipient - test whether spec is a multicast recipient
1032  * @spec: Specification to test
1033  *
1034  * Return: %true if the specification is a non-drop RX filter that
1035  * matches a local MAC address I/G bit value of 1 or matches a local
1036  * IPv4 or IPv6 address value in the respective multicast address
1037  * range.  Otherwise %false.
1038  */
1039 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
1040 {
1041         if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
1042             spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
1043                 return false;
1044
1045         if (spec->match_flags &
1046             (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
1047             is_multicast_ether_addr(spec->loc_mac))
1048                 return true;
1049
1050         if ((spec->match_flags &
1051              (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
1052             (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
1053                 if (spec->ether_type == htons(ETH_P_IP) &&
1054                     ipv4_is_multicast(spec->loc_host[0]))
1055                         return true;
1056                 if (spec->ether_type == htons(ETH_P_IPV6) &&
1057                     ((const u8 *)spec->loc_host)[0] == 0xff)
1058                         return true;
1059         }
1060
1061         return false;
1062 }