sfc: assign TXQs without gaps
[linux-2.6-microblaze.git] / drivers / net / ethernet / sfc / farch.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2006-2013 Solarflare Communications Inc.
6  */
7
8 #include <linux/bitops.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/seq_file.h>
14 #include <linux/crc32.h>
15 #include "net_driver.h"
16 #include "bitfield.h"
17 #include "efx.h"
18 #include "rx_common.h"
19 #include "nic.h"
20 #include "farch_regs.h"
21 #include "sriov.h"
22 #include "siena_sriov.h"
23 #include "io.h"
24 #include "workarounds.h"
25
26 /* Falcon-architecture (SFC9000-family) support */
27
28 /**************************************************************************
29  *
30  * Configurable values
31  *
32  **************************************************************************
33  */
34
35 /* This is set to 16 for a good reason.  In summary, if larger than
36  * 16, the descriptor cache holds more than a default socket
37  * buffer's worth of packets (for UDP we can only have at most one
38  * socket buffer's worth outstanding).  This combined with the fact
39  * that we only get 1 TX event per descriptor cache means the NIC
40  * goes idle.
41  */
42 #define TX_DC_ENTRIES 16
43 #define TX_DC_ENTRIES_ORDER 1
44
45 #define RX_DC_ENTRIES 64
46 #define RX_DC_ENTRIES_ORDER 3
47
48 /* If EFX_MAX_INT_ERRORS internal errors occur within
49  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
50  * disable it.
51  */
52 #define EFX_INT_ERROR_EXPIRE 3600
53 #define EFX_MAX_INT_ERRORS 5
54
55 /* Depth of RX flush request fifo */
56 #define EFX_RX_FLUSH_COUNT 4
57
58 /* Driver generated events */
59 #define _EFX_CHANNEL_MAGIC_TEST         0x000101
60 #define _EFX_CHANNEL_MAGIC_FILL         0x000102
61 #define _EFX_CHANNEL_MAGIC_RX_DRAIN     0x000103
62 #define _EFX_CHANNEL_MAGIC_TX_DRAIN     0x000104
63
64 #define _EFX_CHANNEL_MAGIC(_code, _data)        ((_code) << 8 | (_data))
65 #define _EFX_CHANNEL_MAGIC_CODE(_magic)         ((_magic) >> 8)
66
67 #define EFX_CHANNEL_MAGIC_TEST(_channel)                                \
68         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
69 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)                               \
70         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,                     \
71                            efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)                           \
73         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,                 \
74                            efx_rx_queue_index(_rx_queue))
75 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)                           \
76         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,                 \
77                            (_tx_queue)->queue)
78
79 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
80
81 /**************************************************************************
82  *
83  * Hardware access
84  *
85  **************************************************************************/
86
87 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
88                                      unsigned int index)
89 {
90         efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
91                         value, index);
92 }
93
94 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
95                                      const efx_oword_t *mask)
96 {
97         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
98                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
99 }
100
101 int efx_farch_test_registers(struct efx_nic *efx,
102                              const struct efx_farch_register_test *regs,
103                              size_t n_regs)
104 {
105         unsigned address = 0;
106         int i, j;
107         efx_oword_t mask, imask, original, reg, buf;
108
109         for (i = 0; i < n_regs; ++i) {
110                 address = regs[i].address;
111                 mask = imask = regs[i].mask;
112                 EFX_INVERT_OWORD(imask);
113
114                 efx_reado(efx, &original, address);
115
116                 /* bit sweep on and off */
117                 for (j = 0; j < 128; j++) {
118                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
119                                 continue;
120
121                         /* Test this testable bit can be set in isolation */
122                         EFX_AND_OWORD(reg, original, mask);
123                         EFX_SET_OWORD32(reg, j, j, 1);
124
125                         efx_writeo(efx, &reg, address);
126                         efx_reado(efx, &buf, address);
127
128                         if (efx_masked_compare_oword(&reg, &buf, &mask))
129                                 goto fail;
130
131                         /* Test this testable bit can be cleared in isolation */
132                         EFX_OR_OWORD(reg, original, mask);
133                         EFX_SET_OWORD32(reg, j, j, 0);
134
135                         efx_writeo(efx, &reg, address);
136                         efx_reado(efx, &buf, address);
137
138                         if (efx_masked_compare_oword(&reg, &buf, &mask))
139                                 goto fail;
140                 }
141
142                 efx_writeo(efx, &original, address);
143         }
144
145         return 0;
146
147 fail:
148         netif_err(efx, hw, efx->net_dev,
149                   "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
150                   " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
151                   EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
152         return -EIO;
153 }
154
155 /**************************************************************************
156  *
157  * Special buffer handling
158  * Special buffers are used for event queues and the TX and RX
159  * descriptor rings.
160  *
161  *************************************************************************/
162
163 /*
164  * Initialise a special buffer
165  *
166  * This will define a buffer (previously allocated via
167  * efx_alloc_special_buffer()) in the buffer table, allowing
168  * it to be used for event queues, descriptor rings etc.
169  */
170 static void
171 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
172 {
173         efx_qword_t buf_desc;
174         unsigned int index;
175         dma_addr_t dma_addr;
176         int i;
177
178         EFX_WARN_ON_PARANOID(!buffer->buf.addr);
179
180         /* Write buffer descriptors to NIC */
181         for (i = 0; i < buffer->entries; i++) {
182                 index = buffer->index + i;
183                 dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
184                 netif_dbg(efx, probe, efx->net_dev,
185                           "mapping special buffer %d at %llx\n",
186                           index, (unsigned long long)dma_addr);
187                 EFX_POPULATE_QWORD_3(buf_desc,
188                                      FRF_AZ_BUF_ADR_REGION, 0,
189                                      FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
190                                      FRF_AZ_BUF_OWNER_ID_FBUF, 0);
191                 efx_write_buf_tbl(efx, &buf_desc, index);
192         }
193 }
194
195 /* Unmaps a buffer and clears the buffer table entries */
196 static void
197 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
198 {
199         efx_oword_t buf_tbl_upd;
200         unsigned int start = buffer->index;
201         unsigned int end = (buffer->index + buffer->entries - 1);
202
203         if (!buffer->entries)
204                 return;
205
206         netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
207                   buffer->index, buffer->index + buffer->entries - 1);
208
209         EFX_POPULATE_OWORD_4(buf_tbl_upd,
210                              FRF_AZ_BUF_UPD_CMD, 0,
211                              FRF_AZ_BUF_CLR_CMD, 1,
212                              FRF_AZ_BUF_CLR_END_ID, end,
213                              FRF_AZ_BUF_CLR_START_ID, start);
214         efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
215 }
216
217 /*
218  * Allocate a new special buffer
219  *
220  * This allocates memory for a new buffer, clears it and allocates a
221  * new buffer ID range.  It does not write into the buffer table.
222  *
223  * This call will allocate 4KB buffers, since 8KB buffers can't be
224  * used for event queues and descriptor rings.
225  */
226 static int efx_alloc_special_buffer(struct efx_nic *efx,
227                                     struct efx_special_buffer *buffer,
228                                     unsigned int len)
229 {
230 #ifdef CONFIG_SFC_SRIOV
231         struct siena_nic_data *nic_data = efx->nic_data;
232 #endif
233         len = ALIGN(len, EFX_BUF_SIZE);
234
235         if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
236                 return -ENOMEM;
237         buffer->entries = len / EFX_BUF_SIZE;
238         BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
239
240         /* Select new buffer ID */
241         buffer->index = efx->next_buffer_table;
242         efx->next_buffer_table += buffer->entries;
243 #ifdef CONFIG_SFC_SRIOV
244         BUG_ON(efx_siena_sriov_enabled(efx) &&
245                nic_data->vf_buftbl_base < efx->next_buffer_table);
246 #endif
247
248         netif_dbg(efx, probe, efx->net_dev,
249                   "allocating special buffers %d-%d at %llx+%x "
250                   "(virt %p phys %llx)\n", buffer->index,
251                   buffer->index + buffer->entries - 1,
252                   (u64)buffer->buf.dma_addr, len,
253                   buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
254
255         return 0;
256 }
257
258 static void
259 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
260 {
261         if (!buffer->buf.addr)
262                 return;
263
264         netif_dbg(efx, hw, efx->net_dev,
265                   "deallocating special buffers %d-%d at %llx+%x "
266                   "(virt %p phys %llx)\n", buffer->index,
267                   buffer->index + buffer->entries - 1,
268                   (u64)buffer->buf.dma_addr, buffer->buf.len,
269                   buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
270
271         efx_nic_free_buffer(efx, &buffer->buf);
272         buffer->entries = 0;
273 }
274
275 /**************************************************************************
276  *
277  * TX path
278  *
279  **************************************************************************/
280
281 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
282 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
283 {
284         unsigned write_ptr;
285         efx_dword_t reg;
286
287         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
288         EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
289         efx_writed_page(tx_queue->efx, &reg,
290                         FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
291 }
292
293 /* Write pointer and first descriptor for TX descriptor ring */
294 static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
295                                           const efx_qword_t *txd)
296 {
297         unsigned write_ptr;
298         efx_oword_t reg;
299
300         BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
301         BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
302
303         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
304         EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
305                              FRF_AZ_TX_DESC_WPTR, write_ptr);
306         reg.qword[0] = *txd;
307         efx_writeo_page(tx_queue->efx, &reg,
308                         FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
309 }
310
311
312 /* For each entry inserted into the software descriptor ring, create a
313  * descriptor in the hardware TX descriptor ring (in host memory), and
314  * write a doorbell.
315  */
316 void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
317 {
318         struct efx_tx_buffer *buffer;
319         efx_qword_t *txd;
320         unsigned write_ptr;
321         unsigned old_write_count = tx_queue->write_count;
322
323         tx_queue->xmit_more_available = false;
324         if (unlikely(tx_queue->write_count == tx_queue->insert_count))
325                 return;
326
327         do {
328                 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
329                 buffer = &tx_queue->buffer[write_ptr];
330                 txd = efx_tx_desc(tx_queue, write_ptr);
331                 ++tx_queue->write_count;
332
333                 EFX_WARN_ON_ONCE_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
334
335                 /* Create TX descriptor ring entry */
336                 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
337                 EFX_POPULATE_QWORD_4(*txd,
338                                      FSF_AZ_TX_KER_CONT,
339                                      buffer->flags & EFX_TX_BUF_CONT,
340                                      FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
341                                      FSF_AZ_TX_KER_BUF_REGION, 0,
342                                      FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
343         } while (tx_queue->write_count != tx_queue->insert_count);
344
345         wmb(); /* Ensure descriptors are written before they are fetched */
346
347         if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
348                 txd = efx_tx_desc(tx_queue,
349                                   old_write_count & tx_queue->ptr_mask);
350                 efx_farch_push_tx_desc(tx_queue, txd);
351                 ++tx_queue->pushes;
352         } else {
353                 efx_farch_notify_tx_desc(tx_queue);
354         }
355 }
356
357 unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
358                                     dma_addr_t dma_addr, unsigned int len)
359 {
360         /* Don't cross 4K boundaries with descriptors. */
361         unsigned int limit = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
362
363         len = min(limit, len);
364
365         return len;
366 }
367
368
369 /* Allocate hardware resources for a TX queue */
370 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
371 {
372         struct efx_nic *efx = tx_queue->efx;
373         unsigned entries;
374
375         entries = tx_queue->ptr_mask + 1;
376         return efx_alloc_special_buffer(efx, &tx_queue->txd,
377                                         entries * sizeof(efx_qword_t));
378 }
379
380 void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
381 {
382         int csum = tx_queue->label & EFX_TXQ_TYPE_OFFLOAD;
383         struct efx_nic *efx = tx_queue->efx;
384         efx_oword_t reg;
385
386         /* Pin TX descriptor ring */
387         efx_init_special_buffer(efx, &tx_queue->txd);
388
389         /* Push TX descriptor ring to card */
390         EFX_POPULATE_OWORD_10(reg,
391                               FRF_AZ_TX_DESCQ_EN, 1,
392                               FRF_AZ_TX_ISCSI_DDIG_EN, 0,
393                               FRF_AZ_TX_ISCSI_HDIG_EN, 0,
394                               FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
395                               FRF_AZ_TX_DESCQ_EVQ_ID,
396                               tx_queue->channel->channel,
397                               FRF_AZ_TX_DESCQ_OWNER_ID, 0,
398                               FRF_AZ_TX_DESCQ_LABEL, tx_queue->label,
399                               FRF_AZ_TX_DESCQ_SIZE,
400                               __ffs(tx_queue->txd.entries),
401                               FRF_AZ_TX_DESCQ_TYPE, 0,
402                               FRF_BZ_TX_NON_IP_DROP_DIS, 1);
403
404         EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
405         EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, !csum);
406
407         efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
408                          tx_queue->queue);
409
410         EFX_POPULATE_OWORD_1(reg,
411                              FRF_BZ_TX_PACE,
412                              (tx_queue->label & EFX_TXQ_TYPE_HIGHPRI) ?
413                              FFE_BZ_TX_PACE_OFF :
414                              FFE_BZ_TX_PACE_RESERVED);
415         efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL, tx_queue->queue);
416 }
417
418 static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
419 {
420         struct efx_nic *efx = tx_queue->efx;
421         efx_oword_t tx_flush_descq;
422
423         WARN_ON(atomic_read(&tx_queue->flush_outstanding));
424         atomic_set(&tx_queue->flush_outstanding, 1);
425
426         EFX_POPULATE_OWORD_2(tx_flush_descq,
427                              FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
428                              FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
429         efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
430 }
431
432 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
433 {
434         struct efx_nic *efx = tx_queue->efx;
435         efx_oword_t tx_desc_ptr;
436
437         /* Remove TX descriptor ring from card */
438         EFX_ZERO_OWORD(tx_desc_ptr);
439         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
440                          tx_queue->queue);
441
442         /* Unpin TX descriptor ring */
443         efx_fini_special_buffer(efx, &tx_queue->txd);
444 }
445
446 /* Free buffers backing TX queue */
447 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
448 {
449         efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
450 }
451
452 /**************************************************************************
453  *
454  * RX path
455  *
456  **************************************************************************/
457
458 /* This creates an entry in the RX descriptor queue */
459 static inline void
460 efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
461 {
462         struct efx_rx_buffer *rx_buf;
463         efx_qword_t *rxd;
464
465         rxd = efx_rx_desc(rx_queue, index);
466         rx_buf = efx_rx_buffer(rx_queue, index);
467         EFX_POPULATE_QWORD_3(*rxd,
468                              FSF_AZ_RX_KER_BUF_SIZE,
469                              rx_buf->len -
470                              rx_queue->efx->type->rx_buffer_padding,
471                              FSF_AZ_RX_KER_BUF_REGION, 0,
472                              FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
473 }
474
475 /* This writes to the RX_DESC_WPTR register for the specified receive
476  * descriptor ring.
477  */
478 void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
479 {
480         struct efx_nic *efx = rx_queue->efx;
481         efx_dword_t reg;
482         unsigned write_ptr;
483
484         while (rx_queue->notified_count != rx_queue->added_count) {
485                 efx_farch_build_rx_desc(
486                         rx_queue,
487                         rx_queue->notified_count & rx_queue->ptr_mask);
488                 ++rx_queue->notified_count;
489         }
490
491         wmb();
492         write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
493         EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
494         efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
495                         efx_rx_queue_index(rx_queue));
496 }
497
498 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
499 {
500         struct efx_nic *efx = rx_queue->efx;
501         unsigned entries;
502
503         entries = rx_queue->ptr_mask + 1;
504         return efx_alloc_special_buffer(efx, &rx_queue->rxd,
505                                         entries * sizeof(efx_qword_t));
506 }
507
508 void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
509 {
510         efx_oword_t rx_desc_ptr;
511         struct efx_nic *efx = rx_queue->efx;
512         bool jumbo_en;
513
514         /* For kernel-mode queues in Siena, the JUMBO flag enables scatter. */
515         jumbo_en = efx->rx_scatter;
516
517         netif_dbg(efx, hw, efx->net_dev,
518                   "RX queue %d ring in special buffers %d-%d\n",
519                   efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
520                   rx_queue->rxd.index + rx_queue->rxd.entries - 1);
521
522         rx_queue->scatter_n = 0;
523
524         /* Pin RX descriptor ring */
525         efx_init_special_buffer(efx, &rx_queue->rxd);
526
527         /* Push RX descriptor ring to card */
528         EFX_POPULATE_OWORD_10(rx_desc_ptr,
529                               FRF_AZ_RX_ISCSI_DDIG_EN, true,
530                               FRF_AZ_RX_ISCSI_HDIG_EN, true,
531                               FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
532                               FRF_AZ_RX_DESCQ_EVQ_ID,
533                               efx_rx_queue_channel(rx_queue)->channel,
534                               FRF_AZ_RX_DESCQ_OWNER_ID, 0,
535                               FRF_AZ_RX_DESCQ_LABEL,
536                               efx_rx_queue_index(rx_queue),
537                               FRF_AZ_RX_DESCQ_SIZE,
538                               __ffs(rx_queue->rxd.entries),
539                               FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
540                               FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
541                               FRF_AZ_RX_DESCQ_EN, 1);
542         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
543                          efx_rx_queue_index(rx_queue));
544 }
545
546 static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
547 {
548         struct efx_nic *efx = rx_queue->efx;
549         efx_oword_t rx_flush_descq;
550
551         EFX_POPULATE_OWORD_2(rx_flush_descq,
552                              FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
553                              FRF_AZ_RX_FLUSH_DESCQ,
554                              efx_rx_queue_index(rx_queue));
555         efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
556 }
557
558 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
559 {
560         efx_oword_t rx_desc_ptr;
561         struct efx_nic *efx = rx_queue->efx;
562
563         /* Remove RX descriptor ring from card */
564         EFX_ZERO_OWORD(rx_desc_ptr);
565         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
566                          efx_rx_queue_index(rx_queue));
567
568         /* Unpin RX descriptor ring */
569         efx_fini_special_buffer(efx, &rx_queue->rxd);
570 }
571
572 /* Free buffers backing RX queue */
573 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
574 {
575         efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
576 }
577
578 /**************************************************************************
579  *
580  * Flush handling
581  *
582  **************************************************************************/
583
584 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
585  * or more RX flushes can be kicked off.
586  */
587 static bool efx_farch_flush_wake(struct efx_nic *efx)
588 {
589         /* Ensure that all updates are visible to efx_farch_flush_queues() */
590         smp_mb();
591
592         return (atomic_read(&efx->active_queues) == 0 ||
593                 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
594                  && atomic_read(&efx->rxq_flush_pending) > 0));
595 }
596
597 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
598 {
599         bool i = true;
600         efx_oword_t txd_ptr_tbl;
601         struct efx_channel *channel;
602         struct efx_tx_queue *tx_queue;
603
604         efx_for_each_channel(channel, efx) {
605                 efx_for_each_channel_tx_queue(tx_queue, channel) {
606                         efx_reado_table(efx, &txd_ptr_tbl,
607                                         FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
608                         if (EFX_OWORD_FIELD(txd_ptr_tbl,
609                                             FRF_AZ_TX_DESCQ_FLUSH) ||
610                             EFX_OWORD_FIELD(txd_ptr_tbl,
611                                             FRF_AZ_TX_DESCQ_EN)) {
612                                 netif_dbg(efx, hw, efx->net_dev,
613                                           "flush did not complete on TXQ %d\n",
614                                           tx_queue->queue);
615                                 i = false;
616                         } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
617                                                   1, 0)) {
618                                 /* The flush is complete, but we didn't
619                                  * receive a flush completion event
620                                  */
621                                 netif_dbg(efx, hw, efx->net_dev,
622                                           "flush complete on TXQ %d, so drain "
623                                           "the queue\n", tx_queue->queue);
624                                 /* Don't need to increment active_queues as it
625                                  * has already been incremented for the queues
626                                  * which did not drain
627                                  */
628                                 efx_farch_magic_event(channel,
629                                                       EFX_CHANNEL_MAGIC_TX_DRAIN(
630                                                               tx_queue));
631                         }
632                 }
633         }
634
635         return i;
636 }
637
638 /* Flush all the transmit queues, and continue flushing receive queues until
639  * they're all flushed. Wait for the DRAIN events to be received so that there
640  * are no more RX and TX events left on any channel. */
641 static int efx_farch_do_flush(struct efx_nic *efx)
642 {
643         unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
644         struct efx_channel *channel;
645         struct efx_rx_queue *rx_queue;
646         struct efx_tx_queue *tx_queue;
647         int rc = 0;
648
649         efx_for_each_channel(channel, efx) {
650                 efx_for_each_channel_tx_queue(tx_queue, channel) {
651                         efx_farch_flush_tx_queue(tx_queue);
652                 }
653                 efx_for_each_channel_rx_queue(rx_queue, channel) {
654                         rx_queue->flush_pending = true;
655                         atomic_inc(&efx->rxq_flush_pending);
656                 }
657         }
658
659         while (timeout && atomic_read(&efx->active_queues) > 0) {
660                 /* If SRIOV is enabled, then offload receive queue flushing to
661                  * the firmware (though we will still have to poll for
662                  * completion). If that fails, fall back to the old scheme.
663                  */
664                 if (efx_siena_sriov_enabled(efx)) {
665                         rc = efx_mcdi_flush_rxqs(efx);
666                         if (!rc)
667                                 goto wait;
668                 }
669
670                 /* The hardware supports four concurrent rx flushes, each of
671                  * which may need to be retried if there is an outstanding
672                  * descriptor fetch
673                  */
674                 efx_for_each_channel(channel, efx) {
675                         efx_for_each_channel_rx_queue(rx_queue, channel) {
676                                 if (atomic_read(&efx->rxq_flush_outstanding) >=
677                                     EFX_RX_FLUSH_COUNT)
678                                         break;
679
680                                 if (rx_queue->flush_pending) {
681                                         rx_queue->flush_pending = false;
682                                         atomic_dec(&efx->rxq_flush_pending);
683                                         atomic_inc(&efx->rxq_flush_outstanding);
684                                         efx_farch_flush_rx_queue(rx_queue);
685                                 }
686                         }
687                 }
688
689         wait:
690                 timeout = wait_event_timeout(efx->flush_wq,
691                                              efx_farch_flush_wake(efx),
692                                              timeout);
693         }
694
695         if (atomic_read(&efx->active_queues) &&
696             !efx_check_tx_flush_complete(efx)) {
697                 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
698                           "(rx %d+%d)\n", atomic_read(&efx->active_queues),
699                           atomic_read(&efx->rxq_flush_outstanding),
700                           atomic_read(&efx->rxq_flush_pending));
701                 rc = -ETIMEDOUT;
702
703                 atomic_set(&efx->active_queues, 0);
704                 atomic_set(&efx->rxq_flush_pending, 0);
705                 atomic_set(&efx->rxq_flush_outstanding, 0);
706         }
707
708         return rc;
709 }
710
711 int efx_farch_fini_dmaq(struct efx_nic *efx)
712 {
713         struct efx_channel *channel;
714         struct efx_tx_queue *tx_queue;
715         struct efx_rx_queue *rx_queue;
716         int rc = 0;
717
718         /* Do not attempt to write to the NIC during EEH recovery */
719         if (efx->state != STATE_RECOVERY) {
720                 /* Only perform flush if DMA is enabled */
721                 if (efx->pci_dev->is_busmaster) {
722                         efx->type->prepare_flush(efx);
723                         rc = efx_farch_do_flush(efx);
724                         efx->type->finish_flush(efx);
725                 }
726
727                 efx_for_each_channel(channel, efx) {
728                         efx_for_each_channel_rx_queue(rx_queue, channel)
729                                 efx_farch_rx_fini(rx_queue);
730                         efx_for_each_channel_tx_queue(tx_queue, channel)
731                                 efx_farch_tx_fini(tx_queue);
732                 }
733         }
734
735         return rc;
736 }
737
738 /* Reset queue and flush accounting after FLR
739  *
740  * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
741  * mastering was disabled), in which case we don't receive (RXQ) flush
742  * completion events.  This means that efx->rxq_flush_outstanding remained at 4
743  * after the FLR; also, efx->active_queues was non-zero (as no flush completion
744  * events were received, and we didn't go through efx_check_tx_flush_complete())
745  * If we don't fix this up, on the next call to efx_realloc_channels() we won't
746  * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
747  * for batched flush requests; and the efx->active_queues gets messed up because
748  * we keep incrementing for the newly initialised queues, but it never went to
749  * zero previously.  Then we get a timeout every time we try to restart the
750  * queues, as it doesn't go back to zero when we should be flushing the queues.
751  */
752 void efx_farch_finish_flr(struct efx_nic *efx)
753 {
754         atomic_set(&efx->rxq_flush_pending, 0);
755         atomic_set(&efx->rxq_flush_outstanding, 0);
756         atomic_set(&efx->active_queues, 0);
757 }
758
759
760 /**************************************************************************
761  *
762  * Event queue processing
763  * Event queues are processed by per-channel tasklets.
764  *
765  **************************************************************************/
766
767 /* Update a channel's event queue's read pointer (RPTR) register
768  *
769  * This writes the EVQ_RPTR_REG register for the specified channel's
770  * event queue.
771  */
772 void efx_farch_ev_read_ack(struct efx_channel *channel)
773 {
774         efx_dword_t reg;
775         struct efx_nic *efx = channel->efx;
776
777         EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
778                              channel->eventq_read_ptr & channel->eventq_mask);
779
780         /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
781          * of 4 bytes, but it is really 16 bytes just like later revisions.
782          */
783         efx_writed(efx, &reg,
784                    efx->type->evq_rptr_tbl_base +
785                    FR_BZ_EVQ_RPTR_STEP * channel->channel);
786 }
787
788 /* Use HW to insert a SW defined event */
789 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
790                               efx_qword_t *event)
791 {
792         efx_oword_t drv_ev_reg;
793
794         BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
795                      FRF_AZ_DRV_EV_DATA_WIDTH != 64);
796         drv_ev_reg.u32[0] = event->u32[0];
797         drv_ev_reg.u32[1] = event->u32[1];
798         drv_ev_reg.u32[2] = 0;
799         drv_ev_reg.u32[3] = 0;
800         EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
801         efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
802 }
803
804 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
805 {
806         efx_qword_t event;
807
808         EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
809                              FSE_AZ_EV_CODE_DRV_GEN_EV,
810                              FSF_AZ_DRV_GEN_EV_MAGIC, magic);
811         efx_farch_generate_event(channel->efx, channel->channel, &event);
812 }
813
814 /* Handle a transmit completion event
815  *
816  * The NIC batches TX completion events; the message we receive is of
817  * the form "complete all TX events up to this index".
818  */
819 static void
820 efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
821 {
822         unsigned int tx_ev_desc_ptr;
823         unsigned int tx_ev_q_label;
824         struct efx_tx_queue *tx_queue;
825         struct efx_nic *efx = channel->efx;
826
827         if (unlikely(READ_ONCE(efx->reset_pending)))
828                 return;
829
830         if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
831                 /* Transmit completion */
832                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
833                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
834                 tx_queue = efx_channel_get_tx_queue(
835                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
836                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
837         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
838                 /* Rewrite the FIFO write pointer */
839                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
840                 tx_queue = efx_channel_get_tx_queue(
841                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
842
843                 netif_tx_lock(efx->net_dev);
844                 efx_farch_notify_tx_desc(tx_queue);
845                 netif_tx_unlock(efx->net_dev);
846         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
847                 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
848         } else {
849                 netif_err(efx, tx_err, efx->net_dev,
850                           "channel %d unexpected TX event "
851                           EFX_QWORD_FMT"\n", channel->channel,
852                           EFX_QWORD_VAL(*event));
853         }
854 }
855
856 /* Detect errors included in the rx_evt_pkt_ok bit. */
857 static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
858                                       const efx_qword_t *event)
859 {
860         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
861         struct efx_nic *efx = rx_queue->efx;
862         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
863         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
864         bool rx_ev_frm_trunc, rx_ev_tobe_disc;
865         bool rx_ev_other_err, rx_ev_pause_frm;
866         bool rx_ev_hdr_type, rx_ev_mcast_pkt;
867         unsigned rx_ev_pkt_type;
868
869         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
870         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
871         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
872         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
873         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
874                                                  FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
875         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
876                                                   FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
877         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
878                                                    FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
879         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
880         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
881         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
882
883         /* Every error apart from tobe_disc and pause_frm */
884         rx_ev_other_err = (rx_ev_tcp_udp_chksum_err |
885                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
886                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
887
888         /* Count errors that are not in MAC stats.  Ignore expected
889          * checksum errors during self-test. */
890         if (rx_ev_frm_trunc)
891                 ++channel->n_rx_frm_trunc;
892         else if (rx_ev_tobe_disc)
893                 ++channel->n_rx_tobe_disc;
894         else if (!efx->loopback_selftest) {
895                 if (rx_ev_ip_hdr_chksum_err)
896                         ++channel->n_rx_ip_hdr_chksum_err;
897                 else if (rx_ev_tcp_udp_chksum_err)
898                         ++channel->n_rx_tcp_udp_chksum_err;
899         }
900
901         /* TOBE_DISC is expected on unicast mismatches; don't print out an
902          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
903          * to a FIFO overflow.
904          */
905 #ifdef DEBUG
906         if (rx_ev_other_err && net_ratelimit()) {
907                 netif_dbg(efx, rx_err, efx->net_dev,
908                           " RX queue %d unexpected RX event "
909                           EFX_QWORD_FMT "%s%s%s%s%s%s%s\n",
910                           efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
911                           rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
912                           rx_ev_ip_hdr_chksum_err ?
913                           " [IP_HDR_CHKSUM_ERR]" : "",
914                           rx_ev_tcp_udp_chksum_err ?
915                           " [TCP_UDP_CHKSUM_ERR]" : "",
916                           rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
917                           rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
918                           rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
919                           rx_ev_pause_frm ? " [PAUSE]" : "");
920         }
921 #endif
922
923         if (efx->net_dev->features & NETIF_F_RXALL)
924                 /* don't discard frame for CRC error */
925                 rx_ev_eth_crc_err = false;
926
927         /* The frame must be discarded if any of these are true. */
928         return (rx_ev_eth_crc_err | rx_ev_frm_trunc |
929                 rx_ev_tobe_disc | rx_ev_pause_frm) ?
930                 EFX_RX_PKT_DISCARD : 0;
931 }
932
933 /* Handle receive events that are not in-order. Return true if this
934  * can be handled as a partial packet discard, false if it's more
935  * serious.
936  */
937 static bool
938 efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
939 {
940         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
941         struct efx_nic *efx = rx_queue->efx;
942         unsigned expected, dropped;
943
944         if (rx_queue->scatter_n &&
945             index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
946                       rx_queue->ptr_mask)) {
947                 ++channel->n_rx_nodesc_trunc;
948                 return true;
949         }
950
951         expected = rx_queue->removed_count & rx_queue->ptr_mask;
952         dropped = (index - expected) & rx_queue->ptr_mask;
953         netif_info(efx, rx_err, efx->net_dev,
954                    "dropped %d events (index=%d expected=%d)\n",
955                    dropped, index, expected);
956
957         efx_schedule_reset(efx, RESET_TYPE_DISABLE);
958         return false;
959 }
960
961 /* Handle a packet received event
962  *
963  * The NIC gives a "discard" flag if it's a unicast packet with the
964  * wrong destination address
965  * Also "is multicast" and "matches multicast filter" flags can be used to
966  * discard non-matching multicast packets.
967  */
968 static void
969 efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
970 {
971         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
972         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
973         unsigned expected_ptr;
974         bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
975         u16 flags;
976         struct efx_rx_queue *rx_queue;
977         struct efx_nic *efx = channel->efx;
978
979         if (unlikely(READ_ONCE(efx->reset_pending)))
980                 return;
981
982         rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
983         rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
984         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
985                 channel->channel);
986
987         rx_queue = efx_channel_get_rx_queue(channel);
988
989         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
990         expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
991                         rx_queue->ptr_mask);
992
993         /* Check for partial drops and other errors */
994         if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
995             unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
996                 if (rx_ev_desc_ptr != expected_ptr &&
997                     !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
998                         return;
999
1000                 /* Discard all pending fragments */
1001                 if (rx_queue->scatter_n) {
1002                         efx_rx_packet(
1003                                 rx_queue,
1004                                 rx_queue->removed_count & rx_queue->ptr_mask,
1005                                 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1006                         rx_queue->removed_count += rx_queue->scatter_n;
1007                         rx_queue->scatter_n = 0;
1008                 }
1009
1010                 /* Return if there is no new fragment */
1011                 if (rx_ev_desc_ptr != expected_ptr)
1012                         return;
1013
1014                 /* Discard new fragment if not SOP */
1015                 if (!rx_ev_sop) {
1016                         efx_rx_packet(
1017                                 rx_queue,
1018                                 rx_queue->removed_count & rx_queue->ptr_mask,
1019                                 1, 0, EFX_RX_PKT_DISCARD);
1020                         ++rx_queue->removed_count;
1021                         return;
1022                 }
1023         }
1024
1025         ++rx_queue->scatter_n;
1026         if (rx_ev_cont)
1027                 return;
1028
1029         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1030         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1031         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1032
1033         if (likely(rx_ev_pkt_ok)) {
1034                 /* If packet is marked as OK then we can rely on the
1035                  * hardware checksum and classification.
1036                  */
1037                 flags = 0;
1038                 switch (rx_ev_hdr_type) {
1039                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1040                         flags |= EFX_RX_PKT_TCP;
1041                         /* fall through */
1042                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1043                         flags |= EFX_RX_PKT_CSUMMED;
1044                         /* fall through */
1045                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1046                 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1047                         break;
1048                 }
1049         } else {
1050                 flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1051         }
1052
1053         /* Detect multicast packets that didn't match the filter */
1054         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1055         if (rx_ev_mcast_pkt) {
1056                 unsigned int rx_ev_mcast_hash_match =
1057                         EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1058
1059                 if (unlikely(!rx_ev_mcast_hash_match)) {
1060                         ++channel->n_rx_mcast_mismatch;
1061                         flags |= EFX_RX_PKT_DISCARD;
1062                 }
1063         }
1064
1065         channel->irq_mod_score += 2;
1066
1067         /* Handle received packet */
1068         efx_rx_packet(rx_queue,
1069                       rx_queue->removed_count & rx_queue->ptr_mask,
1070                       rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1071         rx_queue->removed_count += rx_queue->scatter_n;
1072         rx_queue->scatter_n = 0;
1073 }
1074
1075 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1076  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1077  * of all transmit completions.
1078  */
1079 static void
1080 efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1081 {
1082         struct efx_tx_queue *tx_queue;
1083         int qid;
1084
1085         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1086         if (qid < EFX_TXQ_TYPES * (efx->n_tx_channels + efx->n_extra_tx_channels)) {
1087                 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1088                                             qid % EFX_TXQ_TYPES);
1089                 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1090                         efx_farch_magic_event(tx_queue->channel,
1091                                               EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1092                 }
1093         }
1094 }
1095
1096 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1097  * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1098  * the RX queue back to the mask of RX queues in need of flushing.
1099  */
1100 static void
1101 efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1102 {
1103         struct efx_channel *channel;
1104         struct efx_rx_queue *rx_queue;
1105         int qid;
1106         bool failed;
1107
1108         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1109         failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1110         if (qid >= efx->n_channels)
1111                 return;
1112         channel = efx_get_channel(efx, qid);
1113         if (!efx_channel_has_rx_queue(channel))
1114                 return;
1115         rx_queue = efx_channel_get_rx_queue(channel);
1116
1117         if (failed) {
1118                 netif_info(efx, hw, efx->net_dev,
1119                            "RXQ %d flush retry\n", qid);
1120                 rx_queue->flush_pending = true;
1121                 atomic_inc(&efx->rxq_flush_pending);
1122         } else {
1123                 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1124                                       EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1125         }
1126         atomic_dec(&efx->rxq_flush_outstanding);
1127         if (efx_farch_flush_wake(efx))
1128                 wake_up(&efx->flush_wq);
1129 }
1130
1131 static void
1132 efx_farch_handle_drain_event(struct efx_channel *channel)
1133 {
1134         struct efx_nic *efx = channel->efx;
1135
1136         WARN_ON(atomic_read(&efx->active_queues) == 0);
1137         atomic_dec(&efx->active_queues);
1138         if (efx_farch_flush_wake(efx))
1139                 wake_up(&efx->flush_wq);
1140 }
1141
1142 static void efx_farch_handle_generated_event(struct efx_channel *channel,
1143                                              efx_qword_t *event)
1144 {
1145         struct efx_nic *efx = channel->efx;
1146         struct efx_rx_queue *rx_queue =
1147                 efx_channel_has_rx_queue(channel) ?
1148                 efx_channel_get_rx_queue(channel) : NULL;
1149         unsigned magic, code;
1150
1151         magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1152         code = _EFX_CHANNEL_MAGIC_CODE(magic);
1153
1154         if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1155                 channel->event_test_cpu = raw_smp_processor_id();
1156         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1157                 /* The queue must be empty, so we won't receive any rx
1158                  * events, so efx_process_channel() won't refill the
1159                  * queue. Refill it here */
1160                 efx_fast_push_rx_descriptors(rx_queue, true);
1161         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1162                 efx_farch_handle_drain_event(channel);
1163         } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1164                 efx_farch_handle_drain_event(channel);
1165         } else {
1166                 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1167                           "generated event "EFX_QWORD_FMT"\n",
1168                           channel->channel, EFX_QWORD_VAL(*event));
1169         }
1170 }
1171
1172 static void
1173 efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1174 {
1175         struct efx_nic *efx = channel->efx;
1176         unsigned int ev_sub_code;
1177         unsigned int ev_sub_data;
1178
1179         ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1180         ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1181
1182         switch (ev_sub_code) {
1183         case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1184                 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1185                            channel->channel, ev_sub_data);
1186                 efx_farch_handle_tx_flush_done(efx, event);
1187 #ifdef CONFIG_SFC_SRIOV
1188                 efx_siena_sriov_tx_flush_done(efx, event);
1189 #endif
1190                 break;
1191         case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1192                 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1193                            channel->channel, ev_sub_data);
1194                 efx_farch_handle_rx_flush_done(efx, event);
1195 #ifdef CONFIG_SFC_SRIOV
1196                 efx_siena_sriov_rx_flush_done(efx, event);
1197 #endif
1198                 break;
1199         case FSE_AZ_EVQ_INIT_DONE_EV:
1200                 netif_dbg(efx, hw, efx->net_dev,
1201                           "channel %d EVQ %d initialised\n",
1202                           channel->channel, ev_sub_data);
1203                 break;
1204         case FSE_AZ_SRM_UPD_DONE_EV:
1205                 netif_vdbg(efx, hw, efx->net_dev,
1206                            "channel %d SRAM update done\n", channel->channel);
1207                 break;
1208         case FSE_AZ_WAKE_UP_EV:
1209                 netif_vdbg(efx, hw, efx->net_dev,
1210                            "channel %d RXQ %d wakeup event\n",
1211                            channel->channel, ev_sub_data);
1212                 break;
1213         case FSE_AZ_TIMER_EV:
1214                 netif_vdbg(efx, hw, efx->net_dev,
1215                            "channel %d RX queue %d timer expired\n",
1216                            channel->channel, ev_sub_data);
1217                 break;
1218         case FSE_AA_RX_RECOVER_EV:
1219                 netif_err(efx, rx_err, efx->net_dev,
1220                           "channel %d seen DRIVER RX_RESET event. "
1221                         "Resetting.\n", channel->channel);
1222                 atomic_inc(&efx->rx_reset);
1223                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1224                 break;
1225         case FSE_BZ_RX_DSC_ERROR_EV:
1226                 if (ev_sub_data < EFX_VI_BASE) {
1227                         netif_err(efx, rx_err, efx->net_dev,
1228                                   "RX DMA Q %d reports descriptor fetch error."
1229                                   " RX Q %d is disabled.\n", ev_sub_data,
1230                                   ev_sub_data);
1231                         efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1232                 }
1233 #ifdef CONFIG_SFC_SRIOV
1234                 else
1235                         efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1236 #endif
1237                 break;
1238         case FSE_BZ_TX_DSC_ERROR_EV:
1239                 if (ev_sub_data < EFX_VI_BASE) {
1240                         netif_err(efx, tx_err, efx->net_dev,
1241                                   "TX DMA Q %d reports descriptor fetch error."
1242                                   " TX Q %d is disabled.\n", ev_sub_data,
1243                                   ev_sub_data);
1244                         efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1245                 }
1246 #ifdef CONFIG_SFC_SRIOV
1247                 else
1248                         efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1249 #endif
1250                 break;
1251         default:
1252                 netif_vdbg(efx, hw, efx->net_dev,
1253                            "channel %d unknown driver event code %d "
1254                            "data %04x\n", channel->channel, ev_sub_code,
1255                            ev_sub_data);
1256                 break;
1257         }
1258 }
1259
1260 int efx_farch_ev_process(struct efx_channel *channel, int budget)
1261 {
1262         struct efx_nic *efx = channel->efx;
1263         unsigned int read_ptr;
1264         efx_qword_t event, *p_event;
1265         int ev_code;
1266         int spent = 0;
1267
1268         if (budget <= 0)
1269                 return spent;
1270
1271         read_ptr = channel->eventq_read_ptr;
1272
1273         for (;;) {
1274                 p_event = efx_event(channel, read_ptr);
1275                 event = *p_event;
1276
1277                 if (!efx_event_present(&event))
1278                         /* End of events */
1279                         break;
1280
1281                 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1282                            "channel %d event is "EFX_QWORD_FMT"\n",
1283                            channel->channel, EFX_QWORD_VAL(event));
1284
1285                 /* Clear this event by marking it all ones */
1286                 EFX_SET_QWORD(*p_event);
1287
1288                 ++read_ptr;
1289
1290                 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1291
1292                 switch (ev_code) {
1293                 case FSE_AZ_EV_CODE_RX_EV:
1294                         efx_farch_handle_rx_event(channel, &event);
1295                         if (++spent == budget)
1296                                 goto out;
1297                         break;
1298                 case FSE_AZ_EV_CODE_TX_EV:
1299                         efx_farch_handle_tx_event(channel, &event);
1300                         break;
1301                 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1302                         efx_farch_handle_generated_event(channel, &event);
1303                         break;
1304                 case FSE_AZ_EV_CODE_DRIVER_EV:
1305                         efx_farch_handle_driver_event(channel, &event);
1306                         break;
1307 #ifdef CONFIG_SFC_SRIOV
1308                 case FSE_CZ_EV_CODE_USER_EV:
1309                         efx_siena_sriov_event(channel, &event);
1310                         break;
1311 #endif
1312                 case FSE_CZ_EV_CODE_MCDI_EV:
1313                         efx_mcdi_process_event(channel, &event);
1314                         break;
1315                 case FSE_AZ_EV_CODE_GLOBAL_EV:
1316                         if (efx->type->handle_global_event &&
1317                             efx->type->handle_global_event(channel, &event))
1318                                 break;
1319                         /* else fall through */
1320                 default:
1321                         netif_err(channel->efx, hw, channel->efx->net_dev,
1322                                   "channel %d unknown event type %d (data "
1323                                   EFX_QWORD_FMT ")\n", channel->channel,
1324                                   ev_code, EFX_QWORD_VAL(event));
1325                 }
1326         }
1327
1328 out:
1329         channel->eventq_read_ptr = read_ptr;
1330         return spent;
1331 }
1332
1333 /* Allocate buffer table entries for event queue */
1334 int efx_farch_ev_probe(struct efx_channel *channel)
1335 {
1336         struct efx_nic *efx = channel->efx;
1337         unsigned entries;
1338
1339         entries = channel->eventq_mask + 1;
1340         return efx_alloc_special_buffer(efx, &channel->eventq,
1341                                         entries * sizeof(efx_qword_t));
1342 }
1343
1344 int efx_farch_ev_init(struct efx_channel *channel)
1345 {
1346         efx_oword_t reg;
1347         struct efx_nic *efx = channel->efx;
1348
1349         netif_dbg(efx, hw, efx->net_dev,
1350                   "channel %d event queue in special buffers %d-%d\n",
1351                   channel->channel, channel->eventq.index,
1352                   channel->eventq.index + channel->eventq.entries - 1);
1353
1354         EFX_POPULATE_OWORD_3(reg,
1355                              FRF_CZ_TIMER_Q_EN, 1,
1356                              FRF_CZ_HOST_NOTIFY_MODE, 0,
1357                              FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1358         efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1359
1360         /* Pin event queue buffer */
1361         efx_init_special_buffer(efx, &channel->eventq);
1362
1363         /* Fill event queue with all ones (i.e. empty events) */
1364         memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1365
1366         /* Push event queue to card */
1367         EFX_POPULATE_OWORD_3(reg,
1368                              FRF_AZ_EVQ_EN, 1,
1369                              FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1370                              FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1371         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1372                          channel->channel);
1373
1374         return 0;
1375 }
1376
1377 void efx_farch_ev_fini(struct efx_channel *channel)
1378 {
1379         efx_oword_t reg;
1380         struct efx_nic *efx = channel->efx;
1381
1382         /* Remove event queue from card */
1383         EFX_ZERO_OWORD(reg);
1384         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1385                          channel->channel);
1386         efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1387
1388         /* Unpin event queue */
1389         efx_fini_special_buffer(efx, &channel->eventq);
1390 }
1391
1392 /* Free buffers backing event queue */
1393 void efx_farch_ev_remove(struct efx_channel *channel)
1394 {
1395         efx_free_special_buffer(channel->efx, &channel->eventq);
1396 }
1397
1398
1399 void efx_farch_ev_test_generate(struct efx_channel *channel)
1400 {
1401         efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1402 }
1403
1404 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1405 {
1406         efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1407                               EFX_CHANNEL_MAGIC_FILL(rx_queue));
1408 }
1409
1410 /**************************************************************************
1411  *
1412  * Hardware interrupts
1413  * The hardware interrupt handler does very little work; all the event
1414  * queue processing is carried out by per-channel tasklets.
1415  *
1416  **************************************************************************/
1417
1418 /* Enable/disable/generate interrupts */
1419 static inline void efx_farch_interrupts(struct efx_nic *efx,
1420                                       bool enabled, bool force)
1421 {
1422         efx_oword_t int_en_reg_ker;
1423
1424         EFX_POPULATE_OWORD_3(int_en_reg_ker,
1425                              FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1426                              FRF_AZ_KER_INT_KER, force,
1427                              FRF_AZ_DRV_INT_EN_KER, enabled);
1428         efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1429 }
1430
1431 void efx_farch_irq_enable_master(struct efx_nic *efx)
1432 {
1433         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1434         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1435
1436         efx_farch_interrupts(efx, true, false);
1437 }
1438
1439 void efx_farch_irq_disable_master(struct efx_nic *efx)
1440 {
1441         /* Disable interrupts */
1442         efx_farch_interrupts(efx, false, false);
1443 }
1444
1445 /* Generate a test interrupt
1446  * Interrupt must already have been enabled, otherwise nasty things
1447  * may happen.
1448  */
1449 int efx_farch_irq_test_generate(struct efx_nic *efx)
1450 {
1451         efx_farch_interrupts(efx, true, true);
1452         return 0;
1453 }
1454
1455 /* Process a fatal interrupt
1456  * Disable bus mastering ASAP and schedule a reset
1457  */
1458 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1459 {
1460         efx_oword_t *int_ker = efx->irq_status.addr;
1461         efx_oword_t fatal_intr;
1462         int error, mem_perr;
1463
1464         efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1465         error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1466
1467         netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1468                   EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1469                   EFX_OWORD_VAL(fatal_intr),
1470                   error ? "disabling bus mastering" : "no recognised error");
1471
1472         /* If this is a memory parity error dump which blocks are offending */
1473         mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1474                     EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1475         if (mem_perr) {
1476                 efx_oword_t reg;
1477                 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1478                 netif_err(efx, hw, efx->net_dev,
1479                           "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1480                           EFX_OWORD_VAL(reg));
1481         }
1482
1483         /* Disable both devices */
1484         pci_clear_master(efx->pci_dev);
1485         efx_farch_irq_disable_master(efx);
1486
1487         /* Count errors and reset or disable the NIC accordingly */
1488         if (efx->int_error_count == 0 ||
1489             time_after(jiffies, efx->int_error_expire)) {
1490                 efx->int_error_count = 0;
1491                 efx->int_error_expire =
1492                         jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1493         }
1494         if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1495                 netif_err(efx, hw, efx->net_dev,
1496                           "SYSTEM ERROR - reset scheduled\n");
1497                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1498         } else {
1499                 netif_err(efx, hw, efx->net_dev,
1500                           "SYSTEM ERROR - max number of errors seen."
1501                           "NIC will be disabled\n");
1502                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1503         }
1504
1505         return IRQ_HANDLED;
1506 }
1507
1508 /* Handle a legacy interrupt
1509  * Acknowledges the interrupt and schedule event queue processing.
1510  */
1511 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1512 {
1513         struct efx_nic *efx = dev_id;
1514         bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
1515         efx_oword_t *int_ker = efx->irq_status.addr;
1516         irqreturn_t result = IRQ_NONE;
1517         struct efx_channel *channel;
1518         efx_dword_t reg;
1519         u32 queues;
1520         int syserr;
1521
1522         /* Read the ISR which also ACKs the interrupts */
1523         efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1524         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1525
1526         /* Legacy interrupts are disabled too late by the EEH kernel
1527          * code. Disable them earlier.
1528          * If an EEH error occurred, the read will have returned all ones.
1529          */
1530         if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1531             !efx->eeh_disabled_legacy_irq) {
1532                 disable_irq_nosync(efx->legacy_irq);
1533                 efx->eeh_disabled_legacy_irq = true;
1534         }
1535
1536         /* Handle non-event-queue sources */
1537         if (queues & (1U << efx->irq_level) && soft_enabled) {
1538                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1539                 if (unlikely(syserr))
1540                         return efx_farch_fatal_interrupt(efx);
1541                 efx->last_irq_cpu = raw_smp_processor_id();
1542         }
1543
1544         if (queues != 0) {
1545                 efx->irq_zero_count = 0;
1546
1547                 /* Schedule processing of any interrupting queues */
1548                 if (likely(soft_enabled)) {
1549                         efx_for_each_channel(channel, efx) {
1550                                 if (queues & 1)
1551                                         efx_schedule_channel_irq(channel);
1552                                 queues >>= 1;
1553                         }
1554                 }
1555                 result = IRQ_HANDLED;
1556
1557         } else {
1558                 efx_qword_t *event;
1559
1560                 /* Legacy ISR read can return zero once (SF bug 15783) */
1561
1562                 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1563                  * because this might be a shared interrupt. */
1564                 if (efx->irq_zero_count++ == 0)
1565                         result = IRQ_HANDLED;
1566
1567                 /* Ensure we schedule or rearm all event queues */
1568                 if (likely(soft_enabled)) {
1569                         efx_for_each_channel(channel, efx) {
1570                                 event = efx_event(channel,
1571                                                   channel->eventq_read_ptr);
1572                                 if (efx_event_present(event))
1573                                         efx_schedule_channel_irq(channel);
1574                                 else
1575                                         efx_farch_ev_read_ack(channel);
1576                         }
1577                 }
1578         }
1579
1580         if (result == IRQ_HANDLED)
1581                 netif_vdbg(efx, intr, efx->net_dev,
1582                            "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1583                            irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1584
1585         return result;
1586 }
1587
1588 /* Handle an MSI interrupt
1589  *
1590  * Handle an MSI hardware interrupt.  This routine schedules event
1591  * queue processing.  No interrupt acknowledgement cycle is necessary.
1592  * Also, we never need to check that the interrupt is for us, since
1593  * MSI interrupts cannot be shared.
1594  */
1595 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1596 {
1597         struct efx_msi_context *context = dev_id;
1598         struct efx_nic *efx = context->efx;
1599         efx_oword_t *int_ker = efx->irq_status.addr;
1600         int syserr;
1601
1602         netif_vdbg(efx, intr, efx->net_dev,
1603                    "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1604                    irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1605
1606         if (!likely(READ_ONCE(efx->irq_soft_enabled)))
1607                 return IRQ_HANDLED;
1608
1609         /* Handle non-event-queue sources */
1610         if (context->index == efx->irq_level) {
1611                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1612                 if (unlikely(syserr))
1613                         return efx_farch_fatal_interrupt(efx);
1614                 efx->last_irq_cpu = raw_smp_processor_id();
1615         }
1616
1617         /* Schedule processing of the channel */
1618         efx_schedule_channel_irq(efx->channel[context->index]);
1619
1620         return IRQ_HANDLED;
1621 }
1622
1623 /* Setup RSS indirection table.
1624  * This maps from the hash value of the packet to RXQ
1625  */
1626 void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1627 {
1628         size_t i = 0;
1629         efx_dword_t dword;
1630
1631         BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1632                      FR_BZ_RX_INDIRECTION_TBL_ROWS);
1633
1634         for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1635                 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1636                                      efx->rss_context.rx_indir_table[i]);
1637                 efx_writed(efx, &dword,
1638                            FR_BZ_RX_INDIRECTION_TBL +
1639                            FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1640         }
1641 }
1642
1643 void efx_farch_rx_pull_indir_table(struct efx_nic *efx)
1644 {
1645         size_t i = 0;
1646         efx_dword_t dword;
1647
1648         BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1649                      FR_BZ_RX_INDIRECTION_TBL_ROWS);
1650
1651         for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1652                 efx_readd(efx, &dword,
1653                            FR_BZ_RX_INDIRECTION_TBL +
1654                            FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1655                 efx->rss_context.rx_indir_table[i] = EFX_DWORD_FIELD(dword, FRF_BZ_IT_QUEUE);
1656         }
1657 }
1658
1659 /* Looks at available SRAM resources and works out how many queues we
1660  * can support, and where things like descriptor caches should live.
1661  *
1662  * SRAM is split up as follows:
1663  * 0                          buftbl entries for channels
1664  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1665  * efx->rx_dc_base            RX descriptor caches
1666  * efx->tx_dc_base            TX descriptor caches
1667  */
1668 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1669 {
1670         unsigned vi_count, buftbl_min, total_tx_channels;
1671
1672 #ifdef CONFIG_SFC_SRIOV
1673         struct siena_nic_data *nic_data = efx->nic_data;
1674 #endif
1675
1676         total_tx_channels = efx->n_tx_channels + efx->n_extra_tx_channels;
1677         /* Account for the buffer table entries backing the datapath channels
1678          * and the descriptor caches for those channels.
1679          */
1680         buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1681                        total_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1682                        efx->n_channels * EFX_MAX_EVQ_SIZE)
1683                       * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1684         vi_count = max(efx->n_channels, total_tx_channels * EFX_TXQ_TYPES);
1685
1686 #ifdef CONFIG_SFC_SRIOV
1687         if (efx->type->sriov_wanted) {
1688                 if (efx->type->sriov_wanted(efx)) {
1689                         unsigned vi_dc_entries, buftbl_free;
1690                         unsigned entries_per_vf, vf_limit;
1691
1692                         nic_data->vf_buftbl_base = buftbl_min;
1693
1694                         vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1695                         vi_count = max(vi_count, EFX_VI_BASE);
1696                         buftbl_free = (sram_lim_qw - buftbl_min -
1697                                        vi_count * vi_dc_entries);
1698
1699                         entries_per_vf = ((vi_dc_entries +
1700                                            EFX_VF_BUFTBL_PER_VI) *
1701                                           efx_vf_size(efx));
1702                         vf_limit = min(buftbl_free / entries_per_vf,
1703                                        (1024U - EFX_VI_BASE) >> efx->vi_scale);
1704
1705                         if (efx->vf_count > vf_limit) {
1706                                 netif_err(efx, probe, efx->net_dev,
1707                                           "Reducing VF count from from %d to %d\n",
1708                                           efx->vf_count, vf_limit);
1709                                 efx->vf_count = vf_limit;
1710                         }
1711                         vi_count += efx->vf_count * efx_vf_size(efx);
1712                 }
1713         }
1714 #endif
1715
1716         efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1717         efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1718 }
1719
1720 u32 efx_farch_fpga_ver(struct efx_nic *efx)
1721 {
1722         efx_oword_t altera_build;
1723         efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1724         return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1725 }
1726
1727 void efx_farch_init_common(struct efx_nic *efx)
1728 {
1729         efx_oword_t temp;
1730
1731         /* Set positions of descriptor caches in SRAM. */
1732         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1733         efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1734         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1735         efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1736
1737         /* Set TX descriptor cache size. */
1738         BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1739         EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1740         efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1741
1742         /* Set RX descriptor cache size.  Set low watermark to size-8, as
1743          * this allows most efficient prefetching.
1744          */
1745         BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1746         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1747         efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1748         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1749         efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1750
1751         /* Program INT_KER address */
1752         EFX_POPULATE_OWORD_2(temp,
1753                              FRF_AZ_NORM_INT_VEC_DIS_KER,
1754                              EFX_INT_MODE_USE_MSI(efx),
1755                              FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1756         efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1757
1758         if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1759                 /* Use an interrupt level unused by event queues */
1760                 efx->irq_level = 0x1f;
1761         else
1762                 /* Use a valid MSI-X vector */
1763                 efx->irq_level = 0;
1764
1765         /* Enable all the genuinely fatal interrupts.  (They are still
1766          * masked by the overall interrupt mask, controlled by
1767          * falcon_interrupts()).
1768          *
1769          * Note: All other fatal interrupts are enabled
1770          */
1771         EFX_POPULATE_OWORD_3(temp,
1772                              FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1773                              FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1774                              FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1775         EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1776         EFX_INVERT_OWORD(temp);
1777         efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1778
1779         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1780          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1781          */
1782         efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1783         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1784         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1785         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1786         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1787         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1788         /* Enable SW_EV to inherit in char driver - assume harmless here */
1789         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1790         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1791         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1792         /* Disable hardware watchdog which can misfire */
1793         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1794         /* Squash TX of packets of 16 bytes or less */
1795         EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1796         efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1797
1798         EFX_POPULATE_OWORD_4(temp,
1799                              /* Default values */
1800                              FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1801                              FRF_BZ_TX_PACE_SB_AF, 0xb,
1802                              FRF_BZ_TX_PACE_FB_BASE, 0,
1803                              /* Allow large pace values in the fast bin. */
1804                              FRF_BZ_TX_PACE_BIN_TH,
1805                              FFE_BZ_TX_PACE_RESERVED);
1806         efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1807 }
1808
1809 /**************************************************************************
1810  *
1811  * Filter tables
1812  *
1813  **************************************************************************
1814  */
1815
1816 /* "Fudge factors" - difference between programmed value and actual depth.
1817  * Due to pipelined implementation we need to program H/W with a value that
1818  * is larger than the hop limit we want.
1819  */
1820 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1821 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1822
1823 /* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1824  * We also need to avoid infinite loops in efx_farch_filter_search() when the
1825  * table is full.
1826  */
1827 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1828
1829 /* Don't try very hard to find space for performance hints, as this is
1830  * counter-productive. */
1831 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1832
1833 enum efx_farch_filter_type {
1834         EFX_FARCH_FILTER_TCP_FULL = 0,
1835         EFX_FARCH_FILTER_TCP_WILD,
1836         EFX_FARCH_FILTER_UDP_FULL,
1837         EFX_FARCH_FILTER_UDP_WILD,
1838         EFX_FARCH_FILTER_MAC_FULL = 4,
1839         EFX_FARCH_FILTER_MAC_WILD,
1840         EFX_FARCH_FILTER_UC_DEF = 8,
1841         EFX_FARCH_FILTER_MC_DEF,
1842         EFX_FARCH_FILTER_TYPE_COUNT,            /* number of specific types */
1843 };
1844
1845 enum efx_farch_filter_table_id {
1846         EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1847         EFX_FARCH_FILTER_TABLE_RX_MAC,
1848         EFX_FARCH_FILTER_TABLE_RX_DEF,
1849         EFX_FARCH_FILTER_TABLE_TX_MAC,
1850         EFX_FARCH_FILTER_TABLE_COUNT,
1851 };
1852
1853 enum efx_farch_filter_index {
1854         EFX_FARCH_FILTER_INDEX_UC_DEF,
1855         EFX_FARCH_FILTER_INDEX_MC_DEF,
1856         EFX_FARCH_FILTER_SIZE_RX_DEF,
1857 };
1858
1859 struct efx_farch_filter_spec {
1860         u8      type:4;
1861         u8      priority:4;
1862         u8      flags;
1863         u16     dmaq_id;
1864         u32     data[3];
1865 };
1866
1867 struct efx_farch_filter_table {
1868         enum efx_farch_filter_table_id id;
1869         u32             offset;         /* address of table relative to BAR */
1870         unsigned        size;           /* number of entries */
1871         unsigned        step;           /* step between entries */
1872         unsigned        used;           /* number currently used */
1873         unsigned long   *used_bitmap;
1874         struct efx_farch_filter_spec *spec;
1875         unsigned        search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1876 };
1877
1878 struct efx_farch_filter_state {
1879         struct rw_semaphore lock; /* Protects table contents */
1880         struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1881 };
1882
1883 static void
1884 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1885                                    struct efx_farch_filter_table *table,
1886                                    unsigned int filter_idx);
1887
1888 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1889  * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1890 static u16 efx_farch_filter_hash(u32 key)
1891 {
1892         u16 tmp;
1893
1894         /* First 16 rounds */
1895         tmp = 0x1fff ^ key >> 16;
1896         tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1897         tmp = tmp ^ tmp >> 9;
1898         /* Last 16 rounds */
1899         tmp = tmp ^ tmp << 13 ^ key;
1900         tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1901         return tmp ^ tmp >> 9;
1902 }
1903
1904 /* To allow for hash collisions, filter search continues at these
1905  * increments from the first possible entry selected by the hash. */
1906 static u16 efx_farch_filter_increment(u32 key)
1907 {
1908         return key * 2 - 1;
1909 }
1910
1911 static enum efx_farch_filter_table_id
1912 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1913 {
1914         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1915                      (EFX_FARCH_FILTER_TCP_FULL >> 2));
1916         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1917                      (EFX_FARCH_FILTER_TCP_WILD >> 2));
1918         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1919                      (EFX_FARCH_FILTER_UDP_FULL >> 2));
1920         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1921                      (EFX_FARCH_FILTER_UDP_WILD >> 2));
1922         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1923                      (EFX_FARCH_FILTER_MAC_FULL >> 2));
1924         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1925                      (EFX_FARCH_FILTER_MAC_WILD >> 2));
1926         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1927                      EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1928         return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1929 }
1930
1931 static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1932 {
1933         struct efx_farch_filter_state *state = efx->filter_state;
1934         struct efx_farch_filter_table *table;
1935         efx_oword_t filter_ctl;
1936
1937         efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1938
1939         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1940         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1941                             table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1942                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1943         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1944                             table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1945                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1946         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1947                             table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1948                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1949         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1950                             table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1951                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1952
1953         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1954         if (table->size) {
1955                 EFX_SET_OWORD_FIELD(
1956                         filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1957                         table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1958                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1959                 EFX_SET_OWORD_FIELD(
1960                         filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1961                         table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1962                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1963         }
1964
1965         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1966         if (table->size) {
1967                 EFX_SET_OWORD_FIELD(
1968                         filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1969                         table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1970                 EFX_SET_OWORD_FIELD(
1971                         filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1972                         !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1973                            EFX_FILTER_FLAG_RX_RSS));
1974                 EFX_SET_OWORD_FIELD(
1975                         filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1976                         table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1977                 EFX_SET_OWORD_FIELD(
1978                         filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1979                         !!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1980                            EFX_FILTER_FLAG_RX_RSS));
1981
1982                 /* There is a single bit to enable RX scatter for all
1983                  * unmatched packets.  Only set it if scatter is
1984                  * enabled in both filter specs.
1985                  */
1986                 EFX_SET_OWORD_FIELD(
1987                         filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1988                         !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1989                            table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1990                            EFX_FILTER_FLAG_RX_SCATTER));
1991         } else {
1992                 /* We don't expose 'default' filters because unmatched
1993                  * packets always go to the queue number found in the
1994                  * RSS table.  But we still need to set the RX scatter
1995                  * bit here.
1996                  */
1997                 EFX_SET_OWORD_FIELD(
1998                         filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1999                         efx->rx_scatter);
2000         }
2001
2002         efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2003 }
2004
2005 static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2006 {
2007         struct efx_farch_filter_state *state = efx->filter_state;
2008         struct efx_farch_filter_table *table;
2009         efx_oword_t tx_cfg;
2010
2011         efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2012
2013         table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2014         if (table->size) {
2015                 EFX_SET_OWORD_FIELD(
2016                         tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2017                         table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2018                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2019                 EFX_SET_OWORD_FIELD(
2020                         tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2021                         table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2022                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2023         }
2024
2025         efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2026 }
2027
2028 static int
2029 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2030                                const struct efx_filter_spec *gen_spec)
2031 {
2032         bool is_full = false;
2033
2034         if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) && gen_spec->rss_context)
2035                 return -EINVAL;
2036
2037         spec->priority = gen_spec->priority;
2038         spec->flags = gen_spec->flags;
2039         spec->dmaq_id = gen_spec->dmaq_id;
2040
2041         switch (gen_spec->match_flags) {
2042         case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2043               EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2044               EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2045                 is_full = true;
2046                 /* fall through */
2047         case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2048               EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2049                 __be32 rhost, host1, host2;
2050                 __be16 rport, port1, port2;
2051
2052                 EFX_WARN_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2053
2054                 if (gen_spec->ether_type != htons(ETH_P_IP))
2055                         return -EPROTONOSUPPORT;
2056                 if (gen_spec->loc_port == 0 ||
2057                     (is_full && gen_spec->rem_port == 0))
2058                         return -EADDRNOTAVAIL;
2059                 switch (gen_spec->ip_proto) {
2060                 case IPPROTO_TCP:
2061                         spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2062                                       EFX_FARCH_FILTER_TCP_WILD);
2063                         break;
2064                 case IPPROTO_UDP:
2065                         spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2066                                       EFX_FARCH_FILTER_UDP_WILD);
2067                         break;
2068                 default:
2069                         return -EPROTONOSUPPORT;
2070                 }
2071
2072                 /* Filter is constructed in terms of source and destination,
2073                  * with the odd wrinkle that the ports are swapped in a UDP
2074                  * wildcard filter.  We need to convert from local and remote
2075                  * (= zero for wildcard) addresses.
2076                  */
2077                 rhost = is_full ? gen_spec->rem_host[0] : 0;
2078                 rport = is_full ? gen_spec->rem_port : 0;
2079                 host1 = rhost;
2080                 host2 = gen_spec->loc_host[0];
2081                 if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2082                         port1 = gen_spec->loc_port;
2083                         port2 = rport;
2084                 } else {
2085                         port1 = rport;
2086                         port2 = gen_spec->loc_port;
2087                 }
2088                 spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2089                 spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2090                 spec->data[2] = ntohl(host2);
2091
2092                 break;
2093         }
2094
2095         case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2096                 is_full = true;
2097                 /* fall through */
2098         case EFX_FILTER_MATCH_LOC_MAC:
2099                 spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2100                               EFX_FARCH_FILTER_MAC_WILD);
2101                 spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2102                 spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2103                                  gen_spec->loc_mac[3] << 16 |
2104                                  gen_spec->loc_mac[4] << 8 |
2105                                  gen_spec->loc_mac[5]);
2106                 spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2107                                  gen_spec->loc_mac[1]);
2108                 break;
2109
2110         case EFX_FILTER_MATCH_LOC_MAC_IG:
2111                 spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2112                               EFX_FARCH_FILTER_MC_DEF :
2113                               EFX_FARCH_FILTER_UC_DEF);
2114                 memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2115                 break;
2116
2117         default:
2118                 return -EPROTONOSUPPORT;
2119         }
2120
2121         return 0;
2122 }
2123
2124 static void
2125 efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2126                              const struct efx_farch_filter_spec *spec)
2127 {
2128         bool is_full = false;
2129
2130         /* *gen_spec should be completely initialised, to be consistent
2131          * with efx_filter_init_{rx,tx}() and in case we want to copy
2132          * it back to userland.
2133          */
2134         memset(gen_spec, 0, sizeof(*gen_spec));
2135
2136         gen_spec->priority = spec->priority;
2137         gen_spec->flags = spec->flags;
2138         gen_spec->dmaq_id = spec->dmaq_id;
2139
2140         switch (spec->type) {
2141         case EFX_FARCH_FILTER_TCP_FULL:
2142         case EFX_FARCH_FILTER_UDP_FULL:
2143                 is_full = true;
2144                 /* fall through */
2145         case EFX_FARCH_FILTER_TCP_WILD:
2146         case EFX_FARCH_FILTER_UDP_WILD: {
2147                 __be32 host1, host2;
2148                 __be16 port1, port2;
2149
2150                 gen_spec->match_flags =
2151                         EFX_FILTER_MATCH_ETHER_TYPE |
2152                         EFX_FILTER_MATCH_IP_PROTO |
2153                         EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2154                 if (is_full)
2155                         gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2156                                                   EFX_FILTER_MATCH_REM_PORT);
2157                 gen_spec->ether_type = htons(ETH_P_IP);
2158                 gen_spec->ip_proto =
2159                         (spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2160                          spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2161                         IPPROTO_TCP : IPPROTO_UDP;
2162
2163                 host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2164                 port1 = htons(spec->data[0]);
2165                 host2 = htonl(spec->data[2]);
2166                 port2 = htons(spec->data[1] >> 16);
2167                 if (spec->flags & EFX_FILTER_FLAG_TX) {
2168                         gen_spec->loc_host[0] = host1;
2169                         gen_spec->rem_host[0] = host2;
2170                 } else {
2171                         gen_spec->loc_host[0] = host2;
2172                         gen_spec->rem_host[0] = host1;
2173                 }
2174                 if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2175                     (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2176                         gen_spec->loc_port = port1;
2177                         gen_spec->rem_port = port2;
2178                 } else {
2179                         gen_spec->loc_port = port2;
2180                         gen_spec->rem_port = port1;
2181                 }
2182
2183                 break;
2184         }
2185
2186         case EFX_FARCH_FILTER_MAC_FULL:
2187                 is_full = true;
2188                 /* fall through */
2189         case EFX_FARCH_FILTER_MAC_WILD:
2190                 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2191                 if (is_full)
2192                         gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2193                 gen_spec->loc_mac[0] = spec->data[2] >> 8;
2194                 gen_spec->loc_mac[1] = spec->data[2];
2195                 gen_spec->loc_mac[2] = spec->data[1] >> 24;
2196                 gen_spec->loc_mac[3] = spec->data[1] >> 16;
2197                 gen_spec->loc_mac[4] = spec->data[1] >> 8;
2198                 gen_spec->loc_mac[5] = spec->data[1];
2199                 gen_spec->outer_vid = htons(spec->data[0]);
2200                 break;
2201
2202         case EFX_FARCH_FILTER_UC_DEF:
2203         case EFX_FARCH_FILTER_MC_DEF:
2204                 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2205                 gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2206                 break;
2207
2208         default:
2209                 WARN_ON(1);
2210                 break;
2211         }
2212 }
2213
2214 static void
2215 efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2216                               struct efx_farch_filter_spec *spec)
2217 {
2218         /* If there's only one channel then disable RSS for non VF
2219          * traffic, thereby allowing VFs to use RSS when the PF can't.
2220          */
2221         spec->priority = EFX_FILTER_PRI_AUTO;
2222         spec->flags = (EFX_FILTER_FLAG_RX |
2223                        (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
2224                        (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2225         spec->dmaq_id = 0;
2226 }
2227
2228 /* Build a filter entry and return its n-tuple key. */
2229 static u32 efx_farch_filter_build(efx_oword_t *filter,
2230                                   struct efx_farch_filter_spec *spec)
2231 {
2232         u32 data3;
2233
2234         switch (efx_farch_filter_spec_table_id(spec)) {
2235         case EFX_FARCH_FILTER_TABLE_RX_IP: {
2236                 bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2237                                spec->type == EFX_FARCH_FILTER_UDP_WILD);
2238                 EFX_POPULATE_OWORD_7(
2239                         *filter,
2240                         FRF_BZ_RSS_EN,
2241                         !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2242                         FRF_BZ_SCATTER_EN,
2243                         !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2244                         FRF_BZ_TCP_UDP, is_udp,
2245                         FRF_BZ_RXQ_ID, spec->dmaq_id,
2246                         EFX_DWORD_2, spec->data[2],
2247                         EFX_DWORD_1, spec->data[1],
2248                         EFX_DWORD_0, spec->data[0]);
2249                 data3 = is_udp;
2250                 break;
2251         }
2252
2253         case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2254                 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2255                 EFX_POPULATE_OWORD_7(
2256                         *filter,
2257                         FRF_CZ_RMFT_RSS_EN,
2258                         !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2259                         FRF_CZ_RMFT_SCATTER_EN,
2260                         !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2261                         FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2262                         FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2263                         FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2264                         FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2265                         FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2266                 data3 = is_wild;
2267                 break;
2268         }
2269
2270         case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2271                 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2272                 EFX_POPULATE_OWORD_5(*filter,
2273                                      FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2274                                      FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2275                                      FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2276                                      FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2277                                      FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2278                 data3 = is_wild | spec->dmaq_id << 1;
2279                 break;
2280         }
2281
2282         default:
2283                 BUG();
2284         }
2285
2286         return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2287 }
2288
2289 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2290                                    const struct efx_farch_filter_spec *right)
2291 {
2292         if (left->type != right->type ||
2293             memcmp(left->data, right->data, sizeof(left->data)))
2294                 return false;
2295
2296         if (left->flags & EFX_FILTER_FLAG_TX &&
2297             left->dmaq_id != right->dmaq_id)
2298                 return false;
2299
2300         return true;
2301 }
2302
2303 /*
2304  * Construct/deconstruct external filter IDs.  At least the RX filter
2305  * IDs must be ordered by matching priority, for RX NFC semantics.
2306  *
2307  * Deconstruction needs to be robust against invalid IDs so that
2308  * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2309  * accept user-provided IDs.
2310  */
2311
2312 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT        5
2313
2314 static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2315         [EFX_FARCH_FILTER_TCP_FULL]     = 0,
2316         [EFX_FARCH_FILTER_UDP_FULL]     = 0,
2317         [EFX_FARCH_FILTER_TCP_WILD]     = 1,
2318         [EFX_FARCH_FILTER_UDP_WILD]     = 1,
2319         [EFX_FARCH_FILTER_MAC_FULL]     = 2,
2320         [EFX_FARCH_FILTER_MAC_WILD]     = 3,
2321         [EFX_FARCH_FILTER_UC_DEF]       = 4,
2322         [EFX_FARCH_FILTER_MC_DEF]       = 4,
2323 };
2324
2325 static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2326         EFX_FARCH_FILTER_TABLE_RX_IP,   /* RX match pri 0 */
2327         EFX_FARCH_FILTER_TABLE_RX_IP,
2328         EFX_FARCH_FILTER_TABLE_RX_MAC,
2329         EFX_FARCH_FILTER_TABLE_RX_MAC,
2330         EFX_FARCH_FILTER_TABLE_RX_DEF,  /* RX match pri 4 */
2331         EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 0 */
2332         EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 1 */
2333 };
2334
2335 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2336 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2337
2338 static inline u32
2339 efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2340                          unsigned int index)
2341 {
2342         unsigned int range;
2343
2344         range = efx_farch_filter_type_match_pri[spec->type];
2345         if (!(spec->flags & EFX_FILTER_FLAG_RX))
2346                 range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2347
2348         return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2349 }
2350
2351 static inline enum efx_farch_filter_table_id
2352 efx_farch_filter_id_table_id(u32 id)
2353 {
2354         unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2355
2356         if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2357                 return efx_farch_filter_range_table[range];
2358         else
2359                 return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2360 }
2361
2362 static inline unsigned int efx_farch_filter_id_index(u32 id)
2363 {
2364         return id & EFX_FARCH_FILTER_INDEX_MASK;
2365 }
2366
2367 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2368 {
2369         struct efx_farch_filter_state *state = efx->filter_state;
2370         unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2371         enum efx_farch_filter_table_id table_id;
2372
2373         do {
2374                 table_id = efx_farch_filter_range_table[range];
2375                 if (state->table[table_id].size != 0)
2376                         return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2377                                 state->table[table_id].size;
2378         } while (range--);
2379
2380         return 0;
2381 }
2382
2383 s32 efx_farch_filter_insert(struct efx_nic *efx,
2384                             struct efx_filter_spec *gen_spec,
2385                             bool replace_equal)
2386 {
2387         struct efx_farch_filter_state *state = efx->filter_state;
2388         struct efx_farch_filter_table *table;
2389         struct efx_farch_filter_spec spec;
2390         efx_oword_t filter;
2391         int rep_index, ins_index;
2392         unsigned int depth = 0;
2393         int rc;
2394
2395         rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2396         if (rc)
2397                 return rc;
2398
2399         down_write(&state->lock);
2400
2401         table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2402         if (table->size == 0) {
2403                 rc = -EINVAL;
2404                 goto out_unlock;
2405         }
2406
2407         netif_vdbg(efx, hw, efx->net_dev,
2408                    "%s: type %d search_limit=%d", __func__, spec.type,
2409                    table->search_limit[spec.type]);
2410
2411         if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2412                 /* One filter spec per type */
2413                 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2414                 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2415                              EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2416                 rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2417                 ins_index = rep_index;
2418         } else {
2419                 /* Search concurrently for
2420                  * (1) a filter to be replaced (rep_index): any filter
2421                  *     with the same match values, up to the current
2422                  *     search depth for this type, and
2423                  * (2) the insertion point (ins_index): (1) or any
2424                  *     free slot before it or up to the maximum search
2425                  *     depth for this priority
2426                  * We fail if we cannot find (2).
2427                  *
2428                  * We can stop once either
2429                  * (a) we find (1), in which case we have definitely
2430                  *     found (2) as well; or
2431                  * (b) we have searched exhaustively for (1), and have
2432                  *     either found (2) or searched exhaustively for it
2433                  */
2434                 u32 key = efx_farch_filter_build(&filter, &spec);
2435                 unsigned int hash = efx_farch_filter_hash(key);
2436                 unsigned int incr = efx_farch_filter_increment(key);
2437                 unsigned int max_rep_depth = table->search_limit[spec.type];
2438                 unsigned int max_ins_depth =
2439                         spec.priority <= EFX_FILTER_PRI_HINT ?
2440                         EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2441                         EFX_FARCH_FILTER_CTL_SRCH_MAX;
2442                 unsigned int i = hash & (table->size - 1);
2443
2444                 ins_index = -1;
2445                 depth = 1;
2446
2447                 for (;;) {
2448                         if (!test_bit(i, table->used_bitmap)) {
2449                                 if (ins_index < 0)
2450                                         ins_index = i;
2451                         } else if (efx_farch_filter_equal(&spec,
2452                                                           &table->spec[i])) {
2453                                 /* Case (a) */
2454                                 if (ins_index < 0)
2455                                         ins_index = i;
2456                                 rep_index = i;
2457                                 break;
2458                         }
2459
2460                         if (depth >= max_rep_depth &&
2461                             (ins_index >= 0 || depth >= max_ins_depth)) {
2462                                 /* Case (b) */
2463                                 if (ins_index < 0) {
2464                                         rc = -EBUSY;
2465                                         goto out_unlock;
2466                                 }
2467                                 rep_index = -1;
2468                                 break;
2469                         }
2470
2471                         i = (i + incr) & (table->size - 1);
2472                         ++depth;
2473                 }
2474         }
2475
2476         /* If we found a filter to be replaced, check whether we
2477          * should do so
2478          */
2479         if (rep_index >= 0) {
2480                 struct efx_farch_filter_spec *saved_spec =
2481                         &table->spec[rep_index];
2482
2483                 if (spec.priority == saved_spec->priority && !replace_equal) {
2484                         rc = -EEXIST;
2485                         goto out_unlock;
2486                 }
2487                 if (spec.priority < saved_spec->priority) {
2488                         rc = -EPERM;
2489                         goto out_unlock;
2490                 }
2491                 if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2492                     saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2493                         spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2494         }
2495
2496         /* Insert the filter */
2497         if (ins_index != rep_index) {
2498                 __set_bit(ins_index, table->used_bitmap);
2499                 ++table->used;
2500         }
2501         table->spec[ins_index] = spec;
2502
2503         if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2504                 efx_farch_filter_push_rx_config(efx);
2505         } else {
2506                 if (table->search_limit[spec.type] < depth) {
2507                         table->search_limit[spec.type] = depth;
2508                         if (spec.flags & EFX_FILTER_FLAG_TX)
2509                                 efx_farch_filter_push_tx_limits(efx);
2510                         else
2511                                 efx_farch_filter_push_rx_config(efx);
2512                 }
2513
2514                 efx_writeo(efx, &filter,
2515                            table->offset + table->step * ins_index);
2516
2517                 /* If we were able to replace a filter by inserting
2518                  * at a lower depth, clear the replaced filter
2519                  */
2520                 if (ins_index != rep_index && rep_index >= 0)
2521                         efx_farch_filter_table_clear_entry(efx, table,
2522                                                            rep_index);
2523         }
2524
2525         netif_vdbg(efx, hw, efx->net_dev,
2526                    "%s: filter type %d index %d rxq %u set",
2527                    __func__, spec.type, ins_index, spec.dmaq_id);
2528         rc = efx_farch_filter_make_id(&spec, ins_index);
2529
2530 out_unlock:
2531         up_write(&state->lock);
2532         return rc;
2533 }
2534
2535 static void
2536 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2537                                    struct efx_farch_filter_table *table,
2538                                    unsigned int filter_idx)
2539 {
2540         static efx_oword_t filter;
2541
2542         EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2543         BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2544
2545         __clear_bit(filter_idx, table->used_bitmap);
2546         --table->used;
2547         memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2548
2549         efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2550
2551         /* If this filter required a greater search depth than
2552          * any other, the search limit for its type can now be
2553          * decreased.  However, it is hard to determine that
2554          * unless the table has become completely empty - in
2555          * which case, all its search limits can be set to 0.
2556          */
2557         if (unlikely(table->used == 0)) {
2558                 memset(table->search_limit, 0, sizeof(table->search_limit));
2559                 if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2560                         efx_farch_filter_push_tx_limits(efx);
2561                 else
2562                         efx_farch_filter_push_rx_config(efx);
2563         }
2564 }
2565
2566 static int efx_farch_filter_remove(struct efx_nic *efx,
2567                                    struct efx_farch_filter_table *table,
2568                                    unsigned int filter_idx,
2569                                    enum efx_filter_priority priority)
2570 {
2571         struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2572
2573         if (!test_bit(filter_idx, table->used_bitmap) ||
2574             spec->priority != priority)
2575                 return -ENOENT;
2576
2577         if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2578                 efx_farch_filter_init_rx_auto(efx, spec);
2579                 efx_farch_filter_push_rx_config(efx);
2580         } else {
2581                 efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2582         }
2583
2584         return 0;
2585 }
2586
2587 int efx_farch_filter_remove_safe(struct efx_nic *efx,
2588                                  enum efx_filter_priority priority,
2589                                  u32 filter_id)
2590 {
2591         struct efx_farch_filter_state *state = efx->filter_state;
2592         enum efx_farch_filter_table_id table_id;
2593         struct efx_farch_filter_table *table;
2594         unsigned int filter_idx;
2595         struct efx_farch_filter_spec *spec;
2596         int rc;
2597
2598         table_id = efx_farch_filter_id_table_id(filter_id);
2599         if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2600                 return -ENOENT;
2601         table = &state->table[table_id];
2602
2603         filter_idx = efx_farch_filter_id_index(filter_id);
2604         if (filter_idx >= table->size)
2605                 return -ENOENT;
2606         down_write(&state->lock);
2607         spec = &table->spec[filter_idx];
2608
2609         rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2610         up_write(&state->lock);
2611
2612         return rc;
2613 }
2614
2615 int efx_farch_filter_get_safe(struct efx_nic *efx,
2616                               enum efx_filter_priority priority,
2617                               u32 filter_id, struct efx_filter_spec *spec_buf)
2618 {
2619         struct efx_farch_filter_state *state = efx->filter_state;
2620         enum efx_farch_filter_table_id table_id;
2621         struct efx_farch_filter_table *table;
2622         struct efx_farch_filter_spec *spec;
2623         unsigned int filter_idx;
2624         int rc = -ENOENT;
2625
2626         down_read(&state->lock);
2627
2628         table_id = efx_farch_filter_id_table_id(filter_id);
2629         if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2630                 goto out_unlock;
2631         table = &state->table[table_id];
2632
2633         filter_idx = efx_farch_filter_id_index(filter_id);
2634         if (filter_idx >= table->size)
2635                 goto out_unlock;
2636         spec = &table->spec[filter_idx];
2637
2638         if (test_bit(filter_idx, table->used_bitmap) &&
2639             spec->priority == priority) {
2640                 efx_farch_filter_to_gen_spec(spec_buf, spec);
2641                 rc = 0;
2642         }
2643
2644 out_unlock:
2645         up_read(&state->lock);
2646         return rc;
2647 }
2648
2649 static void
2650 efx_farch_filter_table_clear(struct efx_nic *efx,
2651                              enum efx_farch_filter_table_id table_id,
2652                              enum efx_filter_priority priority)
2653 {
2654         struct efx_farch_filter_state *state = efx->filter_state;
2655         struct efx_farch_filter_table *table = &state->table[table_id];
2656         unsigned int filter_idx;
2657
2658         down_write(&state->lock);
2659         for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2660                 if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2661                         efx_farch_filter_remove(efx, table,
2662                                                 filter_idx, priority);
2663         }
2664         up_write(&state->lock);
2665 }
2666
2667 int efx_farch_filter_clear_rx(struct efx_nic *efx,
2668                                enum efx_filter_priority priority)
2669 {
2670         efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2671                                      priority);
2672         efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2673                                      priority);
2674         efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2675                                      priority);
2676         return 0;
2677 }
2678
2679 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2680                                    enum efx_filter_priority priority)
2681 {
2682         struct efx_farch_filter_state *state = efx->filter_state;
2683         enum efx_farch_filter_table_id table_id;
2684         struct efx_farch_filter_table *table;
2685         unsigned int filter_idx;
2686         u32 count = 0;
2687
2688         down_read(&state->lock);
2689
2690         for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2691              table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2692              table_id++) {
2693                 table = &state->table[table_id];
2694                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2695                         if (test_bit(filter_idx, table->used_bitmap) &&
2696                             table->spec[filter_idx].priority == priority)
2697                                 ++count;
2698                 }
2699         }
2700
2701         up_read(&state->lock);
2702
2703         return count;
2704 }
2705
2706 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2707                                 enum efx_filter_priority priority,
2708                                 u32 *buf, u32 size)
2709 {
2710         struct efx_farch_filter_state *state = efx->filter_state;
2711         enum efx_farch_filter_table_id table_id;
2712         struct efx_farch_filter_table *table;
2713         unsigned int filter_idx;
2714         s32 count = 0;
2715
2716         down_read(&state->lock);
2717
2718         for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2719              table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2720              table_id++) {
2721                 table = &state->table[table_id];
2722                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2723                         if (test_bit(filter_idx, table->used_bitmap) &&
2724                             table->spec[filter_idx].priority == priority) {
2725                                 if (count == size) {
2726                                         count = -EMSGSIZE;
2727                                         goto out;
2728                                 }
2729                                 buf[count++] = efx_farch_filter_make_id(
2730                                         &table->spec[filter_idx], filter_idx);
2731                         }
2732                 }
2733         }
2734 out:
2735         up_read(&state->lock);
2736
2737         return count;
2738 }
2739
2740 /* Restore filter stater after reset */
2741 void efx_farch_filter_table_restore(struct efx_nic *efx)
2742 {
2743         struct efx_farch_filter_state *state = efx->filter_state;
2744         enum efx_farch_filter_table_id table_id;
2745         struct efx_farch_filter_table *table;
2746         efx_oword_t filter;
2747         unsigned int filter_idx;
2748
2749         down_write(&state->lock);
2750
2751         for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2752                 table = &state->table[table_id];
2753
2754                 /* Check whether this is a regular register table */
2755                 if (table->step == 0)
2756                         continue;
2757
2758                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2759                         if (!test_bit(filter_idx, table->used_bitmap))
2760                                 continue;
2761                         efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2762                         efx_writeo(efx, &filter,
2763                                    table->offset + table->step * filter_idx);
2764                 }
2765         }
2766
2767         efx_farch_filter_push_rx_config(efx);
2768         efx_farch_filter_push_tx_limits(efx);
2769
2770         up_write(&state->lock);
2771 }
2772
2773 void efx_farch_filter_table_remove(struct efx_nic *efx)
2774 {
2775         struct efx_farch_filter_state *state = efx->filter_state;
2776         enum efx_farch_filter_table_id table_id;
2777
2778         for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2779                 kfree(state->table[table_id].used_bitmap);
2780                 vfree(state->table[table_id].spec);
2781         }
2782         kfree(state);
2783 }
2784
2785 int efx_farch_filter_table_probe(struct efx_nic *efx)
2786 {
2787         struct efx_farch_filter_state *state;
2788         struct efx_farch_filter_table *table;
2789         unsigned table_id;
2790
2791         state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2792         if (!state)
2793                 return -ENOMEM;
2794         efx->filter_state = state;
2795         init_rwsem(&state->lock);
2796
2797         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2798         table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2799         table->offset = FR_BZ_RX_FILTER_TBL0;
2800         table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2801         table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2802
2803         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2804         table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2805         table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2806         table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2807         table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2808
2809         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2810         table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2811         table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2812
2813         table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2814         table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2815         table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2816         table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2817         table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2818
2819         for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2820                 table = &state->table[table_id];
2821                 if (table->size == 0)
2822                         continue;
2823                 table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2824                                              sizeof(unsigned long),
2825                                              GFP_KERNEL);
2826                 if (!table->used_bitmap)
2827                         goto fail;
2828                 table->spec = vzalloc(array_size(sizeof(*table->spec),
2829                                                  table->size));
2830                 if (!table->spec)
2831                         goto fail;
2832         }
2833
2834         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2835         if (table->size) {
2836                 /* RX default filters must always exist */
2837                 struct efx_farch_filter_spec *spec;
2838                 unsigned i;
2839
2840                 for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2841                         spec = &table->spec[i];
2842                         spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2843                         efx_farch_filter_init_rx_auto(efx, spec);
2844                         __set_bit(i, table->used_bitmap);
2845                 }
2846         }
2847
2848         efx_farch_filter_push_rx_config(efx);
2849
2850         return 0;
2851
2852 fail:
2853         efx_farch_filter_table_remove(efx);
2854         return -ENOMEM;
2855 }
2856
2857 /* Update scatter enable flags for filters pointing to our own RX queues */
2858 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2859 {
2860         struct efx_farch_filter_state *state = efx->filter_state;
2861         enum efx_farch_filter_table_id table_id;
2862         struct efx_farch_filter_table *table;
2863         efx_oword_t filter;
2864         unsigned int filter_idx;
2865
2866         down_write(&state->lock);
2867
2868         for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2869              table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2870              table_id++) {
2871                 table = &state->table[table_id];
2872
2873                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2874                         if (!test_bit(filter_idx, table->used_bitmap) ||
2875                             table->spec[filter_idx].dmaq_id >=
2876                             efx->n_rx_channels)
2877                                 continue;
2878
2879                         if (efx->rx_scatter)
2880                                 table->spec[filter_idx].flags |=
2881                                         EFX_FILTER_FLAG_RX_SCATTER;
2882                         else
2883                                 table->spec[filter_idx].flags &=
2884                                         ~EFX_FILTER_FLAG_RX_SCATTER;
2885
2886                         if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2887                                 /* Pushed by efx_farch_filter_push_rx_config() */
2888                                 continue;
2889
2890                         efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2891                         efx_writeo(efx, &filter,
2892                                    table->offset + table->step * filter_idx);
2893                 }
2894         }
2895
2896         efx_farch_filter_push_rx_config(efx);
2897
2898         up_write(&state->lock);
2899 }
2900
2901 #ifdef CONFIG_RFS_ACCEL
2902
2903 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2904                                      unsigned int index)
2905 {
2906         struct efx_farch_filter_state *state = efx->filter_state;
2907         struct efx_farch_filter_table *table;
2908         bool ret = false, force = false;
2909         u16 arfs_id;
2910
2911         down_write(&state->lock);
2912         spin_lock_bh(&efx->rps_hash_lock);
2913         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2914         if (test_bit(index, table->used_bitmap) &&
2915             table->spec[index].priority == EFX_FILTER_PRI_HINT) {
2916                 struct efx_arfs_rule *rule = NULL;
2917                 struct efx_filter_spec spec;
2918
2919                 efx_farch_filter_to_gen_spec(&spec, &table->spec[index]);
2920                 if (!efx->rps_hash_table) {
2921                         /* In the absence of the table, we always returned 0 to
2922                          * ARFS, so use the same to query it.
2923                          */
2924                         arfs_id = 0;
2925                 } else {
2926                         rule = efx_rps_hash_find(efx, &spec);
2927                         if (!rule) {
2928                                 /* ARFS table doesn't know of this filter, remove it */
2929                                 force = true;
2930                         } else {
2931                                 arfs_id = rule->arfs_id;
2932                                 if (!efx_rps_check_rule(rule, index, &force))
2933                                         goto out_unlock;
2934                         }
2935                 }
2936                 if (force || rps_may_expire_flow(efx->net_dev, spec.dmaq_id,
2937                                                  flow_id, arfs_id)) {
2938                         if (rule)
2939                                 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
2940                         efx_rps_hash_del(efx, &spec);
2941                         efx_farch_filter_table_clear_entry(efx, table, index);
2942                         ret = true;
2943                 }
2944         }
2945 out_unlock:
2946         spin_unlock_bh(&efx->rps_hash_lock);
2947         up_write(&state->lock);
2948         return ret;
2949 }
2950
2951 #endif /* CONFIG_RFS_ACCEL */
2952
2953 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2954 {
2955         struct net_device *net_dev = efx->net_dev;
2956         struct netdev_hw_addr *ha;
2957         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2958         u32 crc;
2959         int bit;
2960
2961         if (!efx_dev_registered(efx))
2962                 return;
2963
2964         netif_addr_lock_bh(net_dev);
2965
2966         efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2967
2968         /* Build multicast hash table */
2969         if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2970                 memset(mc_hash, 0xff, sizeof(*mc_hash));
2971         } else {
2972                 memset(mc_hash, 0x00, sizeof(*mc_hash));
2973                 netdev_for_each_mc_addr(ha, net_dev) {
2974                         crc = ether_crc_le(ETH_ALEN, ha->addr);
2975                         bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2976                         __set_bit_le(bit, mc_hash);
2977                 }
2978
2979                 /* Broadcast packets go through the multicast hash filter.
2980                  * ether_crc_le() of the broadcast address is 0xbe2612ff
2981                  * so we always add bit 0xff to the mask.
2982                  */
2983                 __set_bit_le(0xff, mc_hash);
2984         }
2985
2986         netif_addr_unlock_bh(net_dev);
2987 }