sfc: decouple TXQ type from label
[linux-2.6-microblaze.git] / drivers / net / ethernet / sfc / farch.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2006-2013 Solarflare Communications Inc.
6  */
7
8 #include <linux/bitops.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/seq_file.h>
14 #include <linux/crc32.h>
15 #include "net_driver.h"
16 #include "bitfield.h"
17 #include "efx.h"
18 #include "rx_common.h"
19 #include "nic.h"
20 #include "farch_regs.h"
21 #include "sriov.h"
22 #include "siena_sriov.h"
23 #include "io.h"
24 #include "workarounds.h"
25
26 /* Falcon-architecture (SFC9000-family) support */
27
28 /**************************************************************************
29  *
30  * Configurable values
31  *
32  **************************************************************************
33  */
34
35 /* This is set to 16 for a good reason.  In summary, if larger than
36  * 16, the descriptor cache holds more than a default socket
37  * buffer's worth of packets (for UDP we can only have at most one
38  * socket buffer's worth outstanding).  This combined with the fact
39  * that we only get 1 TX event per descriptor cache means the NIC
40  * goes idle.
41  */
42 #define TX_DC_ENTRIES 16
43 #define TX_DC_ENTRIES_ORDER 1
44
45 #define RX_DC_ENTRIES 64
46 #define RX_DC_ENTRIES_ORDER 3
47
48 /* If EFX_MAX_INT_ERRORS internal errors occur within
49  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
50  * disable it.
51  */
52 #define EFX_INT_ERROR_EXPIRE 3600
53 #define EFX_MAX_INT_ERRORS 5
54
55 /* Depth of RX flush request fifo */
56 #define EFX_RX_FLUSH_COUNT 4
57
58 /* Driver generated events */
59 #define _EFX_CHANNEL_MAGIC_TEST         0x000101
60 #define _EFX_CHANNEL_MAGIC_FILL         0x000102
61 #define _EFX_CHANNEL_MAGIC_RX_DRAIN     0x000103
62 #define _EFX_CHANNEL_MAGIC_TX_DRAIN     0x000104
63
64 #define _EFX_CHANNEL_MAGIC(_code, _data)        ((_code) << 8 | (_data))
65 #define _EFX_CHANNEL_MAGIC_CODE(_magic)         ((_magic) >> 8)
66
67 #define EFX_CHANNEL_MAGIC_TEST(_channel)                                \
68         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
69 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)                               \
70         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,                     \
71                            efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)                           \
73         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,                 \
74                            efx_rx_queue_index(_rx_queue))
75 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)                           \
76         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,                 \
77                            (_tx_queue)->queue)
78
79 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
80
81 /**************************************************************************
82  *
83  * Hardware access
84  *
85  **************************************************************************/
86
87 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
88                                      unsigned int index)
89 {
90         efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
91                         value, index);
92 }
93
94 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
95                                      const efx_oword_t *mask)
96 {
97         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
98                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
99 }
100
101 int efx_farch_test_registers(struct efx_nic *efx,
102                              const struct efx_farch_register_test *regs,
103                              size_t n_regs)
104 {
105         unsigned address = 0;
106         int i, j;
107         efx_oword_t mask, imask, original, reg, buf;
108
109         for (i = 0; i < n_regs; ++i) {
110                 address = regs[i].address;
111                 mask = imask = regs[i].mask;
112                 EFX_INVERT_OWORD(imask);
113
114                 efx_reado(efx, &original, address);
115
116                 /* bit sweep on and off */
117                 for (j = 0; j < 128; j++) {
118                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
119                                 continue;
120
121                         /* Test this testable bit can be set in isolation */
122                         EFX_AND_OWORD(reg, original, mask);
123                         EFX_SET_OWORD32(reg, j, j, 1);
124
125                         efx_writeo(efx, &reg, address);
126                         efx_reado(efx, &buf, address);
127
128                         if (efx_masked_compare_oword(&reg, &buf, &mask))
129                                 goto fail;
130
131                         /* Test this testable bit can be cleared in isolation */
132                         EFX_OR_OWORD(reg, original, mask);
133                         EFX_SET_OWORD32(reg, j, j, 0);
134
135                         efx_writeo(efx, &reg, address);
136                         efx_reado(efx, &buf, address);
137
138                         if (efx_masked_compare_oword(&reg, &buf, &mask))
139                                 goto fail;
140                 }
141
142                 efx_writeo(efx, &original, address);
143         }
144
145         return 0;
146
147 fail:
148         netif_err(efx, hw, efx->net_dev,
149                   "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
150                   " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
151                   EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
152         return -EIO;
153 }
154
155 /**************************************************************************
156  *
157  * Special buffer handling
158  * Special buffers are used for event queues and the TX and RX
159  * descriptor rings.
160  *
161  *************************************************************************/
162
163 /*
164  * Initialise a special buffer
165  *
166  * This will define a buffer (previously allocated via
167  * efx_alloc_special_buffer()) in the buffer table, allowing
168  * it to be used for event queues, descriptor rings etc.
169  */
170 static void
171 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
172 {
173         efx_qword_t buf_desc;
174         unsigned int index;
175         dma_addr_t dma_addr;
176         int i;
177
178         EFX_WARN_ON_PARANOID(!buffer->buf.addr);
179
180         /* Write buffer descriptors to NIC */
181         for (i = 0; i < buffer->entries; i++) {
182                 index = buffer->index + i;
183                 dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
184                 netif_dbg(efx, probe, efx->net_dev,
185                           "mapping special buffer %d at %llx\n",
186                           index, (unsigned long long)dma_addr);
187                 EFX_POPULATE_QWORD_3(buf_desc,
188                                      FRF_AZ_BUF_ADR_REGION, 0,
189                                      FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
190                                      FRF_AZ_BUF_OWNER_ID_FBUF, 0);
191                 efx_write_buf_tbl(efx, &buf_desc, index);
192         }
193 }
194
195 /* Unmaps a buffer and clears the buffer table entries */
196 static void
197 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
198 {
199         efx_oword_t buf_tbl_upd;
200         unsigned int start = buffer->index;
201         unsigned int end = (buffer->index + buffer->entries - 1);
202
203         if (!buffer->entries)
204                 return;
205
206         netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
207                   buffer->index, buffer->index + buffer->entries - 1);
208
209         EFX_POPULATE_OWORD_4(buf_tbl_upd,
210                              FRF_AZ_BUF_UPD_CMD, 0,
211                              FRF_AZ_BUF_CLR_CMD, 1,
212                              FRF_AZ_BUF_CLR_END_ID, end,
213                              FRF_AZ_BUF_CLR_START_ID, start);
214         efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
215 }
216
217 /*
218  * Allocate a new special buffer
219  *
220  * This allocates memory for a new buffer, clears it and allocates a
221  * new buffer ID range.  It does not write into the buffer table.
222  *
223  * This call will allocate 4KB buffers, since 8KB buffers can't be
224  * used for event queues and descriptor rings.
225  */
226 static int efx_alloc_special_buffer(struct efx_nic *efx,
227                                     struct efx_special_buffer *buffer,
228                                     unsigned int len)
229 {
230 #ifdef CONFIG_SFC_SRIOV
231         struct siena_nic_data *nic_data = efx->nic_data;
232 #endif
233         len = ALIGN(len, EFX_BUF_SIZE);
234
235         if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
236                 return -ENOMEM;
237         buffer->entries = len / EFX_BUF_SIZE;
238         BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
239
240         /* Select new buffer ID */
241         buffer->index = efx->next_buffer_table;
242         efx->next_buffer_table += buffer->entries;
243 #ifdef CONFIG_SFC_SRIOV
244         BUG_ON(efx_siena_sriov_enabled(efx) &&
245                nic_data->vf_buftbl_base < efx->next_buffer_table);
246 #endif
247
248         netif_dbg(efx, probe, efx->net_dev,
249                   "allocating special buffers %d-%d at %llx+%x "
250                   "(virt %p phys %llx)\n", buffer->index,
251                   buffer->index + buffer->entries - 1,
252                   (u64)buffer->buf.dma_addr, len,
253                   buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
254
255         return 0;
256 }
257
258 static void
259 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
260 {
261         if (!buffer->buf.addr)
262                 return;
263
264         netif_dbg(efx, hw, efx->net_dev,
265                   "deallocating special buffers %d-%d at %llx+%x "
266                   "(virt %p phys %llx)\n", buffer->index,
267                   buffer->index + buffer->entries - 1,
268                   (u64)buffer->buf.dma_addr, buffer->buf.len,
269                   buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
270
271         efx_nic_free_buffer(efx, &buffer->buf);
272         buffer->entries = 0;
273 }
274
275 /**************************************************************************
276  *
277  * TX path
278  *
279  **************************************************************************/
280
281 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
282 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
283 {
284         unsigned write_ptr;
285         efx_dword_t reg;
286
287         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
288         EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
289         efx_writed_page(tx_queue->efx, &reg,
290                         FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
291 }
292
293 /* Write pointer and first descriptor for TX descriptor ring */
294 static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
295                                           const efx_qword_t *txd)
296 {
297         unsigned write_ptr;
298         efx_oword_t reg;
299
300         BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
301         BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
302
303         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
304         EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
305                              FRF_AZ_TX_DESC_WPTR, write_ptr);
306         reg.qword[0] = *txd;
307         efx_writeo_page(tx_queue->efx, &reg,
308                         FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
309 }
310
311
312 /* For each entry inserted into the software descriptor ring, create a
313  * descriptor in the hardware TX descriptor ring (in host memory), and
314  * write a doorbell.
315  */
316 void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
317 {
318         struct efx_tx_buffer *buffer;
319         efx_qword_t *txd;
320         unsigned write_ptr;
321         unsigned old_write_count = tx_queue->write_count;
322
323         tx_queue->xmit_pending = false;
324         if (unlikely(tx_queue->write_count == tx_queue->insert_count))
325                 return;
326
327         do {
328                 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
329                 buffer = &tx_queue->buffer[write_ptr];
330                 txd = efx_tx_desc(tx_queue, write_ptr);
331                 ++tx_queue->write_count;
332
333                 EFX_WARN_ON_ONCE_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
334
335                 /* Create TX descriptor ring entry */
336                 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
337                 EFX_POPULATE_QWORD_4(*txd,
338                                      FSF_AZ_TX_KER_CONT,
339                                      buffer->flags & EFX_TX_BUF_CONT,
340                                      FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
341                                      FSF_AZ_TX_KER_BUF_REGION, 0,
342                                      FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
343         } while (tx_queue->write_count != tx_queue->insert_count);
344
345         wmb(); /* Ensure descriptors are written before they are fetched */
346
347         if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
348                 txd = efx_tx_desc(tx_queue,
349                                   old_write_count & tx_queue->ptr_mask);
350                 efx_farch_push_tx_desc(tx_queue, txd);
351                 ++tx_queue->pushes;
352         } else {
353                 efx_farch_notify_tx_desc(tx_queue);
354         }
355 }
356
357 unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
358                                     dma_addr_t dma_addr, unsigned int len)
359 {
360         /* Don't cross 4K boundaries with descriptors. */
361         unsigned int limit = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
362
363         len = min(limit, len);
364
365         return len;
366 }
367
368
369 /* Allocate hardware resources for a TX queue */
370 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
371 {
372         struct efx_nic *efx = tx_queue->efx;
373         unsigned entries;
374
375         tx_queue->type = ((tx_queue->label & 1) ? EFX_TXQ_TYPE_OFFLOAD : 0) |
376                          ((tx_queue->label & 2) ? EFX_TXQ_TYPE_HIGHPRI : 0);
377         entries = tx_queue->ptr_mask + 1;
378         return efx_alloc_special_buffer(efx, &tx_queue->txd,
379                                         entries * sizeof(efx_qword_t));
380 }
381
382 void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
383 {
384         int csum = tx_queue->type & EFX_TXQ_TYPE_OFFLOAD;
385         struct efx_nic *efx = tx_queue->efx;
386         efx_oword_t reg;
387
388         /* Pin TX descriptor ring */
389         efx_init_special_buffer(efx, &tx_queue->txd);
390
391         /* Push TX descriptor ring to card */
392         EFX_POPULATE_OWORD_10(reg,
393                               FRF_AZ_TX_DESCQ_EN, 1,
394                               FRF_AZ_TX_ISCSI_DDIG_EN, 0,
395                               FRF_AZ_TX_ISCSI_HDIG_EN, 0,
396                               FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
397                               FRF_AZ_TX_DESCQ_EVQ_ID,
398                               tx_queue->channel->channel,
399                               FRF_AZ_TX_DESCQ_OWNER_ID, 0,
400                               FRF_AZ_TX_DESCQ_LABEL, tx_queue->label,
401                               FRF_AZ_TX_DESCQ_SIZE,
402                               __ffs(tx_queue->txd.entries),
403                               FRF_AZ_TX_DESCQ_TYPE, 0,
404                               FRF_BZ_TX_NON_IP_DROP_DIS, 1);
405
406         EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
407         EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, !csum);
408
409         efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
410                          tx_queue->queue);
411
412         EFX_POPULATE_OWORD_1(reg,
413                              FRF_BZ_TX_PACE,
414                              (tx_queue->type & EFX_TXQ_TYPE_HIGHPRI) ?
415                              FFE_BZ_TX_PACE_OFF :
416                              FFE_BZ_TX_PACE_RESERVED);
417         efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL, tx_queue->queue);
418 }
419
420 static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
421 {
422         struct efx_nic *efx = tx_queue->efx;
423         efx_oword_t tx_flush_descq;
424
425         WARN_ON(atomic_read(&tx_queue->flush_outstanding));
426         atomic_set(&tx_queue->flush_outstanding, 1);
427
428         EFX_POPULATE_OWORD_2(tx_flush_descq,
429                              FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
430                              FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
431         efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
432 }
433
434 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
435 {
436         struct efx_nic *efx = tx_queue->efx;
437         efx_oword_t tx_desc_ptr;
438
439         /* Remove TX descriptor ring from card */
440         EFX_ZERO_OWORD(tx_desc_ptr);
441         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
442                          tx_queue->queue);
443
444         /* Unpin TX descriptor ring */
445         efx_fini_special_buffer(efx, &tx_queue->txd);
446 }
447
448 /* Free buffers backing TX queue */
449 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
450 {
451         efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
452 }
453
454 /**************************************************************************
455  *
456  * RX path
457  *
458  **************************************************************************/
459
460 /* This creates an entry in the RX descriptor queue */
461 static inline void
462 efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
463 {
464         struct efx_rx_buffer *rx_buf;
465         efx_qword_t *rxd;
466
467         rxd = efx_rx_desc(rx_queue, index);
468         rx_buf = efx_rx_buffer(rx_queue, index);
469         EFX_POPULATE_QWORD_3(*rxd,
470                              FSF_AZ_RX_KER_BUF_SIZE,
471                              rx_buf->len -
472                              rx_queue->efx->type->rx_buffer_padding,
473                              FSF_AZ_RX_KER_BUF_REGION, 0,
474                              FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
475 }
476
477 /* This writes to the RX_DESC_WPTR register for the specified receive
478  * descriptor ring.
479  */
480 void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
481 {
482         struct efx_nic *efx = rx_queue->efx;
483         efx_dword_t reg;
484         unsigned write_ptr;
485
486         while (rx_queue->notified_count != rx_queue->added_count) {
487                 efx_farch_build_rx_desc(
488                         rx_queue,
489                         rx_queue->notified_count & rx_queue->ptr_mask);
490                 ++rx_queue->notified_count;
491         }
492
493         wmb();
494         write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
495         EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
496         efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
497                         efx_rx_queue_index(rx_queue));
498 }
499
500 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
501 {
502         struct efx_nic *efx = rx_queue->efx;
503         unsigned entries;
504
505         entries = rx_queue->ptr_mask + 1;
506         return efx_alloc_special_buffer(efx, &rx_queue->rxd,
507                                         entries * sizeof(efx_qword_t));
508 }
509
510 void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
511 {
512         efx_oword_t rx_desc_ptr;
513         struct efx_nic *efx = rx_queue->efx;
514         bool jumbo_en;
515
516         /* For kernel-mode queues in Siena, the JUMBO flag enables scatter. */
517         jumbo_en = efx->rx_scatter;
518
519         netif_dbg(efx, hw, efx->net_dev,
520                   "RX queue %d ring in special buffers %d-%d\n",
521                   efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
522                   rx_queue->rxd.index + rx_queue->rxd.entries - 1);
523
524         rx_queue->scatter_n = 0;
525
526         /* Pin RX descriptor ring */
527         efx_init_special_buffer(efx, &rx_queue->rxd);
528
529         /* Push RX descriptor ring to card */
530         EFX_POPULATE_OWORD_10(rx_desc_ptr,
531                               FRF_AZ_RX_ISCSI_DDIG_EN, true,
532                               FRF_AZ_RX_ISCSI_HDIG_EN, true,
533                               FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
534                               FRF_AZ_RX_DESCQ_EVQ_ID,
535                               efx_rx_queue_channel(rx_queue)->channel,
536                               FRF_AZ_RX_DESCQ_OWNER_ID, 0,
537                               FRF_AZ_RX_DESCQ_LABEL,
538                               efx_rx_queue_index(rx_queue),
539                               FRF_AZ_RX_DESCQ_SIZE,
540                               __ffs(rx_queue->rxd.entries),
541                               FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
542                               FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
543                               FRF_AZ_RX_DESCQ_EN, 1);
544         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
545                          efx_rx_queue_index(rx_queue));
546 }
547
548 static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
549 {
550         struct efx_nic *efx = rx_queue->efx;
551         efx_oword_t rx_flush_descq;
552
553         EFX_POPULATE_OWORD_2(rx_flush_descq,
554                              FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
555                              FRF_AZ_RX_FLUSH_DESCQ,
556                              efx_rx_queue_index(rx_queue));
557         efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
558 }
559
560 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
561 {
562         efx_oword_t rx_desc_ptr;
563         struct efx_nic *efx = rx_queue->efx;
564
565         /* Remove RX descriptor ring from card */
566         EFX_ZERO_OWORD(rx_desc_ptr);
567         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
568                          efx_rx_queue_index(rx_queue));
569
570         /* Unpin RX descriptor ring */
571         efx_fini_special_buffer(efx, &rx_queue->rxd);
572 }
573
574 /* Free buffers backing RX queue */
575 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
576 {
577         efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
578 }
579
580 /**************************************************************************
581  *
582  * Flush handling
583  *
584  **************************************************************************/
585
586 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
587  * or more RX flushes can be kicked off.
588  */
589 static bool efx_farch_flush_wake(struct efx_nic *efx)
590 {
591         /* Ensure that all updates are visible to efx_farch_flush_queues() */
592         smp_mb();
593
594         return (atomic_read(&efx->active_queues) == 0 ||
595                 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
596                  && atomic_read(&efx->rxq_flush_pending) > 0));
597 }
598
599 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
600 {
601         bool i = true;
602         efx_oword_t txd_ptr_tbl;
603         struct efx_channel *channel;
604         struct efx_tx_queue *tx_queue;
605
606         efx_for_each_channel(channel, efx) {
607                 efx_for_each_channel_tx_queue(tx_queue, channel) {
608                         efx_reado_table(efx, &txd_ptr_tbl,
609                                         FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
610                         if (EFX_OWORD_FIELD(txd_ptr_tbl,
611                                             FRF_AZ_TX_DESCQ_FLUSH) ||
612                             EFX_OWORD_FIELD(txd_ptr_tbl,
613                                             FRF_AZ_TX_DESCQ_EN)) {
614                                 netif_dbg(efx, hw, efx->net_dev,
615                                           "flush did not complete on TXQ %d\n",
616                                           tx_queue->queue);
617                                 i = false;
618                         } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
619                                                   1, 0)) {
620                                 /* The flush is complete, but we didn't
621                                  * receive a flush completion event
622                                  */
623                                 netif_dbg(efx, hw, efx->net_dev,
624                                           "flush complete on TXQ %d, so drain "
625                                           "the queue\n", tx_queue->queue);
626                                 /* Don't need to increment active_queues as it
627                                  * has already been incremented for the queues
628                                  * which did not drain
629                                  */
630                                 efx_farch_magic_event(channel,
631                                                       EFX_CHANNEL_MAGIC_TX_DRAIN(
632                                                               tx_queue));
633                         }
634                 }
635         }
636
637         return i;
638 }
639
640 /* Flush all the transmit queues, and continue flushing receive queues until
641  * they're all flushed. Wait for the DRAIN events to be received so that there
642  * are no more RX and TX events left on any channel. */
643 static int efx_farch_do_flush(struct efx_nic *efx)
644 {
645         unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
646         struct efx_channel *channel;
647         struct efx_rx_queue *rx_queue;
648         struct efx_tx_queue *tx_queue;
649         int rc = 0;
650
651         efx_for_each_channel(channel, efx) {
652                 efx_for_each_channel_tx_queue(tx_queue, channel) {
653                         efx_farch_flush_tx_queue(tx_queue);
654                 }
655                 efx_for_each_channel_rx_queue(rx_queue, channel) {
656                         rx_queue->flush_pending = true;
657                         atomic_inc(&efx->rxq_flush_pending);
658                 }
659         }
660
661         while (timeout && atomic_read(&efx->active_queues) > 0) {
662                 /* If SRIOV is enabled, then offload receive queue flushing to
663                  * the firmware (though we will still have to poll for
664                  * completion). If that fails, fall back to the old scheme.
665                  */
666                 if (efx_siena_sriov_enabled(efx)) {
667                         rc = efx_mcdi_flush_rxqs(efx);
668                         if (!rc)
669                                 goto wait;
670                 }
671
672                 /* The hardware supports four concurrent rx flushes, each of
673                  * which may need to be retried if there is an outstanding
674                  * descriptor fetch
675                  */
676                 efx_for_each_channel(channel, efx) {
677                         efx_for_each_channel_rx_queue(rx_queue, channel) {
678                                 if (atomic_read(&efx->rxq_flush_outstanding) >=
679                                     EFX_RX_FLUSH_COUNT)
680                                         break;
681
682                                 if (rx_queue->flush_pending) {
683                                         rx_queue->flush_pending = false;
684                                         atomic_dec(&efx->rxq_flush_pending);
685                                         atomic_inc(&efx->rxq_flush_outstanding);
686                                         efx_farch_flush_rx_queue(rx_queue);
687                                 }
688                         }
689                 }
690
691         wait:
692                 timeout = wait_event_timeout(efx->flush_wq,
693                                              efx_farch_flush_wake(efx),
694                                              timeout);
695         }
696
697         if (atomic_read(&efx->active_queues) &&
698             !efx_check_tx_flush_complete(efx)) {
699                 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
700                           "(rx %d+%d)\n", atomic_read(&efx->active_queues),
701                           atomic_read(&efx->rxq_flush_outstanding),
702                           atomic_read(&efx->rxq_flush_pending));
703                 rc = -ETIMEDOUT;
704
705                 atomic_set(&efx->active_queues, 0);
706                 atomic_set(&efx->rxq_flush_pending, 0);
707                 atomic_set(&efx->rxq_flush_outstanding, 0);
708         }
709
710         return rc;
711 }
712
713 int efx_farch_fini_dmaq(struct efx_nic *efx)
714 {
715         struct efx_channel *channel;
716         struct efx_tx_queue *tx_queue;
717         struct efx_rx_queue *rx_queue;
718         int rc = 0;
719
720         /* Do not attempt to write to the NIC during EEH recovery */
721         if (efx->state != STATE_RECOVERY) {
722                 /* Only perform flush if DMA is enabled */
723                 if (efx->pci_dev->is_busmaster) {
724                         efx->type->prepare_flush(efx);
725                         rc = efx_farch_do_flush(efx);
726                         efx->type->finish_flush(efx);
727                 }
728
729                 efx_for_each_channel(channel, efx) {
730                         efx_for_each_channel_rx_queue(rx_queue, channel)
731                                 efx_farch_rx_fini(rx_queue);
732                         efx_for_each_channel_tx_queue(tx_queue, channel)
733                                 efx_farch_tx_fini(tx_queue);
734                 }
735         }
736
737         return rc;
738 }
739
740 /* Reset queue and flush accounting after FLR
741  *
742  * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
743  * mastering was disabled), in which case we don't receive (RXQ) flush
744  * completion events.  This means that efx->rxq_flush_outstanding remained at 4
745  * after the FLR; also, efx->active_queues was non-zero (as no flush completion
746  * events were received, and we didn't go through efx_check_tx_flush_complete())
747  * If we don't fix this up, on the next call to efx_realloc_channels() we won't
748  * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
749  * for batched flush requests; and the efx->active_queues gets messed up because
750  * we keep incrementing for the newly initialised queues, but it never went to
751  * zero previously.  Then we get a timeout every time we try to restart the
752  * queues, as it doesn't go back to zero when we should be flushing the queues.
753  */
754 void efx_farch_finish_flr(struct efx_nic *efx)
755 {
756         atomic_set(&efx->rxq_flush_pending, 0);
757         atomic_set(&efx->rxq_flush_outstanding, 0);
758         atomic_set(&efx->active_queues, 0);
759 }
760
761
762 /**************************************************************************
763  *
764  * Event queue processing
765  * Event queues are processed by per-channel tasklets.
766  *
767  **************************************************************************/
768
769 /* Update a channel's event queue's read pointer (RPTR) register
770  *
771  * This writes the EVQ_RPTR_REG register for the specified channel's
772  * event queue.
773  */
774 void efx_farch_ev_read_ack(struct efx_channel *channel)
775 {
776         efx_dword_t reg;
777         struct efx_nic *efx = channel->efx;
778
779         EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
780                              channel->eventq_read_ptr & channel->eventq_mask);
781
782         /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
783          * of 4 bytes, but it is really 16 bytes just like later revisions.
784          */
785         efx_writed(efx, &reg,
786                    efx->type->evq_rptr_tbl_base +
787                    FR_BZ_EVQ_RPTR_STEP * channel->channel);
788 }
789
790 /* Use HW to insert a SW defined event */
791 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
792                               efx_qword_t *event)
793 {
794         efx_oword_t drv_ev_reg;
795
796         BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
797                      FRF_AZ_DRV_EV_DATA_WIDTH != 64);
798         drv_ev_reg.u32[0] = event->u32[0];
799         drv_ev_reg.u32[1] = event->u32[1];
800         drv_ev_reg.u32[2] = 0;
801         drv_ev_reg.u32[3] = 0;
802         EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
803         efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
804 }
805
806 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
807 {
808         efx_qword_t event;
809
810         EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
811                              FSE_AZ_EV_CODE_DRV_GEN_EV,
812                              FSF_AZ_DRV_GEN_EV_MAGIC, magic);
813         efx_farch_generate_event(channel->efx, channel->channel, &event);
814 }
815
816 /* Handle a transmit completion event
817  *
818  * The NIC batches TX completion events; the message we receive is of
819  * the form "complete all TX events up to this index".
820  */
821 static void
822 efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
823 {
824         unsigned int tx_ev_desc_ptr;
825         unsigned int tx_ev_q_label;
826         struct efx_tx_queue *tx_queue;
827         struct efx_nic *efx = channel->efx;
828
829         if (unlikely(READ_ONCE(efx->reset_pending)))
830                 return;
831
832         if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
833                 /* Transmit completion */
834                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
835                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
836                 tx_queue = efx_channel_get_tx_queue(
837                         channel, tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL);
838                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
839         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
840                 /* Rewrite the FIFO write pointer */
841                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
842                 tx_queue = efx_channel_get_tx_queue(
843                         channel, tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL);
844
845                 netif_tx_lock(efx->net_dev);
846                 efx_farch_notify_tx_desc(tx_queue);
847                 netif_tx_unlock(efx->net_dev);
848         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
849                 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
850         } else {
851                 netif_err(efx, tx_err, efx->net_dev,
852                           "channel %d unexpected TX event "
853                           EFX_QWORD_FMT"\n", channel->channel,
854                           EFX_QWORD_VAL(*event));
855         }
856 }
857
858 /* Detect errors included in the rx_evt_pkt_ok bit. */
859 static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
860                                       const efx_qword_t *event)
861 {
862         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
863         struct efx_nic *efx = rx_queue->efx;
864         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
865         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
866         bool rx_ev_frm_trunc, rx_ev_tobe_disc;
867         bool rx_ev_other_err, rx_ev_pause_frm;
868
869         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
870         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
871                                                  FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
872         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
873                                                   FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
874         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
875                                                    FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
876         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
877         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
878         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
879
880         /* Every error apart from tobe_disc and pause_frm */
881         rx_ev_other_err = (rx_ev_tcp_udp_chksum_err |
882                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
883                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
884
885         /* Count errors that are not in MAC stats.  Ignore expected
886          * checksum errors during self-test. */
887         if (rx_ev_frm_trunc)
888                 ++channel->n_rx_frm_trunc;
889         else if (rx_ev_tobe_disc)
890                 ++channel->n_rx_tobe_disc;
891         else if (!efx->loopback_selftest) {
892                 if (rx_ev_ip_hdr_chksum_err)
893                         ++channel->n_rx_ip_hdr_chksum_err;
894                 else if (rx_ev_tcp_udp_chksum_err)
895                         ++channel->n_rx_tcp_udp_chksum_err;
896         }
897
898         /* TOBE_DISC is expected on unicast mismatches; don't print out an
899          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
900          * to a FIFO overflow.
901          */
902 #ifdef DEBUG
903         if (rx_ev_other_err && net_ratelimit()) {
904                 netif_dbg(efx, rx_err, efx->net_dev,
905                           " RX queue %d unexpected RX event "
906                           EFX_QWORD_FMT "%s%s%s%s%s%s%s\n",
907                           efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
908                           rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
909                           rx_ev_ip_hdr_chksum_err ?
910                           " [IP_HDR_CHKSUM_ERR]" : "",
911                           rx_ev_tcp_udp_chksum_err ?
912                           " [TCP_UDP_CHKSUM_ERR]" : "",
913                           rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
914                           rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
915                           rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
916                           rx_ev_pause_frm ? " [PAUSE]" : "");
917         }
918 #else
919         (void) rx_ev_other_err;
920 #endif
921
922         if (efx->net_dev->features & NETIF_F_RXALL)
923                 /* don't discard frame for CRC error */
924                 rx_ev_eth_crc_err = false;
925
926         /* The frame must be discarded if any of these are true. */
927         return (rx_ev_eth_crc_err | rx_ev_frm_trunc |
928                 rx_ev_tobe_disc | rx_ev_pause_frm) ?
929                 EFX_RX_PKT_DISCARD : 0;
930 }
931
932 /* Handle receive events that are not in-order. Return true if this
933  * can be handled as a partial packet discard, false if it's more
934  * serious.
935  */
936 static bool
937 efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
938 {
939         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
940         struct efx_nic *efx = rx_queue->efx;
941         unsigned expected, dropped;
942
943         if (rx_queue->scatter_n &&
944             index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
945                       rx_queue->ptr_mask)) {
946                 ++channel->n_rx_nodesc_trunc;
947                 return true;
948         }
949
950         expected = rx_queue->removed_count & rx_queue->ptr_mask;
951         dropped = (index - expected) & rx_queue->ptr_mask;
952         netif_info(efx, rx_err, efx->net_dev,
953                    "dropped %d events (index=%d expected=%d)\n",
954                    dropped, index, expected);
955
956         efx_schedule_reset(efx, RESET_TYPE_DISABLE);
957         return false;
958 }
959
960 /* Handle a packet received event
961  *
962  * The NIC gives a "discard" flag if it's a unicast packet with the
963  * wrong destination address
964  * Also "is multicast" and "matches multicast filter" flags can be used to
965  * discard non-matching multicast packets.
966  */
967 static void
968 efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
969 {
970         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
971         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
972         unsigned expected_ptr;
973         bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
974         u16 flags;
975         struct efx_rx_queue *rx_queue;
976         struct efx_nic *efx = channel->efx;
977
978         if (unlikely(READ_ONCE(efx->reset_pending)))
979                 return;
980
981         rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
982         rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
983         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
984                 channel->channel);
985
986         rx_queue = efx_channel_get_rx_queue(channel);
987
988         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
989         expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
990                         rx_queue->ptr_mask);
991
992         /* Check for partial drops and other errors */
993         if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
994             unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
995                 if (rx_ev_desc_ptr != expected_ptr &&
996                     !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
997                         return;
998
999                 /* Discard all pending fragments */
1000                 if (rx_queue->scatter_n) {
1001                         efx_rx_packet(
1002                                 rx_queue,
1003                                 rx_queue->removed_count & rx_queue->ptr_mask,
1004                                 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1005                         rx_queue->removed_count += rx_queue->scatter_n;
1006                         rx_queue->scatter_n = 0;
1007                 }
1008
1009                 /* Return if there is no new fragment */
1010                 if (rx_ev_desc_ptr != expected_ptr)
1011                         return;
1012
1013                 /* Discard new fragment if not SOP */
1014                 if (!rx_ev_sop) {
1015                         efx_rx_packet(
1016                                 rx_queue,
1017                                 rx_queue->removed_count & rx_queue->ptr_mask,
1018                                 1, 0, EFX_RX_PKT_DISCARD);
1019                         ++rx_queue->removed_count;
1020                         return;
1021                 }
1022         }
1023
1024         ++rx_queue->scatter_n;
1025         if (rx_ev_cont)
1026                 return;
1027
1028         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1029         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1030         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1031
1032         if (likely(rx_ev_pkt_ok)) {
1033                 /* If packet is marked as OK then we can rely on the
1034                  * hardware checksum and classification.
1035                  */
1036                 flags = 0;
1037                 switch (rx_ev_hdr_type) {
1038                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1039                         flags |= EFX_RX_PKT_TCP;
1040                         fallthrough;
1041                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1042                         flags |= EFX_RX_PKT_CSUMMED;
1043                         fallthrough;
1044                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1045                 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1046                         break;
1047                 }
1048         } else {
1049                 flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1050         }
1051
1052         /* Detect multicast packets that didn't match the filter */
1053         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1054         if (rx_ev_mcast_pkt) {
1055                 unsigned int rx_ev_mcast_hash_match =
1056                         EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1057
1058                 if (unlikely(!rx_ev_mcast_hash_match)) {
1059                         ++channel->n_rx_mcast_mismatch;
1060                         flags |= EFX_RX_PKT_DISCARD;
1061                 }
1062         }
1063
1064         channel->irq_mod_score += 2;
1065
1066         /* Handle received packet */
1067         efx_rx_packet(rx_queue,
1068                       rx_queue->removed_count & rx_queue->ptr_mask,
1069                       rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1070         rx_queue->removed_count += rx_queue->scatter_n;
1071         rx_queue->scatter_n = 0;
1072 }
1073
1074 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1075  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1076  * of all transmit completions.
1077  */
1078 static void
1079 efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1080 {
1081         struct efx_tx_queue *tx_queue;
1082         int qid;
1083
1084         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1085         if (qid < EFX_MAX_TXQ_PER_CHANNEL * (efx->n_tx_channels + efx->n_extra_tx_channels)) {
1086                 tx_queue = efx_get_tx_queue(efx, qid / EFX_MAX_TXQ_PER_CHANNEL,
1087                                             qid % EFX_MAX_TXQ_PER_CHANNEL);
1088                 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1089                         efx_farch_magic_event(tx_queue->channel,
1090                                               EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1091                 }
1092         }
1093 }
1094
1095 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1096  * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1097  * the RX queue back to the mask of RX queues in need of flushing.
1098  */
1099 static void
1100 efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1101 {
1102         struct efx_channel *channel;
1103         struct efx_rx_queue *rx_queue;
1104         int qid;
1105         bool failed;
1106
1107         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1108         failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1109         if (qid >= efx->n_channels)
1110                 return;
1111         channel = efx_get_channel(efx, qid);
1112         if (!efx_channel_has_rx_queue(channel))
1113                 return;
1114         rx_queue = efx_channel_get_rx_queue(channel);
1115
1116         if (failed) {
1117                 netif_info(efx, hw, efx->net_dev,
1118                            "RXQ %d flush retry\n", qid);
1119                 rx_queue->flush_pending = true;
1120                 atomic_inc(&efx->rxq_flush_pending);
1121         } else {
1122                 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1123                                       EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1124         }
1125         atomic_dec(&efx->rxq_flush_outstanding);
1126         if (efx_farch_flush_wake(efx))
1127                 wake_up(&efx->flush_wq);
1128 }
1129
1130 static void
1131 efx_farch_handle_drain_event(struct efx_channel *channel)
1132 {
1133         struct efx_nic *efx = channel->efx;
1134
1135         WARN_ON(atomic_read(&efx->active_queues) == 0);
1136         atomic_dec(&efx->active_queues);
1137         if (efx_farch_flush_wake(efx))
1138                 wake_up(&efx->flush_wq);
1139 }
1140
1141 static void efx_farch_handle_generated_event(struct efx_channel *channel,
1142                                              efx_qword_t *event)
1143 {
1144         struct efx_nic *efx = channel->efx;
1145         struct efx_rx_queue *rx_queue =
1146                 efx_channel_has_rx_queue(channel) ?
1147                 efx_channel_get_rx_queue(channel) : NULL;
1148         unsigned magic, code;
1149
1150         magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1151         code = _EFX_CHANNEL_MAGIC_CODE(magic);
1152
1153         if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1154                 channel->event_test_cpu = raw_smp_processor_id();
1155         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1156                 /* The queue must be empty, so we won't receive any rx
1157                  * events, so efx_process_channel() won't refill the
1158                  * queue. Refill it here */
1159                 efx_fast_push_rx_descriptors(rx_queue, true);
1160         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1161                 efx_farch_handle_drain_event(channel);
1162         } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1163                 efx_farch_handle_drain_event(channel);
1164         } else {
1165                 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1166                           "generated event "EFX_QWORD_FMT"\n",
1167                           channel->channel, EFX_QWORD_VAL(*event));
1168         }
1169 }
1170
1171 static void
1172 efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1173 {
1174         struct efx_nic *efx = channel->efx;
1175         unsigned int ev_sub_code;
1176         unsigned int ev_sub_data;
1177
1178         ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1179         ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1180
1181         switch (ev_sub_code) {
1182         case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1183                 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1184                            channel->channel, ev_sub_data);
1185                 efx_farch_handle_tx_flush_done(efx, event);
1186 #ifdef CONFIG_SFC_SRIOV
1187                 efx_siena_sriov_tx_flush_done(efx, event);
1188 #endif
1189                 break;
1190         case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1191                 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1192                            channel->channel, ev_sub_data);
1193                 efx_farch_handle_rx_flush_done(efx, event);
1194 #ifdef CONFIG_SFC_SRIOV
1195                 efx_siena_sriov_rx_flush_done(efx, event);
1196 #endif
1197                 break;
1198         case FSE_AZ_EVQ_INIT_DONE_EV:
1199                 netif_dbg(efx, hw, efx->net_dev,
1200                           "channel %d EVQ %d initialised\n",
1201                           channel->channel, ev_sub_data);
1202                 break;
1203         case FSE_AZ_SRM_UPD_DONE_EV:
1204                 netif_vdbg(efx, hw, efx->net_dev,
1205                            "channel %d SRAM update done\n", channel->channel);
1206                 break;
1207         case FSE_AZ_WAKE_UP_EV:
1208                 netif_vdbg(efx, hw, efx->net_dev,
1209                            "channel %d RXQ %d wakeup event\n",
1210                            channel->channel, ev_sub_data);
1211                 break;
1212         case FSE_AZ_TIMER_EV:
1213                 netif_vdbg(efx, hw, efx->net_dev,
1214                            "channel %d RX queue %d timer expired\n",
1215                            channel->channel, ev_sub_data);
1216                 break;
1217         case FSE_AA_RX_RECOVER_EV:
1218                 netif_err(efx, rx_err, efx->net_dev,
1219                           "channel %d seen DRIVER RX_RESET event. "
1220                         "Resetting.\n", channel->channel);
1221                 atomic_inc(&efx->rx_reset);
1222                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1223                 break;
1224         case FSE_BZ_RX_DSC_ERROR_EV:
1225                 if (ev_sub_data < EFX_VI_BASE) {
1226                         netif_err(efx, rx_err, efx->net_dev,
1227                                   "RX DMA Q %d reports descriptor fetch error."
1228                                   " RX Q %d is disabled.\n", ev_sub_data,
1229                                   ev_sub_data);
1230                         efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1231                 }
1232 #ifdef CONFIG_SFC_SRIOV
1233                 else
1234                         efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1235 #endif
1236                 break;
1237         case FSE_BZ_TX_DSC_ERROR_EV:
1238                 if (ev_sub_data < EFX_VI_BASE) {
1239                         netif_err(efx, tx_err, efx->net_dev,
1240                                   "TX DMA Q %d reports descriptor fetch error."
1241                                   " TX Q %d is disabled.\n", ev_sub_data,
1242                                   ev_sub_data);
1243                         efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1244                 }
1245 #ifdef CONFIG_SFC_SRIOV
1246                 else
1247                         efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1248 #endif
1249                 break;
1250         default:
1251                 netif_vdbg(efx, hw, efx->net_dev,
1252                            "channel %d unknown driver event code %d "
1253                            "data %04x\n", channel->channel, ev_sub_code,
1254                            ev_sub_data);
1255                 break;
1256         }
1257 }
1258
1259 int efx_farch_ev_process(struct efx_channel *channel, int budget)
1260 {
1261         struct efx_nic *efx = channel->efx;
1262         unsigned int read_ptr;
1263         efx_qword_t event, *p_event;
1264         int ev_code;
1265         int spent = 0;
1266
1267         if (budget <= 0)
1268                 return spent;
1269
1270         read_ptr = channel->eventq_read_ptr;
1271
1272         for (;;) {
1273                 p_event = efx_event(channel, read_ptr);
1274                 event = *p_event;
1275
1276                 if (!efx_event_present(&event))
1277                         /* End of events */
1278                         break;
1279
1280                 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1281                            "channel %d event is "EFX_QWORD_FMT"\n",
1282                            channel->channel, EFX_QWORD_VAL(event));
1283
1284                 /* Clear this event by marking it all ones */
1285                 EFX_SET_QWORD(*p_event);
1286
1287                 ++read_ptr;
1288
1289                 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1290
1291                 switch (ev_code) {
1292                 case FSE_AZ_EV_CODE_RX_EV:
1293                         efx_farch_handle_rx_event(channel, &event);
1294                         if (++spent == budget)
1295                                 goto out;
1296                         break;
1297                 case FSE_AZ_EV_CODE_TX_EV:
1298                         efx_farch_handle_tx_event(channel, &event);
1299                         break;
1300                 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1301                         efx_farch_handle_generated_event(channel, &event);
1302                         break;
1303                 case FSE_AZ_EV_CODE_DRIVER_EV:
1304                         efx_farch_handle_driver_event(channel, &event);
1305                         break;
1306 #ifdef CONFIG_SFC_SRIOV
1307                 case FSE_CZ_EV_CODE_USER_EV:
1308                         efx_siena_sriov_event(channel, &event);
1309                         break;
1310 #endif
1311                 case FSE_CZ_EV_CODE_MCDI_EV:
1312                         efx_mcdi_process_event(channel, &event);
1313                         break;
1314                 case FSE_AZ_EV_CODE_GLOBAL_EV:
1315                         if (efx->type->handle_global_event &&
1316                             efx->type->handle_global_event(channel, &event))
1317                                 break;
1318                         fallthrough;
1319                 default:
1320                         netif_err(channel->efx, hw, channel->efx->net_dev,
1321                                   "channel %d unknown event type %d (data "
1322                                   EFX_QWORD_FMT ")\n", channel->channel,
1323                                   ev_code, EFX_QWORD_VAL(event));
1324                 }
1325         }
1326
1327 out:
1328         channel->eventq_read_ptr = read_ptr;
1329         return spent;
1330 }
1331
1332 /* Allocate buffer table entries for event queue */
1333 int efx_farch_ev_probe(struct efx_channel *channel)
1334 {
1335         struct efx_nic *efx = channel->efx;
1336         unsigned entries;
1337
1338         entries = channel->eventq_mask + 1;
1339         return efx_alloc_special_buffer(efx, &channel->eventq,
1340                                         entries * sizeof(efx_qword_t));
1341 }
1342
1343 int efx_farch_ev_init(struct efx_channel *channel)
1344 {
1345         efx_oword_t reg;
1346         struct efx_nic *efx = channel->efx;
1347
1348         netif_dbg(efx, hw, efx->net_dev,
1349                   "channel %d event queue in special buffers %d-%d\n",
1350                   channel->channel, channel->eventq.index,
1351                   channel->eventq.index + channel->eventq.entries - 1);
1352
1353         EFX_POPULATE_OWORD_3(reg,
1354                              FRF_CZ_TIMER_Q_EN, 1,
1355                              FRF_CZ_HOST_NOTIFY_MODE, 0,
1356                              FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1357         efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1358
1359         /* Pin event queue buffer */
1360         efx_init_special_buffer(efx, &channel->eventq);
1361
1362         /* Fill event queue with all ones (i.e. empty events) */
1363         memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1364
1365         /* Push event queue to card */
1366         EFX_POPULATE_OWORD_3(reg,
1367                              FRF_AZ_EVQ_EN, 1,
1368                              FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1369                              FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1370         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1371                          channel->channel);
1372
1373         return 0;
1374 }
1375
1376 void efx_farch_ev_fini(struct efx_channel *channel)
1377 {
1378         efx_oword_t reg;
1379         struct efx_nic *efx = channel->efx;
1380
1381         /* Remove event queue from card */
1382         EFX_ZERO_OWORD(reg);
1383         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1384                          channel->channel);
1385         efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1386
1387         /* Unpin event queue */
1388         efx_fini_special_buffer(efx, &channel->eventq);
1389 }
1390
1391 /* Free buffers backing event queue */
1392 void efx_farch_ev_remove(struct efx_channel *channel)
1393 {
1394         efx_free_special_buffer(channel->efx, &channel->eventq);
1395 }
1396
1397
1398 void efx_farch_ev_test_generate(struct efx_channel *channel)
1399 {
1400         efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1401 }
1402
1403 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1404 {
1405         efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1406                               EFX_CHANNEL_MAGIC_FILL(rx_queue));
1407 }
1408
1409 /**************************************************************************
1410  *
1411  * Hardware interrupts
1412  * The hardware interrupt handler does very little work; all the event
1413  * queue processing is carried out by per-channel tasklets.
1414  *
1415  **************************************************************************/
1416
1417 /* Enable/disable/generate interrupts */
1418 static inline void efx_farch_interrupts(struct efx_nic *efx,
1419                                       bool enabled, bool force)
1420 {
1421         efx_oword_t int_en_reg_ker;
1422
1423         EFX_POPULATE_OWORD_3(int_en_reg_ker,
1424                              FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1425                              FRF_AZ_KER_INT_KER, force,
1426                              FRF_AZ_DRV_INT_EN_KER, enabled);
1427         efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1428 }
1429
1430 void efx_farch_irq_enable_master(struct efx_nic *efx)
1431 {
1432         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1433         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1434
1435         efx_farch_interrupts(efx, true, false);
1436 }
1437
1438 void efx_farch_irq_disable_master(struct efx_nic *efx)
1439 {
1440         /* Disable interrupts */
1441         efx_farch_interrupts(efx, false, false);
1442 }
1443
1444 /* Generate a test interrupt
1445  * Interrupt must already have been enabled, otherwise nasty things
1446  * may happen.
1447  */
1448 int efx_farch_irq_test_generate(struct efx_nic *efx)
1449 {
1450         efx_farch_interrupts(efx, true, true);
1451         return 0;
1452 }
1453
1454 /* Process a fatal interrupt
1455  * Disable bus mastering ASAP and schedule a reset
1456  */
1457 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1458 {
1459         efx_oword_t *int_ker = efx->irq_status.addr;
1460         efx_oword_t fatal_intr;
1461         int error, mem_perr;
1462
1463         efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1464         error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1465
1466         netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1467                   EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1468                   EFX_OWORD_VAL(fatal_intr),
1469                   error ? "disabling bus mastering" : "no recognised error");
1470
1471         /* If this is a memory parity error dump which blocks are offending */
1472         mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1473                     EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1474         if (mem_perr) {
1475                 efx_oword_t reg;
1476                 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1477                 netif_err(efx, hw, efx->net_dev,
1478                           "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1479                           EFX_OWORD_VAL(reg));
1480         }
1481
1482         /* Disable both devices */
1483         pci_clear_master(efx->pci_dev);
1484         efx_farch_irq_disable_master(efx);
1485
1486         /* Count errors and reset or disable the NIC accordingly */
1487         if (efx->int_error_count == 0 ||
1488             time_after(jiffies, efx->int_error_expire)) {
1489                 efx->int_error_count = 0;
1490                 efx->int_error_expire =
1491                         jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1492         }
1493         if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1494                 netif_err(efx, hw, efx->net_dev,
1495                           "SYSTEM ERROR - reset scheduled\n");
1496                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1497         } else {
1498                 netif_err(efx, hw, efx->net_dev,
1499                           "SYSTEM ERROR - max number of errors seen."
1500                           "NIC will be disabled\n");
1501                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1502         }
1503
1504         return IRQ_HANDLED;
1505 }
1506
1507 /* Handle a legacy interrupt
1508  * Acknowledges the interrupt and schedule event queue processing.
1509  */
1510 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1511 {
1512         struct efx_nic *efx = dev_id;
1513         bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
1514         efx_oword_t *int_ker = efx->irq_status.addr;
1515         irqreturn_t result = IRQ_NONE;
1516         struct efx_channel *channel;
1517         efx_dword_t reg;
1518         u32 queues;
1519         int syserr;
1520
1521         /* Read the ISR which also ACKs the interrupts */
1522         efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1523         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1524
1525         /* Legacy interrupts are disabled too late by the EEH kernel
1526          * code. Disable them earlier.
1527          * If an EEH error occurred, the read will have returned all ones.
1528          */
1529         if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1530             !efx->eeh_disabled_legacy_irq) {
1531                 disable_irq_nosync(efx->legacy_irq);
1532                 efx->eeh_disabled_legacy_irq = true;
1533         }
1534
1535         /* Handle non-event-queue sources */
1536         if (queues & (1U << efx->irq_level) && soft_enabled) {
1537                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1538                 if (unlikely(syserr))
1539                         return efx_farch_fatal_interrupt(efx);
1540                 efx->last_irq_cpu = raw_smp_processor_id();
1541         }
1542
1543         if (queues != 0) {
1544                 efx->irq_zero_count = 0;
1545
1546                 /* Schedule processing of any interrupting queues */
1547                 if (likely(soft_enabled)) {
1548                         efx_for_each_channel(channel, efx) {
1549                                 if (queues & 1)
1550                                         efx_schedule_channel_irq(channel);
1551                                 queues >>= 1;
1552                         }
1553                 }
1554                 result = IRQ_HANDLED;
1555
1556         } else {
1557                 efx_qword_t *event;
1558
1559                 /* Legacy ISR read can return zero once (SF bug 15783) */
1560
1561                 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1562                  * because this might be a shared interrupt. */
1563                 if (efx->irq_zero_count++ == 0)
1564                         result = IRQ_HANDLED;
1565
1566                 /* Ensure we schedule or rearm all event queues */
1567                 if (likely(soft_enabled)) {
1568                         efx_for_each_channel(channel, efx) {
1569                                 event = efx_event(channel,
1570                                                   channel->eventq_read_ptr);
1571                                 if (efx_event_present(event))
1572                                         efx_schedule_channel_irq(channel);
1573                                 else
1574                                         efx_farch_ev_read_ack(channel);
1575                         }
1576                 }
1577         }
1578
1579         if (result == IRQ_HANDLED)
1580                 netif_vdbg(efx, intr, efx->net_dev,
1581                            "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1582                            irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1583
1584         return result;
1585 }
1586
1587 /* Handle an MSI interrupt
1588  *
1589  * Handle an MSI hardware interrupt.  This routine schedules event
1590  * queue processing.  No interrupt acknowledgement cycle is necessary.
1591  * Also, we never need to check that the interrupt is for us, since
1592  * MSI interrupts cannot be shared.
1593  */
1594 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1595 {
1596         struct efx_msi_context *context = dev_id;
1597         struct efx_nic *efx = context->efx;
1598         efx_oword_t *int_ker = efx->irq_status.addr;
1599         int syserr;
1600
1601         netif_vdbg(efx, intr, efx->net_dev,
1602                    "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1603                    irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1604
1605         if (!likely(READ_ONCE(efx->irq_soft_enabled)))
1606                 return IRQ_HANDLED;
1607
1608         /* Handle non-event-queue sources */
1609         if (context->index == efx->irq_level) {
1610                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1611                 if (unlikely(syserr))
1612                         return efx_farch_fatal_interrupt(efx);
1613                 efx->last_irq_cpu = raw_smp_processor_id();
1614         }
1615
1616         /* Schedule processing of the channel */
1617         efx_schedule_channel_irq(efx->channel[context->index]);
1618
1619         return IRQ_HANDLED;
1620 }
1621
1622 /* Setup RSS indirection table.
1623  * This maps from the hash value of the packet to RXQ
1624  */
1625 void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1626 {
1627         size_t i = 0;
1628         efx_dword_t dword;
1629
1630         BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1631                      FR_BZ_RX_INDIRECTION_TBL_ROWS);
1632
1633         for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1634                 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1635                                      efx->rss_context.rx_indir_table[i]);
1636                 efx_writed(efx, &dword,
1637                            FR_BZ_RX_INDIRECTION_TBL +
1638                            FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1639         }
1640 }
1641
1642 void efx_farch_rx_pull_indir_table(struct efx_nic *efx)
1643 {
1644         size_t i = 0;
1645         efx_dword_t dword;
1646
1647         BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1648                      FR_BZ_RX_INDIRECTION_TBL_ROWS);
1649
1650         for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1651                 efx_readd(efx, &dword,
1652                            FR_BZ_RX_INDIRECTION_TBL +
1653                            FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1654                 efx->rss_context.rx_indir_table[i] = EFX_DWORD_FIELD(dword, FRF_BZ_IT_QUEUE);
1655         }
1656 }
1657
1658 /* Looks at available SRAM resources and works out how many queues we
1659  * can support, and where things like descriptor caches should live.
1660  *
1661  * SRAM is split up as follows:
1662  * 0                          buftbl entries for channels
1663  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1664  * efx->rx_dc_base            RX descriptor caches
1665  * efx->tx_dc_base            TX descriptor caches
1666  */
1667 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1668 {
1669         unsigned vi_count, buftbl_min, total_tx_channels;
1670
1671 #ifdef CONFIG_SFC_SRIOV
1672         struct siena_nic_data *nic_data = efx->nic_data;
1673 #endif
1674
1675         total_tx_channels = efx->n_tx_channels + efx->n_extra_tx_channels;
1676         /* Account for the buffer table entries backing the datapath channels
1677          * and the descriptor caches for those channels.
1678          */
1679         buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1680                        total_tx_channels * EFX_MAX_TXQ_PER_CHANNEL * EFX_MAX_DMAQ_SIZE +
1681                        efx->n_channels * EFX_MAX_EVQ_SIZE)
1682                       * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1683         vi_count = max(efx->n_channels, total_tx_channels * EFX_MAX_TXQ_PER_CHANNEL);
1684
1685 #ifdef CONFIG_SFC_SRIOV
1686         if (efx->type->sriov_wanted) {
1687                 if (efx->type->sriov_wanted(efx)) {
1688                         unsigned vi_dc_entries, buftbl_free;
1689                         unsigned entries_per_vf, vf_limit;
1690
1691                         nic_data->vf_buftbl_base = buftbl_min;
1692
1693                         vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1694                         vi_count = max(vi_count, EFX_VI_BASE);
1695                         buftbl_free = (sram_lim_qw - buftbl_min -
1696                                        vi_count * vi_dc_entries);
1697
1698                         entries_per_vf = ((vi_dc_entries +
1699                                            EFX_VF_BUFTBL_PER_VI) *
1700                                           efx_vf_size(efx));
1701                         vf_limit = min(buftbl_free / entries_per_vf,
1702                                        (1024U - EFX_VI_BASE) >> efx->vi_scale);
1703
1704                         if (efx->vf_count > vf_limit) {
1705                                 netif_err(efx, probe, efx->net_dev,
1706                                           "Reducing VF count from from %d to %d\n",
1707                                           efx->vf_count, vf_limit);
1708                                 efx->vf_count = vf_limit;
1709                         }
1710                         vi_count += efx->vf_count * efx_vf_size(efx);
1711                 }
1712         }
1713 #endif
1714
1715         efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1716         efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1717 }
1718
1719 u32 efx_farch_fpga_ver(struct efx_nic *efx)
1720 {
1721         efx_oword_t altera_build;
1722         efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1723         return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1724 }
1725
1726 void efx_farch_init_common(struct efx_nic *efx)
1727 {
1728         efx_oword_t temp;
1729
1730         /* Set positions of descriptor caches in SRAM. */
1731         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1732         efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1733         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1734         efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1735
1736         /* Set TX descriptor cache size. */
1737         BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1738         EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1739         efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1740
1741         /* Set RX descriptor cache size.  Set low watermark to size-8, as
1742          * this allows most efficient prefetching.
1743          */
1744         BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1745         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1746         efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1747         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1748         efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1749
1750         /* Program INT_KER address */
1751         EFX_POPULATE_OWORD_2(temp,
1752                              FRF_AZ_NORM_INT_VEC_DIS_KER,
1753                              EFX_INT_MODE_USE_MSI(efx),
1754                              FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1755         efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1756
1757         if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1758                 /* Use an interrupt level unused by event queues */
1759                 efx->irq_level = 0x1f;
1760         else
1761                 /* Use a valid MSI-X vector */
1762                 efx->irq_level = 0;
1763
1764         /* Enable all the genuinely fatal interrupts.  (They are still
1765          * masked by the overall interrupt mask, controlled by
1766          * falcon_interrupts()).
1767          *
1768          * Note: All other fatal interrupts are enabled
1769          */
1770         EFX_POPULATE_OWORD_3(temp,
1771                              FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1772                              FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1773                              FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1774         EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1775         EFX_INVERT_OWORD(temp);
1776         efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1777
1778         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1779          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1780          */
1781         efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1782         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1783         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1784         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1785         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1786         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1787         /* Enable SW_EV to inherit in char driver - assume harmless here */
1788         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1789         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1790         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1791         /* Disable hardware watchdog which can misfire */
1792         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1793         /* Squash TX of packets of 16 bytes or less */
1794         EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1795         efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1796
1797         EFX_POPULATE_OWORD_4(temp,
1798                              /* Default values */
1799                              FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1800                              FRF_BZ_TX_PACE_SB_AF, 0xb,
1801                              FRF_BZ_TX_PACE_FB_BASE, 0,
1802                              /* Allow large pace values in the fast bin. */
1803                              FRF_BZ_TX_PACE_BIN_TH,
1804                              FFE_BZ_TX_PACE_RESERVED);
1805         efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1806 }
1807
1808 /**************************************************************************
1809  *
1810  * Filter tables
1811  *
1812  **************************************************************************
1813  */
1814
1815 /* "Fudge factors" - difference between programmed value and actual depth.
1816  * Due to pipelined implementation we need to program H/W with a value that
1817  * is larger than the hop limit we want.
1818  */
1819 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1820 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1821
1822 /* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1823  * We also need to avoid infinite loops in efx_farch_filter_search() when the
1824  * table is full.
1825  */
1826 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1827
1828 /* Don't try very hard to find space for performance hints, as this is
1829  * counter-productive. */
1830 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1831
1832 enum efx_farch_filter_type {
1833         EFX_FARCH_FILTER_TCP_FULL = 0,
1834         EFX_FARCH_FILTER_TCP_WILD,
1835         EFX_FARCH_FILTER_UDP_FULL,
1836         EFX_FARCH_FILTER_UDP_WILD,
1837         EFX_FARCH_FILTER_MAC_FULL = 4,
1838         EFX_FARCH_FILTER_MAC_WILD,
1839         EFX_FARCH_FILTER_UC_DEF = 8,
1840         EFX_FARCH_FILTER_MC_DEF,
1841         EFX_FARCH_FILTER_TYPE_COUNT,            /* number of specific types */
1842 };
1843
1844 enum efx_farch_filter_table_id {
1845         EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1846         EFX_FARCH_FILTER_TABLE_RX_MAC,
1847         EFX_FARCH_FILTER_TABLE_RX_DEF,
1848         EFX_FARCH_FILTER_TABLE_TX_MAC,
1849         EFX_FARCH_FILTER_TABLE_COUNT,
1850 };
1851
1852 enum efx_farch_filter_index {
1853         EFX_FARCH_FILTER_INDEX_UC_DEF,
1854         EFX_FARCH_FILTER_INDEX_MC_DEF,
1855         EFX_FARCH_FILTER_SIZE_RX_DEF,
1856 };
1857
1858 struct efx_farch_filter_spec {
1859         u8      type:4;
1860         u8      priority:4;
1861         u8      flags;
1862         u16     dmaq_id;
1863         u32     data[3];
1864 };
1865
1866 struct efx_farch_filter_table {
1867         enum efx_farch_filter_table_id id;
1868         u32             offset;         /* address of table relative to BAR */
1869         unsigned        size;           /* number of entries */
1870         unsigned        step;           /* step between entries */
1871         unsigned        used;           /* number currently used */
1872         unsigned long   *used_bitmap;
1873         struct efx_farch_filter_spec *spec;
1874         unsigned        search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1875 };
1876
1877 struct efx_farch_filter_state {
1878         struct rw_semaphore lock; /* Protects table contents */
1879         struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1880 };
1881
1882 static void
1883 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1884                                    struct efx_farch_filter_table *table,
1885                                    unsigned int filter_idx);
1886
1887 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1888  * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1889 static u16 efx_farch_filter_hash(u32 key)
1890 {
1891         u16 tmp;
1892
1893         /* First 16 rounds */
1894         tmp = 0x1fff ^ key >> 16;
1895         tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1896         tmp = tmp ^ tmp >> 9;
1897         /* Last 16 rounds */
1898         tmp = tmp ^ tmp << 13 ^ key;
1899         tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1900         return tmp ^ tmp >> 9;
1901 }
1902
1903 /* To allow for hash collisions, filter search continues at these
1904  * increments from the first possible entry selected by the hash. */
1905 static u16 efx_farch_filter_increment(u32 key)
1906 {
1907         return key * 2 - 1;
1908 }
1909
1910 static enum efx_farch_filter_table_id
1911 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1912 {
1913         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1914                      (EFX_FARCH_FILTER_TCP_FULL >> 2));
1915         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1916                      (EFX_FARCH_FILTER_TCP_WILD >> 2));
1917         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1918                      (EFX_FARCH_FILTER_UDP_FULL >> 2));
1919         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1920                      (EFX_FARCH_FILTER_UDP_WILD >> 2));
1921         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1922                      (EFX_FARCH_FILTER_MAC_FULL >> 2));
1923         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1924                      (EFX_FARCH_FILTER_MAC_WILD >> 2));
1925         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1926                      EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1927         return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1928 }
1929
1930 static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1931 {
1932         struct efx_farch_filter_state *state = efx->filter_state;
1933         struct efx_farch_filter_table *table;
1934         efx_oword_t filter_ctl;
1935
1936         efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1937
1938         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1939         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1940                             table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1941                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1942         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1943                             table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1944                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1945         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1946                             table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1947                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1948         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1949                             table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1950                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1951
1952         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1953         if (table->size) {
1954                 EFX_SET_OWORD_FIELD(
1955                         filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1956                         table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1957                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1958                 EFX_SET_OWORD_FIELD(
1959                         filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1960                         table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1961                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1962         }
1963
1964         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1965         if (table->size) {
1966                 EFX_SET_OWORD_FIELD(
1967                         filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1968                         table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1969                 EFX_SET_OWORD_FIELD(
1970                         filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1971                         !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1972                            EFX_FILTER_FLAG_RX_RSS));
1973                 EFX_SET_OWORD_FIELD(
1974                         filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1975                         table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1976                 EFX_SET_OWORD_FIELD(
1977                         filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1978                         !!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1979                            EFX_FILTER_FLAG_RX_RSS));
1980
1981                 /* There is a single bit to enable RX scatter for all
1982                  * unmatched packets.  Only set it if scatter is
1983                  * enabled in both filter specs.
1984                  */
1985                 EFX_SET_OWORD_FIELD(
1986                         filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1987                         !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1988                            table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1989                            EFX_FILTER_FLAG_RX_SCATTER));
1990         } else {
1991                 /* We don't expose 'default' filters because unmatched
1992                  * packets always go to the queue number found in the
1993                  * RSS table.  But we still need to set the RX scatter
1994                  * bit here.
1995                  */
1996                 EFX_SET_OWORD_FIELD(
1997                         filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1998                         efx->rx_scatter);
1999         }
2000
2001         efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2002 }
2003
2004 static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2005 {
2006         struct efx_farch_filter_state *state = efx->filter_state;
2007         struct efx_farch_filter_table *table;
2008         efx_oword_t tx_cfg;
2009
2010         efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2011
2012         table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2013         if (table->size) {
2014                 EFX_SET_OWORD_FIELD(
2015                         tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2016                         table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2017                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2018                 EFX_SET_OWORD_FIELD(
2019                         tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2020                         table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2021                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2022         }
2023
2024         efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2025 }
2026
2027 static int
2028 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2029                                const struct efx_filter_spec *gen_spec)
2030 {
2031         bool is_full = false;
2032
2033         if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) && gen_spec->rss_context)
2034                 return -EINVAL;
2035
2036         spec->priority = gen_spec->priority;
2037         spec->flags = gen_spec->flags;
2038         spec->dmaq_id = gen_spec->dmaq_id;
2039
2040         switch (gen_spec->match_flags) {
2041         case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2042               EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2043               EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2044                 is_full = true;
2045                 fallthrough;
2046         case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2047               EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2048                 __be32 rhost, host1, host2;
2049                 __be16 rport, port1, port2;
2050
2051                 EFX_WARN_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2052
2053                 if (gen_spec->ether_type != htons(ETH_P_IP))
2054                         return -EPROTONOSUPPORT;
2055                 if (gen_spec->loc_port == 0 ||
2056                     (is_full && gen_spec->rem_port == 0))
2057                         return -EADDRNOTAVAIL;
2058                 switch (gen_spec->ip_proto) {
2059                 case IPPROTO_TCP:
2060                         spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2061                                       EFX_FARCH_FILTER_TCP_WILD);
2062                         break;
2063                 case IPPROTO_UDP:
2064                         spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2065                                       EFX_FARCH_FILTER_UDP_WILD);
2066                         break;
2067                 default:
2068                         return -EPROTONOSUPPORT;
2069                 }
2070
2071                 /* Filter is constructed in terms of source and destination,
2072                  * with the odd wrinkle that the ports are swapped in a UDP
2073                  * wildcard filter.  We need to convert from local and remote
2074                  * (= zero for wildcard) addresses.
2075                  */
2076                 rhost = is_full ? gen_spec->rem_host[0] : 0;
2077                 rport = is_full ? gen_spec->rem_port : 0;
2078                 host1 = rhost;
2079                 host2 = gen_spec->loc_host[0];
2080                 if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2081                         port1 = gen_spec->loc_port;
2082                         port2 = rport;
2083                 } else {
2084                         port1 = rport;
2085                         port2 = gen_spec->loc_port;
2086                 }
2087                 spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2088                 spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2089                 spec->data[2] = ntohl(host2);
2090
2091                 break;
2092         }
2093
2094         case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2095                 is_full = true;
2096                 fallthrough;
2097         case EFX_FILTER_MATCH_LOC_MAC:
2098                 spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2099                               EFX_FARCH_FILTER_MAC_WILD);
2100                 spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2101                 spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2102                                  gen_spec->loc_mac[3] << 16 |
2103                                  gen_spec->loc_mac[4] << 8 |
2104                                  gen_spec->loc_mac[5]);
2105                 spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2106                                  gen_spec->loc_mac[1]);
2107                 break;
2108
2109         case EFX_FILTER_MATCH_LOC_MAC_IG:
2110                 spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2111                               EFX_FARCH_FILTER_MC_DEF :
2112                               EFX_FARCH_FILTER_UC_DEF);
2113                 memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2114                 break;
2115
2116         default:
2117                 return -EPROTONOSUPPORT;
2118         }
2119
2120         return 0;
2121 }
2122
2123 static void
2124 efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2125                              const struct efx_farch_filter_spec *spec)
2126 {
2127         bool is_full = false;
2128
2129         /* *gen_spec should be completely initialised, to be consistent
2130          * with efx_filter_init_{rx,tx}() and in case we want to copy
2131          * it back to userland.
2132          */
2133         memset(gen_spec, 0, sizeof(*gen_spec));
2134
2135         gen_spec->priority = spec->priority;
2136         gen_spec->flags = spec->flags;
2137         gen_spec->dmaq_id = spec->dmaq_id;
2138
2139         switch (spec->type) {
2140         case EFX_FARCH_FILTER_TCP_FULL:
2141         case EFX_FARCH_FILTER_UDP_FULL:
2142                 is_full = true;
2143                 fallthrough;
2144         case EFX_FARCH_FILTER_TCP_WILD:
2145         case EFX_FARCH_FILTER_UDP_WILD: {
2146                 __be32 host1, host2;
2147                 __be16 port1, port2;
2148
2149                 gen_spec->match_flags =
2150                         EFX_FILTER_MATCH_ETHER_TYPE |
2151                         EFX_FILTER_MATCH_IP_PROTO |
2152                         EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2153                 if (is_full)
2154                         gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2155                                                   EFX_FILTER_MATCH_REM_PORT);
2156                 gen_spec->ether_type = htons(ETH_P_IP);
2157                 gen_spec->ip_proto =
2158                         (spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2159                          spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2160                         IPPROTO_TCP : IPPROTO_UDP;
2161
2162                 host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2163                 port1 = htons(spec->data[0]);
2164                 host2 = htonl(spec->data[2]);
2165                 port2 = htons(spec->data[1] >> 16);
2166                 if (spec->flags & EFX_FILTER_FLAG_TX) {
2167                         gen_spec->loc_host[0] = host1;
2168                         gen_spec->rem_host[0] = host2;
2169                 } else {
2170                         gen_spec->loc_host[0] = host2;
2171                         gen_spec->rem_host[0] = host1;
2172                 }
2173                 if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2174                     (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2175                         gen_spec->loc_port = port1;
2176                         gen_spec->rem_port = port2;
2177                 } else {
2178                         gen_spec->loc_port = port2;
2179                         gen_spec->rem_port = port1;
2180                 }
2181
2182                 break;
2183         }
2184
2185         case EFX_FARCH_FILTER_MAC_FULL:
2186                 is_full = true;
2187                 fallthrough;
2188         case EFX_FARCH_FILTER_MAC_WILD:
2189                 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2190                 if (is_full)
2191                         gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2192                 gen_spec->loc_mac[0] = spec->data[2] >> 8;
2193                 gen_spec->loc_mac[1] = spec->data[2];
2194                 gen_spec->loc_mac[2] = spec->data[1] >> 24;
2195                 gen_spec->loc_mac[3] = spec->data[1] >> 16;
2196                 gen_spec->loc_mac[4] = spec->data[1] >> 8;
2197                 gen_spec->loc_mac[5] = spec->data[1];
2198                 gen_spec->outer_vid = htons(spec->data[0]);
2199                 break;
2200
2201         case EFX_FARCH_FILTER_UC_DEF:
2202         case EFX_FARCH_FILTER_MC_DEF:
2203                 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2204                 gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2205                 break;
2206
2207         default:
2208                 WARN_ON(1);
2209                 break;
2210         }
2211 }
2212
2213 static void
2214 efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2215                               struct efx_farch_filter_spec *spec)
2216 {
2217         /* If there's only one channel then disable RSS for non VF
2218          * traffic, thereby allowing VFs to use RSS when the PF can't.
2219          */
2220         spec->priority = EFX_FILTER_PRI_AUTO;
2221         spec->flags = (EFX_FILTER_FLAG_RX |
2222                        (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
2223                        (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2224         spec->dmaq_id = 0;
2225 }
2226
2227 /* Build a filter entry and return its n-tuple key. */
2228 static u32 efx_farch_filter_build(efx_oword_t *filter,
2229                                   struct efx_farch_filter_spec *spec)
2230 {
2231         u32 data3;
2232
2233         switch (efx_farch_filter_spec_table_id(spec)) {
2234         case EFX_FARCH_FILTER_TABLE_RX_IP: {
2235                 bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2236                                spec->type == EFX_FARCH_FILTER_UDP_WILD);
2237                 EFX_POPULATE_OWORD_7(
2238                         *filter,
2239                         FRF_BZ_RSS_EN,
2240                         !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2241                         FRF_BZ_SCATTER_EN,
2242                         !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2243                         FRF_BZ_TCP_UDP, is_udp,
2244                         FRF_BZ_RXQ_ID, spec->dmaq_id,
2245                         EFX_DWORD_2, spec->data[2],
2246                         EFX_DWORD_1, spec->data[1],
2247                         EFX_DWORD_0, spec->data[0]);
2248                 data3 = is_udp;
2249                 break;
2250         }
2251
2252         case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2253                 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2254                 EFX_POPULATE_OWORD_7(
2255                         *filter,
2256                         FRF_CZ_RMFT_RSS_EN,
2257                         !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2258                         FRF_CZ_RMFT_SCATTER_EN,
2259                         !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2260                         FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2261                         FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2262                         FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2263                         FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2264                         FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2265                 data3 = is_wild;
2266                 break;
2267         }
2268
2269         case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2270                 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2271                 EFX_POPULATE_OWORD_5(*filter,
2272                                      FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2273                                      FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2274                                      FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2275                                      FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2276                                      FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2277                 data3 = is_wild | spec->dmaq_id << 1;
2278                 break;
2279         }
2280
2281         default:
2282                 BUG();
2283         }
2284
2285         return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2286 }
2287
2288 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2289                                    const struct efx_farch_filter_spec *right)
2290 {
2291         if (left->type != right->type ||
2292             memcmp(left->data, right->data, sizeof(left->data)))
2293                 return false;
2294
2295         if (left->flags & EFX_FILTER_FLAG_TX &&
2296             left->dmaq_id != right->dmaq_id)
2297                 return false;
2298
2299         return true;
2300 }
2301
2302 /*
2303  * Construct/deconstruct external filter IDs.  At least the RX filter
2304  * IDs must be ordered by matching priority, for RX NFC semantics.
2305  *
2306  * Deconstruction needs to be robust against invalid IDs so that
2307  * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2308  * accept user-provided IDs.
2309  */
2310
2311 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT        5
2312
2313 static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2314         [EFX_FARCH_FILTER_TCP_FULL]     = 0,
2315         [EFX_FARCH_FILTER_UDP_FULL]     = 0,
2316         [EFX_FARCH_FILTER_TCP_WILD]     = 1,
2317         [EFX_FARCH_FILTER_UDP_WILD]     = 1,
2318         [EFX_FARCH_FILTER_MAC_FULL]     = 2,
2319         [EFX_FARCH_FILTER_MAC_WILD]     = 3,
2320         [EFX_FARCH_FILTER_UC_DEF]       = 4,
2321         [EFX_FARCH_FILTER_MC_DEF]       = 4,
2322 };
2323
2324 static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2325         EFX_FARCH_FILTER_TABLE_RX_IP,   /* RX match pri 0 */
2326         EFX_FARCH_FILTER_TABLE_RX_IP,
2327         EFX_FARCH_FILTER_TABLE_RX_MAC,
2328         EFX_FARCH_FILTER_TABLE_RX_MAC,
2329         EFX_FARCH_FILTER_TABLE_RX_DEF,  /* RX match pri 4 */
2330         EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 0 */
2331         EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 1 */
2332 };
2333
2334 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2335 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2336
2337 static inline u32
2338 efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2339                          unsigned int index)
2340 {
2341         unsigned int range;
2342
2343         range = efx_farch_filter_type_match_pri[spec->type];
2344         if (!(spec->flags & EFX_FILTER_FLAG_RX))
2345                 range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2346
2347         return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2348 }
2349
2350 static inline enum efx_farch_filter_table_id
2351 efx_farch_filter_id_table_id(u32 id)
2352 {
2353         unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2354
2355         if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2356                 return efx_farch_filter_range_table[range];
2357         else
2358                 return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2359 }
2360
2361 static inline unsigned int efx_farch_filter_id_index(u32 id)
2362 {
2363         return id & EFX_FARCH_FILTER_INDEX_MASK;
2364 }
2365
2366 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2367 {
2368         struct efx_farch_filter_state *state = efx->filter_state;
2369         unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2370         enum efx_farch_filter_table_id table_id;
2371
2372         do {
2373                 table_id = efx_farch_filter_range_table[range];
2374                 if (state->table[table_id].size != 0)
2375                         return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2376                                 state->table[table_id].size;
2377         } while (range--);
2378
2379         return 0;
2380 }
2381
2382 s32 efx_farch_filter_insert(struct efx_nic *efx,
2383                             struct efx_filter_spec *gen_spec,
2384                             bool replace_equal)
2385 {
2386         struct efx_farch_filter_state *state = efx->filter_state;
2387         struct efx_farch_filter_table *table;
2388         struct efx_farch_filter_spec spec;
2389         efx_oword_t filter;
2390         int rep_index, ins_index;
2391         unsigned int depth = 0;
2392         int rc;
2393
2394         rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2395         if (rc)
2396                 return rc;
2397
2398         down_write(&state->lock);
2399
2400         table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2401         if (table->size == 0) {
2402                 rc = -EINVAL;
2403                 goto out_unlock;
2404         }
2405
2406         netif_vdbg(efx, hw, efx->net_dev,
2407                    "%s: type %d search_limit=%d", __func__, spec.type,
2408                    table->search_limit[spec.type]);
2409
2410         if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2411                 /* One filter spec per type */
2412                 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2413                 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2414                              EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2415                 rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2416                 ins_index = rep_index;
2417         } else {
2418                 /* Search concurrently for
2419                  * (1) a filter to be replaced (rep_index): any filter
2420                  *     with the same match values, up to the current
2421                  *     search depth for this type, and
2422                  * (2) the insertion point (ins_index): (1) or any
2423                  *     free slot before it or up to the maximum search
2424                  *     depth for this priority
2425                  * We fail if we cannot find (2).
2426                  *
2427                  * We can stop once either
2428                  * (a) we find (1), in which case we have definitely
2429                  *     found (2) as well; or
2430                  * (b) we have searched exhaustively for (1), and have
2431                  *     either found (2) or searched exhaustively for it
2432                  */
2433                 u32 key = efx_farch_filter_build(&filter, &spec);
2434                 unsigned int hash = efx_farch_filter_hash(key);
2435                 unsigned int incr = efx_farch_filter_increment(key);
2436                 unsigned int max_rep_depth = table->search_limit[spec.type];
2437                 unsigned int max_ins_depth =
2438                         spec.priority <= EFX_FILTER_PRI_HINT ?
2439                         EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2440                         EFX_FARCH_FILTER_CTL_SRCH_MAX;
2441                 unsigned int i = hash & (table->size - 1);
2442
2443                 ins_index = -1;
2444                 depth = 1;
2445
2446                 for (;;) {
2447                         if (!test_bit(i, table->used_bitmap)) {
2448                                 if (ins_index < 0)
2449                                         ins_index = i;
2450                         } else if (efx_farch_filter_equal(&spec,
2451                                                           &table->spec[i])) {
2452                                 /* Case (a) */
2453                                 if (ins_index < 0)
2454                                         ins_index = i;
2455                                 rep_index = i;
2456                                 break;
2457                         }
2458
2459                         if (depth >= max_rep_depth &&
2460                             (ins_index >= 0 || depth >= max_ins_depth)) {
2461                                 /* Case (b) */
2462                                 if (ins_index < 0) {
2463                                         rc = -EBUSY;
2464                                         goto out_unlock;
2465                                 }
2466                                 rep_index = -1;
2467                                 break;
2468                         }
2469
2470                         i = (i + incr) & (table->size - 1);
2471                         ++depth;
2472                 }
2473         }
2474
2475         /* If we found a filter to be replaced, check whether we
2476          * should do so
2477          */
2478         if (rep_index >= 0) {
2479                 struct efx_farch_filter_spec *saved_spec =
2480                         &table->spec[rep_index];
2481
2482                 if (spec.priority == saved_spec->priority && !replace_equal) {
2483                         rc = -EEXIST;
2484                         goto out_unlock;
2485                 }
2486                 if (spec.priority < saved_spec->priority) {
2487                         rc = -EPERM;
2488                         goto out_unlock;
2489                 }
2490                 if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2491                     saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2492                         spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2493         }
2494
2495         /* Insert the filter */
2496         if (ins_index != rep_index) {
2497                 __set_bit(ins_index, table->used_bitmap);
2498                 ++table->used;
2499         }
2500         table->spec[ins_index] = spec;
2501
2502         if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2503                 efx_farch_filter_push_rx_config(efx);
2504         } else {
2505                 if (table->search_limit[spec.type] < depth) {
2506                         table->search_limit[spec.type] = depth;
2507                         if (spec.flags & EFX_FILTER_FLAG_TX)
2508                                 efx_farch_filter_push_tx_limits(efx);
2509                         else
2510                                 efx_farch_filter_push_rx_config(efx);
2511                 }
2512
2513                 efx_writeo(efx, &filter,
2514                            table->offset + table->step * ins_index);
2515
2516                 /* If we were able to replace a filter by inserting
2517                  * at a lower depth, clear the replaced filter
2518                  */
2519                 if (ins_index != rep_index && rep_index >= 0)
2520                         efx_farch_filter_table_clear_entry(efx, table,
2521                                                            rep_index);
2522         }
2523
2524         netif_vdbg(efx, hw, efx->net_dev,
2525                    "%s: filter type %d index %d rxq %u set",
2526                    __func__, spec.type, ins_index, spec.dmaq_id);
2527         rc = efx_farch_filter_make_id(&spec, ins_index);
2528
2529 out_unlock:
2530         up_write(&state->lock);
2531         return rc;
2532 }
2533
2534 static void
2535 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2536                                    struct efx_farch_filter_table *table,
2537                                    unsigned int filter_idx)
2538 {
2539         static efx_oword_t filter;
2540
2541         EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2542         BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2543
2544         __clear_bit(filter_idx, table->used_bitmap);
2545         --table->used;
2546         memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2547
2548         efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2549
2550         /* If this filter required a greater search depth than
2551          * any other, the search limit for its type can now be
2552          * decreased.  However, it is hard to determine that
2553          * unless the table has become completely empty - in
2554          * which case, all its search limits can be set to 0.
2555          */
2556         if (unlikely(table->used == 0)) {
2557                 memset(table->search_limit, 0, sizeof(table->search_limit));
2558                 if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2559                         efx_farch_filter_push_tx_limits(efx);
2560                 else
2561                         efx_farch_filter_push_rx_config(efx);
2562         }
2563 }
2564
2565 static int efx_farch_filter_remove(struct efx_nic *efx,
2566                                    struct efx_farch_filter_table *table,
2567                                    unsigned int filter_idx,
2568                                    enum efx_filter_priority priority)
2569 {
2570         struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2571
2572         if (!test_bit(filter_idx, table->used_bitmap) ||
2573             spec->priority != priority)
2574                 return -ENOENT;
2575
2576         if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2577                 efx_farch_filter_init_rx_auto(efx, spec);
2578                 efx_farch_filter_push_rx_config(efx);
2579         } else {
2580                 efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2581         }
2582
2583         return 0;
2584 }
2585
2586 int efx_farch_filter_remove_safe(struct efx_nic *efx,
2587                                  enum efx_filter_priority priority,
2588                                  u32 filter_id)
2589 {
2590         struct efx_farch_filter_state *state = efx->filter_state;
2591         enum efx_farch_filter_table_id table_id;
2592         struct efx_farch_filter_table *table;
2593         unsigned int filter_idx;
2594         int rc;
2595
2596         table_id = efx_farch_filter_id_table_id(filter_id);
2597         if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2598                 return -ENOENT;
2599         table = &state->table[table_id];
2600
2601         filter_idx = efx_farch_filter_id_index(filter_id);
2602         if (filter_idx >= table->size)
2603                 return -ENOENT;
2604         down_write(&state->lock);
2605
2606         rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2607         up_write(&state->lock);
2608
2609         return rc;
2610 }
2611
2612 int efx_farch_filter_get_safe(struct efx_nic *efx,
2613                               enum efx_filter_priority priority,
2614                               u32 filter_id, struct efx_filter_spec *spec_buf)
2615 {
2616         struct efx_farch_filter_state *state = efx->filter_state;
2617         enum efx_farch_filter_table_id table_id;
2618         struct efx_farch_filter_table *table;
2619         struct efx_farch_filter_spec *spec;
2620         unsigned int filter_idx;
2621         int rc = -ENOENT;
2622
2623         down_read(&state->lock);
2624
2625         table_id = efx_farch_filter_id_table_id(filter_id);
2626         if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2627                 goto out_unlock;
2628         table = &state->table[table_id];
2629
2630         filter_idx = efx_farch_filter_id_index(filter_id);
2631         if (filter_idx >= table->size)
2632                 goto out_unlock;
2633         spec = &table->spec[filter_idx];
2634
2635         if (test_bit(filter_idx, table->used_bitmap) &&
2636             spec->priority == priority) {
2637                 efx_farch_filter_to_gen_spec(spec_buf, spec);
2638                 rc = 0;
2639         }
2640
2641 out_unlock:
2642         up_read(&state->lock);
2643         return rc;
2644 }
2645
2646 static void
2647 efx_farch_filter_table_clear(struct efx_nic *efx,
2648                              enum efx_farch_filter_table_id table_id,
2649                              enum efx_filter_priority priority)
2650 {
2651         struct efx_farch_filter_state *state = efx->filter_state;
2652         struct efx_farch_filter_table *table = &state->table[table_id];
2653         unsigned int filter_idx;
2654
2655         down_write(&state->lock);
2656         for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2657                 if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2658                         efx_farch_filter_remove(efx, table,
2659                                                 filter_idx, priority);
2660         }
2661         up_write(&state->lock);
2662 }
2663
2664 int efx_farch_filter_clear_rx(struct efx_nic *efx,
2665                                enum efx_filter_priority priority)
2666 {
2667         efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2668                                      priority);
2669         efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2670                                      priority);
2671         efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2672                                      priority);
2673         return 0;
2674 }
2675
2676 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2677                                    enum efx_filter_priority priority)
2678 {
2679         struct efx_farch_filter_state *state = efx->filter_state;
2680         enum efx_farch_filter_table_id table_id;
2681         struct efx_farch_filter_table *table;
2682         unsigned int filter_idx;
2683         u32 count = 0;
2684
2685         down_read(&state->lock);
2686
2687         for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2688              table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2689              table_id++) {
2690                 table = &state->table[table_id];
2691                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2692                         if (test_bit(filter_idx, table->used_bitmap) &&
2693                             table->spec[filter_idx].priority == priority)
2694                                 ++count;
2695                 }
2696         }
2697
2698         up_read(&state->lock);
2699
2700         return count;
2701 }
2702
2703 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2704                                 enum efx_filter_priority priority,
2705                                 u32 *buf, u32 size)
2706 {
2707         struct efx_farch_filter_state *state = efx->filter_state;
2708         enum efx_farch_filter_table_id table_id;
2709         struct efx_farch_filter_table *table;
2710         unsigned int filter_idx;
2711         s32 count = 0;
2712
2713         down_read(&state->lock);
2714
2715         for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2716              table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2717              table_id++) {
2718                 table = &state->table[table_id];
2719                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2720                         if (test_bit(filter_idx, table->used_bitmap) &&
2721                             table->spec[filter_idx].priority == priority) {
2722                                 if (count == size) {
2723                                         count = -EMSGSIZE;
2724                                         goto out;
2725                                 }
2726                                 buf[count++] = efx_farch_filter_make_id(
2727                                         &table->spec[filter_idx], filter_idx);
2728                         }
2729                 }
2730         }
2731 out:
2732         up_read(&state->lock);
2733
2734         return count;
2735 }
2736
2737 /* Restore filter stater after reset */
2738 void efx_farch_filter_table_restore(struct efx_nic *efx)
2739 {
2740         struct efx_farch_filter_state *state = efx->filter_state;
2741         enum efx_farch_filter_table_id table_id;
2742         struct efx_farch_filter_table *table;
2743         efx_oword_t filter;
2744         unsigned int filter_idx;
2745
2746         down_write(&state->lock);
2747
2748         for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2749                 table = &state->table[table_id];
2750
2751                 /* Check whether this is a regular register table */
2752                 if (table->step == 0)
2753                         continue;
2754
2755                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2756                         if (!test_bit(filter_idx, table->used_bitmap))
2757                                 continue;
2758                         efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2759                         efx_writeo(efx, &filter,
2760                                    table->offset + table->step * filter_idx);
2761                 }
2762         }
2763
2764         efx_farch_filter_push_rx_config(efx);
2765         efx_farch_filter_push_tx_limits(efx);
2766
2767         up_write(&state->lock);
2768 }
2769
2770 void efx_farch_filter_table_remove(struct efx_nic *efx)
2771 {
2772         struct efx_farch_filter_state *state = efx->filter_state;
2773         enum efx_farch_filter_table_id table_id;
2774
2775         for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2776                 kfree(state->table[table_id].used_bitmap);
2777                 vfree(state->table[table_id].spec);
2778         }
2779         kfree(state);
2780 }
2781
2782 int efx_farch_filter_table_probe(struct efx_nic *efx)
2783 {
2784         struct efx_farch_filter_state *state;
2785         struct efx_farch_filter_table *table;
2786         unsigned table_id;
2787
2788         state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2789         if (!state)
2790                 return -ENOMEM;
2791         efx->filter_state = state;
2792         init_rwsem(&state->lock);
2793
2794         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2795         table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2796         table->offset = FR_BZ_RX_FILTER_TBL0;
2797         table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2798         table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2799
2800         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2801         table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2802         table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2803         table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2804         table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2805
2806         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2807         table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2808         table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2809
2810         table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2811         table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2812         table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2813         table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2814         table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2815
2816         for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2817                 table = &state->table[table_id];
2818                 if (table->size == 0)
2819                         continue;
2820                 table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2821                                              sizeof(unsigned long),
2822                                              GFP_KERNEL);
2823                 if (!table->used_bitmap)
2824                         goto fail;
2825                 table->spec = vzalloc(array_size(sizeof(*table->spec),
2826                                                  table->size));
2827                 if (!table->spec)
2828                         goto fail;
2829         }
2830
2831         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2832         if (table->size) {
2833                 /* RX default filters must always exist */
2834                 struct efx_farch_filter_spec *spec;
2835                 unsigned i;
2836
2837                 for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2838                         spec = &table->spec[i];
2839                         spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2840                         efx_farch_filter_init_rx_auto(efx, spec);
2841                         __set_bit(i, table->used_bitmap);
2842                 }
2843         }
2844
2845         efx_farch_filter_push_rx_config(efx);
2846
2847         return 0;
2848
2849 fail:
2850         efx_farch_filter_table_remove(efx);
2851         return -ENOMEM;
2852 }
2853
2854 /* Update scatter enable flags for filters pointing to our own RX queues */
2855 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2856 {
2857         struct efx_farch_filter_state *state = efx->filter_state;
2858         enum efx_farch_filter_table_id table_id;
2859         struct efx_farch_filter_table *table;
2860         efx_oword_t filter;
2861         unsigned int filter_idx;
2862
2863         down_write(&state->lock);
2864
2865         for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2866              table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2867              table_id++) {
2868                 table = &state->table[table_id];
2869
2870                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2871                         if (!test_bit(filter_idx, table->used_bitmap) ||
2872                             table->spec[filter_idx].dmaq_id >=
2873                             efx->n_rx_channels)
2874                                 continue;
2875
2876                         if (efx->rx_scatter)
2877                                 table->spec[filter_idx].flags |=
2878                                         EFX_FILTER_FLAG_RX_SCATTER;
2879                         else
2880                                 table->spec[filter_idx].flags &=
2881                                         ~EFX_FILTER_FLAG_RX_SCATTER;
2882
2883                         if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2884                                 /* Pushed by efx_farch_filter_push_rx_config() */
2885                                 continue;
2886
2887                         efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2888                         efx_writeo(efx, &filter,
2889                                    table->offset + table->step * filter_idx);
2890                 }
2891         }
2892
2893         efx_farch_filter_push_rx_config(efx);
2894
2895         up_write(&state->lock);
2896 }
2897
2898 #ifdef CONFIG_RFS_ACCEL
2899
2900 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2901                                      unsigned int index)
2902 {
2903         struct efx_farch_filter_state *state = efx->filter_state;
2904         struct efx_farch_filter_table *table;
2905         bool ret = false, force = false;
2906         u16 arfs_id;
2907
2908         down_write(&state->lock);
2909         spin_lock_bh(&efx->rps_hash_lock);
2910         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2911         if (test_bit(index, table->used_bitmap) &&
2912             table->spec[index].priority == EFX_FILTER_PRI_HINT) {
2913                 struct efx_arfs_rule *rule = NULL;
2914                 struct efx_filter_spec spec;
2915
2916                 efx_farch_filter_to_gen_spec(&spec, &table->spec[index]);
2917                 if (!efx->rps_hash_table) {
2918                         /* In the absence of the table, we always returned 0 to
2919                          * ARFS, so use the same to query it.
2920                          */
2921                         arfs_id = 0;
2922                 } else {
2923                         rule = efx_rps_hash_find(efx, &spec);
2924                         if (!rule) {
2925                                 /* ARFS table doesn't know of this filter, remove it */
2926                                 force = true;
2927                         } else {
2928                                 arfs_id = rule->arfs_id;
2929                                 if (!efx_rps_check_rule(rule, index, &force))
2930                                         goto out_unlock;
2931                         }
2932                 }
2933                 if (force || rps_may_expire_flow(efx->net_dev, spec.dmaq_id,
2934                                                  flow_id, arfs_id)) {
2935                         if (rule)
2936                                 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
2937                         efx_rps_hash_del(efx, &spec);
2938                         efx_farch_filter_table_clear_entry(efx, table, index);
2939                         ret = true;
2940                 }
2941         }
2942 out_unlock:
2943         spin_unlock_bh(&efx->rps_hash_lock);
2944         up_write(&state->lock);
2945         return ret;
2946 }
2947
2948 #endif /* CONFIG_RFS_ACCEL */
2949
2950 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2951 {
2952         struct net_device *net_dev = efx->net_dev;
2953         struct netdev_hw_addr *ha;
2954         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2955         u32 crc;
2956         int bit;
2957
2958         if (!efx_dev_registered(efx))
2959                 return;
2960
2961         netif_addr_lock_bh(net_dev);
2962
2963         efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2964
2965         /* Build multicast hash table */
2966         if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2967                 memset(mc_hash, 0xff, sizeof(*mc_hash));
2968         } else {
2969                 memset(mc_hash, 0x00, sizeof(*mc_hash));
2970                 netdev_for_each_mc_addr(ha, net_dev) {
2971                         crc = ether_crc_le(ETH_ALEN, ha->addr);
2972                         bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2973                         __set_bit_le(bit, mc_hash);
2974                 }
2975
2976                 /* Broadcast packets go through the multicast hash filter.
2977                  * ether_crc_le() of the broadcast address is 0xbe2612ff
2978                  * so we always add bit 0xff to the mask.
2979                  */
2980                 __set_bit_le(0xff, mc_hash);
2981         }
2982
2983         netif_addr_unlock_bh(net_dev);
2984 }