treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
[linux-2.6-microblaze.git] / drivers / net / ethernet / sfc / falcon / falcon.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2006-2013 Solarflare Communications Inc.
6  */
7
8 #include <linux/bitops.h>
9 #include <linux/delay.h>
10 #include <linux/pci.h>
11 #include <linux/module.h>
12 #include <linux/seq_file.h>
13 #include <linux/i2c.h>
14 #include <linux/mii.h>
15 #include <linux/slab.h>
16 #include <linux/sched/signal.h>
17
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "farch_regs.h"
23 #include "io.h"
24 #include "phy.h"
25 #include "workarounds.h"
26 #include "selftest.h"
27 #include "mdio_10g.h"
28
29 /* Hardware control for SFC4000 (aka Falcon). */
30
31 /**************************************************************************
32  *
33  * NIC stats
34  *
35  **************************************************************************
36  */
37
38 #define FALCON_MAC_STATS_SIZE 0x100
39
40 #define XgRxOctets_offset 0x0
41 #define XgRxOctets_WIDTH 48
42 #define XgRxOctetsOK_offset 0x8
43 #define XgRxOctetsOK_WIDTH 48
44 #define XgRxPkts_offset 0x10
45 #define XgRxPkts_WIDTH 32
46 #define XgRxPktsOK_offset 0x14
47 #define XgRxPktsOK_WIDTH 32
48 #define XgRxBroadcastPkts_offset 0x18
49 #define XgRxBroadcastPkts_WIDTH 32
50 #define XgRxMulticastPkts_offset 0x1C
51 #define XgRxMulticastPkts_WIDTH 32
52 #define XgRxUnicastPkts_offset 0x20
53 #define XgRxUnicastPkts_WIDTH 32
54 #define XgRxUndersizePkts_offset 0x24
55 #define XgRxUndersizePkts_WIDTH 32
56 #define XgRxOversizePkts_offset 0x28
57 #define XgRxOversizePkts_WIDTH 32
58 #define XgRxJabberPkts_offset 0x2C
59 #define XgRxJabberPkts_WIDTH 32
60 #define XgRxUndersizeFCSerrorPkts_offset 0x30
61 #define XgRxUndersizeFCSerrorPkts_WIDTH 32
62 #define XgRxDropEvents_offset 0x34
63 #define XgRxDropEvents_WIDTH 32
64 #define XgRxFCSerrorPkts_offset 0x38
65 #define XgRxFCSerrorPkts_WIDTH 32
66 #define XgRxAlignError_offset 0x3C
67 #define XgRxAlignError_WIDTH 32
68 #define XgRxSymbolError_offset 0x40
69 #define XgRxSymbolError_WIDTH 32
70 #define XgRxInternalMACError_offset 0x44
71 #define XgRxInternalMACError_WIDTH 32
72 #define XgRxControlPkts_offset 0x48
73 #define XgRxControlPkts_WIDTH 32
74 #define XgRxPausePkts_offset 0x4C
75 #define XgRxPausePkts_WIDTH 32
76 #define XgRxPkts64Octets_offset 0x50
77 #define XgRxPkts64Octets_WIDTH 32
78 #define XgRxPkts65to127Octets_offset 0x54
79 #define XgRxPkts65to127Octets_WIDTH 32
80 #define XgRxPkts128to255Octets_offset 0x58
81 #define XgRxPkts128to255Octets_WIDTH 32
82 #define XgRxPkts256to511Octets_offset 0x5C
83 #define XgRxPkts256to511Octets_WIDTH 32
84 #define XgRxPkts512to1023Octets_offset 0x60
85 #define XgRxPkts512to1023Octets_WIDTH 32
86 #define XgRxPkts1024to15xxOctets_offset 0x64
87 #define XgRxPkts1024to15xxOctets_WIDTH 32
88 #define XgRxPkts15xxtoMaxOctets_offset 0x68
89 #define XgRxPkts15xxtoMaxOctets_WIDTH 32
90 #define XgRxLengthError_offset 0x6C
91 #define XgRxLengthError_WIDTH 32
92 #define XgTxPkts_offset 0x80
93 #define XgTxPkts_WIDTH 32
94 #define XgTxOctets_offset 0x88
95 #define XgTxOctets_WIDTH 48
96 #define XgTxMulticastPkts_offset 0x90
97 #define XgTxMulticastPkts_WIDTH 32
98 #define XgTxBroadcastPkts_offset 0x94
99 #define XgTxBroadcastPkts_WIDTH 32
100 #define XgTxUnicastPkts_offset 0x98
101 #define XgTxUnicastPkts_WIDTH 32
102 #define XgTxControlPkts_offset 0x9C
103 #define XgTxControlPkts_WIDTH 32
104 #define XgTxPausePkts_offset 0xA0
105 #define XgTxPausePkts_WIDTH 32
106 #define XgTxPkts64Octets_offset 0xA4
107 #define XgTxPkts64Octets_WIDTH 32
108 #define XgTxPkts65to127Octets_offset 0xA8
109 #define XgTxPkts65to127Octets_WIDTH 32
110 #define XgTxPkts128to255Octets_offset 0xAC
111 #define XgTxPkts128to255Octets_WIDTH 32
112 #define XgTxPkts256to511Octets_offset 0xB0
113 #define XgTxPkts256to511Octets_WIDTH 32
114 #define XgTxPkts512to1023Octets_offset 0xB4
115 #define XgTxPkts512to1023Octets_WIDTH 32
116 #define XgTxPkts1024to15xxOctets_offset 0xB8
117 #define XgTxPkts1024to15xxOctets_WIDTH 32
118 #define XgTxPkts1519toMaxOctets_offset 0xBC
119 #define XgTxPkts1519toMaxOctets_WIDTH 32
120 #define XgTxUndersizePkts_offset 0xC0
121 #define XgTxUndersizePkts_WIDTH 32
122 #define XgTxOversizePkts_offset 0xC4
123 #define XgTxOversizePkts_WIDTH 32
124 #define XgTxNonTcpUdpPkt_offset 0xC8
125 #define XgTxNonTcpUdpPkt_WIDTH 16
126 #define XgTxMacSrcErrPkt_offset 0xCC
127 #define XgTxMacSrcErrPkt_WIDTH 16
128 #define XgTxIpSrcErrPkt_offset 0xD0
129 #define XgTxIpSrcErrPkt_WIDTH 16
130 #define XgDmaDone_offset 0xD4
131 #define XgDmaDone_WIDTH 32
132
133 #define FALCON_XMAC_STATS_DMA_FLAG(efx)                         \
134         (*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
135
136 #define FALCON_DMA_STAT(ext_name, hw_name)                              \
137         [FALCON_STAT_ ## ext_name] =                                    \
138         { #ext_name,                                                    \
139           /* 48-bit stats are zero-padded to 64 on DMA */               \
140           hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH,     \
141           hw_name ## _ ## offset }
142 #define FALCON_OTHER_STAT(ext_name)                                     \
143         [FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
144 #define GENERIC_SW_STAT(ext_name)                               \
145         [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
146
147 static const struct ef4_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
148         FALCON_DMA_STAT(tx_bytes, XgTxOctets),
149         FALCON_DMA_STAT(tx_packets, XgTxPkts),
150         FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
151         FALCON_DMA_STAT(tx_control, XgTxControlPkts),
152         FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
153         FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
154         FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
155         FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
156         FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
157         FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
158         FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
159         FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
160         FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
161         FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
162         FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
163         FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
164         FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
165         FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
166         FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
167         FALCON_DMA_STAT(rx_bytes, XgRxOctets),
168         FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
169         FALCON_OTHER_STAT(rx_bad_bytes),
170         FALCON_DMA_STAT(rx_packets, XgRxPkts),
171         FALCON_DMA_STAT(rx_good, XgRxPktsOK),
172         FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
173         FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
174         FALCON_DMA_STAT(rx_control, XgRxControlPkts),
175         FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
176         FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
177         FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
178         FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
179         FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
180         FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
181         FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
182         FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
183         FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
184         FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
185         FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
186         FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
187         FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
188         FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
189         FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
190         FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
191         FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
192         FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
193         FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
194         FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
195         GENERIC_SW_STAT(rx_nodesc_trunc),
196         GENERIC_SW_STAT(rx_noskb_drops),
197 };
198 static const unsigned long falcon_stat_mask[] = {
199         [0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
200 };
201
202 /**************************************************************************
203  *
204  * Basic SPI command set and bit definitions
205  *
206  *************************************************************************/
207
208 #define SPI_WRSR 0x01           /* Write status register */
209 #define SPI_WRITE 0x02          /* Write data to memory array */
210 #define SPI_READ 0x03           /* Read data from memory array */
211 #define SPI_WRDI 0x04           /* Reset write enable latch */
212 #define SPI_RDSR 0x05           /* Read status register */
213 #define SPI_WREN 0x06           /* Set write enable latch */
214 #define SPI_SST_EWSR 0x50       /* SST: Enable write to status register */
215
216 #define SPI_STATUS_WPEN 0x80    /* Write-protect pin enabled */
217 #define SPI_STATUS_BP2 0x10     /* Block protection bit 2 */
218 #define SPI_STATUS_BP1 0x08     /* Block protection bit 1 */
219 #define SPI_STATUS_BP0 0x04     /* Block protection bit 0 */
220 #define SPI_STATUS_WEN 0x02     /* State of the write enable latch */
221 #define SPI_STATUS_NRDY 0x01    /* Device busy flag */
222
223 /**************************************************************************
224  *
225  * Non-volatile memory layout
226  *
227  **************************************************************************
228  */
229
230 /* SFC4000 flash is partitioned into:
231  *     0-0x400       chip and board config (see struct falcon_nvconfig)
232  *     0x400-0x8000  unused (or may contain VPD if EEPROM not present)
233  *     0x8000-end    boot code (mapped to PCI expansion ROM)
234  * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
235  * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
236  *     0-0x400       chip and board config
237  *     configurable  VPD
238  *     0x800-0x1800  boot config
239  * Aside from the chip and board config, all of these are optional and may
240  * be absent or truncated depending on the devices used.
241  */
242 #define FALCON_NVCONFIG_END 0x400U
243 #define FALCON_FLASH_BOOTCODE_START 0x8000U
244 #define FALCON_EEPROM_BOOTCONFIG_START 0x800U
245 #define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
246
247 /* Board configuration v2 (v1 is obsolete; later versions are compatible) */
248 struct falcon_nvconfig_board_v2 {
249         __le16 nports;
250         u8 port0_phy_addr;
251         u8 port0_phy_type;
252         u8 port1_phy_addr;
253         u8 port1_phy_type;
254         __le16 asic_sub_revision;
255         __le16 board_revision;
256 } __packed;
257
258 /* Board configuration v3 extra information */
259 struct falcon_nvconfig_board_v3 {
260         __le32 spi_device_type[2];
261 } __packed;
262
263 /* Bit numbers for spi_device_type */
264 #define SPI_DEV_TYPE_SIZE_LBN 0
265 #define SPI_DEV_TYPE_SIZE_WIDTH 5
266 #define SPI_DEV_TYPE_ADDR_LEN_LBN 6
267 #define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
268 #define SPI_DEV_TYPE_ERASE_CMD_LBN 8
269 #define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
270 #define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
271 #define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
272 #define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
273 #define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
274 #define SPI_DEV_TYPE_FIELD(type, field)                                 \
275         (((type) >> EF4_LOW_BIT(field)) & EF4_MASK32(EF4_WIDTH(field)))
276
277 #define FALCON_NVCONFIG_OFFSET 0x300
278
279 #define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
280 struct falcon_nvconfig {
281         ef4_oword_t ee_vpd_cfg_reg;                     /* 0x300 */
282         u8 mac_address[2][8];                   /* 0x310 */
283         ef4_oword_t pcie_sd_ctl0123_reg;                /* 0x320 */
284         ef4_oword_t pcie_sd_ctl45_reg;                  /* 0x330 */
285         ef4_oword_t pcie_pcs_ctl_stat_reg;              /* 0x340 */
286         ef4_oword_t hw_init_reg;                        /* 0x350 */
287         ef4_oword_t nic_stat_reg;                       /* 0x360 */
288         ef4_oword_t glb_ctl_reg;                        /* 0x370 */
289         ef4_oword_t srm_cfg_reg;                        /* 0x380 */
290         ef4_oword_t spare_reg;                          /* 0x390 */
291         __le16 board_magic_num;                 /* 0x3A0 */
292         __le16 board_struct_ver;
293         __le16 board_checksum;
294         struct falcon_nvconfig_board_v2 board_v2;
295         ef4_oword_t ee_base_page_reg;                   /* 0x3B0 */
296         struct falcon_nvconfig_board_v3 board_v3;       /* 0x3C0 */
297 } __packed;
298
299 /*************************************************************************/
300
301 static int falcon_reset_hw(struct ef4_nic *efx, enum reset_type method);
302 static void falcon_reconfigure_mac_wrapper(struct ef4_nic *efx);
303
304 static const unsigned int
305 /* "Large" EEPROM device: Atmel AT25640 or similar
306  * 8 KB, 16-bit address, 32 B write block */
307 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
308                      | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
309                      | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
310 /* Default flash device: Atmel AT25F1024
311  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
312 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
313                       | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
314                       | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
315                       | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
316                       | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
317
318 /**************************************************************************
319  *
320  * I2C bus - this is a bit-bashing interface using GPIO pins
321  * Note that it uses the output enables to tristate the outputs
322  * SDA is the data pin and SCL is the clock
323  *
324  **************************************************************************
325  */
326 static void falcon_setsda(void *data, int state)
327 {
328         struct ef4_nic *efx = (struct ef4_nic *)data;
329         ef4_oword_t reg;
330
331         ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
332         EF4_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
333         ef4_writeo(efx, &reg, FR_AB_GPIO_CTL);
334 }
335
336 static void falcon_setscl(void *data, int state)
337 {
338         struct ef4_nic *efx = (struct ef4_nic *)data;
339         ef4_oword_t reg;
340
341         ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
342         EF4_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
343         ef4_writeo(efx, &reg, FR_AB_GPIO_CTL);
344 }
345
346 static int falcon_getsda(void *data)
347 {
348         struct ef4_nic *efx = (struct ef4_nic *)data;
349         ef4_oword_t reg;
350
351         ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
352         return EF4_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
353 }
354
355 static int falcon_getscl(void *data)
356 {
357         struct ef4_nic *efx = (struct ef4_nic *)data;
358         ef4_oword_t reg;
359
360         ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
361         return EF4_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
362 }
363
364 static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
365         .setsda         = falcon_setsda,
366         .setscl         = falcon_setscl,
367         .getsda         = falcon_getsda,
368         .getscl         = falcon_getscl,
369         .udelay         = 5,
370         /* Wait up to 50 ms for slave to let us pull SCL high */
371         .timeout        = DIV_ROUND_UP(HZ, 20),
372 };
373
374 static void falcon_push_irq_moderation(struct ef4_channel *channel)
375 {
376         ef4_dword_t timer_cmd;
377         struct ef4_nic *efx = channel->efx;
378
379         /* Set timer register */
380         if (channel->irq_moderation_us) {
381                 unsigned int ticks;
382
383                 ticks = ef4_usecs_to_ticks(efx, channel->irq_moderation_us);
384                 EF4_POPULATE_DWORD_2(timer_cmd,
385                                      FRF_AB_TC_TIMER_MODE,
386                                      FFE_BB_TIMER_MODE_INT_HLDOFF,
387                                      FRF_AB_TC_TIMER_VAL,
388                                      ticks - 1);
389         } else {
390                 EF4_POPULATE_DWORD_2(timer_cmd,
391                                      FRF_AB_TC_TIMER_MODE,
392                                      FFE_BB_TIMER_MODE_DIS,
393                                      FRF_AB_TC_TIMER_VAL, 0);
394         }
395         BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
396         ef4_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
397                                channel->channel);
398 }
399
400 static void falcon_deconfigure_mac_wrapper(struct ef4_nic *efx);
401
402 static void falcon_prepare_flush(struct ef4_nic *efx)
403 {
404         falcon_deconfigure_mac_wrapper(efx);
405
406         /* Wait for the tx and rx fifo's to get to the next packet boundary
407          * (~1ms without back-pressure), then to drain the remainder of the
408          * fifo's at data path speeds (negligible), with a healthy margin. */
409         msleep(10);
410 }
411
412 /* Acknowledge a legacy interrupt from Falcon
413  *
414  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
415  *
416  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
417  * BIU. Interrupt acknowledge is read sensitive so must write instead
418  * (then read to ensure the BIU collector is flushed)
419  *
420  * NB most hardware supports MSI interrupts
421  */
422 static inline void falcon_irq_ack_a1(struct ef4_nic *efx)
423 {
424         ef4_dword_t reg;
425
426         EF4_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
427         ef4_writed(efx, &reg, FR_AA_INT_ACK_KER);
428         ef4_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
429 }
430
431 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
432 {
433         struct ef4_nic *efx = dev_id;
434         ef4_oword_t *int_ker = efx->irq_status.addr;
435         int syserr;
436         int queues;
437
438         /* Check to see if this is our interrupt.  If it isn't, we
439          * exit without having touched the hardware.
440          */
441         if (unlikely(EF4_OWORD_IS_ZERO(*int_ker))) {
442                 netif_vdbg(efx, intr, efx->net_dev,
443                            "IRQ %d on CPU %d not for me\n", irq,
444                            raw_smp_processor_id());
445                 return IRQ_NONE;
446         }
447         efx->last_irq_cpu = raw_smp_processor_id();
448         netif_vdbg(efx, intr, efx->net_dev,
449                    "IRQ %d on CPU %d status " EF4_OWORD_FMT "\n",
450                    irq, raw_smp_processor_id(), EF4_OWORD_VAL(*int_ker));
451
452         if (!likely(READ_ONCE(efx->irq_soft_enabled)))
453                 return IRQ_HANDLED;
454
455         /* Check to see if we have a serious error condition */
456         syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
457         if (unlikely(syserr))
458                 return ef4_farch_fatal_interrupt(efx);
459
460         /* Determine interrupting queues, clear interrupt status
461          * register and acknowledge the device interrupt.
462          */
463         BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EF4_MAX_CHANNELS);
464         queues = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
465         EF4_ZERO_OWORD(*int_ker);
466         wmb(); /* Ensure the vector is cleared before interrupt ack */
467         falcon_irq_ack_a1(efx);
468
469         if (queues & 1)
470                 ef4_schedule_channel_irq(ef4_get_channel(efx, 0));
471         if (queues & 2)
472                 ef4_schedule_channel_irq(ef4_get_channel(efx, 1));
473         return IRQ_HANDLED;
474 }
475
476 /**************************************************************************
477  *
478  * RSS
479  *
480  **************************************************************************
481  */
482 static int dummy_rx_push_rss_config(struct ef4_nic *efx, bool user,
483                                     const u32 *rx_indir_table)
484 {
485         (void) efx;
486         (void) user;
487         (void) rx_indir_table;
488         return -ENOSYS;
489 }
490
491 static int falcon_b0_rx_push_rss_config(struct ef4_nic *efx, bool user,
492                                         const u32 *rx_indir_table)
493 {
494         ef4_oword_t temp;
495
496         (void) user;
497         /* Set hash key for IPv4 */
498         memcpy(&temp, efx->rx_hash_key, sizeof(temp));
499         ef4_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
500
501         memcpy(efx->rx_indir_table, rx_indir_table,
502                sizeof(efx->rx_indir_table));
503         ef4_farch_rx_push_indir_table(efx);
504         return 0;
505 }
506
507 /**************************************************************************
508  *
509  * EEPROM/flash
510  *
511  **************************************************************************
512  */
513
514 #define FALCON_SPI_MAX_LEN sizeof(ef4_oword_t)
515
516 static int falcon_spi_poll(struct ef4_nic *efx)
517 {
518         ef4_oword_t reg;
519         ef4_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
520         return EF4_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
521 }
522
523 /* Wait for SPI command completion */
524 static int falcon_spi_wait(struct ef4_nic *efx)
525 {
526         /* Most commands will finish quickly, so we start polling at
527          * very short intervals.  Sometimes the command may have to
528          * wait for VPD or expansion ROM access outside of our
529          * control, so we allow up to 100 ms. */
530         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
531         int i;
532
533         for (i = 0; i < 10; i++) {
534                 if (!falcon_spi_poll(efx))
535                         return 0;
536                 udelay(10);
537         }
538
539         for (;;) {
540                 if (!falcon_spi_poll(efx))
541                         return 0;
542                 if (time_after_eq(jiffies, timeout)) {
543                         netif_err(efx, hw, efx->net_dev,
544                                   "timed out waiting for SPI\n");
545                         return -ETIMEDOUT;
546                 }
547                 schedule_timeout_uninterruptible(1);
548         }
549 }
550
551 static int
552 falcon_spi_cmd(struct ef4_nic *efx, const struct falcon_spi_device *spi,
553                unsigned int command, int address,
554                const void *in, void *out, size_t len)
555 {
556         bool addressed = (address >= 0);
557         bool reading = (out != NULL);
558         ef4_oword_t reg;
559         int rc;
560
561         /* Input validation */
562         if (len > FALCON_SPI_MAX_LEN)
563                 return -EINVAL;
564
565         /* Check that previous command is not still running */
566         rc = falcon_spi_poll(efx);
567         if (rc)
568                 return rc;
569
570         /* Program address register, if we have an address */
571         if (addressed) {
572                 EF4_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
573                 ef4_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
574         }
575
576         /* Program data register, if we have data */
577         if (in != NULL) {
578                 memcpy(&reg, in, len);
579                 ef4_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
580         }
581
582         /* Issue read/write command */
583         EF4_POPULATE_OWORD_7(reg,
584                              FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
585                              FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
586                              FRF_AB_EE_SPI_HCMD_DABCNT, len,
587                              FRF_AB_EE_SPI_HCMD_READ, reading,
588                              FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
589                              FRF_AB_EE_SPI_HCMD_ADBCNT,
590                              (addressed ? spi->addr_len : 0),
591                              FRF_AB_EE_SPI_HCMD_ENC, command);
592         ef4_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
593
594         /* Wait for read/write to complete */
595         rc = falcon_spi_wait(efx);
596         if (rc)
597                 return rc;
598
599         /* Read data */
600         if (out != NULL) {
601                 ef4_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
602                 memcpy(out, &reg, len);
603         }
604
605         return 0;
606 }
607
608 static inline u8
609 falcon_spi_munge_command(const struct falcon_spi_device *spi,
610                          const u8 command, const unsigned int address)
611 {
612         return command | (((address >> 8) & spi->munge_address) << 3);
613 }
614
615 static int
616 falcon_spi_read(struct ef4_nic *efx, const struct falcon_spi_device *spi,
617                 loff_t start, size_t len, size_t *retlen, u8 *buffer)
618 {
619         size_t block_len, pos = 0;
620         unsigned int command;
621         int rc = 0;
622
623         while (pos < len) {
624                 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
625
626                 command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
627                 rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
628                                     buffer + pos, block_len);
629                 if (rc)
630                         break;
631                 pos += block_len;
632
633                 /* Avoid locking up the system */
634                 cond_resched();
635                 if (signal_pending(current)) {
636                         rc = -EINTR;
637                         break;
638                 }
639         }
640
641         if (retlen)
642                 *retlen = pos;
643         return rc;
644 }
645
646 #ifdef CONFIG_SFC_FALCON_MTD
647
648 struct falcon_mtd_partition {
649         struct ef4_mtd_partition common;
650         const struct falcon_spi_device *spi;
651         size_t offset;
652 };
653
654 #define to_falcon_mtd_partition(mtd)                            \
655         container_of(mtd, struct falcon_mtd_partition, common.mtd)
656
657 static size_t
658 falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
659 {
660         return min(FALCON_SPI_MAX_LEN,
661                    (spi->block_size - (start & (spi->block_size - 1))));
662 }
663
664 /* Wait up to 10 ms for buffered write completion */
665 static int
666 falcon_spi_wait_write(struct ef4_nic *efx, const struct falcon_spi_device *spi)
667 {
668         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
669         u8 status;
670         int rc;
671
672         for (;;) {
673                 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
674                                     &status, sizeof(status));
675                 if (rc)
676                         return rc;
677                 if (!(status & SPI_STATUS_NRDY))
678                         return 0;
679                 if (time_after_eq(jiffies, timeout)) {
680                         netif_err(efx, hw, efx->net_dev,
681                                   "SPI write timeout on device %d"
682                                   " last status=0x%02x\n",
683                                   spi->device_id, status);
684                         return -ETIMEDOUT;
685                 }
686                 schedule_timeout_uninterruptible(1);
687         }
688 }
689
690 static int
691 falcon_spi_write(struct ef4_nic *efx, const struct falcon_spi_device *spi,
692                  loff_t start, size_t len, size_t *retlen, const u8 *buffer)
693 {
694         u8 verify_buffer[FALCON_SPI_MAX_LEN];
695         size_t block_len, pos = 0;
696         unsigned int command;
697         int rc = 0;
698
699         while (pos < len) {
700                 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
701                 if (rc)
702                         break;
703
704                 block_len = min(len - pos,
705                                 falcon_spi_write_limit(spi, start + pos));
706                 command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
707                 rc = falcon_spi_cmd(efx, spi, command, start + pos,
708                                     buffer + pos, NULL, block_len);
709                 if (rc)
710                         break;
711
712                 rc = falcon_spi_wait_write(efx, spi);
713                 if (rc)
714                         break;
715
716                 command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
717                 rc = falcon_spi_cmd(efx, spi, command, start + pos,
718                                     NULL, verify_buffer, block_len);
719                 if (memcmp(verify_buffer, buffer + pos, block_len)) {
720                         rc = -EIO;
721                         break;
722                 }
723
724                 pos += block_len;
725
726                 /* Avoid locking up the system */
727                 cond_resched();
728                 if (signal_pending(current)) {
729                         rc = -EINTR;
730                         break;
731                 }
732         }
733
734         if (retlen)
735                 *retlen = pos;
736         return rc;
737 }
738
739 static int
740 falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
741 {
742         const struct falcon_spi_device *spi = part->spi;
743         struct ef4_nic *efx = part->common.mtd.priv;
744         u8 status;
745         int rc, i;
746
747         /* Wait up to 4s for flash/EEPROM to finish a slow operation. */
748         for (i = 0; i < 40; i++) {
749                 __set_current_state(uninterruptible ?
750                                     TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
751                 schedule_timeout(HZ / 10);
752                 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
753                                     &status, sizeof(status));
754                 if (rc)
755                         return rc;
756                 if (!(status & SPI_STATUS_NRDY))
757                         return 0;
758                 if (signal_pending(current))
759                         return -EINTR;
760         }
761         pr_err("%s: timed out waiting for %s\n",
762                part->common.name, part->common.dev_type_name);
763         return -ETIMEDOUT;
764 }
765
766 static int
767 falcon_spi_unlock(struct ef4_nic *efx, const struct falcon_spi_device *spi)
768 {
769         const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
770                                 SPI_STATUS_BP0);
771         u8 status;
772         int rc;
773
774         rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
775                             &status, sizeof(status));
776         if (rc)
777                 return rc;
778
779         if (!(status & unlock_mask))
780                 return 0; /* already unlocked */
781
782         rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
783         if (rc)
784                 return rc;
785         rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
786         if (rc)
787                 return rc;
788
789         status &= ~unlock_mask;
790         rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
791                             NULL, sizeof(status));
792         if (rc)
793                 return rc;
794         rc = falcon_spi_wait_write(efx, spi);
795         if (rc)
796                 return rc;
797
798         return 0;
799 }
800
801 #define FALCON_SPI_VERIFY_BUF_LEN 16
802
803 static int
804 falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
805 {
806         const struct falcon_spi_device *spi = part->spi;
807         struct ef4_nic *efx = part->common.mtd.priv;
808         unsigned pos, block_len;
809         u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
810         u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
811         int rc;
812
813         if (len != spi->erase_size)
814                 return -EINVAL;
815
816         if (spi->erase_command == 0)
817                 return -EOPNOTSUPP;
818
819         rc = falcon_spi_unlock(efx, spi);
820         if (rc)
821                 return rc;
822         rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
823         if (rc)
824                 return rc;
825         rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
826                             NULL, 0);
827         if (rc)
828                 return rc;
829         rc = falcon_spi_slow_wait(part, false);
830
831         /* Verify the entire region has been wiped */
832         memset(empty, 0xff, sizeof(empty));
833         for (pos = 0; pos < len; pos += block_len) {
834                 block_len = min(len - pos, sizeof(buffer));
835                 rc = falcon_spi_read(efx, spi, start + pos, block_len,
836                                      NULL, buffer);
837                 if (rc)
838                         return rc;
839                 if (memcmp(empty, buffer, block_len))
840                         return -EIO;
841
842                 /* Avoid locking up the system */
843                 cond_resched();
844                 if (signal_pending(current))
845                         return -EINTR;
846         }
847
848         return rc;
849 }
850
851 static void falcon_mtd_rename(struct ef4_mtd_partition *part)
852 {
853         struct ef4_nic *efx = part->mtd.priv;
854
855         snprintf(part->name, sizeof(part->name), "%s %s",
856                  efx->name, part->type_name);
857 }
858
859 static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
860                            size_t len, size_t *retlen, u8 *buffer)
861 {
862         struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
863         struct ef4_nic *efx = mtd->priv;
864         struct falcon_nic_data *nic_data = efx->nic_data;
865         int rc;
866
867         rc = mutex_lock_interruptible(&nic_data->spi_lock);
868         if (rc)
869                 return rc;
870         rc = falcon_spi_read(efx, part->spi, part->offset + start,
871                              len, retlen, buffer);
872         mutex_unlock(&nic_data->spi_lock);
873         return rc;
874 }
875
876 static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
877 {
878         struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
879         struct ef4_nic *efx = mtd->priv;
880         struct falcon_nic_data *nic_data = efx->nic_data;
881         int rc;
882
883         rc = mutex_lock_interruptible(&nic_data->spi_lock);
884         if (rc)
885                 return rc;
886         rc = falcon_spi_erase(part, part->offset + start, len);
887         mutex_unlock(&nic_data->spi_lock);
888         return rc;
889 }
890
891 static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
892                             size_t len, size_t *retlen, const u8 *buffer)
893 {
894         struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
895         struct ef4_nic *efx = mtd->priv;
896         struct falcon_nic_data *nic_data = efx->nic_data;
897         int rc;
898
899         rc = mutex_lock_interruptible(&nic_data->spi_lock);
900         if (rc)
901                 return rc;
902         rc = falcon_spi_write(efx, part->spi, part->offset + start,
903                               len, retlen, buffer);
904         mutex_unlock(&nic_data->spi_lock);
905         return rc;
906 }
907
908 static int falcon_mtd_sync(struct mtd_info *mtd)
909 {
910         struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
911         struct ef4_nic *efx = mtd->priv;
912         struct falcon_nic_data *nic_data = efx->nic_data;
913         int rc;
914
915         mutex_lock(&nic_data->spi_lock);
916         rc = falcon_spi_slow_wait(part, true);
917         mutex_unlock(&nic_data->spi_lock);
918         return rc;
919 }
920
921 static int falcon_mtd_probe(struct ef4_nic *efx)
922 {
923         struct falcon_nic_data *nic_data = efx->nic_data;
924         struct falcon_mtd_partition *parts;
925         struct falcon_spi_device *spi;
926         size_t n_parts;
927         int rc = -ENODEV;
928
929         ASSERT_RTNL();
930
931         /* Allocate space for maximum number of partitions */
932         parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
933         if (!parts)
934                 return -ENOMEM;
935         n_parts = 0;
936
937         spi = &nic_data->spi_flash;
938         if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
939                 parts[n_parts].spi = spi;
940                 parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
941                 parts[n_parts].common.dev_type_name = "flash";
942                 parts[n_parts].common.type_name = "sfc_flash_bootrom";
943                 parts[n_parts].common.mtd.type = MTD_NORFLASH;
944                 parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
945                 parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
946                 parts[n_parts].common.mtd.erasesize = spi->erase_size;
947                 n_parts++;
948         }
949
950         spi = &nic_data->spi_eeprom;
951         if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
952                 parts[n_parts].spi = spi;
953                 parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
954                 parts[n_parts].common.dev_type_name = "EEPROM";
955                 parts[n_parts].common.type_name = "sfc_bootconfig";
956                 parts[n_parts].common.mtd.type = MTD_RAM;
957                 parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
958                 parts[n_parts].common.mtd.size =
959                         min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
960                         FALCON_EEPROM_BOOTCONFIG_START;
961                 parts[n_parts].common.mtd.erasesize = spi->erase_size;
962                 n_parts++;
963         }
964
965         rc = ef4_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
966         if (rc)
967                 kfree(parts);
968         return rc;
969 }
970
971 #endif /* CONFIG_SFC_FALCON_MTD */
972
973 /**************************************************************************
974  *
975  * XMAC operations
976  *
977  **************************************************************************
978  */
979
980 /* Configure the XAUI driver that is an output from Falcon */
981 static void falcon_setup_xaui(struct ef4_nic *efx)
982 {
983         ef4_oword_t sdctl, txdrv;
984
985         /* Move the XAUI into low power, unless there is no PHY, in
986          * which case the XAUI will have to drive a cable. */
987         if (efx->phy_type == PHY_TYPE_NONE)
988                 return;
989
990         ef4_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
991         EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
992         EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
993         EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
994         EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
995         EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
996         EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
997         EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
998         EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
999         ef4_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
1000
1001         EF4_POPULATE_OWORD_8(txdrv,
1002                              FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
1003                              FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
1004                              FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
1005                              FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
1006                              FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
1007                              FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
1008                              FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
1009                              FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
1010         ef4_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
1011 }
1012
1013 int falcon_reset_xaui(struct ef4_nic *efx)
1014 {
1015         struct falcon_nic_data *nic_data = efx->nic_data;
1016         ef4_oword_t reg;
1017         int count;
1018
1019         /* Don't fetch MAC statistics over an XMAC reset */
1020         WARN_ON(nic_data->stats_disable_count == 0);
1021
1022         /* Start reset sequence */
1023         EF4_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
1024         ef4_writeo(efx, &reg, FR_AB_XX_PWR_RST);
1025
1026         /* Wait up to 10 ms for completion, then reinitialise */
1027         for (count = 0; count < 1000; count++) {
1028                 ef4_reado(efx, &reg, FR_AB_XX_PWR_RST);
1029                 if (EF4_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
1030                     EF4_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
1031                         falcon_setup_xaui(efx);
1032                         return 0;
1033                 }
1034                 udelay(10);
1035         }
1036         netif_err(efx, hw, efx->net_dev,
1037                   "timed out waiting for XAUI/XGXS reset\n");
1038         return -ETIMEDOUT;
1039 }
1040
1041 static void falcon_ack_status_intr(struct ef4_nic *efx)
1042 {
1043         struct falcon_nic_data *nic_data = efx->nic_data;
1044         ef4_oword_t reg;
1045
1046         if ((ef4_nic_rev(efx) != EF4_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
1047                 return;
1048
1049         /* We expect xgmii faults if the wireside link is down */
1050         if (!efx->link_state.up)
1051                 return;
1052
1053         /* We can only use this interrupt to signal the negative edge of
1054          * xaui_align [we have to poll the positive edge]. */
1055         if (nic_data->xmac_poll_required)
1056                 return;
1057
1058         ef4_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
1059 }
1060
1061 static bool falcon_xgxs_link_ok(struct ef4_nic *efx)
1062 {
1063         ef4_oword_t reg;
1064         bool align_done, link_ok = false;
1065         int sync_status;
1066
1067         /* Read link status */
1068         ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1069
1070         align_done = EF4_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
1071         sync_status = EF4_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
1072         if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
1073                 link_ok = true;
1074
1075         /* Clear link status ready for next read */
1076         EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
1077         EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
1078         EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
1079         ef4_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1080
1081         return link_ok;
1082 }
1083
1084 static bool falcon_xmac_link_ok(struct ef4_nic *efx)
1085 {
1086         /*
1087          * Check MAC's XGXS link status except when using XGMII loopback
1088          * which bypasses the XGXS block.
1089          * If possible, check PHY's XGXS link status except when using
1090          * MAC loopback.
1091          */
1092         return (efx->loopback_mode == LOOPBACK_XGMII ||
1093                 falcon_xgxs_link_ok(efx)) &&
1094                 (!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
1095                  LOOPBACK_INTERNAL(efx) ||
1096                  ef4_mdio_phyxgxs_lane_sync(efx));
1097 }
1098
1099 static void falcon_reconfigure_xmac_core(struct ef4_nic *efx)
1100 {
1101         unsigned int max_frame_len;
1102         ef4_oword_t reg;
1103         bool rx_fc = !!(efx->link_state.fc & EF4_FC_RX);
1104         bool tx_fc = !!(efx->link_state.fc & EF4_FC_TX);
1105
1106         /* Configure MAC  - cut-thru mode is hard wired on */
1107         EF4_POPULATE_OWORD_3(reg,
1108                              FRF_AB_XM_RX_JUMBO_MODE, 1,
1109                              FRF_AB_XM_TX_STAT_EN, 1,
1110                              FRF_AB_XM_RX_STAT_EN, 1);
1111         ef4_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1112
1113         /* Configure TX */
1114         EF4_POPULATE_OWORD_6(reg,
1115                              FRF_AB_XM_TXEN, 1,
1116                              FRF_AB_XM_TX_PRMBL, 1,
1117                              FRF_AB_XM_AUTO_PAD, 1,
1118                              FRF_AB_XM_TXCRC, 1,
1119                              FRF_AB_XM_FCNTL, tx_fc,
1120                              FRF_AB_XM_IPG, 0x3);
1121         ef4_writeo(efx, &reg, FR_AB_XM_TX_CFG);
1122
1123         /* Configure RX */
1124         EF4_POPULATE_OWORD_5(reg,
1125                              FRF_AB_XM_RXEN, 1,
1126                              FRF_AB_XM_AUTO_DEPAD, 0,
1127                              FRF_AB_XM_ACPT_ALL_MCAST, 1,
1128                              FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
1129                              FRF_AB_XM_PASS_CRC_ERR, 1);
1130         ef4_writeo(efx, &reg, FR_AB_XM_RX_CFG);
1131
1132         /* Set frame length */
1133         max_frame_len = EF4_MAX_FRAME_LEN(efx->net_dev->mtu);
1134         EF4_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
1135         ef4_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
1136         EF4_POPULATE_OWORD_2(reg,
1137                              FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
1138                              FRF_AB_XM_TX_JUMBO_MODE, 1);
1139         ef4_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
1140
1141         EF4_POPULATE_OWORD_2(reg,
1142                              FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
1143                              FRF_AB_XM_DIS_FCNTL, !rx_fc);
1144         ef4_writeo(efx, &reg, FR_AB_XM_FC);
1145
1146         /* Set MAC address */
1147         memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
1148         ef4_writeo(efx, &reg, FR_AB_XM_ADR_LO);
1149         memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
1150         ef4_writeo(efx, &reg, FR_AB_XM_ADR_HI);
1151 }
1152
1153 static void falcon_reconfigure_xgxs_core(struct ef4_nic *efx)
1154 {
1155         ef4_oword_t reg;
1156         bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
1157         bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
1158         bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
1159         bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
1160
1161         /* XGXS block is flaky and will need to be reset if moving
1162          * into our out of XGMII, XGXS or XAUI loopbacks. */
1163         ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1164         old_xgxs_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
1165         old_xgmii_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
1166
1167         ef4_reado(efx, &reg, FR_AB_XX_SD_CTL);
1168         old_xaui_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
1169
1170         /* The PHY driver may have turned XAUI off */
1171         if ((xgxs_loopback != old_xgxs_loopback) ||
1172             (xaui_loopback != old_xaui_loopback) ||
1173             (xgmii_loopback != old_xgmii_loopback))
1174                 falcon_reset_xaui(efx);
1175
1176         ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1177         EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
1178                             (xgxs_loopback || xaui_loopback) ?
1179                             FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
1180         EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
1181         EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
1182         ef4_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1183
1184         ef4_reado(efx, &reg, FR_AB_XX_SD_CTL);
1185         EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
1186         EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
1187         EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
1188         EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
1189         ef4_writeo(efx, &reg, FR_AB_XX_SD_CTL);
1190 }
1191
1192
1193 /* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
1194 static bool falcon_xmac_link_ok_retry(struct ef4_nic *efx, int tries)
1195 {
1196         bool mac_up = falcon_xmac_link_ok(efx);
1197
1198         if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
1199             ef4_phy_mode_disabled(efx->phy_mode))
1200                 /* XAUI link is expected to be down */
1201                 return mac_up;
1202
1203         falcon_stop_nic_stats(efx);
1204
1205         while (!mac_up && tries) {
1206                 netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
1207                 falcon_reset_xaui(efx);
1208                 udelay(200);
1209
1210                 mac_up = falcon_xmac_link_ok(efx);
1211                 --tries;
1212         }
1213
1214         falcon_start_nic_stats(efx);
1215
1216         return mac_up;
1217 }
1218
1219 static bool falcon_xmac_check_fault(struct ef4_nic *efx)
1220 {
1221         return !falcon_xmac_link_ok_retry(efx, 5);
1222 }
1223
1224 static int falcon_reconfigure_xmac(struct ef4_nic *efx)
1225 {
1226         struct falcon_nic_data *nic_data = efx->nic_data;
1227
1228         ef4_farch_filter_sync_rx_mode(efx);
1229
1230         falcon_reconfigure_xgxs_core(efx);
1231         falcon_reconfigure_xmac_core(efx);
1232
1233         falcon_reconfigure_mac_wrapper(efx);
1234
1235         nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
1236         falcon_ack_status_intr(efx);
1237
1238         return 0;
1239 }
1240
1241 static void falcon_poll_xmac(struct ef4_nic *efx)
1242 {
1243         struct falcon_nic_data *nic_data = efx->nic_data;
1244
1245         /* We expect xgmii faults if the wireside link is down */
1246         if (!efx->link_state.up || !nic_data->xmac_poll_required)
1247                 return;
1248
1249         nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
1250         falcon_ack_status_intr(efx);
1251 }
1252
1253 /**************************************************************************
1254  *
1255  * MAC wrapper
1256  *
1257  **************************************************************************
1258  */
1259
1260 static void falcon_push_multicast_hash(struct ef4_nic *efx)
1261 {
1262         union ef4_multicast_hash *mc_hash = &efx->multicast_hash;
1263
1264         WARN_ON(!mutex_is_locked(&efx->mac_lock));
1265
1266         ef4_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
1267         ef4_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
1268 }
1269
1270 static void falcon_reset_macs(struct ef4_nic *efx)
1271 {
1272         struct falcon_nic_data *nic_data = efx->nic_data;
1273         ef4_oword_t reg, mac_ctrl;
1274         int count;
1275
1276         if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0) {
1277                 /* It's not safe to use GLB_CTL_REG to reset the
1278                  * macs, so instead use the internal MAC resets
1279                  */
1280                 EF4_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1281                 ef4_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1282
1283                 for (count = 0; count < 10000; count++) {
1284                         ef4_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1285                         if (EF4_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1286                             0)
1287                                 return;
1288                         udelay(10);
1289                 }
1290
1291                 netif_err(efx, hw, efx->net_dev,
1292                           "timed out waiting for XMAC core reset\n");
1293         }
1294
1295         /* Mac stats will fail whist the TX fifo is draining */
1296         WARN_ON(nic_data->stats_disable_count == 0);
1297
1298         ef4_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1299         EF4_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
1300         ef4_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1301
1302         ef4_reado(efx, &reg, FR_AB_GLB_CTL);
1303         EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1304         EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1305         EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1306         ef4_writeo(efx, &reg, FR_AB_GLB_CTL);
1307
1308         count = 0;
1309         while (1) {
1310                 ef4_reado(efx, &reg, FR_AB_GLB_CTL);
1311                 if (!EF4_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1312                     !EF4_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1313                     !EF4_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1314                         netif_dbg(efx, hw, efx->net_dev,
1315                                   "Completed MAC reset after %d loops\n",
1316                                   count);
1317                         break;
1318                 }
1319                 if (count > 20) {
1320                         netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
1321                         break;
1322                 }
1323                 count++;
1324                 udelay(10);
1325         }
1326
1327         /* Ensure the correct MAC is selected before statistics
1328          * are re-enabled by the caller */
1329         ef4_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1330
1331         falcon_setup_xaui(efx);
1332 }
1333
1334 static void falcon_drain_tx_fifo(struct ef4_nic *efx)
1335 {
1336         ef4_oword_t reg;
1337
1338         if ((ef4_nic_rev(efx) < EF4_REV_FALCON_B0) ||
1339             (efx->loopback_mode != LOOPBACK_NONE))
1340                 return;
1341
1342         ef4_reado(efx, &reg, FR_AB_MAC_CTRL);
1343         /* There is no point in draining more than once */
1344         if (EF4_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1345                 return;
1346
1347         falcon_reset_macs(efx);
1348 }
1349
1350 static void falcon_deconfigure_mac_wrapper(struct ef4_nic *efx)
1351 {
1352         ef4_oword_t reg;
1353
1354         if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0)
1355                 return;
1356
1357         /* Isolate the MAC -> RX */
1358         ef4_reado(efx, &reg, FR_AZ_RX_CFG);
1359         EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1360         ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
1361
1362         /* Isolate TX -> MAC */
1363         falcon_drain_tx_fifo(efx);
1364 }
1365
1366 static void falcon_reconfigure_mac_wrapper(struct ef4_nic *efx)
1367 {
1368         struct ef4_link_state *link_state = &efx->link_state;
1369         ef4_oword_t reg;
1370         int link_speed, isolate;
1371
1372         isolate = !!READ_ONCE(efx->reset_pending);
1373
1374         switch (link_state->speed) {
1375         case 10000: link_speed = 3; break;
1376         case 1000:  link_speed = 2; break;
1377         case 100:   link_speed = 1; break;
1378         default:    link_speed = 0; break;
1379         }
1380
1381         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1382          * as advertised.  Disable to ensure packets are not
1383          * indefinitely held and TX queue can be flushed at any point
1384          * while the link is down. */
1385         EF4_POPULATE_OWORD_5(reg,
1386                              FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1387                              FRF_AB_MAC_BCAD_ACPT, 1,
1388                              FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
1389                              FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1390                              FRF_AB_MAC_SPEED, link_speed);
1391         /* On B0, MAC backpressure can be disabled and packets get
1392          * discarded. */
1393         if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1394                 EF4_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1395                                     !link_state->up || isolate);
1396         }
1397
1398         ef4_writeo(efx, &reg, FR_AB_MAC_CTRL);
1399
1400         /* Restore the multicast hash registers. */
1401         falcon_push_multicast_hash(efx);
1402
1403         ef4_reado(efx, &reg, FR_AZ_RX_CFG);
1404         /* Enable XOFF signal from RX FIFO (we enabled it during NIC
1405          * initialisation but it may read back as 0) */
1406         EF4_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1407         /* Unisolate the MAC -> RX */
1408         if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1409                 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
1410         ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
1411 }
1412
1413 static void falcon_stats_request(struct ef4_nic *efx)
1414 {
1415         struct falcon_nic_data *nic_data = efx->nic_data;
1416         ef4_oword_t reg;
1417
1418         WARN_ON(nic_data->stats_pending);
1419         WARN_ON(nic_data->stats_disable_count);
1420
1421         FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
1422         nic_data->stats_pending = true;
1423         wmb(); /* ensure done flag is clear */
1424
1425         /* Initiate DMA transfer of stats */
1426         EF4_POPULATE_OWORD_2(reg,
1427                              FRF_AB_MAC_STAT_DMA_CMD, 1,
1428                              FRF_AB_MAC_STAT_DMA_ADR,
1429                              efx->stats_buffer.dma_addr);
1430         ef4_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
1431
1432         mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
1433 }
1434
1435 static void falcon_stats_complete(struct ef4_nic *efx)
1436 {
1437         struct falcon_nic_data *nic_data = efx->nic_data;
1438
1439         if (!nic_data->stats_pending)
1440                 return;
1441
1442         nic_data->stats_pending = false;
1443         if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
1444                 rmb(); /* read the done flag before the stats */
1445                 ef4_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
1446                                      falcon_stat_mask, nic_data->stats,
1447                                      efx->stats_buffer.addr, true);
1448         } else {
1449                 netif_err(efx, hw, efx->net_dev,
1450                           "timed out waiting for statistics\n");
1451         }
1452 }
1453
1454 static void falcon_stats_timer_func(struct timer_list *t)
1455 {
1456         struct falcon_nic_data *nic_data = from_timer(nic_data, t,
1457                                                       stats_timer);
1458         struct ef4_nic *efx = nic_data->efx;
1459
1460         spin_lock(&efx->stats_lock);
1461
1462         falcon_stats_complete(efx);
1463         if (nic_data->stats_disable_count == 0)
1464                 falcon_stats_request(efx);
1465
1466         spin_unlock(&efx->stats_lock);
1467 }
1468
1469 static bool falcon_loopback_link_poll(struct ef4_nic *efx)
1470 {
1471         struct ef4_link_state old_state = efx->link_state;
1472
1473         WARN_ON(!mutex_is_locked(&efx->mac_lock));
1474         WARN_ON(!LOOPBACK_INTERNAL(efx));
1475
1476         efx->link_state.fd = true;
1477         efx->link_state.fc = efx->wanted_fc;
1478         efx->link_state.up = true;
1479         efx->link_state.speed = 10000;
1480
1481         return !ef4_link_state_equal(&efx->link_state, &old_state);
1482 }
1483
1484 static int falcon_reconfigure_port(struct ef4_nic *efx)
1485 {
1486         int rc;
1487
1488         WARN_ON(ef4_nic_rev(efx) > EF4_REV_FALCON_B0);
1489
1490         /* Poll the PHY link state *before* reconfiguring it. This means we
1491          * will pick up the correct speed (in loopback) to select the correct
1492          * MAC.
1493          */
1494         if (LOOPBACK_INTERNAL(efx))
1495                 falcon_loopback_link_poll(efx);
1496         else
1497                 efx->phy_op->poll(efx);
1498
1499         falcon_stop_nic_stats(efx);
1500         falcon_deconfigure_mac_wrapper(efx);
1501
1502         falcon_reset_macs(efx);
1503
1504         efx->phy_op->reconfigure(efx);
1505         rc = falcon_reconfigure_xmac(efx);
1506         BUG_ON(rc);
1507
1508         falcon_start_nic_stats(efx);
1509
1510         /* Synchronise efx->link_state with the kernel */
1511         ef4_link_status_changed(efx);
1512
1513         return 0;
1514 }
1515
1516 /* TX flow control may automatically turn itself off if the link
1517  * partner (intermittently) stops responding to pause frames. There
1518  * isn't any indication that this has happened, so the best we do is
1519  * leave it up to the user to spot this and fix it by cycling transmit
1520  * flow control on this end.
1521  */
1522
1523 static void falcon_a1_prepare_enable_fc_tx(struct ef4_nic *efx)
1524 {
1525         /* Schedule a reset to recover */
1526         ef4_schedule_reset(efx, RESET_TYPE_INVISIBLE);
1527 }
1528
1529 static void falcon_b0_prepare_enable_fc_tx(struct ef4_nic *efx)
1530 {
1531         /* Recover by resetting the EM block */
1532         falcon_stop_nic_stats(efx);
1533         falcon_drain_tx_fifo(efx);
1534         falcon_reconfigure_xmac(efx);
1535         falcon_start_nic_stats(efx);
1536 }
1537
1538 /**************************************************************************
1539  *
1540  * PHY access via GMII
1541  *
1542  **************************************************************************
1543  */
1544
1545 /* Wait for GMII access to complete */
1546 static int falcon_gmii_wait(struct ef4_nic *efx)
1547 {
1548         ef4_oword_t md_stat;
1549         int count;
1550
1551         /* wait up to 50ms - taken max from datasheet */
1552         for (count = 0; count < 5000; count++) {
1553                 ef4_reado(efx, &md_stat, FR_AB_MD_STAT);
1554                 if (EF4_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
1555                         if (EF4_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
1556                             EF4_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
1557                                 netif_err(efx, hw, efx->net_dev,
1558                                           "error from GMII access "
1559                                           EF4_OWORD_FMT"\n",
1560                                           EF4_OWORD_VAL(md_stat));
1561                                 return -EIO;
1562                         }
1563                         return 0;
1564                 }
1565                 udelay(10);
1566         }
1567         netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
1568         return -ETIMEDOUT;
1569 }
1570
1571 /* Write an MDIO register of a PHY connected to Falcon. */
1572 static int falcon_mdio_write(struct net_device *net_dev,
1573                              int prtad, int devad, u16 addr, u16 value)
1574 {
1575         struct ef4_nic *efx = netdev_priv(net_dev);
1576         struct falcon_nic_data *nic_data = efx->nic_data;
1577         ef4_oword_t reg;
1578         int rc;
1579
1580         netif_vdbg(efx, hw, efx->net_dev,
1581                    "writing MDIO %d register %d.%d with 0x%04x\n",
1582                     prtad, devad, addr, value);
1583
1584         mutex_lock(&nic_data->mdio_lock);
1585
1586         /* Check MDIO not currently being accessed */
1587         rc = falcon_gmii_wait(efx);
1588         if (rc)
1589                 goto out;
1590
1591         /* Write the address/ID register */
1592         EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1593         ef4_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1594
1595         EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1596                              FRF_AB_MD_DEV_ADR, devad);
1597         ef4_writeo(efx, &reg, FR_AB_MD_ID);
1598
1599         /* Write data */
1600         EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
1601         ef4_writeo(efx, &reg, FR_AB_MD_TXD);
1602
1603         EF4_POPULATE_OWORD_2(reg,
1604                              FRF_AB_MD_WRC, 1,
1605                              FRF_AB_MD_GC, 0);
1606         ef4_writeo(efx, &reg, FR_AB_MD_CS);
1607
1608         /* Wait for data to be written */
1609         rc = falcon_gmii_wait(efx);
1610         if (rc) {
1611                 /* Abort the write operation */
1612                 EF4_POPULATE_OWORD_2(reg,
1613                                      FRF_AB_MD_WRC, 0,
1614                                      FRF_AB_MD_GC, 1);
1615                 ef4_writeo(efx, &reg, FR_AB_MD_CS);
1616                 udelay(10);
1617         }
1618
1619 out:
1620         mutex_unlock(&nic_data->mdio_lock);
1621         return rc;
1622 }
1623
1624 /* Read an MDIO register of a PHY connected to Falcon. */
1625 static int falcon_mdio_read(struct net_device *net_dev,
1626                             int prtad, int devad, u16 addr)
1627 {
1628         struct ef4_nic *efx = netdev_priv(net_dev);
1629         struct falcon_nic_data *nic_data = efx->nic_data;
1630         ef4_oword_t reg;
1631         int rc;
1632
1633         mutex_lock(&nic_data->mdio_lock);
1634
1635         /* Check MDIO not currently being accessed */
1636         rc = falcon_gmii_wait(efx);
1637         if (rc)
1638                 goto out;
1639
1640         EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1641         ef4_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1642
1643         EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1644                              FRF_AB_MD_DEV_ADR, devad);
1645         ef4_writeo(efx, &reg, FR_AB_MD_ID);
1646
1647         /* Request data to be read */
1648         EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
1649         ef4_writeo(efx, &reg, FR_AB_MD_CS);
1650
1651         /* Wait for data to become available */
1652         rc = falcon_gmii_wait(efx);
1653         if (rc == 0) {
1654                 ef4_reado(efx, &reg, FR_AB_MD_RXD);
1655                 rc = EF4_OWORD_FIELD(reg, FRF_AB_MD_RXD);
1656                 netif_vdbg(efx, hw, efx->net_dev,
1657                            "read from MDIO %d register %d.%d, got %04x\n",
1658                            prtad, devad, addr, rc);
1659         } else {
1660                 /* Abort the read operation */
1661                 EF4_POPULATE_OWORD_2(reg,
1662                                      FRF_AB_MD_RIC, 0,
1663                                      FRF_AB_MD_GC, 1);
1664                 ef4_writeo(efx, &reg, FR_AB_MD_CS);
1665
1666                 netif_dbg(efx, hw, efx->net_dev,
1667                           "read from MDIO %d register %d.%d, got error %d\n",
1668                           prtad, devad, addr, rc);
1669         }
1670
1671 out:
1672         mutex_unlock(&nic_data->mdio_lock);
1673         return rc;
1674 }
1675
1676 /* This call is responsible for hooking in the MAC and PHY operations */
1677 static int falcon_probe_port(struct ef4_nic *efx)
1678 {
1679         struct falcon_nic_data *nic_data = efx->nic_data;
1680         int rc;
1681
1682         switch (efx->phy_type) {
1683         case PHY_TYPE_SFX7101:
1684                 efx->phy_op = &falcon_sfx7101_phy_ops;
1685                 break;
1686         case PHY_TYPE_QT2022C2:
1687         case PHY_TYPE_QT2025C:
1688                 efx->phy_op = &falcon_qt202x_phy_ops;
1689                 break;
1690         case PHY_TYPE_TXC43128:
1691                 efx->phy_op = &falcon_txc_phy_ops;
1692                 break;
1693         default:
1694                 netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
1695                           efx->phy_type);
1696                 return -ENODEV;
1697         }
1698
1699         /* Fill out MDIO structure and loopback modes */
1700         mutex_init(&nic_data->mdio_lock);
1701         efx->mdio.mdio_read = falcon_mdio_read;
1702         efx->mdio.mdio_write = falcon_mdio_write;
1703         rc = efx->phy_op->probe(efx);
1704         if (rc != 0)
1705                 return rc;
1706
1707         /* Initial assumption */
1708         efx->link_state.speed = 10000;
1709         efx->link_state.fd = true;
1710
1711         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1712         if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1713                 efx->wanted_fc = EF4_FC_RX | EF4_FC_TX;
1714         else
1715                 efx->wanted_fc = EF4_FC_RX;
1716         if (efx->mdio.mmds & MDIO_DEVS_AN)
1717                 efx->wanted_fc |= EF4_FC_AUTO;
1718
1719         /* Allocate buffer for stats */
1720         rc = ef4_nic_alloc_buffer(efx, &efx->stats_buffer,
1721                                   FALCON_MAC_STATS_SIZE, GFP_KERNEL);
1722         if (rc)
1723                 return rc;
1724         netif_dbg(efx, probe, efx->net_dev,
1725                   "stats buffer at %llx (virt %p phys %llx)\n",
1726                   (u64)efx->stats_buffer.dma_addr,
1727                   efx->stats_buffer.addr,
1728                   (u64)virt_to_phys(efx->stats_buffer.addr));
1729
1730         return 0;
1731 }
1732
1733 static void falcon_remove_port(struct ef4_nic *efx)
1734 {
1735         efx->phy_op->remove(efx);
1736         ef4_nic_free_buffer(efx, &efx->stats_buffer);
1737 }
1738
1739 /* Global events are basically PHY events */
1740 static bool
1741 falcon_handle_global_event(struct ef4_channel *channel, ef4_qword_t *event)
1742 {
1743         struct ef4_nic *efx = channel->efx;
1744         struct falcon_nic_data *nic_data = efx->nic_data;
1745
1746         if (EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
1747             EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
1748             EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
1749                 /* Ignored */
1750                 return true;
1751
1752         if ((ef4_nic_rev(efx) == EF4_REV_FALCON_B0) &&
1753             EF4_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
1754                 nic_data->xmac_poll_required = true;
1755                 return true;
1756         }
1757
1758         if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1 ?
1759             EF4_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
1760             EF4_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
1761                 netif_err(efx, rx_err, efx->net_dev,
1762                           "channel %d seen global RX_RESET event. Resetting.\n",
1763                           channel->channel);
1764
1765                 atomic_inc(&efx->rx_reset);
1766                 ef4_schedule_reset(efx, EF4_WORKAROUND_6555(efx) ?
1767                                    RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1768                 return true;
1769         }
1770
1771         return false;
1772 }
1773
1774 /**************************************************************************
1775  *
1776  * Falcon test code
1777  *
1778  **************************************************************************/
1779
1780 static int
1781 falcon_read_nvram(struct ef4_nic *efx, struct falcon_nvconfig *nvconfig_out)
1782 {
1783         struct falcon_nic_data *nic_data = efx->nic_data;
1784         struct falcon_nvconfig *nvconfig;
1785         struct falcon_spi_device *spi;
1786         void *region;
1787         int rc, magic_num, struct_ver;
1788         __le16 *word, *limit;
1789         u32 csum;
1790
1791         if (falcon_spi_present(&nic_data->spi_flash))
1792                 spi = &nic_data->spi_flash;
1793         else if (falcon_spi_present(&nic_data->spi_eeprom))
1794                 spi = &nic_data->spi_eeprom;
1795         else
1796                 return -EINVAL;
1797
1798         region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
1799         if (!region)
1800                 return -ENOMEM;
1801         nvconfig = region + FALCON_NVCONFIG_OFFSET;
1802
1803         mutex_lock(&nic_data->spi_lock);
1804         rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
1805         mutex_unlock(&nic_data->spi_lock);
1806         if (rc) {
1807                 netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
1808                           falcon_spi_present(&nic_data->spi_flash) ?
1809                           "flash" : "EEPROM");
1810                 rc = -EIO;
1811                 goto out;
1812         }
1813
1814         magic_num = le16_to_cpu(nvconfig->board_magic_num);
1815         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
1816
1817         rc = -EINVAL;
1818         if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
1819                 netif_err(efx, hw, efx->net_dev,
1820                           "NVRAM bad magic 0x%x\n", magic_num);
1821                 goto out;
1822         }
1823         if (struct_ver < 2) {
1824                 netif_err(efx, hw, efx->net_dev,
1825                           "NVRAM has ancient version 0x%x\n", struct_ver);
1826                 goto out;
1827         } else if (struct_ver < 4) {
1828                 word = &nvconfig->board_magic_num;
1829                 limit = (__le16 *) (nvconfig + 1);
1830         } else {
1831                 word = region;
1832                 limit = region + FALCON_NVCONFIG_END;
1833         }
1834         for (csum = 0; word < limit; ++word)
1835                 csum += le16_to_cpu(*word);
1836
1837         if (~csum & 0xffff) {
1838                 netif_err(efx, hw, efx->net_dev,
1839                           "NVRAM has incorrect checksum\n");
1840                 goto out;
1841         }
1842
1843         rc = 0;
1844         if (nvconfig_out)
1845                 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1846
1847  out:
1848         kfree(region);
1849         return rc;
1850 }
1851
1852 static int falcon_test_nvram(struct ef4_nic *efx)
1853 {
1854         return falcon_read_nvram(efx, NULL);
1855 }
1856
1857 static const struct ef4_farch_register_test falcon_b0_register_tests[] = {
1858         { FR_AZ_ADR_REGION,
1859           EF4_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1860         { FR_AZ_RX_CFG,
1861           EF4_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1862         { FR_AZ_TX_CFG,
1863           EF4_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1864         { FR_AZ_TX_RESERVED,
1865           EF4_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1866         { FR_AB_MAC_CTRL,
1867           EF4_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1868         { FR_AZ_SRM_TX_DC_CFG,
1869           EF4_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1870         { FR_AZ_RX_DC_CFG,
1871           EF4_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1872         { FR_AZ_RX_DC_PF_WM,
1873           EF4_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1874         { FR_BZ_DP_CTRL,
1875           EF4_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1876         { FR_AB_GM_CFG2,
1877           EF4_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1878         { FR_AB_GMF_CFG0,
1879           EF4_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1880         { FR_AB_XM_GLB_CFG,
1881           EF4_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1882         { FR_AB_XM_TX_CFG,
1883           EF4_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1884         { FR_AB_XM_RX_CFG,
1885           EF4_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1886         { FR_AB_XM_RX_PARAM,
1887           EF4_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1888         { FR_AB_XM_FC,
1889           EF4_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1890         { FR_AB_XM_ADR_LO,
1891           EF4_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1892         { FR_AB_XX_SD_CTL,
1893           EF4_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1894 };
1895
1896 static int
1897 falcon_b0_test_chip(struct ef4_nic *efx, struct ef4_self_tests *tests)
1898 {
1899         enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1900         int rc, rc2;
1901
1902         mutex_lock(&efx->mac_lock);
1903         if (efx->loopback_modes) {
1904                 /* We need the 312 clock from the PHY to test the XMAC
1905                  * registers, so move into XGMII loopback if available */
1906                 if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1907                         efx->loopback_mode = LOOPBACK_XGMII;
1908                 else
1909                         efx->loopback_mode = __ffs(efx->loopback_modes);
1910         }
1911         __ef4_reconfigure_port(efx);
1912         mutex_unlock(&efx->mac_lock);
1913
1914         ef4_reset_down(efx, reset_method);
1915
1916         tests->registers =
1917                 ef4_farch_test_registers(efx, falcon_b0_register_tests,
1918                                          ARRAY_SIZE(falcon_b0_register_tests))
1919                 ? -1 : 1;
1920
1921         rc = falcon_reset_hw(efx, reset_method);
1922         rc2 = ef4_reset_up(efx, reset_method, rc == 0);
1923         return rc ? rc : rc2;
1924 }
1925
1926 /**************************************************************************
1927  *
1928  * Device reset
1929  *
1930  **************************************************************************
1931  */
1932
1933 static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1934 {
1935         switch (reason) {
1936         case RESET_TYPE_RX_RECOVERY:
1937         case RESET_TYPE_DMA_ERROR:
1938         case RESET_TYPE_TX_SKIP:
1939                 /* These can occasionally occur due to hardware bugs.
1940                  * We try to reset without disrupting the link.
1941                  */
1942                 return RESET_TYPE_INVISIBLE;
1943         default:
1944                 return RESET_TYPE_ALL;
1945         }
1946 }
1947
1948 static int falcon_map_reset_flags(u32 *flags)
1949 {
1950         enum {
1951                 FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1952                                           ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1953                 FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1954                 FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1955         };
1956
1957         if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1958                 *flags &= ~FALCON_RESET_WORLD;
1959                 return RESET_TYPE_WORLD;
1960         }
1961
1962         if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1963                 *flags &= ~FALCON_RESET_ALL;
1964                 return RESET_TYPE_ALL;
1965         }
1966
1967         if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1968                 *flags &= ~FALCON_RESET_INVISIBLE;
1969                 return RESET_TYPE_INVISIBLE;
1970         }
1971
1972         return -EINVAL;
1973 }
1974
1975 /* Resets NIC to known state.  This routine must be called in process
1976  * context and is allowed to sleep. */
1977 static int __falcon_reset_hw(struct ef4_nic *efx, enum reset_type method)
1978 {
1979         struct falcon_nic_data *nic_data = efx->nic_data;
1980         ef4_oword_t glb_ctl_reg_ker;
1981         int rc;
1982
1983         netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1984                   RESET_TYPE(method));
1985
1986         /* Initiate device reset */
1987         if (method == RESET_TYPE_WORLD) {
1988                 rc = pci_save_state(efx->pci_dev);
1989                 if (rc) {
1990                         netif_err(efx, drv, efx->net_dev,
1991                                   "failed to backup PCI state of primary "
1992                                   "function prior to hardware reset\n");
1993                         goto fail1;
1994                 }
1995                 if (ef4_nic_is_dual_func(efx)) {
1996                         rc = pci_save_state(nic_data->pci_dev2);
1997                         if (rc) {
1998                                 netif_err(efx, drv, efx->net_dev,
1999                                           "failed to backup PCI state of "
2000                                           "secondary function prior to "
2001                                           "hardware reset\n");
2002                                 goto fail2;
2003                         }
2004                 }
2005
2006                 EF4_POPULATE_OWORD_2(glb_ctl_reg_ker,
2007                                      FRF_AB_EXT_PHY_RST_DUR,
2008                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
2009                                      FRF_AB_SWRST, 1);
2010         } else {
2011                 EF4_POPULATE_OWORD_7(glb_ctl_reg_ker,
2012                                      /* exclude PHY from "invisible" reset */
2013                                      FRF_AB_EXT_PHY_RST_CTL,
2014                                      method == RESET_TYPE_INVISIBLE,
2015                                      /* exclude EEPROM/flash and PCIe */
2016                                      FRF_AB_PCIE_CORE_RST_CTL, 1,
2017                                      FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2018                                      FRF_AB_PCIE_SD_RST_CTL, 1,
2019                                      FRF_AB_EE_RST_CTL, 1,
2020                                      FRF_AB_EXT_PHY_RST_DUR,
2021                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
2022                                      FRF_AB_SWRST, 1);
2023         }
2024         ef4_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2025
2026         netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
2027         schedule_timeout_uninterruptible(HZ / 20);
2028
2029         /* Restore PCI configuration if needed */
2030         if (method == RESET_TYPE_WORLD) {
2031                 if (ef4_nic_is_dual_func(efx))
2032                         pci_restore_state(nic_data->pci_dev2);
2033                 pci_restore_state(efx->pci_dev);
2034                 netif_dbg(efx, drv, efx->net_dev,
2035                           "successfully restored PCI config\n");
2036         }
2037
2038         /* Assert that reset complete */
2039         ef4_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2040         if (EF4_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2041                 rc = -ETIMEDOUT;
2042                 netif_err(efx, hw, efx->net_dev,
2043                           "timed out waiting for hardware reset\n");
2044                 goto fail3;
2045         }
2046         netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
2047
2048         return 0;
2049
2050         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2051 fail2:
2052         pci_restore_state(efx->pci_dev);
2053 fail1:
2054 fail3:
2055         return rc;
2056 }
2057
2058 static int falcon_reset_hw(struct ef4_nic *efx, enum reset_type method)
2059 {
2060         struct falcon_nic_data *nic_data = efx->nic_data;
2061         int rc;
2062
2063         mutex_lock(&nic_data->spi_lock);
2064         rc = __falcon_reset_hw(efx, method);
2065         mutex_unlock(&nic_data->spi_lock);
2066
2067         return rc;
2068 }
2069
2070 static void falcon_monitor(struct ef4_nic *efx)
2071 {
2072         bool link_changed;
2073         int rc;
2074
2075         BUG_ON(!mutex_is_locked(&efx->mac_lock));
2076
2077         rc = falcon_board(efx)->type->monitor(efx);
2078         if (rc) {
2079                 netif_err(efx, hw, efx->net_dev,
2080                           "Board sensor %s; shutting down PHY\n",
2081                           (rc == -ERANGE) ? "reported fault" : "failed");
2082                 efx->phy_mode |= PHY_MODE_LOW_POWER;
2083                 rc = __ef4_reconfigure_port(efx);
2084                 WARN_ON(rc);
2085         }
2086
2087         if (LOOPBACK_INTERNAL(efx))
2088                 link_changed = falcon_loopback_link_poll(efx);
2089         else
2090                 link_changed = efx->phy_op->poll(efx);
2091
2092         if (link_changed) {
2093                 falcon_stop_nic_stats(efx);
2094                 falcon_deconfigure_mac_wrapper(efx);
2095
2096                 falcon_reset_macs(efx);
2097                 rc = falcon_reconfigure_xmac(efx);
2098                 BUG_ON(rc);
2099
2100                 falcon_start_nic_stats(efx);
2101
2102                 ef4_link_status_changed(efx);
2103         }
2104
2105         falcon_poll_xmac(efx);
2106 }
2107
2108 /* Zeroes out the SRAM contents.  This routine must be called in
2109  * process context and is allowed to sleep.
2110  */
2111 static int falcon_reset_sram(struct ef4_nic *efx)
2112 {
2113         ef4_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2114         int count;
2115
2116         /* Set the SRAM wake/sleep GPIO appropriately. */
2117         ef4_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2118         EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2119         EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2120         ef4_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2121
2122         /* Initiate SRAM reset */
2123         EF4_POPULATE_OWORD_2(srm_cfg_reg_ker,
2124                              FRF_AZ_SRM_INIT_EN, 1,
2125                              FRF_AZ_SRM_NB_SZ, 0);
2126         ef4_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2127
2128         /* Wait for SRAM reset to complete */
2129         count = 0;
2130         do {
2131                 netif_dbg(efx, hw, efx->net_dev,
2132                           "waiting for SRAM reset (attempt %d)...\n", count);
2133
2134                 /* SRAM reset is slow; expect around 16ms */
2135                 schedule_timeout_uninterruptible(HZ / 50);
2136
2137                 /* Check for reset complete */
2138                 ef4_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2139                 if (!EF4_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2140                         netif_dbg(efx, hw, efx->net_dev,
2141                                   "SRAM reset complete\n");
2142
2143                         return 0;
2144                 }
2145         } while (++count < 20); /* wait up to 0.4 sec */
2146
2147         netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
2148         return -ETIMEDOUT;
2149 }
2150
2151 static void falcon_spi_device_init(struct ef4_nic *efx,
2152                                   struct falcon_spi_device *spi_device,
2153                                   unsigned int device_id, u32 device_type)
2154 {
2155         if (device_type != 0) {
2156                 spi_device->device_id = device_id;
2157                 spi_device->size =
2158                         1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2159                 spi_device->addr_len =
2160                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2161                 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2162                                              spi_device->addr_len == 1);
2163                 spi_device->erase_command =
2164                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2165                 spi_device->erase_size =
2166                         1 << SPI_DEV_TYPE_FIELD(device_type,
2167                                                 SPI_DEV_TYPE_ERASE_SIZE);
2168                 spi_device->block_size =
2169                         1 << SPI_DEV_TYPE_FIELD(device_type,
2170                                                 SPI_DEV_TYPE_BLOCK_SIZE);
2171         } else {
2172                 spi_device->size = 0;
2173         }
2174 }
2175
2176 /* Extract non-volatile configuration */
2177 static int falcon_probe_nvconfig(struct ef4_nic *efx)
2178 {
2179         struct falcon_nic_data *nic_data = efx->nic_data;
2180         struct falcon_nvconfig *nvconfig;
2181         int rc;
2182
2183         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2184         if (!nvconfig)
2185                 return -ENOMEM;
2186
2187         rc = falcon_read_nvram(efx, nvconfig);
2188         if (rc)
2189                 goto out;
2190
2191         efx->phy_type = nvconfig->board_v2.port0_phy_type;
2192         efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
2193
2194         if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2195                 falcon_spi_device_init(
2196                         efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2197                         le32_to_cpu(nvconfig->board_v3
2198                                     .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
2199                 falcon_spi_device_init(
2200                         efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2201                         le32_to_cpu(nvconfig->board_v3
2202                                     .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
2203         }
2204
2205         /* Read the MAC addresses */
2206         ether_addr_copy(efx->net_dev->perm_addr, nvconfig->mac_address[0]);
2207
2208         netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
2209                   efx->phy_type, efx->mdio.prtad);
2210
2211         rc = falcon_probe_board(efx,
2212                                 le16_to_cpu(nvconfig->board_v2.board_revision));
2213 out:
2214         kfree(nvconfig);
2215         return rc;
2216 }
2217
2218 static int falcon_dimension_resources(struct ef4_nic *efx)
2219 {
2220         efx->rx_dc_base = 0x20000;
2221         efx->tx_dc_base = 0x26000;
2222         return 0;
2223 }
2224
2225 /* Probe all SPI devices on the NIC */
2226 static void falcon_probe_spi_devices(struct ef4_nic *efx)
2227 {
2228         struct falcon_nic_data *nic_data = efx->nic_data;
2229         ef4_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2230         int boot_dev;
2231
2232         ef4_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2233         ef4_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2234         ef4_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2235
2236         if (EF4_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2237                 boot_dev = (EF4_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2238                             FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2239                 netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
2240                           boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
2241                           "flash" : "EEPROM");
2242         } else {
2243                 /* Disable VPD and set clock dividers to safe
2244                  * values for initial programming. */
2245                 boot_dev = -1;
2246                 netif_dbg(efx, probe, efx->net_dev,
2247                           "Booted from internal ASIC settings;"
2248                           " setting SPI config\n");
2249                 EF4_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2250                                      /* 125 MHz / 7 ~= 20 MHz */
2251                                      FRF_AB_EE_SF_CLOCK_DIV, 7,
2252                                      /* 125 MHz / 63 ~= 2 MHz */
2253                                      FRF_AB_EE_EE_CLOCK_DIV, 63);
2254                 ef4_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2255         }
2256
2257         mutex_init(&nic_data->spi_lock);
2258
2259         if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2260                 falcon_spi_device_init(efx, &nic_data->spi_flash,
2261                                        FFE_AB_SPI_DEVICE_FLASH,
2262                                        default_flash_type);
2263         if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2264                 falcon_spi_device_init(efx, &nic_data->spi_eeprom,
2265                                        FFE_AB_SPI_DEVICE_EEPROM,
2266                                        large_eeprom_type);
2267 }
2268
2269 static unsigned int falcon_a1_mem_map_size(struct ef4_nic *efx)
2270 {
2271         return 0x20000;
2272 }
2273
2274 static unsigned int falcon_b0_mem_map_size(struct ef4_nic *efx)
2275 {
2276         /* Map everything up to and including the RSS indirection table.
2277          * The PCI core takes care of mapping the MSI-X tables.
2278          */
2279         return FR_BZ_RX_INDIRECTION_TBL +
2280                 FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
2281 }
2282
2283 static int falcon_probe_nic(struct ef4_nic *efx)
2284 {
2285         struct falcon_nic_data *nic_data;
2286         struct falcon_board *board;
2287         int rc;
2288
2289         efx->primary = efx; /* only one usable function per controller */
2290
2291         /* Allocate storage for hardware specific data */
2292         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2293         if (!nic_data)
2294                 return -ENOMEM;
2295         efx->nic_data = nic_data;
2296         nic_data->efx = efx;
2297
2298         rc = -ENODEV;
2299
2300         if (ef4_farch_fpga_ver(efx) != 0) {
2301                 netif_err(efx, probe, efx->net_dev,
2302                           "Falcon FPGA not supported\n");
2303                 goto fail1;
2304         }
2305
2306         if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1) {
2307                 ef4_oword_t nic_stat;
2308                 struct pci_dev *dev;
2309                 u8 pci_rev = efx->pci_dev->revision;
2310
2311                 if ((pci_rev == 0xff) || (pci_rev == 0)) {
2312                         netif_err(efx, probe, efx->net_dev,
2313                                   "Falcon rev A0 not supported\n");
2314                         goto fail1;
2315                 }
2316                 ef4_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2317                 if (EF4_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2318                         netif_err(efx, probe, efx->net_dev,
2319                                   "Falcon rev A1 1G not supported\n");
2320                         goto fail1;
2321                 }
2322                 if (EF4_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2323                         netif_err(efx, probe, efx->net_dev,
2324                                   "Falcon rev A1 PCI-X not supported\n");
2325                         goto fail1;
2326                 }
2327
2328                 dev = pci_dev_get(efx->pci_dev);
2329                 while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
2330                                              PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
2331                                              dev))) {
2332                         if (dev->bus == efx->pci_dev->bus &&
2333                             dev->devfn == efx->pci_dev->devfn + 1) {
2334                                 nic_data->pci_dev2 = dev;
2335                                 break;
2336                         }
2337                 }
2338                 if (!nic_data->pci_dev2) {
2339                         netif_err(efx, probe, efx->net_dev,
2340                                   "failed to find secondary function\n");
2341                         rc = -ENODEV;
2342                         goto fail2;
2343                 }
2344         }
2345
2346         /* Now we can reset the NIC */
2347         rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
2348         if (rc) {
2349                 netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
2350                 goto fail3;
2351         }
2352
2353         /* Allocate memory for INT_KER */
2354         rc = ef4_nic_alloc_buffer(efx, &efx->irq_status, sizeof(ef4_oword_t),
2355                                   GFP_KERNEL);
2356         if (rc)
2357                 goto fail4;
2358         BUG_ON(efx->irq_status.dma_addr & 0x0f);
2359
2360         netif_dbg(efx, probe, efx->net_dev,
2361                   "INT_KER at %llx (virt %p phys %llx)\n",
2362                   (u64)efx->irq_status.dma_addr,
2363                   efx->irq_status.addr,
2364                   (u64)virt_to_phys(efx->irq_status.addr));
2365
2366         falcon_probe_spi_devices(efx);
2367
2368         /* Read in the non-volatile configuration */
2369         rc = falcon_probe_nvconfig(efx);
2370         if (rc) {
2371                 if (rc == -EINVAL)
2372                         netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
2373                 goto fail5;
2374         }
2375
2376         efx->max_channels = (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1 ? 4 :
2377                              EF4_MAX_CHANNELS);
2378         efx->max_tx_channels = efx->max_channels;
2379         efx->timer_quantum_ns = 4968; /* 621 cycles */
2380         efx->timer_max_ns = efx->type->timer_period_max *
2381                             efx->timer_quantum_ns;
2382
2383         /* Initialise I2C adapter */
2384         board = falcon_board(efx);
2385         board->i2c_adap.owner = THIS_MODULE;
2386         board->i2c_data = falcon_i2c_bit_operations;
2387         board->i2c_data.data = efx;
2388         board->i2c_adap.algo_data = &board->i2c_data;
2389         board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2390         strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2391                 sizeof(board->i2c_adap.name));
2392         rc = i2c_bit_add_bus(&board->i2c_adap);
2393         if (rc)
2394                 goto fail5;
2395
2396         rc = falcon_board(efx)->type->init(efx);
2397         if (rc) {
2398                 netif_err(efx, probe, efx->net_dev,
2399                           "failed to initialise board\n");
2400                 goto fail6;
2401         }
2402
2403         nic_data->stats_disable_count = 1;
2404         timer_setup(&nic_data->stats_timer, falcon_stats_timer_func, 0);
2405
2406         return 0;
2407
2408  fail6:
2409         i2c_del_adapter(&board->i2c_adap);
2410         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2411  fail5:
2412         ef4_nic_free_buffer(efx, &efx->irq_status);
2413  fail4:
2414  fail3:
2415         if (nic_data->pci_dev2) {
2416                 pci_dev_put(nic_data->pci_dev2);
2417                 nic_data->pci_dev2 = NULL;
2418         }
2419  fail2:
2420  fail1:
2421         kfree(efx->nic_data);
2422         return rc;
2423 }
2424
2425 static void falcon_init_rx_cfg(struct ef4_nic *efx)
2426 {
2427         /* RX control FIFO thresholds (32 entries) */
2428         const unsigned ctrl_xon_thr = 20;
2429         const unsigned ctrl_xoff_thr = 25;
2430         ef4_oword_t reg;
2431
2432         ef4_reado(efx, &reg, FR_AZ_RX_CFG);
2433         if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1) {
2434                 /* Data FIFO size is 5.5K.  The RX DMA engine only
2435                  * supports scattering for user-mode queues, but will
2436                  * split DMA writes at intervals of RX_USR_BUF_SIZE
2437                  * (32-byte units) even for kernel-mode queues.  We
2438                  * set it to be so large that that never happens.
2439                  */
2440                 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2441                 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2442                                     (3 * 4096) >> 5);
2443                 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
2444                 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
2445                 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2446                 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2447         } else {
2448                 /* Data FIFO size is 80K; register fields moved */
2449                 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2450                 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2451                                     EF4_RX_USR_BUF_SIZE >> 5);
2452                 /* Send XON and XOFF at ~3 * max MTU away from empty/full */
2453                 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
2454                 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
2455                 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2456                 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2457                 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2458
2459                 /* Enable hash insertion. This is broken for the
2460                  * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2461                  * IPv4 hashes. */
2462                 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
2463                 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
2464                 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
2465         }
2466         /* Always enable XOFF signal from RX FIFO.  We enable
2467          * or disable transmission of pause frames at the MAC. */
2468         EF4_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
2469         ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
2470 }
2471
2472 /* This call performs hardware-specific global initialisation, such as
2473  * defining the descriptor cache sizes and number of RSS channels.
2474  * It does not set up any buffers, descriptor rings or event queues.
2475  */
2476 static int falcon_init_nic(struct ef4_nic *efx)
2477 {
2478         ef4_oword_t temp;
2479         int rc;
2480
2481         /* Use on-chip SRAM */
2482         ef4_reado(efx, &temp, FR_AB_NIC_STAT);
2483         EF4_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2484         ef4_writeo(efx, &temp, FR_AB_NIC_STAT);
2485
2486         rc = falcon_reset_sram(efx);
2487         if (rc)
2488                 return rc;
2489
2490         /* Clear the parity enables on the TX data fifos as
2491          * they produce false parity errors because of timing issues
2492          */
2493         if (EF4_WORKAROUND_5129(efx)) {
2494                 ef4_reado(efx, &temp, FR_AZ_CSR_SPARE);
2495                 EF4_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2496                 ef4_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2497         }
2498
2499         if (EF4_WORKAROUND_7244(efx)) {
2500                 ef4_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
2501                 EF4_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
2502                 EF4_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
2503                 EF4_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
2504                 EF4_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
2505                 ef4_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
2506         }
2507
2508         /* XXX This is documented only for Falcon A0/A1 */
2509         /* Setup RX.  Wait for descriptor is broken and must
2510          * be disabled.  RXDP recovery shouldn't be needed, but is.
2511          */
2512         ef4_reado(efx, &temp, FR_AA_RX_SELF_RST);
2513         EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
2514         EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
2515         if (EF4_WORKAROUND_5583(efx))
2516                 EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
2517         ef4_writeo(efx, &temp, FR_AA_RX_SELF_RST);
2518
2519         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2520          * descriptors (which is bad).
2521          */
2522         ef4_reado(efx, &temp, FR_AZ_TX_CFG);
2523         EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
2524         ef4_writeo(efx, &temp, FR_AZ_TX_CFG);
2525
2526         falcon_init_rx_cfg(efx);
2527
2528         if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
2529                 falcon_b0_rx_push_rss_config(efx, false, efx->rx_indir_table);
2530
2531                 /* Set destination of both TX and RX Flush events */
2532                 EF4_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
2533                 ef4_writeo(efx, &temp, FR_BZ_DP_CTRL);
2534         }
2535
2536         ef4_farch_init_common(efx);
2537
2538         return 0;
2539 }
2540
2541 static void falcon_remove_nic(struct ef4_nic *efx)
2542 {
2543         struct falcon_nic_data *nic_data = efx->nic_data;
2544         struct falcon_board *board = falcon_board(efx);
2545
2546         board->type->fini(efx);
2547
2548         /* Remove I2C adapter and clear it in preparation for a retry */
2549         i2c_del_adapter(&board->i2c_adap);
2550         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2551
2552         ef4_nic_free_buffer(efx, &efx->irq_status);
2553
2554         __falcon_reset_hw(efx, RESET_TYPE_ALL);
2555
2556         /* Release the second function after the reset */
2557         if (nic_data->pci_dev2) {
2558                 pci_dev_put(nic_data->pci_dev2);
2559                 nic_data->pci_dev2 = NULL;
2560         }
2561
2562         /* Tear down the private nic state */
2563         kfree(efx->nic_data);
2564         efx->nic_data = NULL;
2565 }
2566
2567 static size_t falcon_describe_nic_stats(struct ef4_nic *efx, u8 *names)
2568 {
2569         return ef4_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
2570                                       falcon_stat_mask, names);
2571 }
2572
2573 static size_t falcon_update_nic_stats(struct ef4_nic *efx, u64 *full_stats,
2574                                       struct rtnl_link_stats64 *core_stats)
2575 {
2576         struct falcon_nic_data *nic_data = efx->nic_data;
2577         u64 *stats = nic_data->stats;
2578         ef4_oword_t cnt;
2579
2580         if (!nic_data->stats_disable_count) {
2581                 ef4_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
2582                 stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
2583                         EF4_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
2584
2585                 if (nic_data->stats_pending &&
2586                     FALCON_XMAC_STATS_DMA_FLAG(efx)) {
2587                         nic_data->stats_pending = false;
2588                         rmb(); /* read the done flag before the stats */
2589                         ef4_nic_update_stats(
2590                                 falcon_stat_desc, FALCON_STAT_COUNT,
2591                                 falcon_stat_mask,
2592                                 stats, efx->stats_buffer.addr, true);
2593                 }
2594
2595                 /* Update derived statistic */
2596                 ef4_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
2597                                      stats[FALCON_STAT_rx_bytes] -
2598                                      stats[FALCON_STAT_rx_good_bytes] -
2599                                      stats[FALCON_STAT_rx_control] * 64);
2600                 ef4_update_sw_stats(efx, stats);
2601         }
2602
2603         if (full_stats)
2604                 memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
2605
2606         if (core_stats) {
2607                 core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
2608                 core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
2609                 core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
2610                 core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
2611                 core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt] +
2612                                          stats[GENERIC_STAT_rx_nodesc_trunc] +
2613                                          stats[GENERIC_STAT_rx_noskb_drops];
2614                 core_stats->multicast = stats[FALCON_STAT_rx_multicast];
2615                 core_stats->rx_length_errors =
2616                         stats[FALCON_STAT_rx_gtjumbo] +
2617                         stats[FALCON_STAT_rx_length_error];
2618                 core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
2619                 core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
2620                 core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
2621
2622                 core_stats->rx_errors = (core_stats->rx_length_errors +
2623                                          core_stats->rx_crc_errors +
2624                                          core_stats->rx_frame_errors +
2625                                          stats[FALCON_STAT_rx_symbol_error]);
2626         }
2627
2628         return FALCON_STAT_COUNT;
2629 }
2630
2631 void falcon_start_nic_stats(struct ef4_nic *efx)
2632 {
2633         struct falcon_nic_data *nic_data = efx->nic_data;
2634
2635         spin_lock_bh(&efx->stats_lock);
2636         if (--nic_data->stats_disable_count == 0)
2637                 falcon_stats_request(efx);
2638         spin_unlock_bh(&efx->stats_lock);
2639 }
2640
2641 /* We don't acutally pull stats on falcon. Wait 10ms so that
2642  * they arrive when we call this just after start_stats
2643  */
2644 static void falcon_pull_nic_stats(struct ef4_nic *efx)
2645 {
2646         msleep(10);
2647 }
2648
2649 void falcon_stop_nic_stats(struct ef4_nic *efx)
2650 {
2651         struct falcon_nic_data *nic_data = efx->nic_data;
2652         int i;
2653
2654         might_sleep();
2655
2656         spin_lock_bh(&efx->stats_lock);
2657         ++nic_data->stats_disable_count;
2658         spin_unlock_bh(&efx->stats_lock);
2659
2660         del_timer_sync(&nic_data->stats_timer);
2661
2662         /* Wait enough time for the most recent transfer to
2663          * complete. */
2664         for (i = 0; i < 4 && nic_data->stats_pending; i++) {
2665                 if (FALCON_XMAC_STATS_DMA_FLAG(efx))
2666                         break;
2667                 msleep(1);
2668         }
2669
2670         spin_lock_bh(&efx->stats_lock);
2671         falcon_stats_complete(efx);
2672         spin_unlock_bh(&efx->stats_lock);
2673 }
2674
2675 static void falcon_set_id_led(struct ef4_nic *efx, enum ef4_led_mode mode)
2676 {
2677         falcon_board(efx)->type->set_id_led(efx, mode);
2678 }
2679
2680 /**************************************************************************
2681  *
2682  * Wake on LAN
2683  *
2684  **************************************************************************
2685  */
2686
2687 static void falcon_get_wol(struct ef4_nic *efx, struct ethtool_wolinfo *wol)
2688 {
2689         wol->supported = 0;
2690         wol->wolopts = 0;
2691         memset(&wol->sopass, 0, sizeof(wol->sopass));
2692 }
2693
2694 static int falcon_set_wol(struct ef4_nic *efx, u32 type)
2695 {
2696         if (type != 0)
2697                 return -EINVAL;
2698         return 0;
2699 }
2700
2701 /**************************************************************************
2702  *
2703  * Revision-dependent attributes used by efx.c and nic.c
2704  *
2705  **************************************************************************
2706  */
2707
2708 const struct ef4_nic_type falcon_a1_nic_type = {
2709         .mem_bar = EF4_MEM_BAR,
2710         .mem_map_size = falcon_a1_mem_map_size,
2711         .probe = falcon_probe_nic,
2712         .remove = falcon_remove_nic,
2713         .init = falcon_init_nic,
2714         .dimension_resources = falcon_dimension_resources,
2715         .fini = falcon_irq_ack_a1,
2716         .monitor = falcon_monitor,
2717         .map_reset_reason = falcon_map_reset_reason,
2718         .map_reset_flags = falcon_map_reset_flags,
2719         .reset = falcon_reset_hw,
2720         .probe_port = falcon_probe_port,
2721         .remove_port = falcon_remove_port,
2722         .handle_global_event = falcon_handle_global_event,
2723         .fini_dmaq = ef4_farch_fini_dmaq,
2724         .prepare_flush = falcon_prepare_flush,
2725         .finish_flush = ef4_port_dummy_op_void,
2726         .prepare_flr = ef4_port_dummy_op_void,
2727         .finish_flr = ef4_farch_finish_flr,
2728         .describe_stats = falcon_describe_nic_stats,
2729         .update_stats = falcon_update_nic_stats,
2730         .start_stats = falcon_start_nic_stats,
2731         .pull_stats = falcon_pull_nic_stats,
2732         .stop_stats = falcon_stop_nic_stats,
2733         .set_id_led = falcon_set_id_led,
2734         .push_irq_moderation = falcon_push_irq_moderation,
2735         .reconfigure_port = falcon_reconfigure_port,
2736         .prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
2737         .reconfigure_mac = falcon_reconfigure_xmac,
2738         .check_mac_fault = falcon_xmac_check_fault,
2739         .get_wol = falcon_get_wol,
2740         .set_wol = falcon_set_wol,
2741         .resume_wol = ef4_port_dummy_op_void,
2742         .test_nvram = falcon_test_nvram,
2743         .irq_enable_master = ef4_farch_irq_enable_master,
2744         .irq_test_generate = ef4_farch_irq_test_generate,
2745         .irq_disable_non_ev = ef4_farch_irq_disable_master,
2746         .irq_handle_msi = ef4_farch_msi_interrupt,
2747         .irq_handle_legacy = falcon_legacy_interrupt_a1,
2748         .tx_probe = ef4_farch_tx_probe,
2749         .tx_init = ef4_farch_tx_init,
2750         .tx_remove = ef4_farch_tx_remove,
2751         .tx_write = ef4_farch_tx_write,
2752         .tx_limit_len = ef4_farch_tx_limit_len,
2753         .rx_push_rss_config = dummy_rx_push_rss_config,
2754         .rx_probe = ef4_farch_rx_probe,
2755         .rx_init = ef4_farch_rx_init,
2756         .rx_remove = ef4_farch_rx_remove,
2757         .rx_write = ef4_farch_rx_write,
2758         .rx_defer_refill = ef4_farch_rx_defer_refill,
2759         .ev_probe = ef4_farch_ev_probe,
2760         .ev_init = ef4_farch_ev_init,
2761         .ev_fini = ef4_farch_ev_fini,
2762         .ev_remove = ef4_farch_ev_remove,
2763         .ev_process = ef4_farch_ev_process,
2764         .ev_read_ack = ef4_farch_ev_read_ack,
2765         .ev_test_generate = ef4_farch_ev_test_generate,
2766
2767         /* We don't expose the filter table on Falcon A1 as it is not
2768          * mapped into function 0, but these implementations still
2769          * work with a degenerate case of all tables set to size 0.
2770          */
2771         .filter_table_probe = ef4_farch_filter_table_probe,
2772         .filter_table_restore = ef4_farch_filter_table_restore,
2773         .filter_table_remove = ef4_farch_filter_table_remove,
2774         .filter_insert = ef4_farch_filter_insert,
2775         .filter_remove_safe = ef4_farch_filter_remove_safe,
2776         .filter_get_safe = ef4_farch_filter_get_safe,
2777         .filter_clear_rx = ef4_farch_filter_clear_rx,
2778         .filter_count_rx_used = ef4_farch_filter_count_rx_used,
2779         .filter_get_rx_id_limit = ef4_farch_filter_get_rx_id_limit,
2780         .filter_get_rx_ids = ef4_farch_filter_get_rx_ids,
2781
2782 #ifdef CONFIG_SFC_FALCON_MTD
2783         .mtd_probe = falcon_mtd_probe,
2784         .mtd_rename = falcon_mtd_rename,
2785         .mtd_read = falcon_mtd_read,
2786         .mtd_erase = falcon_mtd_erase,
2787         .mtd_write = falcon_mtd_write,
2788         .mtd_sync = falcon_mtd_sync,
2789 #endif
2790
2791         .revision = EF4_REV_FALCON_A1,
2792         .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
2793         .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
2794         .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
2795         .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
2796         .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
2797         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2798         .rx_buffer_padding = 0x24,
2799         .can_rx_scatter = false,
2800         .max_interrupt_mode = EF4_INT_MODE_MSI,
2801         .timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2802         .offload_features = NETIF_F_IP_CSUM,
2803 };
2804
2805 const struct ef4_nic_type falcon_b0_nic_type = {
2806         .mem_bar = EF4_MEM_BAR,
2807         .mem_map_size = falcon_b0_mem_map_size,
2808         .probe = falcon_probe_nic,
2809         .remove = falcon_remove_nic,
2810         .init = falcon_init_nic,
2811         .dimension_resources = falcon_dimension_resources,
2812         .fini = ef4_port_dummy_op_void,
2813         .monitor = falcon_monitor,
2814         .map_reset_reason = falcon_map_reset_reason,
2815         .map_reset_flags = falcon_map_reset_flags,
2816         .reset = falcon_reset_hw,
2817         .probe_port = falcon_probe_port,
2818         .remove_port = falcon_remove_port,
2819         .handle_global_event = falcon_handle_global_event,
2820         .fini_dmaq = ef4_farch_fini_dmaq,
2821         .prepare_flush = falcon_prepare_flush,
2822         .finish_flush = ef4_port_dummy_op_void,
2823         .prepare_flr = ef4_port_dummy_op_void,
2824         .finish_flr = ef4_farch_finish_flr,
2825         .describe_stats = falcon_describe_nic_stats,
2826         .update_stats = falcon_update_nic_stats,
2827         .start_stats = falcon_start_nic_stats,
2828         .pull_stats = falcon_pull_nic_stats,
2829         .stop_stats = falcon_stop_nic_stats,
2830         .set_id_led = falcon_set_id_led,
2831         .push_irq_moderation = falcon_push_irq_moderation,
2832         .reconfigure_port = falcon_reconfigure_port,
2833         .prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
2834         .reconfigure_mac = falcon_reconfigure_xmac,
2835         .check_mac_fault = falcon_xmac_check_fault,
2836         .get_wol = falcon_get_wol,
2837         .set_wol = falcon_set_wol,
2838         .resume_wol = ef4_port_dummy_op_void,
2839         .test_chip = falcon_b0_test_chip,
2840         .test_nvram = falcon_test_nvram,
2841         .irq_enable_master = ef4_farch_irq_enable_master,
2842         .irq_test_generate = ef4_farch_irq_test_generate,
2843         .irq_disable_non_ev = ef4_farch_irq_disable_master,
2844         .irq_handle_msi = ef4_farch_msi_interrupt,
2845         .irq_handle_legacy = ef4_farch_legacy_interrupt,
2846         .tx_probe = ef4_farch_tx_probe,
2847         .tx_init = ef4_farch_tx_init,
2848         .tx_remove = ef4_farch_tx_remove,
2849         .tx_write = ef4_farch_tx_write,
2850         .tx_limit_len = ef4_farch_tx_limit_len,
2851         .rx_push_rss_config = falcon_b0_rx_push_rss_config,
2852         .rx_probe = ef4_farch_rx_probe,
2853         .rx_init = ef4_farch_rx_init,
2854         .rx_remove = ef4_farch_rx_remove,
2855         .rx_write = ef4_farch_rx_write,
2856         .rx_defer_refill = ef4_farch_rx_defer_refill,
2857         .ev_probe = ef4_farch_ev_probe,
2858         .ev_init = ef4_farch_ev_init,
2859         .ev_fini = ef4_farch_ev_fini,
2860         .ev_remove = ef4_farch_ev_remove,
2861         .ev_process = ef4_farch_ev_process,
2862         .ev_read_ack = ef4_farch_ev_read_ack,
2863         .ev_test_generate = ef4_farch_ev_test_generate,
2864         .filter_table_probe = ef4_farch_filter_table_probe,
2865         .filter_table_restore = ef4_farch_filter_table_restore,
2866         .filter_table_remove = ef4_farch_filter_table_remove,
2867         .filter_update_rx_scatter = ef4_farch_filter_update_rx_scatter,
2868         .filter_insert = ef4_farch_filter_insert,
2869         .filter_remove_safe = ef4_farch_filter_remove_safe,
2870         .filter_get_safe = ef4_farch_filter_get_safe,
2871         .filter_clear_rx = ef4_farch_filter_clear_rx,
2872         .filter_count_rx_used = ef4_farch_filter_count_rx_used,
2873         .filter_get_rx_id_limit = ef4_farch_filter_get_rx_id_limit,
2874         .filter_get_rx_ids = ef4_farch_filter_get_rx_ids,
2875 #ifdef CONFIG_RFS_ACCEL
2876         .filter_rfs_insert = ef4_farch_filter_rfs_insert,
2877         .filter_rfs_expire_one = ef4_farch_filter_rfs_expire_one,
2878 #endif
2879 #ifdef CONFIG_SFC_FALCON_MTD
2880         .mtd_probe = falcon_mtd_probe,
2881         .mtd_rename = falcon_mtd_rename,
2882         .mtd_read = falcon_mtd_read,
2883         .mtd_erase = falcon_mtd_erase,
2884         .mtd_write = falcon_mtd_write,
2885         .mtd_sync = falcon_mtd_sync,
2886 #endif
2887
2888         .revision = EF4_REV_FALCON_B0,
2889         .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
2890         .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
2891         .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
2892         .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
2893         .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
2894         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2895         .rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
2896         .rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
2897         .rx_buffer_padding = 0,
2898         .can_rx_scatter = true,
2899         .max_interrupt_mode = EF4_INT_MODE_MSIX,
2900         .timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2901         .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
2902         .max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
2903 };