Merge branch 'smp-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / net / ethernet / sfc / ef10.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2012-2013 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9
10 #include "net_driver.h"
11 #include "ef10_regs.h"
12 #include "io.h"
13 #include "mcdi.h"
14 #include "mcdi_pcol.h"
15 #include "nic.h"
16 #include "workarounds.h"
17 #include "selftest.h"
18 #include "ef10_sriov.h"
19 #include <linux/in.h>
20 #include <linux/jhash.h>
21 #include <linux/wait.h>
22 #include <linux/workqueue.h>
23
24 /* Hardware control for EF10 architecture including 'Huntington'. */
25
26 #define EFX_EF10_DRVGEN_EV              7
27 enum {
28         EFX_EF10_TEST = 1,
29         EFX_EF10_REFILL,
30 };
31
32 /* The reserved RSS context value */
33 #define EFX_EF10_RSS_CONTEXT_INVALID    0xffffffff
34 /* The maximum size of a shared RSS context */
35 /* TODO: this should really be from the mcdi protocol export */
36 #define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
37
38 /* The filter table(s) are managed by firmware and we have write-only
39  * access.  When removing filters we must identify them to the
40  * firmware by a 64-bit handle, but this is too wide for Linux kernel
41  * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
42  * be able to tell in advance whether a requested insertion will
43  * replace an existing filter.  Therefore we maintain a software hash
44  * table, which should be at least as large as the hardware hash
45  * table.
46  *
47  * Huntington has a single 8K filter table shared between all filter
48  * types and both ports.
49  */
50 #define HUNT_FILTER_TBL_ROWS 8192
51
52 #define EFX_EF10_FILTER_ID_INVALID 0xffff
53
54 #define EFX_EF10_FILTER_DEV_UC_MAX      32
55 #define EFX_EF10_FILTER_DEV_MC_MAX      256
56
57 /* VLAN list entry */
58 struct efx_ef10_vlan {
59         struct list_head list;
60         u16 vid;
61 };
62
63 enum efx_ef10_default_filters {
64         EFX_EF10_BCAST,
65         EFX_EF10_UCDEF,
66         EFX_EF10_MCDEF,
67         EFX_EF10_VXLAN4_UCDEF,
68         EFX_EF10_VXLAN4_MCDEF,
69         EFX_EF10_VXLAN6_UCDEF,
70         EFX_EF10_VXLAN6_MCDEF,
71         EFX_EF10_NVGRE4_UCDEF,
72         EFX_EF10_NVGRE4_MCDEF,
73         EFX_EF10_NVGRE6_UCDEF,
74         EFX_EF10_NVGRE6_MCDEF,
75         EFX_EF10_GENEVE4_UCDEF,
76         EFX_EF10_GENEVE4_MCDEF,
77         EFX_EF10_GENEVE6_UCDEF,
78         EFX_EF10_GENEVE6_MCDEF,
79
80         EFX_EF10_NUM_DEFAULT_FILTERS
81 };
82
83 /* Per-VLAN filters information */
84 struct efx_ef10_filter_vlan {
85         struct list_head list;
86         u16 vid;
87         u16 uc[EFX_EF10_FILTER_DEV_UC_MAX];
88         u16 mc[EFX_EF10_FILTER_DEV_MC_MAX];
89         u16 default_filters[EFX_EF10_NUM_DEFAULT_FILTERS];
90 };
91
92 struct efx_ef10_dev_addr {
93         u8 addr[ETH_ALEN];
94 };
95
96 struct efx_ef10_filter_table {
97 /* The MCDI match masks supported by this fw & hw, in order of priority */
98         u32 rx_match_mcdi_flags[
99                 MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM * 2];
100         unsigned int rx_match_count;
101
102         struct {
103                 unsigned long spec;     /* pointer to spec plus flag bits */
104 /* BUSY flag indicates that an update is in progress.  AUTO_OLD is
105  * used to mark and sweep MAC filters for the device address lists.
106  */
107 #define EFX_EF10_FILTER_FLAG_BUSY       1UL
108 #define EFX_EF10_FILTER_FLAG_AUTO_OLD   2UL
109 #define EFX_EF10_FILTER_FLAGS           3UL
110                 u64 handle;             /* firmware handle */
111         } *entry;
112         wait_queue_head_t waitq;
113 /* Shadow of net_device address lists, guarded by mac_lock */
114         struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX];
115         struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
116         int dev_uc_count;
117         int dev_mc_count;
118         bool uc_promisc;
119         bool mc_promisc;
120 /* Whether in multicast promiscuous mode when last changed */
121         bool mc_promisc_last;
122         bool mc_overflow; /* Too many MC addrs; should always imply mc_promisc */
123         bool vlan_filter;
124         struct list_head vlan_list;
125 };
126
127 /* An arbitrary search limit for the software hash table */
128 #define EFX_EF10_FILTER_SEARCH_LIMIT 200
129
130 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
131 static void efx_ef10_filter_table_remove(struct efx_nic *efx);
132 static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid);
133 static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
134                                               struct efx_ef10_filter_vlan *vlan);
135 static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid);
136 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
137
138 static u32 efx_ef10_filter_get_unsafe_id(u32 filter_id)
139 {
140         WARN_ON_ONCE(filter_id == EFX_EF10_FILTER_ID_INVALID);
141         return filter_id & (HUNT_FILTER_TBL_ROWS - 1);
142 }
143
144 static unsigned int efx_ef10_filter_get_unsafe_pri(u32 filter_id)
145 {
146         return filter_id / (HUNT_FILTER_TBL_ROWS * 2);
147 }
148
149 static u32 efx_ef10_make_filter_id(unsigned int pri, u16 idx)
150 {
151         return pri * HUNT_FILTER_TBL_ROWS * 2 + idx;
152 }
153
154 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
155 {
156         efx_dword_t reg;
157
158         efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
159         return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
160                 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
161 }
162
163 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
164 {
165         int bar;
166
167         bar = efx->type->mem_bar;
168         return resource_size(&efx->pci_dev->resource[bar]);
169 }
170
171 static bool efx_ef10_is_vf(struct efx_nic *efx)
172 {
173         return efx->type->is_vf;
174 }
175
176 static int efx_ef10_get_pf_index(struct efx_nic *efx)
177 {
178         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
179         struct efx_ef10_nic_data *nic_data = efx->nic_data;
180         size_t outlen;
181         int rc;
182
183         rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
184                           sizeof(outbuf), &outlen);
185         if (rc)
186                 return rc;
187         if (outlen < sizeof(outbuf))
188                 return -EIO;
189
190         nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
191         return 0;
192 }
193
194 #ifdef CONFIG_SFC_SRIOV
195 static int efx_ef10_get_vf_index(struct efx_nic *efx)
196 {
197         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
198         struct efx_ef10_nic_data *nic_data = efx->nic_data;
199         size_t outlen;
200         int rc;
201
202         rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
203                           sizeof(outbuf), &outlen);
204         if (rc)
205                 return rc;
206         if (outlen < sizeof(outbuf))
207                 return -EIO;
208
209         nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
210         return 0;
211 }
212 #endif
213
214 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
215 {
216         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V2_OUT_LEN);
217         struct efx_ef10_nic_data *nic_data = efx->nic_data;
218         size_t outlen;
219         int rc;
220
221         BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
222
223         rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
224                           outbuf, sizeof(outbuf), &outlen);
225         if (rc)
226                 return rc;
227         if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
228                 netif_err(efx, drv, efx->net_dev,
229                           "unable to read datapath firmware capabilities\n");
230                 return -EIO;
231         }
232
233         nic_data->datapath_caps =
234                 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
235
236         if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
237                 nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
238                                 GET_CAPABILITIES_V2_OUT_FLAGS2);
239                 nic_data->piobuf_size = MCDI_WORD(outbuf,
240                                 GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
241         } else {
242                 nic_data->datapath_caps2 = 0;
243                 nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
244         }
245
246         /* record the DPCPU firmware IDs to determine VEB vswitching support.
247          */
248         nic_data->rx_dpcpu_fw_id =
249                 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
250         nic_data->tx_dpcpu_fw_id =
251                 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
252
253         if (!(nic_data->datapath_caps &
254               (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
255                 netif_err(efx, probe, efx->net_dev,
256                           "current firmware does not support an RX prefix\n");
257                 return -ENODEV;
258         }
259
260         return 0;
261 }
262
263 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
264 {
265         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
266         int rc;
267
268         rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
269                           outbuf, sizeof(outbuf), NULL);
270         if (rc)
271                 return rc;
272         rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
273         return rc > 0 ? rc : -ERANGE;
274 }
275
276 static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
277 {
278         struct efx_ef10_nic_data *nic_data = efx->nic_data;
279         unsigned int implemented;
280         unsigned int enabled;
281         int rc;
282
283         nic_data->workaround_35388 = false;
284         nic_data->workaround_61265 = false;
285
286         rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
287
288         if (rc == -ENOSYS) {
289                 /* Firmware without GET_WORKAROUNDS - not a problem. */
290                 rc = 0;
291         } else if (rc == 0) {
292                 /* Bug61265 workaround is always enabled if implemented. */
293                 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
294                         nic_data->workaround_61265 = true;
295
296                 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
297                         nic_data->workaround_35388 = true;
298                 } else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
299                         /* Workaround is implemented but not enabled.
300                          * Try to enable it.
301                          */
302                         rc = efx_mcdi_set_workaround(efx,
303                                                      MC_CMD_WORKAROUND_BUG35388,
304                                                      true, NULL);
305                         if (rc == 0)
306                                 nic_data->workaround_35388 = true;
307                         /* If we failed to set the workaround just carry on. */
308                         rc = 0;
309                 }
310         }
311
312         netif_dbg(efx, probe, efx->net_dev,
313                   "workaround for bug 35388 is %sabled\n",
314                   nic_data->workaround_35388 ? "en" : "dis");
315         netif_dbg(efx, probe, efx->net_dev,
316                   "workaround for bug 61265 is %sabled\n",
317                   nic_data->workaround_61265 ? "en" : "dis");
318
319         return rc;
320 }
321
322 static void efx_ef10_process_timer_config(struct efx_nic *efx,
323                                           const efx_dword_t *data)
324 {
325         unsigned int max_count;
326
327         if (EFX_EF10_WORKAROUND_61265(efx)) {
328                 efx->timer_quantum_ns = MCDI_DWORD(data,
329                         GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
330                 efx->timer_max_ns = MCDI_DWORD(data,
331                         GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
332         } else if (EFX_EF10_WORKAROUND_35388(efx)) {
333                 efx->timer_quantum_ns = MCDI_DWORD(data,
334                         GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
335                 max_count = MCDI_DWORD(data,
336                         GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
337                 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
338         } else {
339                 efx->timer_quantum_ns = MCDI_DWORD(data,
340                         GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
341                 max_count = MCDI_DWORD(data,
342                         GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
343                 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
344         }
345
346         netif_dbg(efx, probe, efx->net_dev,
347                   "got timer properties from MC: quantum %u ns; max %u ns\n",
348                   efx->timer_quantum_ns, efx->timer_max_ns);
349 }
350
351 static int efx_ef10_get_timer_config(struct efx_nic *efx)
352 {
353         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
354         int rc;
355
356         rc = efx_ef10_get_timer_workarounds(efx);
357         if (rc)
358                 return rc;
359
360         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
361                                 outbuf, sizeof(outbuf), NULL);
362
363         if (rc == 0) {
364                 efx_ef10_process_timer_config(efx, outbuf);
365         } else if (rc == -ENOSYS || rc == -EPERM) {
366                 /* Not available - fall back to Huntington defaults. */
367                 unsigned int quantum;
368
369                 rc = efx_ef10_get_sysclk_freq(efx);
370                 if (rc < 0)
371                         return rc;
372
373                 quantum = 1536000 / rc; /* 1536 cycles */
374                 efx->timer_quantum_ns = quantum;
375                 efx->timer_max_ns = efx->type->timer_period_max * quantum;
376                 rc = 0;
377         } else {
378                 efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
379                                        MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
380                                        NULL, 0, rc);
381         }
382
383         return rc;
384 }
385
386 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
387 {
388         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
389         size_t outlen;
390         int rc;
391
392         BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
393
394         rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
395                           outbuf, sizeof(outbuf), &outlen);
396         if (rc)
397                 return rc;
398         if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
399                 return -EIO;
400
401         ether_addr_copy(mac_address,
402                         MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
403         return 0;
404 }
405
406 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
407 {
408         MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
409         MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
410         size_t outlen;
411         int num_addrs, rc;
412
413         MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
414                        EVB_PORT_ID_ASSIGNED);
415         rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
416                           sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
417
418         if (rc)
419                 return rc;
420         if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
421                 return -EIO;
422
423         num_addrs = MCDI_DWORD(outbuf,
424                                VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
425
426         WARN_ON(num_addrs != 1);
427
428         ether_addr_copy(mac_address,
429                         MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
430
431         return 0;
432 }
433
434 static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
435                                                struct device_attribute *attr,
436                                                char *buf)
437 {
438         struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
439
440         return sprintf(buf, "%d\n",
441                        ((efx->mcdi->fn_flags) &
442                         (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
443                        ? 1 : 0);
444 }
445
446 static ssize_t efx_ef10_show_primary_flag(struct device *dev,
447                                           struct device_attribute *attr,
448                                           char *buf)
449 {
450         struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
451
452         return sprintf(buf, "%d\n",
453                        ((efx->mcdi->fn_flags) &
454                         (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
455                        ? 1 : 0);
456 }
457
458 static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
459 {
460         struct efx_ef10_nic_data *nic_data = efx->nic_data;
461         struct efx_ef10_vlan *vlan;
462
463         WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
464
465         list_for_each_entry(vlan, &nic_data->vlan_list, list) {
466                 if (vlan->vid == vid)
467                         return vlan;
468         }
469
470         return NULL;
471 }
472
473 static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
474 {
475         struct efx_ef10_nic_data *nic_data = efx->nic_data;
476         struct efx_ef10_vlan *vlan;
477         int rc;
478
479         mutex_lock(&nic_data->vlan_lock);
480
481         vlan = efx_ef10_find_vlan(efx, vid);
482         if (vlan) {
483                 /* We add VID 0 on init. 8021q adds it on module init
484                  * for all interfaces with VLAN filtring feature.
485                  */
486                 if (vid == 0)
487                         goto done_unlock;
488                 netif_warn(efx, drv, efx->net_dev,
489                            "VLAN %u already added\n", vid);
490                 rc = -EALREADY;
491                 goto fail_exist;
492         }
493
494         rc = -ENOMEM;
495         vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
496         if (!vlan)
497                 goto fail_alloc;
498
499         vlan->vid = vid;
500
501         list_add_tail(&vlan->list, &nic_data->vlan_list);
502
503         if (efx->filter_state) {
504                 mutex_lock(&efx->mac_lock);
505                 down_write(&efx->filter_sem);
506                 rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
507                 up_write(&efx->filter_sem);
508                 mutex_unlock(&efx->mac_lock);
509                 if (rc)
510                         goto fail_filter_add_vlan;
511         }
512
513 done_unlock:
514         mutex_unlock(&nic_data->vlan_lock);
515         return 0;
516
517 fail_filter_add_vlan:
518         list_del(&vlan->list);
519         kfree(vlan);
520 fail_alloc:
521 fail_exist:
522         mutex_unlock(&nic_data->vlan_lock);
523         return rc;
524 }
525
526 static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
527                                        struct efx_ef10_vlan *vlan)
528 {
529         struct efx_ef10_nic_data *nic_data = efx->nic_data;
530
531         WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
532
533         if (efx->filter_state) {
534                 down_write(&efx->filter_sem);
535                 efx_ef10_filter_del_vlan(efx, vlan->vid);
536                 up_write(&efx->filter_sem);
537         }
538
539         list_del(&vlan->list);
540         kfree(vlan);
541 }
542
543 static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
544 {
545         struct efx_ef10_nic_data *nic_data = efx->nic_data;
546         struct efx_ef10_vlan *vlan;
547         int rc = 0;
548
549         /* 8021q removes VID 0 on module unload for all interfaces
550          * with VLAN filtering feature. We need to keep it to receive
551          * untagged traffic.
552          */
553         if (vid == 0)
554                 return 0;
555
556         mutex_lock(&nic_data->vlan_lock);
557
558         vlan = efx_ef10_find_vlan(efx, vid);
559         if (!vlan) {
560                 netif_err(efx, drv, efx->net_dev,
561                           "VLAN %u to be deleted not found\n", vid);
562                 rc = -ENOENT;
563         } else {
564                 efx_ef10_del_vlan_internal(efx, vlan);
565         }
566
567         mutex_unlock(&nic_data->vlan_lock);
568
569         return rc;
570 }
571
572 static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
573 {
574         struct efx_ef10_nic_data *nic_data = efx->nic_data;
575         struct efx_ef10_vlan *vlan, *next_vlan;
576
577         mutex_lock(&nic_data->vlan_lock);
578         list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
579                 efx_ef10_del_vlan_internal(efx, vlan);
580         mutex_unlock(&nic_data->vlan_lock);
581 }
582
583 static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
584                    NULL);
585 static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
586
587 static int efx_ef10_probe(struct efx_nic *efx)
588 {
589         struct efx_ef10_nic_data *nic_data;
590         int i, rc;
591
592         /* We can have one VI for each 8K region.  However, until we
593          * use TX option descriptors we need two TX queues per channel.
594          */
595         efx->max_channels = min_t(unsigned int,
596                                   EFX_MAX_CHANNELS,
597                                   efx_ef10_mem_map_size(efx) /
598                                   (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
599         efx->max_tx_channels = efx->max_channels;
600         if (WARN_ON(efx->max_channels == 0))
601                 return -EIO;
602
603         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
604         if (!nic_data)
605                 return -ENOMEM;
606         efx->nic_data = nic_data;
607
608         /* we assume later that we can copy from this buffer in dwords */
609         BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
610
611         rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
612                                   8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
613         if (rc)
614                 goto fail1;
615
616         /* Get the MC's warm boot count.  In case it's rebooting right
617          * now, be prepared to retry.
618          */
619         i = 0;
620         for (;;) {
621                 rc = efx_ef10_get_warm_boot_count(efx);
622                 if (rc >= 0)
623                         break;
624                 if (++i == 5)
625                         goto fail2;
626                 ssleep(1);
627         }
628         nic_data->warm_boot_count = rc;
629
630         nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
631
632         nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
633
634         /* In case we're recovering from a crash (kexec), we want to
635          * cancel any outstanding request by the previous user of this
636          * function.  We send a special message using the least
637          * significant bits of the 'high' (doorbell) register.
638          */
639         _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
640
641         rc = efx_mcdi_init(efx);
642         if (rc)
643                 goto fail2;
644
645         mutex_init(&nic_data->udp_tunnels_lock);
646
647         /* Reset (most) configuration for this function */
648         rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
649         if (rc)
650                 goto fail3;
651
652         /* Enable event logging */
653         rc = efx_mcdi_log_ctrl(efx, true, false, 0);
654         if (rc)
655                 goto fail3;
656
657         rc = device_create_file(&efx->pci_dev->dev,
658                                 &dev_attr_link_control_flag);
659         if (rc)
660                 goto fail3;
661
662         rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
663         if (rc)
664                 goto fail4;
665
666         rc = efx_ef10_get_pf_index(efx);
667         if (rc)
668                 goto fail5;
669
670         rc = efx_ef10_init_datapath_caps(efx);
671         if (rc < 0)
672                 goto fail5;
673
674         efx->rx_packet_len_offset =
675                 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
676
677         if (nic_data->datapath_caps &
678             (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
679                 efx->net_dev->hw_features |= NETIF_F_RXFCS;
680
681         rc = efx_mcdi_port_get_number(efx);
682         if (rc < 0)
683                 goto fail5;
684         efx->port_num = rc;
685
686         rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
687         if (rc)
688                 goto fail5;
689
690         rc = efx_ef10_get_timer_config(efx);
691         if (rc < 0)
692                 goto fail5;
693
694         rc = efx_mcdi_mon_probe(efx);
695         if (rc && rc != -EPERM)
696                 goto fail5;
697
698         efx_ptp_probe(efx, NULL);
699
700 #ifdef CONFIG_SFC_SRIOV
701         if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
702                 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
703                 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
704
705                 efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
706         } else
707 #endif
708                 ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
709
710         INIT_LIST_HEAD(&nic_data->vlan_list);
711         mutex_init(&nic_data->vlan_lock);
712
713         /* Add unspecified VID to support VLAN filtering being disabled */
714         rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
715         if (rc)
716                 goto fail_add_vid_unspec;
717
718         /* If VLAN filtering is enabled, we need VID 0 to get untagged
719          * traffic.  It is added automatically if 8021q module is loaded,
720          * but we can't rely on it since module may be not loaded.
721          */
722         rc = efx_ef10_add_vlan(efx, 0);
723         if (rc)
724                 goto fail_add_vid_0;
725
726         return 0;
727
728 fail_add_vid_0:
729         efx_ef10_cleanup_vlans(efx);
730 fail_add_vid_unspec:
731         mutex_destroy(&nic_data->vlan_lock);
732         efx_ptp_remove(efx);
733         efx_mcdi_mon_remove(efx);
734 fail5:
735         device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
736 fail4:
737         device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
738 fail3:
739         efx_mcdi_detach(efx);
740
741         mutex_lock(&nic_data->udp_tunnels_lock);
742         memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
743         (void)efx_ef10_set_udp_tnl_ports(efx, true);
744         mutex_unlock(&nic_data->udp_tunnels_lock);
745         mutex_destroy(&nic_data->udp_tunnels_lock);
746
747         efx_mcdi_fini(efx);
748 fail2:
749         efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
750 fail1:
751         kfree(nic_data);
752         efx->nic_data = NULL;
753         return rc;
754 }
755
756 static int efx_ef10_free_vis(struct efx_nic *efx)
757 {
758         MCDI_DECLARE_BUF_ERR(outbuf);
759         size_t outlen;
760         int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
761                                     outbuf, sizeof(outbuf), &outlen);
762
763         /* -EALREADY means nothing to free, so ignore */
764         if (rc == -EALREADY)
765                 rc = 0;
766         if (rc)
767                 efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
768                                        rc);
769         return rc;
770 }
771
772 #ifdef EFX_USE_PIO
773
774 static void efx_ef10_free_piobufs(struct efx_nic *efx)
775 {
776         struct efx_ef10_nic_data *nic_data = efx->nic_data;
777         MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
778         unsigned int i;
779         int rc;
780
781         BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
782
783         for (i = 0; i < nic_data->n_piobufs; i++) {
784                 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
785                                nic_data->piobuf_handle[i]);
786                 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
787                                   NULL, 0, NULL);
788                 WARN_ON(rc);
789         }
790
791         nic_data->n_piobufs = 0;
792 }
793
794 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
795 {
796         struct efx_ef10_nic_data *nic_data = efx->nic_data;
797         MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
798         unsigned int i;
799         size_t outlen;
800         int rc = 0;
801
802         BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
803
804         for (i = 0; i < n; i++) {
805                 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
806                                         outbuf, sizeof(outbuf), &outlen);
807                 if (rc) {
808                         /* Don't display the MC error if we didn't have space
809                          * for a VF.
810                          */
811                         if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
812                                 efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
813                                                        0, outbuf, outlen, rc);
814                         break;
815                 }
816                 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
817                         rc = -EIO;
818                         break;
819                 }
820                 nic_data->piobuf_handle[i] =
821                         MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
822                 netif_dbg(efx, probe, efx->net_dev,
823                           "allocated PIO buffer %u handle %x\n", i,
824                           nic_data->piobuf_handle[i]);
825         }
826
827         nic_data->n_piobufs = i;
828         if (rc)
829                 efx_ef10_free_piobufs(efx);
830         return rc;
831 }
832
833 static int efx_ef10_link_piobufs(struct efx_nic *efx)
834 {
835         struct efx_ef10_nic_data *nic_data = efx->nic_data;
836         MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
837         struct efx_channel *channel;
838         struct efx_tx_queue *tx_queue;
839         unsigned int offset, index;
840         int rc;
841
842         BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
843         BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
844
845         /* Link a buffer to each VI in the write-combining mapping */
846         for (index = 0; index < nic_data->n_piobufs; ++index) {
847                 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
848                                nic_data->piobuf_handle[index]);
849                 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
850                                nic_data->pio_write_vi_base + index);
851                 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
852                                   inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
853                                   NULL, 0, NULL);
854                 if (rc) {
855                         netif_err(efx, drv, efx->net_dev,
856                                   "failed to link VI %u to PIO buffer %u (%d)\n",
857                                   nic_data->pio_write_vi_base + index, index,
858                                   rc);
859                         goto fail;
860                 }
861                 netif_dbg(efx, probe, efx->net_dev,
862                           "linked VI %u to PIO buffer %u\n",
863                           nic_data->pio_write_vi_base + index, index);
864         }
865
866         /* Link a buffer to each TX queue */
867         efx_for_each_channel(channel, efx) {
868                 efx_for_each_channel_tx_queue(tx_queue, channel) {
869                         /* We assign the PIO buffers to queues in
870                          * reverse order to allow for the following
871                          * special case.
872                          */
873                         offset = ((efx->tx_channel_offset + efx->n_tx_channels -
874                                    tx_queue->channel->channel - 1) *
875                                   efx_piobuf_size);
876                         index = offset / nic_data->piobuf_size;
877                         offset = offset % nic_data->piobuf_size;
878
879                         /* When the host page size is 4K, the first
880                          * host page in the WC mapping may be within
881                          * the same VI page as the last TX queue.  We
882                          * can only link one buffer to each VI.
883                          */
884                         if (tx_queue->queue == nic_data->pio_write_vi_base) {
885                                 BUG_ON(index != 0);
886                                 rc = 0;
887                         } else {
888                                 MCDI_SET_DWORD(inbuf,
889                                                LINK_PIOBUF_IN_PIOBUF_HANDLE,
890                                                nic_data->piobuf_handle[index]);
891                                 MCDI_SET_DWORD(inbuf,
892                                                LINK_PIOBUF_IN_TXQ_INSTANCE,
893                                                tx_queue->queue);
894                                 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
895                                                   inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
896                                                   NULL, 0, NULL);
897                         }
898
899                         if (rc) {
900                                 /* This is non-fatal; the TX path just
901                                  * won't use PIO for this queue
902                                  */
903                                 netif_err(efx, drv, efx->net_dev,
904                                           "failed to link VI %u to PIO buffer %u (%d)\n",
905                                           tx_queue->queue, index, rc);
906                                 tx_queue->piobuf = NULL;
907                         } else {
908                                 tx_queue->piobuf =
909                                         nic_data->pio_write_base +
910                                         index * EFX_VI_PAGE_SIZE + offset;
911                                 tx_queue->piobuf_offset = offset;
912                                 netif_dbg(efx, probe, efx->net_dev,
913                                           "linked VI %u to PIO buffer %u offset %x addr %p\n",
914                                           tx_queue->queue, index,
915                                           tx_queue->piobuf_offset,
916                                           tx_queue->piobuf);
917                         }
918                 }
919         }
920
921         return 0;
922
923 fail:
924         /* inbuf was defined for MC_CMD_LINK_PIOBUF.  We can use the same
925          * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
926          */
927         BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
928         while (index--) {
929                 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
930                                nic_data->pio_write_vi_base + index);
931                 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
932                              inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
933                              NULL, 0, NULL);
934         }
935         return rc;
936 }
937
938 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
939 {
940         struct efx_channel *channel;
941         struct efx_tx_queue *tx_queue;
942
943         /* All our existing PIO buffers went away */
944         efx_for_each_channel(channel, efx)
945                 efx_for_each_channel_tx_queue(tx_queue, channel)
946                         tx_queue->piobuf = NULL;
947 }
948
949 #else /* !EFX_USE_PIO */
950
951 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
952 {
953         return n == 0 ? 0 : -ENOBUFS;
954 }
955
956 static int efx_ef10_link_piobufs(struct efx_nic *efx)
957 {
958         return 0;
959 }
960
961 static void efx_ef10_free_piobufs(struct efx_nic *efx)
962 {
963 }
964
965 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
966 {
967 }
968
969 #endif /* EFX_USE_PIO */
970
971 static void efx_ef10_remove(struct efx_nic *efx)
972 {
973         struct efx_ef10_nic_data *nic_data = efx->nic_data;
974         int rc;
975
976 #ifdef CONFIG_SFC_SRIOV
977         struct efx_ef10_nic_data *nic_data_pf;
978         struct pci_dev *pci_dev_pf;
979         struct efx_nic *efx_pf;
980         struct ef10_vf *vf;
981
982         if (efx->pci_dev->is_virtfn) {
983                 pci_dev_pf = efx->pci_dev->physfn;
984                 if (pci_dev_pf) {
985                         efx_pf = pci_get_drvdata(pci_dev_pf);
986                         nic_data_pf = efx_pf->nic_data;
987                         vf = nic_data_pf->vf + nic_data->vf_index;
988                         vf->efx = NULL;
989                 } else
990                         netif_info(efx, drv, efx->net_dev,
991                                    "Could not get the PF id from VF\n");
992         }
993 #endif
994
995         efx_ef10_cleanup_vlans(efx);
996         mutex_destroy(&nic_data->vlan_lock);
997
998         efx_ptp_remove(efx);
999
1000         efx_mcdi_mon_remove(efx);
1001
1002         efx_ef10_rx_free_indir_table(efx);
1003
1004         if (nic_data->wc_membase)
1005                 iounmap(nic_data->wc_membase);
1006
1007         rc = efx_ef10_free_vis(efx);
1008         WARN_ON(rc != 0);
1009
1010         if (!nic_data->must_restore_piobufs)
1011                 efx_ef10_free_piobufs(efx);
1012
1013         device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
1014         device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
1015
1016         efx_mcdi_detach(efx);
1017
1018         memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
1019         mutex_lock(&nic_data->udp_tunnels_lock);
1020         (void)efx_ef10_set_udp_tnl_ports(efx, true);
1021         mutex_unlock(&nic_data->udp_tunnels_lock);
1022
1023         mutex_destroy(&nic_data->udp_tunnels_lock);
1024
1025         efx_mcdi_fini(efx);
1026         efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
1027         kfree(nic_data);
1028 }
1029
1030 static int efx_ef10_probe_pf(struct efx_nic *efx)
1031 {
1032         return efx_ef10_probe(efx);
1033 }
1034
1035 int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
1036                             u32 *port_flags, u32 *vadaptor_flags,
1037                             unsigned int *vlan_tags)
1038 {
1039         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1040         MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
1041         MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
1042         size_t outlen;
1043         int rc;
1044
1045         if (nic_data->datapath_caps &
1046             (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
1047                 MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
1048                                port_id);
1049
1050                 rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
1051                                   outbuf, sizeof(outbuf), &outlen);
1052                 if (rc)
1053                         return rc;
1054
1055                 if (outlen < sizeof(outbuf)) {
1056                         rc = -EIO;
1057                         return rc;
1058                 }
1059         }
1060
1061         if (port_flags)
1062                 *port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1063         if (vadaptor_flags)
1064                 *vadaptor_flags =
1065                         MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1066         if (vlan_tags)
1067                 *vlan_tags =
1068                         MCDI_DWORD(outbuf,
1069                                    VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1070
1071         return 0;
1072 }
1073
1074 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1075 {
1076         MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1077
1078         MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1079         return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1080                             NULL, 0, NULL);
1081 }
1082
1083 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1084 {
1085         MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1086
1087         MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1088         return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1089                             NULL, 0, NULL);
1090 }
1091
1092 int efx_ef10_vport_add_mac(struct efx_nic *efx,
1093                            unsigned int port_id, u8 *mac)
1094 {
1095         MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1096
1097         MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1098         ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1099
1100         return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1101                             sizeof(inbuf), NULL, 0, NULL);
1102 }
1103
1104 int efx_ef10_vport_del_mac(struct efx_nic *efx,
1105                            unsigned int port_id, u8 *mac)
1106 {
1107         MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1108
1109         MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1110         ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1111
1112         return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1113                             sizeof(inbuf), NULL, 0, NULL);
1114 }
1115
1116 #ifdef CONFIG_SFC_SRIOV
1117 static int efx_ef10_probe_vf(struct efx_nic *efx)
1118 {
1119         int rc;
1120         struct pci_dev *pci_dev_pf;
1121
1122         /* If the parent PF has no VF data structure, it doesn't know about this
1123          * VF so fail probe.  The VF needs to be re-created.  This can happen
1124          * if the PF driver is unloaded while the VF is assigned to a guest.
1125          */
1126         pci_dev_pf = efx->pci_dev->physfn;
1127         if (pci_dev_pf) {
1128                 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1129                 struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1130
1131                 if (!nic_data_pf->vf) {
1132                         netif_info(efx, drv, efx->net_dev,
1133                                    "The VF cannot link to its parent PF; "
1134                                    "please destroy and re-create the VF\n");
1135                         return -EBUSY;
1136                 }
1137         }
1138
1139         rc = efx_ef10_probe(efx);
1140         if (rc)
1141                 return rc;
1142
1143         rc = efx_ef10_get_vf_index(efx);
1144         if (rc)
1145                 goto fail;
1146
1147         if (efx->pci_dev->is_virtfn) {
1148                 if (efx->pci_dev->physfn) {
1149                         struct efx_nic *efx_pf =
1150                                 pci_get_drvdata(efx->pci_dev->physfn);
1151                         struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1152                         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1153
1154                         nic_data_p->vf[nic_data->vf_index].efx = efx;
1155                         nic_data_p->vf[nic_data->vf_index].pci_dev =
1156                                 efx->pci_dev;
1157                 } else
1158                         netif_info(efx, drv, efx->net_dev,
1159                                    "Could not get the PF id from VF\n");
1160         }
1161
1162         return 0;
1163
1164 fail:
1165         efx_ef10_remove(efx);
1166         return rc;
1167 }
1168 #else
1169 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1170 {
1171         return 0;
1172 }
1173 #endif
1174
1175 static int efx_ef10_alloc_vis(struct efx_nic *efx,
1176                               unsigned int min_vis, unsigned int max_vis)
1177 {
1178         MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
1179         MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
1180         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1181         size_t outlen;
1182         int rc;
1183
1184         MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
1185         MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
1186         rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
1187                           outbuf, sizeof(outbuf), &outlen);
1188         if (rc != 0)
1189                 return rc;
1190
1191         if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
1192                 return -EIO;
1193
1194         netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
1195                   MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
1196
1197         nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
1198         nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
1199         return 0;
1200 }
1201
1202 /* Note that the failure path of this function does not free
1203  * resources, as this will be done by efx_ef10_remove().
1204  */
1205 static int efx_ef10_dimension_resources(struct efx_nic *efx)
1206 {
1207         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1208         unsigned int uc_mem_map_size, wc_mem_map_size;
1209         unsigned int min_vis = max(EFX_TXQ_TYPES,
1210                                    efx_separate_tx_channels ? 2 : 1);
1211         unsigned int channel_vis, pio_write_vi_base, max_vis;
1212         void __iomem *membase;
1213         int rc;
1214
1215         channel_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1216
1217 #ifdef EFX_USE_PIO
1218         /* Try to allocate PIO buffers if wanted and if the full
1219          * number of PIO buffers would be sufficient to allocate one
1220          * copy-buffer per TX channel.  Failure is non-fatal, as there
1221          * are only a small number of PIO buffers shared between all
1222          * functions of the controller.
1223          */
1224         if (efx_piobuf_size != 0 &&
1225             nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1226             efx->n_tx_channels) {
1227                 unsigned int n_piobufs =
1228                         DIV_ROUND_UP(efx->n_tx_channels,
1229                                      nic_data->piobuf_size / efx_piobuf_size);
1230
1231                 rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1232                 if (rc == -ENOSPC)
1233                         netif_dbg(efx, probe, efx->net_dev,
1234                                   "out of PIO buffers; cannot allocate more\n");
1235                 else if (rc == -EPERM)
1236                         netif_dbg(efx, probe, efx->net_dev,
1237                                   "not permitted to allocate PIO buffers\n");
1238                 else if (rc)
1239                         netif_err(efx, probe, efx->net_dev,
1240                                   "failed to allocate PIO buffers (%d)\n", rc);
1241                 else
1242                         netif_dbg(efx, probe, efx->net_dev,
1243                                   "allocated %u PIO buffers\n", n_piobufs);
1244         }
1245 #else
1246         nic_data->n_piobufs = 0;
1247 #endif
1248
1249         /* PIO buffers should be mapped with write-combining enabled,
1250          * and we want to make single UC and WC mappings rather than
1251          * several of each (in fact that's the only option if host
1252          * page size is >4K).  So we may allocate some extra VIs just
1253          * for writing PIO buffers through.
1254          *
1255          * The UC mapping contains (channel_vis - 1) complete VIs and the
1256          * first half of the next VI.  Then the WC mapping begins with
1257          * the second half of this last VI.
1258          */
1259         uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * EFX_VI_PAGE_SIZE +
1260                                      ER_DZ_TX_PIOBUF);
1261         if (nic_data->n_piobufs) {
1262                 /* pio_write_vi_base rounds down to give the number of complete
1263                  * VIs inside the UC mapping.
1264                  */
1265                 pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
1266                 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1267                                                nic_data->n_piobufs) *
1268                                               EFX_VI_PAGE_SIZE) -
1269                                    uc_mem_map_size);
1270                 max_vis = pio_write_vi_base + nic_data->n_piobufs;
1271         } else {
1272                 pio_write_vi_base = 0;
1273                 wc_mem_map_size = 0;
1274                 max_vis = channel_vis;
1275         }
1276
1277         /* In case the last attached driver failed to free VIs, do it now */
1278         rc = efx_ef10_free_vis(efx);
1279         if (rc != 0)
1280                 return rc;
1281
1282         rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1283         if (rc != 0)
1284                 return rc;
1285
1286         if (nic_data->n_allocated_vis < channel_vis) {
1287                 netif_info(efx, drv, efx->net_dev,
1288                            "Could not allocate enough VIs to satisfy RSS"
1289                            " requirements. Performance may not be optimal.\n");
1290                 /* We didn't get the VIs to populate our channels.
1291                  * We could keep what we got but then we'd have more
1292                  * interrupts than we need.
1293                  * Instead calculate new max_channels and restart
1294                  */
1295                 efx->max_channels = nic_data->n_allocated_vis;
1296                 efx->max_tx_channels =
1297                         nic_data->n_allocated_vis / EFX_TXQ_TYPES;
1298
1299                 efx_ef10_free_vis(efx);
1300                 return -EAGAIN;
1301         }
1302
1303         /* If we didn't get enough VIs to map all the PIO buffers, free the
1304          * PIO buffers
1305          */
1306         if (nic_data->n_piobufs &&
1307             nic_data->n_allocated_vis <
1308             pio_write_vi_base + nic_data->n_piobufs) {
1309                 netif_dbg(efx, probe, efx->net_dev,
1310                           "%u VIs are not sufficient to map %u PIO buffers\n",
1311                           nic_data->n_allocated_vis, nic_data->n_piobufs);
1312                 efx_ef10_free_piobufs(efx);
1313         }
1314
1315         /* Shrink the original UC mapping of the memory BAR */
1316         membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
1317         if (!membase) {
1318                 netif_err(efx, probe, efx->net_dev,
1319                           "could not shrink memory BAR to %x\n",
1320                           uc_mem_map_size);
1321                 return -ENOMEM;
1322         }
1323         iounmap(efx->membase);
1324         efx->membase = membase;
1325
1326         /* Set up the WC mapping if needed */
1327         if (wc_mem_map_size) {
1328                 nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1329                                                   uc_mem_map_size,
1330                                                   wc_mem_map_size);
1331                 if (!nic_data->wc_membase) {
1332                         netif_err(efx, probe, efx->net_dev,
1333                                   "could not allocate WC mapping of size %x\n",
1334                                   wc_mem_map_size);
1335                         return -ENOMEM;
1336                 }
1337                 nic_data->pio_write_vi_base = pio_write_vi_base;
1338                 nic_data->pio_write_base =
1339                         nic_data->wc_membase +
1340                         (pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
1341                          uc_mem_map_size);
1342
1343                 rc = efx_ef10_link_piobufs(efx);
1344                 if (rc)
1345                         efx_ef10_free_piobufs(efx);
1346         }
1347
1348         netif_dbg(efx, probe, efx->net_dev,
1349                   "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1350                   &efx->membase_phys, efx->membase, uc_mem_map_size,
1351                   nic_data->wc_membase, wc_mem_map_size);
1352
1353         return 0;
1354 }
1355
1356 static int efx_ef10_init_nic(struct efx_nic *efx)
1357 {
1358         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1359         int rc;
1360
1361         if (nic_data->must_check_datapath_caps) {
1362                 rc = efx_ef10_init_datapath_caps(efx);
1363                 if (rc)
1364                         return rc;
1365                 nic_data->must_check_datapath_caps = false;
1366         }
1367
1368         if (nic_data->must_realloc_vis) {
1369                 /* We cannot let the number of VIs change now */
1370                 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1371                                         nic_data->n_allocated_vis);
1372                 if (rc)
1373                         return rc;
1374                 nic_data->must_realloc_vis = false;
1375         }
1376
1377         if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1378                 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1379                 if (rc == 0) {
1380                         rc = efx_ef10_link_piobufs(efx);
1381                         if (rc)
1382                                 efx_ef10_free_piobufs(efx);
1383                 }
1384
1385                 /* Log an error on failure, but this is non-fatal.
1386                  * Permission errors are less important - we've presumably
1387                  * had the PIO buffer licence removed.
1388                  */
1389                 if (rc == -EPERM)
1390                         netif_dbg(efx, drv, efx->net_dev,
1391                                   "not permitted to restore PIO buffers\n");
1392                 else if (rc)
1393                         netif_err(efx, drv, efx->net_dev,
1394                                   "failed to restore PIO buffers (%d)\n", rc);
1395                 nic_data->must_restore_piobufs = false;
1396         }
1397
1398         /* don't fail init if RSS setup doesn't work */
1399         rc = efx->type->rx_push_rss_config(efx, false, efx->rx_indir_table, NULL);
1400         efx->rss_active = (rc == 0);
1401
1402         return 0;
1403 }
1404
1405 static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
1406 {
1407         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1408 #ifdef CONFIG_SFC_SRIOV
1409         unsigned int i;
1410 #endif
1411
1412         /* All our allocations have been reset */
1413         nic_data->must_realloc_vis = true;
1414         nic_data->must_restore_filters = true;
1415         nic_data->must_restore_piobufs = true;
1416         efx_ef10_forget_old_piobufs(efx);
1417         nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1418
1419         /* Driver-created vswitches and vports must be re-created */
1420         nic_data->must_probe_vswitching = true;
1421         nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
1422 #ifdef CONFIG_SFC_SRIOV
1423         if (nic_data->vf)
1424                 for (i = 0; i < efx->vf_count; i++)
1425                         nic_data->vf[i].vport_id = 0;
1426 #endif
1427 }
1428
1429 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1430 {
1431         if (reason == RESET_TYPE_MC_FAILURE)
1432                 return RESET_TYPE_DATAPATH;
1433
1434         return efx_mcdi_map_reset_reason(reason);
1435 }
1436
1437 static int efx_ef10_map_reset_flags(u32 *flags)
1438 {
1439         enum {
1440                 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1441                                    ETH_RESET_SHARED_SHIFT),
1442                 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1443                                   ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1444                                   ETH_RESET_PHY | ETH_RESET_MGMT) <<
1445                                  ETH_RESET_SHARED_SHIFT)
1446         };
1447
1448         /* We assume for now that our PCI function is permitted to
1449          * reset everything.
1450          */
1451
1452         if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1453                 *flags &= ~EF10_RESET_MC;
1454                 return RESET_TYPE_WORLD;
1455         }
1456
1457         if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1458                 *flags &= ~EF10_RESET_PORT;
1459                 return RESET_TYPE_ALL;
1460         }
1461
1462         /* no invisible reset implemented */
1463
1464         return -EINVAL;
1465 }
1466
1467 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1468 {
1469         int rc = efx_mcdi_reset(efx, reset_type);
1470
1471         /* Unprivileged functions return -EPERM, but need to return success
1472          * here so that the datapath is brought back up.
1473          */
1474         if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1475                 rc = 0;
1476
1477         /* If it was a port reset, trigger reallocation of MC resources.
1478          * Note that on an MC reset nothing needs to be done now because we'll
1479          * detect the MC reset later and handle it then.
1480          * For an FLR, we never get an MC reset event, but the MC has reset all
1481          * resources assigned to us, so we have to trigger reallocation now.
1482          */
1483         if ((reset_type == RESET_TYPE_ALL ||
1484              reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1485                 efx_ef10_reset_mc_allocations(efx);
1486         return rc;
1487 }
1488
1489 #define EF10_DMA_STAT(ext_name, mcdi_name)                      \
1490         [EF10_STAT_ ## ext_name] =                              \
1491         { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1492 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name)                \
1493         [EF10_STAT_ ## int_name] =                              \
1494         { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1495 #define EF10_OTHER_STAT(ext_name)                               \
1496         [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1497 #define GENERIC_SW_STAT(ext_name)                               \
1498         [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1499
1500 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1501         EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1502         EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1503         EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1504         EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1505         EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1506         EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1507         EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1508         EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1509         EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1510         EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1511         EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1512         EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1513         EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1514         EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1515         EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1516         EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1517         EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1518         EF10_OTHER_STAT(port_rx_good_bytes),
1519         EF10_OTHER_STAT(port_rx_bad_bytes),
1520         EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1521         EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1522         EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1523         EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1524         EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1525         EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1526         EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1527         EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1528         EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1529         EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1530         EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1531         EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1532         EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1533         EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1534         EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1535         EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1536         EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1537         EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1538         EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1539         EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1540         EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1541         EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1542         GENERIC_SW_STAT(rx_nodesc_trunc),
1543         GENERIC_SW_STAT(rx_noskb_drops),
1544         EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1545         EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1546         EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1547         EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1548         EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1549         EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1550         EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1551         EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1552         EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1553         EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1554         EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1555         EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1556         EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1557         EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1558         EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1559         EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1560         EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1561         EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1562         EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1563         EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1564         EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1565         EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1566         EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1567         EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1568         EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1569         EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1570         EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1571         EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1572         EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1573         EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1574 };
1575
1576 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |      \
1577                                (1ULL << EF10_STAT_port_tx_packets) |    \
1578                                (1ULL << EF10_STAT_port_tx_pause) |      \
1579                                (1ULL << EF10_STAT_port_tx_unicast) |    \
1580                                (1ULL << EF10_STAT_port_tx_multicast) |  \
1581                                (1ULL << EF10_STAT_port_tx_broadcast) |  \
1582                                (1ULL << EF10_STAT_port_rx_bytes) |      \
1583                                (1ULL <<                                 \
1584                                 EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1585                                (1ULL << EF10_STAT_port_rx_good_bytes) | \
1586                                (1ULL << EF10_STAT_port_rx_bad_bytes) |  \
1587                                (1ULL << EF10_STAT_port_rx_packets) |    \
1588                                (1ULL << EF10_STAT_port_rx_good) |       \
1589                                (1ULL << EF10_STAT_port_rx_bad) |        \
1590                                (1ULL << EF10_STAT_port_rx_pause) |      \
1591                                (1ULL << EF10_STAT_port_rx_control) |    \
1592                                (1ULL << EF10_STAT_port_rx_unicast) |    \
1593                                (1ULL << EF10_STAT_port_rx_multicast) |  \
1594                                (1ULL << EF10_STAT_port_rx_broadcast) |  \
1595                                (1ULL << EF10_STAT_port_rx_lt64) |       \
1596                                (1ULL << EF10_STAT_port_rx_64) |         \
1597                                (1ULL << EF10_STAT_port_rx_65_to_127) |  \
1598                                (1ULL << EF10_STAT_port_rx_128_to_255) | \
1599                                (1ULL << EF10_STAT_port_rx_256_to_511) | \
1600                                (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1601                                (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1602                                (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1603                                (1ULL << EF10_STAT_port_rx_gtjumbo) |    \
1604                                (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1605                                (1ULL << EF10_STAT_port_rx_overflow) |   \
1606                                (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1607                                (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
1608                                (1ULL << GENERIC_STAT_rx_noskb_drops))
1609
1610 /* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1611  * For a 10G/40G switchable port we do not expose these because they might
1612  * not include all the packets they should.
1613  * On 8000 series NICs these statistics are always provided.
1614  */
1615 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |  \
1616                                  (1ULL << EF10_STAT_port_tx_lt64) |     \
1617                                  (1ULL << EF10_STAT_port_tx_64) |       \
1618                                  (1ULL << EF10_STAT_port_tx_65_to_127) |\
1619                                  (1ULL << EF10_STAT_port_tx_128_to_255) |\
1620                                  (1ULL << EF10_STAT_port_tx_256_to_511) |\
1621                                  (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1622                                  (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1623                                  (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1624
1625 /* These statistics are only provided by the 40G MAC.  For a 10G/40G
1626  * switchable port we do expose these because the errors will otherwise
1627  * be silent.
1628  */
1629 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1630                                   (1ULL << EF10_STAT_port_rx_length_error))
1631
1632 /* These statistics are only provided if the firmware supports the
1633  * capability PM_AND_RXDP_COUNTERS.
1634  */
1635 #define HUNT_PM_AND_RXDP_STAT_MASK (                                    \
1636         (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |              \
1637         (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |            \
1638         (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |               \
1639         (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |             \
1640         (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |                      \
1641         (1ULL << EF10_STAT_port_rx_pm_discard_qbb) |                    \
1642         (1ULL << EF10_STAT_port_rx_pm_discard_mapping) |                \
1643         (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |             \
1644         (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |             \
1645         (1ULL << EF10_STAT_port_rx_dp_streaming_packets) |              \
1646         (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |                      \
1647         (1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1648
1649 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1650 {
1651         u64 raw_mask = HUNT_COMMON_STAT_MASK;
1652         u32 port_caps = efx_mcdi_phy_get_caps(efx);
1653         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1654
1655         if (!(efx->mcdi->fn_flags &
1656               1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1657                 return 0;
1658
1659         if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1660                 raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1661                 /* 8000 series have everything even at 40G */
1662                 if (nic_data->datapath_caps2 &
1663                     (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1664                         raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1665         } else {
1666                 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1667         }
1668
1669         if (nic_data->datapath_caps &
1670             (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1671                 raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1672
1673         return raw_mask;
1674 }
1675
1676 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1677 {
1678         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1679         u64 raw_mask[2];
1680
1681         raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1682
1683         /* Only show vadaptor stats when EVB capability is present */
1684         if (nic_data->datapath_caps &
1685             (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1686                 raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1687                 raw_mask[1] = (1ULL << (EF10_STAT_COUNT - 63)) - 1;
1688         } else {
1689                 raw_mask[1] = 0;
1690         }
1691
1692 #if BITS_PER_LONG == 64
1693         BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1694         mask[0] = raw_mask[0];
1695         mask[1] = raw_mask[1];
1696 #else
1697         BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1698         mask[0] = raw_mask[0] & 0xffffffff;
1699         mask[1] = raw_mask[0] >> 32;
1700         mask[2] = raw_mask[1] & 0xffffffff;
1701 #endif
1702 }
1703
1704 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1705 {
1706         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1707
1708         efx_ef10_get_stat_mask(efx, mask);
1709         return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1710                                       mask, names);
1711 }
1712
1713 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1714                                            struct rtnl_link_stats64 *core_stats)
1715 {
1716         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1717         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1718         u64 *stats = nic_data->stats;
1719         size_t stats_count = 0, index;
1720
1721         efx_ef10_get_stat_mask(efx, mask);
1722
1723         if (full_stats) {
1724                 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1725                         if (efx_ef10_stat_desc[index].name) {
1726                                 *full_stats++ = stats[index];
1727                                 ++stats_count;
1728                         }
1729                 }
1730         }
1731
1732         if (!core_stats)
1733                 return stats_count;
1734
1735         if (nic_data->datapath_caps &
1736                         1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1737                 /* Use vadaptor stats. */
1738                 core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1739                                          stats[EF10_STAT_rx_multicast] +
1740                                          stats[EF10_STAT_rx_broadcast];
1741                 core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1742                                          stats[EF10_STAT_tx_multicast] +
1743                                          stats[EF10_STAT_tx_broadcast];
1744                 core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1745                                        stats[EF10_STAT_rx_multicast_bytes] +
1746                                        stats[EF10_STAT_rx_broadcast_bytes];
1747                 core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1748                                        stats[EF10_STAT_tx_multicast_bytes] +
1749                                        stats[EF10_STAT_tx_broadcast_bytes];
1750                 core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1751                                          stats[GENERIC_STAT_rx_noskb_drops];
1752                 core_stats->multicast = stats[EF10_STAT_rx_multicast];
1753                 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1754                 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1755                 core_stats->rx_errors = core_stats->rx_crc_errors;
1756                 core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1757         } else {
1758                 /* Use port stats. */
1759                 core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1760                 core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1761                 core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1762                 core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1763                 core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1764                                          stats[GENERIC_STAT_rx_nodesc_trunc] +
1765                                          stats[GENERIC_STAT_rx_noskb_drops];
1766                 core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1767                 core_stats->rx_length_errors =
1768                                 stats[EF10_STAT_port_rx_gtjumbo] +
1769                                 stats[EF10_STAT_port_rx_length_error];
1770                 core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1771                 core_stats->rx_frame_errors =
1772                                 stats[EF10_STAT_port_rx_align_error];
1773                 core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1774                 core_stats->rx_errors = (core_stats->rx_length_errors +
1775                                          core_stats->rx_crc_errors +
1776                                          core_stats->rx_frame_errors);
1777         }
1778
1779         return stats_count;
1780 }
1781
1782 static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
1783 {
1784         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1785         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1786         __le64 generation_start, generation_end;
1787         u64 *stats = nic_data->stats;
1788         __le64 *dma_stats;
1789
1790         efx_ef10_get_stat_mask(efx, mask);
1791
1792         dma_stats = efx->stats_buffer.addr;
1793
1794         generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1795         if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
1796                 return 0;
1797         rmb();
1798         efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1799                              stats, efx->stats_buffer.addr, false);
1800         rmb();
1801         generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1802         if (generation_end != generation_start)
1803                 return -EAGAIN;
1804
1805         /* Update derived statistics */
1806         efx_nic_fix_nodesc_drop_stat(efx,
1807                                      &stats[EF10_STAT_port_rx_nodesc_drops]);
1808         stats[EF10_STAT_port_rx_good_bytes] =
1809                 stats[EF10_STAT_port_rx_bytes] -
1810                 stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1811         efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1812                              stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1813         efx_update_sw_stats(efx, stats);
1814         return 0;
1815 }
1816
1817
1818 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1819                                        struct rtnl_link_stats64 *core_stats)
1820 {
1821         int retry;
1822
1823         /* If we're unlucky enough to read statistics during the DMA, wait
1824          * up to 10ms for it to finish (typically takes <500us)
1825          */
1826         for (retry = 0; retry < 100; ++retry) {
1827                 if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1828                         break;
1829                 udelay(100);
1830         }
1831
1832         return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1833 }
1834
1835 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1836 {
1837         MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1838         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1839         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1840         __le64 generation_start, generation_end;
1841         u64 *stats = nic_data->stats;
1842         u32 dma_len = MC_CMD_MAC_NSTATS * sizeof(u64);
1843         struct efx_buffer stats_buf;
1844         __le64 *dma_stats;
1845         int rc;
1846
1847         spin_unlock_bh(&efx->stats_lock);
1848
1849         if (in_interrupt()) {
1850                 /* If in atomic context, cannot update stats.  Just update the
1851                  * software stats and return so the caller can continue.
1852                  */
1853                 spin_lock_bh(&efx->stats_lock);
1854                 efx_update_sw_stats(efx, stats);
1855                 return 0;
1856         }
1857
1858         efx_ef10_get_stat_mask(efx, mask);
1859
1860         rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
1861         if (rc) {
1862                 spin_lock_bh(&efx->stats_lock);
1863                 return rc;
1864         }
1865
1866         dma_stats = stats_buf.addr;
1867         dma_stats[MC_CMD_MAC_GENERATION_END] = EFX_MC_STATS_GENERATION_INVALID;
1868
1869         MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1870         MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1871                               MAC_STATS_IN_DMA, 1);
1872         MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1873         MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1874
1875         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1876                                 NULL, 0, NULL);
1877         spin_lock_bh(&efx->stats_lock);
1878         if (rc) {
1879                 /* Expect ENOENT if DMA queues have not been set up */
1880                 if (rc != -ENOENT || atomic_read(&efx->active_queues))
1881                         efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1882                                                sizeof(inbuf), NULL, 0, rc);
1883                 goto out;
1884         }
1885
1886         generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1887         if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1888                 WARN_ON_ONCE(1);
1889                 goto out;
1890         }
1891         rmb();
1892         efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1893                              stats, stats_buf.addr, false);
1894         rmb();
1895         generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1896         if (generation_end != generation_start) {
1897                 rc = -EAGAIN;
1898                 goto out;
1899         }
1900
1901         efx_update_sw_stats(efx, stats);
1902 out:
1903         efx_nic_free_buffer(efx, &stats_buf);
1904         return rc;
1905 }
1906
1907 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1908                                        struct rtnl_link_stats64 *core_stats)
1909 {
1910         if (efx_ef10_try_update_nic_stats_vf(efx))
1911                 return 0;
1912
1913         return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1914 }
1915
1916 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1917 {
1918         struct efx_nic *efx = channel->efx;
1919         unsigned int mode, usecs;
1920         efx_dword_t timer_cmd;
1921
1922         if (channel->irq_moderation_us) {
1923                 mode = 3;
1924                 usecs = channel->irq_moderation_us;
1925         } else {
1926                 mode = 0;
1927                 usecs = 0;
1928         }
1929
1930         if (EFX_EF10_WORKAROUND_61265(efx)) {
1931                 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1932                 unsigned int ns = usecs * 1000;
1933
1934                 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
1935                                channel->channel);
1936                 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
1937                 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
1938                 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
1939
1940                 efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
1941                                    inbuf, sizeof(inbuf), 0, NULL, 0);
1942         } else if (EFX_EF10_WORKAROUND_35388(efx)) {
1943                 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1944
1945                 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1946                                      EFE_DD_EVQ_IND_TIMER_FLAGS,
1947                                      ERF_DD_EVQ_IND_TIMER_MODE, mode,
1948                                      ERF_DD_EVQ_IND_TIMER_VAL, ticks);
1949                 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1950                                 channel->channel);
1951         } else {
1952                 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1953
1954                 EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1955                                      ERF_DZ_TC_TIMER_VAL, ticks);
1956                 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1957                                 channel->channel);
1958         }
1959 }
1960
1961 static void efx_ef10_get_wol_vf(struct efx_nic *efx,
1962                                 struct ethtool_wolinfo *wol) {}
1963
1964 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
1965 {
1966         return -EOPNOTSUPP;
1967 }
1968
1969 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1970 {
1971         wol->supported = 0;
1972         wol->wolopts = 0;
1973         memset(&wol->sopass, 0, sizeof(wol->sopass));
1974 }
1975
1976 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1977 {
1978         if (type != 0)
1979                 return -EINVAL;
1980         return 0;
1981 }
1982
1983 static void efx_ef10_mcdi_request(struct efx_nic *efx,
1984                                   const efx_dword_t *hdr, size_t hdr_len,
1985                                   const efx_dword_t *sdu, size_t sdu_len)
1986 {
1987         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1988         u8 *pdu = nic_data->mcdi_buf.addr;
1989
1990         memcpy(pdu, hdr, hdr_len);
1991         memcpy(pdu + hdr_len, sdu, sdu_len);
1992         wmb();
1993
1994         /* The hardware provides 'low' and 'high' (doorbell) registers
1995          * for passing the 64-bit address of an MCDI request to
1996          * firmware.  However the dwords are swapped by firmware.  The
1997          * least significant bits of the doorbell are then 0 for all
1998          * MCDI requests due to alignment.
1999          */
2000         _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
2001                     ER_DZ_MC_DB_LWRD);
2002         _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
2003                     ER_DZ_MC_DB_HWRD);
2004 }
2005
2006 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2007 {
2008         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2009         const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2010
2011         rmb();
2012         return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2013 }
2014
2015 static void
2016 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2017                             size_t offset, size_t outlen)
2018 {
2019         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2020         const u8 *pdu = nic_data->mcdi_buf.addr;
2021
2022         memcpy(outbuf, pdu + offset, outlen);
2023 }
2024
2025 static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2026 {
2027         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2028
2029         /* All our allocations have been reset */
2030         efx_ef10_reset_mc_allocations(efx);
2031
2032         /* The datapath firmware might have been changed */
2033         nic_data->must_check_datapath_caps = true;
2034
2035         /* MAC statistics have been cleared on the NIC; clear the local
2036          * statistic that we update with efx_update_diff_stat().
2037          */
2038         nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2039 }
2040
2041 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2042 {
2043         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2044         int rc;
2045
2046         rc = efx_ef10_get_warm_boot_count(efx);
2047         if (rc < 0) {
2048                 /* The firmware is presumably in the process of
2049                  * rebooting.  However, we are supposed to report each
2050                  * reboot just once, so we must only do that once we
2051                  * can read and store the updated warm boot count.
2052                  */
2053                 return 0;
2054         }
2055
2056         if (rc == nic_data->warm_boot_count)
2057                 return 0;
2058
2059         nic_data->warm_boot_count = rc;
2060         efx_ef10_mcdi_reboot_detected(efx);
2061
2062         return -EIO;
2063 }
2064
2065 /* Handle an MSI interrupt
2066  *
2067  * Handle an MSI hardware interrupt.  This routine schedules event
2068  * queue processing.  No interrupt acknowledgement cycle is necessary.
2069  * Also, we never need to check that the interrupt is for us, since
2070  * MSI interrupts cannot be shared.
2071  */
2072 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2073 {
2074         struct efx_msi_context *context = dev_id;
2075         struct efx_nic *efx = context->efx;
2076
2077         netif_vdbg(efx, intr, efx->net_dev,
2078                    "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2079
2080         if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2081                 /* Note test interrupts */
2082                 if (context->index == efx->irq_level)
2083                         efx->last_irq_cpu = raw_smp_processor_id();
2084
2085                 /* Schedule processing of the channel */
2086                 efx_schedule_channel_irq(efx->channel[context->index]);
2087         }
2088
2089         return IRQ_HANDLED;
2090 }
2091
2092 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2093 {
2094         struct efx_nic *efx = dev_id;
2095         bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2096         struct efx_channel *channel;
2097         efx_dword_t reg;
2098         u32 queues;
2099
2100         /* Read the ISR which also ACKs the interrupts */
2101         efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
2102         queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2103
2104         if (queues == 0)
2105                 return IRQ_NONE;
2106
2107         if (likely(soft_enabled)) {
2108                 /* Note test interrupts */
2109                 if (queues & (1U << efx->irq_level))
2110                         efx->last_irq_cpu = raw_smp_processor_id();
2111
2112                 efx_for_each_channel(channel, efx) {
2113                         if (queues & 1)
2114                                 efx_schedule_channel_irq(channel);
2115                         queues >>= 1;
2116                 }
2117         }
2118
2119         netif_vdbg(efx, intr, efx->net_dev,
2120                    "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2121                    irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2122
2123         return IRQ_HANDLED;
2124 }
2125
2126 static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2127 {
2128         MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2129
2130         if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2131                                     NULL) == 0)
2132                 return -ENOTSUPP;
2133
2134         BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2135
2136         MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2137         return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2138                             inbuf, sizeof(inbuf), NULL, 0, NULL);
2139 }
2140
2141 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2142 {
2143         return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
2144                                     (tx_queue->ptr_mask + 1) *
2145                                     sizeof(efx_qword_t),
2146                                     GFP_KERNEL);
2147 }
2148
2149 /* This writes to the TX_DESC_WPTR and also pushes data */
2150 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2151                                          const efx_qword_t *txd)
2152 {
2153         unsigned int write_ptr;
2154         efx_oword_t reg;
2155
2156         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2157         EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2158         reg.qword[0] = *txd;
2159         efx_writeo_page(tx_queue->efx, &reg,
2160                         ER_DZ_TX_DESC_UPD, tx_queue->queue);
2161 }
2162
2163 /* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2164  */
2165 static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue,
2166                                 struct sk_buff *skb,
2167                                 bool *data_mapped)
2168 {
2169         struct efx_tx_buffer *buffer;
2170         struct tcphdr *tcp;
2171         struct iphdr *ip;
2172
2173         u16 ipv4_id;
2174         u32 seqnum;
2175         u32 mss;
2176
2177         EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2178
2179         mss = skb_shinfo(skb)->gso_size;
2180
2181         if (unlikely(mss < 4)) {
2182                 WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2183                 return -EINVAL;
2184         }
2185
2186         ip = ip_hdr(skb);
2187         if (ip->version == 4) {
2188                 /* Modify IPv4 header if needed. */
2189                 ip->tot_len = 0;
2190                 ip->check = 0;
2191                 ipv4_id = ntohs(ip->id);
2192         } else {
2193                 /* Modify IPv6 header if needed. */
2194                 struct ipv6hdr *ipv6 = ipv6_hdr(skb);
2195
2196                 ipv6->payload_len = 0;
2197                 ipv4_id = 0;
2198         }
2199
2200         tcp = tcp_hdr(skb);
2201         seqnum = ntohl(tcp->seq);
2202
2203         buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2204
2205         buffer->flags = EFX_TX_BUF_OPTION;
2206         buffer->len = 0;
2207         buffer->unmap_len = 0;
2208         EFX_POPULATE_QWORD_5(buffer->option,
2209                         ESF_DZ_TX_DESC_IS_OPT, 1,
2210                         ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2211                         ESF_DZ_TX_TSO_OPTION_TYPE,
2212                         ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2213                         ESF_DZ_TX_TSO_IP_ID, ipv4_id,
2214                         ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2215                         );
2216         ++tx_queue->insert_count;
2217
2218         buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2219
2220         buffer->flags = EFX_TX_BUF_OPTION;
2221         buffer->len = 0;
2222         buffer->unmap_len = 0;
2223         EFX_POPULATE_QWORD_4(buffer->option,
2224                         ESF_DZ_TX_DESC_IS_OPT, 1,
2225                         ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2226                         ESF_DZ_TX_TSO_OPTION_TYPE,
2227                         ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2228                         ESF_DZ_TX_TSO_TCP_MSS, mss
2229                         );
2230         ++tx_queue->insert_count;
2231
2232         return 0;
2233 }
2234
2235 static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2236 {
2237         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2238         u32 tso_versions = 0;
2239
2240         if (nic_data->datapath_caps &
2241             (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2242                 tso_versions |= BIT(1);
2243         if (nic_data->datapath_caps2 &
2244             (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2245                 tso_versions |= BIT(2);
2246         return tso_versions;
2247 }
2248
2249 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2250 {
2251         MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2252                                                        EFX_BUF_SIZE));
2253         bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
2254         size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
2255         struct efx_channel *channel = tx_queue->channel;
2256         struct efx_nic *efx = tx_queue->efx;
2257         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2258         bool tso_v2 = false;
2259         size_t inlen;
2260         dma_addr_t dma_addr;
2261         efx_qword_t *txd;
2262         int rc;
2263         int i;
2264         BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
2265
2266         /* TSOv2 is a limited resource that can only be configured on a limited
2267          * number of queues. TSO without checksum offload is not really a thing,
2268          * so we only enable it for those queues.
2269          */
2270         if (csum_offload && (nic_data->datapath_caps2 &
2271                         (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))) {
2272                 tso_v2 = true;
2273                 netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2274                                 channel->channel);
2275         }
2276
2277         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
2278         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
2279         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
2280         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
2281         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
2282         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
2283
2284         dma_addr = tx_queue->txd.buf.dma_addr;
2285
2286         netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
2287                   tx_queue->queue, entries, (u64)dma_addr);
2288
2289         for (i = 0; i < entries; ++i) {
2290                 MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
2291                 dma_addr += EFX_BUF_SIZE;
2292         }
2293
2294         inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
2295
2296         do {
2297                 MCDI_POPULATE_DWORD_3(inbuf, INIT_TXQ_IN_FLAGS,
2298                                 /* This flag was removed from mcdi_pcol.h for
2299                                  * the non-_EXT version of INIT_TXQ.  However,
2300                                  * firmware still honours it.
2301                                  */
2302                                 INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, tso_v2,
2303                                 INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
2304                                 INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
2305
2306                 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
2307                                         NULL, 0, NULL);
2308                 if (rc == -ENOSPC && tso_v2) {
2309                         /* Retry without TSOv2 if we're short on contexts. */
2310                         tso_v2 = false;
2311                         netif_warn(efx, probe, efx->net_dev,
2312                                    "TSOv2 context not available to segment in hardware. TCP performance may be reduced.\n");
2313                 } else if (rc) {
2314                         efx_mcdi_display_error(efx, MC_CMD_INIT_TXQ,
2315                                                MC_CMD_INIT_TXQ_EXT_IN_LEN,
2316                                                NULL, 0, rc);
2317                         goto fail;
2318                 }
2319         } while (rc);
2320
2321         /* A previous user of this TX queue might have set us up the
2322          * bomb by writing a descriptor to the TX push collector but
2323          * not the doorbell.  (Each collector belongs to a port, not a
2324          * queue or function, so cannot easily be reset.)  We must
2325          * attempt to push a no-op descriptor in its place.
2326          */
2327         tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2328         tx_queue->insert_count = 1;
2329         txd = efx_tx_desc(tx_queue, 0);
2330         EFX_POPULATE_QWORD_4(*txd,
2331                              ESF_DZ_TX_DESC_IS_OPT, true,
2332                              ESF_DZ_TX_OPTION_TYPE,
2333                              ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2334                              ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2335                              ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
2336         tx_queue->write_count = 1;
2337
2338         if (tso_v2) {
2339                 tx_queue->handle_tso = efx_ef10_tx_tso_desc;
2340                 tx_queue->tso_version = 2;
2341         } else if (nic_data->datapath_caps &
2342                         (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
2343                 tx_queue->tso_version = 1;
2344         }
2345
2346         wmb();
2347         efx_ef10_push_tx_desc(tx_queue, txd);
2348
2349         return;
2350
2351 fail:
2352         netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2353                     tx_queue->queue);
2354 }
2355
2356 static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
2357 {
2358         MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
2359         MCDI_DECLARE_BUF_ERR(outbuf);
2360         struct efx_nic *efx = tx_queue->efx;
2361         size_t outlen;
2362         int rc;
2363
2364         MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
2365                        tx_queue->queue);
2366
2367         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
2368                           outbuf, sizeof(outbuf), &outlen);
2369
2370         if (rc && rc != -EALREADY)
2371                 goto fail;
2372
2373         return;
2374
2375 fail:
2376         efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
2377                                outbuf, outlen, rc);
2378 }
2379
2380 static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
2381 {
2382         efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
2383 }
2384
2385 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2386 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2387 {
2388         unsigned int write_ptr;
2389         efx_dword_t reg;
2390
2391         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2392         EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2393         efx_writed_page(tx_queue->efx, &reg,
2394                         ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2395 }
2396
2397 #define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2398
2399 static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2400                                           dma_addr_t dma_addr, unsigned int len)
2401 {
2402         if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2403                 /* If we need to break across multiple descriptors we should
2404                  * stop at a page boundary. This assumes the length limit is
2405                  * greater than the page size.
2406                  */
2407                 dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2408
2409                 BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2410                 len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2411         }
2412
2413         return len;
2414 }
2415
2416 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2417 {
2418         unsigned int old_write_count = tx_queue->write_count;
2419         struct efx_tx_buffer *buffer;
2420         unsigned int write_ptr;
2421         efx_qword_t *txd;
2422
2423         tx_queue->xmit_more_available = false;
2424         if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2425                 return;
2426
2427         do {
2428                 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2429                 buffer = &tx_queue->buffer[write_ptr];
2430                 txd = efx_tx_desc(tx_queue, write_ptr);
2431                 ++tx_queue->write_count;
2432
2433                 /* Create TX descriptor ring entry */
2434                 if (buffer->flags & EFX_TX_BUF_OPTION) {
2435                         *txd = buffer->option;
2436                         if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2437                                 /* PIO descriptor */
2438                                 tx_queue->packet_write_count = tx_queue->write_count;
2439                 } else {
2440                         tx_queue->packet_write_count = tx_queue->write_count;
2441                         BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2442                         EFX_POPULATE_QWORD_3(
2443                                 *txd,
2444                                 ESF_DZ_TX_KER_CONT,
2445                                 buffer->flags & EFX_TX_BUF_CONT,
2446                                 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2447                                 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2448                 }
2449         } while (tx_queue->write_count != tx_queue->insert_count);
2450
2451         wmb(); /* Ensure descriptors are written before they are fetched */
2452
2453         if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2454                 txd = efx_tx_desc(tx_queue,
2455                                   old_write_count & tx_queue->ptr_mask);
2456                 efx_ef10_push_tx_desc(tx_queue, txd);
2457                 ++tx_queue->pushes;
2458         } else {
2459                 efx_ef10_notify_tx_desc(tx_queue);
2460         }
2461 }
2462
2463 #define RSS_MODE_HASH_ADDRS     (1 << RSS_MODE_HASH_SRC_ADDR_LBN |\
2464                                  1 << RSS_MODE_HASH_DST_ADDR_LBN)
2465 #define RSS_MODE_HASH_PORTS     (1 << RSS_MODE_HASH_SRC_PORT_LBN |\
2466                                  1 << RSS_MODE_HASH_DST_PORT_LBN)
2467 #define RSS_CONTEXT_FLAGS_DEFAULT       (1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV4_EN_LBN |\
2468                                          1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV4_EN_LBN |\
2469                                          1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV6_EN_LBN |\
2470                                          1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV6_EN_LBN |\
2471                                          (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV4_RSS_MODE_LBN |\
2472                                          RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN |\
2473                                          RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV4_RSS_MODE_LBN |\
2474                                          (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV6_RSS_MODE_LBN |\
2475                                          RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN |\
2476                                          RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV6_RSS_MODE_LBN)
2477
2478 static int efx_ef10_get_rss_flags(struct efx_nic *efx, u32 context, u32 *flags)
2479 {
2480         /* Firmware had a bug (sfc bug 61952) where it would not actually
2481          * fill in the flags field in the response to MC_CMD_RSS_CONTEXT_GET_FLAGS.
2482          * This meant that it would always contain whatever was previously
2483          * in the MCDI buffer.  Fortunately, all firmware versions with
2484          * this bug have the same default flags value for a newly-allocated
2485          * RSS context, and the only time we want to get the flags is just
2486          * after allocating.  Moreover, the response has a 32-bit hole
2487          * where the context ID would be in the request, so we can use an
2488          * overlength buffer in the request and pre-fill the flags field
2489          * with what we believe the default to be.  Thus if the firmware
2490          * has the bug, it will leave our pre-filled value in the flags
2491          * field of the response, and we will get the right answer.
2492          *
2493          * However, this does mean that this function should NOT be used if
2494          * the RSS context flags might not be their defaults - it is ONLY
2495          * reliably correct for a newly-allocated RSS context.
2496          */
2497         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
2498         MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
2499         size_t outlen;
2500         int rc;
2501
2502         /* Check we have a hole for the context ID */
2503         BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_FLAGS_IN_LEN != MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_FLAGS_OFST);
2504         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_IN_RSS_CONTEXT_ID, context);
2505         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS,
2506                        RSS_CONTEXT_FLAGS_DEFAULT);
2507         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_FLAGS, inbuf,
2508                           sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
2509         if (rc == 0) {
2510                 if (outlen < MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN)
2511                         rc = -EIO;
2512                 else
2513                         *flags = MCDI_DWORD(outbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS);
2514         }
2515         return rc;
2516 }
2517
2518 /* Attempt to enable 4-tuple UDP hashing on the specified RSS context.
2519  * If we fail, we just leave the RSS context at its default hash settings,
2520  * which is safe but may slightly reduce performance.
2521  * Defaults are 4-tuple for TCP and 2-tuple for UDP and other-IP, so we
2522  * just need to set the UDP ports flags (for both IP versions).
2523  */
2524 static void efx_ef10_set_rss_flags(struct efx_nic *efx, u32 context)
2525 {
2526         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_LEN);
2527         u32 flags;
2528
2529         BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_SET_FLAGS_OUT_LEN != 0);
2530
2531         if (efx_ef10_get_rss_flags(efx, context, &flags) != 0)
2532                 return;
2533         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_RSS_CONTEXT_ID, context);
2534         flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN;
2535         flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN;
2536         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_FLAGS, flags);
2537         if (!efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_FLAGS, inbuf, sizeof(inbuf),
2538                           NULL, 0, NULL))
2539                 /* Succeeded, so UDP 4-tuple is now enabled */
2540                 efx->rx_hash_udp_4tuple = true;
2541 }
2542
2543 static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context,
2544                                       bool exclusive, unsigned *context_size)
2545 {
2546         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
2547         MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
2548         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2549         size_t outlen;
2550         int rc;
2551         u32 alloc_type = exclusive ?
2552                                 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
2553                                 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
2554         unsigned rss_spread = exclusive ?
2555                                 efx->rss_spread :
2556                                 min(rounddown_pow_of_two(efx->rss_spread),
2557                                     EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);
2558
2559         if (!exclusive && rss_spread == 1) {
2560                 *context = EFX_EF10_RSS_CONTEXT_INVALID;
2561                 if (context_size)
2562                         *context_size = 1;
2563                 return 0;
2564         }
2565
2566         if (nic_data->datapath_caps &
2567             1 << MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN)
2568                 return -EOPNOTSUPP;
2569
2570         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
2571                        nic_data->vport_id);
2572         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
2573         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
2574
2575         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
2576                 outbuf, sizeof(outbuf), &outlen);
2577         if (rc != 0)
2578                 return rc;
2579
2580         if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
2581                 return -EIO;
2582
2583         *context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
2584
2585         if (context_size)
2586                 *context_size = rss_spread;
2587
2588         if (nic_data->datapath_caps &
2589             1 << MC_CMD_GET_CAPABILITIES_OUT_ADDITIONAL_RSS_MODES_LBN)
2590                 efx_ef10_set_rss_flags(efx, *context);
2591
2592         return 0;
2593 }
2594
2595 static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
2596 {
2597         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
2598         int rc;
2599
2600         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
2601                        context);
2602
2603         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
2604                             NULL, 0, NULL);
2605         WARN_ON(rc != 0);
2606 }
2607
2608 static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
2609                                        const u32 *rx_indir_table, const u8 *key)
2610 {
2611         MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
2612         MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
2613         int i, rc;
2614
2615         MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
2616                        context);
2617         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
2618                      MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
2619
2620         /* This iterates over the length of efx->rx_indir_table, but copies
2621          * bytes from rx_indir_table.  That's because the latter is a pointer
2622          * rather than an array, but should have the same length.
2623          * The efx->rx_hash_key loop below is similar.
2624          */
2625         for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
2626                 MCDI_PTR(tablebuf,
2627                          RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
2628                                 (u8) rx_indir_table[i];
2629
2630         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
2631                           sizeof(tablebuf), NULL, 0, NULL);
2632         if (rc != 0)
2633                 return rc;
2634
2635         MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
2636                        context);
2637         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
2638                      MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2639         for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
2640                 MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] = key[i];
2641
2642         return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
2643                             sizeof(keybuf), NULL, 0, NULL);
2644 }
2645
2646 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
2647 {
2648         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2649
2650         if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2651                 efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
2652         nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
2653 }
2654
2655 static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
2656                                               unsigned *context_size)
2657 {
2658         u32 new_rx_rss_context;
2659         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2660         int rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2661                                             false, context_size);
2662
2663         if (rc != 0)
2664                 return rc;
2665
2666         nic_data->rx_rss_context = new_rx_rss_context;
2667         nic_data->rx_rss_context_exclusive = false;
2668         efx_set_default_rx_indir_table(efx);
2669         return 0;
2670 }
2671
2672 static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
2673                                                  const u32 *rx_indir_table,
2674                                                  const u8 *key)
2675 {
2676         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2677         int rc;
2678         u32 new_rx_rss_context;
2679
2680         if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID ||
2681             !nic_data->rx_rss_context_exclusive) {
2682                 rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2683                                                 true, NULL);
2684                 if (rc == -EOPNOTSUPP)
2685                         return rc;
2686                 else if (rc != 0)
2687                         goto fail1;
2688         } else {
2689                 new_rx_rss_context = nic_data->rx_rss_context;
2690         }
2691
2692         rc = efx_ef10_populate_rss_table(efx, new_rx_rss_context,
2693                                          rx_indir_table, key);
2694         if (rc != 0)
2695                 goto fail2;
2696
2697         if (nic_data->rx_rss_context != new_rx_rss_context)
2698                 efx_ef10_rx_free_indir_table(efx);
2699         nic_data->rx_rss_context = new_rx_rss_context;
2700         nic_data->rx_rss_context_exclusive = true;
2701         if (rx_indir_table != efx->rx_indir_table)
2702                 memcpy(efx->rx_indir_table, rx_indir_table,
2703                        sizeof(efx->rx_indir_table));
2704         if (key != efx->rx_hash_key)
2705                 memcpy(efx->rx_hash_key, key, efx->type->rx_hash_key_size);
2706
2707         return 0;
2708
2709 fail2:
2710         if (new_rx_rss_context != nic_data->rx_rss_context)
2711                 efx_ef10_free_rss_context(efx, new_rx_rss_context);
2712 fail1:
2713         netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2714         return rc;
2715 }
2716
2717 static int efx_ef10_rx_pull_rss_config(struct efx_nic *efx)
2718 {
2719         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2720         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN);
2721         MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN);
2722         MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN);
2723         size_t outlen;
2724         int rc, i;
2725
2726         BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN !=
2727                      MC_CMD_RSS_CONTEXT_GET_KEY_IN_LEN);
2728
2729         if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID)
2730                 return -ENOENT;
2731
2732         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_TABLE_IN_RSS_CONTEXT_ID,
2733                        nic_data->rx_rss_context);
2734         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
2735                      MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE_LEN);
2736         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_TABLE, inbuf, sizeof(inbuf),
2737                           tablebuf, sizeof(tablebuf), &outlen);
2738         if (rc != 0)
2739                 return rc;
2740
2741         if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN))
2742                 return -EIO;
2743
2744         for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
2745                 efx->rx_indir_table[i] = MCDI_PTR(tablebuf,
2746                                 RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE)[i];
2747
2748         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_KEY_IN_RSS_CONTEXT_ID,
2749                        nic_data->rx_rss_context);
2750         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
2751                      MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2752         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_KEY, inbuf, sizeof(inbuf),
2753                           keybuf, sizeof(keybuf), &outlen);
2754         if (rc != 0)
2755                 return rc;
2756
2757         if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN))
2758                 return -EIO;
2759
2760         for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
2761                 efx->rx_hash_key[i] = MCDI_PTR(
2762                                 keybuf, RSS_CONTEXT_GET_KEY_OUT_TOEPLITZ_KEY)[i];
2763
2764         return 0;
2765 }
2766
2767 static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
2768                                           const u32 *rx_indir_table,
2769                                           const u8 *key)
2770 {
2771         int rc;
2772
2773         if (efx->rss_spread == 1)
2774                 return 0;
2775
2776         if (!key)
2777                 key = efx->rx_hash_key;
2778
2779         rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table, key);
2780
2781         if (rc == -ENOBUFS && !user) {
2782                 unsigned context_size;
2783                 bool mismatch = false;
2784                 size_t i;
2785
2786                 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table) && !mismatch;
2787                      i++)
2788                         mismatch = rx_indir_table[i] !=
2789                                 ethtool_rxfh_indir_default(i, efx->rss_spread);
2790
2791                 rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
2792                 if (rc == 0) {
2793                         if (context_size != efx->rss_spread)
2794                                 netif_warn(efx, probe, efx->net_dev,
2795                                            "Could not allocate an exclusive RSS"
2796                                            " context; allocated a shared one of"
2797                                            " different size."
2798                                            " Wanted %u, got %u.\n",
2799                                            efx->rss_spread, context_size);
2800                         else if (mismatch)
2801                                 netif_warn(efx, probe, efx->net_dev,
2802                                            "Could not allocate an exclusive RSS"
2803                                            " context; allocated a shared one but"
2804                                            " could not apply custom"
2805                                            " indirection.\n");
2806                         else
2807                                 netif_info(efx, probe, efx->net_dev,
2808                                            "Could not allocate an exclusive RSS"
2809                                            " context; allocated a shared one.\n");
2810                 }
2811         }
2812         return rc;
2813 }
2814
2815 static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
2816                                           const u32 *rx_indir_table
2817                                           __attribute__ ((unused)),
2818                                           const u8 *key
2819                                           __attribute__ ((unused)))
2820 {
2821         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2822
2823         if (user)
2824                 return -EOPNOTSUPP;
2825         if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2826                 return 0;
2827         return efx_ef10_rx_push_shared_rss_config(efx, NULL);
2828 }
2829
2830 static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
2831 {
2832         return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
2833                                     (rx_queue->ptr_mask + 1) *
2834                                     sizeof(efx_qword_t),
2835                                     GFP_KERNEL);
2836 }
2837
2838 static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
2839 {
2840         MCDI_DECLARE_BUF(inbuf,
2841                          MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2842                                                 EFX_BUF_SIZE));
2843         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2844         size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
2845         struct efx_nic *efx = rx_queue->efx;
2846         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2847         size_t inlen;
2848         dma_addr_t dma_addr;
2849         int rc;
2850         int i;
2851         BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
2852
2853         rx_queue->scatter_n = 0;
2854         rx_queue->scatter_len = 0;
2855
2856         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
2857         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
2858         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
2859         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
2860                        efx_rx_queue_index(rx_queue));
2861         MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
2862                               INIT_RXQ_IN_FLAG_PREFIX, 1,
2863                               INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
2864         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
2865         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
2866
2867         dma_addr = rx_queue->rxd.buf.dma_addr;
2868
2869         netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
2870                   efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
2871
2872         for (i = 0; i < entries; ++i) {
2873                 MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
2874                 dma_addr += EFX_BUF_SIZE;
2875         }
2876
2877         inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
2878
2879         rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
2880                           NULL, 0, NULL);
2881         if (rc)
2882                 netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
2883                             efx_rx_queue_index(rx_queue));
2884 }
2885
2886 static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
2887 {
2888         MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
2889         MCDI_DECLARE_BUF_ERR(outbuf);
2890         struct efx_nic *efx = rx_queue->efx;
2891         size_t outlen;
2892         int rc;
2893
2894         MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
2895                        efx_rx_queue_index(rx_queue));
2896
2897         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
2898                           outbuf, sizeof(outbuf), &outlen);
2899
2900         if (rc && rc != -EALREADY)
2901                 goto fail;
2902
2903         return;
2904
2905 fail:
2906         efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
2907                                outbuf, outlen, rc);
2908 }
2909
2910 static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
2911 {
2912         efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
2913 }
2914
2915 /* This creates an entry in the RX descriptor queue */
2916 static inline void
2917 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2918 {
2919         struct efx_rx_buffer *rx_buf;
2920         efx_qword_t *rxd;
2921
2922         rxd = efx_rx_desc(rx_queue, index);
2923         rx_buf = efx_rx_buffer(rx_queue, index);
2924         EFX_POPULATE_QWORD_2(*rxd,
2925                              ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2926                              ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2927 }
2928
2929 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2930 {
2931         struct efx_nic *efx = rx_queue->efx;
2932         unsigned int write_count;
2933         efx_dword_t reg;
2934
2935         /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2936         write_count = rx_queue->added_count & ~7;
2937         if (rx_queue->notified_count == write_count)
2938                 return;
2939
2940         do
2941                 efx_ef10_build_rx_desc(
2942                         rx_queue,
2943                         rx_queue->notified_count & rx_queue->ptr_mask);
2944         while (++rx_queue->notified_count != write_count);
2945
2946         wmb();
2947         EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2948                              write_count & rx_queue->ptr_mask);
2949         efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2950                         efx_rx_queue_index(rx_queue));
2951 }
2952
2953 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2954
2955 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2956 {
2957         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2958         MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2959         efx_qword_t event;
2960
2961         EFX_POPULATE_QWORD_2(event,
2962                              ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2963                              ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2964
2965         MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2966
2967         /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2968          * already swapped the data to little-endian order.
2969          */
2970         memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2971                sizeof(efx_qword_t));
2972
2973         efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2974                            inbuf, sizeof(inbuf), 0,
2975                            efx_ef10_rx_defer_refill_complete, 0);
2976 }
2977
2978 static void
2979 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2980                                   int rc, efx_dword_t *outbuf,
2981                                   size_t outlen_actual)
2982 {
2983         /* nothing to do */
2984 }
2985
2986 static int efx_ef10_ev_probe(struct efx_channel *channel)
2987 {
2988         return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
2989                                     (channel->eventq_mask + 1) *
2990                                     sizeof(efx_qword_t),
2991                                     GFP_KERNEL);
2992 }
2993
2994 static void efx_ef10_ev_fini(struct efx_channel *channel)
2995 {
2996         MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
2997         MCDI_DECLARE_BUF_ERR(outbuf);
2998         struct efx_nic *efx = channel->efx;
2999         size_t outlen;
3000         int rc;
3001
3002         MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
3003
3004         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
3005                           outbuf, sizeof(outbuf), &outlen);
3006
3007         if (rc && rc != -EALREADY)
3008                 goto fail;
3009
3010         return;
3011
3012 fail:
3013         efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
3014                                outbuf, outlen, rc);
3015 }
3016
3017 static int efx_ef10_ev_init(struct efx_channel *channel)
3018 {
3019         MCDI_DECLARE_BUF(inbuf,
3020                          MC_CMD_INIT_EVQ_V2_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
3021                                                    EFX_BUF_SIZE));
3022         MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_V2_OUT_LEN);
3023         size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
3024         struct efx_nic *efx = channel->efx;
3025         struct efx_ef10_nic_data *nic_data;
3026         size_t inlen, outlen;
3027         unsigned int enabled, implemented;
3028         dma_addr_t dma_addr;
3029         int rc;
3030         int i;
3031
3032         nic_data = efx->nic_data;
3033
3034         /* Fill event queue with all ones (i.e. empty events) */
3035         memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
3036
3037         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
3038         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
3039         /* INIT_EVQ expects index in vector table, not absolute */
3040         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
3041         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
3042                        MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
3043         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
3044         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
3045         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
3046                        MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
3047         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
3048
3049         if (nic_data->datapath_caps2 &
3050             1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN) {
3051                 /* Use the new generic approach to specifying event queue
3052                  * configuration, requesting lower latency or higher throughput.
3053                  * The options that actually get used appear in the output.
3054                  */
3055                 MCDI_POPULATE_DWORD_2(inbuf, INIT_EVQ_V2_IN_FLAGS,
3056                                       INIT_EVQ_V2_IN_FLAG_INTERRUPTING, 1,
3057                                       INIT_EVQ_V2_IN_FLAG_TYPE,
3058                                       MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO);
3059         } else {
3060                 bool cut_thru = !(nic_data->datapath_caps &
3061                         1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
3062
3063                 MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
3064                                       INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
3065                                       INIT_EVQ_IN_FLAG_RX_MERGE, 1,
3066                                       INIT_EVQ_IN_FLAG_TX_MERGE, 1,
3067                                       INIT_EVQ_IN_FLAG_CUT_THRU, cut_thru);
3068         }
3069
3070         dma_addr = channel->eventq.buf.dma_addr;
3071         for (i = 0; i < entries; ++i) {
3072                 MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
3073                 dma_addr += EFX_BUF_SIZE;
3074         }
3075
3076         inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
3077
3078         rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
3079                           outbuf, sizeof(outbuf), &outlen);
3080
3081         if (outlen >= MC_CMD_INIT_EVQ_V2_OUT_LEN)
3082                 netif_dbg(efx, drv, efx->net_dev,
3083                           "Channel %d using event queue flags %08x\n",
3084                           channel->channel,
3085                           MCDI_DWORD(outbuf, INIT_EVQ_V2_OUT_FLAGS));
3086
3087         /* IRQ return is ignored */
3088         if (channel->channel || rc)
3089                 return rc;
3090
3091         /* Successfully created event queue on channel 0 */
3092         rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
3093         if (rc == -ENOSYS) {
3094                 /* GET_WORKAROUNDS was implemented before this workaround,
3095                  * thus it must be unavailable in this firmware.
3096                  */
3097                 nic_data->workaround_26807 = false;
3098                 rc = 0;
3099         } else if (rc) {
3100                 goto fail;
3101         } else {
3102                 nic_data->workaround_26807 =
3103                         !!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
3104
3105                 if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
3106                     !nic_data->workaround_26807) {
3107                         unsigned int flags;
3108
3109                         rc = efx_mcdi_set_workaround(efx,
3110                                                      MC_CMD_WORKAROUND_BUG26807,
3111                                                      true, &flags);
3112
3113                         if (!rc) {
3114                                 if (flags &
3115                                     1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
3116                                         netif_info(efx, drv, efx->net_dev,
3117                                                    "other functions on NIC have been reset\n");
3118
3119                                         /* With MCFW v4.6.x and earlier, the
3120                                          * boot count will have incremented,
3121                                          * so re-read the warm_boot_count
3122                                          * value now to ensure this function
3123                                          * doesn't think it has changed next
3124                                          * time it checks.
3125                                          */
3126                                         rc = efx_ef10_get_warm_boot_count(efx);
3127                                         if (rc >= 0) {
3128                                                 nic_data->warm_boot_count = rc;
3129                                                 rc = 0;
3130                                         }
3131                                 }
3132                                 nic_data->workaround_26807 = true;
3133                         } else if (rc == -EPERM) {
3134                                 rc = 0;
3135                         }
3136                 }
3137         }
3138
3139         if (!rc)
3140                 return 0;
3141
3142 fail:
3143         efx_ef10_ev_fini(channel);
3144         return rc;
3145 }
3146
3147 static void efx_ef10_ev_remove(struct efx_channel *channel)
3148 {
3149         efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
3150 }
3151
3152 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
3153                                            unsigned int rx_queue_label)
3154 {
3155         struct efx_nic *efx = rx_queue->efx;
3156
3157         netif_info(efx, hw, efx->net_dev,
3158                    "rx event arrived on queue %d labeled as queue %u\n",
3159                    efx_rx_queue_index(rx_queue), rx_queue_label);
3160
3161         efx_schedule_reset(efx, RESET_TYPE_DISABLE);
3162 }
3163
3164 static void
3165 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
3166                              unsigned int actual, unsigned int expected)
3167 {
3168         unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
3169         struct efx_nic *efx = rx_queue->efx;
3170
3171         netif_info(efx, hw, efx->net_dev,
3172                    "dropped %d events (index=%d expected=%d)\n",
3173                    dropped, actual, expected);
3174
3175         efx_schedule_reset(efx, RESET_TYPE_DISABLE);
3176 }
3177
3178 /* partially received RX was aborted. clean up. */
3179 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
3180 {
3181         unsigned int rx_desc_ptr;
3182
3183         netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
3184                   "scattered RX aborted (dropping %u buffers)\n",
3185                   rx_queue->scatter_n);
3186
3187         rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
3188
3189         efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
3190                       0, EFX_RX_PKT_DISCARD);
3191
3192         rx_queue->removed_count += rx_queue->scatter_n;
3193         rx_queue->scatter_n = 0;
3194         rx_queue->scatter_len = 0;
3195         ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
3196 }
3197
3198 static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
3199                                            unsigned int n_packets,
3200                                            unsigned int rx_encap_hdr,
3201                                            unsigned int rx_l3_class,
3202                                            unsigned int rx_l4_class,
3203                                            const efx_qword_t *event)
3204 {
3205         struct efx_nic *efx = channel->efx;
3206         bool handled = false;
3207
3208         if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
3209                 if (!(efx->net_dev->features & NETIF_F_RXALL)) {
3210                         if (!efx->loopback_selftest)
3211                                 channel->n_rx_eth_crc_err += n_packets;
3212                         return EFX_RX_PKT_DISCARD;
3213                 }
3214                 handled = true;
3215         }
3216         if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
3217                 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
3218                              rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3219                              rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
3220                              rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
3221                              rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
3222                         netdev_WARN(efx->net_dev,
3223                                     "invalid class for RX_IPCKSUM_ERR: event="
3224                                     EFX_QWORD_FMT "\n",
3225                                     EFX_QWORD_VAL(*event));
3226                 if (!efx->loopback_selftest)
3227                         *(rx_encap_hdr ?
3228                           &channel->n_rx_outer_ip_hdr_chksum_err :
3229                           &channel->n_rx_ip_hdr_chksum_err) += n_packets;
3230                 return 0;
3231         }
3232         if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
3233                 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
3234                              ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3235                                rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
3236                               (rx_l4_class != ESE_DZ_L4_CLASS_TCP &&
3237                                rx_l4_class != ESE_DZ_L4_CLASS_UDP))))
3238                         netdev_WARN(efx->net_dev,
3239                                     "invalid class for RX_TCPUDP_CKSUM_ERR: event="
3240                                     EFX_QWORD_FMT "\n",
3241                                     EFX_QWORD_VAL(*event));
3242                 if (!efx->loopback_selftest)
3243                         *(rx_encap_hdr ?
3244                           &channel->n_rx_outer_tcp_udp_chksum_err :
3245                           &channel->n_rx_tcp_udp_chksum_err) += n_packets;
3246                 return 0;
3247         }
3248         if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
3249                 if (unlikely(!rx_encap_hdr))
3250                         netdev_WARN(efx->net_dev,
3251                                     "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
3252                                     EFX_QWORD_FMT "\n",
3253                                     EFX_QWORD_VAL(*event));
3254                 else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3255                                   rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
3256                                   rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
3257                                   rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
3258                         netdev_WARN(efx->net_dev,
3259                                     "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
3260                                     EFX_QWORD_FMT "\n",
3261                                     EFX_QWORD_VAL(*event));
3262                 if (!efx->loopback_selftest)
3263                         channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
3264                 return 0;
3265         }
3266         if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
3267                 if (unlikely(!rx_encap_hdr))
3268                         netdev_WARN(efx->net_dev,
3269                                     "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
3270                                     EFX_QWORD_FMT "\n",
3271                                     EFX_QWORD_VAL(*event));
3272                 else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3273                                    rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
3274                                   (rx_l4_class != ESE_DZ_L4_CLASS_TCP &&
3275                                    rx_l4_class != ESE_DZ_L4_CLASS_UDP)))
3276                         netdev_WARN(efx->net_dev,
3277                                     "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
3278                                     EFX_QWORD_FMT "\n",
3279                                     EFX_QWORD_VAL(*event));
3280                 if (!efx->loopback_selftest)
3281                         channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
3282                 return 0;
3283         }
3284
3285         WARN_ON(!handled); /* No error bits were recognised */
3286         return 0;
3287 }
3288
3289 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
3290                                     const efx_qword_t *event)
3291 {
3292         unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
3293         unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
3294         unsigned int n_descs, n_packets, i;
3295         struct efx_nic *efx = channel->efx;
3296         struct efx_ef10_nic_data *nic_data = efx->nic_data;
3297         struct efx_rx_queue *rx_queue;
3298         efx_qword_t errors;
3299         bool rx_cont;
3300         u16 flags = 0;
3301
3302         if (unlikely(READ_ONCE(efx->reset_pending)))
3303                 return 0;
3304
3305         /* Basic packet information */
3306         rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
3307         next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
3308         rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
3309         rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
3310         rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
3311         rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
3312         rx_encap_hdr =
3313                 nic_data->datapath_caps &
3314                         (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
3315                 EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
3316                 ESE_EZ_ENCAP_HDR_NONE;
3317
3318         if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
3319                 netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
3320                             EFX_QWORD_FMT "\n",
3321                             EFX_QWORD_VAL(*event));
3322
3323         rx_queue = efx_channel_get_rx_queue(channel);
3324
3325         if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
3326                 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
3327
3328         n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
3329                    ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
3330
3331         if (n_descs != rx_queue->scatter_n + 1) {
3332                 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3333
3334                 /* detect rx abort */
3335                 if (unlikely(n_descs == rx_queue->scatter_n)) {
3336                         if (rx_queue->scatter_n == 0 || rx_bytes != 0)
3337                                 netdev_WARN(efx->net_dev,
3338                                             "invalid RX abort: scatter_n=%u event="
3339                                             EFX_QWORD_FMT "\n",
3340                                             rx_queue->scatter_n,
3341                                             EFX_QWORD_VAL(*event));
3342                         efx_ef10_handle_rx_abort(rx_queue);
3343                         return 0;
3344                 }
3345
3346                 /* Check that RX completion merging is valid, i.e.
3347                  * the current firmware supports it and this is a
3348                  * non-scattered packet.
3349                  */
3350                 if (!(nic_data->datapath_caps &
3351                       (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
3352                     rx_queue->scatter_n != 0 || rx_cont) {
3353                         efx_ef10_handle_rx_bad_lbits(
3354                                 rx_queue, next_ptr_lbits,
3355                                 (rx_queue->removed_count +
3356                                  rx_queue->scatter_n + 1) &
3357                                 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
3358                         return 0;
3359                 }
3360
3361                 /* Merged completion for multiple non-scattered packets */
3362                 rx_queue->scatter_n = 1;
3363                 rx_queue->scatter_len = 0;
3364                 n_packets = n_descs;
3365                 ++channel->n_rx_merge_events;
3366                 channel->n_rx_merge_packets += n_packets;
3367                 flags |= EFX_RX_PKT_PREFIX_LEN;
3368         } else {
3369                 ++rx_queue->scatter_n;
3370                 rx_queue->scatter_len += rx_bytes;
3371                 if (rx_cont)
3372                         return 0;
3373                 n_packets = 1;
3374         }
3375
3376         EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
3377                                      ESF_DZ_RX_IPCKSUM_ERR, 1,
3378                                      ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
3379                                      ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
3380                                      ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
3381         EFX_AND_QWORD(errors, *event, errors);
3382         if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
3383                 flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
3384                                                          rx_encap_hdr,
3385                                                          rx_l3_class, rx_l4_class,
3386                                                          event);
3387         } else {
3388                 bool tcpudp = rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
3389                               rx_l4_class == ESE_DZ_L4_CLASS_UDP;
3390
3391                 switch (rx_encap_hdr) {
3392                 case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
3393                         flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
3394                         if (tcpudp)
3395                                 flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
3396                         break;
3397                 case ESE_EZ_ENCAP_HDR_GRE:
3398                 case ESE_EZ_ENCAP_HDR_NONE:
3399                         if (tcpudp)
3400                                 flags |= EFX_RX_PKT_CSUMMED;
3401                         break;
3402                 default:
3403                         netdev_WARN(efx->net_dev,
3404                                     "unknown encapsulation type: event="
3405                                     EFX_QWORD_FMT "\n",
3406                                     EFX_QWORD_VAL(*event));
3407                 }
3408         }
3409
3410         if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
3411                 flags |= EFX_RX_PKT_TCP;
3412
3413         channel->irq_mod_score += 2 * n_packets;
3414
3415         /* Handle received packet(s) */
3416         for (i = 0; i < n_packets; i++) {
3417                 efx_rx_packet(rx_queue,
3418                               rx_queue->removed_count & rx_queue->ptr_mask,
3419                               rx_queue->scatter_n, rx_queue->scatter_len,
3420                               flags);
3421                 rx_queue->removed_count += rx_queue->scatter_n;
3422         }
3423
3424         rx_queue->scatter_n = 0;
3425         rx_queue->scatter_len = 0;
3426
3427         return n_packets;
3428 }
3429
3430 static int
3431 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
3432 {
3433         struct efx_nic *efx = channel->efx;
3434         struct efx_tx_queue *tx_queue;
3435         unsigned int tx_ev_desc_ptr;
3436         unsigned int tx_ev_q_label;
3437         int tx_descs = 0;
3438
3439         if (unlikely(READ_ONCE(efx->reset_pending)))
3440                 return 0;
3441
3442         if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
3443                 return 0;
3444
3445         /* Transmit completion */
3446         tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
3447         tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
3448         tx_queue = efx_channel_get_tx_queue(channel,
3449                                             tx_ev_q_label % EFX_TXQ_TYPES);
3450         tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
3451                     tx_queue->ptr_mask);
3452         efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
3453
3454         return tx_descs;
3455 }
3456
3457 static void
3458 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
3459 {
3460         struct efx_nic *efx = channel->efx;
3461         int subcode;
3462
3463         subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
3464
3465         switch (subcode) {
3466         case ESE_DZ_DRV_TIMER_EV:
3467         case ESE_DZ_DRV_WAKE_UP_EV:
3468                 break;
3469         case ESE_DZ_DRV_START_UP_EV:
3470                 /* event queue init complete. ok. */
3471                 break;
3472         default:
3473                 netif_err(efx, hw, efx->net_dev,
3474                           "channel %d unknown driver event type %d"
3475                           " (data " EFX_QWORD_FMT ")\n",
3476                           channel->channel, subcode,
3477                           EFX_QWORD_VAL(*event));
3478
3479         }
3480 }
3481
3482 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
3483                                                    efx_qword_t *event)
3484 {
3485         struct efx_nic *efx = channel->efx;
3486         u32 subcode;
3487
3488         subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3489
3490         switch (subcode) {
3491         case EFX_EF10_TEST:
3492                 channel->event_test_cpu = raw_smp_processor_id();
3493                 break;
3494         case EFX_EF10_REFILL:
3495                 /* The queue must be empty, so we won't receive any rx
3496                  * events, so efx_process_channel() won't refill the
3497                  * queue. Refill it here
3498                  */
3499                 efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3500                 break;
3501         default:
3502                 netif_err(efx, hw, efx->net_dev,
3503                           "channel %d unknown driver event type %u"
3504                           " (data " EFX_QWORD_FMT ")\n",
3505                           channel->channel, (unsigned) subcode,
3506                           EFX_QWORD_VAL(*event));
3507         }
3508 }
3509
3510 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3511 {
3512         struct efx_nic *efx = channel->efx;
3513         efx_qword_t event, *p_event;
3514         unsigned int read_ptr;
3515         int ev_code;
3516         int tx_descs = 0;
3517         int spent = 0;
3518
3519         if (quota <= 0)
3520                 return spent;
3521
3522         read_ptr = channel->eventq_read_ptr;
3523
3524         for (;;) {
3525                 p_event = efx_event(channel, read_ptr);
3526                 event = *p_event;
3527
3528                 if (!efx_event_present(&event))
3529                         break;
3530
3531                 EFX_SET_QWORD(*p_event);
3532
3533                 ++read_ptr;
3534
3535                 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3536
3537                 netif_vdbg(efx, drv, efx->net_dev,
3538                            "processing event on %d " EFX_QWORD_FMT "\n",
3539                            channel->channel, EFX_QWORD_VAL(event));
3540
3541                 switch (ev_code) {
3542                 case ESE_DZ_EV_CODE_MCDI_EV:
3543                         efx_mcdi_process_event(channel, &event);
3544                         break;
3545                 case ESE_DZ_EV_CODE_RX_EV:
3546                         spent += efx_ef10_handle_rx_event(channel, &event);
3547                         if (spent >= quota) {
3548                                 /* XXX can we split a merged event to
3549                                  * avoid going over-quota?
3550                                  */
3551                                 spent = quota;
3552                                 goto out;
3553                         }
3554                         break;
3555                 case ESE_DZ_EV_CODE_TX_EV:
3556                         tx_descs += efx_ef10_handle_tx_event(channel, &event);
3557                         if (tx_descs > efx->txq_entries) {
3558                                 spent = quota;
3559                                 goto out;
3560                         } else if (++spent == quota) {
3561                                 goto out;
3562                         }
3563                         break;
3564                 case ESE_DZ_EV_CODE_DRIVER_EV:
3565                         efx_ef10_handle_driver_event(channel, &event);
3566                         if (++spent == quota)
3567                                 goto out;
3568                         break;
3569                 case EFX_EF10_DRVGEN_EV:
3570                         efx_ef10_handle_driver_generated_event(channel, &event);
3571                         break;
3572                 default:
3573                         netif_err(efx, hw, efx->net_dev,
3574                                   "channel %d unknown event type %d"
3575                                   " (data " EFX_QWORD_FMT ")\n",
3576                                   channel->channel, ev_code,
3577                                   EFX_QWORD_VAL(event));
3578                 }
3579         }
3580
3581 out:
3582         channel->eventq_read_ptr = read_ptr;
3583         return spent;
3584 }
3585
3586 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3587 {
3588         struct efx_nic *efx = channel->efx;
3589         efx_dword_t rptr;
3590
3591         if (EFX_EF10_WORKAROUND_35388(efx)) {
3592                 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3593                              (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3594                 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3595                              (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3596
3597                 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3598                                      EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3599                                      ERF_DD_EVQ_IND_RPTR,
3600                                      (channel->eventq_read_ptr &
3601                                       channel->eventq_mask) >>
3602                                      ERF_DD_EVQ_IND_RPTR_WIDTH);
3603                 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3604                                 channel->channel);
3605                 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3606                                      EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3607                                      ERF_DD_EVQ_IND_RPTR,
3608                                      channel->eventq_read_ptr &
3609                                      ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3610                 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3611                                 channel->channel);
3612         } else {
3613                 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3614                                      channel->eventq_read_ptr &
3615                                      channel->eventq_mask);
3616                 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3617         }
3618 }
3619
3620 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3621 {
3622         MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3623         struct efx_nic *efx = channel->efx;
3624         efx_qword_t event;
3625         int rc;
3626
3627         EFX_POPULATE_QWORD_2(event,
3628                              ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3629                              ESF_DZ_EV_DATA, EFX_EF10_TEST);
3630
3631         MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3632
3633         /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3634          * already swapped the data to little-endian order.
3635          */
3636         memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3637                sizeof(efx_qword_t));
3638
3639         rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3640                           NULL, 0, NULL);
3641         if (rc != 0)
3642                 goto fail;
3643
3644         return;
3645
3646 fail:
3647         WARN_ON(true);
3648         netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3649 }
3650
3651 void efx_ef10_handle_drain_event(struct efx_nic *efx)
3652 {
3653         if (atomic_dec_and_test(&efx->active_queues))
3654                 wake_up(&efx->flush_wq);
3655
3656         WARN_ON(atomic_read(&efx->active_queues) < 0);
3657 }
3658
3659 static int efx_ef10_fini_dmaq(struct efx_nic *efx)
3660 {
3661         struct efx_ef10_nic_data *nic_data = efx->nic_data;
3662         struct efx_channel *channel;
3663         struct efx_tx_queue *tx_queue;
3664         struct efx_rx_queue *rx_queue;
3665         int pending;
3666
3667         /* If the MC has just rebooted, the TX/RX queues will have already been
3668          * torn down, but efx->active_queues needs to be set to zero.
3669          */
3670         if (nic_data->must_realloc_vis) {
3671                 atomic_set(&efx->active_queues, 0);
3672                 return 0;
3673         }
3674
3675         /* Do not attempt to write to the NIC during EEH recovery */
3676         if (efx->state != STATE_RECOVERY) {
3677                 efx_for_each_channel(channel, efx) {
3678                         efx_for_each_channel_rx_queue(rx_queue, channel)
3679                                 efx_ef10_rx_fini(rx_queue);
3680                         efx_for_each_channel_tx_queue(tx_queue, channel)
3681                                 efx_ef10_tx_fini(tx_queue);
3682                 }
3683
3684                 wait_event_timeout(efx->flush_wq,
3685                                    atomic_read(&efx->active_queues) == 0,
3686                                    msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
3687                 pending = atomic_read(&efx->active_queues);
3688                 if (pending) {
3689                         netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
3690                                   pending);
3691                         return -ETIMEDOUT;
3692                 }
3693         }
3694
3695         return 0;
3696 }
3697
3698 static void efx_ef10_prepare_flr(struct efx_nic *efx)
3699 {
3700         atomic_set(&efx->active_queues, 0);
3701 }
3702
3703 static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
3704                                   const struct efx_filter_spec *right)
3705 {
3706         if ((left->match_flags ^ right->match_flags) |
3707             ((left->flags ^ right->flags) &
3708              (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
3709                 return false;
3710
3711         return memcmp(&left->outer_vid, &right->outer_vid,
3712                       sizeof(struct efx_filter_spec) -
3713                       offsetof(struct efx_filter_spec, outer_vid)) == 0;
3714 }
3715
3716 static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
3717 {
3718         BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
3719         return jhash2((const u32 *)&spec->outer_vid,
3720                       (sizeof(struct efx_filter_spec) -
3721                        offsetof(struct efx_filter_spec, outer_vid)) / 4,
3722                       0);
3723         /* XXX should we randomise the initval? */
3724 }
3725
3726 /* Decide whether a filter should be exclusive or else should allow
3727  * delivery to additional recipients.  Currently we decide that
3728  * filters for specific local unicast MAC and IP addresses are
3729  * exclusive.
3730  */
3731 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
3732 {
3733         if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
3734             !is_multicast_ether_addr(spec->loc_mac))
3735                 return true;
3736
3737         if ((spec->match_flags &
3738              (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
3739             (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
3740                 if (spec->ether_type == htons(ETH_P_IP) &&
3741                     !ipv4_is_multicast(spec->loc_host[0]))
3742                         return true;
3743                 if (spec->ether_type == htons(ETH_P_IPV6) &&
3744                     ((const u8 *)spec->loc_host)[0] != 0xff)
3745                         return true;
3746         }
3747
3748         return false;
3749 }
3750
3751 static struct efx_filter_spec *
3752 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
3753                            unsigned int filter_idx)
3754 {
3755         return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
3756                                           ~EFX_EF10_FILTER_FLAGS);
3757 }
3758
3759 static unsigned int
3760 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
3761                            unsigned int filter_idx)
3762 {
3763         return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
3764 }
3765
3766 static void
3767 efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
3768                           unsigned int filter_idx,
3769                           const struct efx_filter_spec *spec,
3770                           unsigned int flags)
3771 {
3772         table->entry[filter_idx].spec = (unsigned long)spec | flags;
3773 }
3774
3775 static void
3776 efx_ef10_filter_push_prep_set_match_fields(struct efx_nic *efx,
3777                                            const struct efx_filter_spec *spec,
3778                                            efx_dword_t *inbuf)
3779 {
3780         enum efx_encap_type encap_type = efx_filter_get_encap_type(spec);
3781         u32 match_fields = 0, uc_match, mc_match;
3782
3783         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3784                        efx_ef10_filter_is_exclusive(spec) ?
3785                        MC_CMD_FILTER_OP_IN_OP_INSERT :
3786                        MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
3787
3788         /* Convert match flags and values.  Unlike almost
3789          * everything else in MCDI, these fields are in
3790          * network byte order.
3791          */
3792 #define COPY_VALUE(value, mcdi_field)                                        \
3793         do {                                                         \
3794                 match_fields |=                                      \
3795                         1 << MC_CMD_FILTER_OP_IN_MATCH_ ##           \
3796                         mcdi_field ## _LBN;                          \
3797                 BUILD_BUG_ON(                                        \
3798                         MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
3799                         sizeof(value));                              \
3800                 memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
3801                        &value, sizeof(value));                       \
3802         } while (0)
3803 #define COPY_FIELD(gen_flag, gen_field, mcdi_field)                          \
3804         if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
3805                 COPY_VALUE(spec->gen_field, mcdi_field);             \
3806         }
3807         /* Handle encap filters first.  They will always be mismatch
3808          * (unknown UC or MC) filters
3809          */
3810         if (encap_type) {
3811                 /* ether_type and outer_ip_proto need to be variables
3812                  * because COPY_VALUE wants to memcpy them
3813                  */
3814                 __be16 ether_type =
3815                         htons(encap_type & EFX_ENCAP_FLAG_IPV6 ?
3816                               ETH_P_IPV6 : ETH_P_IP);
3817                 u8 vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_GENEVE;
3818                 u8 outer_ip_proto;
3819
3820                 switch (encap_type & EFX_ENCAP_TYPES_MASK) {
3821                 case EFX_ENCAP_TYPE_VXLAN:
3822                         vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_VXLAN;
3823                         /* fallthrough */
3824                 case EFX_ENCAP_TYPE_GENEVE:
3825                         COPY_VALUE(ether_type, ETHER_TYPE);
3826                         outer_ip_proto = IPPROTO_UDP;
3827                         COPY_VALUE(outer_ip_proto, IP_PROTO);
3828                         /* We always need to set the type field, even
3829                          * though we're not matching on the TNI.
3830                          */
3831                         MCDI_POPULATE_DWORD_1(inbuf,
3832                                 FILTER_OP_EXT_IN_VNI_OR_VSID,
3833                                 FILTER_OP_EXT_IN_VNI_TYPE,
3834                                 vni_type);
3835                         break;
3836                 case EFX_ENCAP_TYPE_NVGRE:
3837                         COPY_VALUE(ether_type, ETHER_TYPE);
3838                         outer_ip_proto = IPPROTO_GRE;
3839                         COPY_VALUE(outer_ip_proto, IP_PROTO);
3840                         break;
3841                 default:
3842                         WARN_ON(1);
3843                 }
3844
3845                 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN;
3846                 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN;
3847         } else {
3848                 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
3849                 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN;
3850         }
3851
3852         if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
3853                 match_fields |=
3854                         is_multicast_ether_addr(spec->loc_mac) ?
3855                         1 << mc_match :
3856                         1 << uc_match;
3857         COPY_FIELD(REM_HOST, rem_host, SRC_IP);
3858         COPY_FIELD(LOC_HOST, loc_host, DST_IP);
3859         COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
3860         COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
3861         COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
3862         COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
3863         COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
3864         COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
3865         COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
3866         COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
3867 #undef COPY_FIELD
3868 #undef COPY_VALUE
3869         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
3870                        match_fields);
3871 }
3872
3873 static void efx_ef10_filter_push_prep(struct efx_nic *efx,
3874                                       const struct efx_filter_spec *spec,
3875                                       efx_dword_t *inbuf, u64 handle,
3876                                       bool replacing)
3877 {
3878         struct efx_ef10_nic_data *nic_data = efx->nic_data;
3879         u32 flags = spec->flags;
3880
3881         memset(inbuf, 0, MC_CMD_FILTER_OP_EXT_IN_LEN);
3882
3883         /* Remove RSS flag if we don't have an RSS context. */
3884         if (flags & EFX_FILTER_FLAG_RX_RSS &&
3885             spec->rss_context == EFX_FILTER_RSS_CONTEXT_DEFAULT &&
3886             nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID)
3887                 flags &= ~EFX_FILTER_FLAG_RX_RSS;
3888
3889         if (replacing) {
3890                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3891                                MC_CMD_FILTER_OP_IN_OP_REPLACE);
3892                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
3893         } else {
3894                 efx_ef10_filter_push_prep_set_match_fields(efx, spec, inbuf);
3895         }
3896
3897         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
3898         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
3899                        spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
3900                        MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
3901                        MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
3902         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
3903         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
3904                        MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
3905         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
3906                        spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
3907                        0 : spec->dmaq_id);
3908         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
3909                        (flags & EFX_FILTER_FLAG_RX_RSS) ?
3910                        MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
3911                        MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
3912         if (flags & EFX_FILTER_FLAG_RX_RSS)
3913                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
3914                                spec->rss_context !=
3915                                EFX_FILTER_RSS_CONTEXT_DEFAULT ?
3916                                spec->rss_context : nic_data->rx_rss_context);
3917 }
3918
3919 static int efx_ef10_filter_push(struct efx_nic *efx,
3920                                 const struct efx_filter_spec *spec,
3921                                 u64 *handle, bool replacing)
3922 {
3923         MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
3924         MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_EXT_OUT_LEN);
3925         int rc;
3926
3927         efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
3928         rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3929                           outbuf, sizeof(outbuf), NULL);
3930         if (rc == 0)
3931                 *handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
3932         if (rc == -ENOSPC)
3933                 rc = -EBUSY; /* to match efx_farch_filter_insert() */
3934         return rc;
3935 }
3936
3937 static u32 efx_ef10_filter_mcdi_flags_from_spec(const struct efx_filter_spec *spec)
3938 {
3939         enum efx_encap_type encap_type = efx_filter_get_encap_type(spec);
3940         unsigned int match_flags = spec->match_flags;
3941         unsigned int uc_match, mc_match;
3942         u32 mcdi_flags = 0;
3943
3944 #define MAP_FILTER_TO_MCDI_FLAG(gen_flag, mcdi_field, encap) {          \
3945                 unsigned int  old_match_flags = match_flags;            \
3946                 match_flags &= ~EFX_FILTER_MATCH_ ## gen_flag;          \
3947                 if (match_flags != old_match_flags)                     \
3948                         mcdi_flags |=                                   \
3949                                 (1 << ((encap) ?                        \
3950                                        MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_ ## \
3951                                        mcdi_field ## _LBN :             \
3952                                        MC_CMD_FILTER_OP_EXT_IN_MATCH_ ##\
3953                                        mcdi_field ## _LBN));            \
3954         }
3955         /* inner or outer based on encap type */
3956         MAP_FILTER_TO_MCDI_FLAG(REM_HOST, SRC_IP, encap_type);
3957         MAP_FILTER_TO_MCDI_FLAG(LOC_HOST, DST_IP, encap_type);
3958         MAP_FILTER_TO_MCDI_FLAG(REM_MAC, SRC_MAC, encap_type);
3959         MAP_FILTER_TO_MCDI_FLAG(REM_PORT, SRC_PORT, encap_type);
3960         MAP_FILTER_TO_MCDI_FLAG(LOC_MAC, DST_MAC, encap_type);
3961         MAP_FILTER_TO_MCDI_FLAG(LOC_PORT, DST_PORT, encap_type);
3962         MAP_FILTER_TO_MCDI_FLAG(ETHER_TYPE, ETHER_TYPE, encap_type);
3963         MAP_FILTER_TO_MCDI_FLAG(IP_PROTO, IP_PROTO, encap_type);
3964         /* always outer */
3965         MAP_FILTER_TO_MCDI_FLAG(INNER_VID, INNER_VLAN, false);
3966         MAP_FILTER_TO_MCDI_FLAG(OUTER_VID, OUTER_VLAN, false);
3967 #undef MAP_FILTER_TO_MCDI_FLAG
3968
3969         /* special handling for encap type, and mismatch */
3970         if (encap_type) {
3971                 match_flags &= ~EFX_FILTER_MATCH_ENCAP_TYPE;
3972                 mcdi_flags |=
3973                         (1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN);
3974                 mcdi_flags |= (1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN);
3975
3976                 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN;
3977                 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN;
3978         } else {
3979                 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
3980                 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN;
3981         }
3982
3983         if (match_flags & EFX_FILTER_MATCH_LOC_MAC_IG) {
3984                 match_flags &= ~EFX_FILTER_MATCH_LOC_MAC_IG;
3985                 mcdi_flags |=
3986                         is_multicast_ether_addr(spec->loc_mac) ?
3987                         1 << mc_match :
3988                         1 << uc_match;
3989         }
3990
3991         /* Did we map them all? */
3992         WARN_ON_ONCE(match_flags);
3993
3994         return mcdi_flags;
3995 }
3996
3997 static int efx_ef10_filter_pri(struct efx_ef10_filter_table *table,
3998                                const struct efx_filter_spec *spec)
3999 {
4000         u32 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
4001         unsigned int match_pri;
4002
4003         for (match_pri = 0;
4004              match_pri < table->rx_match_count;
4005              match_pri++)
4006                 if (table->rx_match_mcdi_flags[match_pri] == mcdi_flags)
4007                         return match_pri;
4008
4009         return -EPROTONOSUPPORT;
4010 }
4011
4012 static s32 efx_ef10_filter_insert(struct efx_nic *efx,
4013                                   struct efx_filter_spec *spec,
4014                                   bool replace_equal)
4015 {
4016         struct efx_ef10_filter_table *table = efx->filter_state;
4017         DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
4018         struct efx_filter_spec *saved_spec;
4019         unsigned int match_pri, hash;
4020         unsigned int priv_flags;
4021         bool replacing = false;
4022         int ins_index = -1;
4023         DEFINE_WAIT(wait);
4024         bool is_mc_recip;
4025         s32 rc;
4026
4027         /* For now, only support RX filters */
4028         if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
4029             EFX_FILTER_FLAG_RX)
4030                 return -EINVAL;
4031
4032         rc = efx_ef10_filter_pri(table, spec);
4033         if (rc < 0)
4034                 return rc;
4035         match_pri = rc;
4036
4037         hash = efx_ef10_filter_hash(spec);
4038         is_mc_recip = efx_filter_is_mc_recipient(spec);
4039         if (is_mc_recip)
4040                 bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
4041
4042         /* Find any existing filters with the same match tuple or
4043          * else a free slot to insert at.  If any of them are busy,
4044          * we have to wait and retry.
4045          */
4046         for (;;) {
4047                 unsigned int depth = 1;
4048                 unsigned int i;
4049
4050                 spin_lock_bh(&efx->filter_lock);
4051
4052                 for (;;) {
4053                         i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4054                         saved_spec = efx_ef10_filter_entry_spec(table, i);
4055
4056                         if (!saved_spec) {
4057                                 if (ins_index < 0)
4058                                         ins_index = i;
4059                         } else if (efx_ef10_filter_equal(spec, saved_spec)) {
4060                                 if (table->entry[i].spec &
4061                                     EFX_EF10_FILTER_FLAG_BUSY)
4062                                         break;
4063                                 if (spec->priority < saved_spec->priority &&
4064                                     spec->priority != EFX_FILTER_PRI_AUTO) {
4065                                         rc = -EPERM;
4066                                         goto out_unlock;
4067                                 }
4068                                 if (!is_mc_recip) {
4069                                         /* This is the only one */
4070                                         if (spec->priority ==
4071                                             saved_spec->priority &&
4072                                             !replace_equal) {
4073                                                 rc = -EEXIST;
4074                                                 goto out_unlock;
4075                                         }
4076                                         ins_index = i;
4077                                         goto found;
4078                                 } else if (spec->priority >
4079                                            saved_spec->priority ||
4080                                            (spec->priority ==
4081                                             saved_spec->priority &&
4082                                             replace_equal)) {
4083                                         if (ins_index < 0)
4084                                                 ins_index = i;
4085                                         else
4086                                                 __set_bit(depth, mc_rem_map);
4087                                 }
4088                         }
4089
4090                         /* Once we reach the maximum search depth, use
4091                          * the first suitable slot or return -EBUSY if
4092                          * there was none
4093                          */
4094                         if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
4095                                 if (ins_index < 0) {
4096                                         rc = -EBUSY;
4097                                         goto out_unlock;
4098                                 }
4099                                 goto found;
4100                         }
4101
4102                         ++depth;
4103                 }
4104
4105                 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
4106                 spin_unlock_bh(&efx->filter_lock);
4107                 schedule();
4108         }
4109
4110 found:
4111         /* Create a software table entry if necessary, and mark it
4112          * busy.  We might yet fail to insert, but any attempt to
4113          * insert a conflicting filter while we're waiting for the
4114          * firmware must find the busy entry.
4115          */
4116         saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
4117         if (saved_spec) {
4118                 if (spec->priority == EFX_FILTER_PRI_AUTO &&
4119                     saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
4120                         /* Just make sure it won't be removed */
4121                         if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
4122                                 saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
4123                         table->entry[ins_index].spec &=
4124                                 ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
4125                         rc = ins_index;
4126                         goto out_unlock;
4127                 }
4128                 replacing = true;
4129                 priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
4130         } else {
4131                 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
4132                 if (!saved_spec) {
4133                         rc = -ENOMEM;
4134                         goto out_unlock;
4135                 }
4136                 *saved_spec = *spec;
4137                 priv_flags = 0;
4138         }
4139         efx_ef10_filter_set_entry(table, ins_index, saved_spec,
4140                                   priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
4141
4142         /* Mark lower-priority multicast recipients busy prior to removal */
4143         if (is_mc_recip) {
4144                 unsigned int depth, i;
4145
4146                 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
4147                         i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4148                         if (test_bit(depth, mc_rem_map))
4149                                 table->entry[i].spec |=
4150                                         EFX_EF10_FILTER_FLAG_BUSY;
4151                 }
4152         }
4153
4154         spin_unlock_bh(&efx->filter_lock);
4155
4156         rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
4157                                   replacing);
4158
4159         /* Finalise the software table entry */
4160         spin_lock_bh(&efx->filter_lock);
4161         if (rc == 0) {
4162                 if (replacing) {
4163                         /* Update the fields that may differ */
4164                         if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
4165                                 saved_spec->flags |=
4166                                         EFX_FILTER_FLAG_RX_OVER_AUTO;
4167                         saved_spec->priority = spec->priority;
4168                         saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
4169                         saved_spec->flags |= spec->flags;
4170                         saved_spec->rss_context = spec->rss_context;
4171                         saved_spec->dmaq_id = spec->dmaq_id;
4172                 }
4173         } else if (!replacing) {
4174                 kfree(saved_spec);
4175                 saved_spec = NULL;
4176         }
4177         efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
4178
4179         /* Remove and finalise entries for lower-priority multicast
4180          * recipients
4181          */
4182         if (is_mc_recip) {
4183                 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
4184                 unsigned int depth, i;
4185
4186                 memset(inbuf, 0, sizeof(inbuf));
4187
4188                 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
4189                         if (!test_bit(depth, mc_rem_map))
4190                                 continue;
4191
4192                         i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4193                         saved_spec = efx_ef10_filter_entry_spec(table, i);
4194                         priv_flags = efx_ef10_filter_entry_flags(table, i);
4195
4196                         if (rc == 0) {
4197                                 spin_unlock_bh(&efx->filter_lock);
4198                                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4199                                                MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4200                                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4201                                                table->entry[i].handle);
4202                                 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
4203                                                   inbuf, sizeof(inbuf),
4204                                                   NULL, 0, NULL);
4205                                 spin_lock_bh(&efx->filter_lock);
4206                         }
4207
4208                         if (rc == 0) {
4209                                 kfree(saved_spec);
4210                                 saved_spec = NULL;
4211                                 priv_flags = 0;
4212                         } else {
4213                                 priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
4214                         }
4215                         efx_ef10_filter_set_entry(table, i, saved_spec,
4216                                                   priv_flags);
4217                 }
4218         }
4219
4220         /* If successful, return the inserted filter ID */
4221         if (rc == 0)
4222                 rc = efx_ef10_make_filter_id(match_pri, ins_index);
4223
4224         wake_up_all(&table->waitq);
4225 out_unlock:
4226         spin_unlock_bh(&efx->filter_lock);
4227         finish_wait(&table->waitq, &wait);
4228         return rc;
4229 }
4230
4231 static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
4232 {
4233         /* no need to do anything here on EF10 */
4234 }
4235
4236 /* Remove a filter.
4237  * If !by_index, remove by ID
4238  * If by_index, remove by index
4239  * Filter ID may come from userland and must be range-checked.
4240  */
4241 static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
4242                                            unsigned int priority_mask,
4243                                            u32 filter_id, bool by_index)
4244 {
4245         unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id);
4246         struct efx_ef10_filter_table *table = efx->filter_state;
4247         MCDI_DECLARE_BUF(inbuf,
4248                          MC_CMD_FILTER_OP_IN_HANDLE_OFST +
4249                          MC_CMD_FILTER_OP_IN_HANDLE_LEN);
4250         struct efx_filter_spec *spec;
4251         DEFINE_WAIT(wait);
4252         int rc;
4253
4254         /* Find the software table entry and mark it busy.  Don't
4255          * remove it yet; any attempt to update while we're waiting
4256          * for the firmware must find the busy entry.
4257          */
4258         for (;;) {
4259                 spin_lock_bh(&efx->filter_lock);
4260                 if (!(table->entry[filter_idx].spec &
4261                       EFX_EF10_FILTER_FLAG_BUSY))
4262                         break;
4263                 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
4264                 spin_unlock_bh(&efx->filter_lock);
4265                 schedule();
4266         }
4267
4268         spec = efx_ef10_filter_entry_spec(table, filter_idx);
4269         if (!spec ||
4270             (!by_index &&
4271              efx_ef10_filter_pri(table, spec) !=
4272              efx_ef10_filter_get_unsafe_pri(filter_id))) {
4273                 rc = -ENOENT;
4274                 goto out_unlock;
4275         }
4276
4277         if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
4278             priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
4279                 /* Just remove flags */
4280                 spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
4281                 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
4282                 rc = 0;
4283                 goto out_unlock;
4284         }
4285
4286         if (!(priority_mask & (1U << spec->priority))) {
4287                 rc = -ENOENT;
4288                 goto out_unlock;
4289         }
4290
4291         table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
4292         spin_unlock_bh(&efx->filter_lock);
4293
4294         if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
4295                 /* Reset to an automatic filter */
4296
4297                 struct efx_filter_spec new_spec = *spec;
4298
4299                 new_spec.priority = EFX_FILTER_PRI_AUTO;
4300                 new_spec.flags = (EFX_FILTER_FLAG_RX |
4301                                   (efx_rss_enabled(efx) ?
4302                                    EFX_FILTER_FLAG_RX_RSS : 0));
4303                 new_spec.dmaq_id = 0;
4304                 new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
4305                 rc = efx_ef10_filter_push(efx, &new_spec,
4306                                           &table->entry[filter_idx].handle,
4307                                           true);
4308
4309                 spin_lock_bh(&efx->filter_lock);
4310                 if (rc == 0)
4311                         *spec = new_spec;
4312         } else {
4313                 /* Really remove the filter */
4314
4315                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4316                                efx_ef10_filter_is_exclusive(spec) ?
4317                                MC_CMD_FILTER_OP_IN_OP_REMOVE :
4318                                MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4319                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4320                                table->entry[filter_idx].handle);
4321                 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP,
4322                                         inbuf, sizeof(inbuf), NULL, 0, NULL);
4323
4324                 spin_lock_bh(&efx->filter_lock);
4325                 if ((rc == 0) || (rc == -ENOENT)) {
4326                         /* Filter removed OK or didn't actually exist */
4327                         kfree(spec);
4328                         efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4329                 } else {
4330                         efx_mcdi_display_error(efx, MC_CMD_FILTER_OP,
4331                                                MC_CMD_FILTER_OP_EXT_IN_LEN,
4332                                                NULL, 0, rc);
4333                 }
4334         }
4335
4336         table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
4337         wake_up_all(&table->waitq);
4338 out_unlock:
4339         spin_unlock_bh(&efx->filter_lock);
4340         finish_wait(&table->waitq, &wait);
4341         return rc;
4342 }
4343
4344 static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
4345                                        enum efx_filter_priority priority,
4346                                        u32 filter_id)
4347 {
4348         return efx_ef10_filter_remove_internal(efx, 1U << priority,
4349                                                filter_id, false);
4350 }
4351
4352 static void efx_ef10_filter_remove_unsafe(struct efx_nic *efx,
4353                                           enum efx_filter_priority priority,
4354                                           u32 filter_id)
4355 {
4356         if (filter_id == EFX_EF10_FILTER_ID_INVALID)
4357                 return;
4358         efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id, true);
4359 }
4360
4361 static int efx_ef10_filter_get_safe(struct efx_nic *efx,
4362                                     enum efx_filter_priority priority,
4363                                     u32 filter_id, struct efx_filter_spec *spec)
4364 {
4365         unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id);
4366         struct efx_ef10_filter_table *table = efx->filter_state;
4367         const struct efx_filter_spec *saved_spec;
4368         int rc;
4369
4370         spin_lock_bh(&efx->filter_lock);
4371         saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
4372         if (saved_spec && saved_spec->priority == priority &&
4373             efx_ef10_filter_pri(table, saved_spec) ==
4374             efx_ef10_filter_get_unsafe_pri(filter_id)) {
4375                 *spec = *saved_spec;
4376                 rc = 0;
4377         } else {
4378                 rc = -ENOENT;
4379         }
4380         spin_unlock_bh(&efx->filter_lock);
4381         return rc;
4382 }
4383
4384 static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
4385                                      enum efx_filter_priority priority)
4386 {
4387         unsigned int priority_mask;
4388         unsigned int i;
4389         int rc;
4390
4391         priority_mask = (((1U << (priority + 1)) - 1) &
4392                          ~(1U << EFX_FILTER_PRI_AUTO));
4393
4394         for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
4395                 rc = efx_ef10_filter_remove_internal(efx, priority_mask,
4396                                                      i, true);
4397                 if (rc && rc != -ENOENT)
4398                         return rc;
4399         }
4400
4401         return 0;
4402 }
4403
4404 static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
4405                                          enum efx_filter_priority priority)
4406 {
4407         struct efx_ef10_filter_table *table = efx->filter_state;
4408         unsigned int filter_idx;
4409         s32 count = 0;
4410
4411         spin_lock_bh(&efx->filter_lock);
4412         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4413                 if (table->entry[filter_idx].spec &&
4414                     efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
4415                     priority)
4416                         ++count;
4417         }
4418         spin_unlock_bh(&efx->filter_lock);
4419         return count;
4420 }
4421
4422 static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
4423 {
4424         struct efx_ef10_filter_table *table = efx->filter_state;
4425
4426         return table->rx_match_count * HUNT_FILTER_TBL_ROWS * 2;
4427 }
4428
4429 static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
4430                                       enum efx_filter_priority priority,
4431                                       u32 *buf, u32 size)
4432 {
4433         struct efx_ef10_filter_table *table = efx->filter_state;
4434         struct efx_filter_spec *spec;
4435         unsigned int filter_idx;
4436         s32 count = 0;
4437
4438         spin_lock_bh(&efx->filter_lock);
4439         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4440                 spec = efx_ef10_filter_entry_spec(table, filter_idx);
4441                 if (spec && spec->priority == priority) {
4442                         if (count == size) {
4443                                 count = -EMSGSIZE;
4444                                 break;
4445                         }
4446                         buf[count++] =
4447                                 efx_ef10_make_filter_id(
4448                                         efx_ef10_filter_pri(table, spec),
4449                                         filter_idx);
4450                 }
4451         }
4452         spin_unlock_bh(&efx->filter_lock);
4453         return count;
4454 }
4455
4456 #ifdef CONFIG_RFS_ACCEL
4457
4458 static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
4459
4460 static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
4461                                       struct efx_filter_spec *spec)
4462 {
4463         struct efx_ef10_filter_table *table = efx->filter_state;
4464         MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
4465         struct efx_filter_spec *saved_spec;
4466         unsigned int hash, i, depth = 1;
4467         bool replacing = false;
4468         int ins_index = -1;
4469         u64 cookie;
4470         s32 rc;
4471
4472         /* Must be an RX filter without RSS and not for a multicast
4473          * destination address (RFS only works for connected sockets).
4474          * These restrictions allow us to pass only a tiny amount of
4475          * data through to the completion function.
4476          */
4477         EFX_WARN_ON_PARANOID(spec->flags !=
4478                              (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
4479         EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
4480         EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
4481
4482         hash = efx_ef10_filter_hash(spec);
4483
4484         spin_lock_bh(&efx->filter_lock);
4485
4486         /* Find any existing filter with the same match tuple or else
4487          * a free slot to insert at.  If an existing filter is busy,
4488          * we have to give up.
4489          */
4490         for (;;) {
4491                 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4492                 saved_spec = efx_ef10_filter_entry_spec(table, i);
4493
4494                 if (!saved_spec) {
4495                         if (ins_index < 0)
4496                                 ins_index = i;
4497                 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
4498                         if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
4499                                 rc = -EBUSY;
4500                                 goto fail_unlock;
4501                         }
4502                         if (spec->priority < saved_spec->priority) {
4503                                 rc = -EPERM;
4504                                 goto fail_unlock;
4505                         }
4506                         ins_index = i;
4507                         break;
4508                 }
4509
4510                 /* Once we reach the maximum search depth, use the
4511                  * first suitable slot or return -EBUSY if there was
4512                  * none
4513                  */
4514                 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
4515                         if (ins_index < 0) {
4516                                 rc = -EBUSY;
4517                                 goto fail_unlock;
4518                         }
4519                         break;
4520                 }
4521
4522                 ++depth;
4523         }
4524
4525         /* Create a software table entry if necessary, and mark it
4526          * busy.  We might yet fail to insert, but any attempt to
4527          * insert a conflicting filter while we're waiting for the
4528          * firmware must find the busy entry.
4529          */
4530         saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
4531         if (saved_spec) {
4532                 replacing = true;
4533         } else {
4534                 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
4535                 if (!saved_spec) {
4536                         rc = -ENOMEM;
4537                         goto fail_unlock;
4538                 }
4539                 *saved_spec = *spec;
4540         }
4541         efx_ef10_filter_set_entry(table, ins_index, saved_spec,
4542                                   EFX_EF10_FILTER_FLAG_BUSY);
4543
4544         spin_unlock_bh(&efx->filter_lock);
4545
4546         /* Pack up the variables needed on completion */
4547         cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
4548
4549         efx_ef10_filter_push_prep(efx, spec, inbuf,
4550                                   table->entry[ins_index].handle, replacing);
4551         efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
4552                            MC_CMD_FILTER_OP_OUT_LEN,
4553                            efx_ef10_filter_rfs_insert_complete, cookie);
4554
4555         return ins_index;
4556
4557 fail_unlock:
4558         spin_unlock_bh(&efx->filter_lock);
4559         return rc;
4560 }
4561
4562 static void
4563 efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
4564                                     int rc, efx_dword_t *outbuf,
4565                                     size_t outlen_actual)
4566 {
4567         struct efx_ef10_filter_table *table = efx->filter_state;
4568         unsigned int ins_index, dmaq_id;
4569         struct efx_filter_spec *spec;
4570         bool replacing;
4571
4572         /* Unpack the cookie */
4573         replacing = cookie >> 31;
4574         ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
4575         dmaq_id = cookie & 0xffff;
4576
4577         spin_lock_bh(&efx->filter_lock);
4578         spec = efx_ef10_filter_entry_spec(table, ins_index);
4579         if (rc == 0) {
4580                 table->entry[ins_index].handle =
4581                         MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
4582                 if (replacing)
4583                         spec->dmaq_id = dmaq_id;
4584         } else if (!replacing) {
4585                 kfree(spec);
4586                 spec = NULL;
4587         }
4588         efx_ef10_filter_set_entry(table, ins_index, spec, 0);
4589         spin_unlock_bh(&efx->filter_lock);
4590
4591         wake_up_all(&table->waitq);
4592 }
4593
4594 static void
4595 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
4596                                     unsigned long filter_idx,
4597                                     int rc, efx_dword_t *outbuf,
4598                                     size_t outlen_actual);
4599
4600 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
4601                                            unsigned int filter_idx)
4602 {
4603         struct efx_ef10_filter_table *table = efx->filter_state;
4604         struct efx_filter_spec *spec =
4605                 efx_ef10_filter_entry_spec(table, filter_idx);
4606         MCDI_DECLARE_BUF(inbuf,
4607                          MC_CMD_FILTER_OP_IN_HANDLE_OFST +
4608                          MC_CMD_FILTER_OP_IN_HANDLE_LEN);
4609
4610         if (!spec ||
4611             (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
4612             spec->priority != EFX_FILTER_PRI_HINT ||
4613             !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
4614                                  flow_id, filter_idx))
4615                 return false;
4616
4617         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4618                        MC_CMD_FILTER_OP_IN_OP_REMOVE);
4619         MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4620                        table->entry[filter_idx].handle);
4621         if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
4622                                efx_ef10_filter_rfs_expire_complete, filter_idx))
4623                 return false;
4624
4625         table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
4626         return true;
4627 }
4628
4629 static void
4630 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
4631                                     unsigned long filter_idx,
4632                                     int rc, efx_dword_t *outbuf,
4633                                     size_t outlen_actual)
4634 {
4635         struct efx_ef10_filter_table *table = efx->filter_state;
4636         struct efx_filter_spec *spec =
4637                 efx_ef10_filter_entry_spec(table, filter_idx);
4638
4639         spin_lock_bh(&efx->filter_lock);
4640         if (rc == 0) {
4641                 kfree(spec);
4642                 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4643         }
4644         table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
4645         wake_up_all(&table->waitq);
4646         spin_unlock_bh(&efx->filter_lock);
4647 }
4648
4649 #endif /* CONFIG_RFS_ACCEL */
4650
4651 static int efx_ef10_filter_match_flags_from_mcdi(bool encap, u32 mcdi_flags)
4652 {
4653         int match_flags = 0;
4654
4655 #define MAP_FLAG(gen_flag, mcdi_field) do {                             \
4656                 u32 old_mcdi_flags = mcdi_flags;                        \
4657                 mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ ##  \
4658                                      mcdi_field ## _LBN);               \
4659                 if (mcdi_flags != old_mcdi_flags)                       \
4660                         match_flags |= EFX_FILTER_MATCH_ ## gen_flag;   \
4661         } while (0)
4662
4663         if (encap) {
4664                 /* encap filters must specify encap type */
4665                 match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
4666                 /* and imply ethertype and ip proto */
4667                 mcdi_flags &=
4668                         ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN);
4669                 mcdi_flags &=
4670                         ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN);
4671                 /* VLAN tags refer to the outer packet */
4672                 MAP_FLAG(INNER_VID, INNER_VLAN);
4673                 MAP_FLAG(OUTER_VID, OUTER_VLAN);
4674                 /* everything else refers to the inner packet */
4675                 MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_UCAST_DST);
4676                 MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_MCAST_DST);
4677                 MAP_FLAG(REM_HOST, IFRM_SRC_IP);
4678                 MAP_FLAG(LOC_HOST, IFRM_DST_IP);
4679                 MAP_FLAG(REM_MAC, IFRM_SRC_MAC);
4680                 MAP_FLAG(REM_PORT, IFRM_SRC_PORT);
4681                 MAP_FLAG(LOC_MAC, IFRM_DST_MAC);
4682                 MAP_FLAG(LOC_PORT, IFRM_DST_PORT);
4683                 MAP_FLAG(ETHER_TYPE, IFRM_ETHER_TYPE);
4684                 MAP_FLAG(IP_PROTO, IFRM_IP_PROTO);
4685         } else {
4686                 MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
4687                 MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
4688                 MAP_FLAG(REM_HOST, SRC_IP);
4689                 MAP_FLAG(LOC_HOST, DST_IP);
4690                 MAP_FLAG(REM_MAC, SRC_MAC);
4691                 MAP_FLAG(REM_PORT, SRC_PORT);
4692                 MAP_FLAG(LOC_MAC, DST_MAC);
4693                 MAP_FLAG(LOC_PORT, DST_PORT);
4694                 MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
4695                 MAP_FLAG(INNER_VID, INNER_VLAN);
4696                 MAP_FLAG(OUTER_VID, OUTER_VLAN);
4697                 MAP_FLAG(IP_PROTO, IP_PROTO);
4698         }
4699 #undef MAP_FLAG
4700
4701         /* Did we map them all? */
4702         if (mcdi_flags)
4703                 return -EINVAL;
4704
4705         return match_flags;
4706 }
4707
4708 static void efx_ef10_filter_cleanup_vlans(struct efx_nic *efx)
4709 {
4710         struct efx_ef10_filter_table *table = efx->filter_state;
4711         struct efx_ef10_filter_vlan *vlan, *next_vlan;
4712
4713         /* See comment in efx_ef10_filter_table_remove() */
4714         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4715                 return;
4716
4717         if (!table)
4718                 return;
4719
4720         list_for_each_entry_safe(vlan, next_vlan, &table->vlan_list, list)
4721                 efx_ef10_filter_del_vlan_internal(efx, vlan);
4722 }
4723
4724 static bool efx_ef10_filter_match_supported(struct efx_ef10_filter_table *table,
4725                                             bool encap,
4726                                             enum efx_filter_match_flags match_flags)
4727 {
4728         unsigned int match_pri;
4729         int mf;
4730
4731         for (match_pri = 0;
4732              match_pri < table->rx_match_count;
4733              match_pri++) {
4734                 mf = efx_ef10_filter_match_flags_from_mcdi(encap,
4735                                 table->rx_match_mcdi_flags[match_pri]);
4736                 if (mf == match_flags)
4737                         return true;
4738         }
4739
4740         return false;
4741 }
4742
4743 static int
4744 efx_ef10_filter_table_probe_matches(struct efx_nic *efx,
4745                                     struct efx_ef10_filter_table *table,
4746                                     bool encap)
4747 {
4748         MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
4749         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
4750         unsigned int pd_match_pri, pd_match_count;
4751         size_t outlen;
4752         int rc;
4753
4754         /* Find out which RX filter types are supported, and their priorities */
4755         MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
4756                        encap ?
4757                        MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_ENCAP_RX_MATCHES :
4758                        MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
4759         rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
4760                           inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
4761                           &outlen);
4762         if (rc)
4763                 return rc;
4764
4765         pd_match_count = MCDI_VAR_ARRAY_LEN(
4766                 outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
4767
4768         for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
4769                 u32 mcdi_flags =
4770                         MCDI_ARRAY_DWORD(
4771                                 outbuf,
4772                                 GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
4773                                 pd_match_pri);
4774                 rc = efx_ef10_filter_match_flags_from_mcdi(encap, mcdi_flags);
4775                 if (rc < 0) {
4776                         netif_dbg(efx, probe, efx->net_dev,
4777                                   "%s: fw flags %#x pri %u not supported in driver\n",
4778                                   __func__, mcdi_flags, pd_match_pri);
4779                 } else {
4780                         netif_dbg(efx, probe, efx->net_dev,
4781                                   "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
4782                                   __func__, mcdi_flags, pd_match_pri,
4783                                   rc, table->rx_match_count);
4784                         table->rx_match_mcdi_flags[table->rx_match_count] = mcdi_flags;
4785                         table->rx_match_count++;
4786                 }
4787         }
4788
4789         return 0;
4790 }
4791
4792 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
4793 {
4794         struct efx_ef10_nic_data *nic_data = efx->nic_data;
4795         struct net_device *net_dev = efx->net_dev;
4796         struct efx_ef10_filter_table *table;
4797         struct efx_ef10_vlan *vlan;
4798         int rc;
4799
4800         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4801                 return -EINVAL;
4802
4803         if (efx->filter_state) /* already probed */
4804                 return 0;
4805
4806         table = kzalloc(sizeof(*table), GFP_KERNEL);
4807         if (!table)
4808                 return -ENOMEM;
4809
4810         table->rx_match_count = 0;
4811         rc = efx_ef10_filter_table_probe_matches(efx, table, false);
4812         if (rc)
4813                 goto fail;
4814         if (nic_data->datapath_caps &
4815                    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
4816                 rc = efx_ef10_filter_table_probe_matches(efx, table, true);
4817         if (rc)
4818                 goto fail;
4819         if ((efx_supported_features(efx) & NETIF_F_HW_VLAN_CTAG_FILTER) &&
4820             !(efx_ef10_filter_match_supported(table, false,
4821                 (EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC)) &&
4822               efx_ef10_filter_match_supported(table, false,
4823                 (EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC_IG)))) {
4824                 netif_info(efx, probe, net_dev,
4825                            "VLAN filters are not supported in this firmware variant\n");
4826                 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4827                 efx->fixed_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4828                 net_dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4829         }
4830
4831         table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
4832         if (!table->entry) {
4833                 rc = -ENOMEM;
4834                 goto fail;
4835         }
4836
4837         table->mc_promisc_last = false;
4838         table->vlan_filter =
4839                 !!(efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
4840         INIT_LIST_HEAD(&table->vlan_list);
4841
4842         efx->filter_state = table;
4843         init_waitqueue_head(&table->waitq);
4844
4845         list_for_each_entry(vlan, &nic_data->vlan_list, list) {
4846                 rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
4847                 if (rc)
4848                         goto fail_add_vlan;
4849         }
4850
4851         return 0;
4852
4853 fail_add_vlan:
4854         efx_ef10_filter_cleanup_vlans(efx);
4855         efx->filter_state = NULL;
4856 fail:
4857         kfree(table);
4858         return rc;
4859 }
4860
4861 /* Caller must hold efx->filter_sem for read if race against
4862  * efx_ef10_filter_table_remove() is possible
4863  */
4864 static void efx_ef10_filter_table_restore(struct efx_nic *efx)
4865 {
4866         struct efx_ef10_filter_table *table = efx->filter_state;
4867         struct efx_ef10_nic_data *nic_data = efx->nic_data;
4868         unsigned int invalid_filters = 0, failed = 0;
4869         struct efx_ef10_filter_vlan *vlan;
4870         struct efx_filter_spec *spec;
4871         unsigned int filter_idx;
4872         u32 mcdi_flags;
4873         int match_pri;
4874         int rc, i;
4875
4876         WARN_ON(!rwsem_is_locked(&efx->filter_sem));
4877
4878         if (!nic_data->must_restore_filters)
4879                 return;
4880
4881         if (!table)
4882                 return;
4883
4884         spin_lock_bh(&efx->filter_lock);
4885
4886         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4887                 spec = efx_ef10_filter_entry_spec(table, filter_idx);
4888                 if (!spec)
4889                         continue;
4890
4891                 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
4892                 match_pri = 0;
4893                 while (match_pri < table->rx_match_count &&
4894                        table->rx_match_mcdi_flags[match_pri] != mcdi_flags)
4895                         ++match_pri;
4896                 if (match_pri >= table->rx_match_count) {
4897                         invalid_filters++;
4898                         goto not_restored;
4899                 }
4900                 if (spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT &&
4901                     spec->rss_context != nic_data->rx_rss_context)
4902                         netif_warn(efx, drv, efx->net_dev,
4903                                    "Warning: unable to restore a filter with specific RSS context.\n");
4904
4905                 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
4906                 spin_unlock_bh(&efx->filter_lock);
4907
4908                 rc = efx_ef10_filter_push(efx, spec,
4909                                           &table->entry[filter_idx].handle,
4910                                           false);
4911                 if (rc)
4912                         failed++;
4913                 spin_lock_bh(&efx->filter_lock);
4914
4915                 if (rc) {
4916 not_restored:
4917                         list_for_each_entry(vlan, &table->vlan_list, list)
4918                                 for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; ++i)
4919                                         if (vlan->default_filters[i] == filter_idx)
4920                                                 vlan->default_filters[i] =
4921                                                         EFX_EF10_FILTER_ID_INVALID;
4922
4923                         kfree(spec);
4924                         efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4925                 } else {
4926                         table->entry[filter_idx].spec &=
4927                                 ~EFX_EF10_FILTER_FLAG_BUSY;
4928                 }
4929         }
4930
4931         spin_unlock_bh(&efx->filter_lock);
4932
4933         /* This can happen validly if the MC's capabilities have changed, so
4934          * is not an error.
4935          */
4936         if (invalid_filters)
4937                 netif_dbg(efx, drv, efx->net_dev,
4938                           "Did not restore %u filters that are now unsupported.\n",
4939                           invalid_filters);
4940
4941         if (failed)
4942                 netif_err(efx, hw, efx->net_dev,
4943                           "unable to restore %u filters\n", failed);
4944         else
4945                 nic_data->must_restore_filters = false;
4946 }
4947
4948 static void efx_ef10_filter_table_remove(struct efx_nic *efx)
4949 {
4950         struct efx_ef10_filter_table *table = efx->filter_state;
4951         MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
4952         struct efx_filter_spec *spec;
4953         unsigned int filter_idx;
4954         int rc;
4955
4956         efx_ef10_filter_cleanup_vlans(efx);
4957         efx->filter_state = NULL;
4958         /* If we were called without locking, then it's not safe to free
4959          * the table as others might be using it.  So we just WARN, leak
4960          * the memory, and potentially get an inconsistent filter table
4961          * state.
4962          * This should never actually happen.
4963          */
4964         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4965                 return;
4966
4967         if (!table)
4968                 return;
4969
4970         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4971                 spec = efx_ef10_filter_entry_spec(table, filter_idx);
4972                 if (!spec)
4973                         continue;
4974
4975                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4976                                efx_ef10_filter_is_exclusive(spec) ?
4977                                MC_CMD_FILTER_OP_IN_OP_REMOVE :
4978                                MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4979                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4980                                table->entry[filter_idx].handle);
4981                 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP, inbuf,
4982                                         sizeof(inbuf), NULL, 0, NULL);
4983                 if (rc)
4984                         netif_info(efx, drv, efx->net_dev,
4985                                    "%s: filter %04x remove failed\n",
4986                                    __func__, filter_idx);
4987                 kfree(spec);
4988         }
4989
4990         vfree(table->entry);
4991         kfree(table);
4992 }
4993
4994 static void efx_ef10_filter_mark_one_old(struct efx_nic *efx, uint16_t *id)
4995 {
4996         struct efx_ef10_filter_table *table = efx->filter_state;
4997         unsigned int filter_idx;
4998
4999         if (*id != EFX_EF10_FILTER_ID_INVALID) {
5000                 filter_idx = efx_ef10_filter_get_unsafe_id(*id);
5001                 if (!table->entry[filter_idx].spec)
5002                         netif_dbg(efx, drv, efx->net_dev,
5003                                   "marked null spec old %04x:%04x\n", *id,
5004                                   filter_idx);
5005                 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
5006                 *id = EFX_EF10_FILTER_ID_INVALID;
5007         }
5008 }
5009
5010 /* Mark old per-VLAN filters that may need to be removed */
5011 static void _efx_ef10_filter_vlan_mark_old(struct efx_nic *efx,
5012                                            struct efx_ef10_filter_vlan *vlan)
5013 {
5014         struct efx_ef10_filter_table *table = efx->filter_state;
5015         unsigned int i;
5016
5017         for (i = 0; i < table->dev_uc_count; i++)
5018                 efx_ef10_filter_mark_one_old(efx, &vlan->uc[i]);
5019         for (i = 0; i < table->dev_mc_count; i++)
5020                 efx_ef10_filter_mark_one_old(efx, &vlan->mc[i]);
5021         for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5022                 efx_ef10_filter_mark_one_old(efx, &vlan->default_filters[i]);
5023 }
5024
5025 /* Mark old filters that may need to be removed.
5026  * Caller must hold efx->filter_sem for read if race against
5027  * efx_ef10_filter_table_remove() is possible
5028  */
5029 static void efx_ef10_filter_mark_old(struct efx_nic *efx)
5030 {
5031         struct efx_ef10_filter_table *table = efx->filter_state;
5032         struct efx_ef10_filter_vlan *vlan;
5033
5034         spin_lock_bh(&efx->filter_lock);
5035         list_for_each_entry(vlan, &table->vlan_list, list)
5036                 _efx_ef10_filter_vlan_mark_old(efx, vlan);
5037         spin_unlock_bh(&efx->filter_lock);
5038 }
5039
5040 static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx)
5041 {
5042         struct efx_ef10_filter_table *table = efx->filter_state;
5043         struct net_device *net_dev = efx->net_dev;
5044         struct netdev_hw_addr *uc;
5045         unsigned int i;
5046
5047         table->uc_promisc = !!(net_dev->flags & IFF_PROMISC);
5048         ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
5049         i = 1;
5050         netdev_for_each_uc_addr(uc, net_dev) {
5051                 if (i >= EFX_EF10_FILTER_DEV_UC_MAX) {
5052                         table->uc_promisc = true;
5053                         break;
5054                 }
5055                 ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
5056                 i++;
5057         }
5058
5059         table->dev_uc_count = i;
5060 }
5061
5062 static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx)
5063 {
5064         struct efx_ef10_filter_table *table = efx->filter_state;
5065         struct net_device *net_dev = efx->net_dev;
5066         struct netdev_hw_addr *mc;
5067         unsigned int i;
5068
5069         table->mc_overflow = false;
5070         table->mc_promisc = !!(net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI));
5071
5072         i = 0;
5073         netdev_for_each_mc_addr(mc, net_dev) {
5074                 if (i >= EFX_EF10_FILTER_DEV_MC_MAX) {
5075                         table->mc_promisc = true;
5076                         table->mc_overflow = true;
5077                         break;
5078                 }
5079                 ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
5080                 i++;
5081         }
5082
5083         table->dev_mc_count = i;
5084 }
5085
5086 static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx,
5087                                             struct efx_ef10_filter_vlan *vlan,
5088                                             bool multicast, bool rollback)
5089 {
5090         struct efx_ef10_filter_table *table = efx->filter_state;
5091         struct efx_ef10_dev_addr *addr_list;
5092         enum efx_filter_flags filter_flags;
5093         struct efx_filter_spec spec;
5094         u8 baddr[ETH_ALEN];
5095         unsigned int i, j;
5096         int addr_count;
5097         u16 *ids;
5098         int rc;
5099
5100         if (multicast) {
5101                 addr_list = table->dev_mc_list;
5102                 addr_count = table->dev_mc_count;
5103                 ids = vlan->mc;
5104         } else {
5105                 addr_list = table->dev_uc_list;
5106                 addr_count = table->dev_uc_count;
5107                 ids = vlan->uc;
5108         }
5109
5110         filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
5111
5112         /* Insert/renew filters */
5113         for (i = 0; i < addr_count; i++) {
5114                 EFX_WARN_ON_PARANOID(ids[i] != EFX_EF10_FILTER_ID_INVALID);
5115                 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5116                 efx_filter_set_eth_local(&spec, vlan->vid, addr_list[i].addr);
5117                 rc = efx_ef10_filter_insert(efx, &spec, true);
5118                 if (rc < 0) {
5119                         if (rollback) {
5120                                 netif_info(efx, drv, efx->net_dev,
5121                                            "efx_ef10_filter_insert failed rc=%d\n",
5122                                            rc);
5123                                 /* Fall back to promiscuous */
5124                                 for (j = 0; j < i; j++) {
5125                                         efx_ef10_filter_remove_unsafe(
5126                                                 efx, EFX_FILTER_PRI_AUTO,
5127                                                 ids[j]);
5128                                         ids[j] = EFX_EF10_FILTER_ID_INVALID;
5129                                 }
5130                                 return rc;
5131                         } else {
5132                                 /* keep invalid ID, and carry on */
5133                         }
5134                 } else {
5135                         ids[i] = efx_ef10_filter_get_unsafe_id(rc);
5136                 }
5137         }
5138
5139         if (multicast && rollback) {
5140                 /* Also need an Ethernet broadcast filter */
5141                 EFX_WARN_ON_PARANOID(vlan->default_filters[EFX_EF10_BCAST] !=
5142                                      EFX_EF10_FILTER_ID_INVALID);
5143                 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5144                 eth_broadcast_addr(baddr);
5145                 efx_filter_set_eth_local(&spec, vlan->vid, baddr);
5146                 rc = efx_ef10_filter_insert(efx, &spec, true);
5147                 if (rc < 0) {
5148                         netif_warn(efx, drv, efx->net_dev,
5149                                    "Broadcast filter insert failed rc=%d\n", rc);
5150                         /* Fall back to promiscuous */
5151                         for (j = 0; j < i; j++) {
5152                                 efx_ef10_filter_remove_unsafe(
5153                                         efx, EFX_FILTER_PRI_AUTO,
5154                                         ids[j]);
5155                                 ids[j] = EFX_EF10_FILTER_ID_INVALID;
5156                         }
5157                         return rc;
5158                 } else {
5159                         vlan->default_filters[EFX_EF10_BCAST] =
5160                                 efx_ef10_filter_get_unsafe_id(rc);
5161                 }
5162         }
5163
5164         return 0;
5165 }
5166
5167 static int efx_ef10_filter_insert_def(struct efx_nic *efx,
5168                                       struct efx_ef10_filter_vlan *vlan,
5169                                       enum efx_encap_type encap_type,
5170                                       bool multicast, bool rollback)
5171 {
5172         struct efx_ef10_nic_data *nic_data = efx->nic_data;
5173         enum efx_filter_flags filter_flags;
5174         struct efx_filter_spec spec;
5175         u8 baddr[ETH_ALEN];
5176         int rc;
5177         u16 *id;
5178
5179         filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
5180
5181         efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5182
5183         if (multicast)
5184                 efx_filter_set_mc_def(&spec);
5185         else
5186                 efx_filter_set_uc_def(&spec);
5187
5188         if (encap_type) {
5189                 if (nic_data->datapath_caps &
5190                     (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
5191                         efx_filter_set_encap_type(&spec, encap_type);
5192                 else
5193                         /* don't insert encap filters on non-supporting
5194                          * platforms. ID will be left as INVALID.
5195                          */
5196                         return 0;
5197         }
5198
5199         if (vlan->vid != EFX_FILTER_VID_UNSPEC)
5200                 efx_filter_set_eth_local(&spec, vlan->vid, NULL);
5201
5202         rc = efx_ef10_filter_insert(efx, &spec, true);
5203         if (rc < 0) {
5204                 const char *um = multicast ? "Multicast" : "Unicast";
5205                 const char *encap_name = "";
5206                 const char *encap_ipv = "";
5207
5208                 if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5209                     EFX_ENCAP_TYPE_VXLAN)
5210                         encap_name = "VXLAN ";
5211                 else if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5212                          EFX_ENCAP_TYPE_NVGRE)
5213                         encap_name = "NVGRE ";
5214                 else if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5215                          EFX_ENCAP_TYPE_GENEVE)
5216                         encap_name = "GENEVE ";
5217                 if (encap_type & EFX_ENCAP_FLAG_IPV6)
5218                         encap_ipv = "IPv6 ";
5219                 else if (encap_type)
5220                         encap_ipv = "IPv4 ";
5221
5222                 /* unprivileged functions can't insert mismatch filters
5223                  * for encapsulated or unicast traffic, so downgrade
5224                  * those warnings to debug.
5225                  */
5226                 netif_cond_dbg(efx, drv, efx->net_dev,
5227                                rc == -EPERM && (encap_type || !multicast), warn,
5228                                "%s%s%s mismatch filter insert failed rc=%d\n",
5229                                encap_name, encap_ipv, um, rc);
5230         } else if (multicast) {
5231                 /* mapping from encap types to default filter IDs (multicast) */
5232                 static enum efx_ef10_default_filters map[] = {
5233                         [EFX_ENCAP_TYPE_NONE] = EFX_EF10_MCDEF,
5234                         [EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_MCDEF,
5235                         [EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_MCDEF,
5236                         [EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_MCDEF,
5237                         [EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] =
5238                                 EFX_EF10_VXLAN6_MCDEF,
5239                         [EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] =
5240                                 EFX_EF10_NVGRE6_MCDEF,
5241                         [EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] =
5242                                 EFX_EF10_GENEVE6_MCDEF,
5243                 };
5244
5245                 /* quick bounds check (BCAST result impossible) */
5246                 BUILD_BUG_ON(EFX_EF10_BCAST != 0);
5247                 if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) {
5248                         WARN_ON(1);
5249                         return -EINVAL;
5250                 }
5251                 /* then follow map */
5252                 id = &vlan->default_filters[map[encap_type]];
5253
5254                 EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID);
5255                 *id = efx_ef10_filter_get_unsafe_id(rc);
5256                 if (!nic_data->workaround_26807 && !encap_type) {
5257                         /* Also need an Ethernet broadcast filter */
5258                         efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
5259                                            filter_flags, 0);
5260                         eth_broadcast_addr(baddr);
5261                         efx_filter_set_eth_local(&spec, vlan->vid, baddr);
5262                         rc = efx_ef10_filter_insert(efx, &spec, true);
5263                         if (rc < 0) {
5264                                 netif_warn(efx, drv, efx->net_dev,
5265                                            "Broadcast filter insert failed rc=%d\n",
5266                                            rc);
5267                                 if (rollback) {
5268                                         /* Roll back the mc_def filter */
5269                                         efx_ef10_filter_remove_unsafe(
5270                                                         efx, EFX_FILTER_PRI_AUTO,
5271                                                         *id);
5272                                         *id = EFX_EF10_FILTER_ID_INVALID;
5273                                         return rc;
5274                                 }
5275                         } else {
5276                                 EFX_WARN_ON_PARANOID(
5277                                         vlan->default_filters[EFX_EF10_BCAST] !=
5278                                         EFX_EF10_FILTER_ID_INVALID);
5279                                 vlan->default_filters[EFX_EF10_BCAST] =
5280                                         efx_ef10_filter_get_unsafe_id(rc);
5281                         }
5282                 }
5283                 rc = 0;
5284         } else {
5285                 /* mapping from encap types to default filter IDs (unicast) */
5286                 static enum efx_ef10_default_filters map[] = {
5287                         [EFX_ENCAP_TYPE_NONE] = EFX_EF10_UCDEF,
5288                         [EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_UCDEF,
5289                         [EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_UCDEF,
5290                         [EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_UCDEF,
5291                         [EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] =
5292                                 EFX_EF10_VXLAN6_UCDEF,
5293                         [EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] =
5294                                 EFX_EF10_NVGRE6_UCDEF,
5295                         [EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] =
5296                                 EFX_EF10_GENEVE6_UCDEF,
5297                 };
5298
5299                 /* quick bounds check (BCAST result impossible) */
5300                 BUILD_BUG_ON(EFX_EF10_BCAST != 0);
5301                 if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) {
5302                         WARN_ON(1);
5303                         return -EINVAL;
5304                 }
5305                 /* then follow map */
5306                 id = &vlan->default_filters[map[encap_type]];
5307                 EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID);
5308                 *id = rc;
5309                 rc = 0;
5310         }
5311         return rc;
5312 }
5313
5314 /* Remove filters that weren't renewed.  Since nothing else changes the AUTO_OLD
5315  * flag or removes these filters, we don't need to hold the filter_lock while
5316  * scanning for these filters.
5317  */
5318 static void efx_ef10_filter_remove_old(struct efx_nic *efx)
5319 {
5320         struct efx_ef10_filter_table *table = efx->filter_state;
5321         int remove_failed = 0;
5322         int remove_noent = 0;
5323         int rc;
5324         int i;
5325
5326         for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
5327                 if (READ_ONCE(table->entry[i].spec) &
5328                     EFX_EF10_FILTER_FLAG_AUTO_OLD) {
5329                         rc = efx_ef10_filter_remove_internal(efx,
5330                                         1U << EFX_FILTER_PRI_AUTO, i, true);
5331                         if (rc == -ENOENT)
5332                                 remove_noent++;
5333                         else if (rc)
5334                                 remove_failed++;
5335                 }
5336         }
5337
5338         if (remove_failed)
5339                 netif_info(efx, drv, efx->net_dev,
5340                            "%s: failed to remove %d filters\n",
5341                            __func__, remove_failed);
5342         if (remove_noent)
5343                 netif_info(efx, drv, efx->net_dev,
5344                            "%s: failed to remove %d non-existent filters\n",
5345                            __func__, remove_noent);
5346 }
5347
5348 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
5349 {
5350         struct efx_ef10_nic_data *nic_data = efx->nic_data;
5351         u8 mac_old[ETH_ALEN];
5352         int rc, rc2;
5353
5354         /* Only reconfigure a PF-created vport */
5355         if (is_zero_ether_addr(nic_data->vport_mac))
5356                 return 0;
5357
5358         efx_device_detach_sync(efx);
5359         efx_net_stop(efx->net_dev);
5360         down_write(&efx->filter_sem);
5361         efx_ef10_filter_table_remove(efx);
5362         up_write(&efx->filter_sem);
5363
5364         rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
5365         if (rc)
5366                 goto restore_filters;
5367
5368         ether_addr_copy(mac_old, nic_data->vport_mac);
5369         rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
5370                                     nic_data->vport_mac);
5371         if (rc)
5372                 goto restore_vadaptor;
5373
5374         rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
5375                                     efx->net_dev->dev_addr);
5376         if (!rc) {
5377                 ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
5378         } else {
5379                 rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
5380                 if (rc2) {
5381                         /* Failed to add original MAC, so clear vport_mac */
5382                         eth_zero_addr(nic_data->vport_mac);
5383                         goto reset_nic;
5384                 }
5385         }
5386
5387 restore_vadaptor:
5388         rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
5389         if (rc2)
5390                 goto reset_nic;
5391 restore_filters:
5392         down_write(&efx->filter_sem);
5393         rc2 = efx_ef10_filter_table_probe(efx);
5394         up_write(&efx->filter_sem);
5395         if (rc2)
5396                 goto reset_nic;
5397
5398         rc2 = efx_net_open(efx->net_dev);
5399         if (rc2)
5400                 goto reset_nic;
5401
5402         efx_device_attach_if_not_resetting(efx);
5403
5404         return rc;
5405
5406 reset_nic:
5407         netif_err(efx, drv, efx->net_dev,
5408                   "Failed to restore when changing MAC address - scheduling reset\n");
5409         efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
5410
5411         return rc ? rc : rc2;
5412 }
5413
5414 /* Caller must hold efx->filter_sem for read if race against
5415  * efx_ef10_filter_table_remove() is possible
5416  */
5417 static void efx_ef10_filter_vlan_sync_rx_mode(struct efx_nic *efx,
5418                                               struct efx_ef10_filter_vlan *vlan)
5419 {
5420         struct efx_ef10_filter_table *table = efx->filter_state;
5421         struct efx_ef10_nic_data *nic_data = efx->nic_data;
5422
5423         /* Do not install unspecified VID if VLAN filtering is enabled.
5424          * Do not install all specified VIDs if VLAN filtering is disabled.
5425          */
5426         if ((vlan->vid == EFX_FILTER_VID_UNSPEC) == table->vlan_filter)
5427                 return;
5428
5429         /* Insert/renew unicast filters */
5430         if (table->uc_promisc) {
5431                 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NONE,
5432                                            false, false);
5433                 efx_ef10_filter_insert_addr_list(efx, vlan, false, false);
5434         } else {
5435                 /* If any of the filters failed to insert, fall back to
5436                  * promiscuous mode - add in the uc_def filter.  But keep
5437                  * our individual unicast filters.
5438                  */
5439                 if (efx_ef10_filter_insert_addr_list(efx, vlan, false, false))
5440                         efx_ef10_filter_insert_def(efx, vlan,
5441                                                    EFX_ENCAP_TYPE_NONE,
5442                                                    false, false);
5443         }
5444         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN,
5445                                    false, false);
5446         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN |
5447                                               EFX_ENCAP_FLAG_IPV6,
5448                                    false, false);
5449         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE,
5450                                    false, false);
5451         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE |
5452                                               EFX_ENCAP_FLAG_IPV6,
5453                                    false, false);
5454         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE,
5455                                    false, false);
5456         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE |
5457                                               EFX_ENCAP_FLAG_IPV6,
5458                                    false, false);
5459
5460         /* Insert/renew multicast filters */
5461         /* If changing promiscuous state with cascaded multicast filters, remove
5462          * old filters first, so that packets are dropped rather than duplicated
5463          */
5464         if (nic_data->workaround_26807 &&
5465             table->mc_promisc_last != table->mc_promisc)
5466                 efx_ef10_filter_remove_old(efx);
5467         if (table->mc_promisc) {
5468                 if (nic_data->workaround_26807) {
5469                         /* If we failed to insert promiscuous filters, rollback
5470                          * and fall back to individual multicast filters
5471                          */
5472                         if (efx_ef10_filter_insert_def(efx, vlan,
5473                                                        EFX_ENCAP_TYPE_NONE,
5474                                                        true, true)) {
5475                                 /* Changing promisc state, so remove old filters */
5476                                 efx_ef10_filter_remove_old(efx);
5477                                 efx_ef10_filter_insert_addr_list(efx, vlan,
5478                                                                  true, false);
5479                         }
5480                 } else {
5481                         /* If we failed to insert promiscuous filters, don't
5482                          * rollback.  Regardless, also insert the mc_list,
5483                          * unless it's incomplete due to overflow
5484                          */
5485                         efx_ef10_filter_insert_def(efx, vlan,
5486                                                    EFX_ENCAP_TYPE_NONE,
5487                                                    true, false);
5488                         if (!table->mc_overflow)
5489                                 efx_ef10_filter_insert_addr_list(efx, vlan,
5490                                                                  true, false);
5491                 }
5492         } else {
5493                 /* If any filters failed to insert, rollback and fall back to
5494                  * promiscuous mode - mc_def filter and maybe broadcast.  If
5495                  * that fails, roll back again and insert as many of our
5496                  * individual multicast filters as we can.
5497                  */
5498                 if (efx_ef10_filter_insert_addr_list(efx, vlan, true, true)) {
5499                         /* Changing promisc state, so remove old filters */
5500                         if (nic_data->workaround_26807)
5501                                 efx_ef10_filter_remove_old(efx);
5502                         if (efx_ef10_filter_insert_def(efx, vlan,
5503                                                        EFX_ENCAP_TYPE_NONE,
5504                                                        true, true))
5505                                 efx_ef10_filter_insert_addr_list(efx, vlan,
5506                                                                  true, false);
5507                 }
5508         }
5509         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN,
5510                                    true, false);
5511         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN |
5512                                               EFX_ENCAP_FLAG_IPV6,
5513                                    true, false);
5514         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE,
5515                                    true, false);
5516         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE |
5517                                               EFX_ENCAP_FLAG_IPV6,
5518                                    true, false);
5519         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE,
5520                                    true, false);
5521         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE |
5522                                               EFX_ENCAP_FLAG_IPV6,
5523                                    true, false);
5524 }
5525
5526 /* Caller must hold efx->filter_sem for read if race against
5527  * efx_ef10_filter_table_remove() is possible
5528  */
5529 static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
5530 {
5531         struct efx_ef10_filter_table *table = efx->filter_state;
5532         struct net_device *net_dev = efx->net_dev;
5533         struct efx_ef10_filter_vlan *vlan;
5534         bool vlan_filter;
5535
5536         if (!efx_dev_registered(efx))
5537                 return;
5538
5539         if (!table)
5540                 return;
5541
5542         efx_ef10_filter_mark_old(efx);
5543
5544         /* Copy/convert the address lists; add the primary station
5545          * address and broadcast address
5546          */
5547         netif_addr_lock_bh(net_dev);
5548         efx_ef10_filter_uc_addr_list(efx);
5549         efx_ef10_filter_mc_addr_list(efx);
5550         netif_addr_unlock_bh(net_dev);
5551
5552         /* If VLAN filtering changes, all old filters are finally removed.
5553          * Do it in advance to avoid conflicts for unicast untagged and
5554          * VLAN 0 tagged filters.
5555          */
5556         vlan_filter = !!(net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
5557         if (table->vlan_filter != vlan_filter) {
5558                 table->vlan_filter = vlan_filter;
5559                 efx_ef10_filter_remove_old(efx);
5560         }
5561
5562         list_for_each_entry(vlan, &table->vlan_list, list)
5563                 efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5564
5565         efx_ef10_filter_remove_old(efx);
5566         table->mc_promisc_last = table->mc_promisc;
5567 }
5568
5569 static struct efx_ef10_filter_vlan *efx_ef10_filter_find_vlan(struct efx_nic *efx, u16 vid)
5570 {
5571         struct efx_ef10_filter_table *table = efx->filter_state;
5572         struct efx_ef10_filter_vlan *vlan;
5573
5574         WARN_ON(!rwsem_is_locked(&efx->filter_sem));
5575
5576         list_for_each_entry(vlan, &table->vlan_list, list) {
5577                 if (vlan->vid == vid)
5578                         return vlan;
5579         }
5580
5581         return NULL;
5582 }
5583
5584 static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid)
5585 {
5586         struct efx_ef10_filter_table *table = efx->filter_state;
5587         struct efx_ef10_filter_vlan *vlan;
5588         unsigned int i;
5589
5590         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5591                 return -EINVAL;
5592
5593         vlan = efx_ef10_filter_find_vlan(efx, vid);
5594         if (WARN_ON(vlan)) {
5595                 netif_err(efx, drv, efx->net_dev,
5596                           "VLAN %u already added\n", vid);
5597                 return -EALREADY;
5598         }
5599
5600         vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
5601         if (!vlan)
5602                 return -ENOMEM;
5603
5604         vlan->vid = vid;
5605
5606         for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5607                 vlan->uc[i] = EFX_EF10_FILTER_ID_INVALID;
5608         for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5609                 vlan->mc[i] = EFX_EF10_FILTER_ID_INVALID;
5610         for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5611                 vlan->default_filters[i] = EFX_EF10_FILTER_ID_INVALID;
5612
5613         list_add_tail(&vlan->list, &table->vlan_list);
5614
5615         if (efx_dev_registered(efx))
5616                 efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5617
5618         return 0;
5619 }
5620
5621 static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
5622                                               struct efx_ef10_filter_vlan *vlan)
5623 {
5624         unsigned int i;
5625
5626         /* See comment in efx_ef10_filter_table_remove() */
5627         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5628                 return;
5629
5630         list_del(&vlan->list);
5631
5632         for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5633                 efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5634                                               vlan->uc[i]);
5635         for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5636                 efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5637                                               vlan->mc[i]);
5638         for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5639                 if (vlan->default_filters[i] != EFX_EF10_FILTER_ID_INVALID)
5640                         efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5641                                                       vlan->default_filters[i]);
5642
5643         kfree(vlan);
5644 }
5645
5646 static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid)
5647 {
5648         struct efx_ef10_filter_vlan *vlan;
5649
5650         /* See comment in efx_ef10_filter_table_remove() */
5651         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5652                 return;
5653
5654         vlan = efx_ef10_filter_find_vlan(efx, vid);
5655         if (!vlan) {
5656                 netif_err(efx, drv, efx->net_dev,
5657                           "VLAN %u not found in filter state\n", vid);
5658                 return;
5659         }
5660
5661         efx_ef10_filter_del_vlan_internal(efx, vlan);
5662 }
5663
5664 static int efx_ef10_set_mac_address(struct efx_nic *efx)
5665 {
5666         MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
5667         struct efx_ef10_nic_data *nic_data = efx->nic_data;
5668         bool was_enabled = efx->port_enabled;
5669         int rc;
5670
5671         efx_device_detach_sync(efx);
5672         efx_net_stop(efx->net_dev);
5673
5674         mutex_lock(&efx->mac_lock);
5675         down_write(&efx->filter_sem);
5676         efx_ef10_filter_table_remove(efx);
5677
5678         ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
5679                         efx->net_dev->dev_addr);
5680         MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
5681                        nic_data->vport_id);
5682         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
5683                                 sizeof(inbuf), NULL, 0, NULL);
5684
5685         efx_ef10_filter_table_probe(efx);
5686         up_write(&efx->filter_sem);
5687         mutex_unlock(&efx->mac_lock);
5688
5689         if (was_enabled)
5690                 efx_net_open(efx->net_dev);
5691         efx_device_attach_if_not_resetting(efx);
5692
5693 #ifdef CONFIG_SFC_SRIOV
5694         if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
5695                 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
5696
5697                 if (rc == -EPERM) {
5698                         struct efx_nic *efx_pf;
5699
5700                         /* Switch to PF and change MAC address on vport */
5701                         efx_pf = pci_get_drvdata(pci_dev_pf);
5702
5703                         rc = efx_ef10_sriov_set_vf_mac(efx_pf,
5704                                                        nic_data->vf_index,
5705                                                        efx->net_dev->dev_addr);
5706                 } else if (!rc) {
5707                         struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
5708                         struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
5709                         unsigned int i;
5710
5711                         /* MAC address successfully changed by VF (with MAC
5712                          * spoofing) so update the parent PF if possible.
5713                          */
5714                         for (i = 0; i < efx_pf->vf_count; ++i) {
5715                                 struct ef10_vf *vf = nic_data->vf + i;
5716
5717                                 if (vf->efx == efx) {
5718                                         ether_addr_copy(vf->mac,
5719                                                         efx->net_dev->dev_addr);
5720                                         return 0;
5721                                 }
5722                         }
5723                 }
5724         } else
5725 #endif
5726         if (rc == -EPERM) {
5727                 netif_err(efx, drv, efx->net_dev,
5728                           "Cannot change MAC address; use sfboot to enable"
5729                           " mac-spoofing on this interface\n");
5730         } else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
5731                 /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
5732                  * fall-back to the method of changing the MAC address on the
5733                  * vport.  This only applies to PFs because such versions of
5734                  * MCFW do not support VFs.
5735                  */
5736                 rc = efx_ef10_vport_set_mac_address(efx);
5737         } else if (rc) {
5738                 efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
5739                                        sizeof(inbuf), NULL, 0, rc);
5740         }
5741
5742         return rc;
5743 }
5744
5745 static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
5746 {
5747         efx_ef10_filter_sync_rx_mode(efx);
5748
5749         return efx_mcdi_set_mac(efx);
5750 }
5751
5752 static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
5753 {
5754         efx_ef10_filter_sync_rx_mode(efx);
5755
5756         return 0;
5757 }
5758
5759 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
5760 {
5761         MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
5762
5763         MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
5764         return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
5765                             NULL, 0, NULL);
5766 }
5767
5768 /* MC BISTs follow a different poll mechanism to phy BISTs.
5769  * The BIST is done in the poll handler on the MC, and the MCDI command
5770  * will block until the BIST is done.
5771  */
5772 static int efx_ef10_poll_bist(struct efx_nic *efx)
5773 {
5774         int rc;
5775         MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
5776         size_t outlen;
5777         u32 result;
5778
5779         rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
5780                            outbuf, sizeof(outbuf), &outlen);
5781         if (rc != 0)
5782                 return rc;
5783
5784         if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
5785                 return -EIO;
5786
5787         result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
5788         switch (result) {
5789         case MC_CMD_POLL_BIST_PASSED:
5790                 netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
5791                 return 0;
5792         case MC_CMD_POLL_BIST_TIMEOUT:
5793                 netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
5794                 return -EIO;
5795         case MC_CMD_POLL_BIST_FAILED:
5796                 netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
5797                 return -EIO;
5798         default:
5799                 netif_err(efx, hw, efx->net_dev,
5800                           "BIST returned unknown result %u", result);
5801                 return -EIO;
5802         }
5803 }
5804
5805 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
5806 {
5807         int rc;
5808
5809         netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
5810
5811         rc = efx_ef10_start_bist(efx, bist_type);
5812         if (rc != 0)
5813                 return rc;
5814
5815         return efx_ef10_poll_bist(efx);
5816 }
5817
5818 static int
5819 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
5820 {
5821         int rc, rc2;
5822
5823         efx_reset_down(efx, RESET_TYPE_WORLD);
5824
5825         rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
5826                           NULL, 0, NULL, 0, NULL);
5827         if (rc != 0)
5828                 goto out;
5829
5830         tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
5831         tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
5832
5833         rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
5834
5835 out:
5836         if (rc == -EPERM)
5837                 rc = 0;
5838         rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
5839         return rc ? rc : rc2;
5840 }
5841
5842 #ifdef CONFIG_SFC_MTD
5843
5844 struct efx_ef10_nvram_type_info {
5845         u16 type, type_mask;
5846         u8 port;
5847         const char *name;
5848 };
5849
5850 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
5851         { NVRAM_PARTITION_TYPE_MC_FIRMWARE,        0,    0, "sfc_mcfw" },
5852         { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
5853         { NVRAM_PARTITION_TYPE_EXPANSION_ROM,      0,    0, "sfc_exp_rom" },
5854         { NVRAM_PARTITION_TYPE_STATIC_CONFIG,      0,    0, "sfc_static_cfg" },
5855         { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,     0,    0, "sfc_dynamic_cfg" },
5856         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
5857         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
5858         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
5859         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
5860         { NVRAM_PARTITION_TYPE_LICENSE,            0,    0, "sfc_license" },
5861         { NVRAM_PARTITION_TYPE_PHY_MIN,            0xff, 0, "sfc_phy_fw" },
5862 };
5863
5864 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
5865                                         struct efx_mcdi_mtd_partition *part,
5866                                         unsigned int type)
5867 {
5868         MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
5869         MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
5870         const struct efx_ef10_nvram_type_info *info;
5871         size_t size, erase_size, outlen;
5872         bool protected;
5873         int rc;
5874
5875         for (info = efx_ef10_nvram_types; ; info++) {
5876                 if (info ==
5877                     efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
5878                         return -ENODEV;
5879                 if ((type & ~info->type_mask) == info->type)
5880                         break;
5881         }
5882         if (info->port != efx_port_num(efx))
5883                 return -ENODEV;
5884
5885         rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
5886         if (rc)
5887                 return rc;
5888         if (protected)
5889                 return -ENODEV; /* hide it */
5890
5891         part->nvram_type = type;
5892
5893         MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
5894         rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
5895                           outbuf, sizeof(outbuf), &outlen);
5896         if (rc)
5897                 return rc;
5898         if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
5899                 return -EIO;
5900         if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
5901             (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
5902                 part->fw_subtype = MCDI_DWORD(outbuf,
5903                                               NVRAM_METADATA_OUT_SUBTYPE);
5904
5905         part->common.dev_type_name = "EF10 NVRAM manager";
5906         part->common.type_name = info->name;
5907
5908         part->common.mtd.type = MTD_NORFLASH;
5909         part->common.mtd.flags = MTD_CAP_NORFLASH;
5910         part->common.mtd.size = size;
5911         part->common.mtd.erasesize = erase_size;
5912
5913         return 0;
5914 }
5915
5916 static int efx_ef10_mtd_probe(struct efx_nic *efx)
5917 {
5918         MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
5919         struct efx_mcdi_mtd_partition *parts;
5920         size_t outlen, n_parts_total, i, n_parts;
5921         unsigned int type;
5922         int rc;
5923
5924         ASSERT_RTNL();
5925
5926         BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
5927         rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
5928                           outbuf, sizeof(outbuf), &outlen);
5929         if (rc)
5930                 return rc;
5931         if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
5932                 return -EIO;
5933
5934         n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
5935         if (n_parts_total >
5936             MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
5937                 return -EIO;
5938
5939         parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
5940         if (!parts)
5941                 return -ENOMEM;
5942
5943         n_parts = 0;
5944         for (i = 0; i < n_parts_total; i++) {
5945                 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
5946                                         i);
5947                 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
5948                 if (rc == 0)
5949                         n_parts++;
5950                 else if (rc != -ENODEV)
5951                         goto fail;
5952         }
5953
5954         rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
5955 fail:
5956         if (rc)
5957                 kfree(parts);
5958         return rc;
5959 }
5960
5961 #endif /* CONFIG_SFC_MTD */
5962
5963 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
5964 {
5965         _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
5966 }
5967
5968 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
5969                                             u32 host_time) {}
5970
5971 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
5972                                            bool temp)
5973 {
5974         MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
5975         int rc;
5976
5977         if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
5978             channel->sync_events_state == SYNC_EVENTS_VALID ||
5979             (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
5980                 return 0;
5981         channel->sync_events_state = SYNC_EVENTS_REQUESTED;
5982
5983         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
5984         MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
5985         MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
5986                        channel->channel);
5987
5988         rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
5989                           inbuf, sizeof(inbuf), NULL, 0, NULL);
5990
5991         if (rc != 0)
5992                 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
5993                                                     SYNC_EVENTS_DISABLED;
5994
5995         return rc;
5996 }
5997
5998 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
5999                                             bool temp)
6000 {
6001         MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
6002         int rc;
6003
6004         if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
6005             (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
6006                 return 0;
6007         if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
6008                 channel->sync_events_state = SYNC_EVENTS_DISABLED;
6009                 return 0;
6010         }
6011         channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
6012                                             SYNC_EVENTS_DISABLED;
6013
6014         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
6015         MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
6016         MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
6017                        MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
6018         MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
6019                        channel->channel);
6020
6021         rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
6022                           inbuf, sizeof(inbuf), NULL, 0, NULL);
6023
6024         return rc;
6025 }
6026
6027 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
6028                                            bool temp)
6029 {
6030         int (*set)(struct efx_channel *channel, bool temp);
6031         struct efx_channel *channel;
6032
6033         set = en ?
6034               efx_ef10_rx_enable_timestamping :
6035               efx_ef10_rx_disable_timestamping;
6036
6037         efx_for_each_channel(channel, efx) {
6038                 int rc = set(channel, temp);
6039                 if (en && rc != 0) {
6040                         efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
6041                         return rc;
6042                 }
6043         }
6044
6045         return 0;
6046 }
6047
6048 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
6049                                          struct hwtstamp_config *init)
6050 {
6051         return -EOPNOTSUPP;
6052 }
6053
6054 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
6055                                       struct hwtstamp_config *init)
6056 {
6057         int rc;
6058
6059         switch (init->rx_filter) {
6060         case HWTSTAMP_FILTER_NONE:
6061                 efx_ef10_ptp_set_ts_sync_events(efx, false, false);
6062                 /* if TX timestamping is still requested then leave PTP on */
6063                 return efx_ptp_change_mode(efx,
6064                                            init->tx_type != HWTSTAMP_TX_OFF, 0);
6065         case HWTSTAMP_FILTER_ALL:
6066         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6067         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
6068         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
6069         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6070         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6071         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6072         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6073         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6074         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6075         case HWTSTAMP_FILTER_PTP_V2_EVENT:
6076         case HWTSTAMP_FILTER_PTP_V2_SYNC:
6077         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6078         case HWTSTAMP_FILTER_NTP_ALL:
6079                 init->rx_filter = HWTSTAMP_FILTER_ALL;
6080                 rc = efx_ptp_change_mode(efx, true, 0);
6081                 if (!rc)
6082                         rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
6083                 if (rc)
6084                         efx_ptp_change_mode(efx, false, 0);
6085                 return rc;
6086         default:
6087                 return -ERANGE;
6088         }
6089 }
6090
6091 static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
6092                                      struct netdev_phys_item_id *ppid)
6093 {
6094         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6095
6096         if (!is_valid_ether_addr(nic_data->port_id))
6097                 return -EOPNOTSUPP;
6098
6099         ppid->id_len = ETH_ALEN;
6100         memcpy(ppid->id, nic_data->port_id, ppid->id_len);
6101
6102         return 0;
6103 }
6104
6105 static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
6106 {
6107         if (proto != htons(ETH_P_8021Q))
6108                 return -EINVAL;
6109
6110         return efx_ef10_add_vlan(efx, vid);
6111 }
6112
6113 static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
6114 {
6115         if (proto != htons(ETH_P_8021Q))
6116                 return -EINVAL;
6117
6118         return efx_ef10_del_vlan(efx, vid);
6119 }
6120
6121 /* We rely on the MCDI wiping out our TX rings if it made any changes to the
6122  * ports table, ensuring that any TSO descriptors that were made on a now-
6123  * removed tunnel port will be blown away and won't break things when we try
6124  * to transmit them using the new ports table.
6125  */
6126 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
6127 {
6128         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6129         MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
6130         MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
6131         bool will_reset = false;
6132         size_t num_entries = 0;
6133         size_t inlen, outlen;
6134         size_t i;
6135         int rc;
6136         efx_dword_t flags_and_num_entries;
6137
6138         WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
6139
6140         nic_data->udp_tunnels_dirty = false;
6141
6142         if (!(nic_data->datapath_caps &
6143             (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
6144                 efx_device_attach_if_not_resetting(efx);
6145                 return 0;
6146         }
6147
6148         BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
6149                      MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
6150
6151         for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
6152                 if (nic_data->udp_tunnels[i].count &&
6153                     nic_data->udp_tunnels[i].port) {
6154                         efx_dword_t entry;
6155
6156                         EFX_POPULATE_DWORD_2(entry,
6157                                 TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
6158                                         ntohs(nic_data->udp_tunnels[i].port),
6159                                 TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
6160                                         nic_data->udp_tunnels[i].type);
6161                         *_MCDI_ARRAY_DWORD(inbuf,
6162                                 SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
6163                                 num_entries++) = entry;
6164                 }
6165         }
6166
6167         BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
6168                       MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
6169                      EFX_WORD_1_LBN);
6170         BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
6171                      EFX_WORD_1_WIDTH);
6172         EFX_POPULATE_DWORD_2(flags_and_num_entries,
6173                              MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
6174                                 !!unloading,
6175                              EFX_WORD_1, num_entries);
6176         *_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
6177                 flags_and_num_entries;
6178
6179         inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
6180
6181         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
6182                                 inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
6183         if (rc == -EIO) {
6184                 /* Most likely the MC rebooted due to another function also
6185                  * setting its tunnel port list. Mark the tunnel port list as
6186                  * dirty, so it will be pushed upon coming up from the reboot.
6187                  */
6188                 nic_data->udp_tunnels_dirty = true;
6189                 return 0;
6190         }
6191
6192         if (rc) {
6193                 /* expected not available on unprivileged functions */
6194                 if (rc != -EPERM)
6195                         netif_warn(efx, drv, efx->net_dev,
6196                                    "Unable to set UDP tunnel ports; rc=%d.\n", rc);
6197         } else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
6198                    (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
6199                 netif_info(efx, drv, efx->net_dev,
6200                            "Rebooting MC due to UDP tunnel port list change\n");
6201                 will_reset = true;
6202                 if (unloading)
6203                         /* Delay for the MC reset to complete. This will make
6204                          * unloading other functions a bit smoother. This is a
6205                          * race, but the other unload will work whichever way
6206                          * it goes, this just avoids an unnecessary error
6207                          * message.
6208                          */
6209                         msleep(100);
6210         }
6211         if (!will_reset && !unloading) {
6212                 /* The caller will have detached, relying on the MC reset to
6213                  * trigger a re-attach.  Since there won't be an MC reset, we
6214                  * have to do the attach ourselves.
6215                  */
6216                 efx_device_attach_if_not_resetting(efx);
6217         }
6218
6219         return rc;
6220 }
6221
6222 static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
6223 {
6224         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6225         int rc = 0;
6226
6227         mutex_lock(&nic_data->udp_tunnels_lock);
6228         if (nic_data->udp_tunnels_dirty) {
6229                 /* Make sure all TX are stopped while we modify the table, else
6230                  * we might race against an efx_features_check().
6231                  */
6232                 efx_device_detach_sync(efx);
6233                 rc = efx_ef10_set_udp_tnl_ports(efx, false);
6234         }
6235         mutex_unlock(&nic_data->udp_tunnels_lock);
6236         return rc;
6237 }
6238
6239 static struct efx_udp_tunnel *__efx_ef10_udp_tnl_lookup_port(struct efx_nic *efx,
6240                                                              __be16 port)
6241 {
6242         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6243         size_t i;
6244
6245         for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
6246                 if (!nic_data->udp_tunnels[i].count)
6247                         continue;
6248                 if (nic_data->udp_tunnels[i].port == port)
6249                         return &nic_data->udp_tunnels[i];
6250         }
6251         return NULL;
6252 }
6253
6254 static int efx_ef10_udp_tnl_add_port(struct efx_nic *efx,
6255                                      struct efx_udp_tunnel tnl)
6256 {
6257         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6258         struct efx_udp_tunnel *match;
6259         char typebuf[8];
6260         size_t i;
6261         int rc;
6262
6263         if (!(nic_data->datapath_caps &
6264               (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6265                 return 0;
6266
6267         efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
6268         netif_dbg(efx, drv, efx->net_dev, "Adding UDP tunnel (%s) port %d\n",
6269                   typebuf, ntohs(tnl.port));
6270
6271         mutex_lock(&nic_data->udp_tunnels_lock);
6272         /* Make sure all TX are stopped while we add to the table, else we
6273          * might race against an efx_features_check().
6274          */
6275         efx_device_detach_sync(efx);
6276
6277         match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
6278         if (match != NULL) {
6279                 if (match->type == tnl.type) {
6280                         netif_dbg(efx, drv, efx->net_dev,
6281                                   "Referencing existing tunnel entry\n");
6282                         match->count++;
6283                         /* No need to cause an MCDI update */
6284                         rc = 0;
6285                         goto unlock_out;
6286                 }
6287                 efx_get_udp_tunnel_type_name(match->type,
6288                                              typebuf, sizeof(typebuf));
6289                 netif_dbg(efx, drv, efx->net_dev,
6290                           "UDP port %d is already in use by %s\n",
6291                           ntohs(tnl.port), typebuf);
6292                 rc = -EEXIST;
6293                 goto unlock_out;
6294         }
6295
6296         for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
6297                 if (!nic_data->udp_tunnels[i].count) {
6298                         nic_data->udp_tunnels[i] = tnl;
6299                         nic_data->udp_tunnels[i].count = 1;
6300                         rc = efx_ef10_set_udp_tnl_ports(efx, false);
6301                         goto unlock_out;
6302                 }
6303
6304         netif_dbg(efx, drv, efx->net_dev,
6305                   "Unable to add UDP tunnel (%s) port %d; insufficient resources.\n",
6306                   typebuf, ntohs(tnl.port));
6307
6308         rc = -ENOMEM;
6309
6310 unlock_out:
6311         mutex_unlock(&nic_data->udp_tunnels_lock);
6312         return rc;
6313 }
6314
6315 /* Called under the TX lock with the TX queue running, hence no-one can be
6316  * in the middle of updating the UDP tunnels table.  However, they could
6317  * have tried and failed the MCDI, in which case they'll have set the dirty
6318  * flag before dropping their locks.
6319  */
6320 static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
6321 {
6322         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6323
6324         if (!(nic_data->datapath_caps &
6325               (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6326                 return false;
6327
6328         if (nic_data->udp_tunnels_dirty)
6329                 /* SW table may not match HW state, so just assume we can't
6330                  * use any UDP tunnel offloads.
6331                  */
6332                 return false;
6333
6334         return __efx_ef10_udp_tnl_lookup_port(efx, port) != NULL;
6335 }
6336
6337 static int efx_ef10_udp_tnl_del_port(struct efx_nic *efx,
6338                                      struct efx_udp_tunnel tnl)
6339 {
6340         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6341         struct efx_udp_tunnel *match;
6342         char typebuf[8];
6343         int rc;
6344
6345         if (!(nic_data->datapath_caps &
6346               (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6347                 return 0;
6348
6349         efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
6350         netif_dbg(efx, drv, efx->net_dev, "Removing UDP tunnel (%s) port %d\n",
6351                   typebuf, ntohs(tnl.port));
6352
6353         mutex_lock(&nic_data->udp_tunnels_lock);
6354         /* Make sure all TX are stopped while we remove from the table, else we
6355          * might race against an efx_features_check().
6356          */
6357         efx_device_detach_sync(efx);
6358
6359         match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
6360         if (match != NULL) {
6361                 if (match->type == tnl.type) {
6362                         if (--match->count) {
6363                                 /* Port is still in use, so nothing to do */
6364                                 netif_dbg(efx, drv, efx->net_dev,
6365                                           "UDP tunnel port %d remains active\n",
6366                                           ntohs(tnl.port));
6367                                 rc = 0;
6368                                 goto out_unlock;
6369                         }
6370                         rc = efx_ef10_set_udp_tnl_ports(efx, false);
6371                         goto out_unlock;
6372                 }
6373                 efx_get_udp_tunnel_type_name(match->type,
6374                                              typebuf, sizeof(typebuf));
6375                 netif_warn(efx, drv, efx->net_dev,
6376                            "UDP port %d is actually in use by %s, not removing\n",
6377                            ntohs(tnl.port), typebuf);
6378         }
6379         rc = -ENOENT;
6380
6381 out_unlock:
6382         mutex_unlock(&nic_data->udp_tunnels_lock);
6383         return rc;
6384 }
6385
6386 #define EF10_OFFLOAD_FEATURES           \
6387         (NETIF_F_IP_CSUM |              \
6388          NETIF_F_HW_VLAN_CTAG_FILTER |  \
6389          NETIF_F_IPV6_CSUM |            \
6390          NETIF_F_RXHASH |               \
6391          NETIF_F_NTUPLE)
6392
6393 const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
6394         .is_vf = true,
6395         .mem_bar = EFX_MEM_VF_BAR,
6396         .mem_map_size = efx_ef10_mem_map_size,
6397         .probe = efx_ef10_probe_vf,
6398         .remove = efx_ef10_remove,
6399         .dimension_resources = efx_ef10_dimension_resources,
6400         .init = efx_ef10_init_nic,
6401         .fini = efx_port_dummy_op_void,
6402         .map_reset_reason = efx_ef10_map_reset_reason,
6403         .map_reset_flags = efx_ef10_map_reset_flags,
6404         .reset = efx_ef10_reset,
6405         .probe_port = efx_mcdi_port_probe,
6406         .remove_port = efx_mcdi_port_remove,
6407         .fini_dmaq = efx_ef10_fini_dmaq,
6408         .prepare_flr = efx_ef10_prepare_flr,
6409         .finish_flr = efx_port_dummy_op_void,
6410         .describe_stats = efx_ef10_describe_stats,
6411         .update_stats = efx_ef10_update_stats_vf,
6412         .start_stats = efx_port_dummy_op_void,
6413         .pull_stats = efx_port_dummy_op_void,
6414         .stop_stats = efx_port_dummy_op_void,
6415         .set_id_led = efx_mcdi_set_id_led,
6416         .push_irq_moderation = efx_ef10_push_irq_moderation,
6417         .reconfigure_mac = efx_ef10_mac_reconfigure_vf,
6418         .check_mac_fault = efx_mcdi_mac_check_fault,
6419         .reconfigure_port = efx_mcdi_port_reconfigure,
6420         .get_wol = efx_ef10_get_wol_vf,
6421         .set_wol = efx_ef10_set_wol_vf,
6422         .resume_wol = efx_port_dummy_op_void,
6423         .mcdi_request = efx_ef10_mcdi_request,
6424         .mcdi_poll_response = efx_ef10_mcdi_poll_response,
6425         .mcdi_read_response = efx_ef10_mcdi_read_response,
6426         .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
6427         .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
6428         .irq_enable_master = efx_port_dummy_op_void,
6429         .irq_test_generate = efx_ef10_irq_test_generate,
6430         .irq_disable_non_ev = efx_port_dummy_op_void,
6431         .irq_handle_msi = efx_ef10_msi_interrupt,
6432         .irq_handle_legacy = efx_ef10_legacy_interrupt,
6433         .tx_probe = efx_ef10_tx_probe,
6434         .tx_init = efx_ef10_tx_init,
6435         .tx_remove = efx_ef10_tx_remove,
6436         .tx_write = efx_ef10_tx_write,
6437         .tx_limit_len = efx_ef10_tx_limit_len,
6438         .rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
6439         .rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
6440         .rx_probe = efx_ef10_rx_probe,
6441         .rx_init = efx_ef10_rx_init,
6442         .rx_remove = efx_ef10_rx_remove,
6443         .rx_write = efx_ef10_rx_write,
6444         .rx_defer_refill = efx_ef10_rx_defer_refill,
6445         .ev_probe = efx_ef10_ev_probe,
6446         .ev_init = efx_ef10_ev_init,
6447         .ev_fini = efx_ef10_ev_fini,
6448         .ev_remove = efx_ef10_ev_remove,
6449         .ev_process = efx_ef10_ev_process,
6450         .ev_read_ack = efx_ef10_ev_read_ack,
6451         .ev_test_generate = efx_ef10_ev_test_generate,
6452         .filter_table_probe = efx_ef10_filter_table_probe,
6453         .filter_table_restore = efx_ef10_filter_table_restore,
6454         .filter_table_remove = efx_ef10_filter_table_remove,
6455         .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
6456         .filter_insert = efx_ef10_filter_insert,
6457         .filter_remove_safe = efx_ef10_filter_remove_safe,
6458         .filter_get_safe = efx_ef10_filter_get_safe,
6459         .filter_clear_rx = efx_ef10_filter_clear_rx,
6460         .filter_count_rx_used = efx_ef10_filter_count_rx_used,
6461         .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
6462         .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
6463 #ifdef CONFIG_RFS_ACCEL
6464         .filter_rfs_insert = efx_ef10_filter_rfs_insert,
6465         .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
6466 #endif
6467 #ifdef CONFIG_SFC_MTD
6468         .mtd_probe = efx_port_dummy_op_int,
6469 #endif
6470         .ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
6471         .ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
6472         .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
6473         .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
6474 #ifdef CONFIG_SFC_SRIOV
6475         .vswitching_probe = efx_ef10_vswitching_probe_vf,
6476         .vswitching_restore = efx_ef10_vswitching_restore_vf,
6477         .vswitching_remove = efx_ef10_vswitching_remove_vf,
6478 #endif
6479         .get_mac_address = efx_ef10_get_mac_address_vf,
6480         .set_mac_address = efx_ef10_set_mac_address,
6481
6482         .get_phys_port_id = efx_ef10_get_phys_port_id,
6483         .revision = EFX_REV_HUNT_A0,
6484         .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
6485         .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
6486         .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
6487         .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
6488         .can_rx_scatter = true,
6489         .always_rx_scatter = true,
6490         .min_interrupt_mode = EFX_INT_MODE_MSIX,
6491         .max_interrupt_mode = EFX_INT_MODE_MSIX,
6492         .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
6493         .offload_features = EF10_OFFLOAD_FEATURES,
6494         .mcdi_max_ver = 2,
6495         .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
6496         .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
6497                             1 << HWTSTAMP_FILTER_ALL,
6498         .rx_hash_key_size = 40,
6499 };
6500
6501 const struct efx_nic_type efx_hunt_a0_nic_type = {
6502         .is_vf = false,
6503         .mem_bar = EFX_MEM_BAR,
6504         .mem_map_size = efx_ef10_mem_map_size,
6505         .probe = efx_ef10_probe_pf,
6506         .remove = efx_ef10_remove,
6507         .dimension_resources = efx_ef10_dimension_resources,
6508         .init = efx_ef10_init_nic,
6509         .fini = efx_port_dummy_op_void,
6510         .map_reset_reason = efx_ef10_map_reset_reason,
6511         .map_reset_flags = efx_ef10_map_reset_flags,
6512         .reset = efx_ef10_reset,
6513         .probe_port = efx_mcdi_port_probe,
6514         .remove_port = efx_mcdi_port_remove,
6515         .fini_dmaq = efx_ef10_fini_dmaq,
6516         .prepare_flr = efx_ef10_prepare_flr,
6517         .finish_flr = efx_port_dummy_op_void,
6518         .describe_stats = efx_ef10_describe_stats,
6519         .update_stats = efx_ef10_update_stats_pf,
6520         .start_stats = efx_mcdi_mac_start_stats,
6521         .pull_stats = efx_mcdi_mac_pull_stats,
6522         .stop_stats = efx_mcdi_mac_stop_stats,
6523         .set_id_led = efx_mcdi_set_id_led,
6524         .push_irq_moderation = efx_ef10_push_irq_moderation,
6525         .reconfigure_mac = efx_ef10_mac_reconfigure,
6526         .check_mac_fault = efx_mcdi_mac_check_fault,
6527         .reconfigure_port = efx_mcdi_port_reconfigure,
6528         .get_wol = efx_ef10_get_wol,
6529         .set_wol = efx_ef10_set_wol,
6530         .resume_wol = efx_port_dummy_op_void,
6531         .test_chip = efx_ef10_test_chip,
6532         .test_nvram = efx_mcdi_nvram_test_all,
6533         .mcdi_request = efx_ef10_mcdi_request,
6534         .mcdi_poll_response = efx_ef10_mcdi_poll_response,
6535         .mcdi_read_response = efx_ef10_mcdi_read_response,
6536         .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
6537         .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
6538         .irq_enable_master = efx_port_dummy_op_void,
6539         .irq_test_generate = efx_ef10_irq_test_generate,
6540         .irq_disable_non_ev = efx_port_dummy_op_void,
6541         .irq_handle_msi = efx_ef10_msi_interrupt,
6542         .irq_handle_legacy = efx_ef10_legacy_interrupt,
6543         .tx_probe = efx_ef10_tx_probe,
6544         .tx_init = efx_ef10_tx_init,
6545         .tx_remove = efx_ef10_tx_remove,
6546         .tx_write = efx_ef10_tx_write,
6547         .tx_limit_len = efx_ef10_tx_limit_len,
6548         .rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
6549         .rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
6550         .rx_probe = efx_ef10_rx_probe,
6551         .rx_init = efx_ef10_rx_init,
6552         .rx_remove = efx_ef10_rx_remove,
6553         .rx_write = efx_ef10_rx_write,
6554         .rx_defer_refill = efx_ef10_rx_defer_refill,
6555         .ev_probe = efx_ef10_ev_probe,
6556         .ev_init = efx_ef10_ev_init,
6557         .ev_fini = efx_ef10_ev_fini,
6558         .ev_remove = efx_ef10_ev_remove,
6559         .ev_process = efx_ef10_ev_process,
6560         .ev_read_ack = efx_ef10_ev_read_ack,
6561         .ev_test_generate = efx_ef10_ev_test_generate,
6562         .filter_table_probe = efx_ef10_filter_table_probe,
6563         .filter_table_restore = efx_ef10_filter_table_restore,
6564         .filter_table_remove = efx_ef10_filter_table_remove,
6565         .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
6566         .filter_insert = efx_ef10_filter_insert,
6567         .filter_remove_safe = efx_ef10_filter_remove_safe,
6568         .filter_get_safe = efx_ef10_filter_get_safe,
6569         .filter_clear_rx = efx_ef10_filter_clear_rx,
6570         .filter_count_rx_used = efx_ef10_filter_count_rx_used,
6571         .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
6572         .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
6573 #ifdef CONFIG_RFS_ACCEL
6574         .filter_rfs_insert = efx_ef10_filter_rfs_insert,
6575         .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
6576 #endif
6577 #ifdef CONFIG_SFC_MTD
6578         .mtd_probe = efx_ef10_mtd_probe,
6579         .mtd_rename = efx_mcdi_mtd_rename,
6580         .mtd_read = efx_mcdi_mtd_read,
6581         .mtd_erase = efx_mcdi_mtd_erase,
6582         .mtd_write = efx_mcdi_mtd_write,
6583         .mtd_sync = efx_mcdi_mtd_sync,
6584 #endif
6585         .ptp_write_host_time = efx_ef10_ptp_write_host_time,
6586         .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
6587         .ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
6588         .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
6589         .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
6590         .udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
6591         .udp_tnl_add_port = efx_ef10_udp_tnl_add_port,
6592         .udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
6593         .udp_tnl_del_port = efx_ef10_udp_tnl_del_port,
6594 #ifdef CONFIG_SFC_SRIOV
6595         .sriov_configure = efx_ef10_sriov_configure,
6596         .sriov_init = efx_ef10_sriov_init,
6597         .sriov_fini = efx_ef10_sriov_fini,
6598         .sriov_wanted = efx_ef10_sriov_wanted,
6599         .sriov_reset = efx_ef10_sriov_reset,
6600         .sriov_flr = efx_ef10_sriov_flr,
6601         .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
6602         .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
6603         .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
6604         .sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
6605         .sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
6606         .vswitching_probe = efx_ef10_vswitching_probe_pf,
6607         .vswitching_restore = efx_ef10_vswitching_restore_pf,
6608         .vswitching_remove = efx_ef10_vswitching_remove_pf,
6609 #endif
6610         .get_mac_address = efx_ef10_get_mac_address_pf,
6611         .set_mac_address = efx_ef10_set_mac_address,
6612         .tso_versions = efx_ef10_tso_versions,
6613
6614         .get_phys_port_id = efx_ef10_get_phys_port_id,
6615         .revision = EFX_REV_HUNT_A0,
6616         .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
6617         .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
6618         .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
6619         .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
6620         .can_rx_scatter = true,
6621         .always_rx_scatter = true,
6622         .option_descriptors = true,
6623         .min_interrupt_mode = EFX_INT_MODE_LEGACY,
6624         .max_interrupt_mode = EFX_INT_MODE_MSIX,
6625         .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
6626         .offload_features = EF10_OFFLOAD_FEATURES,
6627         .mcdi_max_ver = 2,
6628         .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
6629         .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
6630                             1 << HWTSTAMP_FILTER_ALL,
6631         .rx_hash_key_size = 40,
6632 };