Merge tag 'for-net-next-2021-08-19' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qede NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2020 Marvell International Ltd.
5  */
6
7 #include <linux/crash_dump.h>
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/device.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/skbuff.h>
14 #include <linux/errno.h>
15 #include <linux/list.h>
16 #include <linux/string.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <asm/byteorder.h>
20 #include <asm/param.h>
21 #include <linux/io.h>
22 #include <linux/netdev_features.h>
23 #include <linux/udp.h>
24 #include <linux/tcp.h>
25 #include <net/udp_tunnel.h>
26 #include <linux/ip.h>
27 #include <net/ipv6.h>
28 #include <net/tcp.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_vlan.h>
31 #include <linux/pkt_sched.h>
32 #include <linux/ethtool.h>
33 #include <linux/in.h>
34 #include <linux/random.h>
35 #include <net/ip6_checksum.h>
36 #include <linux/bitops.h>
37 #include <linux/vmalloc.h>
38 #include <linux/aer.h>
39 #include "qede.h"
40 #include "qede_ptp.h"
41
42 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
43 MODULE_LICENSE("GPL");
44
45 static uint debug;
46 module_param(debug, uint, 0);
47 MODULE_PARM_DESC(debug, " Default debug msglevel");
48
49 static const struct qed_eth_ops *qed_ops;
50
51 #define CHIP_NUM_57980S_40              0x1634
52 #define CHIP_NUM_57980S_10              0x1666
53 #define CHIP_NUM_57980S_MF              0x1636
54 #define CHIP_NUM_57980S_100             0x1644
55 #define CHIP_NUM_57980S_50              0x1654
56 #define CHIP_NUM_57980S_25              0x1656
57 #define CHIP_NUM_57980S_IOV             0x1664
58 #define CHIP_NUM_AH                     0x8070
59 #define CHIP_NUM_AH_IOV                 0x8090
60
61 #ifndef PCI_DEVICE_ID_NX2_57980E
62 #define PCI_DEVICE_ID_57980S_40         CHIP_NUM_57980S_40
63 #define PCI_DEVICE_ID_57980S_10         CHIP_NUM_57980S_10
64 #define PCI_DEVICE_ID_57980S_MF         CHIP_NUM_57980S_MF
65 #define PCI_DEVICE_ID_57980S_100        CHIP_NUM_57980S_100
66 #define PCI_DEVICE_ID_57980S_50         CHIP_NUM_57980S_50
67 #define PCI_DEVICE_ID_57980S_25         CHIP_NUM_57980S_25
68 #define PCI_DEVICE_ID_57980S_IOV        CHIP_NUM_57980S_IOV
69 #define PCI_DEVICE_ID_AH                CHIP_NUM_AH
70 #define PCI_DEVICE_ID_AH_IOV            CHIP_NUM_AH_IOV
71
72 #endif
73
74 enum qede_pci_private {
75         QEDE_PRIVATE_PF,
76         QEDE_PRIVATE_VF
77 };
78
79 static const struct pci_device_id qede_pci_tbl[] = {
80         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
81         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
82         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
83         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
84         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
85         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
86 #ifdef CONFIG_QED_SRIOV
87         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
88 #endif
89         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
90 #ifdef CONFIG_QED_SRIOV
91         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
92 #endif
93         { 0 }
94 };
95
96 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
97
98 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
99 static pci_ers_result_t
100 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
101
102 #define TX_TIMEOUT              (5 * HZ)
103
104 /* Utilize last protocol index for XDP */
105 #define XDP_PI  11
106
107 static void qede_remove(struct pci_dev *pdev);
108 static void qede_shutdown(struct pci_dev *pdev);
109 static void qede_link_update(void *dev, struct qed_link_output *link);
110 static void qede_schedule_recovery_handler(void *dev);
111 static void qede_recovery_handler(struct qede_dev *edev);
112 static void qede_schedule_hw_err_handler(void *dev,
113                                          enum qed_hw_err_type err_type);
114 static void qede_get_eth_tlv_data(void *edev, void *data);
115 static void qede_get_generic_tlv_data(void *edev,
116                                       struct qed_generic_tlvs *data);
117 static void qede_generic_hw_err_handler(struct qede_dev *edev);
118 #ifdef CONFIG_QED_SRIOV
119 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
120                             __be16 vlan_proto)
121 {
122         struct qede_dev *edev = netdev_priv(ndev);
123
124         if (vlan > 4095) {
125                 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
126                 return -EINVAL;
127         }
128
129         if (vlan_proto != htons(ETH_P_8021Q))
130                 return -EPROTONOSUPPORT;
131
132         DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
133                    vlan, vf);
134
135         return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
136 }
137
138 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
139 {
140         struct qede_dev *edev = netdev_priv(ndev);
141
142         DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx);
143
144         if (!is_valid_ether_addr(mac)) {
145                 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
146                 return -EINVAL;
147         }
148
149         return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
150 }
151
152 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
153 {
154         struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
155         struct qed_dev_info *qed_info = &edev->dev_info.common;
156         struct qed_update_vport_params *vport_params;
157         int rc;
158
159         vport_params = vzalloc(sizeof(*vport_params));
160         if (!vport_params)
161                 return -ENOMEM;
162         DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
163
164         rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
165
166         /* Enable/Disable Tx switching for PF */
167         if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
168             !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
169                 vport_params->vport_id = 0;
170                 vport_params->update_tx_switching_flg = 1;
171                 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
172                 edev->ops->vport_update(edev->cdev, vport_params);
173         }
174
175         vfree(vport_params);
176         return rc;
177 }
178 #endif
179
180 static const struct pci_error_handlers qede_err_handler = {
181         .error_detected = qede_io_error_detected,
182 };
183
184 static struct pci_driver qede_pci_driver = {
185         .name = "qede",
186         .id_table = qede_pci_tbl,
187         .probe = qede_probe,
188         .remove = qede_remove,
189         .shutdown = qede_shutdown,
190 #ifdef CONFIG_QED_SRIOV
191         .sriov_configure = qede_sriov_configure,
192 #endif
193         .err_handler = &qede_err_handler,
194 };
195
196 static struct qed_eth_cb_ops qede_ll_ops = {
197         {
198 #ifdef CONFIG_RFS_ACCEL
199                 .arfs_filter_op = qede_arfs_filter_op,
200 #endif
201                 .link_update = qede_link_update,
202                 .schedule_recovery_handler = qede_schedule_recovery_handler,
203                 .schedule_hw_err_handler = qede_schedule_hw_err_handler,
204                 .get_generic_tlv_data = qede_get_generic_tlv_data,
205                 .get_protocol_tlv_data = qede_get_eth_tlv_data,
206         },
207         .force_mac = qede_force_mac,
208         .ports_update = qede_udp_ports_update,
209 };
210
211 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
212                              void *ptr)
213 {
214         struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
215         struct ethtool_drvinfo drvinfo;
216         struct qede_dev *edev;
217
218         if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
219                 goto done;
220
221         /* Check whether this is a qede device */
222         if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
223                 goto done;
224
225         memset(&drvinfo, 0, sizeof(drvinfo));
226         ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
227         if (strcmp(drvinfo.driver, "qede"))
228                 goto done;
229         edev = netdev_priv(ndev);
230
231         switch (event) {
232         case NETDEV_CHANGENAME:
233                 /* Notify qed of the name change */
234                 if (!edev->ops || !edev->ops->common)
235                         goto done;
236                 edev->ops->common->set_name(edev->cdev, edev->ndev->name);
237                 break;
238         case NETDEV_CHANGEADDR:
239                 edev = netdev_priv(ndev);
240                 qede_rdma_event_changeaddr(edev);
241                 break;
242         }
243
244 done:
245         return NOTIFY_DONE;
246 }
247
248 static struct notifier_block qede_netdev_notifier = {
249         .notifier_call = qede_netdev_event,
250 };
251
252 static
253 int __init qede_init(void)
254 {
255         int ret;
256
257         pr_info("qede init: QLogic FastLinQ 4xxxx Ethernet Driver qede\n");
258
259         qede_forced_speed_maps_init();
260
261         qed_ops = qed_get_eth_ops();
262         if (!qed_ops) {
263                 pr_notice("Failed to get qed ethtool operations\n");
264                 return -EINVAL;
265         }
266
267         /* Must register notifier before pci ops, since we might miss
268          * interface rename after pci probe and netdev registration.
269          */
270         ret = register_netdevice_notifier(&qede_netdev_notifier);
271         if (ret) {
272                 pr_notice("Failed to register netdevice_notifier\n");
273                 qed_put_eth_ops();
274                 return -EINVAL;
275         }
276
277         ret = pci_register_driver(&qede_pci_driver);
278         if (ret) {
279                 pr_notice("Failed to register driver\n");
280                 unregister_netdevice_notifier(&qede_netdev_notifier);
281                 qed_put_eth_ops();
282                 return -EINVAL;
283         }
284
285         return 0;
286 }
287
288 static void __exit qede_cleanup(void)
289 {
290         if (debug & QED_LOG_INFO_MASK)
291                 pr_info("qede_cleanup called\n");
292
293         unregister_netdevice_notifier(&qede_netdev_notifier);
294         pci_unregister_driver(&qede_pci_driver);
295         qed_put_eth_ops();
296 }
297
298 module_init(qede_init);
299 module_exit(qede_cleanup);
300
301 static int qede_open(struct net_device *ndev);
302 static int qede_close(struct net_device *ndev);
303
304 void qede_fill_by_demand_stats(struct qede_dev *edev)
305 {
306         struct qede_stats_common *p_common = &edev->stats.common;
307         struct qed_eth_stats stats;
308
309         edev->ops->get_vport_stats(edev->cdev, &stats);
310
311         p_common->no_buff_discards = stats.common.no_buff_discards;
312         p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
313         p_common->ttl0_discard = stats.common.ttl0_discard;
314         p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
315         p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
316         p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
317         p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
318         p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
319         p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
320         p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
321         p_common->mac_filter_discards = stats.common.mac_filter_discards;
322         p_common->gft_filter_drop = stats.common.gft_filter_drop;
323
324         p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
325         p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
326         p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
327         p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
328         p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
329         p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
330         p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
331         p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
332         p_common->coalesced_events = stats.common.tpa_coalesced_events;
333         p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
334         p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
335         p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
336
337         p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
338         p_common->rx_65_to_127_byte_packets =
339             stats.common.rx_65_to_127_byte_packets;
340         p_common->rx_128_to_255_byte_packets =
341             stats.common.rx_128_to_255_byte_packets;
342         p_common->rx_256_to_511_byte_packets =
343             stats.common.rx_256_to_511_byte_packets;
344         p_common->rx_512_to_1023_byte_packets =
345             stats.common.rx_512_to_1023_byte_packets;
346         p_common->rx_1024_to_1518_byte_packets =
347             stats.common.rx_1024_to_1518_byte_packets;
348         p_common->rx_crc_errors = stats.common.rx_crc_errors;
349         p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
350         p_common->rx_pause_frames = stats.common.rx_pause_frames;
351         p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
352         p_common->rx_align_errors = stats.common.rx_align_errors;
353         p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
354         p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
355         p_common->rx_jabbers = stats.common.rx_jabbers;
356         p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
357         p_common->rx_fragments = stats.common.rx_fragments;
358         p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
359         p_common->tx_65_to_127_byte_packets =
360             stats.common.tx_65_to_127_byte_packets;
361         p_common->tx_128_to_255_byte_packets =
362             stats.common.tx_128_to_255_byte_packets;
363         p_common->tx_256_to_511_byte_packets =
364             stats.common.tx_256_to_511_byte_packets;
365         p_common->tx_512_to_1023_byte_packets =
366             stats.common.tx_512_to_1023_byte_packets;
367         p_common->tx_1024_to_1518_byte_packets =
368             stats.common.tx_1024_to_1518_byte_packets;
369         p_common->tx_pause_frames = stats.common.tx_pause_frames;
370         p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
371         p_common->brb_truncates = stats.common.brb_truncates;
372         p_common->brb_discards = stats.common.brb_discards;
373         p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
374         p_common->link_change_count = stats.common.link_change_count;
375         p_common->ptp_skip_txts = edev->ptp_skip_txts;
376
377         if (QEDE_IS_BB(edev)) {
378                 struct qede_stats_bb *p_bb = &edev->stats.bb;
379
380                 p_bb->rx_1519_to_1522_byte_packets =
381                     stats.bb.rx_1519_to_1522_byte_packets;
382                 p_bb->rx_1519_to_2047_byte_packets =
383                     stats.bb.rx_1519_to_2047_byte_packets;
384                 p_bb->rx_2048_to_4095_byte_packets =
385                     stats.bb.rx_2048_to_4095_byte_packets;
386                 p_bb->rx_4096_to_9216_byte_packets =
387                     stats.bb.rx_4096_to_9216_byte_packets;
388                 p_bb->rx_9217_to_16383_byte_packets =
389                     stats.bb.rx_9217_to_16383_byte_packets;
390                 p_bb->tx_1519_to_2047_byte_packets =
391                     stats.bb.tx_1519_to_2047_byte_packets;
392                 p_bb->tx_2048_to_4095_byte_packets =
393                     stats.bb.tx_2048_to_4095_byte_packets;
394                 p_bb->tx_4096_to_9216_byte_packets =
395                     stats.bb.tx_4096_to_9216_byte_packets;
396                 p_bb->tx_9217_to_16383_byte_packets =
397                     stats.bb.tx_9217_to_16383_byte_packets;
398                 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
399                 p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
400         } else {
401                 struct qede_stats_ah *p_ah = &edev->stats.ah;
402
403                 p_ah->rx_1519_to_max_byte_packets =
404                     stats.ah.rx_1519_to_max_byte_packets;
405                 p_ah->tx_1519_to_max_byte_packets =
406                     stats.ah.tx_1519_to_max_byte_packets;
407         }
408 }
409
410 static void qede_get_stats64(struct net_device *dev,
411                              struct rtnl_link_stats64 *stats)
412 {
413         struct qede_dev *edev = netdev_priv(dev);
414         struct qede_stats_common *p_common;
415
416         qede_fill_by_demand_stats(edev);
417         p_common = &edev->stats.common;
418
419         stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
420                             p_common->rx_bcast_pkts;
421         stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
422                             p_common->tx_bcast_pkts;
423
424         stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
425                           p_common->rx_bcast_bytes;
426         stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
427                           p_common->tx_bcast_bytes;
428
429         stats->tx_errors = p_common->tx_err_drop_pkts;
430         stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
431
432         stats->rx_fifo_errors = p_common->no_buff_discards;
433
434         if (QEDE_IS_BB(edev))
435                 stats->collisions = edev->stats.bb.tx_total_collisions;
436         stats->rx_crc_errors = p_common->rx_crc_errors;
437         stats->rx_frame_errors = p_common->rx_align_errors;
438 }
439
440 #ifdef CONFIG_QED_SRIOV
441 static int qede_get_vf_config(struct net_device *dev, int vfidx,
442                               struct ifla_vf_info *ivi)
443 {
444         struct qede_dev *edev = netdev_priv(dev);
445
446         if (!edev->ops)
447                 return -EINVAL;
448
449         return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
450 }
451
452 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
453                             int min_tx_rate, int max_tx_rate)
454 {
455         struct qede_dev *edev = netdev_priv(dev);
456
457         return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
458                                         max_tx_rate);
459 }
460
461 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
462 {
463         struct qede_dev *edev = netdev_priv(dev);
464
465         if (!edev->ops)
466                 return -EINVAL;
467
468         return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
469 }
470
471 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
472                                   int link_state)
473 {
474         struct qede_dev *edev = netdev_priv(dev);
475
476         if (!edev->ops)
477                 return -EINVAL;
478
479         return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
480 }
481
482 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
483 {
484         struct qede_dev *edev = netdev_priv(dev);
485
486         if (!edev->ops)
487                 return -EINVAL;
488
489         return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
490 }
491 #endif
492
493 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
494 {
495         struct qede_dev *edev = netdev_priv(dev);
496
497         if (!netif_running(dev))
498                 return -EAGAIN;
499
500         switch (cmd) {
501         case SIOCSHWTSTAMP:
502                 return qede_ptp_hw_ts(edev, ifr);
503         default:
504                 DP_VERBOSE(edev, QED_MSG_DEBUG,
505                            "default IOCTL cmd 0x%x\n", cmd);
506                 return -EOPNOTSUPP;
507         }
508
509         return 0;
510 }
511
512 static void qede_tx_log_print(struct qede_dev *edev, struct qede_tx_queue *txq)
513 {
514         DP_NOTICE(edev,
515                   "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
516                   txq->index, le16_to_cpu(*txq->hw_cons_ptr),
517                   qed_chain_get_cons_idx(&txq->tx_pbl),
518                   qed_chain_get_prod_idx(&txq->tx_pbl),
519                   jiffies);
520 }
521
522 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
523 {
524         struct qede_dev *edev = netdev_priv(dev);
525         struct qede_tx_queue *txq;
526         int cos;
527
528         netif_carrier_off(dev);
529         DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
530
531         if (!(edev->fp_array[txqueue].type & QEDE_FASTPATH_TX))
532                 return;
533
534         for_each_cos_in_txq(edev, cos) {
535                 txq = &edev->fp_array[txqueue].txq[cos];
536
537                 if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
538                     qed_chain_get_prod_idx(&txq->tx_pbl))
539                         qede_tx_log_print(edev, txq);
540         }
541
542         if (IS_VF(edev))
543                 return;
544
545         if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
546             edev->state == QEDE_STATE_RECOVERY) {
547                 DP_INFO(edev,
548                         "Avoid handling a Tx timeout while another HW error is being handled\n");
549                 return;
550         }
551
552         set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
553         set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
554         schedule_delayed_work(&edev->sp_task, 0);
555 }
556
557 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
558 {
559         struct qede_dev *edev = netdev_priv(ndev);
560         int cos, count, offset;
561
562         if (num_tc > edev->dev_info.num_tc)
563                 return -EINVAL;
564
565         netdev_reset_tc(ndev);
566         netdev_set_num_tc(ndev, num_tc);
567
568         for_each_cos_in_txq(edev, cos) {
569                 count = QEDE_TSS_COUNT(edev);
570                 offset = cos * QEDE_TSS_COUNT(edev);
571                 netdev_set_tc_queue(ndev, cos, count, offset);
572         }
573
574         return 0;
575 }
576
577 static int
578 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
579                 __be16 proto)
580 {
581         switch (f->command) {
582         case FLOW_CLS_REPLACE:
583                 return qede_add_tc_flower_fltr(edev, proto, f);
584         case FLOW_CLS_DESTROY:
585                 return qede_delete_flow_filter(edev, f->cookie);
586         default:
587                 return -EOPNOTSUPP;
588         }
589 }
590
591 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
592                                   void *cb_priv)
593 {
594         struct flow_cls_offload *f;
595         struct qede_dev *edev = cb_priv;
596
597         if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
598                 return -EOPNOTSUPP;
599
600         switch (type) {
601         case TC_SETUP_CLSFLOWER:
602                 f = type_data;
603                 return qede_set_flower(edev, f, f->common.protocol);
604         default:
605                 return -EOPNOTSUPP;
606         }
607 }
608
609 static LIST_HEAD(qede_block_cb_list);
610
611 static int
612 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
613                       void *type_data)
614 {
615         struct qede_dev *edev = netdev_priv(dev);
616         struct tc_mqprio_qopt *mqprio;
617
618         switch (type) {
619         case TC_SETUP_BLOCK:
620                 return flow_block_cb_setup_simple(type_data,
621                                                   &qede_block_cb_list,
622                                                   qede_setup_tc_block_cb,
623                                                   edev, edev, true);
624         case TC_SETUP_QDISC_MQPRIO:
625                 mqprio = type_data;
626
627                 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
628                 return qede_setup_tc(dev, mqprio->num_tc);
629         default:
630                 return -EOPNOTSUPP;
631         }
632 }
633
634 static const struct net_device_ops qede_netdev_ops = {
635         .ndo_open               = qede_open,
636         .ndo_stop               = qede_close,
637         .ndo_start_xmit         = qede_start_xmit,
638         .ndo_select_queue       = qede_select_queue,
639         .ndo_set_rx_mode        = qede_set_rx_mode,
640         .ndo_set_mac_address    = qede_set_mac_addr,
641         .ndo_validate_addr      = eth_validate_addr,
642         .ndo_change_mtu         = qede_change_mtu,
643         .ndo_eth_ioctl          = qede_ioctl,
644         .ndo_tx_timeout         = qede_tx_timeout,
645 #ifdef CONFIG_QED_SRIOV
646         .ndo_set_vf_mac         = qede_set_vf_mac,
647         .ndo_set_vf_vlan        = qede_set_vf_vlan,
648         .ndo_set_vf_trust       = qede_set_vf_trust,
649 #endif
650         .ndo_vlan_rx_add_vid    = qede_vlan_rx_add_vid,
651         .ndo_vlan_rx_kill_vid   = qede_vlan_rx_kill_vid,
652         .ndo_fix_features       = qede_fix_features,
653         .ndo_set_features       = qede_set_features,
654         .ndo_get_stats64        = qede_get_stats64,
655 #ifdef CONFIG_QED_SRIOV
656         .ndo_set_vf_link_state  = qede_set_vf_link_state,
657         .ndo_set_vf_spoofchk    = qede_set_vf_spoofchk,
658         .ndo_get_vf_config      = qede_get_vf_config,
659         .ndo_set_vf_rate        = qede_set_vf_rate,
660 #endif
661         .ndo_features_check     = qede_features_check,
662         .ndo_bpf                = qede_xdp,
663 #ifdef CONFIG_RFS_ACCEL
664         .ndo_rx_flow_steer      = qede_rx_flow_steer,
665 #endif
666         .ndo_xdp_xmit           = qede_xdp_transmit,
667         .ndo_setup_tc           = qede_setup_tc_offload,
668 };
669
670 static const struct net_device_ops qede_netdev_vf_ops = {
671         .ndo_open               = qede_open,
672         .ndo_stop               = qede_close,
673         .ndo_start_xmit         = qede_start_xmit,
674         .ndo_select_queue       = qede_select_queue,
675         .ndo_set_rx_mode        = qede_set_rx_mode,
676         .ndo_set_mac_address    = qede_set_mac_addr,
677         .ndo_validate_addr      = eth_validate_addr,
678         .ndo_change_mtu         = qede_change_mtu,
679         .ndo_vlan_rx_add_vid    = qede_vlan_rx_add_vid,
680         .ndo_vlan_rx_kill_vid   = qede_vlan_rx_kill_vid,
681         .ndo_fix_features       = qede_fix_features,
682         .ndo_set_features       = qede_set_features,
683         .ndo_get_stats64        = qede_get_stats64,
684         .ndo_features_check     = qede_features_check,
685 };
686
687 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
688         .ndo_open               = qede_open,
689         .ndo_stop               = qede_close,
690         .ndo_start_xmit         = qede_start_xmit,
691         .ndo_select_queue       = qede_select_queue,
692         .ndo_set_rx_mode        = qede_set_rx_mode,
693         .ndo_set_mac_address    = qede_set_mac_addr,
694         .ndo_validate_addr      = eth_validate_addr,
695         .ndo_change_mtu         = qede_change_mtu,
696         .ndo_vlan_rx_add_vid    = qede_vlan_rx_add_vid,
697         .ndo_vlan_rx_kill_vid   = qede_vlan_rx_kill_vid,
698         .ndo_fix_features       = qede_fix_features,
699         .ndo_set_features       = qede_set_features,
700         .ndo_get_stats64        = qede_get_stats64,
701         .ndo_features_check     = qede_features_check,
702         .ndo_bpf                = qede_xdp,
703         .ndo_xdp_xmit           = qede_xdp_transmit,
704 };
705
706 /* -------------------------------------------------------------------------
707  * START OF PROBE / REMOVE
708  * -------------------------------------------------------------------------
709  */
710
711 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
712                                             struct pci_dev *pdev,
713                                             struct qed_dev_eth_info *info,
714                                             u32 dp_module, u8 dp_level)
715 {
716         struct net_device *ndev;
717         struct qede_dev *edev;
718
719         ndev = alloc_etherdev_mqs(sizeof(*edev),
720                                   info->num_queues * info->num_tc,
721                                   info->num_queues);
722         if (!ndev) {
723                 pr_err("etherdev allocation failed\n");
724                 return NULL;
725         }
726
727         edev = netdev_priv(ndev);
728         edev->ndev = ndev;
729         edev->cdev = cdev;
730         edev->pdev = pdev;
731         edev->dp_module = dp_module;
732         edev->dp_level = dp_level;
733         edev->ops = qed_ops;
734
735         if (is_kdump_kernel()) {
736                 edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
737                 edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
738         } else {
739                 edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
740                 edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
741         }
742
743         DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
744                 info->num_queues, info->num_queues);
745
746         SET_NETDEV_DEV(ndev, &pdev->dev);
747
748         memset(&edev->stats, 0, sizeof(edev->stats));
749         memcpy(&edev->dev_info, info, sizeof(*info));
750
751         /* As ethtool doesn't have the ability to show WoL behavior as
752          * 'default', if device supports it declare it's enabled.
753          */
754         if (edev->dev_info.common.wol_support)
755                 edev->wol_enabled = true;
756
757         INIT_LIST_HEAD(&edev->vlan_list);
758
759         return edev;
760 }
761
762 static void qede_init_ndev(struct qede_dev *edev)
763 {
764         struct net_device *ndev = edev->ndev;
765         struct pci_dev *pdev = edev->pdev;
766         bool udp_tunnel_enable = false;
767         netdev_features_t hw_features;
768
769         pci_set_drvdata(pdev, ndev);
770
771         ndev->mem_start = edev->dev_info.common.pci_mem_start;
772         ndev->base_addr = ndev->mem_start;
773         ndev->mem_end = edev->dev_info.common.pci_mem_end;
774         ndev->irq = edev->dev_info.common.pci_irq;
775
776         ndev->watchdog_timeo = TX_TIMEOUT;
777
778         if (IS_VF(edev)) {
779                 if (edev->dev_info.xdp_supported)
780                         ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
781                 else
782                         ndev->netdev_ops = &qede_netdev_vf_ops;
783         } else {
784                 ndev->netdev_ops = &qede_netdev_ops;
785         }
786
787         qede_set_ethtool_ops(ndev);
788
789         ndev->priv_flags |= IFF_UNICAST_FLT;
790
791         /* user-changeble features */
792         hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
793                       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
794                       NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
795
796         if (edev->dev_info.common.b_arfs_capable)
797                 hw_features |= NETIF_F_NTUPLE;
798
799         if (edev->dev_info.common.vxlan_enable ||
800             edev->dev_info.common.geneve_enable)
801                 udp_tunnel_enable = true;
802
803         if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
804                 hw_features |= NETIF_F_TSO_ECN;
805                 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
806                                         NETIF_F_SG | NETIF_F_TSO |
807                                         NETIF_F_TSO_ECN | NETIF_F_TSO6 |
808                                         NETIF_F_RXCSUM;
809         }
810
811         if (udp_tunnel_enable) {
812                 hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
813                                 NETIF_F_GSO_UDP_TUNNEL_CSUM);
814                 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
815                                           NETIF_F_GSO_UDP_TUNNEL_CSUM);
816
817                 qede_set_udp_tunnels(edev);
818         }
819
820         if (edev->dev_info.common.gre_enable) {
821                 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
822                 ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
823                                           NETIF_F_GSO_GRE_CSUM);
824         }
825
826         ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
827                               NETIF_F_HIGHDMA;
828         ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
829                          NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
830                          NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
831
832         ndev->hw_features = hw_features;
833
834         /* MTU range: 46 - 9600 */
835         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
836         ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
837
838         /* Set network device HW mac */
839         ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
840
841         ndev->mtu = edev->dev_info.common.mtu;
842 }
843
844 /* This function converts from 32b param to two params of level and module
845  * Input 32b decoding:
846  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
847  * 'happy' flow, e.g. memory allocation failed.
848  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
849  * and provide important parameters.
850  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
851  * module. VERBOSE prints are for tracking the specific flow in low level.
852  *
853  * Notice that the level should be that of the lowest required logs.
854  */
855 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
856 {
857         *p_dp_level = QED_LEVEL_NOTICE;
858         *p_dp_module = 0;
859
860         if (debug & QED_LOG_VERBOSE_MASK) {
861                 *p_dp_level = QED_LEVEL_VERBOSE;
862                 *p_dp_module = (debug & 0x3FFFFFFF);
863         } else if (debug & QED_LOG_INFO_MASK) {
864                 *p_dp_level = QED_LEVEL_INFO;
865         } else if (debug & QED_LOG_NOTICE_MASK) {
866                 *p_dp_level = QED_LEVEL_NOTICE;
867         }
868 }
869
870 static void qede_free_fp_array(struct qede_dev *edev)
871 {
872         if (edev->fp_array) {
873                 struct qede_fastpath *fp;
874                 int i;
875
876                 for_each_queue(i) {
877                         fp = &edev->fp_array[i];
878
879                         kfree(fp->sb_info);
880                         /* Handle mem alloc failure case where qede_init_fp
881                          * didn't register xdp_rxq_info yet.
882                          * Implicit only (fp->type & QEDE_FASTPATH_RX)
883                          */
884                         if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
885                                 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
886                         kfree(fp->rxq);
887                         kfree(fp->xdp_tx);
888                         kfree(fp->txq);
889                 }
890                 kfree(edev->fp_array);
891         }
892
893         edev->num_queues = 0;
894         edev->fp_num_tx = 0;
895         edev->fp_num_rx = 0;
896 }
897
898 static int qede_alloc_fp_array(struct qede_dev *edev)
899 {
900         u8 fp_combined, fp_rx = edev->fp_num_rx;
901         struct qede_fastpath *fp;
902         void *mem;
903         int i;
904
905         edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
906                                  sizeof(*edev->fp_array), GFP_KERNEL);
907         if (!edev->fp_array) {
908                 DP_NOTICE(edev, "fp array allocation failed\n");
909                 goto err;
910         }
911
912         mem = krealloc(edev->coal_entry, QEDE_QUEUE_CNT(edev) *
913                        sizeof(*edev->coal_entry), GFP_KERNEL);
914         if (!mem) {
915                 DP_ERR(edev, "coalesce entry allocation failed\n");
916                 kfree(edev->coal_entry);
917                 goto err;
918         }
919         edev->coal_entry = mem;
920
921         fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
922
923         /* Allocate the FP elements for Rx queues followed by combined and then
924          * the Tx. This ordering should be maintained so that the respective
925          * queues (Rx or Tx) will be together in the fastpath array and the
926          * associated ids will be sequential.
927          */
928         for_each_queue(i) {
929                 fp = &edev->fp_array[i];
930
931                 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
932                 if (!fp->sb_info) {
933                         DP_NOTICE(edev, "sb info struct allocation failed\n");
934                         goto err;
935                 }
936
937                 if (fp_rx) {
938                         fp->type = QEDE_FASTPATH_RX;
939                         fp_rx--;
940                 } else if (fp_combined) {
941                         fp->type = QEDE_FASTPATH_COMBINED;
942                         fp_combined--;
943                 } else {
944                         fp->type = QEDE_FASTPATH_TX;
945                 }
946
947                 if (fp->type & QEDE_FASTPATH_TX) {
948                         fp->txq = kcalloc(edev->dev_info.num_tc,
949                                           sizeof(*fp->txq), GFP_KERNEL);
950                         if (!fp->txq)
951                                 goto err;
952                 }
953
954                 if (fp->type & QEDE_FASTPATH_RX) {
955                         fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
956                         if (!fp->rxq)
957                                 goto err;
958
959                         if (edev->xdp_prog) {
960                                 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
961                                                      GFP_KERNEL);
962                                 if (!fp->xdp_tx)
963                                         goto err;
964                                 fp->type |= QEDE_FASTPATH_XDP;
965                         }
966                 }
967         }
968
969         return 0;
970 err:
971         qede_free_fp_array(edev);
972         return -ENOMEM;
973 }
974
975 /* The qede lock is used to protect driver state change and driver flows that
976  * are not reentrant.
977  */
978 void __qede_lock(struct qede_dev *edev)
979 {
980         mutex_lock(&edev->qede_lock);
981 }
982
983 void __qede_unlock(struct qede_dev *edev)
984 {
985         mutex_unlock(&edev->qede_lock);
986 }
987
988 /* This version of the lock should be used when acquiring the RTNL lock is also
989  * needed in addition to the internal qede lock.
990  */
991 static void qede_lock(struct qede_dev *edev)
992 {
993         rtnl_lock();
994         __qede_lock(edev);
995 }
996
997 static void qede_unlock(struct qede_dev *edev)
998 {
999         __qede_unlock(edev);
1000         rtnl_unlock();
1001 }
1002
1003 static void qede_sp_task(struct work_struct *work)
1004 {
1005         struct qede_dev *edev = container_of(work, struct qede_dev,
1006                                              sp_task.work);
1007
1008         /* Disable execution of this deferred work once
1009          * qede removal is in progress, this stop any future
1010          * scheduling of sp_task.
1011          */
1012         if (test_bit(QEDE_SP_DISABLE, &edev->sp_flags))
1013                 return;
1014
1015         /* The locking scheme depends on the specific flag:
1016          * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1017          * ensure that ongoing flows are ended and new ones are not started.
1018          * In other cases - only the internal qede lock should be acquired.
1019          */
1020
1021         if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1022 #ifdef CONFIG_QED_SRIOV
1023                 /* SRIOV must be disabled outside the lock to avoid a deadlock.
1024                  * The recovery of the active VFs is currently not supported.
1025                  */
1026                 if (pci_num_vf(edev->pdev))
1027                         qede_sriov_configure(edev->pdev, 0);
1028 #endif
1029                 qede_lock(edev);
1030                 qede_recovery_handler(edev);
1031                 qede_unlock(edev);
1032         }
1033
1034         __qede_lock(edev);
1035
1036         if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1037                 if (edev->state == QEDE_STATE_OPEN)
1038                         qede_config_rx_mode(edev->ndev);
1039
1040 #ifdef CONFIG_RFS_ACCEL
1041         if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1042                 if (edev->state == QEDE_STATE_OPEN)
1043                         qede_process_arfs_filters(edev, false);
1044         }
1045 #endif
1046         if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1047                 qede_generic_hw_err_handler(edev);
1048         __qede_unlock(edev);
1049
1050         if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1051 #ifdef CONFIG_QED_SRIOV
1052                 /* SRIOV must be disabled outside the lock to avoid a deadlock.
1053                  * The recovery of the active VFs is currently not supported.
1054                  */
1055                 if (pci_num_vf(edev->pdev))
1056                         qede_sriov_configure(edev->pdev, 0);
1057 #endif
1058                 edev->ops->common->recovery_process(edev->cdev);
1059         }
1060 }
1061
1062 static void qede_update_pf_params(struct qed_dev *cdev)
1063 {
1064         struct qed_pf_params pf_params;
1065         u16 num_cons;
1066
1067         /* 64 rx + 64 tx + 64 XDP */
1068         memset(&pf_params, 0, sizeof(struct qed_pf_params));
1069
1070         /* 1 rx + 1 xdp + max tx cos */
1071         num_cons = QED_MIN_L2_CONS;
1072
1073         pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1074
1075         /* Same for VFs - make sure they'll have sufficient connections
1076          * to support XDP Tx queues.
1077          */
1078         pf_params.eth_pf_params.num_vf_cons = 48;
1079
1080         pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1081         qed_ops->common->update_pf_params(cdev, &pf_params);
1082 }
1083
1084 #define QEDE_FW_VER_STR_SIZE    80
1085
1086 static void qede_log_probe(struct qede_dev *edev)
1087 {
1088         struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1089         u8 buf[QEDE_FW_VER_STR_SIZE];
1090         size_t left_size;
1091
1092         snprintf(buf, QEDE_FW_VER_STR_SIZE,
1093                  "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1094                  p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1095                  p_dev_info->fw_eng,
1096                  (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1097                  QED_MFW_VERSION_3_OFFSET,
1098                  (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1099                  QED_MFW_VERSION_2_OFFSET,
1100                  (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1101                  QED_MFW_VERSION_1_OFFSET,
1102                  (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1103                  QED_MFW_VERSION_0_OFFSET);
1104
1105         left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1106         if (p_dev_info->mbi_version && left_size)
1107                 snprintf(buf + strlen(buf), left_size,
1108                          " [MBI %d.%d.%d]",
1109                          (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1110                          QED_MBI_VERSION_2_OFFSET,
1111                          (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1112                          QED_MBI_VERSION_1_OFFSET,
1113                          (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1114                          QED_MBI_VERSION_0_OFFSET);
1115
1116         pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1117                 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1118                 buf, edev->ndev->name);
1119 }
1120
1121 enum qede_probe_mode {
1122         QEDE_PROBE_NORMAL,
1123         QEDE_PROBE_RECOVERY,
1124 };
1125
1126 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1127                         bool is_vf, enum qede_probe_mode mode)
1128 {
1129         struct qed_probe_params probe_params;
1130         struct qed_slowpath_params sp_params;
1131         struct qed_dev_eth_info dev_info;
1132         struct qede_dev *edev;
1133         struct qed_dev *cdev;
1134         int rc;
1135
1136         if (unlikely(dp_level & QED_LEVEL_INFO))
1137                 pr_notice("Starting qede probe\n");
1138
1139         memset(&probe_params, 0, sizeof(probe_params));
1140         probe_params.protocol = QED_PROTOCOL_ETH;
1141         probe_params.dp_module = dp_module;
1142         probe_params.dp_level = dp_level;
1143         probe_params.is_vf = is_vf;
1144         probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1145         cdev = qed_ops->common->probe(pdev, &probe_params);
1146         if (!cdev) {
1147                 rc = -ENODEV;
1148                 goto err0;
1149         }
1150
1151         qede_update_pf_params(cdev);
1152
1153         /* Start the Slowpath-process */
1154         memset(&sp_params, 0, sizeof(sp_params));
1155         sp_params.int_mode = QED_INT_MODE_MSIX;
1156         strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1157         rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1158         if (rc) {
1159                 pr_notice("Cannot start slowpath\n");
1160                 goto err1;
1161         }
1162
1163         /* Learn information crucial for qede to progress */
1164         rc = qed_ops->fill_dev_info(cdev, &dev_info);
1165         if (rc)
1166                 goto err2;
1167
1168         if (mode != QEDE_PROBE_RECOVERY) {
1169                 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1170                                            dp_level);
1171                 if (!edev) {
1172                         rc = -ENOMEM;
1173                         goto err2;
1174                 }
1175
1176                 edev->devlink = qed_ops->common->devlink_register(cdev);
1177                 if (IS_ERR(edev->devlink)) {
1178                         DP_NOTICE(edev, "Cannot register devlink\n");
1179                         edev->devlink = NULL;
1180                         /* Go on, we can live without devlink */
1181                 }
1182         } else {
1183                 struct net_device *ndev = pci_get_drvdata(pdev);
1184
1185                 edev = netdev_priv(ndev);
1186
1187                 if (edev->devlink) {
1188                         struct qed_devlink *qdl = devlink_priv(edev->devlink);
1189
1190                         qdl->cdev = cdev;
1191                 }
1192                 edev->cdev = cdev;
1193                 memset(&edev->stats, 0, sizeof(edev->stats));
1194                 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1195         }
1196
1197         if (is_vf)
1198                 set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1199
1200         qede_init_ndev(edev);
1201
1202         rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1203         if (rc)
1204                 goto err3;
1205
1206         if (mode != QEDE_PROBE_RECOVERY) {
1207                 /* Prepare the lock prior to the registration of the netdev,
1208                  * as once it's registered we might reach flows requiring it
1209                  * [it's even possible to reach a flow needing it directly
1210                  * from there, although it's unlikely].
1211                  */
1212                 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1213                 mutex_init(&edev->qede_lock);
1214
1215                 rc = register_netdev(edev->ndev);
1216                 if (rc) {
1217                         DP_NOTICE(edev, "Cannot register net-device\n");
1218                         goto err4;
1219                 }
1220         }
1221
1222         edev->ops->common->set_name(cdev, edev->ndev->name);
1223
1224         /* PTP not supported on VFs */
1225         if (!is_vf)
1226                 qede_ptp_enable(edev);
1227
1228         edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1229
1230 #ifdef CONFIG_DCB
1231         if (!IS_VF(edev))
1232                 qede_set_dcbnl_ops(edev->ndev);
1233 #endif
1234
1235         edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1236
1237         qede_log_probe(edev);
1238         return 0;
1239
1240 err4:
1241         qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1242 err3:
1243         if (mode != QEDE_PROBE_RECOVERY)
1244                 free_netdev(edev->ndev);
1245         else
1246                 edev->cdev = NULL;
1247 err2:
1248         qed_ops->common->slowpath_stop(cdev);
1249 err1:
1250         qed_ops->common->remove(cdev);
1251 err0:
1252         return rc;
1253 }
1254
1255 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1256 {
1257         bool is_vf = false;
1258         u32 dp_module = 0;
1259         u8 dp_level = 0;
1260
1261         switch ((enum qede_pci_private)id->driver_data) {
1262         case QEDE_PRIVATE_VF:
1263                 if (debug & QED_LOG_VERBOSE_MASK)
1264                         dev_err(&pdev->dev, "Probing a VF\n");
1265                 is_vf = true;
1266                 break;
1267         default:
1268                 if (debug & QED_LOG_VERBOSE_MASK)
1269                         dev_err(&pdev->dev, "Probing a PF\n");
1270         }
1271
1272         qede_config_debug(debug, &dp_module, &dp_level);
1273
1274         return __qede_probe(pdev, dp_module, dp_level, is_vf,
1275                             QEDE_PROBE_NORMAL);
1276 }
1277
1278 enum qede_remove_mode {
1279         QEDE_REMOVE_NORMAL,
1280         QEDE_REMOVE_RECOVERY,
1281 };
1282
1283 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1284 {
1285         struct net_device *ndev = pci_get_drvdata(pdev);
1286         struct qede_dev *edev;
1287         struct qed_dev *cdev;
1288
1289         if (!ndev) {
1290                 dev_info(&pdev->dev, "Device has already been removed\n");
1291                 return;
1292         }
1293
1294         edev = netdev_priv(ndev);
1295         cdev = edev->cdev;
1296
1297         DP_INFO(edev, "Starting qede_remove\n");
1298
1299         qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1300
1301         if (mode != QEDE_REMOVE_RECOVERY) {
1302                 set_bit(QEDE_SP_DISABLE, &edev->sp_flags);
1303                 unregister_netdev(ndev);
1304
1305                 cancel_delayed_work_sync(&edev->sp_task);
1306
1307                 edev->ops->common->set_power_state(cdev, PCI_D0);
1308
1309                 pci_set_drvdata(pdev, NULL);
1310         }
1311
1312         qede_ptp_disable(edev);
1313
1314         /* Use global ops since we've freed edev */
1315         qed_ops->common->slowpath_stop(cdev);
1316         if (system_state == SYSTEM_POWER_OFF)
1317                 return;
1318
1319         if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) {
1320                 qed_ops->common->devlink_unregister(edev->devlink);
1321                 edev->devlink = NULL;
1322         }
1323         qed_ops->common->remove(cdev);
1324         edev->cdev = NULL;
1325
1326         /* Since this can happen out-of-sync with other flows,
1327          * don't release the netdevice until after slowpath stop
1328          * has been called to guarantee various other contexts
1329          * [e.g., QED register callbacks] won't break anything when
1330          * accessing the netdevice.
1331          */
1332         if (mode != QEDE_REMOVE_RECOVERY) {
1333                 kfree(edev->coal_entry);
1334                 free_netdev(ndev);
1335         }
1336
1337         dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1338 }
1339
1340 static void qede_remove(struct pci_dev *pdev)
1341 {
1342         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1343 }
1344
1345 static void qede_shutdown(struct pci_dev *pdev)
1346 {
1347         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1348 }
1349
1350 /* -------------------------------------------------------------------------
1351  * START OF LOAD / UNLOAD
1352  * -------------------------------------------------------------------------
1353  */
1354
1355 static int qede_set_num_queues(struct qede_dev *edev)
1356 {
1357         int rc;
1358         u16 rss_num;
1359
1360         /* Setup queues according to possible resources*/
1361         if (edev->req_queues)
1362                 rss_num = edev->req_queues;
1363         else
1364                 rss_num = netif_get_num_default_rss_queues() *
1365                           edev->dev_info.common.num_hwfns;
1366
1367         rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1368
1369         rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1370         if (rc > 0) {
1371                 /* Managed to request interrupts for our queues */
1372                 edev->num_queues = rc;
1373                 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1374                         QEDE_QUEUE_CNT(edev), rss_num);
1375                 rc = 0;
1376         }
1377
1378         edev->fp_num_tx = edev->req_num_tx;
1379         edev->fp_num_rx = edev->req_num_rx;
1380
1381         return rc;
1382 }
1383
1384 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1385                              u16 sb_id)
1386 {
1387         if (sb_info->sb_virt) {
1388                 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1389                                               QED_SB_TYPE_L2_QUEUE);
1390                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1391                                   (void *)sb_info->sb_virt, sb_info->sb_phys);
1392                 memset(sb_info, 0, sizeof(*sb_info));
1393         }
1394 }
1395
1396 /* This function allocates fast-path status block memory */
1397 static int qede_alloc_mem_sb(struct qede_dev *edev,
1398                              struct qed_sb_info *sb_info, u16 sb_id)
1399 {
1400         struct status_block_e4 *sb_virt;
1401         dma_addr_t sb_phys;
1402         int rc;
1403
1404         sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1405                                      sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1406         if (!sb_virt) {
1407                 DP_ERR(edev, "Status block allocation failed\n");
1408                 return -ENOMEM;
1409         }
1410
1411         rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1412                                         sb_virt, sb_phys, sb_id,
1413                                         QED_SB_TYPE_L2_QUEUE);
1414         if (rc) {
1415                 DP_ERR(edev, "Status block initialization failed\n");
1416                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1417                                   sb_virt, sb_phys);
1418                 return rc;
1419         }
1420
1421         return 0;
1422 }
1423
1424 static void qede_free_rx_buffers(struct qede_dev *edev,
1425                                  struct qede_rx_queue *rxq)
1426 {
1427         u16 i;
1428
1429         for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1430                 struct sw_rx_data *rx_buf;
1431                 struct page *data;
1432
1433                 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1434                 data = rx_buf->data;
1435
1436                 dma_unmap_page(&edev->pdev->dev,
1437                                rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1438
1439                 rx_buf->data = NULL;
1440                 __free_page(data);
1441         }
1442 }
1443
1444 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1445 {
1446         /* Free rx buffers */
1447         qede_free_rx_buffers(edev, rxq);
1448
1449         /* Free the parallel SW ring */
1450         kfree(rxq->sw_rx_ring);
1451
1452         /* Free the real RQ ring used by FW */
1453         edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1454         edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1455 }
1456
1457 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1458 {
1459         int i;
1460
1461         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1462                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1463
1464                 tpa_info->state = QEDE_AGG_STATE_NONE;
1465         }
1466 }
1467
1468 /* This function allocates all memory needed per Rx queue */
1469 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1470 {
1471         struct qed_chain_init_params params = {
1472                 .cnt_type       = QED_CHAIN_CNT_TYPE_U16,
1473                 .num_elems      = RX_RING_SIZE,
1474         };
1475         struct qed_dev *cdev = edev->cdev;
1476         int i, rc, size;
1477
1478         rxq->num_rx_buffers = edev->q_num_rx_buffers;
1479
1480         rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1481
1482         rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1483         size = rxq->rx_headroom +
1484                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1485
1486         /* Make sure that the headroom and  payload fit in a single page */
1487         if (rxq->rx_buf_size + size > PAGE_SIZE)
1488                 rxq->rx_buf_size = PAGE_SIZE - size;
1489
1490         /* Segment size to split a page in multiple equal parts,
1491          * unless XDP is used in which case we'd use the entire page.
1492          */
1493         if (!edev->xdp_prog) {
1494                 size = size + rxq->rx_buf_size;
1495                 rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1496         } else {
1497                 rxq->rx_buf_seg_size = PAGE_SIZE;
1498                 edev->ndev->features &= ~NETIF_F_GRO_HW;
1499         }
1500
1501         /* Allocate the parallel driver ring for Rx buffers */
1502         size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1503         rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1504         if (!rxq->sw_rx_ring) {
1505                 DP_ERR(edev, "Rx buffers ring allocation failed\n");
1506                 rc = -ENOMEM;
1507                 goto err;
1508         }
1509
1510         /* Allocate FW Rx ring  */
1511         params.mode = QED_CHAIN_MODE_NEXT_PTR;
1512         params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE;
1513         params.elem_size = sizeof(struct eth_rx_bd);
1514
1515         rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, &params);
1516         if (rc)
1517                 goto err;
1518
1519         /* Allocate FW completion ring */
1520         params.mode = QED_CHAIN_MODE_PBL;
1521         params.intended_use = QED_CHAIN_USE_TO_CONSUME;
1522         params.elem_size = sizeof(union eth_rx_cqe);
1523
1524         rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, &params);
1525         if (rc)
1526                 goto err;
1527
1528         /* Allocate buffers for the Rx ring */
1529         rxq->filled_buffers = 0;
1530         for (i = 0; i < rxq->num_rx_buffers; i++) {
1531                 rc = qede_alloc_rx_buffer(rxq, false);
1532                 if (rc) {
1533                         DP_ERR(edev,
1534                                "Rx buffers allocation failed at index %d\n", i);
1535                         goto err;
1536                 }
1537         }
1538
1539         edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1540         if (!edev->gro_disable)
1541                 qede_set_tpa_param(rxq);
1542 err:
1543         return rc;
1544 }
1545
1546 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1547 {
1548         /* Free the parallel SW ring */
1549         if (txq->is_xdp)
1550                 kfree(txq->sw_tx_ring.xdp);
1551         else
1552                 kfree(txq->sw_tx_ring.skbs);
1553
1554         /* Free the real RQ ring used by FW */
1555         edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1556 }
1557
1558 /* This function allocates all memory needed per Tx queue */
1559 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1560 {
1561         struct qed_chain_init_params params = {
1562                 .mode           = QED_CHAIN_MODE_PBL,
1563                 .intended_use   = QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1564                 .cnt_type       = QED_CHAIN_CNT_TYPE_U16,
1565                 .num_elems      = edev->q_num_tx_buffers,
1566                 .elem_size      = sizeof(union eth_tx_bd_types),
1567         };
1568         int size, rc;
1569
1570         txq->num_tx_buffers = edev->q_num_tx_buffers;
1571
1572         /* Allocate the parallel driver ring for Tx buffers */
1573         if (txq->is_xdp) {
1574                 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1575                 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1576                 if (!txq->sw_tx_ring.xdp)
1577                         goto err;
1578         } else {
1579                 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1580                 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1581                 if (!txq->sw_tx_ring.skbs)
1582                         goto err;
1583         }
1584
1585         rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, &params);
1586         if (rc)
1587                 goto err;
1588
1589         return 0;
1590
1591 err:
1592         qede_free_mem_txq(edev, txq);
1593         return -ENOMEM;
1594 }
1595
1596 /* This function frees all memory of a single fp */
1597 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1598 {
1599         qede_free_mem_sb(edev, fp->sb_info, fp->id);
1600
1601         if (fp->type & QEDE_FASTPATH_RX)
1602                 qede_free_mem_rxq(edev, fp->rxq);
1603
1604         if (fp->type & QEDE_FASTPATH_XDP)
1605                 qede_free_mem_txq(edev, fp->xdp_tx);
1606
1607         if (fp->type & QEDE_FASTPATH_TX) {
1608                 int cos;
1609
1610                 for_each_cos_in_txq(edev, cos)
1611                         qede_free_mem_txq(edev, &fp->txq[cos]);
1612         }
1613 }
1614
1615 /* This function allocates all memory needed for a single fp (i.e. an entity
1616  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1617  */
1618 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1619 {
1620         int rc = 0;
1621
1622         rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1623         if (rc)
1624                 goto out;
1625
1626         if (fp->type & QEDE_FASTPATH_RX) {
1627                 rc = qede_alloc_mem_rxq(edev, fp->rxq);
1628                 if (rc)
1629                         goto out;
1630         }
1631
1632         if (fp->type & QEDE_FASTPATH_XDP) {
1633                 rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1634                 if (rc)
1635                         goto out;
1636         }
1637
1638         if (fp->type & QEDE_FASTPATH_TX) {
1639                 int cos;
1640
1641                 for_each_cos_in_txq(edev, cos) {
1642                         rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1643                         if (rc)
1644                                 goto out;
1645                 }
1646         }
1647
1648 out:
1649         return rc;
1650 }
1651
1652 static void qede_free_mem_load(struct qede_dev *edev)
1653 {
1654         int i;
1655
1656         for_each_queue(i) {
1657                 struct qede_fastpath *fp = &edev->fp_array[i];
1658
1659                 qede_free_mem_fp(edev, fp);
1660         }
1661 }
1662
1663 /* This function allocates all qede memory at NIC load. */
1664 static int qede_alloc_mem_load(struct qede_dev *edev)
1665 {
1666         int rc = 0, queue_id;
1667
1668         for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1669                 struct qede_fastpath *fp = &edev->fp_array[queue_id];
1670
1671                 rc = qede_alloc_mem_fp(edev, fp);
1672                 if (rc) {
1673                         DP_ERR(edev,
1674                                "Failed to allocate memory for fastpath - rss id = %d\n",
1675                                queue_id);
1676                         qede_free_mem_load(edev);
1677                         return rc;
1678                 }
1679         }
1680
1681         return 0;
1682 }
1683
1684 static void qede_empty_tx_queue(struct qede_dev *edev,
1685                                 struct qede_tx_queue *txq)
1686 {
1687         unsigned int pkts_compl = 0, bytes_compl = 0;
1688         struct netdev_queue *netdev_txq;
1689         int rc, len = 0;
1690
1691         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1692
1693         while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1694                qed_chain_get_prod_idx(&txq->tx_pbl)) {
1695                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1696                            "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1697                            txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1698                            qed_chain_get_prod_idx(&txq->tx_pbl));
1699
1700                 rc = qede_free_tx_pkt(edev, txq, &len);
1701                 if (rc) {
1702                         DP_NOTICE(edev,
1703                                   "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1704                                   txq->index,
1705                                   qed_chain_get_cons_idx(&txq->tx_pbl),
1706                                   qed_chain_get_prod_idx(&txq->tx_pbl));
1707                         break;
1708                 }
1709
1710                 bytes_compl += len;
1711                 pkts_compl++;
1712                 txq->sw_tx_cons++;
1713         }
1714
1715         netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1716 }
1717
1718 static void qede_empty_tx_queues(struct qede_dev *edev)
1719 {
1720         int i;
1721
1722         for_each_queue(i)
1723                 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1724                         int cos;
1725
1726                         for_each_cos_in_txq(edev, cos) {
1727                                 struct qede_fastpath *fp;
1728
1729                                 fp = &edev->fp_array[i];
1730                                 qede_empty_tx_queue(edev,
1731                                                     &fp->txq[cos]);
1732                         }
1733                 }
1734 }
1735
1736 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1737 static void qede_init_fp(struct qede_dev *edev)
1738 {
1739         int queue_id, rxq_index = 0, txq_index = 0;
1740         struct qede_fastpath *fp;
1741         bool init_xdp = false;
1742
1743         for_each_queue(queue_id) {
1744                 fp = &edev->fp_array[queue_id];
1745
1746                 fp->edev = edev;
1747                 fp->id = queue_id;
1748
1749                 if (fp->type & QEDE_FASTPATH_XDP) {
1750                         fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1751                                                                 rxq_index);
1752                         fp->xdp_tx->is_xdp = 1;
1753
1754                         spin_lock_init(&fp->xdp_tx->xdp_tx_lock);
1755                         init_xdp = true;
1756                 }
1757
1758                 if (fp->type & QEDE_FASTPATH_RX) {
1759                         fp->rxq->rxq_id = rxq_index++;
1760
1761                         /* Determine how to map buffers for this queue */
1762                         if (fp->type & QEDE_FASTPATH_XDP)
1763                                 fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1764                         else
1765                                 fp->rxq->data_direction = DMA_FROM_DEVICE;
1766                         fp->rxq->dev = &edev->pdev->dev;
1767
1768                         /* Driver have no error path from here */
1769                         WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1770                                                  fp->rxq->rxq_id, 0) < 0);
1771
1772                         if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq,
1773                                                        MEM_TYPE_PAGE_ORDER0,
1774                                                        NULL)) {
1775                                 DP_NOTICE(edev,
1776                                           "Failed to register XDP memory model\n");
1777                         }
1778                 }
1779
1780                 if (fp->type & QEDE_FASTPATH_TX) {
1781                         int cos;
1782
1783                         for_each_cos_in_txq(edev, cos) {
1784                                 struct qede_tx_queue *txq = &fp->txq[cos];
1785                                 u16 ndev_tx_id;
1786
1787                                 txq->cos = cos;
1788                                 txq->index = txq_index;
1789                                 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1790                                 txq->ndev_txq_id = ndev_tx_id;
1791
1792                                 if (edev->dev_info.is_legacy)
1793                                         txq->is_legacy = true;
1794                                 txq->dev = &edev->pdev->dev;
1795                         }
1796
1797                         txq_index++;
1798                 }
1799
1800                 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1801                          edev->ndev->name, queue_id);
1802         }
1803
1804         if (init_xdp) {
1805                 edev->total_xdp_queues = QEDE_RSS_COUNT(edev);
1806                 DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues);
1807         }
1808 }
1809
1810 static int qede_set_real_num_queues(struct qede_dev *edev)
1811 {
1812         int rc = 0;
1813
1814         rc = netif_set_real_num_tx_queues(edev->ndev,
1815                                           QEDE_TSS_COUNT(edev) *
1816                                           edev->dev_info.num_tc);
1817         if (rc) {
1818                 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1819                 return rc;
1820         }
1821
1822         rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1823         if (rc) {
1824                 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1825                 return rc;
1826         }
1827
1828         return 0;
1829 }
1830
1831 static void qede_napi_disable_remove(struct qede_dev *edev)
1832 {
1833         int i;
1834
1835         for_each_queue(i) {
1836                 napi_disable(&edev->fp_array[i].napi);
1837
1838                 netif_napi_del(&edev->fp_array[i].napi);
1839         }
1840 }
1841
1842 static void qede_napi_add_enable(struct qede_dev *edev)
1843 {
1844         int i;
1845
1846         /* Add NAPI objects */
1847         for_each_queue(i) {
1848                 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1849                                qede_poll, NAPI_POLL_WEIGHT);
1850                 napi_enable(&edev->fp_array[i].napi);
1851         }
1852 }
1853
1854 static void qede_sync_free_irqs(struct qede_dev *edev)
1855 {
1856         int i;
1857
1858         for (i = 0; i < edev->int_info.used_cnt; i++) {
1859                 if (edev->int_info.msix_cnt) {
1860                         synchronize_irq(edev->int_info.msix[i].vector);
1861                         free_irq(edev->int_info.msix[i].vector,
1862                                  &edev->fp_array[i]);
1863                 } else {
1864                         edev->ops->common->simd_handler_clean(edev->cdev, i);
1865                 }
1866         }
1867
1868         edev->int_info.used_cnt = 0;
1869 }
1870
1871 static int qede_req_msix_irqs(struct qede_dev *edev)
1872 {
1873         int i, rc;
1874
1875         /* Sanitize number of interrupts == number of prepared RSS queues */
1876         if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1877                 DP_ERR(edev,
1878                        "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1879                        QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1880                 return -EINVAL;
1881         }
1882
1883         for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1884 #ifdef CONFIG_RFS_ACCEL
1885                 struct qede_fastpath *fp = &edev->fp_array[i];
1886
1887                 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1888                         rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1889                                               edev->int_info.msix[i].vector);
1890                         if (rc) {
1891                                 DP_ERR(edev, "Failed to add CPU rmap\n");
1892                                 qede_free_arfs(edev);
1893                         }
1894                 }
1895 #endif
1896                 rc = request_irq(edev->int_info.msix[i].vector,
1897                                  qede_msix_fp_int, 0, edev->fp_array[i].name,
1898                                  &edev->fp_array[i]);
1899                 if (rc) {
1900                         DP_ERR(edev, "Request fp %d irq failed\n", i);
1901                         qede_sync_free_irqs(edev);
1902                         return rc;
1903                 }
1904                 DP_VERBOSE(edev, NETIF_MSG_INTR,
1905                            "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1906                            edev->fp_array[i].name, i,
1907                            &edev->fp_array[i]);
1908                 edev->int_info.used_cnt++;
1909         }
1910
1911         return 0;
1912 }
1913
1914 static void qede_simd_fp_handler(void *cookie)
1915 {
1916         struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1917
1918         napi_schedule_irqoff(&fp->napi);
1919 }
1920
1921 static int qede_setup_irqs(struct qede_dev *edev)
1922 {
1923         int i, rc = 0;
1924
1925         /* Learn Interrupt configuration */
1926         rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1927         if (rc)
1928                 return rc;
1929
1930         if (edev->int_info.msix_cnt) {
1931                 rc = qede_req_msix_irqs(edev);
1932                 if (rc)
1933                         return rc;
1934                 edev->ndev->irq = edev->int_info.msix[0].vector;
1935         } else {
1936                 const struct qed_common_ops *ops;
1937
1938                 /* qed should learn receive the RSS ids and callbacks */
1939                 ops = edev->ops->common;
1940                 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1941                         ops->simd_handler_config(edev->cdev,
1942                                                  &edev->fp_array[i], i,
1943                                                  qede_simd_fp_handler);
1944                 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1945         }
1946         return 0;
1947 }
1948
1949 static int qede_drain_txq(struct qede_dev *edev,
1950                           struct qede_tx_queue *txq, bool allow_drain)
1951 {
1952         int rc, cnt = 1000;
1953
1954         while (txq->sw_tx_cons != txq->sw_tx_prod) {
1955                 if (!cnt) {
1956                         if (allow_drain) {
1957                                 DP_NOTICE(edev,
1958                                           "Tx queue[%d] is stuck, requesting MCP to drain\n",
1959                                           txq->index);
1960                                 rc = edev->ops->common->drain(edev->cdev);
1961                                 if (rc)
1962                                         return rc;
1963                                 return qede_drain_txq(edev, txq, false);
1964                         }
1965                         DP_NOTICE(edev,
1966                                   "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1967                                   txq->index, txq->sw_tx_prod,
1968                                   txq->sw_tx_cons);
1969                         return -ENODEV;
1970                 }
1971                 cnt--;
1972                 usleep_range(1000, 2000);
1973                 barrier();
1974         }
1975
1976         /* FW finished processing, wait for HW to transmit all tx packets */
1977         usleep_range(1000, 2000);
1978
1979         return 0;
1980 }
1981
1982 static int qede_stop_txq(struct qede_dev *edev,
1983                          struct qede_tx_queue *txq, int rss_id)
1984 {
1985         /* delete doorbell from doorbell recovery mechanism */
1986         edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
1987                                            &txq->tx_db);
1988
1989         return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1990 }
1991
1992 static int qede_stop_queues(struct qede_dev *edev)
1993 {
1994         struct qed_update_vport_params *vport_update_params;
1995         struct qed_dev *cdev = edev->cdev;
1996         struct qede_fastpath *fp;
1997         int rc, i;
1998
1999         /* Disable the vport */
2000         vport_update_params = vzalloc(sizeof(*vport_update_params));
2001         if (!vport_update_params)
2002                 return -ENOMEM;
2003
2004         vport_update_params->vport_id = 0;
2005         vport_update_params->update_vport_active_flg = 1;
2006         vport_update_params->vport_active_flg = 0;
2007         vport_update_params->update_rss_flg = 0;
2008
2009         rc = edev->ops->vport_update(cdev, vport_update_params);
2010         vfree(vport_update_params);
2011
2012         if (rc) {
2013                 DP_ERR(edev, "Failed to update vport\n");
2014                 return rc;
2015         }
2016
2017         /* Flush Tx queues. If needed, request drain from MCP */
2018         for_each_queue(i) {
2019                 fp = &edev->fp_array[i];
2020
2021                 if (fp->type & QEDE_FASTPATH_TX) {
2022                         int cos;
2023
2024                         for_each_cos_in_txq(edev, cos) {
2025                                 rc = qede_drain_txq(edev, &fp->txq[cos], true);
2026                                 if (rc)
2027                                         return rc;
2028                         }
2029                 }
2030
2031                 if (fp->type & QEDE_FASTPATH_XDP) {
2032                         rc = qede_drain_txq(edev, fp->xdp_tx, true);
2033                         if (rc)
2034                                 return rc;
2035                 }
2036         }
2037
2038         /* Stop all Queues in reverse order */
2039         for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2040                 fp = &edev->fp_array[i];
2041
2042                 /* Stop the Tx Queue(s) */
2043                 if (fp->type & QEDE_FASTPATH_TX) {
2044                         int cos;
2045
2046                         for_each_cos_in_txq(edev, cos) {
2047                                 rc = qede_stop_txq(edev, &fp->txq[cos], i);
2048                                 if (rc)
2049                                         return rc;
2050                         }
2051                 }
2052
2053                 /* Stop the Rx Queue */
2054                 if (fp->type & QEDE_FASTPATH_RX) {
2055                         rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2056                         if (rc) {
2057                                 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2058                                 return rc;
2059                         }
2060                 }
2061
2062                 /* Stop the XDP forwarding queue */
2063                 if (fp->type & QEDE_FASTPATH_XDP) {
2064                         rc = qede_stop_txq(edev, fp->xdp_tx, i);
2065                         if (rc)
2066                                 return rc;
2067
2068                         bpf_prog_put(fp->rxq->xdp_prog);
2069                 }
2070         }
2071
2072         /* Stop the vport */
2073         rc = edev->ops->vport_stop(cdev, 0);
2074         if (rc)
2075                 DP_ERR(edev, "Failed to stop VPORT\n");
2076
2077         return rc;
2078 }
2079
2080 static int qede_start_txq(struct qede_dev *edev,
2081                           struct qede_fastpath *fp,
2082                           struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2083 {
2084         dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2085         u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2086         struct qed_queue_start_common_params params;
2087         struct qed_txq_start_ret_params ret_params;
2088         int rc;
2089
2090         memset(&params, 0, sizeof(params));
2091         memset(&ret_params, 0, sizeof(ret_params));
2092
2093         /* Let the XDP queue share the queue-zone with one of the regular txq.
2094          * We don't really care about its coalescing.
2095          */
2096         if (txq->is_xdp)
2097                 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2098         else
2099                 params.queue_id = txq->index;
2100
2101         params.p_sb = fp->sb_info;
2102         params.sb_idx = sb_idx;
2103         params.tc = txq->cos;
2104
2105         rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2106                                    page_cnt, &ret_params);
2107         if (rc) {
2108                 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2109                 return rc;
2110         }
2111
2112         txq->doorbell_addr = ret_params.p_doorbell;
2113         txq->handle = ret_params.p_handle;
2114
2115         /* Determine the FW consumer address associated */
2116         txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2117
2118         /* Prepare the doorbell parameters */
2119         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2120         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2121         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2122                   DQ_XCM_ETH_TX_BD_PROD_CMD);
2123         txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2124
2125         /* register doorbell with doorbell recovery mechanism */
2126         rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2127                                                 &txq->tx_db, DB_REC_WIDTH_32B,
2128                                                 DB_REC_KERNEL);
2129
2130         return rc;
2131 }
2132
2133 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2134 {
2135         int vlan_removal_en = 1;
2136         struct qed_dev *cdev = edev->cdev;
2137         struct qed_dev_info *qed_info = &edev->dev_info.common;
2138         struct qed_update_vport_params *vport_update_params;
2139         struct qed_queue_start_common_params q_params;
2140         struct qed_start_vport_params start = {0};
2141         int rc, i;
2142
2143         if (!edev->num_queues) {
2144                 DP_ERR(edev,
2145                        "Cannot update V-VPORT as active as there are no Rx queues\n");
2146                 return -EINVAL;
2147         }
2148
2149         vport_update_params = vzalloc(sizeof(*vport_update_params));
2150         if (!vport_update_params)
2151                 return -ENOMEM;
2152
2153         start.handle_ptp_pkts = !!(edev->ptp);
2154         start.gro_enable = !edev->gro_disable;
2155         start.mtu = edev->ndev->mtu;
2156         start.vport_id = 0;
2157         start.drop_ttl0 = true;
2158         start.remove_inner_vlan = vlan_removal_en;
2159         start.clear_stats = clear_stats;
2160
2161         rc = edev->ops->vport_start(cdev, &start);
2162
2163         if (rc) {
2164                 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2165                 goto out;
2166         }
2167
2168         DP_VERBOSE(edev, NETIF_MSG_IFUP,
2169                    "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2170                    start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2171
2172         for_each_queue(i) {
2173                 struct qede_fastpath *fp = &edev->fp_array[i];
2174                 dma_addr_t p_phys_table;
2175                 u32 page_cnt;
2176
2177                 if (fp->type & QEDE_FASTPATH_RX) {
2178                         struct qed_rxq_start_ret_params ret_params;
2179                         struct qede_rx_queue *rxq = fp->rxq;
2180                         __le16 *val;
2181
2182                         memset(&ret_params, 0, sizeof(ret_params));
2183                         memset(&q_params, 0, sizeof(q_params));
2184                         q_params.queue_id = rxq->rxq_id;
2185                         q_params.vport_id = 0;
2186                         q_params.p_sb = fp->sb_info;
2187                         q_params.sb_idx = RX_PI;
2188
2189                         p_phys_table =
2190                             qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2191                         page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2192
2193                         rc = edev->ops->q_rx_start(cdev, i, &q_params,
2194                                                    rxq->rx_buf_size,
2195                                                    rxq->rx_bd_ring.p_phys_addr,
2196                                                    p_phys_table,
2197                                                    page_cnt, &ret_params);
2198                         if (rc) {
2199                                 DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2200                                        rc);
2201                                 goto out;
2202                         }
2203
2204                         /* Use the return parameters */
2205                         rxq->hw_rxq_prod_addr = ret_params.p_prod;
2206                         rxq->handle = ret_params.p_handle;
2207
2208                         val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2209                         rxq->hw_cons_ptr = val;
2210
2211                         qede_update_rx_prod(edev, rxq);
2212                 }
2213
2214                 if (fp->type & QEDE_FASTPATH_XDP) {
2215                         rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2216                         if (rc)
2217                                 goto out;
2218
2219                         bpf_prog_add(edev->xdp_prog, 1);
2220                         fp->rxq->xdp_prog = edev->xdp_prog;
2221                 }
2222
2223                 if (fp->type & QEDE_FASTPATH_TX) {
2224                         int cos;
2225
2226                         for_each_cos_in_txq(edev, cos) {
2227                                 rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2228                                                     TX_PI(cos));
2229                                 if (rc)
2230                                         goto out;
2231                         }
2232                 }
2233         }
2234
2235         /* Prepare and send the vport enable */
2236         vport_update_params->vport_id = start.vport_id;
2237         vport_update_params->update_vport_active_flg = 1;
2238         vport_update_params->vport_active_flg = 1;
2239
2240         if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2241             qed_info->tx_switching) {
2242                 vport_update_params->update_tx_switching_flg = 1;
2243                 vport_update_params->tx_switching_flg = 1;
2244         }
2245
2246         qede_fill_rss_params(edev, &vport_update_params->rss_params,
2247                              &vport_update_params->update_rss_flg);
2248
2249         rc = edev->ops->vport_update(cdev, vport_update_params);
2250         if (rc)
2251                 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2252
2253 out:
2254         vfree(vport_update_params);
2255         return rc;
2256 }
2257
2258 enum qede_unload_mode {
2259         QEDE_UNLOAD_NORMAL,
2260         QEDE_UNLOAD_RECOVERY,
2261 };
2262
2263 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2264                         bool is_locked)
2265 {
2266         struct qed_link_params link_params;
2267         int rc;
2268
2269         DP_INFO(edev, "Starting qede unload\n");
2270
2271         if (!is_locked)
2272                 __qede_lock(edev);
2273
2274         clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2275
2276         if (mode != QEDE_UNLOAD_RECOVERY)
2277                 edev->state = QEDE_STATE_CLOSED;
2278
2279         qede_rdma_dev_event_close(edev);
2280
2281         /* Close OS Tx */
2282         netif_tx_disable(edev->ndev);
2283         netif_carrier_off(edev->ndev);
2284
2285         if (mode != QEDE_UNLOAD_RECOVERY) {
2286                 /* Reset the link */
2287                 memset(&link_params, 0, sizeof(link_params));
2288                 link_params.link_up = false;
2289                 edev->ops->common->set_link(edev->cdev, &link_params);
2290
2291                 rc = qede_stop_queues(edev);
2292                 if (rc) {
2293                         qede_sync_free_irqs(edev);
2294                         goto out;
2295                 }
2296
2297                 DP_INFO(edev, "Stopped Queues\n");
2298         }
2299
2300         qede_vlan_mark_nonconfigured(edev);
2301         edev->ops->fastpath_stop(edev->cdev);
2302
2303         if (edev->dev_info.common.b_arfs_capable) {
2304                 qede_poll_for_freeing_arfs_filters(edev);
2305                 qede_free_arfs(edev);
2306         }
2307
2308         /* Release the interrupts */
2309         qede_sync_free_irqs(edev);
2310         edev->ops->common->set_fp_int(edev->cdev, 0);
2311
2312         qede_napi_disable_remove(edev);
2313
2314         if (mode == QEDE_UNLOAD_RECOVERY)
2315                 qede_empty_tx_queues(edev);
2316
2317         qede_free_mem_load(edev);
2318         qede_free_fp_array(edev);
2319
2320 out:
2321         if (!is_locked)
2322                 __qede_unlock(edev);
2323
2324         if (mode != QEDE_UNLOAD_RECOVERY)
2325                 DP_NOTICE(edev, "Link is down\n");
2326
2327         edev->ptp_skip_txts = 0;
2328
2329         DP_INFO(edev, "Ending qede unload\n");
2330 }
2331
2332 enum qede_load_mode {
2333         QEDE_LOAD_NORMAL,
2334         QEDE_LOAD_RELOAD,
2335         QEDE_LOAD_RECOVERY,
2336 };
2337
2338 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2339                      bool is_locked)
2340 {
2341         struct qed_link_params link_params;
2342         struct ethtool_coalesce coal = {};
2343         u8 num_tc;
2344         int rc, i;
2345
2346         DP_INFO(edev, "Starting qede load\n");
2347
2348         if (!is_locked)
2349                 __qede_lock(edev);
2350
2351         rc = qede_set_num_queues(edev);
2352         if (rc)
2353                 goto out;
2354
2355         rc = qede_alloc_fp_array(edev);
2356         if (rc)
2357                 goto out;
2358
2359         qede_init_fp(edev);
2360
2361         rc = qede_alloc_mem_load(edev);
2362         if (rc)
2363                 goto err1;
2364         DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2365                 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2366
2367         rc = qede_set_real_num_queues(edev);
2368         if (rc)
2369                 goto err2;
2370
2371         if (qede_alloc_arfs(edev)) {
2372                 edev->ndev->features &= ~NETIF_F_NTUPLE;
2373                 edev->dev_info.common.b_arfs_capable = false;
2374         }
2375
2376         qede_napi_add_enable(edev);
2377         DP_INFO(edev, "Napi added and enabled\n");
2378
2379         rc = qede_setup_irqs(edev);
2380         if (rc)
2381                 goto err3;
2382         DP_INFO(edev, "Setup IRQs succeeded\n");
2383
2384         rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2385         if (rc)
2386                 goto err4;
2387         DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2388
2389         num_tc = netdev_get_num_tc(edev->ndev);
2390         num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2391         qede_setup_tc(edev->ndev, num_tc);
2392
2393         /* Program un-configured VLANs */
2394         qede_configure_vlan_filters(edev);
2395
2396         set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2397
2398         /* Ask for link-up using current configuration */
2399         memset(&link_params, 0, sizeof(link_params));
2400         link_params.link_up = true;
2401         edev->ops->common->set_link(edev->cdev, &link_params);
2402
2403         edev->state = QEDE_STATE_OPEN;
2404
2405         coal.rx_coalesce_usecs = QED_DEFAULT_RX_USECS;
2406         coal.tx_coalesce_usecs = QED_DEFAULT_TX_USECS;
2407
2408         for_each_queue(i) {
2409                 if (edev->coal_entry[i].isvalid) {
2410                         coal.rx_coalesce_usecs = edev->coal_entry[i].rxc;
2411                         coal.tx_coalesce_usecs = edev->coal_entry[i].txc;
2412                 }
2413                 __qede_unlock(edev);
2414                 qede_set_per_coalesce(edev->ndev, i, &coal);
2415                 __qede_lock(edev);
2416         }
2417         DP_INFO(edev, "Ending successfully qede load\n");
2418
2419         goto out;
2420 err4:
2421         qede_sync_free_irqs(edev);
2422         memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2423 err3:
2424         qede_napi_disable_remove(edev);
2425 err2:
2426         qede_free_mem_load(edev);
2427 err1:
2428         edev->ops->common->set_fp_int(edev->cdev, 0);
2429         qede_free_fp_array(edev);
2430         edev->num_queues = 0;
2431         edev->fp_num_tx = 0;
2432         edev->fp_num_rx = 0;
2433 out:
2434         if (!is_locked)
2435                 __qede_unlock(edev);
2436
2437         return rc;
2438 }
2439
2440 /* 'func' should be able to run between unload and reload assuming interface
2441  * is actually running, or afterwards in case it's currently DOWN.
2442  */
2443 void qede_reload(struct qede_dev *edev,
2444                  struct qede_reload_args *args, bool is_locked)
2445 {
2446         if (!is_locked)
2447                 __qede_lock(edev);
2448
2449         /* Since qede_lock is held, internal state wouldn't change even
2450          * if netdev state would start transitioning. Check whether current
2451          * internal configuration indicates device is up, then reload.
2452          */
2453         if (edev->state == QEDE_STATE_OPEN) {
2454                 qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2455                 if (args)
2456                         args->func(edev, args);
2457                 qede_load(edev, QEDE_LOAD_RELOAD, true);
2458
2459                 /* Since no one is going to do it for us, re-configure */
2460                 qede_config_rx_mode(edev->ndev);
2461         } else if (args) {
2462                 args->func(edev, args);
2463         }
2464
2465         if (!is_locked)
2466                 __qede_unlock(edev);
2467 }
2468
2469 /* called with rtnl_lock */
2470 static int qede_open(struct net_device *ndev)
2471 {
2472         struct qede_dev *edev = netdev_priv(ndev);
2473         int rc;
2474
2475         netif_carrier_off(ndev);
2476
2477         edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2478
2479         rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2480         if (rc)
2481                 return rc;
2482
2483         udp_tunnel_nic_reset_ntf(ndev);
2484
2485         edev->ops->common->update_drv_state(edev->cdev, true);
2486
2487         return 0;
2488 }
2489
2490 static int qede_close(struct net_device *ndev)
2491 {
2492         struct qede_dev *edev = netdev_priv(ndev);
2493
2494         qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2495
2496         if (edev->cdev)
2497                 edev->ops->common->update_drv_state(edev->cdev, false);
2498
2499         return 0;
2500 }
2501
2502 static void qede_link_update(void *dev, struct qed_link_output *link)
2503 {
2504         struct qede_dev *edev = dev;
2505
2506         if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2507                 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2508                 return;
2509         }
2510
2511         if (link->link_up) {
2512                 if (!netif_carrier_ok(edev->ndev)) {
2513                         DP_NOTICE(edev, "Link is up\n");
2514                         netif_tx_start_all_queues(edev->ndev);
2515                         netif_carrier_on(edev->ndev);
2516                         qede_rdma_dev_event_open(edev);
2517                 }
2518         } else {
2519                 if (netif_carrier_ok(edev->ndev)) {
2520                         DP_NOTICE(edev, "Link is down\n");
2521                         netif_tx_disable(edev->ndev);
2522                         netif_carrier_off(edev->ndev);
2523                         qede_rdma_dev_event_close(edev);
2524                 }
2525         }
2526 }
2527
2528 static void qede_schedule_recovery_handler(void *dev)
2529 {
2530         struct qede_dev *edev = dev;
2531
2532         if (edev->state == QEDE_STATE_RECOVERY) {
2533                 DP_NOTICE(edev,
2534                           "Avoid scheduling a recovery handling since already in recovery state\n");
2535                 return;
2536         }
2537
2538         set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2539         schedule_delayed_work(&edev->sp_task, 0);
2540
2541         DP_INFO(edev, "Scheduled a recovery handler\n");
2542 }
2543
2544 static void qede_recovery_failed(struct qede_dev *edev)
2545 {
2546         netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2547
2548         netif_device_detach(edev->ndev);
2549
2550         if (edev->cdev)
2551                 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2552 }
2553
2554 static void qede_recovery_handler(struct qede_dev *edev)
2555 {
2556         u32 curr_state = edev->state;
2557         int rc;
2558
2559         DP_NOTICE(edev, "Starting a recovery process\n");
2560
2561         /* No need to acquire first the qede_lock since is done by qede_sp_task
2562          * before calling this function.
2563          */
2564         edev->state = QEDE_STATE_RECOVERY;
2565
2566         edev->ops->common->recovery_prolog(edev->cdev);
2567
2568         if (curr_state == QEDE_STATE_OPEN)
2569                 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2570
2571         __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2572
2573         rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2574                           IS_VF(edev), QEDE_PROBE_RECOVERY);
2575         if (rc) {
2576                 edev->cdev = NULL;
2577                 goto err;
2578         }
2579
2580         if (curr_state == QEDE_STATE_OPEN) {
2581                 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2582                 if (rc)
2583                         goto err;
2584
2585                 qede_config_rx_mode(edev->ndev);
2586                 udp_tunnel_nic_reset_ntf(edev->ndev);
2587         }
2588
2589         edev->state = curr_state;
2590
2591         DP_NOTICE(edev, "Recovery handling is done\n");
2592
2593         return;
2594
2595 err:
2596         qede_recovery_failed(edev);
2597 }
2598
2599 static void qede_atomic_hw_err_handler(struct qede_dev *edev)
2600 {
2601         struct qed_dev *cdev = edev->cdev;
2602
2603         DP_NOTICE(edev,
2604                   "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2605                   edev->err_flags);
2606
2607         /* Get a call trace of the flow that led to the error */
2608         WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
2609
2610         /* Prevent HW attentions from being reasserted */
2611         if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2612                 edev->ops->common->attn_clr_enable(cdev, true);
2613
2614         DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2615 }
2616
2617 static void qede_generic_hw_err_handler(struct qede_dev *edev)
2618 {
2619         DP_NOTICE(edev,
2620                   "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2621                   edev->err_flags);
2622
2623         if (edev->devlink)
2624                 edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type);
2625
2626         clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2627
2628         DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2629 }
2630
2631 static void qede_set_hw_err_flags(struct qede_dev *edev,
2632                                   enum qed_hw_err_type err_type)
2633 {
2634         unsigned long err_flags = 0;
2635
2636         switch (err_type) {
2637         case QED_HW_ERR_DMAE_FAIL:
2638                 set_bit(QEDE_ERR_WARN, &err_flags);
2639                 fallthrough;
2640         case QED_HW_ERR_MFW_RESP_FAIL:
2641         case QED_HW_ERR_HW_ATTN:
2642         case QED_HW_ERR_RAMROD_FAIL:
2643         case QED_HW_ERR_FW_ASSERT:
2644                 set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2645                 set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2646                 break;
2647
2648         default:
2649                 DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2650                 break;
2651         }
2652
2653         edev->err_flags |= err_flags;
2654 }
2655
2656 static void qede_schedule_hw_err_handler(void *dev,
2657                                          enum qed_hw_err_type err_type)
2658 {
2659         struct qede_dev *edev = dev;
2660
2661         /* Fan failure cannot be masked by handling of another HW error or by a
2662          * concurrent recovery process.
2663          */
2664         if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2665              edev->state == QEDE_STATE_RECOVERY) &&
2666              err_type != QED_HW_ERR_FAN_FAIL) {
2667                 DP_INFO(edev,
2668                         "Avoid scheduling an error handling while another HW error is being handled\n");
2669                 return;
2670         }
2671
2672         if (err_type >= QED_HW_ERR_LAST) {
2673                 DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2674                 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2675                 return;
2676         }
2677
2678         edev->last_err_type = err_type;
2679         qede_set_hw_err_flags(edev, err_type);
2680         qede_atomic_hw_err_handler(edev);
2681         set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2682         schedule_delayed_work(&edev->sp_task, 0);
2683
2684         DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2685 }
2686
2687 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2688 {
2689         struct netdev_queue *netdev_txq;
2690
2691         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2692         if (netif_xmit_stopped(netdev_txq))
2693                 return true;
2694
2695         return false;
2696 }
2697
2698 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2699 {
2700         struct qede_dev *edev = dev;
2701         struct netdev_hw_addr *ha;
2702         int i;
2703
2704         if (edev->ndev->features & NETIF_F_IP_CSUM)
2705                 data->feat_flags |= QED_TLV_IP_CSUM;
2706         if (edev->ndev->features & NETIF_F_TSO)
2707                 data->feat_flags |= QED_TLV_LSO;
2708
2709         ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2710         eth_zero_addr(data->mac[1]);
2711         eth_zero_addr(data->mac[2]);
2712         /* Copy the first two UC macs */
2713         netif_addr_lock_bh(edev->ndev);
2714         i = 1;
2715         netdev_for_each_uc_addr(ha, edev->ndev) {
2716                 ether_addr_copy(data->mac[i++], ha->addr);
2717                 if (i == QED_TLV_MAC_COUNT)
2718                         break;
2719         }
2720
2721         netif_addr_unlock_bh(edev->ndev);
2722 }
2723
2724 static void qede_get_eth_tlv_data(void *dev, void *data)
2725 {
2726         struct qed_mfw_tlv_eth *etlv = data;
2727         struct qede_dev *edev = dev;
2728         struct qede_fastpath *fp;
2729         int i;
2730
2731         etlv->lso_maxoff_size = 0XFFFF;
2732         etlv->lso_maxoff_size_set = true;
2733         etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2734         etlv->lso_minseg_size_set = true;
2735         etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2736         etlv->prom_mode_set = true;
2737         etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2738         etlv->tx_descr_size_set = true;
2739         etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2740         etlv->rx_descr_size_set = true;
2741         etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2742         etlv->iov_offload_set = true;
2743
2744         /* Fill information regarding queues; Should be done under the qede
2745          * lock to guarantee those don't change beneath our feet.
2746          */
2747         etlv->txqs_empty = true;
2748         etlv->rxqs_empty = true;
2749         etlv->num_txqs_full = 0;
2750         etlv->num_rxqs_full = 0;
2751
2752         __qede_lock(edev);
2753         for_each_queue(i) {
2754                 fp = &edev->fp_array[i];
2755                 if (fp->type & QEDE_FASTPATH_TX) {
2756                         struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2757
2758                         if (txq->sw_tx_cons != txq->sw_tx_prod)
2759                                 etlv->txqs_empty = false;
2760                         if (qede_is_txq_full(edev, txq))
2761                                 etlv->num_txqs_full++;
2762                 }
2763                 if (fp->type & QEDE_FASTPATH_RX) {
2764                         if (qede_has_rx_work(fp->rxq))
2765                                 etlv->rxqs_empty = false;
2766
2767                         /* This one is a bit tricky; Firmware might stop
2768                          * placing packets if ring is not yet full.
2769                          * Give an approximation.
2770                          */
2771                         if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2772                             qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2773                             RX_RING_SIZE - 100)
2774                                 etlv->num_rxqs_full++;
2775                 }
2776         }
2777         __qede_unlock(edev);
2778
2779         etlv->txqs_empty_set = true;
2780         etlv->rxqs_empty_set = true;
2781         etlv->num_txqs_full_set = true;
2782         etlv->num_rxqs_full_set = true;
2783 }
2784
2785 /**
2786  * qede_io_error_detected - called when PCI error is detected
2787  * @pdev: Pointer to PCI device
2788  * @state: The current pci connection state
2789  *
2790  * This function is called after a PCI bus error affecting
2791  * this device has been detected.
2792  */
2793 static pci_ers_result_t
2794 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2795 {
2796         struct net_device *dev = pci_get_drvdata(pdev);
2797         struct qede_dev *edev = netdev_priv(dev);
2798
2799         if (!edev)
2800                 return PCI_ERS_RESULT_NONE;
2801
2802         DP_NOTICE(edev, "IO error detected [%d]\n", state);
2803
2804         __qede_lock(edev);
2805         if (edev->state == QEDE_STATE_RECOVERY) {
2806                 DP_NOTICE(edev, "Device already in the recovery state\n");
2807                 __qede_unlock(edev);
2808                 return PCI_ERS_RESULT_NONE;
2809         }
2810
2811         /* PF handles the recovery of its VFs */
2812         if (IS_VF(edev)) {
2813                 DP_VERBOSE(edev, QED_MSG_IOV,
2814                            "VF recovery is handled by its PF\n");
2815                 __qede_unlock(edev);
2816                 return PCI_ERS_RESULT_RECOVERED;
2817         }
2818
2819         /* Close OS Tx */
2820         netif_tx_disable(edev->ndev);
2821         netif_carrier_off(edev->ndev);
2822
2823         set_bit(QEDE_SP_AER, &edev->sp_flags);
2824         schedule_delayed_work(&edev->sp_task, 0);
2825
2826         __qede_unlock(edev);
2827
2828         return PCI_ERS_RESULT_CAN_RECOVER;
2829 }