ethernet: use eth_hw_addr_set() instead of ether_addr_copy()
[linux-2.6-microblaze.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qede NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2020 Marvell International Ltd.
5  */
6
7 #include <linux/crash_dump.h>
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/device.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/skbuff.h>
14 #include <linux/errno.h>
15 #include <linux/list.h>
16 #include <linux/string.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <asm/byteorder.h>
20 #include <asm/param.h>
21 #include <linux/io.h>
22 #include <linux/netdev_features.h>
23 #include <linux/udp.h>
24 #include <linux/tcp.h>
25 #include <net/udp_tunnel.h>
26 #include <linux/ip.h>
27 #include <net/ipv6.h>
28 #include <net/tcp.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_vlan.h>
31 #include <linux/pkt_sched.h>
32 #include <linux/ethtool.h>
33 #include <linux/in.h>
34 #include <linux/random.h>
35 #include <net/ip6_checksum.h>
36 #include <linux/bitops.h>
37 #include <linux/vmalloc.h>
38 #include <linux/aer.h>
39 #include "qede.h"
40 #include "qede_ptp.h"
41
42 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
43 MODULE_LICENSE("GPL");
44
45 static uint debug;
46 module_param(debug, uint, 0);
47 MODULE_PARM_DESC(debug, " Default debug msglevel");
48
49 static const struct qed_eth_ops *qed_ops;
50
51 #define CHIP_NUM_57980S_40              0x1634
52 #define CHIP_NUM_57980S_10              0x1666
53 #define CHIP_NUM_57980S_MF              0x1636
54 #define CHIP_NUM_57980S_100             0x1644
55 #define CHIP_NUM_57980S_50              0x1654
56 #define CHIP_NUM_57980S_25              0x1656
57 #define CHIP_NUM_57980S_IOV             0x1664
58 #define CHIP_NUM_AH                     0x8070
59 #define CHIP_NUM_AH_IOV                 0x8090
60
61 #ifndef PCI_DEVICE_ID_NX2_57980E
62 #define PCI_DEVICE_ID_57980S_40         CHIP_NUM_57980S_40
63 #define PCI_DEVICE_ID_57980S_10         CHIP_NUM_57980S_10
64 #define PCI_DEVICE_ID_57980S_MF         CHIP_NUM_57980S_MF
65 #define PCI_DEVICE_ID_57980S_100        CHIP_NUM_57980S_100
66 #define PCI_DEVICE_ID_57980S_50         CHIP_NUM_57980S_50
67 #define PCI_DEVICE_ID_57980S_25         CHIP_NUM_57980S_25
68 #define PCI_DEVICE_ID_57980S_IOV        CHIP_NUM_57980S_IOV
69 #define PCI_DEVICE_ID_AH                CHIP_NUM_AH
70 #define PCI_DEVICE_ID_AH_IOV            CHIP_NUM_AH_IOV
71
72 #endif
73
74 enum qede_pci_private {
75         QEDE_PRIVATE_PF,
76         QEDE_PRIVATE_VF
77 };
78
79 static const struct pci_device_id qede_pci_tbl[] = {
80         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
81         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
82         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
83         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
84         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
85         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
86 #ifdef CONFIG_QED_SRIOV
87         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
88 #endif
89         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
90 #ifdef CONFIG_QED_SRIOV
91         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
92 #endif
93         { 0 }
94 };
95
96 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
97
98 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
99 static pci_ers_result_t
100 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
101
102 #define TX_TIMEOUT              (5 * HZ)
103
104 /* Utilize last protocol index for XDP */
105 #define XDP_PI  11
106
107 static void qede_remove(struct pci_dev *pdev);
108 static void qede_shutdown(struct pci_dev *pdev);
109 static void qede_link_update(void *dev, struct qed_link_output *link);
110 static void qede_schedule_recovery_handler(void *dev);
111 static void qede_recovery_handler(struct qede_dev *edev);
112 static void qede_schedule_hw_err_handler(void *dev,
113                                          enum qed_hw_err_type err_type);
114 static void qede_get_eth_tlv_data(void *edev, void *data);
115 static void qede_get_generic_tlv_data(void *edev,
116                                       struct qed_generic_tlvs *data);
117 static void qede_generic_hw_err_handler(struct qede_dev *edev);
118 #ifdef CONFIG_QED_SRIOV
119 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
120                             __be16 vlan_proto)
121 {
122         struct qede_dev *edev = netdev_priv(ndev);
123
124         if (vlan > 4095) {
125                 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
126                 return -EINVAL;
127         }
128
129         if (vlan_proto != htons(ETH_P_8021Q))
130                 return -EPROTONOSUPPORT;
131
132         DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
133                    vlan, vf);
134
135         return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
136 }
137
138 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
139 {
140         struct qede_dev *edev = netdev_priv(ndev);
141
142         DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx);
143
144         if (!is_valid_ether_addr(mac)) {
145                 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
146                 return -EINVAL;
147         }
148
149         return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
150 }
151
152 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
153 {
154         struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
155         struct qed_dev_info *qed_info = &edev->dev_info.common;
156         struct qed_update_vport_params *vport_params;
157         int rc;
158
159         vport_params = vzalloc(sizeof(*vport_params));
160         if (!vport_params)
161                 return -ENOMEM;
162         DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
163
164         rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
165
166         /* Enable/Disable Tx switching for PF */
167         if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
168             !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
169                 vport_params->vport_id = 0;
170                 vport_params->update_tx_switching_flg = 1;
171                 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
172                 edev->ops->vport_update(edev->cdev, vport_params);
173         }
174
175         vfree(vport_params);
176         return rc;
177 }
178 #endif
179
180 static const struct pci_error_handlers qede_err_handler = {
181         .error_detected = qede_io_error_detected,
182 };
183
184 static struct pci_driver qede_pci_driver = {
185         .name = "qede",
186         .id_table = qede_pci_tbl,
187         .probe = qede_probe,
188         .remove = qede_remove,
189         .shutdown = qede_shutdown,
190 #ifdef CONFIG_QED_SRIOV
191         .sriov_configure = qede_sriov_configure,
192 #endif
193         .err_handler = &qede_err_handler,
194 };
195
196 static struct qed_eth_cb_ops qede_ll_ops = {
197         {
198 #ifdef CONFIG_RFS_ACCEL
199                 .arfs_filter_op = qede_arfs_filter_op,
200 #endif
201                 .link_update = qede_link_update,
202                 .schedule_recovery_handler = qede_schedule_recovery_handler,
203                 .schedule_hw_err_handler = qede_schedule_hw_err_handler,
204                 .get_generic_tlv_data = qede_get_generic_tlv_data,
205                 .get_protocol_tlv_data = qede_get_eth_tlv_data,
206         },
207         .force_mac = qede_force_mac,
208         .ports_update = qede_udp_ports_update,
209 };
210
211 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
212                              void *ptr)
213 {
214         struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
215         struct ethtool_drvinfo drvinfo;
216         struct qede_dev *edev;
217
218         if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
219                 goto done;
220
221         /* Check whether this is a qede device */
222         if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
223                 goto done;
224
225         memset(&drvinfo, 0, sizeof(drvinfo));
226         ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
227         if (strcmp(drvinfo.driver, "qede"))
228                 goto done;
229         edev = netdev_priv(ndev);
230
231         switch (event) {
232         case NETDEV_CHANGENAME:
233                 /* Notify qed of the name change */
234                 if (!edev->ops || !edev->ops->common)
235                         goto done;
236                 edev->ops->common->set_name(edev->cdev, edev->ndev->name);
237                 break;
238         case NETDEV_CHANGEADDR:
239                 edev = netdev_priv(ndev);
240                 qede_rdma_event_changeaddr(edev);
241                 break;
242         }
243
244 done:
245         return NOTIFY_DONE;
246 }
247
248 static struct notifier_block qede_netdev_notifier = {
249         .notifier_call = qede_netdev_event,
250 };
251
252 static
253 int __init qede_init(void)
254 {
255         int ret;
256
257         pr_info("qede init: QLogic FastLinQ 4xxxx Ethernet Driver qede\n");
258
259         qede_forced_speed_maps_init();
260
261         qed_ops = qed_get_eth_ops();
262         if (!qed_ops) {
263                 pr_notice("Failed to get qed ethtool operations\n");
264                 return -EINVAL;
265         }
266
267         /* Must register notifier before pci ops, since we might miss
268          * interface rename after pci probe and netdev registration.
269          */
270         ret = register_netdevice_notifier(&qede_netdev_notifier);
271         if (ret) {
272                 pr_notice("Failed to register netdevice_notifier\n");
273                 qed_put_eth_ops();
274                 return -EINVAL;
275         }
276
277         ret = pci_register_driver(&qede_pci_driver);
278         if (ret) {
279                 pr_notice("Failed to register driver\n");
280                 unregister_netdevice_notifier(&qede_netdev_notifier);
281                 qed_put_eth_ops();
282                 return -EINVAL;
283         }
284
285         return 0;
286 }
287
288 static void __exit qede_cleanup(void)
289 {
290         if (debug & QED_LOG_INFO_MASK)
291                 pr_info("qede_cleanup called\n");
292
293         unregister_netdevice_notifier(&qede_netdev_notifier);
294         pci_unregister_driver(&qede_pci_driver);
295         qed_put_eth_ops();
296 }
297
298 module_init(qede_init);
299 module_exit(qede_cleanup);
300
301 static int qede_open(struct net_device *ndev);
302 static int qede_close(struct net_device *ndev);
303
304 void qede_fill_by_demand_stats(struct qede_dev *edev)
305 {
306         struct qede_stats_common *p_common = &edev->stats.common;
307         struct qed_eth_stats stats;
308
309         edev->ops->get_vport_stats(edev->cdev, &stats);
310
311         p_common->no_buff_discards = stats.common.no_buff_discards;
312         p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
313         p_common->ttl0_discard = stats.common.ttl0_discard;
314         p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
315         p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
316         p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
317         p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
318         p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
319         p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
320         p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
321         p_common->mac_filter_discards = stats.common.mac_filter_discards;
322         p_common->gft_filter_drop = stats.common.gft_filter_drop;
323
324         p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
325         p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
326         p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
327         p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
328         p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
329         p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
330         p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
331         p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
332         p_common->coalesced_events = stats.common.tpa_coalesced_events;
333         p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
334         p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
335         p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
336
337         p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
338         p_common->rx_65_to_127_byte_packets =
339             stats.common.rx_65_to_127_byte_packets;
340         p_common->rx_128_to_255_byte_packets =
341             stats.common.rx_128_to_255_byte_packets;
342         p_common->rx_256_to_511_byte_packets =
343             stats.common.rx_256_to_511_byte_packets;
344         p_common->rx_512_to_1023_byte_packets =
345             stats.common.rx_512_to_1023_byte_packets;
346         p_common->rx_1024_to_1518_byte_packets =
347             stats.common.rx_1024_to_1518_byte_packets;
348         p_common->rx_crc_errors = stats.common.rx_crc_errors;
349         p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
350         p_common->rx_pause_frames = stats.common.rx_pause_frames;
351         p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
352         p_common->rx_align_errors = stats.common.rx_align_errors;
353         p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
354         p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
355         p_common->rx_jabbers = stats.common.rx_jabbers;
356         p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
357         p_common->rx_fragments = stats.common.rx_fragments;
358         p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
359         p_common->tx_65_to_127_byte_packets =
360             stats.common.tx_65_to_127_byte_packets;
361         p_common->tx_128_to_255_byte_packets =
362             stats.common.tx_128_to_255_byte_packets;
363         p_common->tx_256_to_511_byte_packets =
364             stats.common.tx_256_to_511_byte_packets;
365         p_common->tx_512_to_1023_byte_packets =
366             stats.common.tx_512_to_1023_byte_packets;
367         p_common->tx_1024_to_1518_byte_packets =
368             stats.common.tx_1024_to_1518_byte_packets;
369         p_common->tx_pause_frames = stats.common.tx_pause_frames;
370         p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
371         p_common->brb_truncates = stats.common.brb_truncates;
372         p_common->brb_discards = stats.common.brb_discards;
373         p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
374         p_common->link_change_count = stats.common.link_change_count;
375         p_common->ptp_skip_txts = edev->ptp_skip_txts;
376
377         if (QEDE_IS_BB(edev)) {
378                 struct qede_stats_bb *p_bb = &edev->stats.bb;
379
380                 p_bb->rx_1519_to_1522_byte_packets =
381                     stats.bb.rx_1519_to_1522_byte_packets;
382                 p_bb->rx_1519_to_2047_byte_packets =
383                     stats.bb.rx_1519_to_2047_byte_packets;
384                 p_bb->rx_2048_to_4095_byte_packets =
385                     stats.bb.rx_2048_to_4095_byte_packets;
386                 p_bb->rx_4096_to_9216_byte_packets =
387                     stats.bb.rx_4096_to_9216_byte_packets;
388                 p_bb->rx_9217_to_16383_byte_packets =
389                     stats.bb.rx_9217_to_16383_byte_packets;
390                 p_bb->tx_1519_to_2047_byte_packets =
391                     stats.bb.tx_1519_to_2047_byte_packets;
392                 p_bb->tx_2048_to_4095_byte_packets =
393                     stats.bb.tx_2048_to_4095_byte_packets;
394                 p_bb->tx_4096_to_9216_byte_packets =
395                     stats.bb.tx_4096_to_9216_byte_packets;
396                 p_bb->tx_9217_to_16383_byte_packets =
397                     stats.bb.tx_9217_to_16383_byte_packets;
398                 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
399                 p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
400         } else {
401                 struct qede_stats_ah *p_ah = &edev->stats.ah;
402
403                 p_ah->rx_1519_to_max_byte_packets =
404                     stats.ah.rx_1519_to_max_byte_packets;
405                 p_ah->tx_1519_to_max_byte_packets =
406                     stats.ah.tx_1519_to_max_byte_packets;
407         }
408 }
409
410 static void qede_get_stats64(struct net_device *dev,
411                              struct rtnl_link_stats64 *stats)
412 {
413         struct qede_dev *edev = netdev_priv(dev);
414         struct qede_stats_common *p_common;
415
416         qede_fill_by_demand_stats(edev);
417         p_common = &edev->stats.common;
418
419         stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
420                             p_common->rx_bcast_pkts;
421         stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
422                             p_common->tx_bcast_pkts;
423
424         stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
425                           p_common->rx_bcast_bytes;
426         stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
427                           p_common->tx_bcast_bytes;
428
429         stats->tx_errors = p_common->tx_err_drop_pkts;
430         stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
431
432         stats->rx_fifo_errors = p_common->no_buff_discards;
433
434         if (QEDE_IS_BB(edev))
435                 stats->collisions = edev->stats.bb.tx_total_collisions;
436         stats->rx_crc_errors = p_common->rx_crc_errors;
437         stats->rx_frame_errors = p_common->rx_align_errors;
438 }
439
440 #ifdef CONFIG_QED_SRIOV
441 static int qede_get_vf_config(struct net_device *dev, int vfidx,
442                               struct ifla_vf_info *ivi)
443 {
444         struct qede_dev *edev = netdev_priv(dev);
445
446         if (!edev->ops)
447                 return -EINVAL;
448
449         return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
450 }
451
452 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
453                             int min_tx_rate, int max_tx_rate)
454 {
455         struct qede_dev *edev = netdev_priv(dev);
456
457         return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
458                                         max_tx_rate);
459 }
460
461 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
462 {
463         struct qede_dev *edev = netdev_priv(dev);
464
465         if (!edev->ops)
466                 return -EINVAL;
467
468         return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
469 }
470
471 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
472                                   int link_state)
473 {
474         struct qede_dev *edev = netdev_priv(dev);
475
476         if (!edev->ops)
477                 return -EINVAL;
478
479         return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
480 }
481
482 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
483 {
484         struct qede_dev *edev = netdev_priv(dev);
485
486         if (!edev->ops)
487                 return -EINVAL;
488
489         return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
490 }
491 #endif
492
493 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
494 {
495         struct qede_dev *edev = netdev_priv(dev);
496
497         if (!netif_running(dev))
498                 return -EAGAIN;
499
500         switch (cmd) {
501         case SIOCSHWTSTAMP:
502                 return qede_ptp_hw_ts(edev, ifr);
503         default:
504                 DP_VERBOSE(edev, QED_MSG_DEBUG,
505                            "default IOCTL cmd 0x%x\n", cmd);
506                 return -EOPNOTSUPP;
507         }
508
509         return 0;
510 }
511
512 static void qede_tx_log_print(struct qede_dev *edev, struct qede_tx_queue *txq)
513 {
514         DP_NOTICE(edev,
515                   "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
516                   txq->index, le16_to_cpu(*txq->hw_cons_ptr),
517                   qed_chain_get_cons_idx(&txq->tx_pbl),
518                   qed_chain_get_prod_idx(&txq->tx_pbl),
519                   jiffies);
520 }
521
522 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
523 {
524         struct qede_dev *edev = netdev_priv(dev);
525         struct qede_tx_queue *txq;
526         int cos;
527
528         netif_carrier_off(dev);
529         DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
530
531         if (!(edev->fp_array[txqueue].type & QEDE_FASTPATH_TX))
532                 return;
533
534         for_each_cos_in_txq(edev, cos) {
535                 txq = &edev->fp_array[txqueue].txq[cos];
536
537                 if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
538                     qed_chain_get_prod_idx(&txq->tx_pbl))
539                         qede_tx_log_print(edev, txq);
540         }
541
542         if (IS_VF(edev))
543                 return;
544
545         if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
546             edev->state == QEDE_STATE_RECOVERY) {
547                 DP_INFO(edev,
548                         "Avoid handling a Tx timeout while another HW error is being handled\n");
549                 return;
550         }
551
552         set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
553         set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
554         schedule_delayed_work(&edev->sp_task, 0);
555 }
556
557 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
558 {
559         struct qede_dev *edev = netdev_priv(ndev);
560         int cos, count, offset;
561
562         if (num_tc > edev->dev_info.num_tc)
563                 return -EINVAL;
564
565         netdev_reset_tc(ndev);
566         netdev_set_num_tc(ndev, num_tc);
567
568         for_each_cos_in_txq(edev, cos) {
569                 count = QEDE_TSS_COUNT(edev);
570                 offset = cos * QEDE_TSS_COUNT(edev);
571                 netdev_set_tc_queue(ndev, cos, count, offset);
572         }
573
574         return 0;
575 }
576
577 static int
578 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
579                 __be16 proto)
580 {
581         switch (f->command) {
582         case FLOW_CLS_REPLACE:
583                 return qede_add_tc_flower_fltr(edev, proto, f);
584         case FLOW_CLS_DESTROY:
585                 return qede_delete_flow_filter(edev, f->cookie);
586         default:
587                 return -EOPNOTSUPP;
588         }
589 }
590
591 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
592                                   void *cb_priv)
593 {
594         struct flow_cls_offload *f;
595         struct qede_dev *edev = cb_priv;
596
597         if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
598                 return -EOPNOTSUPP;
599
600         switch (type) {
601         case TC_SETUP_CLSFLOWER:
602                 f = type_data;
603                 return qede_set_flower(edev, f, f->common.protocol);
604         default:
605                 return -EOPNOTSUPP;
606         }
607 }
608
609 static LIST_HEAD(qede_block_cb_list);
610
611 static int
612 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
613                       void *type_data)
614 {
615         struct qede_dev *edev = netdev_priv(dev);
616         struct tc_mqprio_qopt *mqprio;
617
618         switch (type) {
619         case TC_SETUP_BLOCK:
620                 return flow_block_cb_setup_simple(type_data,
621                                                   &qede_block_cb_list,
622                                                   qede_setup_tc_block_cb,
623                                                   edev, edev, true);
624         case TC_SETUP_QDISC_MQPRIO:
625                 mqprio = type_data;
626
627                 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
628                 return qede_setup_tc(dev, mqprio->num_tc);
629         default:
630                 return -EOPNOTSUPP;
631         }
632 }
633
634 static const struct net_device_ops qede_netdev_ops = {
635         .ndo_open               = qede_open,
636         .ndo_stop               = qede_close,
637         .ndo_start_xmit         = qede_start_xmit,
638         .ndo_select_queue       = qede_select_queue,
639         .ndo_set_rx_mode        = qede_set_rx_mode,
640         .ndo_set_mac_address    = qede_set_mac_addr,
641         .ndo_validate_addr      = eth_validate_addr,
642         .ndo_change_mtu         = qede_change_mtu,
643         .ndo_eth_ioctl          = qede_ioctl,
644         .ndo_tx_timeout         = qede_tx_timeout,
645 #ifdef CONFIG_QED_SRIOV
646         .ndo_set_vf_mac         = qede_set_vf_mac,
647         .ndo_set_vf_vlan        = qede_set_vf_vlan,
648         .ndo_set_vf_trust       = qede_set_vf_trust,
649 #endif
650         .ndo_vlan_rx_add_vid    = qede_vlan_rx_add_vid,
651         .ndo_vlan_rx_kill_vid   = qede_vlan_rx_kill_vid,
652         .ndo_fix_features       = qede_fix_features,
653         .ndo_set_features       = qede_set_features,
654         .ndo_get_stats64        = qede_get_stats64,
655 #ifdef CONFIG_QED_SRIOV
656         .ndo_set_vf_link_state  = qede_set_vf_link_state,
657         .ndo_set_vf_spoofchk    = qede_set_vf_spoofchk,
658         .ndo_get_vf_config      = qede_get_vf_config,
659         .ndo_set_vf_rate        = qede_set_vf_rate,
660 #endif
661         .ndo_features_check     = qede_features_check,
662         .ndo_bpf                = qede_xdp,
663 #ifdef CONFIG_RFS_ACCEL
664         .ndo_rx_flow_steer      = qede_rx_flow_steer,
665 #endif
666         .ndo_xdp_xmit           = qede_xdp_transmit,
667         .ndo_setup_tc           = qede_setup_tc_offload,
668 };
669
670 static const struct net_device_ops qede_netdev_vf_ops = {
671         .ndo_open               = qede_open,
672         .ndo_stop               = qede_close,
673         .ndo_start_xmit         = qede_start_xmit,
674         .ndo_select_queue       = qede_select_queue,
675         .ndo_set_rx_mode        = qede_set_rx_mode,
676         .ndo_set_mac_address    = qede_set_mac_addr,
677         .ndo_validate_addr      = eth_validate_addr,
678         .ndo_change_mtu         = qede_change_mtu,
679         .ndo_vlan_rx_add_vid    = qede_vlan_rx_add_vid,
680         .ndo_vlan_rx_kill_vid   = qede_vlan_rx_kill_vid,
681         .ndo_fix_features       = qede_fix_features,
682         .ndo_set_features       = qede_set_features,
683         .ndo_get_stats64        = qede_get_stats64,
684         .ndo_features_check     = qede_features_check,
685 };
686
687 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
688         .ndo_open               = qede_open,
689         .ndo_stop               = qede_close,
690         .ndo_start_xmit         = qede_start_xmit,
691         .ndo_select_queue       = qede_select_queue,
692         .ndo_set_rx_mode        = qede_set_rx_mode,
693         .ndo_set_mac_address    = qede_set_mac_addr,
694         .ndo_validate_addr      = eth_validate_addr,
695         .ndo_change_mtu         = qede_change_mtu,
696         .ndo_vlan_rx_add_vid    = qede_vlan_rx_add_vid,
697         .ndo_vlan_rx_kill_vid   = qede_vlan_rx_kill_vid,
698         .ndo_fix_features       = qede_fix_features,
699         .ndo_set_features       = qede_set_features,
700         .ndo_get_stats64        = qede_get_stats64,
701         .ndo_features_check     = qede_features_check,
702         .ndo_bpf                = qede_xdp,
703         .ndo_xdp_xmit           = qede_xdp_transmit,
704 };
705
706 /* -------------------------------------------------------------------------
707  * START OF PROBE / REMOVE
708  * -------------------------------------------------------------------------
709  */
710
711 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
712                                             struct pci_dev *pdev,
713                                             struct qed_dev_eth_info *info,
714                                             u32 dp_module, u8 dp_level)
715 {
716         struct net_device *ndev;
717         struct qede_dev *edev;
718
719         ndev = alloc_etherdev_mqs(sizeof(*edev),
720                                   info->num_queues * info->num_tc,
721                                   info->num_queues);
722         if (!ndev) {
723                 pr_err("etherdev allocation failed\n");
724                 return NULL;
725         }
726
727         edev = netdev_priv(ndev);
728         edev->ndev = ndev;
729         edev->cdev = cdev;
730         edev->pdev = pdev;
731         edev->dp_module = dp_module;
732         edev->dp_level = dp_level;
733         edev->ops = qed_ops;
734
735         if (is_kdump_kernel()) {
736                 edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
737                 edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
738         } else {
739                 edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
740                 edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
741         }
742
743         DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
744                 info->num_queues, info->num_queues);
745
746         SET_NETDEV_DEV(ndev, &pdev->dev);
747
748         memset(&edev->stats, 0, sizeof(edev->stats));
749         memcpy(&edev->dev_info, info, sizeof(*info));
750
751         /* As ethtool doesn't have the ability to show WoL behavior as
752          * 'default', if device supports it declare it's enabled.
753          */
754         if (edev->dev_info.common.wol_support)
755                 edev->wol_enabled = true;
756
757         INIT_LIST_HEAD(&edev->vlan_list);
758
759         return edev;
760 }
761
762 static void qede_init_ndev(struct qede_dev *edev)
763 {
764         struct net_device *ndev = edev->ndev;
765         struct pci_dev *pdev = edev->pdev;
766         bool udp_tunnel_enable = false;
767         netdev_features_t hw_features;
768
769         pci_set_drvdata(pdev, ndev);
770
771         ndev->mem_start = edev->dev_info.common.pci_mem_start;
772         ndev->base_addr = ndev->mem_start;
773         ndev->mem_end = edev->dev_info.common.pci_mem_end;
774         ndev->irq = edev->dev_info.common.pci_irq;
775
776         ndev->watchdog_timeo = TX_TIMEOUT;
777
778         if (IS_VF(edev)) {
779                 if (edev->dev_info.xdp_supported)
780                         ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
781                 else
782                         ndev->netdev_ops = &qede_netdev_vf_ops;
783         } else {
784                 ndev->netdev_ops = &qede_netdev_ops;
785         }
786
787         qede_set_ethtool_ops(ndev);
788
789         ndev->priv_flags |= IFF_UNICAST_FLT;
790
791         /* user-changeble features */
792         hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
793                       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
794                       NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
795
796         if (edev->dev_info.common.b_arfs_capable)
797                 hw_features |= NETIF_F_NTUPLE;
798
799         if (edev->dev_info.common.vxlan_enable ||
800             edev->dev_info.common.geneve_enable)
801                 udp_tunnel_enable = true;
802
803         if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
804                 hw_features |= NETIF_F_TSO_ECN;
805                 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
806                                         NETIF_F_SG | NETIF_F_TSO |
807                                         NETIF_F_TSO_ECN | NETIF_F_TSO6 |
808                                         NETIF_F_RXCSUM;
809         }
810
811         if (udp_tunnel_enable) {
812                 hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
813                                 NETIF_F_GSO_UDP_TUNNEL_CSUM);
814                 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
815                                           NETIF_F_GSO_UDP_TUNNEL_CSUM);
816
817                 qede_set_udp_tunnels(edev);
818         }
819
820         if (edev->dev_info.common.gre_enable) {
821                 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
822                 ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
823                                           NETIF_F_GSO_GRE_CSUM);
824         }
825
826         ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
827                               NETIF_F_HIGHDMA;
828         ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
829                          NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
830                          NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
831
832         ndev->hw_features = hw_features;
833
834         /* MTU range: 46 - 9600 */
835         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
836         ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
837
838         /* Set network device HW mac */
839         eth_hw_addr_set(edev->ndev, edev->dev_info.common.hw_mac);
840
841         ndev->mtu = edev->dev_info.common.mtu;
842 }
843
844 /* This function converts from 32b param to two params of level and module
845  * Input 32b decoding:
846  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
847  * 'happy' flow, e.g. memory allocation failed.
848  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
849  * and provide important parameters.
850  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
851  * module. VERBOSE prints are for tracking the specific flow in low level.
852  *
853  * Notice that the level should be that of the lowest required logs.
854  */
855 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
856 {
857         *p_dp_level = QED_LEVEL_NOTICE;
858         *p_dp_module = 0;
859
860         if (debug & QED_LOG_VERBOSE_MASK) {
861                 *p_dp_level = QED_LEVEL_VERBOSE;
862                 *p_dp_module = (debug & 0x3FFFFFFF);
863         } else if (debug & QED_LOG_INFO_MASK) {
864                 *p_dp_level = QED_LEVEL_INFO;
865         } else if (debug & QED_LOG_NOTICE_MASK) {
866                 *p_dp_level = QED_LEVEL_NOTICE;
867         }
868 }
869
870 static void qede_free_fp_array(struct qede_dev *edev)
871 {
872         if (edev->fp_array) {
873                 struct qede_fastpath *fp;
874                 int i;
875
876                 for_each_queue(i) {
877                         fp = &edev->fp_array[i];
878
879                         kfree(fp->sb_info);
880                         /* Handle mem alloc failure case where qede_init_fp
881                          * didn't register xdp_rxq_info yet.
882                          * Implicit only (fp->type & QEDE_FASTPATH_RX)
883                          */
884                         if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
885                                 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
886                         kfree(fp->rxq);
887                         kfree(fp->xdp_tx);
888                         kfree(fp->txq);
889                 }
890                 kfree(edev->fp_array);
891         }
892
893         edev->num_queues = 0;
894         edev->fp_num_tx = 0;
895         edev->fp_num_rx = 0;
896 }
897
898 static int qede_alloc_fp_array(struct qede_dev *edev)
899 {
900         u8 fp_combined, fp_rx = edev->fp_num_rx;
901         struct qede_fastpath *fp;
902         void *mem;
903         int i;
904
905         edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
906                                  sizeof(*edev->fp_array), GFP_KERNEL);
907         if (!edev->fp_array) {
908                 DP_NOTICE(edev, "fp array allocation failed\n");
909                 goto err;
910         }
911
912         mem = krealloc(edev->coal_entry, QEDE_QUEUE_CNT(edev) *
913                        sizeof(*edev->coal_entry), GFP_KERNEL);
914         if (!mem) {
915                 DP_ERR(edev, "coalesce entry allocation failed\n");
916                 kfree(edev->coal_entry);
917                 goto err;
918         }
919         edev->coal_entry = mem;
920
921         fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
922
923         /* Allocate the FP elements for Rx queues followed by combined and then
924          * the Tx. This ordering should be maintained so that the respective
925          * queues (Rx or Tx) will be together in the fastpath array and the
926          * associated ids will be sequential.
927          */
928         for_each_queue(i) {
929                 fp = &edev->fp_array[i];
930
931                 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
932                 if (!fp->sb_info) {
933                         DP_NOTICE(edev, "sb info struct allocation failed\n");
934                         goto err;
935                 }
936
937                 if (fp_rx) {
938                         fp->type = QEDE_FASTPATH_RX;
939                         fp_rx--;
940                 } else if (fp_combined) {
941                         fp->type = QEDE_FASTPATH_COMBINED;
942                         fp_combined--;
943                 } else {
944                         fp->type = QEDE_FASTPATH_TX;
945                 }
946
947                 if (fp->type & QEDE_FASTPATH_TX) {
948                         fp->txq = kcalloc(edev->dev_info.num_tc,
949                                           sizeof(*fp->txq), GFP_KERNEL);
950                         if (!fp->txq)
951                                 goto err;
952                 }
953
954                 if (fp->type & QEDE_FASTPATH_RX) {
955                         fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
956                         if (!fp->rxq)
957                                 goto err;
958
959                         if (edev->xdp_prog) {
960                                 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
961                                                      GFP_KERNEL);
962                                 if (!fp->xdp_tx)
963                                         goto err;
964                                 fp->type |= QEDE_FASTPATH_XDP;
965                         }
966                 }
967         }
968
969         return 0;
970 err:
971         qede_free_fp_array(edev);
972         return -ENOMEM;
973 }
974
975 /* The qede lock is used to protect driver state change and driver flows that
976  * are not reentrant.
977  */
978 void __qede_lock(struct qede_dev *edev)
979 {
980         mutex_lock(&edev->qede_lock);
981 }
982
983 void __qede_unlock(struct qede_dev *edev)
984 {
985         mutex_unlock(&edev->qede_lock);
986 }
987
988 /* This version of the lock should be used when acquiring the RTNL lock is also
989  * needed in addition to the internal qede lock.
990  */
991 static void qede_lock(struct qede_dev *edev)
992 {
993         rtnl_lock();
994         __qede_lock(edev);
995 }
996
997 static void qede_unlock(struct qede_dev *edev)
998 {
999         __qede_unlock(edev);
1000         rtnl_unlock();
1001 }
1002
1003 static void qede_sp_task(struct work_struct *work)
1004 {
1005         struct qede_dev *edev = container_of(work, struct qede_dev,
1006                                              sp_task.work);
1007
1008         /* Disable execution of this deferred work once
1009          * qede removal is in progress, this stop any future
1010          * scheduling of sp_task.
1011          */
1012         if (test_bit(QEDE_SP_DISABLE, &edev->sp_flags))
1013                 return;
1014
1015         /* The locking scheme depends on the specific flag:
1016          * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1017          * ensure that ongoing flows are ended and new ones are not started.
1018          * In other cases - only the internal qede lock should be acquired.
1019          */
1020
1021         if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1022 #ifdef CONFIG_QED_SRIOV
1023                 /* SRIOV must be disabled outside the lock to avoid a deadlock.
1024                  * The recovery of the active VFs is currently not supported.
1025                  */
1026                 if (pci_num_vf(edev->pdev))
1027                         qede_sriov_configure(edev->pdev, 0);
1028 #endif
1029                 qede_lock(edev);
1030                 qede_recovery_handler(edev);
1031                 qede_unlock(edev);
1032         }
1033
1034         __qede_lock(edev);
1035
1036         if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1037                 if (edev->state == QEDE_STATE_OPEN)
1038                         qede_config_rx_mode(edev->ndev);
1039
1040 #ifdef CONFIG_RFS_ACCEL
1041         if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1042                 if (edev->state == QEDE_STATE_OPEN)
1043                         qede_process_arfs_filters(edev, false);
1044         }
1045 #endif
1046         if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1047                 qede_generic_hw_err_handler(edev);
1048         __qede_unlock(edev);
1049
1050         if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1051 #ifdef CONFIG_QED_SRIOV
1052                 /* SRIOV must be disabled outside the lock to avoid a deadlock.
1053                  * The recovery of the active VFs is currently not supported.
1054                  */
1055                 if (pci_num_vf(edev->pdev))
1056                         qede_sriov_configure(edev->pdev, 0);
1057 #endif
1058                 edev->ops->common->recovery_process(edev->cdev);
1059         }
1060 }
1061
1062 static void qede_update_pf_params(struct qed_dev *cdev)
1063 {
1064         struct qed_pf_params pf_params;
1065         u16 num_cons;
1066
1067         /* 64 rx + 64 tx + 64 XDP */
1068         memset(&pf_params, 0, sizeof(struct qed_pf_params));
1069
1070         /* 1 rx + 1 xdp + max tx cos */
1071         num_cons = QED_MIN_L2_CONS;
1072
1073         pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1074
1075         /* Same for VFs - make sure they'll have sufficient connections
1076          * to support XDP Tx queues.
1077          */
1078         pf_params.eth_pf_params.num_vf_cons = 48;
1079
1080         pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1081         qed_ops->common->update_pf_params(cdev, &pf_params);
1082 }
1083
1084 #define QEDE_FW_VER_STR_SIZE    80
1085
1086 static void qede_log_probe(struct qede_dev *edev)
1087 {
1088         struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1089         u8 buf[QEDE_FW_VER_STR_SIZE];
1090         size_t left_size;
1091
1092         snprintf(buf, QEDE_FW_VER_STR_SIZE,
1093                  "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1094                  p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1095                  p_dev_info->fw_eng,
1096                  (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1097                  QED_MFW_VERSION_3_OFFSET,
1098                  (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1099                  QED_MFW_VERSION_2_OFFSET,
1100                  (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1101                  QED_MFW_VERSION_1_OFFSET,
1102                  (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1103                  QED_MFW_VERSION_0_OFFSET);
1104
1105         left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1106         if (p_dev_info->mbi_version && left_size)
1107                 snprintf(buf + strlen(buf), left_size,
1108                          " [MBI %d.%d.%d]",
1109                          (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1110                          QED_MBI_VERSION_2_OFFSET,
1111                          (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1112                          QED_MBI_VERSION_1_OFFSET,
1113                          (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1114                          QED_MBI_VERSION_0_OFFSET);
1115
1116         pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1117                 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1118                 buf, edev->ndev->name);
1119 }
1120
1121 enum qede_probe_mode {
1122         QEDE_PROBE_NORMAL,
1123         QEDE_PROBE_RECOVERY,
1124 };
1125
1126 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1127                         bool is_vf, enum qede_probe_mode mode)
1128 {
1129         struct qed_probe_params probe_params;
1130         struct qed_slowpath_params sp_params;
1131         struct qed_dev_eth_info dev_info;
1132         struct qede_dev *edev;
1133         struct qed_dev *cdev;
1134         int rc;
1135
1136         if (unlikely(dp_level & QED_LEVEL_INFO))
1137                 pr_notice("Starting qede probe\n");
1138
1139         memset(&probe_params, 0, sizeof(probe_params));
1140         probe_params.protocol = QED_PROTOCOL_ETH;
1141         probe_params.dp_module = dp_module;
1142         probe_params.dp_level = dp_level;
1143         probe_params.is_vf = is_vf;
1144         probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1145         cdev = qed_ops->common->probe(pdev, &probe_params);
1146         if (!cdev) {
1147                 rc = -ENODEV;
1148                 goto err0;
1149         }
1150
1151         qede_update_pf_params(cdev);
1152
1153         /* Start the Slowpath-process */
1154         memset(&sp_params, 0, sizeof(sp_params));
1155         sp_params.int_mode = QED_INT_MODE_MSIX;
1156         strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1157         rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1158         if (rc) {
1159                 pr_notice("Cannot start slowpath\n");
1160                 goto err1;
1161         }
1162
1163         /* Learn information crucial for qede to progress */
1164         rc = qed_ops->fill_dev_info(cdev, &dev_info);
1165         if (rc)
1166                 goto err2;
1167
1168         if (mode != QEDE_PROBE_RECOVERY) {
1169                 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1170                                            dp_level);
1171                 if (!edev) {
1172                         rc = -ENOMEM;
1173                         goto err2;
1174                 }
1175
1176                 edev->devlink = qed_ops->common->devlink_register(cdev);
1177                 if (IS_ERR(edev->devlink)) {
1178                         DP_NOTICE(edev, "Cannot register devlink\n");
1179                         rc = PTR_ERR(edev->devlink);
1180                         edev->devlink = NULL;
1181                         goto err3;
1182                 }
1183         } else {
1184                 struct net_device *ndev = pci_get_drvdata(pdev);
1185                 struct qed_devlink *qdl;
1186
1187                 edev = netdev_priv(ndev);
1188                 qdl = devlink_priv(edev->devlink);
1189                 qdl->cdev = cdev;
1190                 edev->cdev = cdev;
1191                 memset(&edev->stats, 0, sizeof(edev->stats));
1192                 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1193         }
1194
1195         if (is_vf)
1196                 set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1197
1198         qede_init_ndev(edev);
1199
1200         rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1201         if (rc)
1202                 goto err3;
1203
1204         if (mode != QEDE_PROBE_RECOVERY) {
1205                 /* Prepare the lock prior to the registration of the netdev,
1206                  * as once it's registered we might reach flows requiring it
1207                  * [it's even possible to reach a flow needing it directly
1208                  * from there, although it's unlikely].
1209                  */
1210                 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1211                 mutex_init(&edev->qede_lock);
1212
1213                 rc = register_netdev(edev->ndev);
1214                 if (rc) {
1215                         DP_NOTICE(edev, "Cannot register net-device\n");
1216                         goto err4;
1217                 }
1218         }
1219
1220         edev->ops->common->set_name(cdev, edev->ndev->name);
1221
1222         /* PTP not supported on VFs */
1223         if (!is_vf)
1224                 qede_ptp_enable(edev);
1225
1226         edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1227
1228 #ifdef CONFIG_DCB
1229         if (!IS_VF(edev))
1230                 qede_set_dcbnl_ops(edev->ndev);
1231 #endif
1232
1233         edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1234
1235         qede_log_probe(edev);
1236         return 0;
1237
1238 err4:
1239         qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1240 err3:
1241         if (mode != QEDE_PROBE_RECOVERY)
1242                 free_netdev(edev->ndev);
1243         else
1244                 edev->cdev = NULL;
1245 err2:
1246         qed_ops->common->slowpath_stop(cdev);
1247 err1:
1248         qed_ops->common->remove(cdev);
1249 err0:
1250         return rc;
1251 }
1252
1253 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1254 {
1255         bool is_vf = false;
1256         u32 dp_module = 0;
1257         u8 dp_level = 0;
1258
1259         switch ((enum qede_pci_private)id->driver_data) {
1260         case QEDE_PRIVATE_VF:
1261                 if (debug & QED_LOG_VERBOSE_MASK)
1262                         dev_err(&pdev->dev, "Probing a VF\n");
1263                 is_vf = true;
1264                 break;
1265         default:
1266                 if (debug & QED_LOG_VERBOSE_MASK)
1267                         dev_err(&pdev->dev, "Probing a PF\n");
1268         }
1269
1270         qede_config_debug(debug, &dp_module, &dp_level);
1271
1272         return __qede_probe(pdev, dp_module, dp_level, is_vf,
1273                             QEDE_PROBE_NORMAL);
1274 }
1275
1276 enum qede_remove_mode {
1277         QEDE_REMOVE_NORMAL,
1278         QEDE_REMOVE_RECOVERY,
1279 };
1280
1281 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1282 {
1283         struct net_device *ndev = pci_get_drvdata(pdev);
1284         struct qede_dev *edev;
1285         struct qed_dev *cdev;
1286
1287         if (!ndev) {
1288                 dev_info(&pdev->dev, "Device has already been removed\n");
1289                 return;
1290         }
1291
1292         edev = netdev_priv(ndev);
1293         cdev = edev->cdev;
1294
1295         DP_INFO(edev, "Starting qede_remove\n");
1296
1297         qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1298
1299         if (mode != QEDE_REMOVE_RECOVERY) {
1300                 set_bit(QEDE_SP_DISABLE, &edev->sp_flags);
1301                 unregister_netdev(ndev);
1302
1303                 cancel_delayed_work_sync(&edev->sp_task);
1304
1305                 edev->ops->common->set_power_state(cdev, PCI_D0);
1306
1307                 pci_set_drvdata(pdev, NULL);
1308         }
1309
1310         qede_ptp_disable(edev);
1311
1312         /* Use global ops since we've freed edev */
1313         qed_ops->common->slowpath_stop(cdev);
1314         if (system_state == SYSTEM_POWER_OFF)
1315                 return;
1316
1317         if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) {
1318                 qed_ops->common->devlink_unregister(edev->devlink);
1319                 edev->devlink = NULL;
1320         }
1321         qed_ops->common->remove(cdev);
1322         edev->cdev = NULL;
1323
1324         /* Since this can happen out-of-sync with other flows,
1325          * don't release the netdevice until after slowpath stop
1326          * has been called to guarantee various other contexts
1327          * [e.g., QED register callbacks] won't break anything when
1328          * accessing the netdevice.
1329          */
1330         if (mode != QEDE_REMOVE_RECOVERY) {
1331                 kfree(edev->coal_entry);
1332                 free_netdev(ndev);
1333         }
1334
1335         dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1336 }
1337
1338 static void qede_remove(struct pci_dev *pdev)
1339 {
1340         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1341 }
1342
1343 static void qede_shutdown(struct pci_dev *pdev)
1344 {
1345         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1346 }
1347
1348 /* -------------------------------------------------------------------------
1349  * START OF LOAD / UNLOAD
1350  * -------------------------------------------------------------------------
1351  */
1352
1353 static int qede_set_num_queues(struct qede_dev *edev)
1354 {
1355         int rc;
1356         u16 rss_num;
1357
1358         /* Setup queues according to possible resources*/
1359         if (edev->req_queues)
1360                 rss_num = edev->req_queues;
1361         else
1362                 rss_num = netif_get_num_default_rss_queues() *
1363                           edev->dev_info.common.num_hwfns;
1364
1365         rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1366
1367         rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1368         if (rc > 0) {
1369                 /* Managed to request interrupts for our queues */
1370                 edev->num_queues = rc;
1371                 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1372                         QEDE_QUEUE_CNT(edev), rss_num);
1373                 rc = 0;
1374         }
1375
1376         edev->fp_num_tx = edev->req_num_tx;
1377         edev->fp_num_rx = edev->req_num_rx;
1378
1379         return rc;
1380 }
1381
1382 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1383                              u16 sb_id)
1384 {
1385         if (sb_info->sb_virt) {
1386                 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1387                                               QED_SB_TYPE_L2_QUEUE);
1388                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1389                                   (void *)sb_info->sb_virt, sb_info->sb_phys);
1390                 memset(sb_info, 0, sizeof(*sb_info));
1391         }
1392 }
1393
1394 /* This function allocates fast-path status block memory */
1395 static int qede_alloc_mem_sb(struct qede_dev *edev,
1396                              struct qed_sb_info *sb_info, u16 sb_id)
1397 {
1398         struct status_block_e4 *sb_virt;
1399         dma_addr_t sb_phys;
1400         int rc;
1401
1402         sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1403                                      sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1404         if (!sb_virt) {
1405                 DP_ERR(edev, "Status block allocation failed\n");
1406                 return -ENOMEM;
1407         }
1408
1409         rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1410                                         sb_virt, sb_phys, sb_id,
1411                                         QED_SB_TYPE_L2_QUEUE);
1412         if (rc) {
1413                 DP_ERR(edev, "Status block initialization failed\n");
1414                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1415                                   sb_virt, sb_phys);
1416                 return rc;
1417         }
1418
1419         return 0;
1420 }
1421
1422 static void qede_free_rx_buffers(struct qede_dev *edev,
1423                                  struct qede_rx_queue *rxq)
1424 {
1425         u16 i;
1426
1427         for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1428                 struct sw_rx_data *rx_buf;
1429                 struct page *data;
1430
1431                 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1432                 data = rx_buf->data;
1433
1434                 dma_unmap_page(&edev->pdev->dev,
1435                                rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1436
1437                 rx_buf->data = NULL;
1438                 __free_page(data);
1439         }
1440 }
1441
1442 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1443 {
1444         /* Free rx buffers */
1445         qede_free_rx_buffers(edev, rxq);
1446
1447         /* Free the parallel SW ring */
1448         kfree(rxq->sw_rx_ring);
1449
1450         /* Free the real RQ ring used by FW */
1451         edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1452         edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1453 }
1454
1455 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1456 {
1457         int i;
1458
1459         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1460                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1461
1462                 tpa_info->state = QEDE_AGG_STATE_NONE;
1463         }
1464 }
1465
1466 /* This function allocates all memory needed per Rx queue */
1467 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1468 {
1469         struct qed_chain_init_params params = {
1470                 .cnt_type       = QED_CHAIN_CNT_TYPE_U16,
1471                 .num_elems      = RX_RING_SIZE,
1472         };
1473         struct qed_dev *cdev = edev->cdev;
1474         int i, rc, size;
1475
1476         rxq->num_rx_buffers = edev->q_num_rx_buffers;
1477
1478         rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1479
1480         rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1481         size = rxq->rx_headroom +
1482                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1483
1484         /* Make sure that the headroom and  payload fit in a single page */
1485         if (rxq->rx_buf_size + size > PAGE_SIZE)
1486                 rxq->rx_buf_size = PAGE_SIZE - size;
1487
1488         /* Segment size to split a page in multiple equal parts,
1489          * unless XDP is used in which case we'd use the entire page.
1490          */
1491         if (!edev->xdp_prog) {
1492                 size = size + rxq->rx_buf_size;
1493                 rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1494         } else {
1495                 rxq->rx_buf_seg_size = PAGE_SIZE;
1496                 edev->ndev->features &= ~NETIF_F_GRO_HW;
1497         }
1498
1499         /* Allocate the parallel driver ring for Rx buffers */
1500         size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1501         rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1502         if (!rxq->sw_rx_ring) {
1503                 DP_ERR(edev, "Rx buffers ring allocation failed\n");
1504                 rc = -ENOMEM;
1505                 goto err;
1506         }
1507
1508         /* Allocate FW Rx ring  */
1509         params.mode = QED_CHAIN_MODE_NEXT_PTR;
1510         params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE;
1511         params.elem_size = sizeof(struct eth_rx_bd);
1512
1513         rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, &params);
1514         if (rc)
1515                 goto err;
1516
1517         /* Allocate FW completion ring */
1518         params.mode = QED_CHAIN_MODE_PBL;
1519         params.intended_use = QED_CHAIN_USE_TO_CONSUME;
1520         params.elem_size = sizeof(union eth_rx_cqe);
1521
1522         rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, &params);
1523         if (rc)
1524                 goto err;
1525
1526         /* Allocate buffers for the Rx ring */
1527         rxq->filled_buffers = 0;
1528         for (i = 0; i < rxq->num_rx_buffers; i++) {
1529                 rc = qede_alloc_rx_buffer(rxq, false);
1530                 if (rc) {
1531                         DP_ERR(edev,
1532                                "Rx buffers allocation failed at index %d\n", i);
1533                         goto err;
1534                 }
1535         }
1536
1537         edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1538         if (!edev->gro_disable)
1539                 qede_set_tpa_param(rxq);
1540 err:
1541         return rc;
1542 }
1543
1544 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1545 {
1546         /* Free the parallel SW ring */
1547         if (txq->is_xdp)
1548                 kfree(txq->sw_tx_ring.xdp);
1549         else
1550                 kfree(txq->sw_tx_ring.skbs);
1551
1552         /* Free the real RQ ring used by FW */
1553         edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1554 }
1555
1556 /* This function allocates all memory needed per Tx queue */
1557 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1558 {
1559         struct qed_chain_init_params params = {
1560                 .mode           = QED_CHAIN_MODE_PBL,
1561                 .intended_use   = QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1562                 .cnt_type       = QED_CHAIN_CNT_TYPE_U16,
1563                 .num_elems      = edev->q_num_tx_buffers,
1564                 .elem_size      = sizeof(union eth_tx_bd_types),
1565         };
1566         int size, rc;
1567
1568         txq->num_tx_buffers = edev->q_num_tx_buffers;
1569
1570         /* Allocate the parallel driver ring for Tx buffers */
1571         if (txq->is_xdp) {
1572                 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1573                 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1574                 if (!txq->sw_tx_ring.xdp)
1575                         goto err;
1576         } else {
1577                 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1578                 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1579                 if (!txq->sw_tx_ring.skbs)
1580                         goto err;
1581         }
1582
1583         rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, &params);
1584         if (rc)
1585                 goto err;
1586
1587         return 0;
1588
1589 err:
1590         qede_free_mem_txq(edev, txq);
1591         return -ENOMEM;
1592 }
1593
1594 /* This function frees all memory of a single fp */
1595 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1596 {
1597         qede_free_mem_sb(edev, fp->sb_info, fp->id);
1598
1599         if (fp->type & QEDE_FASTPATH_RX)
1600                 qede_free_mem_rxq(edev, fp->rxq);
1601
1602         if (fp->type & QEDE_FASTPATH_XDP)
1603                 qede_free_mem_txq(edev, fp->xdp_tx);
1604
1605         if (fp->type & QEDE_FASTPATH_TX) {
1606                 int cos;
1607
1608                 for_each_cos_in_txq(edev, cos)
1609                         qede_free_mem_txq(edev, &fp->txq[cos]);
1610         }
1611 }
1612
1613 /* This function allocates all memory needed for a single fp (i.e. an entity
1614  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1615  */
1616 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1617 {
1618         int rc = 0;
1619
1620         rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1621         if (rc)
1622                 goto out;
1623
1624         if (fp->type & QEDE_FASTPATH_RX) {
1625                 rc = qede_alloc_mem_rxq(edev, fp->rxq);
1626                 if (rc)
1627                         goto out;
1628         }
1629
1630         if (fp->type & QEDE_FASTPATH_XDP) {
1631                 rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1632                 if (rc)
1633                         goto out;
1634         }
1635
1636         if (fp->type & QEDE_FASTPATH_TX) {
1637                 int cos;
1638
1639                 for_each_cos_in_txq(edev, cos) {
1640                         rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1641                         if (rc)
1642                                 goto out;
1643                 }
1644         }
1645
1646 out:
1647         return rc;
1648 }
1649
1650 static void qede_free_mem_load(struct qede_dev *edev)
1651 {
1652         int i;
1653
1654         for_each_queue(i) {
1655                 struct qede_fastpath *fp = &edev->fp_array[i];
1656
1657                 qede_free_mem_fp(edev, fp);
1658         }
1659 }
1660
1661 /* This function allocates all qede memory at NIC load. */
1662 static int qede_alloc_mem_load(struct qede_dev *edev)
1663 {
1664         int rc = 0, queue_id;
1665
1666         for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1667                 struct qede_fastpath *fp = &edev->fp_array[queue_id];
1668
1669                 rc = qede_alloc_mem_fp(edev, fp);
1670                 if (rc) {
1671                         DP_ERR(edev,
1672                                "Failed to allocate memory for fastpath - rss id = %d\n",
1673                                queue_id);
1674                         qede_free_mem_load(edev);
1675                         return rc;
1676                 }
1677         }
1678
1679         return 0;
1680 }
1681
1682 static void qede_empty_tx_queue(struct qede_dev *edev,
1683                                 struct qede_tx_queue *txq)
1684 {
1685         unsigned int pkts_compl = 0, bytes_compl = 0;
1686         struct netdev_queue *netdev_txq;
1687         int rc, len = 0;
1688
1689         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1690
1691         while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1692                qed_chain_get_prod_idx(&txq->tx_pbl)) {
1693                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1694                            "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1695                            txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1696                            qed_chain_get_prod_idx(&txq->tx_pbl));
1697
1698                 rc = qede_free_tx_pkt(edev, txq, &len);
1699                 if (rc) {
1700                         DP_NOTICE(edev,
1701                                   "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1702                                   txq->index,
1703                                   qed_chain_get_cons_idx(&txq->tx_pbl),
1704                                   qed_chain_get_prod_idx(&txq->tx_pbl));
1705                         break;
1706                 }
1707
1708                 bytes_compl += len;
1709                 pkts_compl++;
1710                 txq->sw_tx_cons++;
1711         }
1712
1713         netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1714 }
1715
1716 static void qede_empty_tx_queues(struct qede_dev *edev)
1717 {
1718         int i;
1719
1720         for_each_queue(i)
1721                 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1722                         int cos;
1723
1724                         for_each_cos_in_txq(edev, cos) {
1725                                 struct qede_fastpath *fp;
1726
1727                                 fp = &edev->fp_array[i];
1728                                 qede_empty_tx_queue(edev,
1729                                                     &fp->txq[cos]);
1730                         }
1731                 }
1732 }
1733
1734 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1735 static void qede_init_fp(struct qede_dev *edev)
1736 {
1737         int queue_id, rxq_index = 0, txq_index = 0;
1738         struct qede_fastpath *fp;
1739         bool init_xdp = false;
1740
1741         for_each_queue(queue_id) {
1742                 fp = &edev->fp_array[queue_id];
1743
1744                 fp->edev = edev;
1745                 fp->id = queue_id;
1746
1747                 if (fp->type & QEDE_FASTPATH_XDP) {
1748                         fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1749                                                                 rxq_index);
1750                         fp->xdp_tx->is_xdp = 1;
1751
1752                         spin_lock_init(&fp->xdp_tx->xdp_tx_lock);
1753                         init_xdp = true;
1754                 }
1755
1756                 if (fp->type & QEDE_FASTPATH_RX) {
1757                         fp->rxq->rxq_id = rxq_index++;
1758
1759                         /* Determine how to map buffers for this queue */
1760                         if (fp->type & QEDE_FASTPATH_XDP)
1761                                 fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1762                         else
1763                                 fp->rxq->data_direction = DMA_FROM_DEVICE;
1764                         fp->rxq->dev = &edev->pdev->dev;
1765
1766                         /* Driver have no error path from here */
1767                         WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1768                                                  fp->rxq->rxq_id, 0) < 0);
1769
1770                         if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq,
1771                                                        MEM_TYPE_PAGE_ORDER0,
1772                                                        NULL)) {
1773                                 DP_NOTICE(edev,
1774                                           "Failed to register XDP memory model\n");
1775                         }
1776                 }
1777
1778                 if (fp->type & QEDE_FASTPATH_TX) {
1779                         int cos;
1780
1781                         for_each_cos_in_txq(edev, cos) {
1782                                 struct qede_tx_queue *txq = &fp->txq[cos];
1783                                 u16 ndev_tx_id;
1784
1785                                 txq->cos = cos;
1786                                 txq->index = txq_index;
1787                                 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1788                                 txq->ndev_txq_id = ndev_tx_id;
1789
1790                                 if (edev->dev_info.is_legacy)
1791                                         txq->is_legacy = true;
1792                                 txq->dev = &edev->pdev->dev;
1793                         }
1794
1795                         txq_index++;
1796                 }
1797
1798                 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1799                          edev->ndev->name, queue_id);
1800         }
1801
1802         if (init_xdp) {
1803                 edev->total_xdp_queues = QEDE_RSS_COUNT(edev);
1804                 DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues);
1805         }
1806 }
1807
1808 static int qede_set_real_num_queues(struct qede_dev *edev)
1809 {
1810         int rc = 0;
1811
1812         rc = netif_set_real_num_tx_queues(edev->ndev,
1813                                           QEDE_TSS_COUNT(edev) *
1814                                           edev->dev_info.num_tc);
1815         if (rc) {
1816                 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1817                 return rc;
1818         }
1819
1820         rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1821         if (rc) {
1822                 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1823                 return rc;
1824         }
1825
1826         return 0;
1827 }
1828
1829 static void qede_napi_disable_remove(struct qede_dev *edev)
1830 {
1831         int i;
1832
1833         for_each_queue(i) {
1834                 napi_disable(&edev->fp_array[i].napi);
1835
1836                 netif_napi_del(&edev->fp_array[i].napi);
1837         }
1838 }
1839
1840 static void qede_napi_add_enable(struct qede_dev *edev)
1841 {
1842         int i;
1843
1844         /* Add NAPI objects */
1845         for_each_queue(i) {
1846                 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1847                                qede_poll, NAPI_POLL_WEIGHT);
1848                 napi_enable(&edev->fp_array[i].napi);
1849         }
1850 }
1851
1852 static void qede_sync_free_irqs(struct qede_dev *edev)
1853 {
1854         int i;
1855
1856         for (i = 0; i < edev->int_info.used_cnt; i++) {
1857                 if (edev->int_info.msix_cnt) {
1858                         synchronize_irq(edev->int_info.msix[i].vector);
1859                         free_irq(edev->int_info.msix[i].vector,
1860                                  &edev->fp_array[i]);
1861                 } else {
1862                         edev->ops->common->simd_handler_clean(edev->cdev, i);
1863                 }
1864         }
1865
1866         edev->int_info.used_cnt = 0;
1867         edev->int_info.msix_cnt = 0;
1868 }
1869
1870 static int qede_req_msix_irqs(struct qede_dev *edev)
1871 {
1872         int i, rc;
1873
1874         /* Sanitize number of interrupts == number of prepared RSS queues */
1875         if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1876                 DP_ERR(edev,
1877                        "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1878                        QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1879                 return -EINVAL;
1880         }
1881
1882         for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1883 #ifdef CONFIG_RFS_ACCEL
1884                 struct qede_fastpath *fp = &edev->fp_array[i];
1885
1886                 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1887                         rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1888                                               edev->int_info.msix[i].vector);
1889                         if (rc) {
1890                                 DP_ERR(edev, "Failed to add CPU rmap\n");
1891                                 qede_free_arfs(edev);
1892                         }
1893                 }
1894 #endif
1895                 rc = request_irq(edev->int_info.msix[i].vector,
1896                                  qede_msix_fp_int, 0, edev->fp_array[i].name,
1897                                  &edev->fp_array[i]);
1898                 if (rc) {
1899                         DP_ERR(edev, "Request fp %d irq failed\n", i);
1900 #ifdef CONFIG_RFS_ACCEL
1901                         if (edev->ndev->rx_cpu_rmap)
1902                                 free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
1903
1904                         edev->ndev->rx_cpu_rmap = NULL;
1905 #endif
1906                         qede_sync_free_irqs(edev);
1907                         return rc;
1908                 }
1909                 DP_VERBOSE(edev, NETIF_MSG_INTR,
1910                            "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1911                            edev->fp_array[i].name, i,
1912                            &edev->fp_array[i]);
1913                 edev->int_info.used_cnt++;
1914         }
1915
1916         return 0;
1917 }
1918
1919 static void qede_simd_fp_handler(void *cookie)
1920 {
1921         struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1922
1923         napi_schedule_irqoff(&fp->napi);
1924 }
1925
1926 static int qede_setup_irqs(struct qede_dev *edev)
1927 {
1928         int i, rc = 0;
1929
1930         /* Learn Interrupt configuration */
1931         rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1932         if (rc)
1933                 return rc;
1934
1935         if (edev->int_info.msix_cnt) {
1936                 rc = qede_req_msix_irqs(edev);
1937                 if (rc)
1938                         return rc;
1939                 edev->ndev->irq = edev->int_info.msix[0].vector;
1940         } else {
1941                 const struct qed_common_ops *ops;
1942
1943                 /* qed should learn receive the RSS ids and callbacks */
1944                 ops = edev->ops->common;
1945                 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1946                         ops->simd_handler_config(edev->cdev,
1947                                                  &edev->fp_array[i], i,
1948                                                  qede_simd_fp_handler);
1949                 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1950         }
1951         return 0;
1952 }
1953
1954 static int qede_drain_txq(struct qede_dev *edev,
1955                           struct qede_tx_queue *txq, bool allow_drain)
1956 {
1957         int rc, cnt = 1000;
1958
1959         while (txq->sw_tx_cons != txq->sw_tx_prod) {
1960                 if (!cnt) {
1961                         if (allow_drain) {
1962                                 DP_NOTICE(edev,
1963                                           "Tx queue[%d] is stuck, requesting MCP to drain\n",
1964                                           txq->index);
1965                                 rc = edev->ops->common->drain(edev->cdev);
1966                                 if (rc)
1967                                         return rc;
1968                                 return qede_drain_txq(edev, txq, false);
1969                         }
1970                         DP_NOTICE(edev,
1971                                   "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1972                                   txq->index, txq->sw_tx_prod,
1973                                   txq->sw_tx_cons);
1974                         return -ENODEV;
1975                 }
1976                 cnt--;
1977                 usleep_range(1000, 2000);
1978                 barrier();
1979         }
1980
1981         /* FW finished processing, wait for HW to transmit all tx packets */
1982         usleep_range(1000, 2000);
1983
1984         return 0;
1985 }
1986
1987 static int qede_stop_txq(struct qede_dev *edev,
1988                          struct qede_tx_queue *txq, int rss_id)
1989 {
1990         /* delete doorbell from doorbell recovery mechanism */
1991         edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
1992                                            &txq->tx_db);
1993
1994         return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1995 }
1996
1997 static int qede_stop_queues(struct qede_dev *edev)
1998 {
1999         struct qed_update_vport_params *vport_update_params;
2000         struct qed_dev *cdev = edev->cdev;
2001         struct qede_fastpath *fp;
2002         int rc, i;
2003
2004         /* Disable the vport */
2005         vport_update_params = vzalloc(sizeof(*vport_update_params));
2006         if (!vport_update_params)
2007                 return -ENOMEM;
2008
2009         vport_update_params->vport_id = 0;
2010         vport_update_params->update_vport_active_flg = 1;
2011         vport_update_params->vport_active_flg = 0;
2012         vport_update_params->update_rss_flg = 0;
2013
2014         rc = edev->ops->vport_update(cdev, vport_update_params);
2015         vfree(vport_update_params);
2016
2017         if (rc) {
2018                 DP_ERR(edev, "Failed to update vport\n");
2019                 return rc;
2020         }
2021
2022         /* Flush Tx queues. If needed, request drain from MCP */
2023         for_each_queue(i) {
2024                 fp = &edev->fp_array[i];
2025
2026                 if (fp->type & QEDE_FASTPATH_TX) {
2027                         int cos;
2028
2029                         for_each_cos_in_txq(edev, cos) {
2030                                 rc = qede_drain_txq(edev, &fp->txq[cos], true);
2031                                 if (rc)
2032                                         return rc;
2033                         }
2034                 }
2035
2036                 if (fp->type & QEDE_FASTPATH_XDP) {
2037                         rc = qede_drain_txq(edev, fp->xdp_tx, true);
2038                         if (rc)
2039                                 return rc;
2040                 }
2041         }
2042
2043         /* Stop all Queues in reverse order */
2044         for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2045                 fp = &edev->fp_array[i];
2046
2047                 /* Stop the Tx Queue(s) */
2048                 if (fp->type & QEDE_FASTPATH_TX) {
2049                         int cos;
2050
2051                         for_each_cos_in_txq(edev, cos) {
2052                                 rc = qede_stop_txq(edev, &fp->txq[cos], i);
2053                                 if (rc)
2054                                         return rc;
2055                         }
2056                 }
2057
2058                 /* Stop the Rx Queue */
2059                 if (fp->type & QEDE_FASTPATH_RX) {
2060                         rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2061                         if (rc) {
2062                                 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2063                                 return rc;
2064                         }
2065                 }
2066
2067                 /* Stop the XDP forwarding queue */
2068                 if (fp->type & QEDE_FASTPATH_XDP) {
2069                         rc = qede_stop_txq(edev, fp->xdp_tx, i);
2070                         if (rc)
2071                                 return rc;
2072
2073                         bpf_prog_put(fp->rxq->xdp_prog);
2074                 }
2075         }
2076
2077         /* Stop the vport */
2078         rc = edev->ops->vport_stop(cdev, 0);
2079         if (rc)
2080                 DP_ERR(edev, "Failed to stop VPORT\n");
2081
2082         return rc;
2083 }
2084
2085 static int qede_start_txq(struct qede_dev *edev,
2086                           struct qede_fastpath *fp,
2087                           struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2088 {
2089         dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2090         u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2091         struct qed_queue_start_common_params params;
2092         struct qed_txq_start_ret_params ret_params;
2093         int rc;
2094
2095         memset(&params, 0, sizeof(params));
2096         memset(&ret_params, 0, sizeof(ret_params));
2097
2098         /* Let the XDP queue share the queue-zone with one of the regular txq.
2099          * We don't really care about its coalescing.
2100          */
2101         if (txq->is_xdp)
2102                 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2103         else
2104                 params.queue_id = txq->index;
2105
2106         params.p_sb = fp->sb_info;
2107         params.sb_idx = sb_idx;
2108         params.tc = txq->cos;
2109
2110         rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2111                                    page_cnt, &ret_params);
2112         if (rc) {
2113                 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2114                 return rc;
2115         }
2116
2117         txq->doorbell_addr = ret_params.p_doorbell;
2118         txq->handle = ret_params.p_handle;
2119
2120         /* Determine the FW consumer address associated */
2121         txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2122
2123         /* Prepare the doorbell parameters */
2124         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2125         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2126         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2127                   DQ_XCM_ETH_TX_BD_PROD_CMD);
2128         txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2129
2130         /* register doorbell with doorbell recovery mechanism */
2131         rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2132                                                 &txq->tx_db, DB_REC_WIDTH_32B,
2133                                                 DB_REC_KERNEL);
2134
2135         return rc;
2136 }
2137
2138 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2139 {
2140         int vlan_removal_en = 1;
2141         struct qed_dev *cdev = edev->cdev;
2142         struct qed_dev_info *qed_info = &edev->dev_info.common;
2143         struct qed_update_vport_params *vport_update_params;
2144         struct qed_queue_start_common_params q_params;
2145         struct qed_start_vport_params start = {0};
2146         int rc, i;
2147
2148         if (!edev->num_queues) {
2149                 DP_ERR(edev,
2150                        "Cannot update V-VPORT as active as there are no Rx queues\n");
2151                 return -EINVAL;
2152         }
2153
2154         vport_update_params = vzalloc(sizeof(*vport_update_params));
2155         if (!vport_update_params)
2156                 return -ENOMEM;
2157
2158         start.handle_ptp_pkts = !!(edev->ptp);
2159         start.gro_enable = !edev->gro_disable;
2160         start.mtu = edev->ndev->mtu;
2161         start.vport_id = 0;
2162         start.drop_ttl0 = true;
2163         start.remove_inner_vlan = vlan_removal_en;
2164         start.clear_stats = clear_stats;
2165
2166         rc = edev->ops->vport_start(cdev, &start);
2167
2168         if (rc) {
2169                 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2170                 goto out;
2171         }
2172
2173         DP_VERBOSE(edev, NETIF_MSG_IFUP,
2174                    "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2175                    start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2176
2177         for_each_queue(i) {
2178                 struct qede_fastpath *fp = &edev->fp_array[i];
2179                 dma_addr_t p_phys_table;
2180                 u32 page_cnt;
2181
2182                 if (fp->type & QEDE_FASTPATH_RX) {
2183                         struct qed_rxq_start_ret_params ret_params;
2184                         struct qede_rx_queue *rxq = fp->rxq;
2185                         __le16 *val;
2186
2187                         memset(&ret_params, 0, sizeof(ret_params));
2188                         memset(&q_params, 0, sizeof(q_params));
2189                         q_params.queue_id = rxq->rxq_id;
2190                         q_params.vport_id = 0;
2191                         q_params.p_sb = fp->sb_info;
2192                         q_params.sb_idx = RX_PI;
2193
2194                         p_phys_table =
2195                             qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2196                         page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2197
2198                         rc = edev->ops->q_rx_start(cdev, i, &q_params,
2199                                                    rxq->rx_buf_size,
2200                                                    rxq->rx_bd_ring.p_phys_addr,
2201                                                    p_phys_table,
2202                                                    page_cnt, &ret_params);
2203                         if (rc) {
2204                                 DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2205                                        rc);
2206                                 goto out;
2207                         }
2208
2209                         /* Use the return parameters */
2210                         rxq->hw_rxq_prod_addr = ret_params.p_prod;
2211                         rxq->handle = ret_params.p_handle;
2212
2213                         val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2214                         rxq->hw_cons_ptr = val;
2215
2216                         qede_update_rx_prod(edev, rxq);
2217                 }
2218
2219                 if (fp->type & QEDE_FASTPATH_XDP) {
2220                         rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2221                         if (rc)
2222                                 goto out;
2223
2224                         bpf_prog_add(edev->xdp_prog, 1);
2225                         fp->rxq->xdp_prog = edev->xdp_prog;
2226                 }
2227
2228                 if (fp->type & QEDE_FASTPATH_TX) {
2229                         int cos;
2230
2231                         for_each_cos_in_txq(edev, cos) {
2232                                 rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2233                                                     TX_PI(cos));
2234                                 if (rc)
2235                                         goto out;
2236                         }
2237                 }
2238         }
2239
2240         /* Prepare and send the vport enable */
2241         vport_update_params->vport_id = start.vport_id;
2242         vport_update_params->update_vport_active_flg = 1;
2243         vport_update_params->vport_active_flg = 1;
2244
2245         if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2246             qed_info->tx_switching) {
2247                 vport_update_params->update_tx_switching_flg = 1;
2248                 vport_update_params->tx_switching_flg = 1;
2249         }
2250
2251         qede_fill_rss_params(edev, &vport_update_params->rss_params,
2252                              &vport_update_params->update_rss_flg);
2253
2254         rc = edev->ops->vport_update(cdev, vport_update_params);
2255         if (rc)
2256                 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2257
2258 out:
2259         vfree(vport_update_params);
2260         return rc;
2261 }
2262
2263 enum qede_unload_mode {
2264         QEDE_UNLOAD_NORMAL,
2265         QEDE_UNLOAD_RECOVERY,
2266 };
2267
2268 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2269                         bool is_locked)
2270 {
2271         struct qed_link_params link_params;
2272         int rc;
2273
2274         DP_INFO(edev, "Starting qede unload\n");
2275
2276         if (!is_locked)
2277                 __qede_lock(edev);
2278
2279         clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2280
2281         if (mode != QEDE_UNLOAD_RECOVERY)
2282                 edev->state = QEDE_STATE_CLOSED;
2283
2284         qede_rdma_dev_event_close(edev);
2285
2286         /* Close OS Tx */
2287         netif_tx_disable(edev->ndev);
2288         netif_carrier_off(edev->ndev);
2289
2290         if (mode != QEDE_UNLOAD_RECOVERY) {
2291                 /* Reset the link */
2292                 memset(&link_params, 0, sizeof(link_params));
2293                 link_params.link_up = false;
2294                 edev->ops->common->set_link(edev->cdev, &link_params);
2295
2296                 rc = qede_stop_queues(edev);
2297                 if (rc) {
2298 #ifdef CONFIG_RFS_ACCEL
2299                         if (edev->dev_info.common.b_arfs_capable) {
2300                                 qede_poll_for_freeing_arfs_filters(edev);
2301                                 if (edev->ndev->rx_cpu_rmap)
2302                                         free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
2303
2304                                 edev->ndev->rx_cpu_rmap = NULL;
2305                         }
2306 #endif
2307                         qede_sync_free_irqs(edev);
2308                         goto out;
2309                 }
2310
2311                 DP_INFO(edev, "Stopped Queues\n");
2312         }
2313
2314         qede_vlan_mark_nonconfigured(edev);
2315         edev->ops->fastpath_stop(edev->cdev);
2316
2317         if (edev->dev_info.common.b_arfs_capable) {
2318                 qede_poll_for_freeing_arfs_filters(edev);
2319                 qede_free_arfs(edev);
2320         }
2321
2322         /* Release the interrupts */
2323         qede_sync_free_irqs(edev);
2324         edev->ops->common->set_fp_int(edev->cdev, 0);
2325
2326         qede_napi_disable_remove(edev);
2327
2328         if (mode == QEDE_UNLOAD_RECOVERY)
2329                 qede_empty_tx_queues(edev);
2330
2331         qede_free_mem_load(edev);
2332         qede_free_fp_array(edev);
2333
2334 out:
2335         if (!is_locked)
2336                 __qede_unlock(edev);
2337
2338         if (mode != QEDE_UNLOAD_RECOVERY)
2339                 DP_NOTICE(edev, "Link is down\n");
2340
2341         edev->ptp_skip_txts = 0;
2342
2343         DP_INFO(edev, "Ending qede unload\n");
2344 }
2345
2346 enum qede_load_mode {
2347         QEDE_LOAD_NORMAL,
2348         QEDE_LOAD_RELOAD,
2349         QEDE_LOAD_RECOVERY,
2350 };
2351
2352 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2353                      bool is_locked)
2354 {
2355         struct qed_link_params link_params;
2356         struct ethtool_coalesce coal = {};
2357         u8 num_tc;
2358         int rc, i;
2359
2360         DP_INFO(edev, "Starting qede load\n");
2361
2362         if (!is_locked)
2363                 __qede_lock(edev);
2364
2365         rc = qede_set_num_queues(edev);
2366         if (rc)
2367                 goto out;
2368
2369         rc = qede_alloc_fp_array(edev);
2370         if (rc)
2371                 goto out;
2372
2373         qede_init_fp(edev);
2374
2375         rc = qede_alloc_mem_load(edev);
2376         if (rc)
2377                 goto err1;
2378         DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2379                 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2380
2381         rc = qede_set_real_num_queues(edev);
2382         if (rc)
2383                 goto err2;
2384
2385         if (qede_alloc_arfs(edev)) {
2386                 edev->ndev->features &= ~NETIF_F_NTUPLE;
2387                 edev->dev_info.common.b_arfs_capable = false;
2388         }
2389
2390         qede_napi_add_enable(edev);
2391         DP_INFO(edev, "Napi added and enabled\n");
2392
2393         rc = qede_setup_irqs(edev);
2394         if (rc)
2395                 goto err3;
2396         DP_INFO(edev, "Setup IRQs succeeded\n");
2397
2398         rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2399         if (rc)
2400                 goto err4;
2401         DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2402
2403         num_tc = netdev_get_num_tc(edev->ndev);
2404         num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2405         qede_setup_tc(edev->ndev, num_tc);
2406
2407         /* Program un-configured VLANs */
2408         qede_configure_vlan_filters(edev);
2409
2410         set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2411
2412         /* Ask for link-up using current configuration */
2413         memset(&link_params, 0, sizeof(link_params));
2414         link_params.link_up = true;
2415         edev->ops->common->set_link(edev->cdev, &link_params);
2416
2417         edev->state = QEDE_STATE_OPEN;
2418
2419         coal.rx_coalesce_usecs = QED_DEFAULT_RX_USECS;
2420         coal.tx_coalesce_usecs = QED_DEFAULT_TX_USECS;
2421
2422         for_each_queue(i) {
2423                 if (edev->coal_entry[i].isvalid) {
2424                         coal.rx_coalesce_usecs = edev->coal_entry[i].rxc;
2425                         coal.tx_coalesce_usecs = edev->coal_entry[i].txc;
2426                 }
2427                 __qede_unlock(edev);
2428                 qede_set_per_coalesce(edev->ndev, i, &coal);
2429                 __qede_lock(edev);
2430         }
2431         DP_INFO(edev, "Ending successfully qede load\n");
2432
2433         goto out;
2434 err4:
2435         qede_sync_free_irqs(edev);
2436 err3:
2437         qede_napi_disable_remove(edev);
2438 err2:
2439         qede_free_mem_load(edev);
2440 err1:
2441         edev->ops->common->set_fp_int(edev->cdev, 0);
2442         qede_free_fp_array(edev);
2443         edev->num_queues = 0;
2444         edev->fp_num_tx = 0;
2445         edev->fp_num_rx = 0;
2446 out:
2447         if (!is_locked)
2448                 __qede_unlock(edev);
2449
2450         return rc;
2451 }
2452
2453 /* 'func' should be able to run between unload and reload assuming interface
2454  * is actually running, or afterwards in case it's currently DOWN.
2455  */
2456 void qede_reload(struct qede_dev *edev,
2457                  struct qede_reload_args *args, bool is_locked)
2458 {
2459         if (!is_locked)
2460                 __qede_lock(edev);
2461
2462         /* Since qede_lock is held, internal state wouldn't change even
2463          * if netdev state would start transitioning. Check whether current
2464          * internal configuration indicates device is up, then reload.
2465          */
2466         if (edev->state == QEDE_STATE_OPEN) {
2467                 qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2468                 if (args)
2469                         args->func(edev, args);
2470                 qede_load(edev, QEDE_LOAD_RELOAD, true);
2471
2472                 /* Since no one is going to do it for us, re-configure */
2473                 qede_config_rx_mode(edev->ndev);
2474         } else if (args) {
2475                 args->func(edev, args);
2476         }
2477
2478         if (!is_locked)
2479                 __qede_unlock(edev);
2480 }
2481
2482 /* called with rtnl_lock */
2483 static int qede_open(struct net_device *ndev)
2484 {
2485         struct qede_dev *edev = netdev_priv(ndev);
2486         int rc;
2487
2488         netif_carrier_off(ndev);
2489
2490         edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2491
2492         rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2493         if (rc)
2494                 return rc;
2495
2496         udp_tunnel_nic_reset_ntf(ndev);
2497
2498         edev->ops->common->update_drv_state(edev->cdev, true);
2499
2500         return 0;
2501 }
2502
2503 static int qede_close(struct net_device *ndev)
2504 {
2505         struct qede_dev *edev = netdev_priv(ndev);
2506
2507         qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2508
2509         if (edev->cdev)
2510                 edev->ops->common->update_drv_state(edev->cdev, false);
2511
2512         return 0;
2513 }
2514
2515 static void qede_link_update(void *dev, struct qed_link_output *link)
2516 {
2517         struct qede_dev *edev = dev;
2518
2519         if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2520                 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2521                 return;
2522         }
2523
2524         if (link->link_up) {
2525                 if (!netif_carrier_ok(edev->ndev)) {
2526                         DP_NOTICE(edev, "Link is up\n");
2527                         netif_tx_start_all_queues(edev->ndev);
2528                         netif_carrier_on(edev->ndev);
2529                         qede_rdma_dev_event_open(edev);
2530                 }
2531         } else {
2532                 if (netif_carrier_ok(edev->ndev)) {
2533                         DP_NOTICE(edev, "Link is down\n");
2534                         netif_tx_disable(edev->ndev);
2535                         netif_carrier_off(edev->ndev);
2536                         qede_rdma_dev_event_close(edev);
2537                 }
2538         }
2539 }
2540
2541 static void qede_schedule_recovery_handler(void *dev)
2542 {
2543         struct qede_dev *edev = dev;
2544
2545         if (edev->state == QEDE_STATE_RECOVERY) {
2546                 DP_NOTICE(edev,
2547                           "Avoid scheduling a recovery handling since already in recovery state\n");
2548                 return;
2549         }
2550
2551         set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2552         schedule_delayed_work(&edev->sp_task, 0);
2553
2554         DP_INFO(edev, "Scheduled a recovery handler\n");
2555 }
2556
2557 static void qede_recovery_failed(struct qede_dev *edev)
2558 {
2559         netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2560
2561         netif_device_detach(edev->ndev);
2562
2563         if (edev->cdev)
2564                 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2565 }
2566
2567 static void qede_recovery_handler(struct qede_dev *edev)
2568 {
2569         u32 curr_state = edev->state;
2570         int rc;
2571
2572         DP_NOTICE(edev, "Starting a recovery process\n");
2573
2574         /* No need to acquire first the qede_lock since is done by qede_sp_task
2575          * before calling this function.
2576          */
2577         edev->state = QEDE_STATE_RECOVERY;
2578
2579         edev->ops->common->recovery_prolog(edev->cdev);
2580
2581         if (curr_state == QEDE_STATE_OPEN)
2582                 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2583
2584         __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2585
2586         rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2587                           IS_VF(edev), QEDE_PROBE_RECOVERY);
2588         if (rc) {
2589                 edev->cdev = NULL;
2590                 goto err;
2591         }
2592
2593         if (curr_state == QEDE_STATE_OPEN) {
2594                 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2595                 if (rc)
2596                         goto err;
2597
2598                 qede_config_rx_mode(edev->ndev);
2599                 udp_tunnel_nic_reset_ntf(edev->ndev);
2600         }
2601
2602         edev->state = curr_state;
2603
2604         DP_NOTICE(edev, "Recovery handling is done\n");
2605
2606         return;
2607
2608 err:
2609         qede_recovery_failed(edev);
2610 }
2611
2612 static void qede_atomic_hw_err_handler(struct qede_dev *edev)
2613 {
2614         struct qed_dev *cdev = edev->cdev;
2615
2616         DP_NOTICE(edev,
2617                   "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2618                   edev->err_flags);
2619
2620         /* Get a call trace of the flow that led to the error */
2621         WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
2622
2623         /* Prevent HW attentions from being reasserted */
2624         if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2625                 edev->ops->common->attn_clr_enable(cdev, true);
2626
2627         DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2628 }
2629
2630 static void qede_generic_hw_err_handler(struct qede_dev *edev)
2631 {
2632         DP_NOTICE(edev,
2633                   "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2634                   edev->err_flags);
2635
2636         if (edev->devlink) {
2637                 DP_NOTICE(edev, "Reporting fatal error to devlink\n");
2638                 edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type);
2639         }
2640
2641         clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2642
2643         DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2644 }
2645
2646 static void qede_set_hw_err_flags(struct qede_dev *edev,
2647                                   enum qed_hw_err_type err_type)
2648 {
2649         unsigned long err_flags = 0;
2650
2651         switch (err_type) {
2652         case QED_HW_ERR_DMAE_FAIL:
2653                 set_bit(QEDE_ERR_WARN, &err_flags);
2654                 fallthrough;
2655         case QED_HW_ERR_MFW_RESP_FAIL:
2656         case QED_HW_ERR_HW_ATTN:
2657         case QED_HW_ERR_RAMROD_FAIL:
2658         case QED_HW_ERR_FW_ASSERT:
2659                 set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2660                 set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2661                 /* make this error as recoverable and start recovery*/
2662                 set_bit(QEDE_ERR_IS_RECOVERABLE, &err_flags);
2663                 break;
2664
2665         default:
2666                 DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2667                 break;
2668         }
2669
2670         edev->err_flags |= err_flags;
2671 }
2672
2673 static void qede_schedule_hw_err_handler(void *dev,
2674                                          enum qed_hw_err_type err_type)
2675 {
2676         struct qede_dev *edev = dev;
2677
2678         /* Fan failure cannot be masked by handling of another HW error or by a
2679          * concurrent recovery process.
2680          */
2681         if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2682              edev->state == QEDE_STATE_RECOVERY) &&
2683              err_type != QED_HW_ERR_FAN_FAIL) {
2684                 DP_INFO(edev,
2685                         "Avoid scheduling an error handling while another HW error is being handled\n");
2686                 return;
2687         }
2688
2689         if (err_type >= QED_HW_ERR_LAST) {
2690                 DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2691                 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2692                 return;
2693         }
2694
2695         edev->last_err_type = err_type;
2696         qede_set_hw_err_flags(edev, err_type);
2697         qede_atomic_hw_err_handler(edev);
2698         set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2699         schedule_delayed_work(&edev->sp_task, 0);
2700
2701         DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2702 }
2703
2704 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2705 {
2706         struct netdev_queue *netdev_txq;
2707
2708         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2709         if (netif_xmit_stopped(netdev_txq))
2710                 return true;
2711
2712         return false;
2713 }
2714
2715 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2716 {
2717         struct qede_dev *edev = dev;
2718         struct netdev_hw_addr *ha;
2719         int i;
2720
2721         if (edev->ndev->features & NETIF_F_IP_CSUM)
2722                 data->feat_flags |= QED_TLV_IP_CSUM;
2723         if (edev->ndev->features & NETIF_F_TSO)
2724                 data->feat_flags |= QED_TLV_LSO;
2725
2726         ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2727         eth_zero_addr(data->mac[1]);
2728         eth_zero_addr(data->mac[2]);
2729         /* Copy the first two UC macs */
2730         netif_addr_lock_bh(edev->ndev);
2731         i = 1;
2732         netdev_for_each_uc_addr(ha, edev->ndev) {
2733                 ether_addr_copy(data->mac[i++], ha->addr);
2734                 if (i == QED_TLV_MAC_COUNT)
2735                         break;
2736         }
2737
2738         netif_addr_unlock_bh(edev->ndev);
2739 }
2740
2741 static void qede_get_eth_tlv_data(void *dev, void *data)
2742 {
2743         struct qed_mfw_tlv_eth *etlv = data;
2744         struct qede_dev *edev = dev;
2745         struct qede_fastpath *fp;
2746         int i;
2747
2748         etlv->lso_maxoff_size = 0XFFFF;
2749         etlv->lso_maxoff_size_set = true;
2750         etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2751         etlv->lso_minseg_size_set = true;
2752         etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2753         etlv->prom_mode_set = true;
2754         etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2755         etlv->tx_descr_size_set = true;
2756         etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2757         etlv->rx_descr_size_set = true;
2758         etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2759         etlv->iov_offload_set = true;
2760
2761         /* Fill information regarding queues; Should be done under the qede
2762          * lock to guarantee those don't change beneath our feet.
2763          */
2764         etlv->txqs_empty = true;
2765         etlv->rxqs_empty = true;
2766         etlv->num_txqs_full = 0;
2767         etlv->num_rxqs_full = 0;
2768
2769         __qede_lock(edev);
2770         for_each_queue(i) {
2771                 fp = &edev->fp_array[i];
2772                 if (fp->type & QEDE_FASTPATH_TX) {
2773                         struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2774
2775                         if (txq->sw_tx_cons != txq->sw_tx_prod)
2776                                 etlv->txqs_empty = false;
2777                         if (qede_is_txq_full(edev, txq))
2778                                 etlv->num_txqs_full++;
2779                 }
2780                 if (fp->type & QEDE_FASTPATH_RX) {
2781                         if (qede_has_rx_work(fp->rxq))
2782                                 etlv->rxqs_empty = false;
2783
2784                         /* This one is a bit tricky; Firmware might stop
2785                          * placing packets if ring is not yet full.
2786                          * Give an approximation.
2787                          */
2788                         if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2789                             qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2790                             RX_RING_SIZE - 100)
2791                                 etlv->num_rxqs_full++;
2792                 }
2793         }
2794         __qede_unlock(edev);
2795
2796         etlv->txqs_empty_set = true;
2797         etlv->rxqs_empty_set = true;
2798         etlv->num_txqs_full_set = true;
2799         etlv->num_rxqs_full_set = true;
2800 }
2801
2802 /**
2803  * qede_io_error_detected - called when PCI error is detected
2804  * @pdev: Pointer to PCI device
2805  * @state: The current pci connection state
2806  *
2807  * This function is called after a PCI bus error affecting
2808  * this device has been detected.
2809  */
2810 static pci_ers_result_t
2811 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2812 {
2813         struct net_device *dev = pci_get_drvdata(pdev);
2814         struct qede_dev *edev = netdev_priv(dev);
2815
2816         if (!edev)
2817                 return PCI_ERS_RESULT_NONE;
2818
2819         DP_NOTICE(edev, "IO error detected [%d]\n", state);
2820
2821         __qede_lock(edev);
2822         if (edev->state == QEDE_STATE_RECOVERY) {
2823                 DP_NOTICE(edev, "Device already in the recovery state\n");
2824                 __qede_unlock(edev);
2825                 return PCI_ERS_RESULT_NONE;
2826         }
2827
2828         /* PF handles the recovery of its VFs */
2829         if (IS_VF(edev)) {
2830                 DP_VERBOSE(edev, QED_MSG_IOV,
2831                            "VF recovery is handled by its PF\n");
2832                 __qede_unlock(edev);
2833                 return PCI_ERS_RESULT_RECOVERED;
2834         }
2835
2836         /* Close OS Tx */
2837         netif_tx_disable(edev->ndev);
2838         netif_carrier_off(edev->ndev);
2839
2840         set_bit(QEDE_SP_AER, &edev->sp_flags);
2841         schedule_delayed_work(&edev->sp_task, 0);
2842
2843         __qede_unlock(edev);
2844
2845         return PCI_ERS_RESULT_CAN_RECOVER;
2846 }