x86/boot: Don't add the EFI stub to targets
[linux-2.6-microblaze.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 /* QLogic qede NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/crash_dump.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/version.h>
36 #include <linux/device.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/errno.h>
41 #include <linux/list.h>
42 #include <linux/string.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/interrupt.h>
45 #include <asm/byteorder.h>
46 #include <asm/param.h>
47 #include <linux/io.h>
48 #include <linux/netdev_features.h>
49 #include <linux/udp.h>
50 #include <linux/tcp.h>
51 #include <net/udp_tunnel.h>
52 #include <linux/ip.h>
53 #include <net/ipv6.h>
54 #include <net/tcp.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_vlan.h>
57 #include <linux/pkt_sched.h>
58 #include <linux/ethtool.h>
59 #include <linux/in.h>
60 #include <linux/random.h>
61 #include <net/ip6_checksum.h>
62 #include <linux/bitops.h>
63 #include <linux/vmalloc.h>
64 #include <linux/aer.h>
65 #include "qede.h"
66 #include "qede_ptp.h"
67
68 static char version[] =
69         "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
70
71 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
72 MODULE_LICENSE("GPL");
73 MODULE_VERSION(DRV_MODULE_VERSION);
74
75 static uint debug;
76 module_param(debug, uint, 0);
77 MODULE_PARM_DESC(debug, " Default debug msglevel");
78
79 static const struct qed_eth_ops *qed_ops;
80
81 #define CHIP_NUM_57980S_40              0x1634
82 #define CHIP_NUM_57980S_10              0x1666
83 #define CHIP_NUM_57980S_MF              0x1636
84 #define CHIP_NUM_57980S_100             0x1644
85 #define CHIP_NUM_57980S_50              0x1654
86 #define CHIP_NUM_57980S_25              0x1656
87 #define CHIP_NUM_57980S_IOV             0x1664
88 #define CHIP_NUM_AH                     0x8070
89 #define CHIP_NUM_AH_IOV                 0x8090
90
91 #ifndef PCI_DEVICE_ID_NX2_57980E
92 #define PCI_DEVICE_ID_57980S_40         CHIP_NUM_57980S_40
93 #define PCI_DEVICE_ID_57980S_10         CHIP_NUM_57980S_10
94 #define PCI_DEVICE_ID_57980S_MF         CHIP_NUM_57980S_MF
95 #define PCI_DEVICE_ID_57980S_100        CHIP_NUM_57980S_100
96 #define PCI_DEVICE_ID_57980S_50         CHIP_NUM_57980S_50
97 #define PCI_DEVICE_ID_57980S_25         CHIP_NUM_57980S_25
98 #define PCI_DEVICE_ID_57980S_IOV        CHIP_NUM_57980S_IOV
99 #define PCI_DEVICE_ID_AH                CHIP_NUM_AH
100 #define PCI_DEVICE_ID_AH_IOV            CHIP_NUM_AH_IOV
101
102 #endif
103
104 enum qede_pci_private {
105         QEDE_PRIVATE_PF,
106         QEDE_PRIVATE_VF
107 };
108
109 static const struct pci_device_id qede_pci_tbl[] = {
110         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
111         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
112         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
113         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
114         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
115         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
116 #ifdef CONFIG_QED_SRIOV
117         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
118 #endif
119         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
120 #ifdef CONFIG_QED_SRIOV
121         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
122 #endif
123         { 0 }
124 };
125
126 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
127
128 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
129 static pci_ers_result_t
130 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
131
132 #define TX_TIMEOUT              (5 * HZ)
133
134 /* Utilize last protocol index for XDP */
135 #define XDP_PI  11
136
137 static void qede_remove(struct pci_dev *pdev);
138 static void qede_shutdown(struct pci_dev *pdev);
139 static void qede_link_update(void *dev, struct qed_link_output *link);
140 static void qede_schedule_recovery_handler(void *dev);
141 static void qede_recovery_handler(struct qede_dev *edev);
142 static void qede_schedule_hw_err_handler(void *dev,
143                                          enum qed_hw_err_type err_type);
144 static void qede_get_eth_tlv_data(void *edev, void *data);
145 static void qede_get_generic_tlv_data(void *edev,
146                                       struct qed_generic_tlvs *data);
147 static void qede_generic_hw_err_handler(struct qede_dev *edev);
148 #ifdef CONFIG_QED_SRIOV
149 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
150                             __be16 vlan_proto)
151 {
152         struct qede_dev *edev = netdev_priv(ndev);
153
154         if (vlan > 4095) {
155                 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
156                 return -EINVAL;
157         }
158
159         if (vlan_proto != htons(ETH_P_8021Q))
160                 return -EPROTONOSUPPORT;
161
162         DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
163                    vlan, vf);
164
165         return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
166 }
167
168 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
169 {
170         struct qede_dev *edev = netdev_priv(ndev);
171
172         DP_VERBOSE(edev, QED_MSG_IOV,
173                    "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
174                    mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
175
176         if (!is_valid_ether_addr(mac)) {
177                 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
178                 return -EINVAL;
179         }
180
181         return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
182 }
183
184 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
185 {
186         struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
187         struct qed_dev_info *qed_info = &edev->dev_info.common;
188         struct qed_update_vport_params *vport_params;
189         int rc;
190
191         vport_params = vzalloc(sizeof(*vport_params));
192         if (!vport_params)
193                 return -ENOMEM;
194         DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
195
196         rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
197
198         /* Enable/Disable Tx switching for PF */
199         if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
200             !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
201                 vport_params->vport_id = 0;
202                 vport_params->update_tx_switching_flg = 1;
203                 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
204                 edev->ops->vport_update(edev->cdev, vport_params);
205         }
206
207         vfree(vport_params);
208         return rc;
209 }
210 #endif
211
212 static const struct pci_error_handlers qede_err_handler = {
213         .error_detected = qede_io_error_detected,
214 };
215
216 static struct pci_driver qede_pci_driver = {
217         .name = "qede",
218         .id_table = qede_pci_tbl,
219         .probe = qede_probe,
220         .remove = qede_remove,
221         .shutdown = qede_shutdown,
222 #ifdef CONFIG_QED_SRIOV
223         .sriov_configure = qede_sriov_configure,
224 #endif
225         .err_handler = &qede_err_handler,
226 };
227
228 static struct qed_eth_cb_ops qede_ll_ops = {
229         {
230 #ifdef CONFIG_RFS_ACCEL
231                 .arfs_filter_op = qede_arfs_filter_op,
232 #endif
233                 .link_update = qede_link_update,
234                 .schedule_recovery_handler = qede_schedule_recovery_handler,
235                 .schedule_hw_err_handler = qede_schedule_hw_err_handler,
236                 .get_generic_tlv_data = qede_get_generic_tlv_data,
237                 .get_protocol_tlv_data = qede_get_eth_tlv_data,
238         },
239         .force_mac = qede_force_mac,
240         .ports_update = qede_udp_ports_update,
241 };
242
243 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
244                              void *ptr)
245 {
246         struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
247         struct ethtool_drvinfo drvinfo;
248         struct qede_dev *edev;
249
250         if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
251                 goto done;
252
253         /* Check whether this is a qede device */
254         if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
255                 goto done;
256
257         memset(&drvinfo, 0, sizeof(drvinfo));
258         ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
259         if (strcmp(drvinfo.driver, "qede"))
260                 goto done;
261         edev = netdev_priv(ndev);
262
263         switch (event) {
264         case NETDEV_CHANGENAME:
265                 /* Notify qed of the name change */
266                 if (!edev->ops || !edev->ops->common)
267                         goto done;
268                 edev->ops->common->set_name(edev->cdev, edev->ndev->name);
269                 break;
270         case NETDEV_CHANGEADDR:
271                 edev = netdev_priv(ndev);
272                 qede_rdma_event_changeaddr(edev);
273                 break;
274         }
275
276 done:
277         return NOTIFY_DONE;
278 }
279
280 static struct notifier_block qede_netdev_notifier = {
281         .notifier_call = qede_netdev_event,
282 };
283
284 static
285 int __init qede_init(void)
286 {
287         int ret;
288
289         pr_info("qede_init: %s\n", version);
290
291         qed_ops = qed_get_eth_ops();
292         if (!qed_ops) {
293                 pr_notice("Failed to get qed ethtool operations\n");
294                 return -EINVAL;
295         }
296
297         /* Must register notifier before pci ops, since we might miss
298          * interface rename after pci probe and netdev registration.
299          */
300         ret = register_netdevice_notifier(&qede_netdev_notifier);
301         if (ret) {
302                 pr_notice("Failed to register netdevice_notifier\n");
303                 qed_put_eth_ops();
304                 return -EINVAL;
305         }
306
307         ret = pci_register_driver(&qede_pci_driver);
308         if (ret) {
309                 pr_notice("Failed to register driver\n");
310                 unregister_netdevice_notifier(&qede_netdev_notifier);
311                 qed_put_eth_ops();
312                 return -EINVAL;
313         }
314
315         return 0;
316 }
317
318 static void __exit qede_cleanup(void)
319 {
320         if (debug & QED_LOG_INFO_MASK)
321                 pr_info("qede_cleanup called\n");
322
323         unregister_netdevice_notifier(&qede_netdev_notifier);
324         pci_unregister_driver(&qede_pci_driver);
325         qed_put_eth_ops();
326 }
327
328 module_init(qede_init);
329 module_exit(qede_cleanup);
330
331 static int qede_open(struct net_device *ndev);
332 static int qede_close(struct net_device *ndev);
333
334 void qede_fill_by_demand_stats(struct qede_dev *edev)
335 {
336         struct qede_stats_common *p_common = &edev->stats.common;
337         struct qed_eth_stats stats;
338
339         edev->ops->get_vport_stats(edev->cdev, &stats);
340
341         p_common->no_buff_discards = stats.common.no_buff_discards;
342         p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
343         p_common->ttl0_discard = stats.common.ttl0_discard;
344         p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
345         p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
346         p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
347         p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
348         p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
349         p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
350         p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
351         p_common->mac_filter_discards = stats.common.mac_filter_discards;
352         p_common->gft_filter_drop = stats.common.gft_filter_drop;
353
354         p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
355         p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
356         p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
357         p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
358         p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
359         p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
360         p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
361         p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
362         p_common->coalesced_events = stats.common.tpa_coalesced_events;
363         p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
364         p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
365         p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
366
367         p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
368         p_common->rx_65_to_127_byte_packets =
369             stats.common.rx_65_to_127_byte_packets;
370         p_common->rx_128_to_255_byte_packets =
371             stats.common.rx_128_to_255_byte_packets;
372         p_common->rx_256_to_511_byte_packets =
373             stats.common.rx_256_to_511_byte_packets;
374         p_common->rx_512_to_1023_byte_packets =
375             stats.common.rx_512_to_1023_byte_packets;
376         p_common->rx_1024_to_1518_byte_packets =
377             stats.common.rx_1024_to_1518_byte_packets;
378         p_common->rx_crc_errors = stats.common.rx_crc_errors;
379         p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
380         p_common->rx_pause_frames = stats.common.rx_pause_frames;
381         p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
382         p_common->rx_align_errors = stats.common.rx_align_errors;
383         p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
384         p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
385         p_common->rx_jabbers = stats.common.rx_jabbers;
386         p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
387         p_common->rx_fragments = stats.common.rx_fragments;
388         p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
389         p_common->tx_65_to_127_byte_packets =
390             stats.common.tx_65_to_127_byte_packets;
391         p_common->tx_128_to_255_byte_packets =
392             stats.common.tx_128_to_255_byte_packets;
393         p_common->tx_256_to_511_byte_packets =
394             stats.common.tx_256_to_511_byte_packets;
395         p_common->tx_512_to_1023_byte_packets =
396             stats.common.tx_512_to_1023_byte_packets;
397         p_common->tx_1024_to_1518_byte_packets =
398             stats.common.tx_1024_to_1518_byte_packets;
399         p_common->tx_pause_frames = stats.common.tx_pause_frames;
400         p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
401         p_common->brb_truncates = stats.common.brb_truncates;
402         p_common->brb_discards = stats.common.brb_discards;
403         p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
404         p_common->link_change_count = stats.common.link_change_count;
405         p_common->ptp_skip_txts = edev->ptp_skip_txts;
406
407         if (QEDE_IS_BB(edev)) {
408                 struct qede_stats_bb *p_bb = &edev->stats.bb;
409
410                 p_bb->rx_1519_to_1522_byte_packets =
411                     stats.bb.rx_1519_to_1522_byte_packets;
412                 p_bb->rx_1519_to_2047_byte_packets =
413                     stats.bb.rx_1519_to_2047_byte_packets;
414                 p_bb->rx_2048_to_4095_byte_packets =
415                     stats.bb.rx_2048_to_4095_byte_packets;
416                 p_bb->rx_4096_to_9216_byte_packets =
417                     stats.bb.rx_4096_to_9216_byte_packets;
418                 p_bb->rx_9217_to_16383_byte_packets =
419                     stats.bb.rx_9217_to_16383_byte_packets;
420                 p_bb->tx_1519_to_2047_byte_packets =
421                     stats.bb.tx_1519_to_2047_byte_packets;
422                 p_bb->tx_2048_to_4095_byte_packets =
423                     stats.bb.tx_2048_to_4095_byte_packets;
424                 p_bb->tx_4096_to_9216_byte_packets =
425                     stats.bb.tx_4096_to_9216_byte_packets;
426                 p_bb->tx_9217_to_16383_byte_packets =
427                     stats.bb.tx_9217_to_16383_byte_packets;
428                 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
429                 p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
430         } else {
431                 struct qede_stats_ah *p_ah = &edev->stats.ah;
432
433                 p_ah->rx_1519_to_max_byte_packets =
434                     stats.ah.rx_1519_to_max_byte_packets;
435                 p_ah->tx_1519_to_max_byte_packets =
436                     stats.ah.tx_1519_to_max_byte_packets;
437         }
438 }
439
440 static void qede_get_stats64(struct net_device *dev,
441                              struct rtnl_link_stats64 *stats)
442 {
443         struct qede_dev *edev = netdev_priv(dev);
444         struct qede_stats_common *p_common;
445
446         qede_fill_by_demand_stats(edev);
447         p_common = &edev->stats.common;
448
449         stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
450                             p_common->rx_bcast_pkts;
451         stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
452                             p_common->tx_bcast_pkts;
453
454         stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
455                           p_common->rx_bcast_bytes;
456         stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
457                           p_common->tx_bcast_bytes;
458
459         stats->tx_errors = p_common->tx_err_drop_pkts;
460         stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
461
462         stats->rx_fifo_errors = p_common->no_buff_discards;
463
464         if (QEDE_IS_BB(edev))
465                 stats->collisions = edev->stats.bb.tx_total_collisions;
466         stats->rx_crc_errors = p_common->rx_crc_errors;
467         stats->rx_frame_errors = p_common->rx_align_errors;
468 }
469
470 #ifdef CONFIG_QED_SRIOV
471 static int qede_get_vf_config(struct net_device *dev, int vfidx,
472                               struct ifla_vf_info *ivi)
473 {
474         struct qede_dev *edev = netdev_priv(dev);
475
476         if (!edev->ops)
477                 return -EINVAL;
478
479         return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
480 }
481
482 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
483                             int min_tx_rate, int max_tx_rate)
484 {
485         struct qede_dev *edev = netdev_priv(dev);
486
487         return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
488                                         max_tx_rate);
489 }
490
491 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
492 {
493         struct qede_dev *edev = netdev_priv(dev);
494
495         if (!edev->ops)
496                 return -EINVAL;
497
498         return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
499 }
500
501 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
502                                   int link_state)
503 {
504         struct qede_dev *edev = netdev_priv(dev);
505
506         if (!edev->ops)
507                 return -EINVAL;
508
509         return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
510 }
511
512 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
513 {
514         struct qede_dev *edev = netdev_priv(dev);
515
516         if (!edev->ops)
517                 return -EINVAL;
518
519         return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
520 }
521 #endif
522
523 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
524 {
525         struct qede_dev *edev = netdev_priv(dev);
526
527         if (!netif_running(dev))
528                 return -EAGAIN;
529
530         switch (cmd) {
531         case SIOCSHWTSTAMP:
532                 return qede_ptp_hw_ts(edev, ifr);
533         default:
534                 DP_VERBOSE(edev, QED_MSG_DEBUG,
535                            "default IOCTL cmd 0x%x\n", cmd);
536                 return -EOPNOTSUPP;
537         }
538
539         return 0;
540 }
541
542 static void qede_tx_log_print(struct qede_dev *edev, struct qede_tx_queue *txq)
543 {
544         DP_NOTICE(edev,
545                   "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
546                   txq->index, le16_to_cpu(*txq->hw_cons_ptr),
547                   qed_chain_get_cons_idx(&txq->tx_pbl),
548                   qed_chain_get_prod_idx(&txq->tx_pbl),
549                   jiffies);
550 }
551
552 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
553 {
554         struct qede_dev *edev = netdev_priv(dev);
555         struct qede_tx_queue *txq;
556         int cos;
557
558         netif_carrier_off(dev);
559         DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
560
561         if (!(edev->fp_array[txqueue].type & QEDE_FASTPATH_TX))
562                 return;
563
564         for_each_cos_in_txq(edev, cos) {
565                 txq = &edev->fp_array[txqueue].txq[cos];
566
567                 if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
568                     qed_chain_get_prod_idx(&txq->tx_pbl))
569                         qede_tx_log_print(edev, txq);
570         }
571
572         if (IS_VF(edev))
573                 return;
574
575         if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
576             edev->state == QEDE_STATE_RECOVERY) {
577                 DP_INFO(edev,
578                         "Avoid handling a Tx timeout while another HW error is being handled\n");
579                 return;
580         }
581
582         set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
583         set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
584         schedule_delayed_work(&edev->sp_task, 0);
585 }
586
587 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
588 {
589         struct qede_dev *edev = netdev_priv(ndev);
590         int cos, count, offset;
591
592         if (num_tc > edev->dev_info.num_tc)
593                 return -EINVAL;
594
595         netdev_reset_tc(ndev);
596         netdev_set_num_tc(ndev, num_tc);
597
598         for_each_cos_in_txq(edev, cos) {
599                 count = QEDE_TSS_COUNT(edev);
600                 offset = cos * QEDE_TSS_COUNT(edev);
601                 netdev_set_tc_queue(ndev, cos, count, offset);
602         }
603
604         return 0;
605 }
606
607 static int
608 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
609                 __be16 proto)
610 {
611         switch (f->command) {
612         case FLOW_CLS_REPLACE:
613                 return qede_add_tc_flower_fltr(edev, proto, f);
614         case FLOW_CLS_DESTROY:
615                 return qede_delete_flow_filter(edev, f->cookie);
616         default:
617                 return -EOPNOTSUPP;
618         }
619 }
620
621 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
622                                   void *cb_priv)
623 {
624         struct flow_cls_offload *f;
625         struct qede_dev *edev = cb_priv;
626
627         if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
628                 return -EOPNOTSUPP;
629
630         switch (type) {
631         case TC_SETUP_CLSFLOWER:
632                 f = type_data;
633                 return qede_set_flower(edev, f, f->common.protocol);
634         default:
635                 return -EOPNOTSUPP;
636         }
637 }
638
639 static LIST_HEAD(qede_block_cb_list);
640
641 static int
642 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
643                       void *type_data)
644 {
645         struct qede_dev *edev = netdev_priv(dev);
646         struct tc_mqprio_qopt *mqprio;
647
648         switch (type) {
649         case TC_SETUP_BLOCK:
650                 return flow_block_cb_setup_simple(type_data,
651                                                   &qede_block_cb_list,
652                                                   qede_setup_tc_block_cb,
653                                                   edev, edev, true);
654         case TC_SETUP_QDISC_MQPRIO:
655                 mqprio = type_data;
656
657                 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
658                 return qede_setup_tc(dev, mqprio->num_tc);
659         default:
660                 return -EOPNOTSUPP;
661         }
662 }
663
664 static const struct net_device_ops qede_netdev_ops = {
665         .ndo_open = qede_open,
666         .ndo_stop = qede_close,
667         .ndo_start_xmit = qede_start_xmit,
668         .ndo_select_queue = qede_select_queue,
669         .ndo_set_rx_mode = qede_set_rx_mode,
670         .ndo_set_mac_address = qede_set_mac_addr,
671         .ndo_validate_addr = eth_validate_addr,
672         .ndo_change_mtu = qede_change_mtu,
673         .ndo_do_ioctl = qede_ioctl,
674         .ndo_tx_timeout = qede_tx_timeout,
675 #ifdef CONFIG_QED_SRIOV
676         .ndo_set_vf_mac = qede_set_vf_mac,
677         .ndo_set_vf_vlan = qede_set_vf_vlan,
678         .ndo_set_vf_trust = qede_set_vf_trust,
679 #endif
680         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
681         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
682         .ndo_fix_features = qede_fix_features,
683         .ndo_set_features = qede_set_features,
684         .ndo_get_stats64 = qede_get_stats64,
685 #ifdef CONFIG_QED_SRIOV
686         .ndo_set_vf_link_state = qede_set_vf_link_state,
687         .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
688         .ndo_get_vf_config = qede_get_vf_config,
689         .ndo_set_vf_rate = qede_set_vf_rate,
690 #endif
691         .ndo_udp_tunnel_add = qede_udp_tunnel_add,
692         .ndo_udp_tunnel_del = qede_udp_tunnel_del,
693         .ndo_features_check = qede_features_check,
694         .ndo_bpf = qede_xdp,
695 #ifdef CONFIG_RFS_ACCEL
696         .ndo_rx_flow_steer = qede_rx_flow_steer,
697 #endif
698         .ndo_setup_tc = qede_setup_tc_offload,
699 };
700
701 static const struct net_device_ops qede_netdev_vf_ops = {
702         .ndo_open = qede_open,
703         .ndo_stop = qede_close,
704         .ndo_start_xmit = qede_start_xmit,
705         .ndo_select_queue = qede_select_queue,
706         .ndo_set_rx_mode = qede_set_rx_mode,
707         .ndo_set_mac_address = qede_set_mac_addr,
708         .ndo_validate_addr = eth_validate_addr,
709         .ndo_change_mtu = qede_change_mtu,
710         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
711         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
712         .ndo_fix_features = qede_fix_features,
713         .ndo_set_features = qede_set_features,
714         .ndo_get_stats64 = qede_get_stats64,
715         .ndo_udp_tunnel_add = qede_udp_tunnel_add,
716         .ndo_udp_tunnel_del = qede_udp_tunnel_del,
717         .ndo_features_check = qede_features_check,
718 };
719
720 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
721         .ndo_open = qede_open,
722         .ndo_stop = qede_close,
723         .ndo_start_xmit = qede_start_xmit,
724         .ndo_select_queue = qede_select_queue,
725         .ndo_set_rx_mode = qede_set_rx_mode,
726         .ndo_set_mac_address = qede_set_mac_addr,
727         .ndo_validate_addr = eth_validate_addr,
728         .ndo_change_mtu = qede_change_mtu,
729         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
730         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
731         .ndo_fix_features = qede_fix_features,
732         .ndo_set_features = qede_set_features,
733         .ndo_get_stats64 = qede_get_stats64,
734         .ndo_udp_tunnel_add = qede_udp_tunnel_add,
735         .ndo_udp_tunnel_del = qede_udp_tunnel_del,
736         .ndo_features_check = qede_features_check,
737         .ndo_bpf = qede_xdp,
738 };
739
740 /* -------------------------------------------------------------------------
741  * START OF PROBE / REMOVE
742  * -------------------------------------------------------------------------
743  */
744
745 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
746                                             struct pci_dev *pdev,
747                                             struct qed_dev_eth_info *info,
748                                             u32 dp_module, u8 dp_level)
749 {
750         struct net_device *ndev;
751         struct qede_dev *edev;
752
753         ndev = alloc_etherdev_mqs(sizeof(*edev),
754                                   info->num_queues * info->num_tc,
755                                   info->num_queues);
756         if (!ndev) {
757                 pr_err("etherdev allocation failed\n");
758                 return NULL;
759         }
760
761         edev = netdev_priv(ndev);
762         edev->ndev = ndev;
763         edev->cdev = cdev;
764         edev->pdev = pdev;
765         edev->dp_module = dp_module;
766         edev->dp_level = dp_level;
767         edev->ops = qed_ops;
768
769         if (is_kdump_kernel()) {
770                 edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
771                 edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
772         } else {
773                 edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
774                 edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
775         }
776
777         DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
778                 info->num_queues, info->num_queues);
779
780         SET_NETDEV_DEV(ndev, &pdev->dev);
781
782         memset(&edev->stats, 0, sizeof(edev->stats));
783         memcpy(&edev->dev_info, info, sizeof(*info));
784
785         /* As ethtool doesn't have the ability to show WoL behavior as
786          * 'default', if device supports it declare it's enabled.
787          */
788         if (edev->dev_info.common.wol_support)
789                 edev->wol_enabled = true;
790
791         INIT_LIST_HEAD(&edev->vlan_list);
792
793         return edev;
794 }
795
796 static void qede_init_ndev(struct qede_dev *edev)
797 {
798         struct net_device *ndev = edev->ndev;
799         struct pci_dev *pdev = edev->pdev;
800         bool udp_tunnel_enable = false;
801         netdev_features_t hw_features;
802
803         pci_set_drvdata(pdev, ndev);
804
805         ndev->mem_start = edev->dev_info.common.pci_mem_start;
806         ndev->base_addr = ndev->mem_start;
807         ndev->mem_end = edev->dev_info.common.pci_mem_end;
808         ndev->irq = edev->dev_info.common.pci_irq;
809
810         ndev->watchdog_timeo = TX_TIMEOUT;
811
812         if (IS_VF(edev)) {
813                 if (edev->dev_info.xdp_supported)
814                         ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
815                 else
816                         ndev->netdev_ops = &qede_netdev_vf_ops;
817         } else {
818                 ndev->netdev_ops = &qede_netdev_ops;
819         }
820
821         qede_set_ethtool_ops(ndev);
822
823         ndev->priv_flags |= IFF_UNICAST_FLT;
824
825         /* user-changeble features */
826         hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
827                       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
828                       NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
829
830         if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
831                 hw_features |= NETIF_F_NTUPLE;
832
833         if (edev->dev_info.common.vxlan_enable ||
834             edev->dev_info.common.geneve_enable)
835                 udp_tunnel_enable = true;
836
837         if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
838                 hw_features |= NETIF_F_TSO_ECN;
839                 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
840                                         NETIF_F_SG | NETIF_F_TSO |
841                                         NETIF_F_TSO_ECN | NETIF_F_TSO6 |
842                                         NETIF_F_RXCSUM;
843         }
844
845         if (udp_tunnel_enable) {
846                 hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
847                                 NETIF_F_GSO_UDP_TUNNEL_CSUM);
848                 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
849                                           NETIF_F_GSO_UDP_TUNNEL_CSUM);
850         }
851
852         if (edev->dev_info.common.gre_enable) {
853                 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
854                 ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
855                                           NETIF_F_GSO_GRE_CSUM);
856         }
857
858         ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
859                               NETIF_F_HIGHDMA;
860         ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
861                          NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
862                          NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
863
864         ndev->hw_features = hw_features;
865
866         /* MTU range: 46 - 9600 */
867         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
868         ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
869
870         /* Set network device HW mac */
871         ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
872
873         ndev->mtu = edev->dev_info.common.mtu;
874 }
875
876 /* This function converts from 32b param to two params of level and module
877  * Input 32b decoding:
878  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
879  * 'happy' flow, e.g. memory allocation failed.
880  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
881  * and provide important parameters.
882  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
883  * module. VERBOSE prints are for tracking the specific flow in low level.
884  *
885  * Notice that the level should be that of the lowest required logs.
886  */
887 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
888 {
889         *p_dp_level = QED_LEVEL_NOTICE;
890         *p_dp_module = 0;
891
892         if (debug & QED_LOG_VERBOSE_MASK) {
893                 *p_dp_level = QED_LEVEL_VERBOSE;
894                 *p_dp_module = (debug & 0x3FFFFFFF);
895         } else if (debug & QED_LOG_INFO_MASK) {
896                 *p_dp_level = QED_LEVEL_INFO;
897         } else if (debug & QED_LOG_NOTICE_MASK) {
898                 *p_dp_level = QED_LEVEL_NOTICE;
899         }
900 }
901
902 static void qede_free_fp_array(struct qede_dev *edev)
903 {
904         if (edev->fp_array) {
905                 struct qede_fastpath *fp;
906                 int i;
907
908                 for_each_queue(i) {
909                         fp = &edev->fp_array[i];
910
911                         kfree(fp->sb_info);
912                         /* Handle mem alloc failure case where qede_init_fp
913                          * didn't register xdp_rxq_info yet.
914                          * Implicit only (fp->type & QEDE_FASTPATH_RX)
915                          */
916                         if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
917                                 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
918                         kfree(fp->rxq);
919                         kfree(fp->xdp_tx);
920                         kfree(fp->txq);
921                 }
922                 kfree(edev->fp_array);
923         }
924
925         edev->num_queues = 0;
926         edev->fp_num_tx = 0;
927         edev->fp_num_rx = 0;
928 }
929
930 static int qede_alloc_fp_array(struct qede_dev *edev)
931 {
932         u8 fp_combined, fp_rx = edev->fp_num_rx;
933         struct qede_fastpath *fp;
934         int i;
935
936         edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
937                                  sizeof(*edev->fp_array), GFP_KERNEL);
938         if (!edev->fp_array) {
939                 DP_NOTICE(edev, "fp array allocation failed\n");
940                 goto err;
941         }
942
943         fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
944
945         /* Allocate the FP elements for Rx queues followed by combined and then
946          * the Tx. This ordering should be maintained so that the respective
947          * queues (Rx or Tx) will be together in the fastpath array and the
948          * associated ids will be sequential.
949          */
950         for_each_queue(i) {
951                 fp = &edev->fp_array[i];
952
953                 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
954                 if (!fp->sb_info) {
955                         DP_NOTICE(edev, "sb info struct allocation failed\n");
956                         goto err;
957                 }
958
959                 if (fp_rx) {
960                         fp->type = QEDE_FASTPATH_RX;
961                         fp_rx--;
962                 } else if (fp_combined) {
963                         fp->type = QEDE_FASTPATH_COMBINED;
964                         fp_combined--;
965                 } else {
966                         fp->type = QEDE_FASTPATH_TX;
967                 }
968
969                 if (fp->type & QEDE_FASTPATH_TX) {
970                         fp->txq = kcalloc(edev->dev_info.num_tc,
971                                           sizeof(*fp->txq), GFP_KERNEL);
972                         if (!fp->txq)
973                                 goto err;
974                 }
975
976                 if (fp->type & QEDE_FASTPATH_RX) {
977                         fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
978                         if (!fp->rxq)
979                                 goto err;
980
981                         if (edev->xdp_prog) {
982                                 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
983                                                      GFP_KERNEL);
984                                 if (!fp->xdp_tx)
985                                         goto err;
986                                 fp->type |= QEDE_FASTPATH_XDP;
987                         }
988                 }
989         }
990
991         return 0;
992 err:
993         qede_free_fp_array(edev);
994         return -ENOMEM;
995 }
996
997 /* The qede lock is used to protect driver state change and driver flows that
998  * are not reentrant.
999  */
1000 void __qede_lock(struct qede_dev *edev)
1001 {
1002         mutex_lock(&edev->qede_lock);
1003 }
1004
1005 void __qede_unlock(struct qede_dev *edev)
1006 {
1007         mutex_unlock(&edev->qede_lock);
1008 }
1009
1010 /* This version of the lock should be used when acquiring the RTNL lock is also
1011  * needed in addition to the internal qede lock.
1012  */
1013 static void qede_lock(struct qede_dev *edev)
1014 {
1015         rtnl_lock();
1016         __qede_lock(edev);
1017 }
1018
1019 static void qede_unlock(struct qede_dev *edev)
1020 {
1021         __qede_unlock(edev);
1022         rtnl_unlock();
1023 }
1024
1025 static void qede_sp_task(struct work_struct *work)
1026 {
1027         struct qede_dev *edev = container_of(work, struct qede_dev,
1028                                              sp_task.work);
1029
1030         /* The locking scheme depends on the specific flag:
1031          * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1032          * ensure that ongoing flows are ended and new ones are not started.
1033          * In other cases - only the internal qede lock should be acquired.
1034          */
1035
1036         if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1037 #ifdef CONFIG_QED_SRIOV
1038                 /* SRIOV must be disabled outside the lock to avoid a deadlock.
1039                  * The recovery of the active VFs is currently not supported.
1040                  */
1041                 if (pci_num_vf(edev->pdev))
1042                         qede_sriov_configure(edev->pdev, 0);
1043 #endif
1044                 qede_lock(edev);
1045                 qede_recovery_handler(edev);
1046                 qede_unlock(edev);
1047         }
1048
1049         __qede_lock(edev);
1050
1051         if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1052                 if (edev->state == QEDE_STATE_OPEN)
1053                         qede_config_rx_mode(edev->ndev);
1054
1055 #ifdef CONFIG_RFS_ACCEL
1056         if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1057                 if (edev->state == QEDE_STATE_OPEN)
1058                         qede_process_arfs_filters(edev, false);
1059         }
1060 #endif
1061         if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1062                 qede_generic_hw_err_handler(edev);
1063         __qede_unlock(edev);
1064
1065         if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1066 #ifdef CONFIG_QED_SRIOV
1067                 /* SRIOV must be disabled outside the lock to avoid a deadlock.
1068                  * The recovery of the active VFs is currently not supported.
1069                  */
1070                 if (pci_num_vf(edev->pdev))
1071                         qede_sriov_configure(edev->pdev, 0);
1072 #endif
1073                 edev->ops->common->recovery_process(edev->cdev);
1074         }
1075 }
1076
1077 static void qede_update_pf_params(struct qed_dev *cdev)
1078 {
1079         struct qed_pf_params pf_params;
1080         u16 num_cons;
1081
1082         /* 64 rx + 64 tx + 64 XDP */
1083         memset(&pf_params, 0, sizeof(struct qed_pf_params));
1084
1085         /* 1 rx + 1 xdp + max tx cos */
1086         num_cons = QED_MIN_L2_CONS;
1087
1088         pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1089
1090         /* Same for VFs - make sure they'll have sufficient connections
1091          * to support XDP Tx queues.
1092          */
1093         pf_params.eth_pf_params.num_vf_cons = 48;
1094
1095         pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1096         qed_ops->common->update_pf_params(cdev, &pf_params);
1097 }
1098
1099 #define QEDE_FW_VER_STR_SIZE    80
1100
1101 static void qede_log_probe(struct qede_dev *edev)
1102 {
1103         struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1104         u8 buf[QEDE_FW_VER_STR_SIZE];
1105         size_t left_size;
1106
1107         snprintf(buf, QEDE_FW_VER_STR_SIZE,
1108                  "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1109                  p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1110                  p_dev_info->fw_eng,
1111                  (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1112                  QED_MFW_VERSION_3_OFFSET,
1113                  (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1114                  QED_MFW_VERSION_2_OFFSET,
1115                  (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1116                  QED_MFW_VERSION_1_OFFSET,
1117                  (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1118                  QED_MFW_VERSION_0_OFFSET);
1119
1120         left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1121         if (p_dev_info->mbi_version && left_size)
1122                 snprintf(buf + strlen(buf), left_size,
1123                          " [MBI %d.%d.%d]",
1124                          (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1125                          QED_MBI_VERSION_2_OFFSET,
1126                          (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1127                          QED_MBI_VERSION_1_OFFSET,
1128                          (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1129                          QED_MBI_VERSION_0_OFFSET);
1130
1131         pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1132                 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1133                 buf, edev->ndev->name);
1134 }
1135
1136 enum qede_probe_mode {
1137         QEDE_PROBE_NORMAL,
1138         QEDE_PROBE_RECOVERY,
1139 };
1140
1141 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1142                         bool is_vf, enum qede_probe_mode mode)
1143 {
1144         struct qed_probe_params probe_params;
1145         struct qed_slowpath_params sp_params;
1146         struct qed_dev_eth_info dev_info;
1147         struct qede_dev *edev;
1148         struct qed_dev *cdev;
1149         int rc;
1150
1151         if (unlikely(dp_level & QED_LEVEL_INFO))
1152                 pr_notice("Starting qede probe\n");
1153
1154         memset(&probe_params, 0, sizeof(probe_params));
1155         probe_params.protocol = QED_PROTOCOL_ETH;
1156         probe_params.dp_module = dp_module;
1157         probe_params.dp_level = dp_level;
1158         probe_params.is_vf = is_vf;
1159         probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1160         cdev = qed_ops->common->probe(pdev, &probe_params);
1161         if (!cdev) {
1162                 rc = -ENODEV;
1163                 goto err0;
1164         }
1165
1166         qede_update_pf_params(cdev);
1167
1168         /* Start the Slowpath-process */
1169         memset(&sp_params, 0, sizeof(sp_params));
1170         sp_params.int_mode = QED_INT_MODE_MSIX;
1171         sp_params.drv_major = QEDE_MAJOR_VERSION;
1172         sp_params.drv_minor = QEDE_MINOR_VERSION;
1173         sp_params.drv_rev = QEDE_REVISION_VERSION;
1174         sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
1175         strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1176         rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1177         if (rc) {
1178                 pr_notice("Cannot start slowpath\n");
1179                 goto err1;
1180         }
1181
1182         /* Learn information crucial for qede to progress */
1183         rc = qed_ops->fill_dev_info(cdev, &dev_info);
1184         if (rc)
1185                 goto err2;
1186
1187         if (mode != QEDE_PROBE_RECOVERY) {
1188                 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1189                                            dp_level);
1190                 if (!edev) {
1191                         rc = -ENOMEM;
1192                         goto err2;
1193                 }
1194         } else {
1195                 struct net_device *ndev = pci_get_drvdata(pdev);
1196
1197                 edev = netdev_priv(ndev);
1198                 edev->cdev = cdev;
1199                 memset(&edev->stats, 0, sizeof(edev->stats));
1200                 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1201         }
1202
1203         if (is_vf)
1204                 set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1205
1206         qede_init_ndev(edev);
1207
1208         rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1209         if (rc)
1210                 goto err3;
1211
1212         if (mode != QEDE_PROBE_RECOVERY) {
1213                 /* Prepare the lock prior to the registration of the netdev,
1214                  * as once it's registered we might reach flows requiring it
1215                  * [it's even possible to reach a flow needing it directly
1216                  * from there, although it's unlikely].
1217                  */
1218                 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1219                 mutex_init(&edev->qede_lock);
1220
1221                 rc = register_netdev(edev->ndev);
1222                 if (rc) {
1223                         DP_NOTICE(edev, "Cannot register net-device\n");
1224                         goto err4;
1225                 }
1226         }
1227
1228         edev->ops->common->set_name(cdev, edev->ndev->name);
1229
1230         /* PTP not supported on VFs */
1231         if (!is_vf)
1232                 qede_ptp_enable(edev, (mode == QEDE_PROBE_NORMAL));
1233
1234         edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1235
1236 #ifdef CONFIG_DCB
1237         if (!IS_VF(edev))
1238                 qede_set_dcbnl_ops(edev->ndev);
1239 #endif
1240
1241         edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1242
1243         qede_log_probe(edev);
1244         return 0;
1245
1246 err4:
1247         qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1248 err3:
1249         free_netdev(edev->ndev);
1250 err2:
1251         qed_ops->common->slowpath_stop(cdev);
1252 err1:
1253         qed_ops->common->remove(cdev);
1254 err0:
1255         return rc;
1256 }
1257
1258 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1259 {
1260         bool is_vf = false;
1261         u32 dp_module = 0;
1262         u8 dp_level = 0;
1263
1264         switch ((enum qede_pci_private)id->driver_data) {
1265         case QEDE_PRIVATE_VF:
1266                 if (debug & QED_LOG_VERBOSE_MASK)
1267                         dev_err(&pdev->dev, "Probing a VF\n");
1268                 is_vf = true;
1269                 break;
1270         default:
1271                 if (debug & QED_LOG_VERBOSE_MASK)
1272                         dev_err(&pdev->dev, "Probing a PF\n");
1273         }
1274
1275         qede_config_debug(debug, &dp_module, &dp_level);
1276
1277         return __qede_probe(pdev, dp_module, dp_level, is_vf,
1278                             QEDE_PROBE_NORMAL);
1279 }
1280
1281 enum qede_remove_mode {
1282         QEDE_REMOVE_NORMAL,
1283         QEDE_REMOVE_RECOVERY,
1284 };
1285
1286 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1287 {
1288         struct net_device *ndev = pci_get_drvdata(pdev);
1289         struct qede_dev *edev;
1290         struct qed_dev *cdev;
1291
1292         if (!ndev) {
1293                 dev_info(&pdev->dev, "Device has already been removed\n");
1294                 return;
1295         }
1296
1297         edev = netdev_priv(ndev);
1298         cdev = edev->cdev;
1299
1300         DP_INFO(edev, "Starting qede_remove\n");
1301
1302         qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1303
1304         if (mode != QEDE_REMOVE_RECOVERY) {
1305                 unregister_netdev(ndev);
1306
1307                 cancel_delayed_work_sync(&edev->sp_task);
1308
1309                 edev->ops->common->set_power_state(cdev, PCI_D0);
1310
1311                 pci_set_drvdata(pdev, NULL);
1312         }
1313
1314         qede_ptp_disable(edev);
1315
1316         /* Use global ops since we've freed edev */
1317         qed_ops->common->slowpath_stop(cdev);
1318         if (system_state == SYSTEM_POWER_OFF)
1319                 return;
1320         qed_ops->common->remove(cdev);
1321
1322         /* Since this can happen out-of-sync with other flows,
1323          * don't release the netdevice until after slowpath stop
1324          * has been called to guarantee various other contexts
1325          * [e.g., QED register callbacks] won't break anything when
1326          * accessing the netdevice.
1327          */
1328         if (mode != QEDE_REMOVE_RECOVERY)
1329                 free_netdev(ndev);
1330
1331         dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1332 }
1333
1334 static void qede_remove(struct pci_dev *pdev)
1335 {
1336         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1337 }
1338
1339 static void qede_shutdown(struct pci_dev *pdev)
1340 {
1341         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1342 }
1343
1344 /* -------------------------------------------------------------------------
1345  * START OF LOAD / UNLOAD
1346  * -------------------------------------------------------------------------
1347  */
1348
1349 static int qede_set_num_queues(struct qede_dev *edev)
1350 {
1351         int rc;
1352         u16 rss_num;
1353
1354         /* Setup queues according to possible resources*/
1355         if (edev->req_queues)
1356                 rss_num = edev->req_queues;
1357         else
1358                 rss_num = netif_get_num_default_rss_queues() *
1359                           edev->dev_info.common.num_hwfns;
1360
1361         rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1362
1363         rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1364         if (rc > 0) {
1365                 /* Managed to request interrupts for our queues */
1366                 edev->num_queues = rc;
1367                 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1368                         QEDE_QUEUE_CNT(edev), rss_num);
1369                 rc = 0;
1370         }
1371
1372         edev->fp_num_tx = edev->req_num_tx;
1373         edev->fp_num_rx = edev->req_num_rx;
1374
1375         return rc;
1376 }
1377
1378 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1379                              u16 sb_id)
1380 {
1381         if (sb_info->sb_virt) {
1382                 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1383                                               QED_SB_TYPE_L2_QUEUE);
1384                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1385                                   (void *)sb_info->sb_virt, sb_info->sb_phys);
1386                 memset(sb_info, 0, sizeof(*sb_info));
1387         }
1388 }
1389
1390 /* This function allocates fast-path status block memory */
1391 static int qede_alloc_mem_sb(struct qede_dev *edev,
1392                              struct qed_sb_info *sb_info, u16 sb_id)
1393 {
1394         struct status_block_e4 *sb_virt;
1395         dma_addr_t sb_phys;
1396         int rc;
1397
1398         sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1399                                      sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1400         if (!sb_virt) {
1401                 DP_ERR(edev, "Status block allocation failed\n");
1402                 return -ENOMEM;
1403         }
1404
1405         rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1406                                         sb_virt, sb_phys, sb_id,
1407                                         QED_SB_TYPE_L2_QUEUE);
1408         if (rc) {
1409                 DP_ERR(edev, "Status block initialization failed\n");
1410                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1411                                   sb_virt, sb_phys);
1412                 return rc;
1413         }
1414
1415         return 0;
1416 }
1417
1418 static void qede_free_rx_buffers(struct qede_dev *edev,
1419                                  struct qede_rx_queue *rxq)
1420 {
1421         u16 i;
1422
1423         for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1424                 struct sw_rx_data *rx_buf;
1425                 struct page *data;
1426
1427                 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1428                 data = rx_buf->data;
1429
1430                 dma_unmap_page(&edev->pdev->dev,
1431                                rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1432
1433                 rx_buf->data = NULL;
1434                 __free_page(data);
1435         }
1436 }
1437
1438 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1439 {
1440         /* Free rx buffers */
1441         qede_free_rx_buffers(edev, rxq);
1442
1443         /* Free the parallel SW ring */
1444         kfree(rxq->sw_rx_ring);
1445
1446         /* Free the real RQ ring used by FW */
1447         edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1448         edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1449 }
1450
1451 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1452 {
1453         int i;
1454
1455         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1456                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1457
1458                 tpa_info->state = QEDE_AGG_STATE_NONE;
1459         }
1460 }
1461
1462 /* This function allocates all memory needed per Rx queue */
1463 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1464 {
1465         int i, rc, size;
1466
1467         rxq->num_rx_buffers = edev->q_num_rx_buffers;
1468
1469         rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1470
1471         rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1472         size = rxq->rx_headroom +
1473                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1474
1475         /* Make sure that the headroom and  payload fit in a single page */
1476         if (rxq->rx_buf_size + size > PAGE_SIZE)
1477                 rxq->rx_buf_size = PAGE_SIZE - size;
1478
1479         /* Segment size to split a page in multiple equal parts,
1480          * unless XDP is used in which case we'd use the entire page.
1481          */
1482         if (!edev->xdp_prog) {
1483                 size = size + rxq->rx_buf_size;
1484                 rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1485         } else {
1486                 rxq->rx_buf_seg_size = PAGE_SIZE;
1487                 edev->ndev->features &= ~NETIF_F_GRO_HW;
1488         }
1489
1490         /* Allocate the parallel driver ring for Rx buffers */
1491         size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1492         rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1493         if (!rxq->sw_rx_ring) {
1494                 DP_ERR(edev, "Rx buffers ring allocation failed\n");
1495                 rc = -ENOMEM;
1496                 goto err;
1497         }
1498
1499         /* Allocate FW Rx ring  */
1500         rc = edev->ops->common->chain_alloc(edev->cdev,
1501                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1502                                             QED_CHAIN_MODE_NEXT_PTR,
1503                                             QED_CHAIN_CNT_TYPE_U16,
1504                                             RX_RING_SIZE,
1505                                             sizeof(struct eth_rx_bd),
1506                                             &rxq->rx_bd_ring, NULL);
1507         if (rc)
1508                 goto err;
1509
1510         /* Allocate FW completion ring */
1511         rc = edev->ops->common->chain_alloc(edev->cdev,
1512                                             QED_CHAIN_USE_TO_CONSUME,
1513                                             QED_CHAIN_MODE_PBL,
1514                                             QED_CHAIN_CNT_TYPE_U16,
1515                                             RX_RING_SIZE,
1516                                             sizeof(union eth_rx_cqe),
1517                                             &rxq->rx_comp_ring, NULL);
1518         if (rc)
1519                 goto err;
1520
1521         /* Allocate buffers for the Rx ring */
1522         rxq->filled_buffers = 0;
1523         for (i = 0; i < rxq->num_rx_buffers; i++) {
1524                 rc = qede_alloc_rx_buffer(rxq, false);
1525                 if (rc) {
1526                         DP_ERR(edev,
1527                                "Rx buffers allocation failed at index %d\n", i);
1528                         goto err;
1529                 }
1530         }
1531
1532         edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1533         if (!edev->gro_disable)
1534                 qede_set_tpa_param(rxq);
1535 err:
1536         return rc;
1537 }
1538
1539 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1540 {
1541         /* Free the parallel SW ring */
1542         if (txq->is_xdp)
1543                 kfree(txq->sw_tx_ring.xdp);
1544         else
1545                 kfree(txq->sw_tx_ring.skbs);
1546
1547         /* Free the real RQ ring used by FW */
1548         edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1549 }
1550
1551 /* This function allocates all memory needed per Tx queue */
1552 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1553 {
1554         union eth_tx_bd_types *p_virt;
1555         int size, rc;
1556
1557         txq->num_tx_buffers = edev->q_num_tx_buffers;
1558
1559         /* Allocate the parallel driver ring for Tx buffers */
1560         if (txq->is_xdp) {
1561                 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1562                 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1563                 if (!txq->sw_tx_ring.xdp)
1564                         goto err;
1565         } else {
1566                 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1567                 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1568                 if (!txq->sw_tx_ring.skbs)
1569                         goto err;
1570         }
1571
1572         rc = edev->ops->common->chain_alloc(edev->cdev,
1573                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1574                                             QED_CHAIN_MODE_PBL,
1575                                             QED_CHAIN_CNT_TYPE_U16,
1576                                             txq->num_tx_buffers,
1577                                             sizeof(*p_virt),
1578                                             &txq->tx_pbl, NULL);
1579         if (rc)
1580                 goto err;
1581
1582         return 0;
1583
1584 err:
1585         qede_free_mem_txq(edev, txq);
1586         return -ENOMEM;
1587 }
1588
1589 /* This function frees all memory of a single fp */
1590 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1591 {
1592         qede_free_mem_sb(edev, fp->sb_info, fp->id);
1593
1594         if (fp->type & QEDE_FASTPATH_RX)
1595                 qede_free_mem_rxq(edev, fp->rxq);
1596
1597         if (fp->type & QEDE_FASTPATH_XDP)
1598                 qede_free_mem_txq(edev, fp->xdp_tx);
1599
1600         if (fp->type & QEDE_FASTPATH_TX) {
1601                 int cos;
1602
1603                 for_each_cos_in_txq(edev, cos)
1604                         qede_free_mem_txq(edev, &fp->txq[cos]);
1605         }
1606 }
1607
1608 /* This function allocates all memory needed for a single fp (i.e. an entity
1609  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1610  */
1611 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1612 {
1613         int rc = 0;
1614
1615         rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1616         if (rc)
1617                 goto out;
1618
1619         if (fp->type & QEDE_FASTPATH_RX) {
1620                 rc = qede_alloc_mem_rxq(edev, fp->rxq);
1621                 if (rc)
1622                         goto out;
1623         }
1624
1625         if (fp->type & QEDE_FASTPATH_XDP) {
1626                 rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1627                 if (rc)
1628                         goto out;
1629         }
1630
1631         if (fp->type & QEDE_FASTPATH_TX) {
1632                 int cos;
1633
1634                 for_each_cos_in_txq(edev, cos) {
1635                         rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1636                         if (rc)
1637                                 goto out;
1638                 }
1639         }
1640
1641 out:
1642         return rc;
1643 }
1644
1645 static void qede_free_mem_load(struct qede_dev *edev)
1646 {
1647         int i;
1648
1649         for_each_queue(i) {
1650                 struct qede_fastpath *fp = &edev->fp_array[i];
1651
1652                 qede_free_mem_fp(edev, fp);
1653         }
1654 }
1655
1656 /* This function allocates all qede memory at NIC load. */
1657 static int qede_alloc_mem_load(struct qede_dev *edev)
1658 {
1659         int rc = 0, queue_id;
1660
1661         for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1662                 struct qede_fastpath *fp = &edev->fp_array[queue_id];
1663
1664                 rc = qede_alloc_mem_fp(edev, fp);
1665                 if (rc) {
1666                         DP_ERR(edev,
1667                                "Failed to allocate memory for fastpath - rss id = %d\n",
1668                                queue_id);
1669                         qede_free_mem_load(edev);
1670                         return rc;
1671                 }
1672         }
1673
1674         return 0;
1675 }
1676
1677 static void qede_empty_tx_queue(struct qede_dev *edev,
1678                                 struct qede_tx_queue *txq)
1679 {
1680         unsigned int pkts_compl = 0, bytes_compl = 0;
1681         struct netdev_queue *netdev_txq;
1682         int rc, len = 0;
1683
1684         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1685
1686         while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1687                qed_chain_get_prod_idx(&txq->tx_pbl)) {
1688                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1689                            "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1690                            txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1691                            qed_chain_get_prod_idx(&txq->tx_pbl));
1692
1693                 rc = qede_free_tx_pkt(edev, txq, &len);
1694                 if (rc) {
1695                         DP_NOTICE(edev,
1696                                   "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1697                                   txq->index,
1698                                   qed_chain_get_cons_idx(&txq->tx_pbl),
1699                                   qed_chain_get_prod_idx(&txq->tx_pbl));
1700                         break;
1701                 }
1702
1703                 bytes_compl += len;
1704                 pkts_compl++;
1705                 txq->sw_tx_cons++;
1706         }
1707
1708         netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1709 }
1710
1711 static void qede_empty_tx_queues(struct qede_dev *edev)
1712 {
1713         int i;
1714
1715         for_each_queue(i)
1716                 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1717                         int cos;
1718
1719                         for_each_cos_in_txq(edev, cos) {
1720                                 struct qede_fastpath *fp;
1721
1722                                 fp = &edev->fp_array[i];
1723                                 qede_empty_tx_queue(edev,
1724                                                     &fp->txq[cos]);
1725                         }
1726                 }
1727 }
1728
1729 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1730 static void qede_init_fp(struct qede_dev *edev)
1731 {
1732         int queue_id, rxq_index = 0, txq_index = 0;
1733         struct qede_fastpath *fp;
1734
1735         for_each_queue(queue_id) {
1736                 fp = &edev->fp_array[queue_id];
1737
1738                 fp->edev = edev;
1739                 fp->id = queue_id;
1740
1741                 if (fp->type & QEDE_FASTPATH_XDP) {
1742                         fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1743                                                                 rxq_index);
1744                         fp->xdp_tx->is_xdp = 1;
1745                 }
1746
1747                 if (fp->type & QEDE_FASTPATH_RX) {
1748                         fp->rxq->rxq_id = rxq_index++;
1749
1750                         /* Determine how to map buffers for this queue */
1751                         if (fp->type & QEDE_FASTPATH_XDP)
1752                                 fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1753                         else
1754                                 fp->rxq->data_direction = DMA_FROM_DEVICE;
1755                         fp->rxq->dev = &edev->pdev->dev;
1756
1757                         /* Driver have no error path from here */
1758                         WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1759                                                  fp->rxq->rxq_id) < 0);
1760                 }
1761
1762                 if (fp->type & QEDE_FASTPATH_TX) {
1763                         int cos;
1764
1765                         for_each_cos_in_txq(edev, cos) {
1766                                 struct qede_tx_queue *txq = &fp->txq[cos];
1767                                 u16 ndev_tx_id;
1768
1769                                 txq->cos = cos;
1770                                 txq->index = txq_index;
1771                                 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1772                                 txq->ndev_txq_id = ndev_tx_id;
1773
1774                                 if (edev->dev_info.is_legacy)
1775                                         txq->is_legacy = true;
1776                                 txq->dev = &edev->pdev->dev;
1777                         }
1778
1779                         txq_index++;
1780                 }
1781
1782                 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1783                          edev->ndev->name, queue_id);
1784         }
1785 }
1786
1787 static int qede_set_real_num_queues(struct qede_dev *edev)
1788 {
1789         int rc = 0;
1790
1791         rc = netif_set_real_num_tx_queues(edev->ndev,
1792                                           QEDE_TSS_COUNT(edev) *
1793                                           edev->dev_info.num_tc);
1794         if (rc) {
1795                 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1796                 return rc;
1797         }
1798
1799         rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1800         if (rc) {
1801                 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1802                 return rc;
1803         }
1804
1805         return 0;
1806 }
1807
1808 static void qede_napi_disable_remove(struct qede_dev *edev)
1809 {
1810         int i;
1811
1812         for_each_queue(i) {
1813                 napi_disable(&edev->fp_array[i].napi);
1814
1815                 netif_napi_del(&edev->fp_array[i].napi);
1816         }
1817 }
1818
1819 static void qede_napi_add_enable(struct qede_dev *edev)
1820 {
1821         int i;
1822
1823         /* Add NAPI objects */
1824         for_each_queue(i) {
1825                 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1826                                qede_poll, NAPI_POLL_WEIGHT);
1827                 napi_enable(&edev->fp_array[i].napi);
1828         }
1829 }
1830
1831 static void qede_sync_free_irqs(struct qede_dev *edev)
1832 {
1833         int i;
1834
1835         for (i = 0; i < edev->int_info.used_cnt; i++) {
1836                 if (edev->int_info.msix_cnt) {
1837                         synchronize_irq(edev->int_info.msix[i].vector);
1838                         free_irq(edev->int_info.msix[i].vector,
1839                                  &edev->fp_array[i]);
1840                 } else {
1841                         edev->ops->common->simd_handler_clean(edev->cdev, i);
1842                 }
1843         }
1844
1845         edev->int_info.used_cnt = 0;
1846 }
1847
1848 static int qede_req_msix_irqs(struct qede_dev *edev)
1849 {
1850         int i, rc;
1851
1852         /* Sanitize number of interrupts == number of prepared RSS queues */
1853         if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1854                 DP_ERR(edev,
1855                        "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1856                        QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1857                 return -EINVAL;
1858         }
1859
1860         for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1861 #ifdef CONFIG_RFS_ACCEL
1862                 struct qede_fastpath *fp = &edev->fp_array[i];
1863
1864                 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1865                         rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1866                                               edev->int_info.msix[i].vector);
1867                         if (rc) {
1868                                 DP_ERR(edev, "Failed to add CPU rmap\n");
1869                                 qede_free_arfs(edev);
1870                         }
1871                 }
1872 #endif
1873                 rc = request_irq(edev->int_info.msix[i].vector,
1874                                  qede_msix_fp_int, 0, edev->fp_array[i].name,
1875                                  &edev->fp_array[i]);
1876                 if (rc) {
1877                         DP_ERR(edev, "Request fp %d irq failed\n", i);
1878                         qede_sync_free_irqs(edev);
1879                         return rc;
1880                 }
1881                 DP_VERBOSE(edev, NETIF_MSG_INTR,
1882                            "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1883                            edev->fp_array[i].name, i,
1884                            &edev->fp_array[i]);
1885                 edev->int_info.used_cnt++;
1886         }
1887
1888         return 0;
1889 }
1890
1891 static void qede_simd_fp_handler(void *cookie)
1892 {
1893         struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1894
1895         napi_schedule_irqoff(&fp->napi);
1896 }
1897
1898 static int qede_setup_irqs(struct qede_dev *edev)
1899 {
1900         int i, rc = 0;
1901
1902         /* Learn Interrupt configuration */
1903         rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1904         if (rc)
1905                 return rc;
1906
1907         if (edev->int_info.msix_cnt) {
1908                 rc = qede_req_msix_irqs(edev);
1909                 if (rc)
1910                         return rc;
1911                 edev->ndev->irq = edev->int_info.msix[0].vector;
1912         } else {
1913                 const struct qed_common_ops *ops;
1914
1915                 /* qed should learn receive the RSS ids and callbacks */
1916                 ops = edev->ops->common;
1917                 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1918                         ops->simd_handler_config(edev->cdev,
1919                                                  &edev->fp_array[i], i,
1920                                                  qede_simd_fp_handler);
1921                 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1922         }
1923         return 0;
1924 }
1925
1926 static int qede_drain_txq(struct qede_dev *edev,
1927                           struct qede_tx_queue *txq, bool allow_drain)
1928 {
1929         int rc, cnt = 1000;
1930
1931         while (txq->sw_tx_cons != txq->sw_tx_prod) {
1932                 if (!cnt) {
1933                         if (allow_drain) {
1934                                 DP_NOTICE(edev,
1935                                           "Tx queue[%d] is stuck, requesting MCP to drain\n",
1936                                           txq->index);
1937                                 rc = edev->ops->common->drain(edev->cdev);
1938                                 if (rc)
1939                                         return rc;
1940                                 return qede_drain_txq(edev, txq, false);
1941                         }
1942                         DP_NOTICE(edev,
1943                                   "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1944                                   txq->index, txq->sw_tx_prod,
1945                                   txq->sw_tx_cons);
1946                         return -ENODEV;
1947                 }
1948                 cnt--;
1949                 usleep_range(1000, 2000);
1950                 barrier();
1951         }
1952
1953         /* FW finished processing, wait for HW to transmit all tx packets */
1954         usleep_range(1000, 2000);
1955
1956         return 0;
1957 }
1958
1959 static int qede_stop_txq(struct qede_dev *edev,
1960                          struct qede_tx_queue *txq, int rss_id)
1961 {
1962         /* delete doorbell from doorbell recovery mechanism */
1963         edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
1964                                            &txq->tx_db);
1965
1966         return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1967 }
1968
1969 static int qede_stop_queues(struct qede_dev *edev)
1970 {
1971         struct qed_update_vport_params *vport_update_params;
1972         struct qed_dev *cdev = edev->cdev;
1973         struct qede_fastpath *fp;
1974         int rc, i;
1975
1976         /* Disable the vport */
1977         vport_update_params = vzalloc(sizeof(*vport_update_params));
1978         if (!vport_update_params)
1979                 return -ENOMEM;
1980
1981         vport_update_params->vport_id = 0;
1982         vport_update_params->update_vport_active_flg = 1;
1983         vport_update_params->vport_active_flg = 0;
1984         vport_update_params->update_rss_flg = 0;
1985
1986         rc = edev->ops->vport_update(cdev, vport_update_params);
1987         vfree(vport_update_params);
1988
1989         if (rc) {
1990                 DP_ERR(edev, "Failed to update vport\n");
1991                 return rc;
1992         }
1993
1994         /* Flush Tx queues. If needed, request drain from MCP */
1995         for_each_queue(i) {
1996                 fp = &edev->fp_array[i];
1997
1998                 if (fp->type & QEDE_FASTPATH_TX) {
1999                         int cos;
2000
2001                         for_each_cos_in_txq(edev, cos) {
2002                                 rc = qede_drain_txq(edev, &fp->txq[cos], true);
2003                                 if (rc)
2004                                         return rc;
2005                         }
2006                 }
2007
2008                 if (fp->type & QEDE_FASTPATH_XDP) {
2009                         rc = qede_drain_txq(edev, fp->xdp_tx, true);
2010                         if (rc)
2011                                 return rc;
2012                 }
2013         }
2014
2015         /* Stop all Queues in reverse order */
2016         for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2017                 fp = &edev->fp_array[i];
2018
2019                 /* Stop the Tx Queue(s) */
2020                 if (fp->type & QEDE_FASTPATH_TX) {
2021                         int cos;
2022
2023                         for_each_cos_in_txq(edev, cos) {
2024                                 rc = qede_stop_txq(edev, &fp->txq[cos], i);
2025                                 if (rc)
2026                                         return rc;
2027                         }
2028                 }
2029
2030                 /* Stop the Rx Queue */
2031                 if (fp->type & QEDE_FASTPATH_RX) {
2032                         rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2033                         if (rc) {
2034                                 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2035                                 return rc;
2036                         }
2037                 }
2038
2039                 /* Stop the XDP forwarding queue */
2040                 if (fp->type & QEDE_FASTPATH_XDP) {
2041                         rc = qede_stop_txq(edev, fp->xdp_tx, i);
2042                         if (rc)
2043                                 return rc;
2044
2045                         bpf_prog_put(fp->rxq->xdp_prog);
2046                 }
2047         }
2048
2049         /* Stop the vport */
2050         rc = edev->ops->vport_stop(cdev, 0);
2051         if (rc)
2052                 DP_ERR(edev, "Failed to stop VPORT\n");
2053
2054         return rc;
2055 }
2056
2057 static int qede_start_txq(struct qede_dev *edev,
2058                           struct qede_fastpath *fp,
2059                           struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2060 {
2061         dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2062         u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2063         struct qed_queue_start_common_params params;
2064         struct qed_txq_start_ret_params ret_params;
2065         int rc;
2066
2067         memset(&params, 0, sizeof(params));
2068         memset(&ret_params, 0, sizeof(ret_params));
2069
2070         /* Let the XDP queue share the queue-zone with one of the regular txq.
2071          * We don't really care about its coalescing.
2072          */
2073         if (txq->is_xdp)
2074                 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2075         else
2076                 params.queue_id = txq->index;
2077
2078         params.p_sb = fp->sb_info;
2079         params.sb_idx = sb_idx;
2080         params.tc = txq->cos;
2081
2082         rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2083                                    page_cnt, &ret_params);
2084         if (rc) {
2085                 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2086                 return rc;
2087         }
2088
2089         txq->doorbell_addr = ret_params.p_doorbell;
2090         txq->handle = ret_params.p_handle;
2091
2092         /* Determine the FW consumer address associated */
2093         txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2094
2095         /* Prepare the doorbell parameters */
2096         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2097         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2098         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2099                   DQ_XCM_ETH_TX_BD_PROD_CMD);
2100         txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2101
2102         /* register doorbell with doorbell recovery mechanism */
2103         rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2104                                                 &txq->tx_db, DB_REC_WIDTH_32B,
2105                                                 DB_REC_KERNEL);
2106
2107         return rc;
2108 }
2109
2110 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2111 {
2112         int vlan_removal_en = 1;
2113         struct qed_dev *cdev = edev->cdev;
2114         struct qed_dev_info *qed_info = &edev->dev_info.common;
2115         struct qed_update_vport_params *vport_update_params;
2116         struct qed_queue_start_common_params q_params;
2117         struct qed_start_vport_params start = {0};
2118         int rc, i;
2119
2120         if (!edev->num_queues) {
2121                 DP_ERR(edev,
2122                        "Cannot update V-VPORT as active as there are no Rx queues\n");
2123                 return -EINVAL;
2124         }
2125
2126         vport_update_params = vzalloc(sizeof(*vport_update_params));
2127         if (!vport_update_params)
2128                 return -ENOMEM;
2129
2130         start.handle_ptp_pkts = !!(edev->ptp);
2131         start.gro_enable = !edev->gro_disable;
2132         start.mtu = edev->ndev->mtu;
2133         start.vport_id = 0;
2134         start.drop_ttl0 = true;
2135         start.remove_inner_vlan = vlan_removal_en;
2136         start.clear_stats = clear_stats;
2137
2138         rc = edev->ops->vport_start(cdev, &start);
2139
2140         if (rc) {
2141                 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2142                 goto out;
2143         }
2144
2145         DP_VERBOSE(edev, NETIF_MSG_IFUP,
2146                    "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2147                    start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2148
2149         for_each_queue(i) {
2150                 struct qede_fastpath *fp = &edev->fp_array[i];
2151                 dma_addr_t p_phys_table;
2152                 u32 page_cnt;
2153
2154                 if (fp->type & QEDE_FASTPATH_RX) {
2155                         struct qed_rxq_start_ret_params ret_params;
2156                         struct qede_rx_queue *rxq = fp->rxq;
2157                         __le16 *val;
2158
2159                         memset(&ret_params, 0, sizeof(ret_params));
2160                         memset(&q_params, 0, sizeof(q_params));
2161                         q_params.queue_id = rxq->rxq_id;
2162                         q_params.vport_id = 0;
2163                         q_params.p_sb = fp->sb_info;
2164                         q_params.sb_idx = RX_PI;
2165
2166                         p_phys_table =
2167                             qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2168                         page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2169
2170                         rc = edev->ops->q_rx_start(cdev, i, &q_params,
2171                                                    rxq->rx_buf_size,
2172                                                    rxq->rx_bd_ring.p_phys_addr,
2173                                                    p_phys_table,
2174                                                    page_cnt, &ret_params);
2175                         if (rc) {
2176                                 DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2177                                        rc);
2178                                 goto out;
2179                         }
2180
2181                         /* Use the return parameters */
2182                         rxq->hw_rxq_prod_addr = ret_params.p_prod;
2183                         rxq->handle = ret_params.p_handle;
2184
2185                         val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2186                         rxq->hw_cons_ptr = val;
2187
2188                         qede_update_rx_prod(edev, rxq);
2189                 }
2190
2191                 if (fp->type & QEDE_FASTPATH_XDP) {
2192                         rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2193                         if (rc)
2194                                 goto out;
2195
2196                         bpf_prog_add(edev->xdp_prog, 1);
2197                         fp->rxq->xdp_prog = edev->xdp_prog;
2198                 }
2199
2200                 if (fp->type & QEDE_FASTPATH_TX) {
2201                         int cos;
2202
2203                         for_each_cos_in_txq(edev, cos) {
2204                                 rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2205                                                     TX_PI(cos));
2206                                 if (rc)
2207                                         goto out;
2208                         }
2209                 }
2210         }
2211
2212         /* Prepare and send the vport enable */
2213         vport_update_params->vport_id = start.vport_id;
2214         vport_update_params->update_vport_active_flg = 1;
2215         vport_update_params->vport_active_flg = 1;
2216
2217         if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2218             qed_info->tx_switching) {
2219                 vport_update_params->update_tx_switching_flg = 1;
2220                 vport_update_params->tx_switching_flg = 1;
2221         }
2222
2223         qede_fill_rss_params(edev, &vport_update_params->rss_params,
2224                              &vport_update_params->update_rss_flg);
2225
2226         rc = edev->ops->vport_update(cdev, vport_update_params);
2227         if (rc)
2228                 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2229
2230 out:
2231         vfree(vport_update_params);
2232         return rc;
2233 }
2234
2235 enum qede_unload_mode {
2236         QEDE_UNLOAD_NORMAL,
2237         QEDE_UNLOAD_RECOVERY,
2238 };
2239
2240 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2241                         bool is_locked)
2242 {
2243         struct qed_link_params link_params;
2244         int rc;
2245
2246         DP_INFO(edev, "Starting qede unload\n");
2247
2248         if (!is_locked)
2249                 __qede_lock(edev);
2250
2251         clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2252
2253         if (mode != QEDE_UNLOAD_RECOVERY)
2254                 edev->state = QEDE_STATE_CLOSED;
2255
2256         qede_rdma_dev_event_close(edev);
2257
2258         /* Close OS Tx */
2259         netif_tx_disable(edev->ndev);
2260         netif_carrier_off(edev->ndev);
2261
2262         if (mode != QEDE_UNLOAD_RECOVERY) {
2263                 /* Reset the link */
2264                 memset(&link_params, 0, sizeof(link_params));
2265                 link_params.link_up = false;
2266                 edev->ops->common->set_link(edev->cdev, &link_params);
2267
2268                 rc = qede_stop_queues(edev);
2269                 if (rc) {
2270                         qede_sync_free_irqs(edev);
2271                         goto out;
2272                 }
2273
2274                 DP_INFO(edev, "Stopped Queues\n");
2275         }
2276
2277         qede_vlan_mark_nonconfigured(edev);
2278         edev->ops->fastpath_stop(edev->cdev);
2279
2280         if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2281                 qede_poll_for_freeing_arfs_filters(edev);
2282                 qede_free_arfs(edev);
2283         }
2284
2285         /* Release the interrupts */
2286         qede_sync_free_irqs(edev);
2287         edev->ops->common->set_fp_int(edev->cdev, 0);
2288
2289         qede_napi_disable_remove(edev);
2290
2291         if (mode == QEDE_UNLOAD_RECOVERY)
2292                 qede_empty_tx_queues(edev);
2293
2294         qede_free_mem_load(edev);
2295         qede_free_fp_array(edev);
2296
2297 out:
2298         if (!is_locked)
2299                 __qede_unlock(edev);
2300
2301         if (mode != QEDE_UNLOAD_RECOVERY)
2302                 DP_NOTICE(edev, "Link is down\n");
2303
2304         edev->ptp_skip_txts = 0;
2305
2306         DP_INFO(edev, "Ending qede unload\n");
2307 }
2308
2309 enum qede_load_mode {
2310         QEDE_LOAD_NORMAL,
2311         QEDE_LOAD_RELOAD,
2312         QEDE_LOAD_RECOVERY,
2313 };
2314
2315 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2316                      bool is_locked)
2317 {
2318         struct qed_link_params link_params;
2319         u8 num_tc;
2320         int rc;
2321
2322         DP_INFO(edev, "Starting qede load\n");
2323
2324         if (!is_locked)
2325                 __qede_lock(edev);
2326
2327         rc = qede_set_num_queues(edev);
2328         if (rc)
2329                 goto out;
2330
2331         rc = qede_alloc_fp_array(edev);
2332         if (rc)
2333                 goto out;
2334
2335         qede_init_fp(edev);
2336
2337         rc = qede_alloc_mem_load(edev);
2338         if (rc)
2339                 goto err1;
2340         DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2341                 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2342
2343         rc = qede_set_real_num_queues(edev);
2344         if (rc)
2345                 goto err2;
2346
2347         if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2348                 rc = qede_alloc_arfs(edev);
2349                 if (rc)
2350                         DP_NOTICE(edev, "aRFS memory allocation failed\n");
2351         }
2352
2353         qede_napi_add_enable(edev);
2354         DP_INFO(edev, "Napi added and enabled\n");
2355
2356         rc = qede_setup_irqs(edev);
2357         if (rc)
2358                 goto err3;
2359         DP_INFO(edev, "Setup IRQs succeeded\n");
2360
2361         rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2362         if (rc)
2363                 goto err4;
2364         DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2365
2366         num_tc = netdev_get_num_tc(edev->ndev);
2367         num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2368         qede_setup_tc(edev->ndev, num_tc);
2369
2370         /* Program un-configured VLANs */
2371         qede_configure_vlan_filters(edev);
2372
2373         set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2374
2375         /* Ask for link-up using current configuration */
2376         memset(&link_params, 0, sizeof(link_params));
2377         link_params.link_up = true;
2378         edev->ops->common->set_link(edev->cdev, &link_params);
2379
2380         edev->state = QEDE_STATE_OPEN;
2381
2382         DP_INFO(edev, "Ending successfully qede load\n");
2383
2384         goto out;
2385 err4:
2386         qede_sync_free_irqs(edev);
2387         memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2388 err3:
2389         qede_napi_disable_remove(edev);
2390 err2:
2391         qede_free_mem_load(edev);
2392 err1:
2393         edev->ops->common->set_fp_int(edev->cdev, 0);
2394         qede_free_fp_array(edev);
2395         edev->num_queues = 0;
2396         edev->fp_num_tx = 0;
2397         edev->fp_num_rx = 0;
2398 out:
2399         if (!is_locked)
2400                 __qede_unlock(edev);
2401
2402         return rc;
2403 }
2404
2405 /* 'func' should be able to run between unload and reload assuming interface
2406  * is actually running, or afterwards in case it's currently DOWN.
2407  */
2408 void qede_reload(struct qede_dev *edev,
2409                  struct qede_reload_args *args, bool is_locked)
2410 {
2411         if (!is_locked)
2412                 __qede_lock(edev);
2413
2414         /* Since qede_lock is held, internal state wouldn't change even
2415          * if netdev state would start transitioning. Check whether current
2416          * internal configuration indicates device is up, then reload.
2417          */
2418         if (edev->state == QEDE_STATE_OPEN) {
2419                 qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2420                 if (args)
2421                         args->func(edev, args);
2422                 qede_load(edev, QEDE_LOAD_RELOAD, true);
2423
2424                 /* Since no one is going to do it for us, re-configure */
2425                 qede_config_rx_mode(edev->ndev);
2426         } else if (args) {
2427                 args->func(edev, args);
2428         }
2429
2430         if (!is_locked)
2431                 __qede_unlock(edev);
2432 }
2433
2434 /* called with rtnl_lock */
2435 static int qede_open(struct net_device *ndev)
2436 {
2437         struct qede_dev *edev = netdev_priv(ndev);
2438         int rc;
2439
2440         netif_carrier_off(ndev);
2441
2442         edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2443
2444         rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2445         if (rc)
2446                 return rc;
2447
2448         udp_tunnel_get_rx_info(ndev);
2449
2450         edev->ops->common->update_drv_state(edev->cdev, true);
2451
2452         return 0;
2453 }
2454
2455 static int qede_close(struct net_device *ndev)
2456 {
2457         struct qede_dev *edev = netdev_priv(ndev);
2458
2459         qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2460
2461         edev->ops->common->update_drv_state(edev->cdev, false);
2462
2463         return 0;
2464 }
2465
2466 static void qede_link_update(void *dev, struct qed_link_output *link)
2467 {
2468         struct qede_dev *edev = dev;
2469
2470         if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2471                 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2472                 return;
2473         }
2474
2475         if (link->link_up) {
2476                 if (!netif_carrier_ok(edev->ndev)) {
2477                         DP_NOTICE(edev, "Link is up\n");
2478                         netif_tx_start_all_queues(edev->ndev);
2479                         netif_carrier_on(edev->ndev);
2480                         qede_rdma_dev_event_open(edev);
2481                 }
2482         } else {
2483                 if (netif_carrier_ok(edev->ndev)) {
2484                         DP_NOTICE(edev, "Link is down\n");
2485                         netif_tx_disable(edev->ndev);
2486                         netif_carrier_off(edev->ndev);
2487                         qede_rdma_dev_event_close(edev);
2488                 }
2489         }
2490 }
2491
2492 static void qede_schedule_recovery_handler(void *dev)
2493 {
2494         struct qede_dev *edev = dev;
2495
2496         if (edev->state == QEDE_STATE_RECOVERY) {
2497                 DP_NOTICE(edev,
2498                           "Avoid scheduling a recovery handling since already in recovery state\n");
2499                 return;
2500         }
2501
2502         set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2503         schedule_delayed_work(&edev->sp_task, 0);
2504
2505         DP_INFO(edev, "Scheduled a recovery handler\n");
2506 }
2507
2508 static void qede_recovery_failed(struct qede_dev *edev)
2509 {
2510         netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2511
2512         netif_device_detach(edev->ndev);
2513
2514         if (edev->cdev)
2515                 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2516 }
2517
2518 static void qede_recovery_handler(struct qede_dev *edev)
2519 {
2520         u32 curr_state = edev->state;
2521         int rc;
2522
2523         DP_NOTICE(edev, "Starting a recovery process\n");
2524
2525         /* No need to acquire first the qede_lock since is done by qede_sp_task
2526          * before calling this function.
2527          */
2528         edev->state = QEDE_STATE_RECOVERY;
2529
2530         edev->ops->common->recovery_prolog(edev->cdev);
2531
2532         if (curr_state == QEDE_STATE_OPEN)
2533                 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2534
2535         __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2536
2537         rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2538                           IS_VF(edev), QEDE_PROBE_RECOVERY);
2539         if (rc) {
2540                 edev->cdev = NULL;
2541                 goto err;
2542         }
2543
2544         if (curr_state == QEDE_STATE_OPEN) {
2545                 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2546                 if (rc)
2547                         goto err;
2548
2549                 qede_config_rx_mode(edev->ndev);
2550                 udp_tunnel_get_rx_info(edev->ndev);
2551         }
2552
2553         edev->state = curr_state;
2554
2555         DP_NOTICE(edev, "Recovery handling is done\n");
2556
2557         return;
2558
2559 err:
2560         qede_recovery_failed(edev);
2561 }
2562
2563 static void qede_atomic_hw_err_handler(struct qede_dev *edev)
2564 {
2565         struct qed_dev *cdev = edev->cdev;
2566
2567         DP_NOTICE(edev,
2568                   "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2569                   edev->err_flags);
2570
2571         /* Get a call trace of the flow that led to the error */
2572         WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
2573
2574         /* Prevent HW attentions from being reasserted */
2575         if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2576                 edev->ops->common->attn_clr_enable(cdev, true);
2577
2578         DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2579 }
2580
2581 static void qede_generic_hw_err_handler(struct qede_dev *edev)
2582 {
2583         struct qed_dev *cdev = edev->cdev;
2584
2585         DP_NOTICE(edev,
2586                   "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2587                   edev->err_flags);
2588
2589         /* Trigger a recovery process.
2590          * This is placed in the sleep requiring section just to make
2591          * sure it is the last one, and that all the other operations
2592          * were completed.
2593          */
2594         if (test_bit(QEDE_ERR_IS_RECOVERABLE, &edev->err_flags))
2595                 edev->ops->common->recovery_process(cdev);
2596
2597         clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2598
2599         DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2600 }
2601
2602 static void qede_set_hw_err_flags(struct qede_dev *edev,
2603                                   enum qed_hw_err_type err_type)
2604 {
2605         unsigned long err_flags = 0;
2606
2607         switch (err_type) {
2608         case QED_HW_ERR_DMAE_FAIL:
2609                 set_bit(QEDE_ERR_WARN, &err_flags);
2610                 fallthrough;
2611         case QED_HW_ERR_MFW_RESP_FAIL:
2612         case QED_HW_ERR_HW_ATTN:
2613         case QED_HW_ERR_RAMROD_FAIL:
2614         case QED_HW_ERR_FW_ASSERT:
2615                 set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2616                 set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2617                 break;
2618
2619         default:
2620                 DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2621                 break;
2622         }
2623
2624         edev->err_flags |= err_flags;
2625 }
2626
2627 static void qede_schedule_hw_err_handler(void *dev,
2628                                          enum qed_hw_err_type err_type)
2629 {
2630         struct qede_dev *edev = dev;
2631
2632         /* Fan failure cannot be masked by handling of another HW error or by a
2633          * concurrent recovery process.
2634          */
2635         if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2636              edev->state == QEDE_STATE_RECOVERY) &&
2637              err_type != QED_HW_ERR_FAN_FAIL) {
2638                 DP_INFO(edev,
2639                         "Avoid scheduling an error handling while another HW error is being handled\n");
2640                 return;
2641         }
2642
2643         if (err_type >= QED_HW_ERR_LAST) {
2644                 DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2645                 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2646                 return;
2647         }
2648
2649         qede_set_hw_err_flags(edev, err_type);
2650         qede_atomic_hw_err_handler(edev);
2651         set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2652         schedule_delayed_work(&edev->sp_task, 0);
2653
2654         DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2655 }
2656
2657 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2658 {
2659         struct netdev_queue *netdev_txq;
2660
2661         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2662         if (netif_xmit_stopped(netdev_txq))
2663                 return true;
2664
2665         return false;
2666 }
2667
2668 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2669 {
2670         struct qede_dev *edev = dev;
2671         struct netdev_hw_addr *ha;
2672         int i;
2673
2674         if (edev->ndev->features & NETIF_F_IP_CSUM)
2675                 data->feat_flags |= QED_TLV_IP_CSUM;
2676         if (edev->ndev->features & NETIF_F_TSO)
2677                 data->feat_flags |= QED_TLV_LSO;
2678
2679         ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2680         memset(data->mac[1], 0, ETH_ALEN);
2681         memset(data->mac[2], 0, ETH_ALEN);
2682         /* Copy the first two UC macs */
2683         netif_addr_lock_bh(edev->ndev);
2684         i = 1;
2685         netdev_for_each_uc_addr(ha, edev->ndev) {
2686                 ether_addr_copy(data->mac[i++], ha->addr);
2687                 if (i == QED_TLV_MAC_COUNT)
2688                         break;
2689         }
2690
2691         netif_addr_unlock_bh(edev->ndev);
2692 }
2693
2694 static void qede_get_eth_tlv_data(void *dev, void *data)
2695 {
2696         struct qed_mfw_tlv_eth *etlv = data;
2697         struct qede_dev *edev = dev;
2698         struct qede_fastpath *fp;
2699         int i;
2700
2701         etlv->lso_maxoff_size = 0XFFFF;
2702         etlv->lso_maxoff_size_set = true;
2703         etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2704         etlv->lso_minseg_size_set = true;
2705         etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2706         etlv->prom_mode_set = true;
2707         etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2708         etlv->tx_descr_size_set = true;
2709         etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2710         etlv->rx_descr_size_set = true;
2711         etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2712         etlv->iov_offload_set = true;
2713
2714         /* Fill information regarding queues; Should be done under the qede
2715          * lock to guarantee those don't change beneath our feet.
2716          */
2717         etlv->txqs_empty = true;
2718         etlv->rxqs_empty = true;
2719         etlv->num_txqs_full = 0;
2720         etlv->num_rxqs_full = 0;
2721
2722         __qede_lock(edev);
2723         for_each_queue(i) {
2724                 fp = &edev->fp_array[i];
2725                 if (fp->type & QEDE_FASTPATH_TX) {
2726                         struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2727
2728                         if (txq->sw_tx_cons != txq->sw_tx_prod)
2729                                 etlv->txqs_empty = false;
2730                         if (qede_is_txq_full(edev, txq))
2731                                 etlv->num_txqs_full++;
2732                 }
2733                 if (fp->type & QEDE_FASTPATH_RX) {
2734                         if (qede_has_rx_work(fp->rxq))
2735                                 etlv->rxqs_empty = false;
2736
2737                         /* This one is a bit tricky; Firmware might stop
2738                          * placing packets if ring is not yet full.
2739                          * Give an approximation.
2740                          */
2741                         if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2742                             qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2743                             RX_RING_SIZE - 100)
2744                                 etlv->num_rxqs_full++;
2745                 }
2746         }
2747         __qede_unlock(edev);
2748
2749         etlv->txqs_empty_set = true;
2750         etlv->rxqs_empty_set = true;
2751         etlv->num_txqs_full_set = true;
2752         etlv->num_rxqs_full_set = true;
2753 }
2754
2755 /**
2756  * qede_io_error_detected - called when PCI error is detected
2757  * @pdev: Pointer to PCI device
2758  * @state: The current pci connection state
2759  *
2760  * This function is called after a PCI bus error affecting
2761  * this device has been detected.
2762  */
2763 static pci_ers_result_t
2764 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2765 {
2766         struct net_device *dev = pci_get_drvdata(pdev);
2767         struct qede_dev *edev = netdev_priv(dev);
2768
2769         if (!edev)
2770                 return PCI_ERS_RESULT_NONE;
2771
2772         DP_NOTICE(edev, "IO error detected [%d]\n", state);
2773
2774         __qede_lock(edev);
2775         if (edev->state == QEDE_STATE_RECOVERY) {
2776                 DP_NOTICE(edev, "Device already in the recovery state\n");
2777                 __qede_unlock(edev);
2778                 return PCI_ERS_RESULT_NONE;
2779         }
2780
2781         /* PF handles the recovery of its VFs */
2782         if (IS_VF(edev)) {
2783                 DP_VERBOSE(edev, QED_MSG_IOV,
2784                            "VF recovery is handled by its PF\n");
2785                 __qede_unlock(edev);
2786                 return PCI_ERS_RESULT_RECOVERED;
2787         }
2788
2789         /* Close OS Tx */
2790         netif_tx_disable(edev->ndev);
2791         netif_carrier_off(edev->ndev);
2792
2793         set_bit(QEDE_SP_AER, &edev->sp_flags);
2794         schedule_delayed_work(&edev->sp_task, 0);
2795
2796         __qede_unlock(edev);
2797
2798         return PCI_ERS_RESULT_CAN_RECOVER;
2799 }