Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux-2.6-microblaze.git] / drivers / net / ethernet / qlogic / qed / qed_init_fw_funcs.c
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qed NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2021 Marvell International Ltd.
5  */
6
7 #include <linux/types.h>
8 #include <linux/crc8.h>
9 #include <linux/delay.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/string.h>
13 #include "qed_hsi.h"
14 #include "qed_hw.h"
15 #include "qed_init_ops.h"
16 #include "qed_iro_hsi.h"
17 #include "qed_reg_addr.h"
18
19 #define CDU_VALIDATION_DEFAULT_CFG CDU_CONTEXT_VALIDATION_DEFAULT_CFG
20
21 static u16 con_region_offsets[3][NUM_OF_CONNECTION_TYPES] = {
22         {400, 336, 352, 368, 304, 384, 416, 352},       /* region 3 offsets */
23         {528, 496, 416, 512, 448, 512, 544, 480},       /* region 4 offsets */
24         {608, 544, 496, 576, 576, 592, 624, 560}        /* region 5 offsets */
25 };
26
27 static u16 task_region_offsets[1][NUM_OF_CONNECTION_TYPES] = {
28         {240, 240, 112, 0, 0, 0, 0, 96} /* region 1 offsets */
29 };
30
31 /* General constants */
32 #define QM_PQ_MEM_4KB(pq_size)  (pq_size ? DIV_ROUND_UP((pq_size + 1) * \
33                                                         QM_PQ_ELEMENT_SIZE, \
34                                                         0x1000) : 0)
35 #define QM_PQ_SIZE_256B(pq_size)        (pq_size ? DIV_ROUND_UP(pq_size, \
36                                                                 0x100) - 1 : 0)
37 #define QM_INVALID_PQ_ID                0xffff
38
39 /* Max link speed (in Mbps) */
40 #define QM_MAX_LINK_SPEED               100000
41
42 /* Feature enable */
43 #define QM_BYPASS_EN    1
44 #define QM_BYTE_CRD_EN  1
45
46 /* Initial VOQ byte credit */
47 #define QM_INITIAL_VOQ_BYTE_CRD         98304
48 /* Other PQ constants */
49 #define QM_OTHER_PQS_PER_PF     4
50
51 /* VOQ constants */
52 #define MAX_NUM_VOQS    (MAX_NUM_PORTS_K2 * NUM_TCS_4PORT_K2)
53 #define VOQS_BIT_MASK   (BIT(MAX_NUM_VOQS) - 1)
54
55 /* WFQ constants */
56
57 /* PF WFQ increment value, 0x9000 = 4*9*1024 */
58 #define QM_PF_WFQ_INC_VAL(weight)       ((weight) * 0x9000)
59
60 /* PF WFQ Upper bound, in MB, 10 * burst size of 1ms in 50Gbps */
61 #define QM_PF_WFQ_UPPER_BOUND           62500000
62
63 /* PF WFQ max increment value, 0.7 * upper bound */
64 #define QM_PF_WFQ_MAX_INC_VAL           ((QM_PF_WFQ_UPPER_BOUND * 7) / 10)
65
66 /* Number of VOQs in E5 PF WFQ credit register (QmWfqCrd) */
67 #define QM_PF_WFQ_CRD_E5_NUM_VOQS       16
68
69 /* VP WFQ increment value */
70 #define QM_VP_WFQ_INC_VAL(weight)       ((weight) * QM_VP_WFQ_MIN_INC_VAL)
71
72 /* VP WFQ min increment value */
73 #define QM_VP_WFQ_MIN_INC_VAL           10800
74
75 /* VP WFQ max increment value, 2^30 */
76 #define QM_VP_WFQ_MAX_INC_VAL           0x40000000
77
78 /* VP WFQ bypass threshold */
79 #define QM_VP_WFQ_BYPASS_THRESH         (QM_VP_WFQ_MIN_INC_VAL - 100)
80
81 /* VP RL credit task cost */
82 #define QM_VP_RL_CRD_TASK_COST          9700
83
84 /* Bit of VOQ in VP WFQ PQ map */
85 #define QM_VP_WFQ_PQ_VOQ_SHIFT          0
86
87 /* Bit of PF in VP WFQ PQ map */
88 #define QM_VP_WFQ_PQ_PF_SHIFT   5
89
90 /* RL constants */
91
92 /* Period in us */
93 #define QM_RL_PERIOD    5
94
95 /* Period in 25MHz cycles */
96 #define QM_RL_PERIOD_CLK_25M    (25 * QM_RL_PERIOD)
97
98 /* RL increment value - rate is specified in mbps */
99 #define QM_RL_INC_VAL(rate)                     ({      \
100                                                 typeof(rate) __rate = (rate); \
101                                                 max_t(u32,              \
102                                                 (u32)(((__rate ? __rate : \
103                                                 100000) *               \
104                                                 QM_RL_PERIOD *          \
105                                                 101) / (8 * 100)), 1); })
106
107 /* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */
108 #define QM_PF_RL_UPPER_BOUND    62500000
109
110 /* Max PF RL increment value is 0.7 * upper bound */
111 #define QM_PF_RL_MAX_INC_VAL    ((QM_PF_RL_UPPER_BOUND * 7) / 10)
112
113 /* QCN RL Upper bound, speed is in Mpbs */
114 #define QM_GLOBAL_RL_UPPER_BOUND(speed)         ((u32)max_t( \
115                 u32,                                        \
116                 (u32)(((speed) *                            \
117                        QM_RL_PERIOD * 101) / (8 * 100)),    \
118                 QM_VP_RL_CRD_TASK_COST                      \
119                 + 1000))
120
121 /* AFullOprtnstcCrdMask constants */
122 #define QM_OPPOR_LINE_VOQ_DEF   1
123 #define QM_OPPOR_FW_STOP_DEF    0
124 #define QM_OPPOR_PQ_EMPTY_DEF   1
125
126 /* Command Queue constants */
127
128 /* Pure LB CmdQ lines (+spare) */
129 #define PBF_CMDQ_PURE_LB_LINES  150
130
131 #define PBF_CMDQ_LINES_RT_OFFSET(ext_voq) \
132         (PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + \
133          (ext_voq) * (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET - \
134                 PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
135
136 #define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq) \
137         (PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + \
138          (ext_voq) * (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - \
139                 PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
140
141 /* Returns the VOQ line credit for the specified number of PBF command lines.
142  * PBF lines are specified in 256b units.
143  */
144 #define QM_VOQ_LINE_CRD(pbf_cmd_lines) \
145         ((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT)
146
147 /* BTB: blocks constants (block size = 256B) */
148
149 /* 256B blocks in 9700B packet */
150 #define BTB_JUMBO_PKT_BLOCKS    38
151
152 /* Headroom per-port */
153 #define BTB_HEADROOM_BLOCKS     BTB_JUMBO_PKT_BLOCKS
154 #define BTB_PURE_LB_FACTOR      10
155
156 /* Factored (hence really 0.7) */
157 #define BTB_PURE_LB_RATIO       7
158
159 /* QM stop command constants */
160 #define QM_STOP_PQ_MASK_WIDTH           32
161 #define QM_STOP_CMD_ADDR                2
162 #define QM_STOP_CMD_STRUCT_SIZE         2
163 #define QM_STOP_CMD_PAUSE_MASK_OFFSET   0
164 #define QM_STOP_CMD_PAUSE_MASK_SHIFT    0
165 #define QM_STOP_CMD_PAUSE_MASK_MASK     -1
166 #define QM_STOP_CMD_GROUP_ID_OFFSET     1
167 #define QM_STOP_CMD_GROUP_ID_SHIFT      16
168 #define QM_STOP_CMD_GROUP_ID_MASK       15
169 #define QM_STOP_CMD_PQ_TYPE_OFFSET      1
170 #define QM_STOP_CMD_PQ_TYPE_SHIFT       24
171 #define QM_STOP_CMD_PQ_TYPE_MASK        1
172 #define QM_STOP_CMD_MAX_POLL_COUNT      100
173 #define QM_STOP_CMD_POLL_PERIOD_US      500
174
175 /* QM command macros */
176 #define QM_CMD_STRUCT_SIZE(cmd) cmd ## _STRUCT_SIZE
177 #define QM_CMD_SET_FIELD(var, cmd, field, value) \
178         SET_FIELD(var[cmd ## _ ## field ## _OFFSET], \
179                   cmd ## _ ## field, \
180                   value)
181
182 #define QM_INIT_TX_PQ_MAP(p_hwfn, map, pq_id, vp_pq_id, rl_valid,             \
183                           rl_id, ext_voq, wrr)                                \
184         do {                                                                  \
185                 u32 __reg = 0;                                                \
186                                                                               \
187                 BUILD_BUG_ON(sizeof((map).reg) != sizeof(__reg));             \
188                 memset(&(map), 0, sizeof(map));                               \
189                 SET_FIELD(__reg, QM_RF_PQ_MAP_PQ_VALID, 1);           \
190                 SET_FIELD(__reg, QM_RF_PQ_MAP_RL_VALID,       \
191                           !!(rl_valid));                                      \
192                 SET_FIELD(__reg, QM_RF_PQ_MAP_VP_PQ_ID, (vp_pq_id)); \
193                 SET_FIELD(__reg, QM_RF_PQ_MAP_RL_ID, (rl_id));        \
194                 SET_FIELD(__reg, QM_RF_PQ_MAP_VOQ, (ext_voq));        \
195                 SET_FIELD(__reg, QM_RF_PQ_MAP_WRR_WEIGHT_GROUP,      \
196                           (wrr));                                             \
197                                                                               \
198                 STORE_RT_REG((p_hwfn), QM_REG_TXPQMAP_RT_OFFSET + (pq_id),    \
199                              __reg);                                          \
200                 (map).reg = cpu_to_le32(__reg);                               \
201         } while (0)
202
203 #define WRITE_PQ_INFO_TO_RAM    1
204 #define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl) \
205         (((vp) << 0) | ((pf) << 12) | ((tc) << 16) | ((port) << 20) | \
206         ((rl_valid ? 1 : 0) << 22) | (((rl) & 255) << 24) | \
207         (((rl) >> 8) << 9))
208
209 #define PQ_INFO_RAM_GRC_ADDRESS(pq_id) \
210         (XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + \
211         XSTORM_PQ_INFO_OFFSET(pq_id))
212
213 static const char * const s_protocol_types[] = {
214         "PROTOCOLID_ISCSI", "PROTOCOLID_FCOE", "PROTOCOLID_ROCE",
215         "PROTOCOLID_CORE", "PROTOCOLID_ETH", "PROTOCOLID_IWARP",
216         "PROTOCOLID_TOE", "PROTOCOLID_PREROCE", "PROTOCOLID_COMMON",
217         "PROTOCOLID_TCP", "PROTOCOLID_RDMA", "PROTOCOLID_SCSI",
218 };
219
220 static const char *s_ramrod_cmd_ids[][28] = {
221         {
222         "ISCSI_RAMROD_CMD_ID_UNUSED", "ISCSI_RAMROD_CMD_ID_INIT_FUNC",
223          "ISCSI_RAMROD_CMD_ID_DESTROY_FUNC",
224          "ISCSI_RAMROD_CMD_ID_OFFLOAD_CONN",
225          "ISCSI_RAMROD_CMD_ID_UPDATE_CONN",
226          "ISCSI_RAMROD_CMD_ID_TERMINATION_CONN",
227          "ISCSI_RAMROD_CMD_ID_CLEAR_SQ", "ISCSI_RAMROD_CMD_ID_MAC_UPDATE",
228          "ISCSI_RAMROD_CMD_ID_CONN_STATS", },
229         { "FCOE_RAMROD_CMD_ID_INIT_FUNC", "FCOE_RAMROD_CMD_ID_DESTROY_FUNC",
230          "FCOE_RAMROD_CMD_ID_STAT_FUNC",
231          "FCOE_RAMROD_CMD_ID_OFFLOAD_CONN",
232          "FCOE_RAMROD_CMD_ID_TERMINATE_CONN", },
233         { "RDMA_RAMROD_UNUSED", "RDMA_RAMROD_FUNC_INIT",
234          "RDMA_RAMROD_FUNC_CLOSE", "RDMA_RAMROD_REGISTER_MR",
235          "RDMA_RAMROD_DEREGISTER_MR", "RDMA_RAMROD_CREATE_CQ",
236          "RDMA_RAMROD_RESIZE_CQ", "RDMA_RAMROD_DESTROY_CQ",
237          "RDMA_RAMROD_CREATE_SRQ", "RDMA_RAMROD_MODIFY_SRQ",
238          "RDMA_RAMROD_DESTROY_SRQ", "RDMA_RAMROD_START_NS_TRACKING",
239          "RDMA_RAMROD_STOP_NS_TRACKING", "ROCE_RAMROD_CREATE_QP",
240          "ROCE_RAMROD_MODIFY_QP", "ROCE_RAMROD_QUERY_QP",
241          "ROCE_RAMROD_DESTROY_QP", "ROCE_RAMROD_CREATE_UD_QP",
242          "ROCE_RAMROD_DESTROY_UD_QP", "ROCE_RAMROD_FUNC_UPDATE",
243          "ROCE_RAMROD_SUSPEND_QP", "ROCE_RAMROD_QUERY_SUSPENDED_QP",
244          "ROCE_RAMROD_CREATE_SUSPENDED_QP", "ROCE_RAMROD_RESUME_QP",
245          "ROCE_RAMROD_SUSPEND_UD_QP", "ROCE_RAMROD_RESUME_UD_QP",
246          "ROCE_RAMROD_CREATE_SUSPENDED_UD_QP", "ROCE_RAMROD_FLUSH_DPT_QP", },
247         { "CORE_RAMROD_UNUSED", "CORE_RAMROD_RX_QUEUE_START",
248          "CORE_RAMROD_TX_QUEUE_START", "CORE_RAMROD_RX_QUEUE_STOP",
249          "CORE_RAMROD_TX_QUEUE_STOP",
250          "CORE_RAMROD_RX_QUEUE_FLUSH",
251          "CORE_RAMROD_TX_QUEUE_UPDATE", "CORE_RAMROD_QUEUE_STATS_QUERY", },
252         { "ETH_RAMROD_UNUSED", "ETH_RAMROD_VPORT_START",
253          "ETH_RAMROD_VPORT_UPDATE", "ETH_RAMROD_VPORT_STOP",
254          "ETH_RAMROD_RX_QUEUE_START", "ETH_RAMROD_RX_QUEUE_STOP",
255          "ETH_RAMROD_TX_QUEUE_START", "ETH_RAMROD_TX_QUEUE_STOP",
256          "ETH_RAMROD_FILTERS_UPDATE", "ETH_RAMROD_RX_QUEUE_UPDATE",
257          "ETH_RAMROD_RX_CREATE_OPENFLOW_ACTION",
258          "ETH_RAMROD_RX_ADD_OPENFLOW_FILTER",
259          "ETH_RAMROD_RX_DELETE_OPENFLOW_FILTER",
260          "ETH_RAMROD_RX_ADD_UDP_FILTER",
261          "ETH_RAMROD_RX_DELETE_UDP_FILTER",
262          "ETH_RAMROD_RX_CREATE_GFT_ACTION",
263          "ETH_RAMROD_RX_UPDATE_GFT_FILTER", "ETH_RAMROD_TX_QUEUE_UPDATE",
264          "ETH_RAMROD_RGFS_FILTER_ADD", "ETH_RAMROD_RGFS_FILTER_DEL",
265          "ETH_RAMROD_TGFS_FILTER_ADD", "ETH_RAMROD_TGFS_FILTER_DEL",
266          "ETH_RAMROD_GFS_COUNTERS_REPORT_REQUEST", },
267         { "RDMA_RAMROD_UNUSED", "RDMA_RAMROD_FUNC_INIT",
268          "RDMA_RAMROD_FUNC_CLOSE", "RDMA_RAMROD_REGISTER_MR",
269          "RDMA_RAMROD_DEREGISTER_MR", "RDMA_RAMROD_CREATE_CQ",
270          "RDMA_RAMROD_RESIZE_CQ", "RDMA_RAMROD_DESTROY_CQ",
271          "RDMA_RAMROD_CREATE_SRQ", "RDMA_RAMROD_MODIFY_SRQ",
272          "RDMA_RAMROD_DESTROY_SRQ", "RDMA_RAMROD_START_NS_TRACKING",
273          "RDMA_RAMROD_STOP_NS_TRACKING",
274          "IWARP_RAMROD_CMD_ID_TCP_OFFLOAD",
275          "IWARP_RAMROD_CMD_ID_MPA_OFFLOAD",
276          "IWARP_RAMROD_CMD_ID_MPA_OFFLOAD_SEND_RTR",
277          "IWARP_RAMROD_CMD_ID_CREATE_QP", "IWARP_RAMROD_CMD_ID_QUERY_QP",
278          "IWARP_RAMROD_CMD_ID_MODIFY_QP",
279          "IWARP_RAMROD_CMD_ID_DESTROY_QP",
280          "IWARP_RAMROD_CMD_ID_ABORT_TCP_OFFLOAD", },
281         { NULL }, /*TOE*/
282         { NULL }, /*PREROCE*/
283         { "COMMON_RAMROD_UNUSED", "COMMON_RAMROD_PF_START",
284              "COMMON_RAMROD_PF_STOP", "COMMON_RAMROD_VF_START",
285              "COMMON_RAMROD_VF_STOP", "COMMON_RAMROD_PF_UPDATE",
286              "COMMON_RAMROD_RL_UPDATE", "COMMON_RAMROD_EMPTY", }
287 };
288
289 /******************** INTERNAL IMPLEMENTATION *********************/
290
291 /* Returns the external VOQ number */
292 static u8 qed_get_ext_voq(struct qed_hwfn *p_hwfn,
293                           u8 port_id, u8 tc, u8 max_phys_tcs_per_port)
294 {
295         if (tc == PURE_LB_TC)
296                 return NUM_OF_PHYS_TCS * MAX_NUM_PORTS_BB + port_id;
297         else
298                 return port_id * max_phys_tcs_per_port + tc;
299 }
300
301 /* Prepare PF RL enable/disable runtime init values */
302 static void qed_enable_pf_rl(struct qed_hwfn *p_hwfn, bool pf_rl_en)
303 {
304         STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
305         if (pf_rl_en) {
306                 u8 num_ext_voqs = MAX_NUM_VOQS;
307                 u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1;
308
309                 /* Enable RLs for all VOQs */
310                 STORE_RT_REG(p_hwfn,
311                              QM_REG_RLPFVOQENABLE_RT_OFFSET,
312                              (u32)voq_bit_mask);
313
314                 /* Write RL period */
315                 STORE_RT_REG(p_hwfn,
316                              QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
317                 STORE_RT_REG(p_hwfn,
318                              QM_REG_RLPFPERIODTIMER_RT_OFFSET,
319                              QM_RL_PERIOD_CLK_25M);
320
321                 /* Set credit threshold for QM bypass flow */
322                 if (QM_BYPASS_EN)
323                         STORE_RT_REG(p_hwfn,
324                                      QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET,
325                                      QM_PF_RL_UPPER_BOUND);
326         }
327 }
328
329 /* Prepare PF WFQ enable/disable runtime init values */
330 static void qed_enable_pf_wfq(struct qed_hwfn *p_hwfn, bool pf_wfq_en)
331 {
332         STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
333
334         /* Set credit threshold for QM bypass flow */
335         if (pf_wfq_en && QM_BYPASS_EN)
336                 STORE_RT_REG(p_hwfn,
337                              QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET,
338                              QM_PF_WFQ_UPPER_BOUND);
339 }
340
341 /* Prepare global RL enable/disable runtime init values */
342 static void qed_enable_global_rl(struct qed_hwfn *p_hwfn, bool global_rl_en)
343 {
344         STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET,
345                      global_rl_en ? 1 : 0);
346         if (global_rl_en) {
347                 /* Write RL period (use timer 0 only) */
348                 STORE_RT_REG(p_hwfn,
349                              QM_REG_RLGLBLPERIOD_0_RT_OFFSET,
350                              QM_RL_PERIOD_CLK_25M);
351                 STORE_RT_REG(p_hwfn,
352                              QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET,
353                              QM_RL_PERIOD_CLK_25M);
354
355                 /* Set credit threshold for QM bypass flow */
356                 if (QM_BYPASS_EN)
357                         STORE_RT_REG(p_hwfn,
358                                      QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET,
359                                      QM_GLOBAL_RL_UPPER_BOUND(10000) - 1);
360         }
361 }
362
363 /* Prepare VPORT WFQ enable/disable runtime init values */
364 static void qed_enable_vport_wfq(struct qed_hwfn *p_hwfn, bool vport_wfq_en)
365 {
366         STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET,
367                      vport_wfq_en ? 1 : 0);
368
369         /* Set credit threshold for QM bypass flow */
370         if (vport_wfq_en && QM_BYPASS_EN)
371                 STORE_RT_REG(p_hwfn,
372                              QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET,
373                              QM_VP_WFQ_BYPASS_THRESH);
374 }
375
376 /* Prepare runtime init values to allocate PBF command queue lines for
377  * the specified VOQ.
378  */
379 static void qed_cmdq_lines_voq_rt_init(struct qed_hwfn *p_hwfn,
380                                        u8 ext_voq, u16 cmdq_lines)
381 {
382         u32 qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
383
384         OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq),
385                          (u32)cmdq_lines);
386         STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq,
387                      qm_line_crd);
388         STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq,
389                      qm_line_crd);
390 }
391
392 /* Prepare runtime init values to allocate PBF command queue lines. */
393 static void
394 qed_cmdq_lines_rt_init(struct qed_hwfn *p_hwfn,
395                        u8 max_ports_per_engine,
396                        u8 max_phys_tcs_per_port,
397                        struct init_qm_port_params port_params[MAX_NUM_PORTS])
398 {
399         u8 tc, ext_voq, port_id, num_tcs_in_port;
400         u8 num_ext_voqs = MAX_NUM_VOQS;
401
402         /* Clear PBF lines of all VOQs */
403         for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++)
404                 STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0);
405
406         for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
407                 u16 phys_lines, phys_lines_per_tc;
408
409                 if (!port_params[port_id].active)
410                         continue;
411
412                 /* Find number of command queue lines to divide between the
413                  * active physical TCs.
414                  */
415                 phys_lines = port_params[port_id].num_pbf_cmd_lines;
416                 phys_lines -= PBF_CMDQ_PURE_LB_LINES;
417
418                 /* Find #lines per active physical TC */
419                 num_tcs_in_port = 0;
420                 for (tc = 0; tc < max_phys_tcs_per_port; tc++)
421                         if (((port_params[port_id].active_phys_tcs >>
422                               tc) & 0x1) == 1)
423                                 num_tcs_in_port++;
424                 phys_lines_per_tc = phys_lines / num_tcs_in_port;
425
426                 /* Init registers per active TC */
427                 for (tc = 0; tc < max_phys_tcs_per_port; tc++) {
428                         ext_voq = qed_get_ext_voq(p_hwfn,
429                                                   port_id,
430                                                   tc, max_phys_tcs_per_port);
431                         if (((port_params[port_id].active_phys_tcs >>
432                               tc) & 0x1) == 1)
433                                 qed_cmdq_lines_voq_rt_init(p_hwfn,
434                                                            ext_voq,
435                                                            phys_lines_per_tc);
436                 }
437
438                 /* Init registers for pure LB TC */
439                 ext_voq = qed_get_ext_voq(p_hwfn,
440                                           port_id,
441                                           PURE_LB_TC, max_phys_tcs_per_port);
442                 qed_cmdq_lines_voq_rt_init(p_hwfn, ext_voq,
443                                            PBF_CMDQ_PURE_LB_LINES);
444         }
445 }
446
447 /* Prepare runtime init values to allocate guaranteed BTB blocks for the
448  * specified port. The guaranteed BTB space is divided between the TCs as
449  * follows (shared space Is currently not used):
450  * 1. Parameters:
451  *    B - BTB blocks for this port
452  *    C - Number of physical TCs for this port
453  * 2. Calculation:
454  *    a. 38 blocks (9700B jumbo frame) are allocated for global per port
455  *       headroom.
456  *    b. B = B - 38 (remainder after global headroom allocation).
457  *    c. MAX(38,B/(C+0.7)) blocks are allocated for the pure LB VOQ.
458  *    d. B = B - MAX(38, B/(C+0.7)) (remainder after pure LB allocation).
459  *    e. B/C blocks are allocated for each physical TC.
460  * Assumptions:
461  * - MTU is up to 9700 bytes (38 blocks)
462  * - All TCs are considered symmetrical (same rate and packet size)
463  * - No optimization for lossy TC (all are considered lossless). Shared space
464  *   is not enabled and allocated for each TC.
465  */
466 static void
467 qed_btb_blocks_rt_init(struct qed_hwfn *p_hwfn,
468                        u8 max_ports_per_engine,
469                        u8 max_phys_tcs_per_port,
470                        struct init_qm_port_params port_params[MAX_NUM_PORTS])
471 {
472         u32 usable_blocks, pure_lb_blocks, phys_blocks;
473         u8 tc, ext_voq, port_id, num_tcs_in_port;
474
475         for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
476                 if (!port_params[port_id].active)
477                         continue;
478
479                 /* Subtract headroom blocks */
480                 usable_blocks = port_params[port_id].num_btb_blocks -
481                                 BTB_HEADROOM_BLOCKS;
482
483                 /* Find blocks per physical TC. Use factor to avoid floating
484                  * arithmethic.
485                  */
486                 num_tcs_in_port = 0;
487                 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++)
488                         if (((port_params[port_id].active_phys_tcs >>
489                               tc) & 0x1) == 1)
490                                 num_tcs_in_port++;
491
492                 pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) /
493                                  (num_tcs_in_port * BTB_PURE_LB_FACTOR +
494                                   BTB_PURE_LB_RATIO);
495                 pure_lb_blocks = max_t(u32, BTB_JUMBO_PKT_BLOCKS,
496                                        pure_lb_blocks / BTB_PURE_LB_FACTOR);
497                 phys_blocks = (usable_blocks - pure_lb_blocks) /
498                               num_tcs_in_port;
499
500                 /* Init physical TCs */
501                 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
502                         if (((port_params[port_id].active_phys_tcs >>
503                               tc) & 0x1) == 1) {
504                                 ext_voq =
505                                         qed_get_ext_voq(p_hwfn,
506                                                         port_id,
507                                                         tc,
508                                                         max_phys_tcs_per_port);
509                                 STORE_RT_REG(p_hwfn,
510                                              PBF_BTB_GUARANTEED_RT_OFFSET
511                                              (ext_voq), phys_blocks);
512                         }
513                 }
514
515                 /* Init pure LB TC */
516                 ext_voq = qed_get_ext_voq(p_hwfn,
517                                           port_id,
518                                           PURE_LB_TC, max_phys_tcs_per_port);
519                 STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq),
520                              pure_lb_blocks);
521         }
522 }
523
524 /* Prepare runtime init values for the specified RL.
525  * Set max link speed (100Gbps) per rate limiter.
526  * Return -1 on error.
527  */
528 static int qed_global_rl_rt_init(struct qed_hwfn *p_hwfn)
529 {
530         u32 upper_bound = QM_GLOBAL_RL_UPPER_BOUND(QM_MAX_LINK_SPEED) |
531                           (u32)QM_RL_CRD_REG_SIGN_BIT;
532         u32 inc_val;
533         u16 rl_id;
534
535         /* Go over all global RLs */
536         for (rl_id = 0; rl_id < MAX_QM_GLOBAL_RLS; rl_id++) {
537                 inc_val = QM_RL_INC_VAL(QM_MAX_LINK_SPEED);
538
539                 STORE_RT_REG(p_hwfn,
540                              QM_REG_RLGLBLCRD_RT_OFFSET + rl_id,
541                              (u32)QM_RL_CRD_REG_SIGN_BIT);
542                 STORE_RT_REG(p_hwfn,
543                              QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + rl_id,
544                              upper_bound);
545                 STORE_RT_REG(p_hwfn,
546                              QM_REG_RLGLBLINCVAL_RT_OFFSET + rl_id, inc_val);
547         }
548
549         return 0;
550 }
551
552 /* Returns the upper bound for the specified Vport RL parameters.
553  * link_speed is in Mbps.
554  * Returns 0 in case of error.
555  */
556 static u32 qed_get_vport_rl_upper_bound(enum init_qm_rl_type vport_rl_type,
557                                         u32 link_speed)
558 {
559         switch (vport_rl_type) {
560         case QM_RL_TYPE_NORMAL:
561                 return QM_INITIAL_VOQ_BYTE_CRD;
562         case QM_RL_TYPE_QCN:
563                 return QM_GLOBAL_RL_UPPER_BOUND(link_speed);
564         default:
565                 return 0;
566         }
567 }
568
569 /* Prepare VPORT RL runtime init values.
570  * Return -1 on error.
571  */
572 static int qed_vport_rl_rt_init(struct qed_hwfn *p_hwfn,
573                                 u16 start_rl,
574                                 u16 num_rls,
575                                 u32 link_speed,
576                                 struct init_qm_rl_params *rl_params)
577 {
578         u16 i, rl_id;
579
580         if (num_rls && start_rl + num_rls >= MAX_QM_GLOBAL_RLS) {
581                 DP_NOTICE(p_hwfn, "Invalid rate limiter configuration\n");
582                 return -1;
583         }
584
585         /* Go over all PF VPORTs */
586         for (i = 0, rl_id = start_rl; i < num_rls; i++, rl_id++) {
587                 u32 upper_bound, inc_val;
588
589                 upper_bound =
590                     qed_get_vport_rl_upper_bound((enum init_qm_rl_type)
591                                                  rl_params[i].vport_rl_type,
592                                                  link_speed);
593
594                 inc_val =
595                     QM_RL_INC_VAL(rl_params[i].vport_rl ?
596                                   rl_params[i].vport_rl : link_speed);
597                 if (inc_val > upper_bound) {
598                         DP_NOTICE(p_hwfn,
599                                   "Invalid RL rate - limit configuration\n");
600                         return -1;
601                 }
602
603                 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLCRD_RT_OFFSET + rl_id,
604                              (u32)QM_RL_CRD_REG_SIGN_BIT);
605                 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + rl_id,
606                              upper_bound | (u32)QM_RL_CRD_REG_SIGN_BIT);
607                 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLINCVAL_RT_OFFSET + rl_id,
608                              inc_val);
609         }
610
611         return 0;
612 }
613
614 /* Prepare Tx PQ mapping runtime init values for the specified PF */
615 static int qed_tx_pq_map_rt_init(struct qed_hwfn *p_hwfn,
616                                  struct qed_ptt *p_ptt,
617                                  struct qed_qm_pf_rt_init_params *p_params,
618                                  u32 base_mem_addr_4kb)
619 {
620         u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
621         struct init_qm_vport_params *vport_params = p_params->vport_params;
622         u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE;
623         u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group;
624         struct init_qm_pq_params *pq_params = p_params->pq_params;
625         u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb;
626
627         num_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
628
629         first_pq_group = p_params->start_pq / QM_PF_QUEUE_GROUP_SIZE;
630         last_pq_group = (p_params->start_pq + num_pqs - 1) /
631                         QM_PF_QUEUE_GROUP_SIZE;
632
633         pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids);
634         vport_pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_vf_cids);
635         mem_addr_4kb = base_mem_addr_4kb;
636
637         /* Set mapping from PQ group to PF */
638         for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
639                 STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group,
640                              (u32)(p_params->pf_id));
641
642         /* Set PQ sizes */
643         STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET,
644                      QM_PQ_SIZE_256B(p_params->num_pf_cids));
645         STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET,
646                      QM_PQ_SIZE_256B(p_params->num_vf_cids));
647
648         /* Go over all Tx PQs */
649         for (i = 0, pq_id = p_params->start_pq; i < num_pqs; i++, pq_id++) {
650                 u16 *p_first_tx_pq_id, vport_id_in_pf;
651                 struct qm_rf_pq_map tx_pq_map;
652                 u8 tc_id = pq_params[i].tc_id;
653                 bool is_vf_pq;
654                 u8 ext_voq;
655
656                 ext_voq = qed_get_ext_voq(p_hwfn,
657                                           pq_params[i].port_id,
658                                           tc_id,
659                                           p_params->max_phys_tcs_per_port);
660                 is_vf_pq = (i >= p_params->num_pf_pqs);
661
662                 /* Update first Tx PQ of VPORT/TC */
663                 vport_id_in_pf = pq_params[i].vport_id - p_params->start_vport;
664                 p_first_tx_pq_id =
665                     &vport_params[vport_id_in_pf].first_tx_pq_id[tc_id];
666                 if (*p_first_tx_pq_id == QM_INVALID_PQ_ID) {
667                         u32 map_val =
668                                 (ext_voq << QM_VP_WFQ_PQ_VOQ_SHIFT) |
669                                 (p_params->pf_id << QM_VP_WFQ_PQ_PF_SHIFT);
670
671                         /* Create new VP PQ */
672                         *p_first_tx_pq_id = pq_id;
673
674                         /* Map VP PQ to VOQ and PF */
675                         STORE_RT_REG(p_hwfn,
676                                      QM_REG_WFQVPMAP_RT_OFFSET +
677                                      *p_first_tx_pq_id,
678                                      map_val);
679                 }
680
681                 /* Prepare PQ map entry */
682                 QM_INIT_TX_PQ_MAP(p_hwfn,
683                                   tx_pq_map,
684                                   pq_id,
685                                   *p_first_tx_pq_id,
686                                   pq_params[i].rl_valid,
687                                   pq_params[i].rl_id,
688                                   ext_voq, pq_params[i].wrr_group);
689
690                 /* Set PQ base address */
691                 STORE_RT_REG(p_hwfn,
692                              QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id,
693                              mem_addr_4kb);
694
695                 /* Clear PQ pointer table entry (64 bit) */
696                 if (p_params->is_pf_loading)
697                         for (j = 0; j < 2; j++)
698                                 STORE_RT_REG(p_hwfn,
699                                              QM_REG_PTRTBLTX_RT_OFFSET +
700                                              (pq_id * 2) + j, 0);
701
702                 /* Write PQ info to RAM */
703                 if (WRITE_PQ_INFO_TO_RAM != 0) {
704                         u32 pq_info = 0;
705
706                         pq_info = PQ_INFO_ELEMENT(*p_first_tx_pq_id,
707                                                   p_params->pf_id,
708                                                   tc_id,
709                                                   pq_params[i].port_id,
710                                                   pq_params[i].rl_valid,
711                                                   pq_params[i].rl_id);
712                         qed_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id),
713                                pq_info);
714                 }
715
716                 /* If VF PQ, add indication to PQ VF mask */
717                 if (is_vf_pq) {
718                         tx_pq_vf_mask[pq_id /
719                                       QM_PF_QUEUE_GROUP_SIZE] |=
720                             BIT((pq_id % QM_PF_QUEUE_GROUP_SIZE));
721                         mem_addr_4kb += vport_pq_mem_4kb;
722                 } else {
723                         mem_addr_4kb += pq_mem_4kb;
724                 }
725         }
726
727         /* Store Tx PQ VF mask to size select register */
728         for (i = 0; i < num_tx_pq_vf_masks; i++)
729                 if (tx_pq_vf_mask[i])
730                         STORE_RT_REG(p_hwfn,
731                                      QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i,
732                                      tx_pq_vf_mask[i]);
733
734         return 0;
735 }
736
737 /* Prepare Other PQ mapping runtime init values for the specified PF */
738 static void qed_other_pq_map_rt_init(struct qed_hwfn *p_hwfn,
739                                      u8 pf_id,
740                                      bool is_pf_loading,
741                                      u32 num_pf_cids,
742                                      u32 num_tids, u32 base_mem_addr_4kb)
743 {
744         u32 pq_size, pq_mem_4kb, mem_addr_4kb;
745         u16 i, j, pq_id, pq_group;
746
747         /* A single other PQ group is used in each PF, where PQ group i is used
748          * in PF i.
749          */
750         pq_group = pf_id;
751         pq_size = num_pf_cids + num_tids;
752         pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
753         mem_addr_4kb = base_mem_addr_4kb;
754
755         /* Map PQ group to PF */
756         STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group,
757                      (u32)(pf_id));
758
759         /* Set PQ sizes */
760         STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET,
761                      QM_PQ_SIZE_256B(pq_size));
762
763         for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE;
764              i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
765                 /* Set PQ base address */
766                 STORE_RT_REG(p_hwfn,
767                              QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id,
768                              mem_addr_4kb);
769
770                 /* Clear PQ pointer table entry */
771                 if (is_pf_loading)
772                         for (j = 0; j < 2; j++)
773                                 STORE_RT_REG(p_hwfn,
774                                              QM_REG_PTRTBLOTHER_RT_OFFSET +
775                                              (pq_id * 2) + j, 0);
776
777                 mem_addr_4kb += pq_mem_4kb;
778         }
779 }
780
781 /* Prepare PF WFQ runtime init values for the specified PF.
782  * Return -1 on error.
783  */
784 static int qed_pf_wfq_rt_init(struct qed_hwfn *p_hwfn,
785                               struct qed_qm_pf_rt_init_params *p_params)
786 {
787         u16 num_tx_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
788         struct init_qm_pq_params *pq_params = p_params->pq_params;
789         u32 inc_val, crd_reg_offset;
790         u8 ext_voq;
791         u16 i;
792
793         inc_val = QM_PF_WFQ_INC_VAL(p_params->pf_wfq);
794         if (!inc_val || inc_val > QM_PF_WFQ_MAX_INC_VAL) {
795                 DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
796                 return -1;
797         }
798
799         for (i = 0; i < num_tx_pqs; i++) {
800                 ext_voq = qed_get_ext_voq(p_hwfn,
801                                           pq_params[i].port_id,
802                                           pq_params[i].tc_id,
803                                           p_params->max_phys_tcs_per_port);
804                 crd_reg_offset =
805                         (p_params->pf_id < MAX_NUM_PFS_BB ?
806                          QM_REG_WFQPFCRD_RT_OFFSET :
807                          QM_REG_WFQPFCRD_MSB_RT_OFFSET) +
808                         ext_voq * MAX_NUM_PFS_BB +
809                         (p_params->pf_id % MAX_NUM_PFS_BB);
810                 OVERWRITE_RT_REG(p_hwfn,
811                                  crd_reg_offset, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
812         }
813
814         STORE_RT_REG(p_hwfn,
815                      QM_REG_WFQPFUPPERBOUND_RT_OFFSET + p_params->pf_id,
816                      QM_PF_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT);
817         STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + p_params->pf_id,
818                      inc_val);
819
820         return 0;
821 }
822
823 /* Prepare PF RL runtime init values for the specified PF.
824  * Return -1 on error.
825  */
826 static int qed_pf_rl_rt_init(struct qed_hwfn *p_hwfn, u8 pf_id, u32 pf_rl)
827 {
828         u32 inc_val = QM_RL_INC_VAL(pf_rl);
829
830         if (inc_val > QM_PF_RL_MAX_INC_VAL) {
831                 DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
832                 return -1;
833         }
834
835         STORE_RT_REG(p_hwfn,
836                      QM_REG_RLPFCRD_RT_OFFSET + pf_id,
837                      (u32)QM_RL_CRD_REG_SIGN_BIT);
838         STORE_RT_REG(p_hwfn,
839                      QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id,
840                      QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
841         STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
842
843         return 0;
844 }
845
846 /* Prepare VPORT WFQ runtime init values for the specified VPORTs.
847  * Return -1 on error.
848  */
849 static int qed_vp_wfq_rt_init(struct qed_hwfn *p_hwfn,
850                               u16 num_vports,
851                               struct init_qm_vport_params *vport_params)
852 {
853         u16 vport_pq_id, wfq, i;
854         u32 inc_val;
855         u8 tc;
856
857         /* Go over all PF VPORTs */
858         for (i = 0; i < num_vports; i++) {
859                 /* Each VPORT can have several VPORT PQ IDs for various TCs */
860                 for (tc = 0; tc < NUM_OF_TCS; tc++) {
861                         /* Check if VPORT/TC is valid */
862                         vport_pq_id = vport_params[i].first_tx_pq_id[tc];
863                         if (vport_pq_id == QM_INVALID_PQ_ID)
864                                 continue;
865
866                         /* Find WFQ weight (per VPORT or per VPORT+TC) */
867                         wfq = vport_params[i].wfq;
868                         wfq = wfq ? wfq : vport_params[i].tc_wfq[tc];
869                         inc_val = QM_VP_WFQ_INC_VAL(wfq);
870                         if (inc_val > QM_VP_WFQ_MAX_INC_VAL) {
871                                 DP_NOTICE(p_hwfn,
872                                           "Invalid VPORT WFQ weight configuration\n");
873                                 return -1;
874                         }
875
876                         /* Config registers */
877                         STORE_RT_REG(p_hwfn, QM_REG_WFQVPCRD_RT_OFFSET +
878                                      vport_pq_id,
879                                      (u32)QM_WFQ_CRD_REG_SIGN_BIT);
880                         STORE_RT_REG(p_hwfn, QM_REG_WFQVPUPPERBOUND_RT_OFFSET +
881                                      vport_pq_id,
882                                      inc_val | QM_WFQ_CRD_REG_SIGN_BIT);
883                         STORE_RT_REG(p_hwfn, QM_REG_WFQVPWEIGHT_RT_OFFSET +
884                                      vport_pq_id, inc_val);
885                 }
886         }
887
888         return 0;
889 }
890
891 static bool qed_poll_on_qm_cmd_ready(struct qed_hwfn *p_hwfn,
892                                      struct qed_ptt *p_ptt)
893 {
894         u32 reg_val, i;
895
896         for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val;
897              i++) {
898                 udelay(QM_STOP_CMD_POLL_PERIOD_US);
899                 reg_val = qed_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
900         }
901
902         /* Check if timeout while waiting for SDM command ready */
903         if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
904                 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
905                            "Timeout when waiting for QM SDM command ready signal\n");
906                 return false;
907         }
908
909         return true;
910 }
911
912 static bool qed_send_qm_cmd(struct qed_hwfn *p_hwfn,
913                             struct qed_ptt *p_ptt,
914                             u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb)
915 {
916         if (!qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
917                 return false;
918
919         qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
920         qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
921         qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
922         qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
923         qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
924
925         return qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
926 }
927
928 /******************** INTERFACE IMPLEMENTATION *********************/
929
930 u32 qed_qm_pf_mem_size(u32 num_pf_cids,
931                        u32 num_vf_cids,
932                        u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs)
933 {
934         return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
935                QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
936                QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
937 }
938
939 int qed_qm_common_rt_init(struct qed_hwfn *p_hwfn,
940                           struct qed_qm_common_rt_init_params *p_params)
941 {
942         u32 mask = 0;
943
944         /* Init AFullOprtnstcCrdMask */
945         SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_LINEVOQ,
946                   QM_OPPOR_LINE_VOQ_DEF);
947         SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ, QM_BYTE_CRD_EN);
948         SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFWFQ,
949                   p_params->pf_wfq_en ? 1 : 0);
950         SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPWFQ,
951                   p_params->vport_wfq_en ? 1 : 0);
952         SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFRL,
953                   p_params->pf_rl_en ? 1 : 0);
954         SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPQCNRL,
955                   p_params->global_rl_en ? 1 : 0);
956         SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_FWPAUSE, QM_OPPOR_FW_STOP_DEF);
957         SET_FIELD(mask,
958                   QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY, QM_OPPOR_PQ_EMPTY_DEF);
959         STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
960
961         /* Enable/disable PF RL */
962         qed_enable_pf_rl(p_hwfn, p_params->pf_rl_en);
963
964         /* Enable/disable PF WFQ */
965         qed_enable_pf_wfq(p_hwfn, p_params->pf_wfq_en);
966
967         /* Enable/disable global RL */
968         qed_enable_global_rl(p_hwfn, p_params->global_rl_en);
969
970         /* Enable/disable VPORT WFQ */
971         qed_enable_vport_wfq(p_hwfn, p_params->vport_wfq_en);
972
973         /* Init PBF CMDQ line credit */
974         qed_cmdq_lines_rt_init(p_hwfn,
975                                p_params->max_ports_per_engine,
976                                p_params->max_phys_tcs_per_port,
977                                p_params->port_params);
978
979         /* Init BTB blocks in PBF */
980         qed_btb_blocks_rt_init(p_hwfn,
981                                p_params->max_ports_per_engine,
982                                p_params->max_phys_tcs_per_port,
983                                p_params->port_params);
984
985         qed_global_rl_rt_init(p_hwfn);
986
987         return 0;
988 }
989
990 int qed_qm_pf_rt_init(struct qed_hwfn *p_hwfn,
991                       struct qed_ptt *p_ptt,
992                       struct qed_qm_pf_rt_init_params *p_params)
993 {
994         struct init_qm_vport_params *vport_params = p_params->vport_params;
995         u32 other_mem_size_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids +
996                                                p_params->num_tids) *
997                                  QM_OTHER_PQS_PER_PF;
998         u16 i;
999         u8 tc;
1000
1001         /* Clear first Tx PQ ID array for each VPORT */
1002         for (i = 0; i < p_params->num_vports; i++)
1003                 for (tc = 0; tc < NUM_OF_TCS; tc++)
1004                         vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
1005
1006         /* Map Other PQs (if any) */
1007         qed_other_pq_map_rt_init(p_hwfn,
1008                                  p_params->pf_id,
1009                                  p_params->is_pf_loading, p_params->num_pf_cids,
1010                                  p_params->num_tids, 0);
1011
1012         /* Map Tx PQs */
1013         if (qed_tx_pq_map_rt_init(p_hwfn, p_ptt, p_params, other_mem_size_4kb))
1014                 return -1;
1015
1016         /* Init PF WFQ */
1017         if (p_params->pf_wfq)
1018                 if (qed_pf_wfq_rt_init(p_hwfn, p_params))
1019                         return -1;
1020
1021         /* Init PF RL */
1022         if (qed_pf_rl_rt_init(p_hwfn, p_params->pf_id, p_params->pf_rl))
1023                 return -1;
1024
1025         /* Init VPORT WFQ */
1026         if (qed_vp_wfq_rt_init(p_hwfn, p_params->num_vports, vport_params))
1027                 return -1;
1028
1029         /* Set VPORT RL */
1030         if (qed_vport_rl_rt_init(p_hwfn, p_params->start_rl,
1031                                  p_params->num_rls, p_params->link_speed,
1032                                  p_params->rl_params))
1033                 return -1;
1034
1035         return 0;
1036 }
1037
1038 int qed_init_pf_wfq(struct qed_hwfn *p_hwfn,
1039                     struct qed_ptt *p_ptt, u8 pf_id, u16 pf_wfq)
1040 {
1041         u32 inc_val = QM_PF_WFQ_INC_VAL(pf_wfq);
1042
1043         if (!inc_val || inc_val > QM_PF_WFQ_MAX_INC_VAL) {
1044                 DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
1045                 return -1;
1046         }
1047
1048         qed_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
1049
1050         return 0;
1051 }
1052
1053 int qed_init_pf_rl(struct qed_hwfn *p_hwfn,
1054                    struct qed_ptt *p_ptt, u8 pf_id, u32 pf_rl)
1055 {
1056         u32 inc_val = QM_RL_INC_VAL(pf_rl);
1057
1058         if (inc_val > QM_PF_RL_MAX_INC_VAL) {
1059                 DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
1060                 return -1;
1061         }
1062
1063         qed_wr(p_hwfn,
1064                p_ptt, QM_REG_RLPFCRD + pf_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
1065         qed_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
1066
1067         return 0;
1068 }
1069
1070 int qed_init_vport_wfq(struct qed_hwfn *p_hwfn,
1071                        struct qed_ptt *p_ptt,
1072                        u16 first_tx_pq_id[NUM_OF_TCS], u16 wfq)
1073 {
1074         int result = 0;
1075         u16 vport_pq_id;
1076         u8 tc;
1077
1078         for (tc = 0; tc < NUM_OF_TCS && !result; tc++) {
1079                 vport_pq_id = first_tx_pq_id[tc];
1080                 if (vport_pq_id != QM_INVALID_PQ_ID)
1081                         result = qed_init_vport_tc_wfq(p_hwfn, p_ptt,
1082                                                        vport_pq_id, wfq);
1083         }
1084
1085         return result;
1086 }
1087
1088 int qed_init_vport_tc_wfq(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
1089                           u16 first_tx_pq_id, u16 wfq)
1090 {
1091         u32 inc_val;
1092
1093         if (first_tx_pq_id == QM_INVALID_PQ_ID)
1094                 return -1;
1095
1096         inc_val = QM_VP_WFQ_INC_VAL(wfq);
1097         if (!inc_val || inc_val > QM_VP_WFQ_MAX_INC_VAL) {
1098                 DP_NOTICE(p_hwfn, "Invalid VPORT WFQ configuration.\n");
1099                 return -1;
1100         }
1101
1102         qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPCRD + first_tx_pq_id * 4,
1103                (u32)QM_WFQ_CRD_REG_SIGN_BIT);
1104         qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPUPPERBOUND + first_tx_pq_id * 4,
1105                inc_val | QM_WFQ_CRD_REG_SIGN_BIT);
1106         qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPWEIGHT + first_tx_pq_id * 4,
1107                inc_val);
1108
1109         return 0;
1110 }
1111
1112 int qed_init_global_rl(struct qed_hwfn *p_hwfn,
1113                        struct qed_ptt *p_ptt, u16 rl_id, u32 rate_limit,
1114                        enum init_qm_rl_type vport_rl_type)
1115 {
1116         u32 inc_val, upper_bound;
1117
1118         upper_bound =
1119             (vport_rl_type ==
1120              QM_RL_TYPE_QCN) ? QM_GLOBAL_RL_UPPER_BOUND(QM_MAX_LINK_SPEED) :
1121             QM_INITIAL_VOQ_BYTE_CRD;
1122         inc_val = QM_RL_INC_VAL(rate_limit);
1123         if (inc_val > upper_bound) {
1124                 DP_NOTICE(p_hwfn, "Invalid VPORT rate limit configuration.\n");
1125                 return -1;
1126         }
1127
1128         qed_wr(p_hwfn, p_ptt,
1129                QM_REG_RLGLBLCRD + rl_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
1130         qed_wr(p_hwfn,
1131                p_ptt,
1132                QM_REG_RLGLBLUPPERBOUND + rl_id * 4,
1133                upper_bound | (u32)QM_RL_CRD_REG_SIGN_BIT);
1134         qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + rl_id * 4, inc_val);
1135
1136         return 0;
1137 }
1138
1139 bool qed_send_qm_stop_cmd(struct qed_hwfn *p_hwfn,
1140                           struct qed_ptt *p_ptt,
1141                           bool is_release_cmd,
1142                           bool is_tx_pq, u16 start_pq, u16 num_pqs)
1143 {
1144         u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 };
1145         u32 pq_mask = 0, last_pq, pq_id;
1146
1147         last_pq = start_pq + num_pqs - 1;
1148
1149         /* Set command's PQ type */
1150         QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
1151
1152         /* Go over requested PQs */
1153         for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
1154                 /* Set PQ bit in mask (stop command only) */
1155                 if (!is_release_cmd)
1156                         pq_mask |= BIT((pq_id % QM_STOP_PQ_MASK_WIDTH));
1157
1158                 /* If last PQ or end of PQ mask, write command */
1159                 if ((pq_id == last_pq) ||
1160                     (pq_id % QM_STOP_PQ_MASK_WIDTH ==
1161                      (QM_STOP_PQ_MASK_WIDTH - 1))) {
1162                         QM_CMD_SET_FIELD(cmd_arr,
1163                                          QM_STOP_CMD, PAUSE_MASK, pq_mask);
1164                         QM_CMD_SET_FIELD(cmd_arr,
1165                                          QM_STOP_CMD,
1166                                          GROUP_ID,
1167                                          pq_id / QM_STOP_PQ_MASK_WIDTH);
1168                         if (!qed_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR,
1169                                              cmd_arr[0], cmd_arr[1]))
1170                                 return false;
1171                         pq_mask = 0;
1172                 }
1173         }
1174
1175         return true;
1176 }
1177
1178 #define SET_TUNNEL_TYPE_ENABLE_BIT(var, offset, enable) \
1179         do { \
1180                 typeof(var) *__p_var = &(var); \
1181                 typeof(offset) __offset = offset; \
1182                 *__p_var = (*__p_var & ~BIT(__offset)) | \
1183                            ((enable) ? BIT(__offset) : 0); \
1184         } while (0)
1185
1186 #define PRS_ETH_TUNN_OUTPUT_FORMAT     0xF4DAB910
1187 #define PRS_ETH_OUTPUT_FORMAT          0xFFFF4910
1188
1189 #define ARR_REG_WR(dev, ptt, addr, arr, arr_size) \
1190         do { \
1191                 u32 i; \
1192                 \
1193                 for (i = 0; i < (arr_size); i++) \
1194                         qed_wr(dev, ptt, \
1195                                ((addr) + (4 * i)), \
1196                                ((u32 *)&(arr))[i]); \
1197         } while (0)
1198
1199 /**
1200  * qed_dmae_to_grc() - Internal function for writing from host to
1201  * wide-bus registers (split registers are not supported yet).
1202  *
1203  * @p_hwfn: HW device data.
1204  * @p_ptt: PTT window used for writing the registers.
1205  * @p_data: Pointer to source data.
1206  * @addr: Destination register address.
1207  * @len_in_dwords: Data length in dwords (u32).
1208  *
1209  * Return: Length of the written data in dwords (u32) or -1 on invalid
1210  *         input.
1211  */
1212 static int qed_dmae_to_grc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
1213                            __le32 *p_data, u32 addr, u32 len_in_dwords)
1214 {
1215         struct qed_dmae_params params = { 0 };
1216         u32 *data_cpu;
1217         int rc;
1218
1219         if (!p_data)
1220                 return -1;
1221
1222         /* Set DMAE params */
1223         SET_FIELD(params.flags, QED_DMAE_PARAMS_COMPLETION_DST, 1);
1224
1225         /* Execute DMAE command */
1226         rc = qed_dmae_host2grc(p_hwfn, p_ptt,
1227                                (u64)(uintptr_t)(p_data),
1228                                addr, len_in_dwords, &params);
1229
1230         /* If not read using DMAE, read using GRC */
1231         if (rc) {
1232                 DP_VERBOSE(p_hwfn,
1233                            QED_MSG_DEBUG,
1234                            "Failed writing to chip using DMAE, using GRC instead\n");
1235
1236                 /* Swap to CPU byteorder and write to registers using GRC */
1237                 data_cpu = (__force u32 *)p_data;
1238                 le32_to_cpu_array(data_cpu, len_in_dwords);
1239
1240                 ARR_REG_WR(p_hwfn, p_ptt, addr, data_cpu, len_in_dwords);
1241                 cpu_to_le32_array(data_cpu, len_in_dwords);
1242         }
1243
1244         return len_in_dwords;
1245 }
1246
1247 void qed_set_vxlan_dest_port(struct qed_hwfn *p_hwfn,
1248                              struct qed_ptt *p_ptt, u16 dest_port)
1249 {
1250         /* Update PRS register */
1251         qed_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
1252
1253         /* Update NIG register */
1254         qed_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
1255
1256         /* Update PBF register */
1257         qed_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
1258 }
1259
1260 void qed_set_vxlan_enable(struct qed_hwfn *p_hwfn,
1261                           struct qed_ptt *p_ptt, bool vxlan_enable)
1262 {
1263         u32 reg_val;
1264         u8 shift;
1265
1266         /* Update PRS register */
1267         reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1268         SET_FIELD(reg_val,
1269                   PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE, vxlan_enable);
1270         qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1271         if (reg_val) {
1272                 reg_val =
1273                     qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0);
1274
1275                 /* Update output  only if tunnel blocks not included. */
1276                 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1277                         qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
1278                                (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1279         }
1280
1281         /* Update NIG register */
1282         reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1283         shift = NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT;
1284         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable);
1285         qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1286
1287         /* Update DORQ register */
1288         qed_wr(p_hwfn,
1289                p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN, vxlan_enable ? 1 : 0);
1290 }
1291
1292 void qed_set_gre_enable(struct qed_hwfn *p_hwfn,
1293                         struct qed_ptt *p_ptt,
1294                         bool eth_gre_enable, bool ip_gre_enable)
1295 {
1296         u32 reg_val;
1297         u8 shift;
1298
1299         /* Update PRS register */
1300         reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1301         SET_FIELD(reg_val,
1302                   PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE,
1303                   eth_gre_enable);
1304         SET_FIELD(reg_val,
1305                   PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE,
1306                   ip_gre_enable);
1307         qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1308         if (reg_val) {
1309                 reg_val =
1310                     qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0);
1311
1312                 /* Update output  only if tunnel blocks not included. */
1313                 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1314                         qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
1315                                (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1316         }
1317
1318         /* Update NIG register */
1319         reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1320         shift = NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT;
1321         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable);
1322         shift = NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT;
1323         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable);
1324         qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1325
1326         /* Update DORQ registers */
1327         qed_wr(p_hwfn,
1328                p_ptt,
1329                DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN, eth_gre_enable ? 1 : 0);
1330         qed_wr(p_hwfn,
1331                p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN, ip_gre_enable ? 1 : 0);
1332 }
1333
1334 void qed_set_geneve_dest_port(struct qed_hwfn *p_hwfn,
1335                               struct qed_ptt *p_ptt, u16 dest_port)
1336 {
1337         /* Update PRS register */
1338         qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
1339
1340         /* Update NIG register */
1341         qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
1342
1343         /* Update PBF register */
1344         qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
1345 }
1346
1347 void qed_set_geneve_enable(struct qed_hwfn *p_hwfn,
1348                            struct qed_ptt *p_ptt,
1349                            bool eth_geneve_enable, bool ip_geneve_enable)
1350 {
1351         u32 reg_val;
1352
1353         /* Update PRS register */
1354         reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1355         SET_FIELD(reg_val,
1356                   PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE,
1357                   eth_geneve_enable);
1358         SET_FIELD(reg_val,
1359                   PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE,
1360                   ip_geneve_enable);
1361         qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1362         if (reg_val) {
1363                 reg_val =
1364                     qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0);
1365
1366                 /* Update output  only if tunnel blocks not included. */
1367                 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1368                         qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
1369                                (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1370         }
1371
1372         /* Update NIG register */
1373         qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE,
1374                eth_geneve_enable ? 1 : 0);
1375         qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
1376
1377         /* EDPM with geneve tunnel not supported in BB */
1378         if (QED_IS_BB_B0(p_hwfn->cdev))
1379                 return;
1380
1381         /* Update DORQ registers */
1382         qed_wr(p_hwfn,
1383                p_ptt,
1384                DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2,
1385                eth_geneve_enable ? 1 : 0);
1386         qed_wr(p_hwfn,
1387                p_ptt,
1388                DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2,
1389                ip_geneve_enable ? 1 : 0);
1390 }
1391
1392 #define PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET      3
1393 #define PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT   0xC8DAB910
1394
1395 void qed_set_vxlan_no_l2_enable(struct qed_hwfn *p_hwfn,
1396                                 struct qed_ptt *p_ptt, bool enable)
1397 {
1398         u32 reg_val, cfg_mask;
1399
1400         /* read PRS config register */
1401         reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_MSG_INFO);
1402
1403         /* set VXLAN_NO_L2_ENABLE mask */
1404         cfg_mask = BIT(PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET);
1405
1406         if (enable) {
1407                 /* set VXLAN_NO_L2_ENABLE flag */
1408                 reg_val |= cfg_mask;
1409
1410                 /* update PRS FIC  register */
1411                 qed_wr(p_hwfn,
1412                        p_ptt,
1413                        PRS_REG_OUTPUT_FORMAT_4_0,
1414                        (u32)PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT);
1415         } else {
1416                 /* clear VXLAN_NO_L2_ENABLE flag */
1417                 reg_val &= ~cfg_mask;
1418         }
1419
1420         /* write PRS config register */
1421         qed_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, reg_val);
1422 }
1423
1424 #define T_ETH_PACKET_ACTION_GFT_EVENTID  23
1425 #define PARSER_ETH_CONN_GFT_ACTION_CM_HDR  272
1426 #define T_ETH_PACKET_MATCH_RFS_EVENTID 25
1427 #define PARSER_ETH_CONN_CM_HDR 0
1428 #define CAM_LINE_SIZE sizeof(u32)
1429 #define RAM_LINE_SIZE sizeof(u64)
1430 #define REG_SIZE sizeof(u32)
1431
1432 void qed_gft_disable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 pf_id)
1433 {
1434         struct regpair ram_line = { 0 };
1435
1436         /* Disable gft search for PF */
1437         qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0);
1438
1439         /* Clean ram & cam for next gft session */
1440
1441         /* Zero camline */
1442         qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id, 0);
1443
1444         /* Zero ramline */
1445         qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1446                         PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
1447                         sizeof(ram_line) / REG_SIZE);
1448 }
1449
1450 void qed_gft_config(struct qed_hwfn *p_hwfn,
1451                     struct qed_ptt *p_ptt,
1452                     u16 pf_id,
1453                     bool tcp,
1454                     bool udp,
1455                     bool ipv4, bool ipv6, enum gft_profile_type profile_type)
1456 {
1457         struct regpair ram_line;
1458         u32 search_non_ip_as_gft;
1459         u32 reg_val, cam_line;
1460         u32 lo = 0, hi = 0;
1461
1462         if (!ipv6 && !ipv4)
1463                 DP_NOTICE(p_hwfn,
1464                           "gft_config: must accept at least on of - ipv4 or ipv6'\n");
1465         if (!tcp && !udp)
1466                 DP_NOTICE(p_hwfn,
1467                           "gft_config: must accept at least on of - udp or tcp\n");
1468         if (profile_type >= MAX_GFT_PROFILE_TYPE)
1469                 DP_NOTICE(p_hwfn, "gft_config: unsupported gft_profile_type\n");
1470
1471         /* Set RFS event ID to be awakened i Tstorm By Prs */
1472         reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID <<
1473                   PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1474         reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1475         qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val);
1476
1477         /* Do not load context only cid in PRS on match. */
1478         qed_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0);
1479
1480         /* Do not use tenant ID exist bit for gft search */
1481         qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0);
1482
1483         /* Set Cam */
1484         cam_line = 0;
1485         SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1);
1486
1487         /* Filters are per PF!! */
1488         SET_FIELD(cam_line,
1489                   GFT_CAM_LINE_MAPPED_PF_ID_MASK,
1490                   GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK);
1491         SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
1492
1493         if (!(tcp && udp)) {
1494                 SET_FIELD(cam_line,
1495                           GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK,
1496                           GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK);
1497                 if (tcp)
1498                         SET_FIELD(cam_line,
1499                                   GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1500                                   GFT_PROFILE_TCP_PROTOCOL);
1501                 else
1502                         SET_FIELD(cam_line,
1503                                   GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1504                                   GFT_PROFILE_UDP_PROTOCOL);
1505         }
1506
1507         if (!(ipv4 && ipv6)) {
1508                 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
1509                 if (ipv4)
1510                         SET_FIELD(cam_line,
1511                                   GFT_CAM_LINE_MAPPED_IP_VERSION,
1512                                   GFT_PROFILE_IPV4);
1513                 else
1514                         SET_FIELD(cam_line,
1515                                   GFT_CAM_LINE_MAPPED_IP_VERSION,
1516                                   GFT_PROFILE_IPV6);
1517         }
1518
1519         /* Write characteristics to cam */
1520         qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id,
1521                cam_line);
1522         cam_line =
1523             qed_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id);
1524
1525         /* Write line to RAM - compare to filter 4 tuple */
1526
1527         /* Search no IP as GFT */
1528         search_non_ip_as_gft = 0;
1529
1530         /* Tunnel type */
1531         SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_DST_PORT, 1);
1532         SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_OVER_IP_PROTOCOL, 1);
1533
1534         if (profile_type == GFT_PROFILE_TYPE_4_TUPLE) {
1535                 SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1);
1536                 SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1);
1537                 SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1538                 SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1539                 SET_FIELD(lo, GFT_RAM_LINE_SRC_PORT, 1);
1540                 SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1);
1541         } else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT) {
1542                 SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1543                 SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1544                 SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1);
1545         } else if (profile_type == GFT_PROFILE_TYPE_IP_DST_ADDR) {
1546                 SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1);
1547                 SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1548         } else if (profile_type == GFT_PROFILE_TYPE_IP_SRC_ADDR) {
1549                 SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1);
1550                 SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1551         } else if (profile_type == GFT_PROFILE_TYPE_TUNNEL_TYPE) {
1552                 SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_ETHERTYPE, 1);
1553
1554                 /* Allow tunneled traffic without inner IP */
1555                 search_non_ip_as_gft = 1;
1556         }
1557
1558         ram_line.lo = cpu_to_le32(lo);
1559         ram_line.hi = cpu_to_le32(hi);
1560
1561         qed_wr(p_hwfn,
1562                p_ptt, PRS_REG_SEARCH_NON_IP_AS_GFT, search_non_ip_as_gft);
1563         qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1564                         PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
1565                         sizeof(ram_line) / REG_SIZE);
1566
1567         /* Set default profile so that no filter match will happen */
1568         ram_line.lo = cpu_to_le32(0xffffffff);
1569         ram_line.hi = cpu_to_le32(0x3ff);
1570         qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1571                         PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE *
1572                         PRS_GFT_CAM_LINES_NO_MATCH,
1573                         sizeof(ram_line) / REG_SIZE);
1574
1575         /* Enable gft search */
1576         qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
1577 }
1578
1579 DECLARE_CRC8_TABLE(cdu_crc8_table);
1580
1581 /* Calculate and return CDU validation byte per connection type/region/cid */
1582 static u8 qed_calc_cdu_validation_byte(u8 conn_type, u8 region, u32 cid)
1583 {
1584         const u8 validation_cfg = CDU_VALIDATION_DEFAULT_CFG;
1585         u8 crc, validation_byte = 0;
1586         static u8 crc8_table_valid; /* automatically initialized to 0 */
1587         u32 validation_string = 0;
1588         __be32 data_to_crc;
1589
1590         if (!crc8_table_valid) {
1591                 crc8_populate_msb(cdu_crc8_table, 0x07);
1592                 crc8_table_valid = 1;
1593         }
1594
1595         /* The CRC is calculated on the String-to-compress:
1596          * [31:8]  = {CID[31:20],CID[11:0]}
1597          * [7:4]   = Region
1598          * [3:0]   = Type
1599          */
1600         if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_CID) & 1)
1601                 validation_string |= (cid & 0xFFF00000) | ((cid & 0xFFF) << 8);
1602
1603         if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_REGION) & 1)
1604                 validation_string |= ((region & 0xF) << 4);
1605
1606         if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_TYPE) & 1)
1607                 validation_string |= (conn_type & 0xF);
1608
1609         /* Convert to big-endian and calculate CRC8 */
1610         data_to_crc = cpu_to_be32(validation_string);
1611         crc = crc8(cdu_crc8_table, (u8 *)&data_to_crc, sizeof(data_to_crc),
1612                    CRC8_INIT_VALUE);
1613
1614         /* The validation byte [7:0] is composed:
1615          * for type A validation
1616          * [7]          = active configuration bit
1617          * [6:0]        = crc[6:0]
1618          *
1619          * for type B validation
1620          * [7]          = active configuration bit
1621          * [6:3]        = connection_type[3:0]
1622          * [2:0]        = crc[2:0]
1623          */
1624         validation_byte |=
1625             ((validation_cfg >>
1626               CDU_CONTEXT_VALIDATION_CFG_USE_ACTIVE) & 1) << 7;
1627
1628         if ((validation_cfg >>
1629              CDU_CONTEXT_VALIDATION_CFG_VALIDATION_TYPE_SHIFT) & 1)
1630                 validation_byte |= ((conn_type & 0xF) << 3) | (crc & 0x7);
1631         else
1632                 validation_byte |= crc & 0x7F;
1633
1634         return validation_byte;
1635 }
1636
1637 /* Calcualte and set validation bytes for session context */
1638 void qed_calc_session_ctx_validation(void *p_ctx_mem,
1639                                      u16 ctx_size, u8 ctx_type, u32 cid)
1640 {
1641         u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1642
1643         p_ctx = (u8 * const)p_ctx_mem;
1644         x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1645         t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1646         u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1647
1648         memset(p_ctx, 0, ctx_size);
1649
1650         *x_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 3, cid);
1651         *t_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 4, cid);
1652         *u_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 5, cid);
1653 }
1654
1655 /* Calcualte and set validation bytes for task context */
1656 void qed_calc_task_ctx_validation(void *p_ctx_mem,
1657                                   u16 ctx_size, u8 ctx_type, u32 tid)
1658 {
1659         u8 *p_ctx, *region1_val_ptr;
1660
1661         p_ctx = (u8 * const)p_ctx_mem;
1662         region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1663
1664         memset(p_ctx, 0, ctx_size);
1665
1666         *region1_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 1, tid);
1667 }
1668
1669 /* Memset session context to 0 while preserving validation bytes */
1670 void qed_memset_session_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1671 {
1672         u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1673         u8 x_val, t_val, u_val;
1674
1675         p_ctx = (u8 * const)p_ctx_mem;
1676         x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1677         t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1678         u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1679
1680         x_val = *x_val_ptr;
1681         t_val = *t_val_ptr;
1682         u_val = *u_val_ptr;
1683
1684         memset(p_ctx, 0, ctx_size);
1685
1686         *x_val_ptr = x_val;
1687         *t_val_ptr = t_val;
1688         *u_val_ptr = u_val;
1689 }
1690
1691 /* Memset task context to 0 while preserving validation bytes */
1692 void qed_memset_task_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1693 {
1694         u8 *p_ctx, *region1_val_ptr;
1695         u8 region1_val;
1696
1697         p_ctx = (u8 * const)p_ctx_mem;
1698         region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1699
1700         region1_val = *region1_val_ptr;
1701
1702         memset(p_ctx, 0, ctx_size);
1703
1704         *region1_val_ptr = region1_val;
1705 }
1706
1707 /* Enable and configure context validation */
1708 void qed_enable_context_validation(struct qed_hwfn *p_hwfn,
1709                                    struct qed_ptt *p_ptt)
1710 {
1711         u32 ctx_validation;
1712
1713         /* Enable validation for connection region 3: CCFC_CTX_VALID0[31:24] */
1714         ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24;
1715         qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation);
1716
1717         /* Enable validation for connection region 5: CCFC_CTX_VALID1[15:8] */
1718         ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1719         qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation);
1720
1721         /* Enable validation for connection region 1: TCFC_CTX_VALID0[15:8] */
1722         ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1723         qed_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation);
1724 }
1725
1726 const char *qed_get_protocol_type_str(u32 protocol_type)
1727 {
1728         if (protocol_type >= ARRAY_SIZE(s_protocol_types))
1729                 return "Invalid protocol type";
1730
1731         return s_protocol_types[protocol_type];
1732 }
1733
1734 const char *qed_get_ramrod_cmd_id_str(u32 protocol_type, u32 ramrod_cmd_id)
1735 {
1736         const char *ramrod_cmd_id_str;
1737
1738         if (protocol_type >= ARRAY_SIZE(s_ramrod_cmd_ids))
1739                 return "Invalid protocol type";
1740
1741         if (ramrod_cmd_id >= ARRAY_SIZE(s_ramrod_cmd_ids[0]))
1742                 return "Invalid Ramrod command ID";
1743
1744         ramrod_cmd_id_str = s_ramrod_cmd_ids[protocol_type][ramrod_cmd_id];
1745
1746         if (!ramrod_cmd_id_str)
1747                 return "Invalid Ramrod command ID";
1748
1749         return ramrod_cmd_id_str;
1750 }
1751
1752 static u32 qed_get_rdma_assert_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
1753 {
1754         switch (storm_id) {
1755         case 0:
1756                 return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1757                     TSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1758         case 1:
1759                 return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1760                     MSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1761         case 2:
1762                 return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1763                     USTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1764         case 3:
1765                 return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1766                     XSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1767         case 4:
1768                 return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1769                     YSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1770         case 5:
1771                 return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1772                     PSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1773
1774         default:
1775                 return 0;
1776         }
1777 }
1778
1779 void qed_set_rdma_error_level(struct qed_hwfn *p_hwfn,
1780                               struct qed_ptt *p_ptt,
1781                               u8 assert_level[NUM_STORMS])
1782 {
1783         u8 storm_id;
1784
1785         for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1786                 u32 ram_addr = qed_get_rdma_assert_ram_addr(p_hwfn, storm_id);
1787
1788                 qed_wr(p_hwfn, p_ptt, ram_addr, assert_level[storm_id]);
1789         }
1790 }
1791
1792 #define PHYS_ADDR_DWORDS        DIV_ROUND_UP(sizeof(dma_addr_t), 4)
1793 #define OVERLAY_HDR_SIZE_DWORDS (sizeof(struct fw_overlay_buf_hdr) / 4)
1794
1795 static u32 qed_get_overlay_addr_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
1796 {
1797         switch (storm_id) {
1798         case 0:
1799                 return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1800                     TSTORM_OVERLAY_BUF_ADDR_OFFSET;
1801         case 1:
1802                 return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1803                     MSTORM_OVERLAY_BUF_ADDR_OFFSET;
1804         case 2:
1805                 return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1806                     USTORM_OVERLAY_BUF_ADDR_OFFSET;
1807         case 3:
1808                 return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1809                     XSTORM_OVERLAY_BUF_ADDR_OFFSET;
1810         case 4:
1811                 return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1812                     YSTORM_OVERLAY_BUF_ADDR_OFFSET;
1813         case 5:
1814                 return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1815                     PSTORM_OVERLAY_BUF_ADDR_OFFSET;
1816
1817         default:
1818                 return 0;
1819         }
1820 }
1821
1822 struct phys_mem_desc *qed_fw_overlay_mem_alloc(struct qed_hwfn *p_hwfn,
1823                                                const u32 * const
1824                                                fw_overlay_in_buf,
1825                                                u32 buf_size_in_bytes)
1826 {
1827         u32 buf_size = buf_size_in_bytes / sizeof(u32), buf_offset = 0;
1828         struct phys_mem_desc *allocated_mem;
1829
1830         if (!buf_size)
1831                 return NULL;
1832
1833         allocated_mem = kcalloc(NUM_STORMS, sizeof(struct phys_mem_desc),
1834                                 GFP_KERNEL);
1835         if (!allocated_mem)
1836                 return NULL;
1837
1838         /* For each Storm, set physical address in RAM */
1839         while (buf_offset < buf_size) {
1840                 struct phys_mem_desc *storm_mem_desc;
1841                 struct fw_overlay_buf_hdr *hdr;
1842                 u32 storm_buf_size;
1843                 u8 storm_id;
1844
1845                 hdr =
1846                     (struct fw_overlay_buf_hdr *)&fw_overlay_in_buf[buf_offset];
1847                 storm_buf_size = GET_FIELD(hdr->data,
1848                                            FW_OVERLAY_BUF_HDR_BUF_SIZE);
1849                 storm_id = GET_FIELD(hdr->data, FW_OVERLAY_BUF_HDR_STORM_ID);
1850                 if (storm_id >= NUM_STORMS)
1851                         break;
1852                 storm_mem_desc = allocated_mem + storm_id;
1853                 storm_mem_desc->size = storm_buf_size * sizeof(u32);
1854
1855                 /* Allocate physical memory for Storm's overlays buffer */
1856                 storm_mem_desc->virt_addr =
1857                     dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1858                                        storm_mem_desc->size,
1859                                        &storm_mem_desc->phys_addr, GFP_KERNEL);
1860                 if (!storm_mem_desc->virt_addr)
1861                         break;
1862
1863                 /* Skip overlays buffer header */
1864                 buf_offset += OVERLAY_HDR_SIZE_DWORDS;
1865
1866                 /* Copy Storm's overlays buffer to allocated memory */
1867                 memcpy(storm_mem_desc->virt_addr,
1868                        &fw_overlay_in_buf[buf_offset], storm_mem_desc->size);
1869
1870                 /* Advance to next Storm */
1871                 buf_offset += storm_buf_size;
1872         }
1873
1874         /* If memory allocation has failed, free all allocated memory */
1875         if (buf_offset < buf_size) {
1876                 qed_fw_overlay_mem_free(p_hwfn, &allocated_mem);
1877                 return NULL;
1878         }
1879
1880         return allocated_mem;
1881 }
1882
1883 void qed_fw_overlay_init_ram(struct qed_hwfn *p_hwfn,
1884                              struct qed_ptt *p_ptt,
1885                              struct phys_mem_desc *fw_overlay_mem)
1886 {
1887         u8 storm_id;
1888
1889         for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1890                 struct phys_mem_desc *storm_mem_desc =
1891                     (struct phys_mem_desc *)fw_overlay_mem + storm_id;
1892                 u32 ram_addr, i;
1893
1894                 /* Skip Storms with no FW overlays */
1895                 if (!storm_mem_desc->virt_addr)
1896                         continue;
1897
1898                 /* Calculate overlay RAM GRC address of current PF */
1899                 ram_addr = qed_get_overlay_addr_ram_addr(p_hwfn, storm_id) +
1900                            sizeof(dma_addr_t) * p_hwfn->rel_pf_id;
1901
1902                 /* Write Storm's overlay physical address to RAM */
1903                 for (i = 0; i < PHYS_ADDR_DWORDS; i++, ram_addr += sizeof(u32))
1904                         qed_wr(p_hwfn, p_ptt, ram_addr,
1905                                ((u32 *)&storm_mem_desc->phys_addr)[i]);
1906         }
1907 }
1908
1909 void qed_fw_overlay_mem_free(struct qed_hwfn *p_hwfn,
1910                              struct phys_mem_desc **fw_overlay_mem)
1911 {
1912         u8 storm_id;
1913
1914         if (!fw_overlay_mem || !(*fw_overlay_mem))
1915                 return;
1916
1917         for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1918                 struct phys_mem_desc *storm_mem_desc =
1919                     (struct phys_mem_desc *)*fw_overlay_mem + storm_id;
1920
1921                 /* Free Storm's physical memory */
1922                 if (storm_mem_desc->virt_addr)
1923                         dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1924                                           storm_mem_desc->size,
1925                                           storm_mem_desc->virt_addr,
1926                                           storm_mem_desc->phys_addr);
1927         }
1928
1929         /* Free allocated virtual memory */
1930         kfree(*fw_overlay_mem);
1931         *fw_overlay_mem = NULL;
1932 }