qed: Add VF->PF channel infrastructure
[linux-2.6-microblaze.git] / drivers / net / ethernet / qlogic / qed / qed_hw.c
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015 QLogic Corporation
3  *
4  * This software is available under the terms of the GNU General Public License
5  * (GPL) Version 2, available from the file COPYING in the main directory of
6  * this source tree.
7  */
8
9 #include <linux/types.h>
10 #include <linux/io.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/errno.h>
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/slab.h>
19 #include <linux/spinlock.h>
20 #include <linux/string.h>
21 #include <linux/qed/qed_chain.h>
22 #include "qed.h"
23 #include "qed_hsi.h"
24 #include "qed_hw.h"
25 #include "qed_reg_addr.h"
26
27 #define QED_BAR_ACQUIRE_TIMEOUT 1000
28
29 /* Invalid values */
30 #define QED_BAR_INVALID_OFFSET          (cpu_to_le32(-1))
31
32 struct qed_ptt {
33         struct list_head        list_entry;
34         unsigned int            idx;
35         struct pxp_ptt_entry    pxp;
36 };
37
38 struct qed_ptt_pool {
39         struct list_head        free_list;
40         spinlock_t              lock; /* ptt synchronized access */
41         struct qed_ptt          ptts[PXP_EXTERNAL_BAR_PF_WINDOW_NUM];
42 };
43
44 int qed_ptt_pool_alloc(struct qed_hwfn *p_hwfn)
45 {
46         struct qed_ptt_pool *p_pool = kmalloc(sizeof(*p_pool),
47                                               GFP_KERNEL);
48         int i;
49
50         if (!p_pool)
51                 return -ENOMEM;
52
53         INIT_LIST_HEAD(&p_pool->free_list);
54         for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
55                 p_pool->ptts[i].idx = i;
56                 p_pool->ptts[i].pxp.offset = QED_BAR_INVALID_OFFSET;
57                 p_pool->ptts[i].pxp.pretend.control = 0;
58                 if (i >= RESERVED_PTT_MAX)
59                         list_add(&p_pool->ptts[i].list_entry,
60                                  &p_pool->free_list);
61         }
62
63         p_hwfn->p_ptt_pool = p_pool;
64         spin_lock_init(&p_pool->lock);
65
66         return 0;
67 }
68
69 void qed_ptt_invalidate(struct qed_hwfn *p_hwfn)
70 {
71         struct qed_ptt *p_ptt;
72         int i;
73
74         for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
75                 p_ptt = &p_hwfn->p_ptt_pool->ptts[i];
76                 p_ptt->pxp.offset = QED_BAR_INVALID_OFFSET;
77         }
78 }
79
80 void qed_ptt_pool_free(struct qed_hwfn *p_hwfn)
81 {
82         kfree(p_hwfn->p_ptt_pool);
83         p_hwfn->p_ptt_pool = NULL;
84 }
85
86 struct qed_ptt *qed_ptt_acquire(struct qed_hwfn *p_hwfn)
87 {
88         struct qed_ptt *p_ptt;
89         unsigned int i;
90
91         /* Take the free PTT from the list */
92         for (i = 0; i < QED_BAR_ACQUIRE_TIMEOUT; i++) {
93                 spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
94
95                 if (!list_empty(&p_hwfn->p_ptt_pool->free_list)) {
96                         p_ptt = list_first_entry(&p_hwfn->p_ptt_pool->free_list,
97                                                  struct qed_ptt, list_entry);
98                         list_del(&p_ptt->list_entry);
99
100                         spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
101
102                         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
103                                    "allocated ptt %d\n", p_ptt->idx);
104                         return p_ptt;
105                 }
106
107                 spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
108                 usleep_range(1000, 2000);
109         }
110
111         DP_NOTICE(p_hwfn, "PTT acquire timeout - failed to allocate PTT\n");
112         return NULL;
113 }
114
115 void qed_ptt_release(struct qed_hwfn *p_hwfn,
116                      struct qed_ptt *p_ptt)
117 {
118         spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
119         list_add(&p_ptt->list_entry, &p_hwfn->p_ptt_pool->free_list);
120         spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
121 }
122
123 u32 qed_ptt_get_hw_addr(struct qed_hwfn *p_hwfn,
124                         struct qed_ptt *p_ptt)
125 {
126         /* The HW is using DWORDS and we need to translate it to Bytes */
127         return le32_to_cpu(p_ptt->pxp.offset) << 2;
128 }
129
130 static u32 qed_ptt_config_addr(struct qed_ptt *p_ptt)
131 {
132         return PXP_PF_WINDOW_ADMIN_PER_PF_START +
133                p_ptt->idx * sizeof(struct pxp_ptt_entry);
134 }
135
136 u32 qed_ptt_get_bar_addr(struct qed_ptt *p_ptt)
137 {
138         return PXP_EXTERNAL_BAR_PF_WINDOW_START +
139                p_ptt->idx * PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE;
140 }
141
142 void qed_ptt_set_win(struct qed_hwfn *p_hwfn,
143                      struct qed_ptt *p_ptt,
144                      u32 new_hw_addr)
145 {
146         u32 prev_hw_addr;
147
148         prev_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
149
150         if (new_hw_addr == prev_hw_addr)
151                 return;
152
153         /* Update PTT entery in admin window */
154         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
155                    "Updating PTT entry %d to offset 0x%x\n",
156                    p_ptt->idx, new_hw_addr);
157
158         /* The HW is using DWORDS and the address is in Bytes */
159         p_ptt->pxp.offset = cpu_to_le32(new_hw_addr >> 2);
160
161         REG_WR(p_hwfn,
162                qed_ptt_config_addr(p_ptt) +
163                offsetof(struct pxp_ptt_entry, offset),
164                le32_to_cpu(p_ptt->pxp.offset));
165 }
166
167 static u32 qed_set_ptt(struct qed_hwfn *p_hwfn,
168                        struct qed_ptt *p_ptt,
169                        u32 hw_addr)
170 {
171         u32 win_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
172         u32 offset;
173
174         offset = hw_addr - win_hw_addr;
175
176         /* Verify the address is within the window */
177         if (hw_addr < win_hw_addr ||
178             offset >= PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE) {
179                 qed_ptt_set_win(p_hwfn, p_ptt, hw_addr);
180                 offset = 0;
181         }
182
183         return qed_ptt_get_bar_addr(p_ptt) + offset;
184 }
185
186 struct qed_ptt *qed_get_reserved_ptt(struct qed_hwfn *p_hwfn,
187                                      enum reserved_ptts ptt_idx)
188 {
189         if (ptt_idx >= RESERVED_PTT_MAX) {
190                 DP_NOTICE(p_hwfn,
191                           "Requested PTT %d is out of range\n", ptt_idx);
192                 return NULL;
193         }
194
195         return &p_hwfn->p_ptt_pool->ptts[ptt_idx];
196 }
197
198 void qed_wr(struct qed_hwfn *p_hwfn,
199             struct qed_ptt *p_ptt,
200             u32 hw_addr, u32 val)
201 {
202         u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
203
204         REG_WR(p_hwfn, bar_addr, val);
205         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
206                    "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
207                    bar_addr, hw_addr, val);
208 }
209
210 u32 qed_rd(struct qed_hwfn *p_hwfn,
211            struct qed_ptt *p_ptt,
212            u32 hw_addr)
213 {
214         u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
215         u32 val = REG_RD(p_hwfn, bar_addr);
216
217         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
218                    "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
219                    bar_addr, hw_addr, val);
220
221         return val;
222 }
223
224 static void qed_memcpy_hw(struct qed_hwfn *p_hwfn,
225                           struct qed_ptt *p_ptt,
226                           void *addr,
227                           u32 hw_addr,
228                           size_t n,
229                           bool to_device)
230 {
231         u32 dw_count, *host_addr, hw_offset;
232         size_t quota, done = 0;
233         u32 __iomem *reg_addr;
234
235         while (done < n) {
236                 quota = min_t(size_t, n - done,
237                               PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE);
238
239                 qed_ptt_set_win(p_hwfn, p_ptt, hw_addr + done);
240                 hw_offset = qed_ptt_get_bar_addr(p_ptt);
241
242                 dw_count = quota / 4;
243                 host_addr = (u32 *)((u8 *)addr + done);
244                 reg_addr = (u32 __iomem *)REG_ADDR(p_hwfn, hw_offset);
245                 if (to_device)
246                         while (dw_count--)
247                                 DIRECT_REG_WR(reg_addr++, *host_addr++);
248                 else
249                         while (dw_count--)
250                                 *host_addr++ = DIRECT_REG_RD(reg_addr++);
251
252                 done += quota;
253         }
254 }
255
256 void qed_memcpy_from(struct qed_hwfn *p_hwfn,
257                      struct qed_ptt *p_ptt,
258                      void *dest, u32 hw_addr, size_t n)
259 {
260         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
261                    "hw_addr 0x%x, dest %p hw_addr 0x%x, size %lu\n",
262                    hw_addr, dest, hw_addr, (unsigned long)n);
263
264         qed_memcpy_hw(p_hwfn, p_ptt, dest, hw_addr, n, false);
265 }
266
267 void qed_memcpy_to(struct qed_hwfn *p_hwfn,
268                    struct qed_ptt *p_ptt,
269                    u32 hw_addr, void *src, size_t n)
270 {
271         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
272                    "hw_addr 0x%x, hw_addr 0x%x, src %p size %lu\n",
273                    hw_addr, hw_addr, src, (unsigned long)n);
274
275         qed_memcpy_hw(p_hwfn, p_ptt, src, hw_addr, n, true);
276 }
277
278 void qed_fid_pretend(struct qed_hwfn *p_hwfn,
279                      struct qed_ptt *p_ptt,
280                      u16 fid)
281 {
282         u16 control = 0;
283
284         SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
285         SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);
286
287         /* Every pretend undos previous pretends, including
288          * previous port pretend.
289          */
290         SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
291         SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
292         SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
293
294         if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
295                 fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);
296
297         p_ptt->pxp.pretend.control = cpu_to_le16(control);
298         p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid);
299
300         REG_WR(p_hwfn,
301                qed_ptt_config_addr(p_ptt) +
302                offsetof(struct pxp_ptt_entry, pretend),
303                *(u32 *)&p_ptt->pxp.pretend);
304 }
305
306 void qed_port_pretend(struct qed_hwfn *p_hwfn,
307                       struct qed_ptt *p_ptt,
308                       u8 port_id)
309 {
310         u16 control = 0;
311
312         SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
313         SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
314         SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
315
316         p_ptt->pxp.pretend.control = cpu_to_le16(control);
317
318         REG_WR(p_hwfn,
319                qed_ptt_config_addr(p_ptt) +
320                offsetof(struct pxp_ptt_entry, pretend),
321                *(u32 *)&p_ptt->pxp.pretend);
322 }
323
324 void qed_port_unpretend(struct qed_hwfn *p_hwfn,
325                         struct qed_ptt *p_ptt)
326 {
327         u16 control = 0;
328
329         SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
330         SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
331         SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
332
333         p_ptt->pxp.pretend.control = cpu_to_le16(control);
334
335         REG_WR(p_hwfn,
336                qed_ptt_config_addr(p_ptt) +
337                offsetof(struct pxp_ptt_entry, pretend),
338                *(u32 *)&p_ptt->pxp.pretend);
339 }
340
341 u32 qed_vfid_to_concrete(struct qed_hwfn *p_hwfn, u8 vfid)
342 {
343         u32 concrete_fid = 0;
344
345         SET_FIELD(concrete_fid, PXP_CONCRETE_FID_PFID, p_hwfn->rel_pf_id);
346         SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFID, vfid);
347         SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFVALID, 1);
348
349         return concrete_fid;
350 }
351
352 /* DMAE */
353 static void qed_dmae_opcode(struct qed_hwfn *p_hwfn,
354                             const u8 is_src_type_grc,
355                             const u8 is_dst_type_grc,
356                             struct qed_dmae_params *p_params)
357 {
358         u16 opcode_b = 0;
359         u32 opcode = 0;
360
361         /* Whether the source is the PCIe or the GRC.
362          * 0- The source is the PCIe
363          * 1- The source is the GRC.
364          */
365         opcode |= (is_src_type_grc ? DMAE_CMD_SRC_MASK_GRC
366                                    : DMAE_CMD_SRC_MASK_PCIE) <<
367                    DMAE_CMD_SRC_SHIFT;
368         opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_SRC_PF_ID_MASK) <<
369                    DMAE_CMD_SRC_PF_ID_SHIFT);
370
371         /* The destination of the DMA can be: 0-None 1-PCIe 2-GRC 3-None */
372         opcode |= (is_dst_type_grc ? DMAE_CMD_DST_MASK_GRC
373                                    : DMAE_CMD_DST_MASK_PCIE) <<
374                    DMAE_CMD_DST_SHIFT;
375         opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_DST_PF_ID_MASK) <<
376                    DMAE_CMD_DST_PF_ID_SHIFT);
377
378         /* Whether to write a completion word to the completion destination:
379          * 0-Do not write a completion word
380          * 1-Write the completion word
381          */
382         opcode |= (DMAE_CMD_COMP_WORD_EN_MASK << DMAE_CMD_COMP_WORD_EN_SHIFT);
383         opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
384                    DMAE_CMD_SRC_ADDR_RESET_SHIFT);
385
386         if (p_params->flags & QED_DMAE_FLAG_COMPLETION_DST)
387                 opcode |= (1 << DMAE_CMD_COMP_FUNC_SHIFT);
388
389         opcode |= (DMAE_CMD_ENDIANITY << DMAE_CMD_ENDIANITY_MODE_SHIFT);
390
391         opcode |= ((p_hwfn->port_id) << DMAE_CMD_PORT_ID_SHIFT);
392
393         /* reset source address in next go */
394         opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
395                    DMAE_CMD_SRC_ADDR_RESET_SHIFT);
396
397         /* reset dest address in next go */
398         opcode |= (DMAE_CMD_DST_ADDR_RESET_MASK <<
399                    DMAE_CMD_DST_ADDR_RESET_SHIFT);
400
401         /* SRC/DST VFID: all 1's - pf, otherwise VF id */
402         if (p_params->flags & QED_DMAE_FLAG_VF_SRC) {
403                 opcode |= 1 << DMAE_CMD_SRC_VF_ID_VALID_SHIFT;
404                 opcode_b |= p_params->src_vfid << DMAE_CMD_SRC_VF_ID_SHIFT;
405         } else {
406                 opcode_b |= DMAE_CMD_SRC_VF_ID_MASK <<
407                             DMAE_CMD_SRC_VF_ID_SHIFT;
408         }
409
410         if (p_params->flags & QED_DMAE_FLAG_VF_DST) {
411                 opcode |= 1 << DMAE_CMD_DST_VF_ID_VALID_SHIFT;
412                 opcode_b |= p_params->dst_vfid << DMAE_CMD_DST_VF_ID_SHIFT;
413         } else {
414                 opcode_b |= DMAE_CMD_DST_VF_ID_MASK << DMAE_CMD_DST_VF_ID_SHIFT;
415         }
416
417         p_hwfn->dmae_info.p_dmae_cmd->opcode = cpu_to_le32(opcode);
418         p_hwfn->dmae_info.p_dmae_cmd->opcode_b = cpu_to_le16(opcode_b);
419 }
420
421 u32 qed_dmae_idx_to_go_cmd(u8 idx)
422 {
423         /* All the DMAE 'go' registers form an array in internal memory */
424         return DMAE_REG_GO_C0 + (idx << 2);
425 }
426
427 static int
428 qed_dmae_post_command(struct qed_hwfn *p_hwfn,
429                       struct qed_ptt *p_ptt)
430 {
431         struct dmae_cmd *command = p_hwfn->dmae_info.p_dmae_cmd;
432         u8 idx_cmd = p_hwfn->dmae_info.channel, i;
433         int qed_status = 0;
434
435         /* verify address is not NULL */
436         if ((((command->dst_addr_lo == 0) && (command->dst_addr_hi == 0)) ||
437              ((command->src_addr_lo == 0) && (command->src_addr_hi == 0)))) {
438                 DP_NOTICE(p_hwfn,
439                           "source or destination address 0 idx_cmd=%d\n"
440                           "opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
441                            idx_cmd,
442                            le32_to_cpu(command->opcode),
443                            le16_to_cpu(command->opcode_b),
444                            le16_to_cpu(command->length),
445                            le32_to_cpu(command->src_addr_hi),
446                            le32_to_cpu(command->src_addr_lo),
447                            le32_to_cpu(command->dst_addr_hi),
448                            le32_to_cpu(command->dst_addr_lo));
449
450                 return -EINVAL;
451         }
452
453         DP_VERBOSE(p_hwfn,
454                    NETIF_MSG_HW,
455                    "Posting DMAE command [idx %d]: opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
456                    idx_cmd,
457                    le32_to_cpu(command->opcode),
458                    le16_to_cpu(command->opcode_b),
459                    le16_to_cpu(command->length),
460                    le32_to_cpu(command->src_addr_hi),
461                    le32_to_cpu(command->src_addr_lo),
462                    le32_to_cpu(command->dst_addr_hi),
463                    le32_to_cpu(command->dst_addr_lo));
464
465         /* Copy the command to DMAE - need to do it before every call
466          * for source/dest address no reset.
467          * The first 9 DWs are the command registers, the 10 DW is the
468          * GO register, and the rest are result registers
469          * (which are read only by the client).
470          */
471         for (i = 0; i < DMAE_CMD_SIZE; i++) {
472                 u32 data = (i < DMAE_CMD_SIZE_TO_FILL) ?
473                            *(((u32 *)command) + i) : 0;
474
475                 qed_wr(p_hwfn, p_ptt,
476                        DMAE_REG_CMD_MEM +
477                        (idx_cmd * DMAE_CMD_SIZE * sizeof(u32)) +
478                        (i * sizeof(u32)), data);
479         }
480
481         qed_wr(p_hwfn, p_ptt,
482                qed_dmae_idx_to_go_cmd(idx_cmd),
483                DMAE_GO_VALUE);
484
485         return qed_status;
486 }
487
488 int qed_dmae_info_alloc(struct qed_hwfn *p_hwfn)
489 {
490         dma_addr_t *p_addr = &p_hwfn->dmae_info.completion_word_phys_addr;
491         struct dmae_cmd **p_cmd = &p_hwfn->dmae_info.p_dmae_cmd;
492         u32 **p_buff = &p_hwfn->dmae_info.p_intermediate_buffer;
493         u32 **p_comp = &p_hwfn->dmae_info.p_completion_word;
494
495         *p_comp = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
496                                      sizeof(u32),
497                                      p_addr,
498                                      GFP_KERNEL);
499         if (!*p_comp) {
500                 DP_NOTICE(p_hwfn, "Failed to allocate `p_completion_word'\n");
501                 goto err;
502         }
503
504         p_addr = &p_hwfn->dmae_info.dmae_cmd_phys_addr;
505         *p_cmd = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
506                                     sizeof(struct dmae_cmd),
507                                     p_addr, GFP_KERNEL);
508         if (!*p_cmd) {
509                 DP_NOTICE(p_hwfn, "Failed to allocate `struct dmae_cmd'\n");
510                 goto err;
511         }
512
513         p_addr = &p_hwfn->dmae_info.intermediate_buffer_phys_addr;
514         *p_buff = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
515                                      sizeof(u32) * DMAE_MAX_RW_SIZE,
516                                      p_addr, GFP_KERNEL);
517         if (!*p_buff) {
518                 DP_NOTICE(p_hwfn, "Failed to allocate `intermediate_buffer'\n");
519                 goto err;
520         }
521
522         p_hwfn->dmae_info.channel = p_hwfn->rel_pf_id;
523
524         return 0;
525 err:
526         qed_dmae_info_free(p_hwfn);
527         return -ENOMEM;
528 }
529
530 void qed_dmae_info_free(struct qed_hwfn *p_hwfn)
531 {
532         dma_addr_t p_phys;
533
534         /* Just make sure no one is in the middle */
535         mutex_lock(&p_hwfn->dmae_info.mutex);
536
537         if (p_hwfn->dmae_info.p_completion_word) {
538                 p_phys = p_hwfn->dmae_info.completion_word_phys_addr;
539                 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
540                                   sizeof(u32),
541                                   p_hwfn->dmae_info.p_completion_word,
542                                   p_phys);
543                 p_hwfn->dmae_info.p_completion_word = NULL;
544         }
545
546         if (p_hwfn->dmae_info.p_dmae_cmd) {
547                 p_phys = p_hwfn->dmae_info.dmae_cmd_phys_addr;
548                 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
549                                   sizeof(struct dmae_cmd),
550                                   p_hwfn->dmae_info.p_dmae_cmd,
551                                   p_phys);
552                 p_hwfn->dmae_info.p_dmae_cmd = NULL;
553         }
554
555         if (p_hwfn->dmae_info.p_intermediate_buffer) {
556                 p_phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
557                 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
558                                   sizeof(u32) * DMAE_MAX_RW_SIZE,
559                                   p_hwfn->dmae_info.p_intermediate_buffer,
560                                   p_phys);
561                 p_hwfn->dmae_info.p_intermediate_buffer = NULL;
562         }
563
564         mutex_unlock(&p_hwfn->dmae_info.mutex);
565 }
566
567 static int qed_dmae_operation_wait(struct qed_hwfn *p_hwfn)
568 {
569         u32 wait_cnt = 0;
570         u32 wait_cnt_limit = 10000;
571
572         int qed_status = 0;
573
574         barrier();
575         while (*p_hwfn->dmae_info.p_completion_word != DMAE_COMPLETION_VAL) {
576                 udelay(DMAE_MIN_WAIT_TIME);
577                 if (++wait_cnt > wait_cnt_limit) {
578                         DP_NOTICE(p_hwfn->cdev,
579                                   "Timed-out waiting for operation to complete. Completion word is 0x%08x expected 0x%08x.\n",
580                                   *p_hwfn->dmae_info.p_completion_word,
581                                  DMAE_COMPLETION_VAL);
582                         qed_status = -EBUSY;
583                         break;
584                 }
585
586                 /* to sync the completion_word since we are not
587                  * using the volatile keyword for p_completion_word
588                  */
589                 barrier();
590         }
591
592         if (qed_status == 0)
593                 *p_hwfn->dmae_info.p_completion_word = 0;
594
595         return qed_status;
596 }
597
598 static int qed_dmae_execute_sub_operation(struct qed_hwfn *p_hwfn,
599                                           struct qed_ptt *p_ptt,
600                                           u64 src_addr,
601                                           u64 dst_addr,
602                                           u8 src_type,
603                                           u8 dst_type,
604                                           u32 length)
605 {
606         dma_addr_t phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
607         struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
608         int qed_status = 0;
609
610         switch (src_type) {
611         case QED_DMAE_ADDRESS_GRC:
612         case QED_DMAE_ADDRESS_HOST_PHYS:
613                 cmd->src_addr_hi = cpu_to_le32(upper_32_bits(src_addr));
614                 cmd->src_addr_lo = cpu_to_le32(lower_32_bits(src_addr));
615                 break;
616         /* for virtual source addresses we use the intermediate buffer. */
617         case QED_DMAE_ADDRESS_HOST_VIRT:
618                 cmd->src_addr_hi = cpu_to_le32(upper_32_bits(phys));
619                 cmd->src_addr_lo = cpu_to_le32(lower_32_bits(phys));
620                 memcpy(&p_hwfn->dmae_info.p_intermediate_buffer[0],
621                        (void *)(uintptr_t)src_addr,
622                        length * sizeof(u32));
623                 break;
624         default:
625                 return -EINVAL;
626         }
627
628         switch (dst_type) {
629         case QED_DMAE_ADDRESS_GRC:
630         case QED_DMAE_ADDRESS_HOST_PHYS:
631                 cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(dst_addr));
632                 cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(dst_addr));
633                 break;
634         /* for virtual source addresses we use the intermediate buffer. */
635         case QED_DMAE_ADDRESS_HOST_VIRT:
636                 cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(phys));
637                 cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(phys));
638                 break;
639         default:
640                 return -EINVAL;
641         }
642
643         cmd->length = cpu_to_le16((u16)length);
644
645         qed_dmae_post_command(p_hwfn, p_ptt);
646
647         qed_status = qed_dmae_operation_wait(p_hwfn);
648
649         if (qed_status) {
650                 DP_NOTICE(p_hwfn,
651                           "qed_dmae_host2grc: Wait Failed. source_addr 0x%llx, grc_addr 0x%llx, size_in_dwords 0x%x\n",
652                           src_addr,
653                           dst_addr,
654                           length);
655                 return qed_status;
656         }
657
658         if (dst_type == QED_DMAE_ADDRESS_HOST_VIRT)
659                 memcpy((void *)(uintptr_t)(dst_addr),
660                        &p_hwfn->dmae_info.p_intermediate_buffer[0],
661                        length * sizeof(u32));
662
663         return 0;
664 }
665
666 static int qed_dmae_execute_command(struct qed_hwfn *p_hwfn,
667                                     struct qed_ptt *p_ptt,
668                                     u64 src_addr, u64 dst_addr,
669                                     u8 src_type, u8 dst_type,
670                                     u32 size_in_dwords,
671                                     struct qed_dmae_params *p_params)
672 {
673         dma_addr_t phys = p_hwfn->dmae_info.completion_word_phys_addr;
674         u16 length_cur = 0, i = 0, cnt_split = 0, length_mod = 0;
675         struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
676         u64 src_addr_split = 0, dst_addr_split = 0;
677         u16 length_limit = DMAE_MAX_RW_SIZE;
678         int qed_status = 0;
679         u32 offset = 0;
680
681         qed_dmae_opcode(p_hwfn,
682                         (src_type == QED_DMAE_ADDRESS_GRC),
683                         (dst_type == QED_DMAE_ADDRESS_GRC),
684                         p_params);
685
686         cmd->comp_addr_lo = cpu_to_le32(lower_32_bits(phys));
687         cmd->comp_addr_hi = cpu_to_le32(upper_32_bits(phys));
688         cmd->comp_val = cpu_to_le32(DMAE_COMPLETION_VAL);
689
690         /* Check if the grc_addr is valid like < MAX_GRC_OFFSET */
691         cnt_split = size_in_dwords / length_limit;
692         length_mod = size_in_dwords % length_limit;
693
694         src_addr_split = src_addr;
695         dst_addr_split = dst_addr;
696
697         for (i = 0; i <= cnt_split; i++) {
698                 offset = length_limit * i;
699
700                 if (!(p_params->flags & QED_DMAE_FLAG_RW_REPL_SRC)) {
701                         if (src_type == QED_DMAE_ADDRESS_GRC)
702                                 src_addr_split = src_addr + offset;
703                         else
704                                 src_addr_split = src_addr + (offset * 4);
705                 }
706
707                 if (dst_type == QED_DMAE_ADDRESS_GRC)
708                         dst_addr_split = dst_addr + offset;
709                 else
710                         dst_addr_split = dst_addr + (offset * 4);
711
712                 length_cur = (cnt_split == i) ? length_mod : length_limit;
713
714                 /* might be zero on last iteration */
715                 if (!length_cur)
716                         continue;
717
718                 qed_status = qed_dmae_execute_sub_operation(p_hwfn,
719                                                             p_ptt,
720                                                             src_addr_split,
721                                                             dst_addr_split,
722                                                             src_type,
723                                                             dst_type,
724                                                             length_cur);
725                 if (qed_status) {
726                         DP_NOTICE(p_hwfn,
727                                   "qed_dmae_execute_sub_operation Failed with error 0x%x. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n",
728                                   qed_status,
729                                   src_addr,
730                                   dst_addr,
731                                   length_cur);
732                         break;
733                 }
734         }
735
736         return qed_status;
737 }
738
739 int qed_dmae_host2grc(struct qed_hwfn *p_hwfn,
740                       struct qed_ptt *p_ptt,
741                       u64 source_addr,
742                       u32 grc_addr,
743                       u32 size_in_dwords,
744                       u32 flags)
745 {
746         u32 grc_addr_in_dw = grc_addr / sizeof(u32);
747         struct qed_dmae_params params;
748         int rc;
749
750         memset(&params, 0, sizeof(struct qed_dmae_params));
751         params.flags = flags;
752
753         mutex_lock(&p_hwfn->dmae_info.mutex);
754
755         rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
756                                       grc_addr_in_dw,
757                                       QED_DMAE_ADDRESS_HOST_VIRT,
758                                       QED_DMAE_ADDRESS_GRC,
759                                       size_in_dwords, &params);
760
761         mutex_unlock(&p_hwfn->dmae_info.mutex);
762
763         return rc;
764 }
765
766 int
767 qed_dmae_host2host(struct qed_hwfn *p_hwfn,
768                    struct qed_ptt *p_ptt,
769                    dma_addr_t source_addr,
770                    dma_addr_t dest_addr,
771                    u32 size_in_dwords, struct qed_dmae_params *p_params)
772 {
773         int rc;
774
775         mutex_lock(&(p_hwfn->dmae_info.mutex));
776
777         rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
778                                       dest_addr,
779                                       QED_DMAE_ADDRESS_HOST_PHYS,
780                                       QED_DMAE_ADDRESS_HOST_PHYS,
781                                       size_in_dwords, p_params);
782
783         mutex_unlock(&(p_hwfn->dmae_info.mutex));
784
785         return rc;
786 }
787
788 u16 qed_get_qm_pq(struct qed_hwfn *p_hwfn,
789                   enum protocol_type proto,
790                   union qed_qm_pq_params *p_params)
791 {
792         u16 pq_id = 0;
793
794         if ((proto == PROTOCOLID_CORE || proto == PROTOCOLID_ETH) &&
795             !p_params) {
796                 DP_NOTICE(p_hwfn,
797                           "Protocol %d received NULL PQ params\n",
798                           proto);
799                 return 0;
800         }
801
802         switch (proto) {
803         case PROTOCOLID_CORE:
804                 if (p_params->core.tc == LB_TC)
805                         pq_id = p_hwfn->qm_info.pure_lb_pq;
806                 else
807                         pq_id = p_hwfn->qm_info.offload_pq;
808                 break;
809         case PROTOCOLID_ETH:
810                 pq_id = p_params->eth.tc;
811                 break;
812         default:
813                 pq_id = 0;
814         }
815
816         pq_id = CM_TX_PQ_BASE + pq_id + RESC_START(p_hwfn, QED_PQ);
817
818         return pq_id;
819 }