Merge tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[linux-2.6-microblaze.git] / drivers / net / ethernet / qlogic / qed / qed_hw.c
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <linux/types.h>
34 #include <linux/io.h>
35 #include <linux/delay.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/errno.h>
38 #include <linux/kernel.h>
39 #include <linux/list.h>
40 #include <linux/mutex.h>
41 #include <linux/pci.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/string.h>
45 #include <linux/qed/qed_chain.h>
46 #include "qed.h"
47 #include "qed_hsi.h"
48 #include "qed_hw.h"
49 #include "qed_reg_addr.h"
50 #include "qed_sriov.h"
51
52 #define QED_BAR_ACQUIRE_TIMEOUT 1000
53
54 /* Invalid values */
55 #define QED_BAR_INVALID_OFFSET          (cpu_to_le32(-1))
56
57 struct qed_ptt {
58         struct list_head        list_entry;
59         unsigned int            idx;
60         struct pxp_ptt_entry    pxp;
61         u8                      hwfn_id;
62 };
63
64 struct qed_ptt_pool {
65         struct list_head        free_list;
66         spinlock_t              lock; /* ptt synchronized access */
67         struct qed_ptt          ptts[PXP_EXTERNAL_BAR_PF_WINDOW_NUM];
68 };
69
70 int qed_ptt_pool_alloc(struct qed_hwfn *p_hwfn)
71 {
72         struct qed_ptt_pool *p_pool = kmalloc(sizeof(*p_pool), GFP_KERNEL);
73         int i;
74
75         if (!p_pool)
76                 return -ENOMEM;
77
78         INIT_LIST_HEAD(&p_pool->free_list);
79         for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
80                 p_pool->ptts[i].idx = i;
81                 p_pool->ptts[i].pxp.offset = QED_BAR_INVALID_OFFSET;
82                 p_pool->ptts[i].pxp.pretend.control = 0;
83                 p_pool->ptts[i].hwfn_id = p_hwfn->my_id;
84                 if (i >= RESERVED_PTT_MAX)
85                         list_add(&p_pool->ptts[i].list_entry,
86                                  &p_pool->free_list);
87         }
88
89         p_hwfn->p_ptt_pool = p_pool;
90         spin_lock_init(&p_pool->lock);
91
92         return 0;
93 }
94
95 void qed_ptt_invalidate(struct qed_hwfn *p_hwfn)
96 {
97         struct qed_ptt *p_ptt;
98         int i;
99
100         for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
101                 p_ptt = &p_hwfn->p_ptt_pool->ptts[i];
102                 p_ptt->pxp.offset = QED_BAR_INVALID_OFFSET;
103         }
104 }
105
106 void qed_ptt_pool_free(struct qed_hwfn *p_hwfn)
107 {
108         kfree(p_hwfn->p_ptt_pool);
109         p_hwfn->p_ptt_pool = NULL;
110 }
111
112 struct qed_ptt *qed_ptt_acquire(struct qed_hwfn *p_hwfn)
113 {
114         struct qed_ptt *p_ptt;
115         unsigned int i;
116
117         /* Take the free PTT from the list */
118         for (i = 0; i < QED_BAR_ACQUIRE_TIMEOUT; i++) {
119                 spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
120
121                 if (!list_empty(&p_hwfn->p_ptt_pool->free_list)) {
122                         p_ptt = list_first_entry(&p_hwfn->p_ptt_pool->free_list,
123                                                  struct qed_ptt, list_entry);
124                         list_del(&p_ptt->list_entry);
125
126                         spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
127
128                         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
129                                    "allocated ptt %d\n", p_ptt->idx);
130                         return p_ptt;
131                 }
132
133                 spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
134                 usleep_range(1000, 2000);
135         }
136
137         DP_NOTICE(p_hwfn, "PTT acquire timeout - failed to allocate PTT\n");
138         return NULL;
139 }
140
141 void qed_ptt_release(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
142 {
143         spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
144         list_add(&p_ptt->list_entry, &p_hwfn->p_ptt_pool->free_list);
145         spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
146 }
147
148 u32 qed_ptt_get_hw_addr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
149 {
150         /* The HW is using DWORDS and we need to translate it to Bytes */
151         return le32_to_cpu(p_ptt->pxp.offset) << 2;
152 }
153
154 static u32 qed_ptt_config_addr(struct qed_ptt *p_ptt)
155 {
156         return PXP_PF_WINDOW_ADMIN_PER_PF_START +
157                p_ptt->idx * sizeof(struct pxp_ptt_entry);
158 }
159
160 u32 qed_ptt_get_bar_addr(struct qed_ptt *p_ptt)
161 {
162         return PXP_EXTERNAL_BAR_PF_WINDOW_START +
163                p_ptt->idx * PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE;
164 }
165
166 void qed_ptt_set_win(struct qed_hwfn *p_hwfn,
167                      struct qed_ptt *p_ptt, u32 new_hw_addr)
168 {
169         u32 prev_hw_addr;
170
171         prev_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
172
173         if (new_hw_addr == prev_hw_addr)
174                 return;
175
176         /* Update PTT entery in admin window */
177         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
178                    "Updating PTT entry %d to offset 0x%x\n",
179                    p_ptt->idx, new_hw_addr);
180
181         /* The HW is using DWORDS and the address is in Bytes */
182         p_ptt->pxp.offset = cpu_to_le32(new_hw_addr >> 2);
183
184         REG_WR(p_hwfn,
185                qed_ptt_config_addr(p_ptt) +
186                offsetof(struct pxp_ptt_entry, offset),
187                le32_to_cpu(p_ptt->pxp.offset));
188 }
189
190 static u32 qed_set_ptt(struct qed_hwfn *p_hwfn,
191                        struct qed_ptt *p_ptt, u32 hw_addr)
192 {
193         u32 win_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
194         u32 offset;
195
196         offset = hw_addr - win_hw_addr;
197
198         if (p_ptt->hwfn_id != p_hwfn->my_id)
199                 DP_NOTICE(p_hwfn,
200                           "ptt[%d] of hwfn[%02x] is used by hwfn[%02x]!\n",
201                           p_ptt->idx, p_ptt->hwfn_id, p_hwfn->my_id);
202
203         /* Verify the address is within the window */
204         if (hw_addr < win_hw_addr ||
205             offset >= PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE) {
206                 qed_ptt_set_win(p_hwfn, p_ptt, hw_addr);
207                 offset = 0;
208         }
209
210         return qed_ptt_get_bar_addr(p_ptt) + offset;
211 }
212
213 struct qed_ptt *qed_get_reserved_ptt(struct qed_hwfn *p_hwfn,
214                                      enum reserved_ptts ptt_idx)
215 {
216         if (ptt_idx >= RESERVED_PTT_MAX) {
217                 DP_NOTICE(p_hwfn,
218                           "Requested PTT %d is out of range\n", ptt_idx);
219                 return NULL;
220         }
221
222         return &p_hwfn->p_ptt_pool->ptts[ptt_idx];
223 }
224
225 void qed_wr(struct qed_hwfn *p_hwfn,
226             struct qed_ptt *p_ptt,
227             u32 hw_addr, u32 val)
228 {
229         u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
230
231         REG_WR(p_hwfn, bar_addr, val);
232         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
233                    "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
234                    bar_addr, hw_addr, val);
235 }
236
237 u32 qed_rd(struct qed_hwfn *p_hwfn,
238            struct qed_ptt *p_ptt,
239            u32 hw_addr)
240 {
241         u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
242         u32 val = REG_RD(p_hwfn, bar_addr);
243
244         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
245                    "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
246                    bar_addr, hw_addr, val);
247
248         return val;
249 }
250
251 static void qed_memcpy_hw(struct qed_hwfn *p_hwfn,
252                           struct qed_ptt *p_ptt,
253                           void *addr, u32 hw_addr, size_t n, bool to_device)
254 {
255         u32 dw_count, *host_addr, hw_offset;
256         size_t quota, done = 0;
257         u32 __iomem *reg_addr;
258
259         while (done < n) {
260                 quota = min_t(size_t, n - done,
261                               PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE);
262
263                 if (IS_PF(p_hwfn->cdev)) {
264                         qed_ptt_set_win(p_hwfn, p_ptt, hw_addr + done);
265                         hw_offset = qed_ptt_get_bar_addr(p_ptt);
266                 } else {
267                         hw_offset = hw_addr + done;
268                 }
269
270                 dw_count = quota / 4;
271                 host_addr = (u32 *)((u8 *)addr + done);
272                 reg_addr = (u32 __iomem *)REG_ADDR(p_hwfn, hw_offset);
273                 if (to_device)
274                         while (dw_count--)
275                                 DIRECT_REG_WR(reg_addr++, *host_addr++);
276                 else
277                         while (dw_count--)
278                                 *host_addr++ = DIRECT_REG_RD(reg_addr++);
279
280                 done += quota;
281         }
282 }
283
284 void qed_memcpy_from(struct qed_hwfn *p_hwfn,
285                      struct qed_ptt *p_ptt, void *dest, u32 hw_addr, size_t n)
286 {
287         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
288                    "hw_addr 0x%x, dest %p hw_addr 0x%x, size %lu\n",
289                    hw_addr, dest, hw_addr, (unsigned long)n);
290
291         qed_memcpy_hw(p_hwfn, p_ptt, dest, hw_addr, n, false);
292 }
293
294 void qed_memcpy_to(struct qed_hwfn *p_hwfn,
295                    struct qed_ptt *p_ptt, u32 hw_addr, void *src, size_t n)
296 {
297         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
298                    "hw_addr 0x%x, hw_addr 0x%x, src %p size %lu\n",
299                    hw_addr, hw_addr, src, (unsigned long)n);
300
301         qed_memcpy_hw(p_hwfn, p_ptt, src, hw_addr, n, true);
302 }
303
304 void qed_fid_pretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 fid)
305 {
306         u16 control = 0;
307
308         SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
309         SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);
310
311         /* Every pretend undos previous pretends, including
312          * previous port pretend.
313          */
314         SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
315         SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
316         SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
317
318         if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
319                 fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);
320
321         p_ptt->pxp.pretend.control = cpu_to_le16(control);
322         p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid);
323
324         REG_WR(p_hwfn,
325                qed_ptt_config_addr(p_ptt) +
326                offsetof(struct pxp_ptt_entry, pretend),
327                *(u32 *)&p_ptt->pxp.pretend);
328 }
329
330 void qed_port_pretend(struct qed_hwfn *p_hwfn,
331                       struct qed_ptt *p_ptt, u8 port_id)
332 {
333         u16 control = 0;
334
335         SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
336         SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
337         SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
338
339         p_ptt->pxp.pretend.control = cpu_to_le16(control);
340
341         REG_WR(p_hwfn,
342                qed_ptt_config_addr(p_ptt) +
343                offsetof(struct pxp_ptt_entry, pretend),
344                *(u32 *)&p_ptt->pxp.pretend);
345 }
346
347 void qed_port_unpretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
348 {
349         u16 control = 0;
350
351         SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
352         SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
353         SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
354
355         p_ptt->pxp.pretend.control = cpu_to_le16(control);
356
357         REG_WR(p_hwfn,
358                qed_ptt_config_addr(p_ptt) +
359                offsetof(struct pxp_ptt_entry, pretend),
360                *(u32 *)&p_ptt->pxp.pretend);
361 }
362
363 void qed_port_fid_pretend(struct qed_hwfn *p_hwfn,
364                           struct qed_ptt *p_ptt, u8 port_id, u16 fid)
365 {
366         u16 control = 0;
367
368         SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
369         SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
370         SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
371         SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
372         SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);
373         if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
374                 fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);
375         p_ptt->pxp.pretend.control = cpu_to_le16(control);
376         p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid);
377         REG_WR(p_hwfn,
378                qed_ptt_config_addr(p_ptt) +
379                offsetof(struct pxp_ptt_entry, pretend),
380                *(u32 *)&p_ptt->pxp.pretend);
381 }
382
383 u32 qed_vfid_to_concrete(struct qed_hwfn *p_hwfn, u8 vfid)
384 {
385         u32 concrete_fid = 0;
386
387         SET_FIELD(concrete_fid, PXP_CONCRETE_FID_PFID, p_hwfn->rel_pf_id);
388         SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFID, vfid);
389         SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFVALID, 1);
390
391         return concrete_fid;
392 }
393
394 /* DMAE */
395 static void qed_dmae_opcode(struct qed_hwfn *p_hwfn,
396                             const u8 is_src_type_grc,
397                             const u8 is_dst_type_grc,
398                             struct qed_dmae_params *p_params)
399 {
400         u16 opcode_b = 0;
401         u32 opcode = 0;
402
403         /* Whether the source is the PCIe or the GRC.
404          * 0- The source is the PCIe
405          * 1- The source is the GRC.
406          */
407         opcode |= (is_src_type_grc ? DMAE_CMD_SRC_MASK_GRC
408                                    : DMAE_CMD_SRC_MASK_PCIE) <<
409                    DMAE_CMD_SRC_SHIFT;
410         opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_SRC_PF_ID_MASK) <<
411                    DMAE_CMD_SRC_PF_ID_SHIFT);
412
413         /* The destination of the DMA can be: 0-None 1-PCIe 2-GRC 3-None */
414         opcode |= (is_dst_type_grc ? DMAE_CMD_DST_MASK_GRC
415                                    : DMAE_CMD_DST_MASK_PCIE) <<
416                    DMAE_CMD_DST_SHIFT;
417         opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_DST_PF_ID_MASK) <<
418                    DMAE_CMD_DST_PF_ID_SHIFT);
419
420         /* Whether to write a completion word to the completion destination:
421          * 0-Do not write a completion word
422          * 1-Write the completion word
423          */
424         opcode |= (DMAE_CMD_COMP_WORD_EN_MASK << DMAE_CMD_COMP_WORD_EN_SHIFT);
425         opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
426                    DMAE_CMD_SRC_ADDR_RESET_SHIFT);
427
428         if (p_params->flags & QED_DMAE_FLAG_COMPLETION_DST)
429                 opcode |= (1 << DMAE_CMD_COMP_FUNC_SHIFT);
430
431         opcode |= (DMAE_CMD_ENDIANITY << DMAE_CMD_ENDIANITY_MODE_SHIFT);
432
433         opcode |= ((p_hwfn->port_id) << DMAE_CMD_PORT_ID_SHIFT);
434
435         /* reset source address in next go */
436         opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
437                    DMAE_CMD_SRC_ADDR_RESET_SHIFT);
438
439         /* reset dest address in next go */
440         opcode |= (DMAE_CMD_DST_ADDR_RESET_MASK <<
441                    DMAE_CMD_DST_ADDR_RESET_SHIFT);
442
443         /* SRC/DST VFID: all 1's - pf, otherwise VF id */
444         if (p_params->flags & QED_DMAE_FLAG_VF_SRC) {
445                 opcode |= 1 << DMAE_CMD_SRC_VF_ID_VALID_SHIFT;
446                 opcode_b |= p_params->src_vfid << DMAE_CMD_SRC_VF_ID_SHIFT;
447         } else {
448                 opcode_b |= DMAE_CMD_SRC_VF_ID_MASK <<
449                             DMAE_CMD_SRC_VF_ID_SHIFT;
450         }
451
452         if (p_params->flags & QED_DMAE_FLAG_VF_DST) {
453                 opcode |= 1 << DMAE_CMD_DST_VF_ID_VALID_SHIFT;
454                 opcode_b |= p_params->dst_vfid << DMAE_CMD_DST_VF_ID_SHIFT;
455         } else {
456                 opcode_b |= DMAE_CMD_DST_VF_ID_MASK << DMAE_CMD_DST_VF_ID_SHIFT;
457         }
458
459         p_hwfn->dmae_info.p_dmae_cmd->opcode = cpu_to_le32(opcode);
460         p_hwfn->dmae_info.p_dmae_cmd->opcode_b = cpu_to_le16(opcode_b);
461 }
462
463 u32 qed_dmae_idx_to_go_cmd(u8 idx)
464 {
465         /* All the DMAE 'go' registers form an array in internal memory */
466         return DMAE_REG_GO_C0 + (idx << 2);
467 }
468
469 static int qed_dmae_post_command(struct qed_hwfn *p_hwfn,
470                                  struct qed_ptt *p_ptt)
471 {
472         struct dmae_cmd *p_command = p_hwfn->dmae_info.p_dmae_cmd;
473         u8 idx_cmd = p_hwfn->dmae_info.channel, i;
474         int qed_status = 0;
475
476         /* verify address is not NULL */
477         if ((((!p_command->dst_addr_lo) && (!p_command->dst_addr_hi)) ||
478              ((!p_command->src_addr_lo) && (!p_command->src_addr_hi)))) {
479                 DP_NOTICE(p_hwfn,
480                           "source or destination address 0 idx_cmd=%d\n"
481                           "opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
482                           idx_cmd,
483                           le32_to_cpu(p_command->opcode),
484                           le16_to_cpu(p_command->opcode_b),
485                           le16_to_cpu(p_command->length_dw),
486                           le32_to_cpu(p_command->src_addr_hi),
487                           le32_to_cpu(p_command->src_addr_lo),
488                           le32_to_cpu(p_command->dst_addr_hi),
489                           le32_to_cpu(p_command->dst_addr_lo));
490
491                 return -EINVAL;
492         }
493
494         DP_VERBOSE(p_hwfn,
495                    NETIF_MSG_HW,
496                    "Posting DMAE command [idx %d]: opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
497                    idx_cmd,
498                    le32_to_cpu(p_command->opcode),
499                    le16_to_cpu(p_command->opcode_b),
500                    le16_to_cpu(p_command->length_dw),
501                    le32_to_cpu(p_command->src_addr_hi),
502                    le32_to_cpu(p_command->src_addr_lo),
503                    le32_to_cpu(p_command->dst_addr_hi),
504                    le32_to_cpu(p_command->dst_addr_lo));
505
506         /* Copy the command to DMAE - need to do it before every call
507          * for source/dest address no reset.
508          * The first 9 DWs are the command registers, the 10 DW is the
509          * GO register, and the rest are result registers
510          * (which are read only by the client).
511          */
512         for (i = 0; i < DMAE_CMD_SIZE; i++) {
513                 u32 data = (i < DMAE_CMD_SIZE_TO_FILL) ?
514                            *(((u32 *)p_command) + i) : 0;
515
516                 qed_wr(p_hwfn, p_ptt,
517                        DMAE_REG_CMD_MEM +
518                        (idx_cmd * DMAE_CMD_SIZE * sizeof(u32)) +
519                        (i * sizeof(u32)), data);
520         }
521
522         qed_wr(p_hwfn, p_ptt, qed_dmae_idx_to_go_cmd(idx_cmd), DMAE_GO_VALUE);
523
524         return qed_status;
525 }
526
527 int qed_dmae_info_alloc(struct qed_hwfn *p_hwfn)
528 {
529         dma_addr_t *p_addr = &p_hwfn->dmae_info.completion_word_phys_addr;
530         struct dmae_cmd **p_cmd = &p_hwfn->dmae_info.p_dmae_cmd;
531         u32 **p_buff = &p_hwfn->dmae_info.p_intermediate_buffer;
532         u32 **p_comp = &p_hwfn->dmae_info.p_completion_word;
533
534         *p_comp = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
535                                      sizeof(u32), p_addr, GFP_KERNEL);
536         if (!*p_comp)
537                 goto err;
538
539         p_addr = &p_hwfn->dmae_info.dmae_cmd_phys_addr;
540         *p_cmd = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
541                                     sizeof(struct dmae_cmd),
542                                     p_addr, GFP_KERNEL);
543         if (!*p_cmd)
544                 goto err;
545
546         p_addr = &p_hwfn->dmae_info.intermediate_buffer_phys_addr;
547         *p_buff = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
548                                      sizeof(u32) * DMAE_MAX_RW_SIZE,
549                                      p_addr, GFP_KERNEL);
550         if (!*p_buff)
551                 goto err;
552
553         p_hwfn->dmae_info.channel = p_hwfn->rel_pf_id;
554
555         return 0;
556 err:
557         qed_dmae_info_free(p_hwfn);
558         return -ENOMEM;
559 }
560
561 void qed_dmae_info_free(struct qed_hwfn *p_hwfn)
562 {
563         dma_addr_t p_phys;
564
565         /* Just make sure no one is in the middle */
566         mutex_lock(&p_hwfn->dmae_info.mutex);
567
568         if (p_hwfn->dmae_info.p_completion_word) {
569                 p_phys = p_hwfn->dmae_info.completion_word_phys_addr;
570                 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
571                                   sizeof(u32),
572                                   p_hwfn->dmae_info.p_completion_word, p_phys);
573                 p_hwfn->dmae_info.p_completion_word = NULL;
574         }
575
576         if (p_hwfn->dmae_info.p_dmae_cmd) {
577                 p_phys = p_hwfn->dmae_info.dmae_cmd_phys_addr;
578                 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
579                                   sizeof(struct dmae_cmd),
580                                   p_hwfn->dmae_info.p_dmae_cmd, p_phys);
581                 p_hwfn->dmae_info.p_dmae_cmd = NULL;
582         }
583
584         if (p_hwfn->dmae_info.p_intermediate_buffer) {
585                 p_phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
586                 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
587                                   sizeof(u32) * DMAE_MAX_RW_SIZE,
588                                   p_hwfn->dmae_info.p_intermediate_buffer,
589                                   p_phys);
590                 p_hwfn->dmae_info.p_intermediate_buffer = NULL;
591         }
592
593         mutex_unlock(&p_hwfn->dmae_info.mutex);
594 }
595
596 static int qed_dmae_operation_wait(struct qed_hwfn *p_hwfn)
597 {
598         u32 wait_cnt_limit = 10000, wait_cnt = 0;
599         int qed_status = 0;
600
601         barrier();
602         while (*p_hwfn->dmae_info.p_completion_word != DMAE_COMPLETION_VAL) {
603                 udelay(DMAE_MIN_WAIT_TIME);
604                 if (++wait_cnt > wait_cnt_limit) {
605                         DP_NOTICE(p_hwfn->cdev,
606                                   "Timed-out waiting for operation to complete. Completion word is 0x%08x expected 0x%08x.\n",
607                                   *p_hwfn->dmae_info.p_completion_word,
608                                  DMAE_COMPLETION_VAL);
609                         qed_status = -EBUSY;
610                         break;
611                 }
612
613                 /* to sync the completion_word since we are not
614                  * using the volatile keyword for p_completion_word
615                  */
616                 barrier();
617         }
618
619         if (qed_status == 0)
620                 *p_hwfn->dmae_info.p_completion_word = 0;
621
622         return qed_status;
623 }
624
625 static int qed_dmae_execute_sub_operation(struct qed_hwfn *p_hwfn,
626                                           struct qed_ptt *p_ptt,
627                                           u64 src_addr,
628                                           u64 dst_addr,
629                                           u8 src_type,
630                                           u8 dst_type,
631                                           u32 length_dw)
632 {
633         dma_addr_t phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
634         struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
635         int qed_status = 0;
636
637         switch (src_type) {
638         case QED_DMAE_ADDRESS_GRC:
639         case QED_DMAE_ADDRESS_HOST_PHYS:
640                 cmd->src_addr_hi = cpu_to_le32(upper_32_bits(src_addr));
641                 cmd->src_addr_lo = cpu_to_le32(lower_32_bits(src_addr));
642                 break;
643         /* for virtual source addresses we use the intermediate buffer. */
644         case QED_DMAE_ADDRESS_HOST_VIRT:
645                 cmd->src_addr_hi = cpu_to_le32(upper_32_bits(phys));
646                 cmd->src_addr_lo = cpu_to_le32(lower_32_bits(phys));
647                 memcpy(&p_hwfn->dmae_info.p_intermediate_buffer[0],
648                        (void *)(uintptr_t)src_addr,
649                        length_dw * sizeof(u32));
650                 break;
651         default:
652                 return -EINVAL;
653         }
654
655         switch (dst_type) {
656         case QED_DMAE_ADDRESS_GRC:
657         case QED_DMAE_ADDRESS_HOST_PHYS:
658                 cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(dst_addr));
659                 cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(dst_addr));
660                 break;
661         /* for virtual source addresses we use the intermediate buffer. */
662         case QED_DMAE_ADDRESS_HOST_VIRT:
663                 cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(phys));
664                 cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(phys));
665                 break;
666         default:
667                 return -EINVAL;
668         }
669
670         cmd->length_dw = cpu_to_le16((u16)length_dw);
671
672         qed_dmae_post_command(p_hwfn, p_ptt);
673
674         qed_status = qed_dmae_operation_wait(p_hwfn);
675
676         if (qed_status) {
677                 DP_NOTICE(p_hwfn,
678                           "qed_dmae_host2grc: Wait Failed. source_addr 0x%llx, grc_addr 0x%llx, size_in_dwords 0x%x\n",
679                           src_addr, dst_addr, length_dw);
680                 return qed_status;
681         }
682
683         if (dst_type == QED_DMAE_ADDRESS_HOST_VIRT)
684                 memcpy((void *)(uintptr_t)(dst_addr),
685                        &p_hwfn->dmae_info.p_intermediate_buffer[0],
686                        length_dw * sizeof(u32));
687
688         return 0;
689 }
690
691 static int qed_dmae_execute_command(struct qed_hwfn *p_hwfn,
692                                     struct qed_ptt *p_ptt,
693                                     u64 src_addr, u64 dst_addr,
694                                     u8 src_type, u8 dst_type,
695                                     u32 size_in_dwords,
696                                     struct qed_dmae_params *p_params)
697 {
698         dma_addr_t phys = p_hwfn->dmae_info.completion_word_phys_addr;
699         u16 length_cur = 0, i = 0, cnt_split = 0, length_mod = 0;
700         struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
701         u64 src_addr_split = 0, dst_addr_split = 0;
702         u16 length_limit = DMAE_MAX_RW_SIZE;
703         int qed_status = 0;
704         u32 offset = 0;
705
706         qed_dmae_opcode(p_hwfn,
707                         (src_type == QED_DMAE_ADDRESS_GRC),
708                         (dst_type == QED_DMAE_ADDRESS_GRC),
709                         p_params);
710
711         cmd->comp_addr_lo = cpu_to_le32(lower_32_bits(phys));
712         cmd->comp_addr_hi = cpu_to_le32(upper_32_bits(phys));
713         cmd->comp_val = cpu_to_le32(DMAE_COMPLETION_VAL);
714
715         /* Check if the grc_addr is valid like < MAX_GRC_OFFSET */
716         cnt_split = size_in_dwords / length_limit;
717         length_mod = size_in_dwords % length_limit;
718
719         src_addr_split = src_addr;
720         dst_addr_split = dst_addr;
721
722         for (i = 0; i <= cnt_split; i++) {
723                 offset = length_limit * i;
724
725                 if (!(p_params->flags & QED_DMAE_FLAG_RW_REPL_SRC)) {
726                         if (src_type == QED_DMAE_ADDRESS_GRC)
727                                 src_addr_split = src_addr + offset;
728                         else
729                                 src_addr_split = src_addr + (offset * 4);
730                 }
731
732                 if (dst_type == QED_DMAE_ADDRESS_GRC)
733                         dst_addr_split = dst_addr + offset;
734                 else
735                         dst_addr_split = dst_addr + (offset * 4);
736
737                 length_cur = (cnt_split == i) ? length_mod : length_limit;
738
739                 /* might be zero on last iteration */
740                 if (!length_cur)
741                         continue;
742
743                 qed_status = qed_dmae_execute_sub_operation(p_hwfn,
744                                                             p_ptt,
745                                                             src_addr_split,
746                                                             dst_addr_split,
747                                                             src_type,
748                                                             dst_type,
749                                                             length_cur);
750                 if (qed_status) {
751                         DP_NOTICE(p_hwfn,
752                                   "qed_dmae_execute_sub_operation Failed with error 0x%x. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n",
753                                   qed_status, src_addr, dst_addr, length_cur);
754                         break;
755                 }
756         }
757
758         return qed_status;
759 }
760
761 int qed_dmae_host2grc(struct qed_hwfn *p_hwfn,
762                       struct qed_ptt *p_ptt,
763                   u64 source_addr, u32 grc_addr, u32 size_in_dwords, u32 flags)
764 {
765         u32 grc_addr_in_dw = grc_addr / sizeof(u32);
766         struct qed_dmae_params params;
767         int rc;
768
769         memset(&params, 0, sizeof(struct qed_dmae_params));
770         params.flags = flags;
771
772         mutex_lock(&p_hwfn->dmae_info.mutex);
773
774         rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
775                                       grc_addr_in_dw,
776                                       QED_DMAE_ADDRESS_HOST_VIRT,
777                                       QED_DMAE_ADDRESS_GRC,
778                                       size_in_dwords, &params);
779
780         mutex_unlock(&p_hwfn->dmae_info.mutex);
781
782         return rc;
783 }
784
785 int qed_dmae_grc2host(struct qed_hwfn *p_hwfn,
786                       struct qed_ptt *p_ptt,
787                       u32 grc_addr,
788                       dma_addr_t dest_addr, u32 size_in_dwords, u32 flags)
789 {
790         u32 grc_addr_in_dw = grc_addr / sizeof(u32);
791         struct qed_dmae_params params;
792         int rc;
793
794         memset(&params, 0, sizeof(struct qed_dmae_params));
795         params.flags = flags;
796
797         mutex_lock(&p_hwfn->dmae_info.mutex);
798
799         rc = qed_dmae_execute_command(p_hwfn, p_ptt, grc_addr_in_dw,
800                                       dest_addr, QED_DMAE_ADDRESS_GRC,
801                                       QED_DMAE_ADDRESS_HOST_VIRT,
802                                       size_in_dwords, &params);
803
804         mutex_unlock(&p_hwfn->dmae_info.mutex);
805
806         return rc;
807 }
808
809 int qed_dmae_host2host(struct qed_hwfn *p_hwfn,
810                        struct qed_ptt *p_ptt,
811                        dma_addr_t source_addr,
812                        dma_addr_t dest_addr,
813                        u32 size_in_dwords, struct qed_dmae_params *p_params)
814 {
815         int rc;
816
817         mutex_lock(&(p_hwfn->dmae_info.mutex));
818
819         rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
820                                       dest_addr,
821                                       QED_DMAE_ADDRESS_HOST_PHYS,
822                                       QED_DMAE_ADDRESS_HOST_PHYS,
823                                       size_in_dwords, p_params);
824
825         mutex_unlock(&(p_hwfn->dmae_info.mutex));
826
827         return rc;
828 }
829
830 int qed_dmae_sanity(struct qed_hwfn *p_hwfn,
831                     struct qed_ptt *p_ptt, const char *phase)
832 {
833         u32 size = PAGE_SIZE / 2, val;
834         struct qed_dmae_params params;
835         int rc = 0;
836         dma_addr_t p_phys;
837         void *p_virt;
838         u32 *p_tmp;
839
840         p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
841                                     2 * size, &p_phys, GFP_KERNEL);
842         if (!p_virt) {
843                 DP_NOTICE(p_hwfn,
844                           "DMAE sanity [%s]: failed to allocate memory\n",
845                           phase);
846                 return -ENOMEM;
847         }
848
849         /* Fill the bottom half of the allocated memory with a known pattern */
850         for (p_tmp = (u32 *)p_virt;
851              p_tmp < (u32 *)((u8 *)p_virt + size); p_tmp++) {
852                 /* Save the address itself as the value */
853                 val = (u32)(uintptr_t)p_tmp;
854                 *p_tmp = val;
855         }
856
857         /* Zero the top half of the allocated memory */
858         memset((u8 *)p_virt + size, 0, size);
859
860         DP_VERBOSE(p_hwfn,
861                    QED_MSG_SP,
862                    "DMAE sanity [%s]: src_addr={phys 0x%llx, virt %p}, dst_addr={phys 0x%llx, virt %p}, size 0x%x\n",
863                    phase,
864                    (u64)p_phys,
865                    p_virt, (u64)(p_phys + size), (u8 *)p_virt + size, size);
866
867         memset(&params, 0, sizeof(params));
868         rc = qed_dmae_host2host(p_hwfn, p_ptt, p_phys, p_phys + size,
869                                 size / 4 /* size_in_dwords */, &params);
870         if (rc) {
871                 DP_NOTICE(p_hwfn,
872                           "DMAE sanity [%s]: qed_dmae_host2host() failed. rc = %d.\n",
873                           phase, rc);
874                 goto out;
875         }
876
877         /* Verify that the top half of the allocated memory has the pattern */
878         for (p_tmp = (u32 *)((u8 *)p_virt + size);
879              p_tmp < (u32 *)((u8 *)p_virt + (2 * size)); p_tmp++) {
880                 /* The corresponding address in the bottom half */
881                 val = (u32)(uintptr_t)p_tmp - size;
882
883                 if (*p_tmp != val) {
884                         DP_NOTICE(p_hwfn,
885                                   "DMAE sanity [%s]: addr={phys 0x%llx, virt %p}, read_val 0x%08x, expected_val 0x%08x\n",
886                                   phase,
887                                   (u64)p_phys + ((u8 *)p_tmp - (u8 *)p_virt),
888                                   p_tmp, *p_tmp, val);
889                         rc = -EINVAL;
890                         goto out;
891                 }
892         }
893
894 out:
895         dma_free_coherent(&p_hwfn->cdev->pdev->dev, 2 * size, p_virt, p_phys);
896         return rc;
897 }