Merge tag 'libata-5.9-2020-09-04' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / drivers / net / ethernet / neterion / vxge / vxge-config.c
1 /******************************************************************************
2  * This software may be used and distributed according to the terms of
3  * the GNU General Public License (GPL), incorporated herein by reference.
4  * Drivers based on or derived from this code fall under the GPL and must
5  * retain the authorship, copyright and license notice.  This file is not
6  * a complete program and may only be used when the entire operating
7  * system is licensed under the GPL.
8  * See the file COPYING in this distribution for more information.
9  *
10  * vxge-config.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11  *                Virtualized Server Adapter.
12  * Copyright(c) 2002-2010 Exar Corp.
13  ******************************************************************************/
14 #include <linux/vmalloc.h>
15 #include <linux/etherdevice.h>
16 #include <linux/io-64-nonatomic-lo-hi.h>
17 #include <linux/pci.h>
18 #include <linux/slab.h>
19
20 #include "vxge-traffic.h"
21 #include "vxge-config.h"
22 #include "vxge-main.h"
23
24 #define VXGE_HW_VPATH_STATS_PIO_READ(offset) {                          \
25         status = __vxge_hw_vpath_stats_access(vpath,                    \
26                                               VXGE_HW_STATS_OP_READ,    \
27                                               offset,                   \
28                                               &val64);                  \
29         if (status != VXGE_HW_OK)                                       \
30                 return status;                                          \
31 }
32
33 static void
34 vxge_hw_vpath_set_zero_rx_frm_len(struct vxge_hw_vpath_reg __iomem *vp_reg)
35 {
36         u64 val64;
37
38         val64 = readq(&vp_reg->rxmac_vcfg0);
39         val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
40         writeq(val64, &vp_reg->rxmac_vcfg0);
41         val64 = readq(&vp_reg->rxmac_vcfg0);
42 }
43
44 /*
45  * vxge_hw_vpath_wait_receive_idle - Wait for Rx to become idle
46  */
47 int vxge_hw_vpath_wait_receive_idle(struct __vxge_hw_device *hldev, u32 vp_id)
48 {
49         struct vxge_hw_vpath_reg __iomem *vp_reg;
50         struct __vxge_hw_virtualpath *vpath;
51         u64 val64, rxd_count, rxd_spat;
52         int count = 0, total_count = 0;
53
54         vpath = &hldev->virtual_paths[vp_id];
55         vp_reg = vpath->vp_reg;
56
57         vxge_hw_vpath_set_zero_rx_frm_len(vp_reg);
58
59         /* Check that the ring controller for this vpath has enough free RxDs
60          * to send frames to the host.  This is done by reading the
61          * PRC_RXD_DOORBELL_VPn register and comparing the read value to the
62          * RXD_SPAT value for the vpath.
63          */
64         val64 = readq(&vp_reg->prc_cfg6);
65         rxd_spat = VXGE_HW_PRC_CFG6_GET_RXD_SPAT(val64) + 1;
66         /* Use a factor of 2 when comparing rxd_count against rxd_spat for some
67          * leg room.
68          */
69         rxd_spat *= 2;
70
71         do {
72                 mdelay(1);
73
74                 rxd_count = readq(&vp_reg->prc_rxd_doorbell);
75
76                 /* Check that the ring controller for this vpath does
77                  * not have any frame in its pipeline.
78                  */
79                 val64 = readq(&vp_reg->frm_in_progress_cnt);
80                 if ((rxd_count <= rxd_spat) || (val64 > 0))
81                         count = 0;
82                 else
83                         count++;
84                 total_count++;
85         } while ((count < VXGE_HW_MIN_SUCCESSIVE_IDLE_COUNT) &&
86                         (total_count < VXGE_HW_MAX_POLLING_COUNT));
87
88         if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
89                 printk(KERN_ALERT "%s: Still Receiving traffic. Abort wait\n",
90                         __func__);
91
92         return total_count;
93 }
94
95 /* vxge_hw_device_wait_receive_idle - This function waits until all frames
96  * stored in the frame buffer for each vpath assigned to the given
97  * function (hldev) have been sent to the host.
98  */
99 void vxge_hw_device_wait_receive_idle(struct __vxge_hw_device *hldev)
100 {
101         int i, total_count = 0;
102
103         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
104                 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
105                         continue;
106
107                 total_count += vxge_hw_vpath_wait_receive_idle(hldev, i);
108                 if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
109                         break;
110         }
111 }
112
113 /*
114  * __vxge_hw_device_register_poll
115  * Will poll certain register for specified amount of time.
116  * Will poll until masked bit is not cleared.
117  */
118 static enum vxge_hw_status
119 __vxge_hw_device_register_poll(void __iomem *reg, u64 mask, u32 max_millis)
120 {
121         u64 val64;
122         u32 i = 0;
123
124         udelay(10);
125
126         do {
127                 val64 = readq(reg);
128                 if (!(val64 & mask))
129                         return VXGE_HW_OK;
130                 udelay(100);
131         } while (++i <= 9);
132
133         i = 0;
134         do {
135                 val64 = readq(reg);
136                 if (!(val64 & mask))
137                         return VXGE_HW_OK;
138                 mdelay(1);
139         } while (++i <= max_millis);
140
141         return VXGE_HW_FAIL;
142 }
143
144 static inline enum vxge_hw_status
145 __vxge_hw_pio_mem_write64(u64 val64, void __iomem *addr,
146                           u64 mask, u32 max_millis)
147 {
148         __vxge_hw_pio_mem_write32_lower((u32)vxge_bVALn(val64, 32, 32), addr);
149         wmb();
150         __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), addr);
151         wmb();
152
153         return __vxge_hw_device_register_poll(addr, mask, max_millis);
154 }
155
156 static enum vxge_hw_status
157 vxge_hw_vpath_fw_api(struct __vxge_hw_virtualpath *vpath, u32 action,
158                      u32 fw_memo, u32 offset, u64 *data0, u64 *data1,
159                      u64 *steer_ctrl)
160 {
161         struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
162         enum vxge_hw_status status;
163         u64 val64;
164         u32 retry = 0, max_retry = 3;
165
166         spin_lock(&vpath->lock);
167         if (!vpath->vp_open) {
168                 spin_unlock(&vpath->lock);
169                 max_retry = 100;
170         }
171
172         writeq(*data0, &vp_reg->rts_access_steer_data0);
173         writeq(*data1, &vp_reg->rts_access_steer_data1);
174         wmb();
175
176         val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
177                 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(fw_memo) |
178                 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset) |
179                 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
180                 *steer_ctrl;
181
182         status = __vxge_hw_pio_mem_write64(val64,
183                                            &vp_reg->rts_access_steer_ctrl,
184                                            VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
185                                            VXGE_HW_DEF_DEVICE_POLL_MILLIS);
186
187         /* The __vxge_hw_device_register_poll can udelay for a significant
188          * amount of time, blocking other process from the CPU.  If it delays
189          * for ~5secs, a NMI error can occur.  A way around this is to give up
190          * the processor via msleep, but this is not allowed is under lock.
191          * So, only allow it to sleep for ~4secs if open.  Otherwise, delay for
192          * 1sec and sleep for 10ms until the firmware operation has completed
193          * or timed-out.
194          */
195         while ((status != VXGE_HW_OK) && retry++ < max_retry) {
196                 if (!vpath->vp_open)
197                         msleep(20);
198                 status = __vxge_hw_device_register_poll(
199                                         &vp_reg->rts_access_steer_ctrl,
200                                         VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
201                                         VXGE_HW_DEF_DEVICE_POLL_MILLIS);
202         }
203
204         if (status != VXGE_HW_OK)
205                 goto out;
206
207         val64 = readq(&vp_reg->rts_access_steer_ctrl);
208         if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
209                 *data0 = readq(&vp_reg->rts_access_steer_data0);
210                 *data1 = readq(&vp_reg->rts_access_steer_data1);
211                 *steer_ctrl = val64;
212         } else
213                 status = VXGE_HW_FAIL;
214
215 out:
216         if (vpath->vp_open)
217                 spin_unlock(&vpath->lock);
218         return status;
219 }
220
221 enum vxge_hw_status
222 vxge_hw_upgrade_read_version(struct __vxge_hw_device *hldev, u32 *major,
223                              u32 *minor, u32 *build)
224 {
225         u64 data0 = 0, data1 = 0, steer_ctrl = 0;
226         struct __vxge_hw_virtualpath *vpath;
227         enum vxge_hw_status status;
228
229         vpath = &hldev->virtual_paths[hldev->first_vp_id];
230
231         status = vxge_hw_vpath_fw_api(vpath,
232                                       VXGE_HW_FW_UPGRADE_ACTION,
233                                       VXGE_HW_FW_UPGRADE_MEMO,
234                                       VXGE_HW_FW_UPGRADE_OFFSET_READ,
235                                       &data0, &data1, &steer_ctrl);
236         if (status != VXGE_HW_OK)
237                 return status;
238
239         *major = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
240         *minor = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
241         *build = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
242
243         return status;
244 }
245
246 enum vxge_hw_status vxge_hw_flash_fw(struct __vxge_hw_device *hldev)
247 {
248         u64 data0 = 0, data1 = 0, steer_ctrl = 0;
249         struct __vxge_hw_virtualpath *vpath;
250         enum vxge_hw_status status;
251         u32 ret;
252
253         vpath = &hldev->virtual_paths[hldev->first_vp_id];
254
255         status = vxge_hw_vpath_fw_api(vpath,
256                                       VXGE_HW_FW_UPGRADE_ACTION,
257                                       VXGE_HW_FW_UPGRADE_MEMO,
258                                       VXGE_HW_FW_UPGRADE_OFFSET_COMMIT,
259                                       &data0, &data1, &steer_ctrl);
260         if (status != VXGE_HW_OK) {
261                 vxge_debug_init(VXGE_ERR, "%s: FW upgrade failed", __func__);
262                 goto exit;
263         }
264
265         ret = VXGE_HW_RTS_ACCESS_STEER_CTRL_GET_ACTION(steer_ctrl) & 0x7F;
266         if (ret != 1) {
267                 vxge_debug_init(VXGE_ERR, "%s: FW commit failed with error %d",
268                                 __func__, ret);
269                 status = VXGE_HW_FAIL;
270         }
271
272 exit:
273         return status;
274 }
275
276 enum vxge_hw_status
277 vxge_update_fw_image(struct __vxge_hw_device *hldev, const u8 *fwdata, int size)
278 {
279         u64 data0 = 0, data1 = 0, steer_ctrl = 0;
280         struct __vxge_hw_virtualpath *vpath;
281         enum vxge_hw_status status;
282         int ret_code, sec_code;
283
284         vpath = &hldev->virtual_paths[hldev->first_vp_id];
285
286         /* send upgrade start command */
287         status = vxge_hw_vpath_fw_api(vpath,
288                                       VXGE_HW_FW_UPGRADE_ACTION,
289                                       VXGE_HW_FW_UPGRADE_MEMO,
290                                       VXGE_HW_FW_UPGRADE_OFFSET_START,
291                                       &data0, &data1, &steer_ctrl);
292         if (status != VXGE_HW_OK) {
293                 vxge_debug_init(VXGE_ERR, " %s: Upgrade start cmd failed",
294                                 __func__);
295                 return status;
296         }
297
298         /* Transfer fw image to adapter 16 bytes at a time */
299         for (; size > 0; size -= VXGE_HW_FW_UPGRADE_BLK_SIZE) {
300                 steer_ctrl = 0;
301
302                 /* The next 128bits of fwdata to be loaded onto the adapter */
303                 data0 = *((u64 *)fwdata);
304                 data1 = *((u64 *)fwdata + 1);
305
306                 status = vxge_hw_vpath_fw_api(vpath,
307                                               VXGE_HW_FW_UPGRADE_ACTION,
308                                               VXGE_HW_FW_UPGRADE_MEMO,
309                                               VXGE_HW_FW_UPGRADE_OFFSET_SEND,
310                                               &data0, &data1, &steer_ctrl);
311                 if (status != VXGE_HW_OK) {
312                         vxge_debug_init(VXGE_ERR, "%s: Upgrade send failed",
313                                         __func__);
314                         goto out;
315                 }
316
317                 ret_code = VXGE_HW_UPGRADE_GET_RET_ERR_CODE(data0);
318                 switch (ret_code) {
319                 case VXGE_HW_FW_UPGRADE_OK:
320                         /* All OK, send next 16 bytes. */
321                         break;
322                 case VXGE_FW_UPGRADE_BYTES2SKIP:
323                         /* skip bytes in the stream */
324                         fwdata += (data0 >> 8) & 0xFFFFFFFF;
325                         break;
326                 case VXGE_HW_FW_UPGRADE_DONE:
327                         goto out;
328                 case VXGE_HW_FW_UPGRADE_ERR:
329                         sec_code = VXGE_HW_UPGRADE_GET_SEC_ERR_CODE(data0);
330                         switch (sec_code) {
331                         case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_1:
332                         case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_7:
333                                 printk(KERN_ERR
334                                        "corrupted data from .ncf file\n");
335                                 break;
336                         case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_3:
337                         case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_4:
338                         case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_5:
339                         case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_6:
340                         case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_8:
341                                 printk(KERN_ERR "invalid .ncf file\n");
342                                 break;
343                         case VXGE_HW_FW_UPGRADE_ERR_BUFFER_OVERFLOW:
344                                 printk(KERN_ERR "buffer overflow\n");
345                                 break;
346                         case VXGE_HW_FW_UPGRADE_ERR_FAILED_TO_FLASH:
347                                 printk(KERN_ERR "failed to flash the image\n");
348                                 break;
349                         case VXGE_HW_FW_UPGRADE_ERR_GENERIC_ERROR_UNKNOWN:
350                                 printk(KERN_ERR
351                                        "generic error. Unknown error type\n");
352                                 break;
353                         default:
354                                 printk(KERN_ERR "Unknown error of type %d\n",
355                                        sec_code);
356                                 break;
357                         }
358                         status = VXGE_HW_FAIL;
359                         goto out;
360                 default:
361                         printk(KERN_ERR "Unknown FW error: %d\n", ret_code);
362                         status = VXGE_HW_FAIL;
363                         goto out;
364                 }
365                 /* point to next 16 bytes */
366                 fwdata += VXGE_HW_FW_UPGRADE_BLK_SIZE;
367         }
368 out:
369         return status;
370 }
371
372 enum vxge_hw_status
373 vxge_hw_vpath_eprom_img_ver_get(struct __vxge_hw_device *hldev,
374                                 struct eprom_image *img)
375 {
376         u64 data0 = 0, data1 = 0, steer_ctrl = 0;
377         struct __vxge_hw_virtualpath *vpath;
378         enum vxge_hw_status status;
379         int i;
380
381         vpath = &hldev->virtual_paths[hldev->first_vp_id];
382
383         for (i = 0; i < VXGE_HW_MAX_ROM_IMAGES; i++) {
384                 data0 = VXGE_HW_RTS_ACCESS_STEER_ROM_IMAGE_INDEX(i);
385                 data1 = steer_ctrl = 0;
386
387                 status = vxge_hw_vpath_fw_api(vpath,
388                         VXGE_HW_FW_API_GET_EPROM_REV,
389                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
390                         0, &data0, &data1, &steer_ctrl);
391                 if (status != VXGE_HW_OK)
392                         break;
393
394                 img[i].is_valid = VXGE_HW_GET_EPROM_IMAGE_VALID(data0);
395                 img[i].index = VXGE_HW_GET_EPROM_IMAGE_INDEX(data0);
396                 img[i].type = VXGE_HW_GET_EPROM_IMAGE_TYPE(data0);
397                 img[i].version = VXGE_HW_GET_EPROM_IMAGE_REV(data0);
398         }
399
400         return status;
401 }
402
403 /*
404  * __vxge_hw_channel_free - Free memory allocated for channel
405  * This function deallocates memory from the channel and various arrays
406  * in the channel
407  */
408 static void __vxge_hw_channel_free(struct __vxge_hw_channel *channel)
409 {
410         kfree(channel->work_arr);
411         kfree(channel->free_arr);
412         kfree(channel->reserve_arr);
413         kfree(channel->orig_arr);
414         kfree(channel);
415 }
416
417 /*
418  * __vxge_hw_channel_initialize - Initialize a channel
419  * This function initializes a channel by properly setting the
420  * various references
421  */
422 static enum vxge_hw_status
423 __vxge_hw_channel_initialize(struct __vxge_hw_channel *channel)
424 {
425         u32 i;
426         struct __vxge_hw_virtualpath *vpath;
427
428         vpath = channel->vph->vpath;
429
430         if ((channel->reserve_arr != NULL) && (channel->orig_arr != NULL)) {
431                 for (i = 0; i < channel->length; i++)
432                         channel->orig_arr[i] = channel->reserve_arr[i];
433         }
434
435         switch (channel->type) {
436         case VXGE_HW_CHANNEL_TYPE_FIFO:
437                 vpath->fifoh = (struct __vxge_hw_fifo *)channel;
438                 channel->stats = &((struct __vxge_hw_fifo *)
439                                 channel)->stats->common_stats;
440                 break;
441         case VXGE_HW_CHANNEL_TYPE_RING:
442                 vpath->ringh = (struct __vxge_hw_ring *)channel;
443                 channel->stats = &((struct __vxge_hw_ring *)
444                                 channel)->stats->common_stats;
445                 break;
446         default:
447                 break;
448         }
449
450         return VXGE_HW_OK;
451 }
452
453 /*
454  * __vxge_hw_channel_reset - Resets a channel
455  * This function resets a channel by properly setting the various references
456  */
457 static enum vxge_hw_status
458 __vxge_hw_channel_reset(struct __vxge_hw_channel *channel)
459 {
460         u32 i;
461
462         for (i = 0; i < channel->length; i++) {
463                 if (channel->reserve_arr != NULL)
464                         channel->reserve_arr[i] = channel->orig_arr[i];
465                 if (channel->free_arr != NULL)
466                         channel->free_arr[i] = NULL;
467                 if (channel->work_arr != NULL)
468                         channel->work_arr[i] = NULL;
469         }
470         channel->free_ptr = channel->length;
471         channel->reserve_ptr = channel->length;
472         channel->reserve_top = 0;
473         channel->post_index = 0;
474         channel->compl_index = 0;
475
476         return VXGE_HW_OK;
477 }
478
479 /*
480  * __vxge_hw_device_pci_e_init
481  * Initialize certain PCI/PCI-X configuration registers
482  * with recommended values. Save config space for future hw resets.
483  */
484 static void __vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev)
485 {
486         u16 cmd = 0;
487
488         /* Set the PErr Repconse bit and SERR in PCI command register. */
489         pci_read_config_word(hldev->pdev, PCI_COMMAND, &cmd);
490         cmd |= 0x140;
491         pci_write_config_word(hldev->pdev, PCI_COMMAND, cmd);
492
493         pci_save_state(hldev->pdev);
494 }
495
496 /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset
497  * in progress
498  * This routine checks the vpath reset in progress register is turned zero
499  */
500 static enum vxge_hw_status
501 __vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem *vpath_rst_in_prog)
502 {
503         enum vxge_hw_status status;
504         status = __vxge_hw_device_register_poll(vpath_rst_in_prog,
505                         VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff),
506                         VXGE_HW_DEF_DEVICE_POLL_MILLIS);
507         return status;
508 }
509
510 /*
511  * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion.
512  * Set the swapper bits appropriately for the lagacy section.
513  */
514 static enum vxge_hw_status
515 __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg)
516 {
517         u64 val64;
518         enum vxge_hw_status status = VXGE_HW_OK;
519
520         val64 = readq(&legacy_reg->toc_swapper_fb);
521
522         wmb();
523
524         switch (val64) {
525         case VXGE_HW_SWAPPER_INITIAL_VALUE:
526                 return status;
527
528         case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED:
529                 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
530                         &legacy_reg->pifm_rd_swap_en);
531                 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
532                         &legacy_reg->pifm_rd_flip_en);
533                 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
534                         &legacy_reg->pifm_wr_swap_en);
535                 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
536                         &legacy_reg->pifm_wr_flip_en);
537                 break;
538
539         case VXGE_HW_SWAPPER_BYTE_SWAPPED:
540                 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
541                         &legacy_reg->pifm_rd_swap_en);
542                 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
543                         &legacy_reg->pifm_wr_swap_en);
544                 break;
545
546         case VXGE_HW_SWAPPER_BIT_FLIPPED:
547                 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
548                         &legacy_reg->pifm_rd_flip_en);
549                 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
550                         &legacy_reg->pifm_wr_flip_en);
551                 break;
552         }
553
554         wmb();
555
556         val64 = readq(&legacy_reg->toc_swapper_fb);
557
558         if (val64 != VXGE_HW_SWAPPER_INITIAL_VALUE)
559                 status = VXGE_HW_ERR_SWAPPER_CTRL;
560
561         return status;
562 }
563
564 /*
565  * __vxge_hw_device_toc_get
566  * This routine sets the swapper and reads the toc pointer and returns the
567  * memory mapped address of the toc
568  */
569 static struct vxge_hw_toc_reg __iomem *
570 __vxge_hw_device_toc_get(void __iomem *bar0)
571 {
572         u64 val64;
573         struct vxge_hw_toc_reg __iomem *toc = NULL;
574         enum vxge_hw_status status;
575
576         struct vxge_hw_legacy_reg __iomem *legacy_reg =
577                 (struct vxge_hw_legacy_reg __iomem *)bar0;
578
579         status = __vxge_hw_legacy_swapper_set(legacy_reg);
580         if (status != VXGE_HW_OK)
581                 goto exit;
582
583         val64 = readq(&legacy_reg->toc_first_pointer);
584         toc = bar0 + val64;
585 exit:
586         return toc;
587 }
588
589 /*
590  * __vxge_hw_device_reg_addr_get
591  * This routine sets the swapper and reads the toc pointer and initializes the
592  * register location pointers in the device object. It waits until the ric is
593  * completed initializing registers.
594  */
595 static enum vxge_hw_status
596 __vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev)
597 {
598         u64 val64;
599         u32 i;
600         enum vxge_hw_status status = VXGE_HW_OK;
601
602         hldev->legacy_reg = hldev->bar0;
603
604         hldev->toc_reg = __vxge_hw_device_toc_get(hldev->bar0);
605         if (hldev->toc_reg  == NULL) {
606                 status = VXGE_HW_FAIL;
607                 goto exit;
608         }
609
610         val64 = readq(&hldev->toc_reg->toc_common_pointer);
611         hldev->common_reg = hldev->bar0 + val64;
612
613         val64 = readq(&hldev->toc_reg->toc_mrpcim_pointer);
614         hldev->mrpcim_reg = hldev->bar0 + val64;
615
616         for (i = 0; i < VXGE_HW_TITAN_SRPCIM_REG_SPACES; i++) {
617                 val64 = readq(&hldev->toc_reg->toc_srpcim_pointer[i]);
618                 hldev->srpcim_reg[i] = hldev->bar0 + val64;
619         }
620
621         for (i = 0; i < VXGE_HW_TITAN_VPMGMT_REG_SPACES; i++) {
622                 val64 = readq(&hldev->toc_reg->toc_vpmgmt_pointer[i]);
623                 hldev->vpmgmt_reg[i] = hldev->bar0 + val64;
624         }
625
626         for (i = 0; i < VXGE_HW_TITAN_VPATH_REG_SPACES; i++) {
627                 val64 = readq(&hldev->toc_reg->toc_vpath_pointer[i]);
628                 hldev->vpath_reg[i] = hldev->bar0 + val64;
629         }
630
631         val64 = readq(&hldev->toc_reg->toc_kdfc);
632
633         switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64)) {
634         case 0:
635                 hldev->kdfc = hldev->bar0 + VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64) ;
636                 break;
637         default:
638                 break;
639         }
640
641         status = __vxge_hw_device_vpath_reset_in_prog_check(
642                         (u64 __iomem *)&hldev->common_reg->vpath_rst_in_prog);
643 exit:
644         return status;
645 }
646
647 /*
648  * __vxge_hw_device_access_rights_get: Get Access Rights of the driver
649  * This routine returns the Access Rights of the driver
650  */
651 static u32
652 __vxge_hw_device_access_rights_get(u32 host_type, u32 func_id)
653 {
654         u32 access_rights = VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH;
655
656         switch (host_type) {
657         case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION:
658                 if (func_id == 0) {
659                         access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
660                                         VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
661                 }
662                 break;
663         case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION:
664                 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
665                                 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
666                 break;
667         case VXGE_HW_NO_MR_SR_VH0_FUNCTION0:
668                 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
669                                 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
670                 break;
671         case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION:
672         case VXGE_HW_SR_VH_VIRTUAL_FUNCTION:
673         case VXGE_HW_MR_SR_VH0_INVALID_CONFIG:
674                 break;
675         case VXGE_HW_SR_VH_FUNCTION0:
676         case VXGE_HW_VH_NORMAL_FUNCTION:
677                 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
678                 break;
679         }
680
681         return access_rights;
682 }
683 /*
684  * __vxge_hw_device_is_privilaged
685  * This routine checks if the device function is privilaged or not
686  */
687
688 enum vxge_hw_status
689 __vxge_hw_device_is_privilaged(u32 host_type, u32 func_id)
690 {
691         if (__vxge_hw_device_access_rights_get(host_type,
692                 func_id) &
693                 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)
694                 return VXGE_HW_OK;
695         else
696                 return VXGE_HW_ERR_PRIVILEGED_OPERATION;
697 }
698
699 /*
700  * __vxge_hw_vpath_func_id_get - Get the function id of the vpath.
701  * Returns the function number of the vpath.
702  */
703 static u32
704 __vxge_hw_vpath_func_id_get(struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg)
705 {
706         u64 val64;
707
708         val64 = readq(&vpmgmt_reg->vpath_to_func_map_cfg1);
709
710         return
711          (u32)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64);
712 }
713
714 /*
715  * __vxge_hw_device_host_info_get
716  * This routine returns the host type assignments
717  */
718 static void __vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev)
719 {
720         u64 val64;
721         u32 i;
722
723         val64 = readq(&hldev->common_reg->host_type_assignments);
724
725         hldev->host_type =
726            (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
727
728         hldev->vpath_assignments = readq(&hldev->common_reg->vpath_assignments);
729
730         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
731                 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
732                         continue;
733
734                 hldev->func_id =
735                         __vxge_hw_vpath_func_id_get(hldev->vpmgmt_reg[i]);
736
737                 hldev->access_rights = __vxge_hw_device_access_rights_get(
738                         hldev->host_type, hldev->func_id);
739
740                 hldev->virtual_paths[i].vp_open = VXGE_HW_VP_NOT_OPEN;
741                 hldev->virtual_paths[i].vp_reg = hldev->vpath_reg[i];
742
743                 hldev->first_vp_id = i;
744                 break;
745         }
746 }
747
748 /*
749  * __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as
750  * link width and signalling rate.
751  */
752 static enum vxge_hw_status
753 __vxge_hw_verify_pci_e_info(struct __vxge_hw_device *hldev)
754 {
755         struct pci_dev *dev = hldev->pdev;
756         u16 lnk;
757
758         /* Get the negotiated link width and speed from PCI config space */
759         pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnk);
760
761         if ((lnk & PCI_EXP_LNKSTA_CLS) != 1)
762                 return VXGE_HW_ERR_INVALID_PCI_INFO;
763
764         switch ((lnk & PCI_EXP_LNKSTA_NLW) >> 4) {
765         case PCIE_LNK_WIDTH_RESRV:
766         case PCIE_LNK_X1:
767         case PCIE_LNK_X2:
768         case PCIE_LNK_X4:
769         case PCIE_LNK_X8:
770                 break;
771         default:
772                 return VXGE_HW_ERR_INVALID_PCI_INFO;
773         }
774
775         return VXGE_HW_OK;
776 }
777
778 /*
779  * __vxge_hw_device_initialize
780  * Initialize Titan-V hardware.
781  */
782 static enum vxge_hw_status
783 __vxge_hw_device_initialize(struct __vxge_hw_device *hldev)
784 {
785         enum vxge_hw_status status = VXGE_HW_OK;
786
787         if (VXGE_HW_OK == __vxge_hw_device_is_privilaged(hldev->host_type,
788                                 hldev->func_id)) {
789                 /* Validate the pci-e link width and speed */
790                 status = __vxge_hw_verify_pci_e_info(hldev);
791                 if (status != VXGE_HW_OK)
792                         goto exit;
793         }
794
795 exit:
796         return status;
797 }
798
799 /*
800  * __vxge_hw_vpath_fw_ver_get - Get the fw version
801  * Returns FW Version
802  */
803 static enum vxge_hw_status
804 __vxge_hw_vpath_fw_ver_get(struct __vxge_hw_virtualpath *vpath,
805                            struct vxge_hw_device_hw_info *hw_info)
806 {
807         struct vxge_hw_device_version *fw_version = &hw_info->fw_version;
808         struct vxge_hw_device_date *fw_date = &hw_info->fw_date;
809         struct vxge_hw_device_version *flash_version = &hw_info->flash_version;
810         struct vxge_hw_device_date *flash_date = &hw_info->flash_date;
811         u64 data0 = 0, data1 = 0, steer_ctrl = 0;
812         enum vxge_hw_status status;
813
814         status = vxge_hw_vpath_fw_api(vpath,
815                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
816                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
817                         0, &data0, &data1, &steer_ctrl);
818         if (status != VXGE_HW_OK)
819                 goto exit;
820
821         fw_date->day =
822             (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY(data0);
823         fw_date->month =
824             (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH(data0);
825         fw_date->year =
826             (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR(data0);
827
828         snprintf(fw_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
829                  fw_date->month, fw_date->day, fw_date->year);
830
831         fw_version->major =
832             (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
833         fw_version->minor =
834             (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
835         fw_version->build =
836             (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
837
838         snprintf(fw_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
839                  fw_version->major, fw_version->minor, fw_version->build);
840
841         flash_date->day =
842             (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data1);
843         flash_date->month =
844             (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data1);
845         flash_date->year =
846             (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data1);
847
848         snprintf(flash_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
849                  flash_date->month, flash_date->day, flash_date->year);
850
851         flash_version->major =
852             (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data1);
853         flash_version->minor =
854             (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data1);
855         flash_version->build =
856             (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data1);
857
858         snprintf(flash_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
859                  flash_version->major, flash_version->minor,
860                  flash_version->build);
861
862 exit:
863         return status;
864 }
865
866 /*
867  * __vxge_hw_vpath_card_info_get - Get the serial numbers,
868  * part number and product description.
869  */
870 static enum vxge_hw_status
871 __vxge_hw_vpath_card_info_get(struct __vxge_hw_virtualpath *vpath,
872                               struct vxge_hw_device_hw_info *hw_info)
873 {
874         enum vxge_hw_status status;
875         u64 data0, data1 = 0, steer_ctrl = 0;
876         u8 *serial_number = hw_info->serial_number;
877         u8 *part_number = hw_info->part_number;
878         u8 *product_desc = hw_info->product_desc;
879         u32 i, j = 0;
880
881         data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER;
882
883         status = vxge_hw_vpath_fw_api(vpath,
884                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
885                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
886                         0, &data0, &data1, &steer_ctrl);
887         if (status != VXGE_HW_OK)
888                 return status;
889
890         ((u64 *)serial_number)[0] = be64_to_cpu(data0);
891         ((u64 *)serial_number)[1] = be64_to_cpu(data1);
892
893         data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER;
894         data1 = steer_ctrl = 0;
895
896         status = vxge_hw_vpath_fw_api(vpath,
897                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
898                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
899                         0, &data0, &data1, &steer_ctrl);
900         if (status != VXGE_HW_OK)
901                 return status;
902
903         ((u64 *)part_number)[0] = be64_to_cpu(data0);
904         ((u64 *)part_number)[1] = be64_to_cpu(data1);
905
906         for (i = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0;
907              i <= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3; i++) {
908                 data0 = i;
909                 data1 = steer_ctrl = 0;
910
911                 status = vxge_hw_vpath_fw_api(vpath,
912                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
913                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
914                         0, &data0, &data1, &steer_ctrl);
915                 if (status != VXGE_HW_OK)
916                         return status;
917
918                 ((u64 *)product_desc)[j++] = be64_to_cpu(data0);
919                 ((u64 *)product_desc)[j++] = be64_to_cpu(data1);
920         }
921
922         return status;
923 }
924
925 /*
926  * __vxge_hw_vpath_pci_func_mode_get - Get the pci mode
927  * Returns pci function mode
928  */
929 static enum vxge_hw_status
930 __vxge_hw_vpath_pci_func_mode_get(struct __vxge_hw_virtualpath *vpath,
931                                   struct vxge_hw_device_hw_info *hw_info)
932 {
933         u64 data0, data1 = 0, steer_ctrl = 0;
934         enum vxge_hw_status status;
935
936         data0 = 0;
937
938         status = vxge_hw_vpath_fw_api(vpath,
939                         VXGE_HW_FW_API_GET_FUNC_MODE,
940                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
941                         0, &data0, &data1, &steer_ctrl);
942         if (status != VXGE_HW_OK)
943                 return status;
944
945         hw_info->function_mode = VXGE_HW_GET_FUNC_MODE_VAL(data0);
946         return status;
947 }
948
949 /*
950  * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath
951  *               from MAC address table.
952  */
953 static enum vxge_hw_status
954 __vxge_hw_vpath_addr_get(struct __vxge_hw_virtualpath *vpath,
955                          u8 *macaddr, u8 *macaddr_mask)
956 {
957         u64 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
958             data0 = 0, data1 = 0, steer_ctrl = 0;
959         enum vxge_hw_status status;
960         int i;
961
962         do {
963                 status = vxge_hw_vpath_fw_api(vpath, action,
964                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
965                         0, &data0, &data1, &steer_ctrl);
966                 if (status != VXGE_HW_OK)
967                         goto exit;
968
969                 data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data0);
970                 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(
971                                                                         data1);
972
973                 for (i = ETH_ALEN; i > 0; i--) {
974                         macaddr[i - 1] = (u8) (data0 & 0xFF);
975                         data0 >>= 8;
976
977                         macaddr_mask[i - 1] = (u8) (data1 & 0xFF);
978                         data1 >>= 8;
979                 }
980
981                 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY;
982                 data0 = 0, data1 = 0, steer_ctrl = 0;
983
984         } while (!is_valid_ether_addr(macaddr));
985 exit:
986         return status;
987 }
988
989 /**
990  * vxge_hw_device_hw_info_get - Get the hw information
991  * Returns the vpath mask that has the bits set for each vpath allocated
992  * for the driver, FW version information, and the first mac address for
993  * each vpath
994  */
995 enum vxge_hw_status
996 vxge_hw_device_hw_info_get(void __iomem *bar0,
997                            struct vxge_hw_device_hw_info *hw_info)
998 {
999         u32 i;
1000         u64 val64;
1001         struct vxge_hw_toc_reg __iomem *toc;
1002         struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg;
1003         struct vxge_hw_common_reg __iomem *common_reg;
1004         struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
1005         enum vxge_hw_status status;
1006         struct __vxge_hw_virtualpath vpath;
1007
1008         memset(hw_info, 0, sizeof(struct vxge_hw_device_hw_info));
1009
1010         toc = __vxge_hw_device_toc_get(bar0);
1011         if (toc == NULL) {
1012                 status = VXGE_HW_ERR_CRITICAL;
1013                 goto exit;
1014         }
1015
1016         val64 = readq(&toc->toc_common_pointer);
1017         common_reg = bar0 + val64;
1018
1019         status = __vxge_hw_device_vpath_reset_in_prog_check(
1020                 (u64 __iomem *)&common_reg->vpath_rst_in_prog);
1021         if (status != VXGE_HW_OK)
1022                 goto exit;
1023
1024         hw_info->vpath_mask = readq(&common_reg->vpath_assignments);
1025
1026         val64 = readq(&common_reg->host_type_assignments);
1027
1028         hw_info->host_type =
1029            (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
1030
1031         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1032                 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
1033                         continue;
1034
1035                 val64 = readq(&toc->toc_vpmgmt_pointer[i]);
1036
1037                 vpmgmt_reg = bar0 + val64;
1038
1039                 hw_info->func_id = __vxge_hw_vpath_func_id_get(vpmgmt_reg);
1040                 if (__vxge_hw_device_access_rights_get(hw_info->host_type,
1041                         hw_info->func_id) &
1042                         VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM) {
1043
1044                         val64 = readq(&toc->toc_mrpcim_pointer);
1045
1046                         mrpcim_reg = bar0 + val64;
1047
1048                         writeq(0, &mrpcim_reg->xgmac_gen_fw_memo_mask);
1049                         wmb();
1050                 }
1051
1052                 val64 = readq(&toc->toc_vpath_pointer[i]);
1053
1054                 spin_lock_init(&vpath.lock);
1055                 vpath.vp_reg = bar0 + val64;
1056                 vpath.vp_open = VXGE_HW_VP_NOT_OPEN;
1057
1058                 status = __vxge_hw_vpath_pci_func_mode_get(&vpath, hw_info);
1059                 if (status != VXGE_HW_OK)
1060                         goto exit;
1061
1062                 status = __vxge_hw_vpath_fw_ver_get(&vpath, hw_info);
1063                 if (status != VXGE_HW_OK)
1064                         goto exit;
1065
1066                 status = __vxge_hw_vpath_card_info_get(&vpath, hw_info);
1067                 if (status != VXGE_HW_OK)
1068                         goto exit;
1069
1070                 break;
1071         }
1072
1073         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1074                 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
1075                         continue;
1076
1077                 val64 = readq(&toc->toc_vpath_pointer[i]);
1078                 vpath.vp_reg = bar0 + val64;
1079                 vpath.vp_open = VXGE_HW_VP_NOT_OPEN;
1080
1081                 status =  __vxge_hw_vpath_addr_get(&vpath,
1082                                 hw_info->mac_addrs[i],
1083                                 hw_info->mac_addr_masks[i]);
1084                 if (status != VXGE_HW_OK)
1085                         goto exit;
1086         }
1087 exit:
1088         return status;
1089 }
1090
1091 /*
1092  * __vxge_hw_blockpool_destroy - Deallocates the block pool
1093  */
1094 static void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool)
1095 {
1096         struct __vxge_hw_device *hldev;
1097         struct list_head *p, *n;
1098
1099         if (!blockpool)
1100                 return;
1101
1102         hldev = blockpool->hldev;
1103
1104         list_for_each_safe(p, n, &blockpool->free_block_list) {
1105                 dma_unmap_single(&hldev->pdev->dev,
1106                                  ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
1107                                  ((struct __vxge_hw_blockpool_entry *)p)->length,
1108                                  DMA_BIDIRECTIONAL);
1109
1110                 vxge_os_dma_free(hldev->pdev,
1111                         ((struct __vxge_hw_blockpool_entry *)p)->memblock,
1112                         &((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
1113
1114                 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
1115                 kfree(p);
1116                 blockpool->pool_size--;
1117         }
1118
1119         list_for_each_safe(p, n, &blockpool->free_entry_list) {
1120                 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
1121                 kfree((void *)p);
1122         }
1123
1124         return;
1125 }
1126
1127 /*
1128  * __vxge_hw_blockpool_create - Create block pool
1129  */
1130 static enum vxge_hw_status
1131 __vxge_hw_blockpool_create(struct __vxge_hw_device *hldev,
1132                            struct __vxge_hw_blockpool *blockpool,
1133                            u32 pool_size,
1134                            u32 pool_max)
1135 {
1136         u32 i;
1137         struct __vxge_hw_blockpool_entry *entry = NULL;
1138         void *memblock;
1139         dma_addr_t dma_addr;
1140         struct pci_dev *dma_handle;
1141         struct pci_dev *acc_handle;
1142         enum vxge_hw_status status = VXGE_HW_OK;
1143
1144         if (blockpool == NULL) {
1145                 status = VXGE_HW_FAIL;
1146                 goto blockpool_create_exit;
1147         }
1148
1149         blockpool->hldev = hldev;
1150         blockpool->block_size = VXGE_HW_BLOCK_SIZE;
1151         blockpool->pool_size = 0;
1152         blockpool->pool_max = pool_max;
1153         blockpool->req_out = 0;
1154
1155         INIT_LIST_HEAD(&blockpool->free_block_list);
1156         INIT_LIST_HEAD(&blockpool->free_entry_list);
1157
1158         for (i = 0; i < pool_size + pool_max; i++) {
1159                 entry = kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
1160                                 GFP_KERNEL);
1161                 if (entry == NULL) {
1162                         __vxge_hw_blockpool_destroy(blockpool);
1163                         status = VXGE_HW_ERR_OUT_OF_MEMORY;
1164                         goto blockpool_create_exit;
1165                 }
1166                 list_add(&entry->item, &blockpool->free_entry_list);
1167         }
1168
1169         for (i = 0; i < pool_size; i++) {
1170                 memblock = vxge_os_dma_malloc(
1171                                 hldev->pdev,
1172                                 VXGE_HW_BLOCK_SIZE,
1173                                 &dma_handle,
1174                                 &acc_handle);
1175                 if (memblock == NULL) {
1176                         __vxge_hw_blockpool_destroy(blockpool);
1177                         status = VXGE_HW_ERR_OUT_OF_MEMORY;
1178                         goto blockpool_create_exit;
1179                 }
1180
1181                 dma_addr = dma_map_single(&hldev->pdev->dev, memblock,
1182                                           VXGE_HW_BLOCK_SIZE,
1183                                           DMA_BIDIRECTIONAL);
1184                 if (unlikely(dma_mapping_error(&hldev->pdev->dev, dma_addr))) {
1185                         vxge_os_dma_free(hldev->pdev, memblock, &acc_handle);
1186                         __vxge_hw_blockpool_destroy(blockpool);
1187                         status = VXGE_HW_ERR_OUT_OF_MEMORY;
1188                         goto blockpool_create_exit;
1189                 }
1190
1191                 if (!list_empty(&blockpool->free_entry_list))
1192                         entry = (struct __vxge_hw_blockpool_entry *)
1193                                 list_first_entry(&blockpool->free_entry_list,
1194                                         struct __vxge_hw_blockpool_entry,
1195                                         item);
1196
1197                 if (entry == NULL)
1198                         entry =
1199                             kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
1200                                         GFP_KERNEL);
1201                 if (entry != NULL) {
1202                         list_del(&entry->item);
1203                         entry->length = VXGE_HW_BLOCK_SIZE;
1204                         entry->memblock = memblock;
1205                         entry->dma_addr = dma_addr;
1206                         entry->acc_handle = acc_handle;
1207                         entry->dma_handle = dma_handle;
1208                         list_add(&entry->item,
1209                                           &blockpool->free_block_list);
1210                         blockpool->pool_size++;
1211                 } else {
1212                         __vxge_hw_blockpool_destroy(blockpool);
1213                         status = VXGE_HW_ERR_OUT_OF_MEMORY;
1214                         goto blockpool_create_exit;
1215                 }
1216         }
1217
1218 blockpool_create_exit:
1219         return status;
1220 }
1221
1222 /*
1223  * __vxge_hw_device_fifo_config_check - Check fifo configuration.
1224  * Check the fifo configuration
1225  */
1226 static enum vxge_hw_status
1227 __vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config)
1228 {
1229         if ((fifo_config->fifo_blocks < VXGE_HW_MIN_FIFO_BLOCKS) ||
1230             (fifo_config->fifo_blocks > VXGE_HW_MAX_FIFO_BLOCKS))
1231                 return VXGE_HW_BADCFG_FIFO_BLOCKS;
1232
1233         return VXGE_HW_OK;
1234 }
1235
1236 /*
1237  * __vxge_hw_device_vpath_config_check - Check vpath configuration.
1238  * Check the vpath configuration
1239  */
1240 static enum vxge_hw_status
1241 __vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config *vp_config)
1242 {
1243         enum vxge_hw_status status;
1244
1245         if ((vp_config->min_bandwidth < VXGE_HW_VPATH_BANDWIDTH_MIN) ||
1246             (vp_config->min_bandwidth > VXGE_HW_VPATH_BANDWIDTH_MAX))
1247                 return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH;
1248
1249         status = __vxge_hw_device_fifo_config_check(&vp_config->fifo);
1250         if (status != VXGE_HW_OK)
1251                 return status;
1252
1253         if ((vp_config->mtu != VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) &&
1254                 ((vp_config->mtu < VXGE_HW_VPATH_MIN_INITIAL_MTU) ||
1255                 (vp_config->mtu > VXGE_HW_VPATH_MAX_INITIAL_MTU)))
1256                 return VXGE_HW_BADCFG_VPATH_MTU;
1257
1258         if ((vp_config->rpa_strip_vlan_tag !=
1259                 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) &&
1260                 (vp_config->rpa_strip_vlan_tag !=
1261                 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE) &&
1262                 (vp_config->rpa_strip_vlan_tag !=
1263                 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE))
1264                 return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG;
1265
1266         return VXGE_HW_OK;
1267 }
1268
1269 /*
1270  * __vxge_hw_device_config_check - Check device configuration.
1271  * Check the device configuration
1272  */
1273 static enum vxge_hw_status
1274 __vxge_hw_device_config_check(struct vxge_hw_device_config *new_config)
1275 {
1276         u32 i;
1277         enum vxge_hw_status status;
1278
1279         if ((new_config->intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
1280             (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
1281             (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
1282             (new_config->intr_mode != VXGE_HW_INTR_MODE_DEF))
1283                 return VXGE_HW_BADCFG_INTR_MODE;
1284
1285         if ((new_config->rts_mac_en != VXGE_HW_RTS_MAC_DISABLE) &&
1286             (new_config->rts_mac_en != VXGE_HW_RTS_MAC_ENABLE))
1287                 return VXGE_HW_BADCFG_RTS_MAC_EN;
1288
1289         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1290                 status = __vxge_hw_device_vpath_config_check(
1291                                 &new_config->vp_config[i]);
1292                 if (status != VXGE_HW_OK)
1293                         return status;
1294         }
1295
1296         return VXGE_HW_OK;
1297 }
1298
1299 /*
1300  * vxge_hw_device_initialize - Initialize Titan device.
1301  * Initialize Titan device. Note that all the arguments of this public API
1302  * are 'IN', including @hldev. Driver cooperates with
1303  * OS to find new Titan device, locate its PCI and memory spaces.
1304  *
1305  * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW
1306  * to enable the latter to perform Titan hardware initialization.
1307  */
1308 enum vxge_hw_status
1309 vxge_hw_device_initialize(
1310         struct __vxge_hw_device **devh,
1311         struct vxge_hw_device_attr *attr,
1312         struct vxge_hw_device_config *device_config)
1313 {
1314         u32 i;
1315         u32 nblocks = 0;
1316         struct __vxge_hw_device *hldev = NULL;
1317         enum vxge_hw_status status = VXGE_HW_OK;
1318
1319         status = __vxge_hw_device_config_check(device_config);
1320         if (status != VXGE_HW_OK)
1321                 goto exit;
1322
1323         hldev = vzalloc(sizeof(struct __vxge_hw_device));
1324         if (hldev == NULL) {
1325                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1326                 goto exit;
1327         }
1328
1329         hldev->magic = VXGE_HW_DEVICE_MAGIC;
1330
1331         vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_ALL);
1332
1333         /* apply config */
1334         memcpy(&hldev->config, device_config,
1335                 sizeof(struct vxge_hw_device_config));
1336
1337         hldev->bar0 = attr->bar0;
1338         hldev->pdev = attr->pdev;
1339
1340         hldev->uld_callbacks = attr->uld_callbacks;
1341
1342         __vxge_hw_device_pci_e_init(hldev);
1343
1344         status = __vxge_hw_device_reg_addr_get(hldev);
1345         if (status != VXGE_HW_OK) {
1346                 vfree(hldev);
1347                 goto exit;
1348         }
1349
1350         __vxge_hw_device_host_info_get(hldev);
1351
1352         /* Incrementing for stats blocks */
1353         nblocks++;
1354
1355         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1356                 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
1357                         continue;
1358
1359                 if (device_config->vp_config[i].ring.enable ==
1360                         VXGE_HW_RING_ENABLE)
1361                         nblocks += device_config->vp_config[i].ring.ring_blocks;
1362
1363                 if (device_config->vp_config[i].fifo.enable ==
1364                         VXGE_HW_FIFO_ENABLE)
1365                         nblocks += device_config->vp_config[i].fifo.fifo_blocks;
1366                 nblocks++;
1367         }
1368
1369         if (__vxge_hw_blockpool_create(hldev,
1370                 &hldev->block_pool,
1371                 device_config->dma_blockpool_initial + nblocks,
1372                 device_config->dma_blockpool_max + nblocks) != VXGE_HW_OK) {
1373
1374                 vxge_hw_device_terminate(hldev);
1375                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1376                 goto exit;
1377         }
1378
1379         status = __vxge_hw_device_initialize(hldev);
1380         if (status != VXGE_HW_OK) {
1381                 vxge_hw_device_terminate(hldev);
1382                 goto exit;
1383         }
1384
1385         *devh = hldev;
1386 exit:
1387         return status;
1388 }
1389
1390 /*
1391  * vxge_hw_device_terminate - Terminate Titan device.
1392  * Terminate HW device.
1393  */
1394 void
1395 vxge_hw_device_terminate(struct __vxge_hw_device *hldev)
1396 {
1397         vxge_assert(hldev->magic == VXGE_HW_DEVICE_MAGIC);
1398
1399         hldev->magic = VXGE_HW_DEVICE_DEAD;
1400         __vxge_hw_blockpool_destroy(&hldev->block_pool);
1401         vfree(hldev);
1402 }
1403
1404 /*
1405  * __vxge_hw_vpath_stats_access - Get the statistics from the given location
1406  *                           and offset and perform an operation
1407  */
1408 static enum vxge_hw_status
1409 __vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath *vpath,
1410                              u32 operation, u32 offset, u64 *stat)
1411 {
1412         u64 val64;
1413         enum vxge_hw_status status = VXGE_HW_OK;
1414         struct vxge_hw_vpath_reg __iomem *vp_reg;
1415
1416         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1417                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1418                 goto vpath_stats_access_exit;
1419         }
1420
1421         vp_reg = vpath->vp_reg;
1422
1423         val64 =  VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation) |
1424                  VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE |
1425                  VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset);
1426
1427         status = __vxge_hw_pio_mem_write64(val64,
1428                                 &vp_reg->xmac_stats_access_cmd,
1429                                 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE,
1430                                 vpath->hldev->config.device_poll_millis);
1431         if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
1432                 *stat = readq(&vp_reg->xmac_stats_access_data);
1433         else
1434                 *stat = 0;
1435
1436 vpath_stats_access_exit:
1437         return status;
1438 }
1439
1440 /*
1441  * __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath
1442  */
1443 static enum vxge_hw_status
1444 __vxge_hw_vpath_xmac_tx_stats_get(struct __vxge_hw_virtualpath *vpath,
1445                         struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats)
1446 {
1447         u64 *val64;
1448         int i;
1449         u32 offset = VXGE_HW_STATS_VPATH_TX_OFFSET;
1450         enum vxge_hw_status status = VXGE_HW_OK;
1451
1452         val64 = (u64 *)vpath_tx_stats;
1453
1454         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1455                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1456                 goto exit;
1457         }
1458
1459         for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_tx_stats) / 8; i++) {
1460                 status = __vxge_hw_vpath_stats_access(vpath,
1461                                         VXGE_HW_STATS_OP_READ,
1462                                         offset, val64);
1463                 if (status != VXGE_HW_OK)
1464                         goto exit;
1465                 offset++;
1466                 val64++;
1467         }
1468 exit:
1469         return status;
1470 }
1471
1472 /*
1473  * __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath
1474  */
1475 static enum vxge_hw_status
1476 __vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath *vpath,
1477                         struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats)
1478 {
1479         u64 *val64;
1480         enum vxge_hw_status status = VXGE_HW_OK;
1481         int i;
1482         u32 offset = VXGE_HW_STATS_VPATH_RX_OFFSET;
1483         val64 = (u64 *) vpath_rx_stats;
1484
1485         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1486                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1487                 goto exit;
1488         }
1489         for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_rx_stats) / 8; i++) {
1490                 status = __vxge_hw_vpath_stats_access(vpath,
1491                                         VXGE_HW_STATS_OP_READ,
1492                                         offset >> 3, val64);
1493                 if (status != VXGE_HW_OK)
1494                         goto exit;
1495
1496                 offset += 8;
1497                 val64++;
1498         }
1499 exit:
1500         return status;
1501 }
1502
1503 /*
1504  * __vxge_hw_vpath_stats_get - Get the vpath hw statistics.
1505  */
1506 static enum vxge_hw_status
1507 __vxge_hw_vpath_stats_get(struct __vxge_hw_virtualpath *vpath,
1508                           struct vxge_hw_vpath_stats_hw_info *hw_stats)
1509 {
1510         u64 val64;
1511         enum vxge_hw_status status = VXGE_HW_OK;
1512         struct vxge_hw_vpath_reg __iomem *vp_reg;
1513
1514         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1515                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1516                 goto exit;
1517         }
1518         vp_reg = vpath->vp_reg;
1519
1520         val64 = readq(&vp_reg->vpath_debug_stats0);
1521         hw_stats->ini_num_mwr_sent =
1522                 (u32)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64);
1523
1524         val64 = readq(&vp_reg->vpath_debug_stats1);
1525         hw_stats->ini_num_mrd_sent =
1526                 (u32)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64);
1527
1528         val64 = readq(&vp_reg->vpath_debug_stats2);
1529         hw_stats->ini_num_cpl_rcvd =
1530                 (u32)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64);
1531
1532         val64 = readq(&vp_reg->vpath_debug_stats3);
1533         hw_stats->ini_num_mwr_byte_sent =
1534                 VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64);
1535
1536         val64 = readq(&vp_reg->vpath_debug_stats4);
1537         hw_stats->ini_num_cpl_byte_rcvd =
1538                 VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64);
1539
1540         val64 = readq(&vp_reg->vpath_debug_stats5);
1541         hw_stats->wrcrdtarb_xoff =
1542                 (u32)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64);
1543
1544         val64 = readq(&vp_reg->vpath_debug_stats6);
1545         hw_stats->rdcrdtarb_xoff =
1546                 (u32)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64);
1547
1548         val64 = readq(&vp_reg->vpath_genstats_count01);
1549         hw_stats->vpath_genstats_count0 =
1550         (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0(
1551                 val64);
1552
1553         val64 = readq(&vp_reg->vpath_genstats_count01);
1554         hw_stats->vpath_genstats_count1 =
1555         (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1(
1556                 val64);
1557
1558         val64 = readq(&vp_reg->vpath_genstats_count23);
1559         hw_stats->vpath_genstats_count2 =
1560         (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2(
1561                 val64);
1562
1563         val64 = readq(&vp_reg->vpath_genstats_count01);
1564         hw_stats->vpath_genstats_count3 =
1565         (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3(
1566                 val64);
1567
1568         val64 = readq(&vp_reg->vpath_genstats_count4);
1569         hw_stats->vpath_genstats_count4 =
1570         (u32)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4(
1571                 val64);
1572
1573         val64 = readq(&vp_reg->vpath_genstats_count5);
1574         hw_stats->vpath_genstats_count5 =
1575         (u32)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5(
1576                 val64);
1577
1578         status = __vxge_hw_vpath_xmac_tx_stats_get(vpath, &hw_stats->tx_stats);
1579         if (status != VXGE_HW_OK)
1580                 goto exit;
1581
1582         status = __vxge_hw_vpath_xmac_rx_stats_get(vpath, &hw_stats->rx_stats);
1583         if (status != VXGE_HW_OK)
1584                 goto exit;
1585
1586         VXGE_HW_VPATH_STATS_PIO_READ(
1587                 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET);
1588
1589         hw_stats->prog_event_vnum0 =
1590                         (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64);
1591
1592         hw_stats->prog_event_vnum1 =
1593                         (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64);
1594
1595         VXGE_HW_VPATH_STATS_PIO_READ(
1596                 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET);
1597
1598         hw_stats->prog_event_vnum2 =
1599                         (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64);
1600
1601         hw_stats->prog_event_vnum3 =
1602                         (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64);
1603
1604         val64 = readq(&vp_reg->rx_multi_cast_stats);
1605         hw_stats->rx_multi_cast_frame_discard =
1606                 (u16)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64);
1607
1608         val64 = readq(&vp_reg->rx_frm_transferred);
1609         hw_stats->rx_frm_transferred =
1610                 (u32)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64);
1611
1612         val64 = readq(&vp_reg->rxd_returned);
1613         hw_stats->rxd_returned =
1614                 (u16)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64);
1615
1616         val64 = readq(&vp_reg->dbg_stats_rx_mpa);
1617         hw_stats->rx_mpa_len_fail_frms =
1618                 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64);
1619         hw_stats->rx_mpa_mrk_fail_frms =
1620                 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64);
1621         hw_stats->rx_mpa_crc_fail_frms =
1622                 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64);
1623
1624         val64 = readq(&vp_reg->dbg_stats_rx_fau);
1625         hw_stats->rx_permitted_frms =
1626                 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64);
1627         hw_stats->rx_vp_reset_discarded_frms =
1628         (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64);
1629         hw_stats->rx_wol_frms =
1630                 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64);
1631
1632         val64 = readq(&vp_reg->tx_vp_reset_discarded_frms);
1633         hw_stats->tx_vp_reset_discarded_frms =
1634         (u16)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS(
1635                 val64);
1636 exit:
1637         return status;
1638 }
1639
1640 /*
1641  * vxge_hw_device_stats_get - Get the device hw statistics.
1642  * Returns the vpath h/w stats for the device.
1643  */
1644 enum vxge_hw_status
1645 vxge_hw_device_stats_get(struct __vxge_hw_device *hldev,
1646                         struct vxge_hw_device_stats_hw_info *hw_stats)
1647 {
1648         u32 i;
1649         enum vxge_hw_status status = VXGE_HW_OK;
1650
1651         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1652                 if (!(hldev->vpaths_deployed & vxge_mBIT(i)) ||
1653                         (hldev->virtual_paths[i].vp_open ==
1654                                 VXGE_HW_VP_NOT_OPEN))
1655                         continue;
1656
1657                 memcpy(hldev->virtual_paths[i].hw_stats_sav,
1658                                 hldev->virtual_paths[i].hw_stats,
1659                                 sizeof(struct vxge_hw_vpath_stats_hw_info));
1660
1661                 status = __vxge_hw_vpath_stats_get(
1662                         &hldev->virtual_paths[i],
1663                         hldev->virtual_paths[i].hw_stats);
1664         }
1665
1666         memcpy(hw_stats, &hldev->stats.hw_dev_info_stats,
1667                         sizeof(struct vxge_hw_device_stats_hw_info));
1668
1669         return status;
1670 }
1671
1672 /*
1673  * vxge_hw_driver_stats_get - Get the device sw statistics.
1674  * Returns the vpath s/w stats for the device.
1675  */
1676 enum vxge_hw_status vxge_hw_driver_stats_get(
1677                         struct __vxge_hw_device *hldev,
1678                         struct vxge_hw_device_stats_sw_info *sw_stats)
1679 {
1680         memcpy(sw_stats, &hldev->stats.sw_dev_info_stats,
1681                 sizeof(struct vxge_hw_device_stats_sw_info));
1682
1683         return VXGE_HW_OK;
1684 }
1685
1686 /*
1687  * vxge_hw_mrpcim_stats_access - Access the statistics from the given location
1688  *                           and offset and perform an operation
1689  * Get the statistics from the given location and offset.
1690  */
1691 enum vxge_hw_status
1692 vxge_hw_mrpcim_stats_access(struct __vxge_hw_device *hldev,
1693                             u32 operation, u32 location, u32 offset, u64 *stat)
1694 {
1695         u64 val64;
1696         enum vxge_hw_status status = VXGE_HW_OK;
1697
1698         status = __vxge_hw_device_is_privilaged(hldev->host_type,
1699                         hldev->func_id);
1700         if (status != VXGE_HW_OK)
1701                 goto exit;
1702
1703         val64 = VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation) |
1704                 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE |
1705                 VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location) |
1706                 VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset);
1707
1708         status = __vxge_hw_pio_mem_write64(val64,
1709                                 &hldev->mrpcim_reg->xmac_stats_sys_cmd,
1710                                 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE,
1711                                 hldev->config.device_poll_millis);
1712
1713         if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
1714                 *stat = readq(&hldev->mrpcim_reg->xmac_stats_sys_data);
1715         else
1716                 *stat = 0;
1717 exit:
1718         return status;
1719 }
1720
1721 /*
1722  * vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port
1723  * Get the Statistics on aggregate port
1724  */
1725 static enum vxge_hw_status
1726 vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device *hldev, u32 port,
1727                                    struct vxge_hw_xmac_aggr_stats *aggr_stats)
1728 {
1729         u64 *val64;
1730         int i;
1731         u32 offset = VXGE_HW_STATS_AGGRn_OFFSET;
1732         enum vxge_hw_status status = VXGE_HW_OK;
1733
1734         val64 = (u64 *)aggr_stats;
1735
1736         status = __vxge_hw_device_is_privilaged(hldev->host_type,
1737                         hldev->func_id);
1738         if (status != VXGE_HW_OK)
1739                 goto exit;
1740
1741         for (i = 0; i < sizeof(struct vxge_hw_xmac_aggr_stats) / 8; i++) {
1742                 status = vxge_hw_mrpcim_stats_access(hldev,
1743                                         VXGE_HW_STATS_OP_READ,
1744                                         VXGE_HW_STATS_LOC_AGGR,
1745                                         ((offset + (104 * port)) >> 3), val64);
1746                 if (status != VXGE_HW_OK)
1747                         goto exit;
1748
1749                 offset += 8;
1750                 val64++;
1751         }
1752 exit:
1753         return status;
1754 }
1755
1756 /*
1757  * vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port
1758  * Get the Statistics on port
1759  */
1760 static enum vxge_hw_status
1761 vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device *hldev, u32 port,
1762                                    struct vxge_hw_xmac_port_stats *port_stats)
1763 {
1764         u64 *val64;
1765         enum vxge_hw_status status = VXGE_HW_OK;
1766         int i;
1767         u32 offset = 0x0;
1768         val64 = (u64 *) port_stats;
1769
1770         status = __vxge_hw_device_is_privilaged(hldev->host_type,
1771                         hldev->func_id);
1772         if (status != VXGE_HW_OK)
1773                 goto exit;
1774
1775         for (i = 0; i < sizeof(struct vxge_hw_xmac_port_stats) / 8; i++) {
1776                 status = vxge_hw_mrpcim_stats_access(hldev,
1777                                         VXGE_HW_STATS_OP_READ,
1778                                         VXGE_HW_STATS_LOC_AGGR,
1779                                         ((offset + (608 * port)) >> 3), val64);
1780                 if (status != VXGE_HW_OK)
1781                         goto exit;
1782
1783                 offset += 8;
1784                 val64++;
1785         }
1786
1787 exit:
1788         return status;
1789 }
1790
1791 /*
1792  * vxge_hw_device_xmac_stats_get - Get the XMAC Statistics
1793  * Get the XMAC Statistics
1794  */
1795 enum vxge_hw_status
1796 vxge_hw_device_xmac_stats_get(struct __vxge_hw_device *hldev,
1797                               struct vxge_hw_xmac_stats *xmac_stats)
1798 {
1799         enum vxge_hw_status status = VXGE_HW_OK;
1800         u32 i;
1801
1802         status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1803                                         0, &xmac_stats->aggr_stats[0]);
1804         if (status != VXGE_HW_OK)
1805                 goto exit;
1806
1807         status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1808                                 1, &xmac_stats->aggr_stats[1]);
1809         if (status != VXGE_HW_OK)
1810                 goto exit;
1811
1812         for (i = 0; i <= VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
1813
1814                 status = vxge_hw_device_xmac_port_stats_get(hldev,
1815                                         i, &xmac_stats->port_stats[i]);
1816                 if (status != VXGE_HW_OK)
1817                         goto exit;
1818         }
1819
1820         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1821
1822                 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
1823                         continue;
1824
1825                 status = __vxge_hw_vpath_xmac_tx_stats_get(
1826                                         &hldev->virtual_paths[i],
1827                                         &xmac_stats->vpath_tx_stats[i]);
1828                 if (status != VXGE_HW_OK)
1829                         goto exit;
1830
1831                 status = __vxge_hw_vpath_xmac_rx_stats_get(
1832                                         &hldev->virtual_paths[i],
1833                                         &xmac_stats->vpath_rx_stats[i]);
1834                 if (status != VXGE_HW_OK)
1835                         goto exit;
1836         }
1837 exit:
1838         return status;
1839 }
1840
1841 /*
1842  * vxge_hw_device_debug_set - Set the debug module, level and timestamp
1843  * This routine is used to dynamically change the debug output
1844  */
1845 void vxge_hw_device_debug_set(struct __vxge_hw_device *hldev,
1846                               enum vxge_debug_level level, u32 mask)
1847 {
1848         if (hldev == NULL)
1849                 return;
1850
1851 #if defined(VXGE_DEBUG_TRACE_MASK) || \
1852         defined(VXGE_DEBUG_ERR_MASK)
1853         hldev->debug_module_mask = mask;
1854         hldev->debug_level = level;
1855 #endif
1856
1857 #if defined(VXGE_DEBUG_ERR_MASK)
1858         hldev->level_err = level & VXGE_ERR;
1859 #endif
1860
1861 #if defined(VXGE_DEBUG_TRACE_MASK)
1862         hldev->level_trace = level & VXGE_TRACE;
1863 #endif
1864 }
1865
1866 /*
1867  * vxge_hw_device_error_level_get - Get the error level
1868  * This routine returns the current error level set
1869  */
1870 u32 vxge_hw_device_error_level_get(struct __vxge_hw_device *hldev)
1871 {
1872 #if defined(VXGE_DEBUG_ERR_MASK)
1873         if (hldev == NULL)
1874                 return VXGE_ERR;
1875         else
1876                 return hldev->level_err;
1877 #else
1878         return 0;
1879 #endif
1880 }
1881
1882 /*
1883  * vxge_hw_device_trace_level_get - Get the trace level
1884  * This routine returns the current trace level set
1885  */
1886 u32 vxge_hw_device_trace_level_get(struct __vxge_hw_device *hldev)
1887 {
1888 #if defined(VXGE_DEBUG_TRACE_MASK)
1889         if (hldev == NULL)
1890                 return VXGE_TRACE;
1891         else
1892                 return hldev->level_trace;
1893 #else
1894         return 0;
1895 #endif
1896 }
1897
1898 /*
1899  * vxge_hw_getpause_data -Pause frame frame generation and reception.
1900  * Returns the Pause frame generation and reception capability of the NIC.
1901  */
1902 enum vxge_hw_status vxge_hw_device_getpause_data(struct __vxge_hw_device *hldev,
1903                                                  u32 port, u32 *tx, u32 *rx)
1904 {
1905         u64 val64;
1906         enum vxge_hw_status status = VXGE_HW_OK;
1907
1908         if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1909                 status = VXGE_HW_ERR_INVALID_DEVICE;
1910                 goto exit;
1911         }
1912
1913         if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1914                 status = VXGE_HW_ERR_INVALID_PORT;
1915                 goto exit;
1916         }
1917
1918         if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
1919                 status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
1920                 goto exit;
1921         }
1922
1923         val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1924         if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN)
1925                 *tx = 1;
1926         if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN)
1927                 *rx = 1;
1928 exit:
1929         return status;
1930 }
1931
1932 /*
1933  * vxge_hw_device_setpause_data -  set/reset pause frame generation.
1934  * It can be used to set or reset Pause frame generation or reception
1935  * support of the NIC.
1936  */
1937 enum vxge_hw_status vxge_hw_device_setpause_data(struct __vxge_hw_device *hldev,
1938                                                  u32 port, u32 tx, u32 rx)
1939 {
1940         u64 val64;
1941         enum vxge_hw_status status = VXGE_HW_OK;
1942
1943         if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1944                 status = VXGE_HW_ERR_INVALID_DEVICE;
1945                 goto exit;
1946         }
1947
1948         if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1949                 status = VXGE_HW_ERR_INVALID_PORT;
1950                 goto exit;
1951         }
1952
1953         status = __vxge_hw_device_is_privilaged(hldev->host_type,
1954                         hldev->func_id);
1955         if (status != VXGE_HW_OK)
1956                 goto exit;
1957
1958         val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1959         if (tx)
1960                 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1961         else
1962                 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1963         if (rx)
1964                 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1965         else
1966                 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1967
1968         writeq(val64, &hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1969 exit:
1970         return status;
1971 }
1972
1973 u16 vxge_hw_device_link_width_get(struct __vxge_hw_device *hldev)
1974 {
1975         struct pci_dev *dev = hldev->pdev;
1976         u16 lnk;
1977
1978         pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnk);
1979         return (lnk & VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH) >> 4;
1980 }
1981
1982 /*
1983  * __vxge_hw_ring_block_memblock_idx - Return the memblock index
1984  * This function returns the index of memory block
1985  */
1986 static inline u32
1987 __vxge_hw_ring_block_memblock_idx(u8 *block)
1988 {
1989         return (u32)*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET));
1990 }
1991
1992 /*
1993  * __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index
1994  * This function sets index to a memory block
1995  */
1996 static inline void
1997 __vxge_hw_ring_block_memblock_idx_set(u8 *block, u32 memblock_idx)
1998 {
1999         *((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET)) = memblock_idx;
2000 }
2001
2002 /*
2003  * __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer
2004  * in RxD block
2005  * Sets the next block pointer in RxD block
2006  */
2007 static inline void
2008 __vxge_hw_ring_block_next_pointer_set(u8 *block, dma_addr_t dma_next)
2009 {
2010         *((u64 *)(block + VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET)) = dma_next;
2011 }
2012
2013 /*
2014  * __vxge_hw_ring_first_block_address_get - Returns the dma address of the
2015  *             first block
2016  * Returns the dma address of the first RxD block
2017  */
2018 static u64 __vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring *ring)
2019 {
2020         struct vxge_hw_mempool_dma *dma_object;
2021
2022         dma_object = ring->mempool->memblocks_dma_arr;
2023         vxge_assert(dma_object != NULL);
2024
2025         return dma_object->addr;
2026 }
2027
2028 /*
2029  * __vxge_hw_ring_item_dma_addr - Return the dma address of an item
2030  * This function returns the dma address of a given item
2031  */
2032 static dma_addr_t __vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool *mempoolh,
2033                                                void *item)
2034 {
2035         u32 memblock_idx;
2036         void *memblock;
2037         struct vxge_hw_mempool_dma *memblock_dma_object;
2038         ptrdiff_t dma_item_offset;
2039
2040         /* get owner memblock index */
2041         memblock_idx = __vxge_hw_ring_block_memblock_idx(item);
2042
2043         /* get owner memblock by memblock index */
2044         memblock = mempoolh->memblocks_arr[memblock_idx];
2045
2046         /* get memblock DMA object by memblock index */
2047         memblock_dma_object = mempoolh->memblocks_dma_arr + memblock_idx;
2048
2049         /* calculate offset in the memblock of this item */
2050         dma_item_offset = (u8 *)item - (u8 *)memblock;
2051
2052         return memblock_dma_object->addr + dma_item_offset;
2053 }
2054
2055 /*
2056  * __vxge_hw_ring_rxdblock_link - Link the RxD blocks
2057  * This function returns the dma address of a given item
2058  */
2059 static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool *mempoolh,
2060                                          struct __vxge_hw_ring *ring, u32 from,
2061                                          u32 to)
2062 {
2063         u8 *to_item , *from_item;
2064         dma_addr_t to_dma;
2065
2066         /* get "from" RxD block */
2067         from_item = mempoolh->items_arr[from];
2068         vxge_assert(from_item);
2069
2070         /* get "to" RxD block */
2071         to_item = mempoolh->items_arr[to];
2072         vxge_assert(to_item);
2073
2074         /* return address of the beginning of previous RxD block */
2075         to_dma = __vxge_hw_ring_item_dma_addr(mempoolh, to_item);
2076
2077         /* set next pointer for this RxD block to point on
2078          * previous item's DMA start address */
2079         __vxge_hw_ring_block_next_pointer_set(from_item, to_dma);
2080 }
2081
2082 /*
2083  * __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD
2084  * block callback
2085  * This function is callback passed to __vxge_hw_mempool_create to create memory
2086  * pool for RxD block
2087  */
2088 static void
2089 __vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool *mempoolh,
2090                                   u32 memblock_index,
2091                                   struct vxge_hw_mempool_dma *dma_object,
2092                                   u32 index, u32 is_last)
2093 {
2094         u32 i;
2095         void *item = mempoolh->items_arr[index];
2096         struct __vxge_hw_ring *ring =
2097                 (struct __vxge_hw_ring *)mempoolh->userdata;
2098
2099         /* format rxds array */
2100         for (i = 0; i < ring->rxds_per_block; i++) {
2101                 void *rxdblock_priv;
2102                 void *uld_priv;
2103                 struct vxge_hw_ring_rxd_1 *rxdp;
2104
2105                 u32 reserve_index = ring->channel.reserve_ptr -
2106                                 (index * ring->rxds_per_block + i + 1);
2107                 u32 memblock_item_idx;
2108
2109                 ring->channel.reserve_arr[reserve_index] = ((u8 *)item) +
2110                                                 i * ring->rxd_size;
2111
2112                 /* Note: memblock_item_idx is index of the item within
2113                  *       the memblock. For instance, in case of three RxD-blocks
2114                  *       per memblock this value can be 0, 1 or 2. */
2115                 rxdblock_priv = __vxge_hw_mempool_item_priv(mempoolh,
2116                                         memblock_index, item,
2117                                         &memblock_item_idx);
2118
2119                 rxdp = ring->channel.reserve_arr[reserve_index];
2120
2121                 uld_priv = ((u8 *)rxdblock_priv + ring->rxd_priv_size * i);
2122
2123                 /* pre-format Host_Control */
2124                 rxdp->host_control = (u64)(size_t)uld_priv;
2125         }
2126
2127         __vxge_hw_ring_block_memblock_idx_set(item, memblock_index);
2128
2129         if (is_last) {
2130                 /* link last one with first one */
2131                 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index, 0);
2132         }
2133
2134         if (index > 0) {
2135                 /* link this RxD block with previous one */
2136                 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index - 1, index);
2137         }
2138 }
2139
2140 /*
2141  * __vxge_hw_ring_replenish - Initial replenish of RxDs
2142  * This function replenishes the RxDs from reserve array to work array
2143  */
2144 static enum vxge_hw_status
2145 vxge_hw_ring_replenish(struct __vxge_hw_ring *ring)
2146 {
2147         void *rxd;
2148         struct __vxge_hw_channel *channel;
2149         enum vxge_hw_status status = VXGE_HW_OK;
2150
2151         channel = &ring->channel;
2152
2153         while (vxge_hw_channel_dtr_count(channel) > 0) {
2154
2155                 status = vxge_hw_ring_rxd_reserve(ring, &rxd);
2156
2157                 vxge_assert(status == VXGE_HW_OK);
2158
2159                 if (ring->rxd_init) {
2160                         status = ring->rxd_init(rxd, channel->userdata);
2161                         if (status != VXGE_HW_OK) {
2162                                 vxge_hw_ring_rxd_free(ring, rxd);
2163                                 goto exit;
2164                         }
2165                 }
2166
2167                 vxge_hw_ring_rxd_post(ring, rxd);
2168         }
2169         status = VXGE_HW_OK;
2170 exit:
2171         return status;
2172 }
2173
2174 /*
2175  * __vxge_hw_channel_allocate - Allocate memory for channel
2176  * This function allocates required memory for the channel and various arrays
2177  * in the channel
2178  */
2179 static struct __vxge_hw_channel *
2180 __vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph,
2181                            enum __vxge_hw_channel_type type,
2182                            u32 length, u32 per_dtr_space,
2183                            void *userdata)
2184 {
2185         struct __vxge_hw_channel *channel;
2186         struct __vxge_hw_device *hldev;
2187         int size = 0;
2188         u32 vp_id;
2189
2190         hldev = vph->vpath->hldev;
2191         vp_id = vph->vpath->vp_id;
2192
2193         switch (type) {
2194         case VXGE_HW_CHANNEL_TYPE_FIFO:
2195                 size = sizeof(struct __vxge_hw_fifo);
2196                 break;
2197         case VXGE_HW_CHANNEL_TYPE_RING:
2198                 size = sizeof(struct __vxge_hw_ring);
2199                 break;
2200         default:
2201                 break;
2202         }
2203
2204         channel = kzalloc(size, GFP_KERNEL);
2205         if (channel == NULL)
2206                 goto exit0;
2207         INIT_LIST_HEAD(&channel->item);
2208
2209         channel->common_reg = hldev->common_reg;
2210         channel->first_vp_id = hldev->first_vp_id;
2211         channel->type = type;
2212         channel->devh = hldev;
2213         channel->vph = vph;
2214         channel->userdata = userdata;
2215         channel->per_dtr_space = per_dtr_space;
2216         channel->length = length;
2217         channel->vp_id = vp_id;
2218
2219         channel->work_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2220         if (channel->work_arr == NULL)
2221                 goto exit1;
2222
2223         channel->free_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2224         if (channel->free_arr == NULL)
2225                 goto exit1;
2226         channel->free_ptr = length;
2227
2228         channel->reserve_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2229         if (channel->reserve_arr == NULL)
2230                 goto exit1;
2231         channel->reserve_ptr = length;
2232         channel->reserve_top = 0;
2233
2234         channel->orig_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2235         if (channel->orig_arr == NULL)
2236                 goto exit1;
2237
2238         return channel;
2239 exit1:
2240         __vxge_hw_channel_free(channel);
2241
2242 exit0:
2243         return NULL;
2244 }
2245
2246 /*
2247  * vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async
2248  * Adds a block to block pool
2249  */
2250 static void vxge_hw_blockpool_block_add(struct __vxge_hw_device *devh,
2251                                         void *block_addr,
2252                                         u32 length,
2253                                         struct pci_dev *dma_h,
2254                                         struct pci_dev *acc_handle)
2255 {
2256         struct __vxge_hw_blockpool *blockpool;
2257         struct __vxge_hw_blockpool_entry *entry = NULL;
2258         dma_addr_t dma_addr;
2259
2260         blockpool = &devh->block_pool;
2261
2262         if (block_addr == NULL) {
2263                 blockpool->req_out--;
2264                 goto exit;
2265         }
2266
2267         dma_addr = dma_map_single(&devh->pdev->dev, block_addr, length,
2268                                   DMA_BIDIRECTIONAL);
2269
2270         if (unlikely(dma_mapping_error(&devh->pdev->dev, dma_addr))) {
2271                 vxge_os_dma_free(devh->pdev, block_addr, &acc_handle);
2272                 blockpool->req_out--;
2273                 goto exit;
2274         }
2275
2276         if (!list_empty(&blockpool->free_entry_list))
2277                 entry = (struct __vxge_hw_blockpool_entry *)
2278                         list_first_entry(&blockpool->free_entry_list,
2279                                 struct __vxge_hw_blockpool_entry,
2280                                 item);
2281
2282         if (entry == NULL)
2283                 entry = vmalloc(sizeof(struct __vxge_hw_blockpool_entry));
2284         else
2285                 list_del(&entry->item);
2286
2287         if (entry) {
2288                 entry->length = length;
2289                 entry->memblock = block_addr;
2290                 entry->dma_addr = dma_addr;
2291                 entry->acc_handle = acc_handle;
2292                 entry->dma_handle = dma_h;
2293                 list_add(&entry->item, &blockpool->free_block_list);
2294                 blockpool->pool_size++;
2295         }
2296
2297         blockpool->req_out--;
2298
2299 exit:
2300         return;
2301 }
2302
2303 static inline void
2304 vxge_os_dma_malloc_async(struct pci_dev *pdev, void *devh, unsigned long size)
2305 {
2306         gfp_t flags;
2307         void *vaddr;
2308
2309         if (in_interrupt())
2310                 flags = GFP_ATOMIC | GFP_DMA;
2311         else
2312                 flags = GFP_KERNEL | GFP_DMA;
2313
2314         vaddr = kmalloc((size), flags);
2315
2316         vxge_hw_blockpool_block_add(devh, vaddr, size, pdev, pdev);
2317 }
2318
2319 /*
2320  * __vxge_hw_blockpool_blocks_add - Request additional blocks
2321  */
2322 static
2323 void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool *blockpool)
2324 {
2325         u32 nreq = 0, i;
2326
2327         if ((blockpool->pool_size  +  blockpool->req_out) <
2328                 VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE) {
2329                 nreq = VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE;
2330                 blockpool->req_out += nreq;
2331         }
2332
2333         for (i = 0; i < nreq; i++)
2334                 vxge_os_dma_malloc_async(
2335                         (blockpool->hldev)->pdev,
2336                         blockpool->hldev, VXGE_HW_BLOCK_SIZE);
2337 }
2338
2339 /*
2340  * __vxge_hw_blockpool_malloc - Allocate a memory block from pool
2341  * Allocates a block of memory of given size, either from block pool
2342  * or by calling vxge_os_dma_malloc()
2343  */
2344 static void *__vxge_hw_blockpool_malloc(struct __vxge_hw_device *devh, u32 size,
2345                                         struct vxge_hw_mempool_dma *dma_object)
2346 {
2347         struct __vxge_hw_blockpool_entry *entry = NULL;
2348         struct __vxge_hw_blockpool  *blockpool;
2349         void *memblock = NULL;
2350
2351         blockpool = &devh->block_pool;
2352
2353         if (size != blockpool->block_size) {
2354
2355                 memblock = vxge_os_dma_malloc(devh->pdev, size,
2356                                                 &dma_object->handle,
2357                                                 &dma_object->acc_handle);
2358
2359                 if (!memblock)
2360                         goto exit;
2361
2362                 dma_object->addr = dma_map_single(&devh->pdev->dev, memblock,
2363                                                   size, DMA_BIDIRECTIONAL);
2364
2365                 if (unlikely(dma_mapping_error(&devh->pdev->dev, dma_object->addr))) {
2366                         vxge_os_dma_free(devh->pdev, memblock,
2367                                 &dma_object->acc_handle);
2368                         memblock = NULL;
2369                         goto exit;
2370                 }
2371
2372         } else {
2373
2374                 if (!list_empty(&blockpool->free_block_list))
2375                         entry = (struct __vxge_hw_blockpool_entry *)
2376                                 list_first_entry(&blockpool->free_block_list,
2377                                         struct __vxge_hw_blockpool_entry,
2378                                         item);
2379
2380                 if (entry != NULL) {
2381                         list_del(&entry->item);
2382                         dma_object->addr = entry->dma_addr;
2383                         dma_object->handle = entry->dma_handle;
2384                         dma_object->acc_handle = entry->acc_handle;
2385                         memblock = entry->memblock;
2386
2387                         list_add(&entry->item,
2388                                 &blockpool->free_entry_list);
2389                         blockpool->pool_size--;
2390                 }
2391
2392                 if (memblock != NULL)
2393                         __vxge_hw_blockpool_blocks_add(blockpool);
2394         }
2395 exit:
2396         return memblock;
2397 }
2398
2399 /*
2400  * __vxge_hw_blockpool_blocks_remove - Free additional blocks
2401  */
2402 static void
2403 __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool *blockpool)
2404 {
2405         struct list_head *p, *n;
2406
2407         list_for_each_safe(p, n, &blockpool->free_block_list) {
2408
2409                 if (blockpool->pool_size < blockpool->pool_max)
2410                         break;
2411
2412                 dma_unmap_single(&(blockpool->hldev)->pdev->dev,
2413                                  ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
2414                                  ((struct __vxge_hw_blockpool_entry *)p)->length,
2415                                  DMA_BIDIRECTIONAL);
2416
2417                 vxge_os_dma_free(
2418                         (blockpool->hldev)->pdev,
2419                         ((struct __vxge_hw_blockpool_entry *)p)->memblock,
2420                         &((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
2421
2422                 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
2423
2424                 list_add(p, &blockpool->free_entry_list);
2425
2426                 blockpool->pool_size--;
2427
2428         }
2429 }
2430
2431 /*
2432  * __vxge_hw_blockpool_free - Frees the memory allcoated with
2433  *                              __vxge_hw_blockpool_malloc
2434  */
2435 static void __vxge_hw_blockpool_free(struct __vxge_hw_device *devh,
2436                                      void *memblock, u32 size,
2437                                      struct vxge_hw_mempool_dma *dma_object)
2438 {
2439         struct __vxge_hw_blockpool_entry *entry = NULL;
2440         struct __vxge_hw_blockpool  *blockpool;
2441         enum vxge_hw_status status = VXGE_HW_OK;
2442
2443         blockpool = &devh->block_pool;
2444
2445         if (size != blockpool->block_size) {
2446                 dma_unmap_single(&devh->pdev->dev, dma_object->addr, size,
2447                                  DMA_BIDIRECTIONAL);
2448                 vxge_os_dma_free(devh->pdev, memblock, &dma_object->acc_handle);
2449         } else {
2450
2451                 if (!list_empty(&blockpool->free_entry_list))
2452                         entry = (struct __vxge_hw_blockpool_entry *)
2453                                 list_first_entry(&blockpool->free_entry_list,
2454                                         struct __vxge_hw_blockpool_entry,
2455                                         item);
2456
2457                 if (entry == NULL)
2458                         entry = vmalloc(sizeof(
2459                                         struct __vxge_hw_blockpool_entry));
2460                 else
2461                         list_del(&entry->item);
2462
2463                 if (entry != NULL) {
2464                         entry->length = size;
2465                         entry->memblock = memblock;
2466                         entry->dma_addr = dma_object->addr;
2467                         entry->acc_handle = dma_object->acc_handle;
2468                         entry->dma_handle = dma_object->handle;
2469                         list_add(&entry->item,
2470                                         &blockpool->free_block_list);
2471                         blockpool->pool_size++;
2472                         status = VXGE_HW_OK;
2473                 } else
2474                         status = VXGE_HW_ERR_OUT_OF_MEMORY;
2475
2476                 if (status == VXGE_HW_OK)
2477                         __vxge_hw_blockpool_blocks_remove(blockpool);
2478         }
2479 }
2480
2481 /*
2482  * vxge_hw_mempool_destroy
2483  */
2484 static void __vxge_hw_mempool_destroy(struct vxge_hw_mempool *mempool)
2485 {
2486         u32 i, j;
2487         struct __vxge_hw_device *devh = mempool->devh;
2488
2489         for (i = 0; i < mempool->memblocks_allocated; i++) {
2490                 struct vxge_hw_mempool_dma *dma_object;
2491
2492                 vxge_assert(mempool->memblocks_arr[i]);
2493                 vxge_assert(mempool->memblocks_dma_arr + i);
2494
2495                 dma_object = mempool->memblocks_dma_arr + i;
2496
2497                 for (j = 0; j < mempool->items_per_memblock; j++) {
2498                         u32 index = i * mempool->items_per_memblock + j;
2499
2500                         /* to skip last partially filled(if any) memblock */
2501                         if (index >= mempool->items_current)
2502                                 break;
2503                 }
2504
2505                 vfree(mempool->memblocks_priv_arr[i]);
2506
2507                 __vxge_hw_blockpool_free(devh, mempool->memblocks_arr[i],
2508                                 mempool->memblock_size, dma_object);
2509         }
2510
2511         vfree(mempool->items_arr);
2512         vfree(mempool->memblocks_dma_arr);
2513         vfree(mempool->memblocks_priv_arr);
2514         vfree(mempool->memblocks_arr);
2515         vfree(mempool);
2516 }
2517
2518 /*
2519  * __vxge_hw_mempool_grow
2520  * Will resize mempool up to %num_allocate value.
2521  */
2522 static enum vxge_hw_status
2523 __vxge_hw_mempool_grow(struct vxge_hw_mempool *mempool, u32 num_allocate,
2524                        u32 *num_allocated)
2525 {
2526         u32 i, first_time = mempool->memblocks_allocated == 0 ? 1 : 0;
2527         u32 n_items = mempool->items_per_memblock;
2528         u32 start_block_idx = mempool->memblocks_allocated;
2529         u32 end_block_idx = mempool->memblocks_allocated + num_allocate;
2530         enum vxge_hw_status status = VXGE_HW_OK;
2531
2532         *num_allocated = 0;
2533
2534         if (end_block_idx > mempool->memblocks_max) {
2535                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2536                 goto exit;
2537         }
2538
2539         for (i = start_block_idx; i < end_block_idx; i++) {
2540                 u32 j;
2541                 u32 is_last = ((end_block_idx - 1) == i);
2542                 struct vxge_hw_mempool_dma *dma_object =
2543                         mempool->memblocks_dma_arr + i;
2544                 void *the_memblock;
2545
2546                 /* allocate memblock's private part. Each DMA memblock
2547                  * has a space allocated for item's private usage upon
2548                  * mempool's user request. Each time mempool grows, it will
2549                  * allocate new memblock and its private part at once.
2550                  * This helps to minimize memory usage a lot. */
2551                 mempool->memblocks_priv_arr[i] =
2552                         vzalloc(array_size(mempool->items_priv_size, n_items));
2553                 if (mempool->memblocks_priv_arr[i] == NULL) {
2554                         status = VXGE_HW_ERR_OUT_OF_MEMORY;
2555                         goto exit;
2556                 }
2557
2558                 /* allocate DMA-capable memblock */
2559                 mempool->memblocks_arr[i] =
2560                         __vxge_hw_blockpool_malloc(mempool->devh,
2561                                 mempool->memblock_size, dma_object);
2562                 if (mempool->memblocks_arr[i] == NULL) {
2563                         vfree(mempool->memblocks_priv_arr[i]);
2564                         status = VXGE_HW_ERR_OUT_OF_MEMORY;
2565                         goto exit;
2566                 }
2567
2568                 (*num_allocated)++;
2569                 mempool->memblocks_allocated++;
2570
2571                 memset(mempool->memblocks_arr[i], 0, mempool->memblock_size);
2572
2573                 the_memblock = mempool->memblocks_arr[i];
2574
2575                 /* fill the items hash array */
2576                 for (j = 0; j < n_items; j++) {
2577                         u32 index = i * n_items + j;
2578
2579                         if (first_time && index >= mempool->items_initial)
2580                                 break;
2581
2582                         mempool->items_arr[index] =
2583                                 ((char *)the_memblock + j*mempool->item_size);
2584
2585                         /* let caller to do more job on each item */
2586                         if (mempool->item_func_alloc != NULL)
2587                                 mempool->item_func_alloc(mempool, i,
2588                                         dma_object, index, is_last);
2589
2590                         mempool->items_current = index + 1;
2591                 }
2592
2593                 if (first_time && mempool->items_current ==
2594                                         mempool->items_initial)
2595                         break;
2596         }
2597 exit:
2598         return status;
2599 }
2600
2601 /*
2602  * vxge_hw_mempool_create
2603  * This function will create memory pool object. Pool may grow but will
2604  * never shrink. Pool consists of number of dynamically allocated blocks
2605  * with size enough to hold %items_initial number of items. Memory is
2606  * DMA-able but client must map/unmap before interoperating with the device.
2607  */
2608 static struct vxge_hw_mempool *
2609 __vxge_hw_mempool_create(struct __vxge_hw_device *devh,
2610                          u32 memblock_size,
2611                          u32 item_size,
2612                          u32 items_priv_size,
2613                          u32 items_initial,
2614                          u32 items_max,
2615                          const struct vxge_hw_mempool_cbs *mp_callback,
2616                          void *userdata)
2617 {
2618         enum vxge_hw_status status = VXGE_HW_OK;
2619         u32 memblocks_to_allocate;
2620         struct vxge_hw_mempool *mempool = NULL;
2621         u32 allocated;
2622
2623         if (memblock_size < item_size) {
2624                 status = VXGE_HW_FAIL;
2625                 goto exit;
2626         }
2627
2628         mempool = vzalloc(sizeof(struct vxge_hw_mempool));
2629         if (mempool == NULL) {
2630                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2631                 goto exit;
2632         }
2633
2634         mempool->devh                   = devh;
2635         mempool->memblock_size          = memblock_size;
2636         mempool->items_max              = items_max;
2637         mempool->items_initial          = items_initial;
2638         mempool->item_size              = item_size;
2639         mempool->items_priv_size        = items_priv_size;
2640         mempool->item_func_alloc        = mp_callback->item_func_alloc;
2641         mempool->userdata               = userdata;
2642
2643         mempool->memblocks_allocated = 0;
2644
2645         mempool->items_per_memblock = memblock_size / item_size;
2646
2647         mempool->memblocks_max = (items_max + mempool->items_per_memblock - 1) /
2648                                         mempool->items_per_memblock;
2649
2650         /* allocate array of memblocks */
2651         mempool->memblocks_arr =
2652                 vzalloc(array_size(sizeof(void *), mempool->memblocks_max));
2653         if (mempool->memblocks_arr == NULL) {
2654                 __vxge_hw_mempool_destroy(mempool);
2655                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2656                 mempool = NULL;
2657                 goto exit;
2658         }
2659
2660         /* allocate array of private parts of items per memblocks */
2661         mempool->memblocks_priv_arr =
2662                 vzalloc(array_size(sizeof(void *), mempool->memblocks_max));
2663         if (mempool->memblocks_priv_arr == NULL) {
2664                 __vxge_hw_mempool_destroy(mempool);
2665                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2666                 mempool = NULL;
2667                 goto exit;
2668         }
2669
2670         /* allocate array of memblocks DMA objects */
2671         mempool->memblocks_dma_arr =
2672                 vzalloc(array_size(sizeof(struct vxge_hw_mempool_dma),
2673                                    mempool->memblocks_max));
2674         if (mempool->memblocks_dma_arr == NULL) {
2675                 __vxge_hw_mempool_destroy(mempool);
2676                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2677                 mempool = NULL;
2678                 goto exit;
2679         }
2680
2681         /* allocate hash array of items */
2682         mempool->items_arr = vzalloc(array_size(sizeof(void *),
2683                                                 mempool->items_max));
2684         if (mempool->items_arr == NULL) {
2685                 __vxge_hw_mempool_destroy(mempool);
2686                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2687                 mempool = NULL;
2688                 goto exit;
2689         }
2690
2691         /* calculate initial number of memblocks */
2692         memblocks_to_allocate = (mempool->items_initial +
2693                                  mempool->items_per_memblock - 1) /
2694                                                 mempool->items_per_memblock;
2695
2696         /* pre-allocate the mempool */
2697         status = __vxge_hw_mempool_grow(mempool, memblocks_to_allocate,
2698                                         &allocated);
2699         if (status != VXGE_HW_OK) {
2700                 __vxge_hw_mempool_destroy(mempool);
2701                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2702                 mempool = NULL;
2703                 goto exit;
2704         }
2705
2706 exit:
2707         return mempool;
2708 }
2709
2710 /*
2711  * __vxge_hw_ring_abort - Returns the RxD
2712  * This function terminates the RxDs of ring
2713  */
2714 static enum vxge_hw_status __vxge_hw_ring_abort(struct __vxge_hw_ring *ring)
2715 {
2716         void *rxdh;
2717         struct __vxge_hw_channel *channel;
2718
2719         channel = &ring->channel;
2720
2721         for (;;) {
2722                 vxge_hw_channel_dtr_try_complete(channel, &rxdh);
2723
2724                 if (rxdh == NULL)
2725                         break;
2726
2727                 vxge_hw_channel_dtr_complete(channel);
2728
2729                 if (ring->rxd_term)
2730                         ring->rxd_term(rxdh, VXGE_HW_RXD_STATE_POSTED,
2731                                 channel->userdata);
2732
2733                 vxge_hw_channel_dtr_free(channel, rxdh);
2734         }
2735
2736         return VXGE_HW_OK;
2737 }
2738
2739 /*
2740  * __vxge_hw_ring_reset - Resets the ring
2741  * This function resets the ring during vpath reset operation
2742  */
2743 static enum vxge_hw_status __vxge_hw_ring_reset(struct __vxge_hw_ring *ring)
2744 {
2745         enum vxge_hw_status status = VXGE_HW_OK;
2746         struct __vxge_hw_channel *channel;
2747
2748         channel = &ring->channel;
2749
2750         __vxge_hw_ring_abort(ring);
2751
2752         status = __vxge_hw_channel_reset(channel);
2753
2754         if (status != VXGE_HW_OK)
2755                 goto exit;
2756
2757         if (ring->rxd_init) {
2758                 status = vxge_hw_ring_replenish(ring);
2759                 if (status != VXGE_HW_OK)
2760                         goto exit;
2761         }
2762 exit:
2763         return status;
2764 }
2765
2766 /*
2767  * __vxge_hw_ring_delete - Removes the ring
2768  * This function freeup the memory pool and removes the ring
2769  */
2770 static enum vxge_hw_status
2771 __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle *vp)
2772 {
2773         struct __vxge_hw_ring *ring = vp->vpath->ringh;
2774
2775         __vxge_hw_ring_abort(ring);
2776
2777         if (ring->mempool)
2778                 __vxge_hw_mempool_destroy(ring->mempool);
2779
2780         vp->vpath->ringh = NULL;
2781         __vxge_hw_channel_free(&ring->channel);
2782
2783         return VXGE_HW_OK;
2784 }
2785
2786 /*
2787  * __vxge_hw_ring_create - Create a Ring
2788  * This function creates Ring and initializes it.
2789  */
2790 static enum vxge_hw_status
2791 __vxge_hw_ring_create(struct __vxge_hw_vpath_handle *vp,
2792                       struct vxge_hw_ring_attr *attr)
2793 {
2794         enum vxge_hw_status status = VXGE_HW_OK;
2795         struct __vxge_hw_ring *ring;
2796         u32 ring_length;
2797         struct vxge_hw_ring_config *config;
2798         struct __vxge_hw_device *hldev;
2799         u32 vp_id;
2800         static const struct vxge_hw_mempool_cbs ring_mp_callback = {
2801                 .item_func_alloc = __vxge_hw_ring_mempool_item_alloc,
2802         };
2803
2804         if ((vp == NULL) || (attr == NULL)) {
2805                 status = VXGE_HW_FAIL;
2806                 goto exit;
2807         }
2808
2809         hldev = vp->vpath->hldev;
2810         vp_id = vp->vpath->vp_id;
2811
2812         config = &hldev->config.vp_config[vp_id].ring;
2813
2814         ring_length = config->ring_blocks *
2815                         vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
2816
2817         ring = (struct __vxge_hw_ring *)__vxge_hw_channel_allocate(vp,
2818                                                 VXGE_HW_CHANNEL_TYPE_RING,
2819                                                 ring_length,
2820                                                 attr->per_rxd_space,
2821                                                 attr->userdata);
2822         if (ring == NULL) {
2823                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2824                 goto exit;
2825         }
2826
2827         vp->vpath->ringh = ring;
2828         ring->vp_id = vp_id;
2829         ring->vp_reg = vp->vpath->vp_reg;
2830         ring->common_reg = hldev->common_reg;
2831         ring->stats = &vp->vpath->sw_stats->ring_stats;
2832         ring->config = config;
2833         ring->callback = attr->callback;
2834         ring->rxd_init = attr->rxd_init;
2835         ring->rxd_term = attr->rxd_term;
2836         ring->buffer_mode = config->buffer_mode;
2837         ring->tim_rti_cfg1_saved = vp->vpath->tim_rti_cfg1_saved;
2838         ring->tim_rti_cfg3_saved = vp->vpath->tim_rti_cfg3_saved;
2839         ring->rxds_limit = config->rxds_limit;
2840
2841         ring->rxd_size = vxge_hw_ring_rxd_size_get(config->buffer_mode);
2842         ring->rxd_priv_size =
2843                 sizeof(struct __vxge_hw_ring_rxd_priv) + attr->per_rxd_space;
2844         ring->per_rxd_space = attr->per_rxd_space;
2845
2846         ring->rxd_priv_size =
2847                 ((ring->rxd_priv_size + VXGE_CACHE_LINE_SIZE - 1) /
2848                 VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
2849
2850         /* how many RxDs can fit into one block. Depends on configured
2851          * buffer_mode. */
2852         ring->rxds_per_block =
2853                 vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
2854
2855         /* calculate actual RxD block private size */
2856         ring->rxdblock_priv_size = ring->rxd_priv_size * ring->rxds_per_block;
2857         ring->mempool = __vxge_hw_mempool_create(hldev,
2858                                 VXGE_HW_BLOCK_SIZE,
2859                                 VXGE_HW_BLOCK_SIZE,
2860                                 ring->rxdblock_priv_size,
2861                                 ring->config->ring_blocks,
2862                                 ring->config->ring_blocks,
2863                                 &ring_mp_callback,
2864                                 ring);
2865         if (ring->mempool == NULL) {
2866                 __vxge_hw_ring_delete(vp);
2867                 return VXGE_HW_ERR_OUT_OF_MEMORY;
2868         }
2869
2870         status = __vxge_hw_channel_initialize(&ring->channel);
2871         if (status != VXGE_HW_OK) {
2872                 __vxge_hw_ring_delete(vp);
2873                 goto exit;
2874         }
2875
2876         /* Note:
2877          * Specifying rxd_init callback means two things:
2878          * 1) rxds need to be initialized by driver at channel-open time;
2879          * 2) rxds need to be posted at channel-open time
2880          *    (that's what the initial_replenish() below does)
2881          * Currently we don't have a case when the 1) is done without the 2).
2882          */
2883         if (ring->rxd_init) {
2884                 status = vxge_hw_ring_replenish(ring);
2885                 if (status != VXGE_HW_OK) {
2886                         __vxge_hw_ring_delete(vp);
2887                         goto exit;
2888                 }
2889         }
2890
2891         /* initial replenish will increment the counter in its post() routine,
2892          * we have to reset it */
2893         ring->stats->common_stats.usage_cnt = 0;
2894 exit:
2895         return status;
2896 }
2897
2898 /*
2899  * vxge_hw_device_config_default_get - Initialize device config with defaults.
2900  * Initialize Titan device config with default values.
2901  */
2902 enum vxge_hw_status
2903 vxge_hw_device_config_default_get(struct vxge_hw_device_config *device_config)
2904 {
2905         u32 i;
2906
2907         device_config->dma_blockpool_initial =
2908                                         VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE;
2909         device_config->dma_blockpool_max = VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE;
2910         device_config->intr_mode = VXGE_HW_INTR_MODE_DEF;
2911         device_config->rth_en = VXGE_HW_RTH_DEFAULT;
2912         device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_DEFAULT;
2913         device_config->device_poll_millis =  VXGE_HW_DEF_DEVICE_POLL_MILLIS;
2914         device_config->rts_mac_en =  VXGE_HW_RTS_MAC_DEFAULT;
2915
2916         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
2917                 device_config->vp_config[i].vp_id = i;
2918
2919                 device_config->vp_config[i].min_bandwidth =
2920                                 VXGE_HW_VPATH_BANDWIDTH_DEFAULT;
2921
2922                 device_config->vp_config[i].ring.enable = VXGE_HW_RING_DEFAULT;
2923
2924                 device_config->vp_config[i].ring.ring_blocks =
2925                                 VXGE_HW_DEF_RING_BLOCKS;
2926
2927                 device_config->vp_config[i].ring.buffer_mode =
2928                                 VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT;
2929
2930                 device_config->vp_config[i].ring.scatter_mode =
2931                                 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT;
2932
2933                 device_config->vp_config[i].ring.rxds_limit =
2934                                 VXGE_HW_DEF_RING_RXDS_LIMIT;
2935
2936                 device_config->vp_config[i].fifo.enable = VXGE_HW_FIFO_ENABLE;
2937
2938                 device_config->vp_config[i].fifo.fifo_blocks =
2939                                 VXGE_HW_MIN_FIFO_BLOCKS;
2940
2941                 device_config->vp_config[i].fifo.max_frags =
2942                                 VXGE_HW_MAX_FIFO_FRAGS;
2943
2944                 device_config->vp_config[i].fifo.memblock_size =
2945                                 VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE;
2946
2947                 device_config->vp_config[i].fifo.alignment_size =
2948                                 VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE;
2949
2950                 device_config->vp_config[i].fifo.intr =
2951                                 VXGE_HW_FIFO_QUEUE_INTR_DEFAULT;
2952
2953                 device_config->vp_config[i].fifo.no_snoop_bits =
2954                                 VXGE_HW_FIFO_NO_SNOOP_DEFAULT;
2955                 device_config->vp_config[i].tti.intr_enable =
2956                                 VXGE_HW_TIM_INTR_DEFAULT;
2957
2958                 device_config->vp_config[i].tti.btimer_val =
2959                                 VXGE_HW_USE_FLASH_DEFAULT;
2960
2961                 device_config->vp_config[i].tti.timer_ac_en =
2962                                 VXGE_HW_USE_FLASH_DEFAULT;
2963
2964                 device_config->vp_config[i].tti.timer_ci_en =
2965                                 VXGE_HW_USE_FLASH_DEFAULT;
2966
2967                 device_config->vp_config[i].tti.timer_ri_en =
2968                                 VXGE_HW_USE_FLASH_DEFAULT;
2969
2970                 device_config->vp_config[i].tti.rtimer_val =
2971                                 VXGE_HW_USE_FLASH_DEFAULT;
2972
2973                 device_config->vp_config[i].tti.util_sel =
2974                                 VXGE_HW_USE_FLASH_DEFAULT;
2975
2976                 device_config->vp_config[i].tti.ltimer_val =
2977                                 VXGE_HW_USE_FLASH_DEFAULT;
2978
2979                 device_config->vp_config[i].tti.urange_a =
2980                                 VXGE_HW_USE_FLASH_DEFAULT;
2981
2982                 device_config->vp_config[i].tti.uec_a =
2983                                 VXGE_HW_USE_FLASH_DEFAULT;
2984
2985                 device_config->vp_config[i].tti.urange_b =
2986                                 VXGE_HW_USE_FLASH_DEFAULT;
2987
2988                 device_config->vp_config[i].tti.uec_b =
2989                                 VXGE_HW_USE_FLASH_DEFAULT;
2990
2991                 device_config->vp_config[i].tti.urange_c =
2992                                 VXGE_HW_USE_FLASH_DEFAULT;
2993
2994                 device_config->vp_config[i].tti.uec_c =
2995                                 VXGE_HW_USE_FLASH_DEFAULT;
2996
2997                 device_config->vp_config[i].tti.uec_d =
2998                                 VXGE_HW_USE_FLASH_DEFAULT;
2999
3000                 device_config->vp_config[i].rti.intr_enable =
3001                                 VXGE_HW_TIM_INTR_DEFAULT;
3002
3003                 device_config->vp_config[i].rti.btimer_val =
3004                                 VXGE_HW_USE_FLASH_DEFAULT;
3005
3006                 device_config->vp_config[i].rti.timer_ac_en =
3007                                 VXGE_HW_USE_FLASH_DEFAULT;
3008
3009                 device_config->vp_config[i].rti.timer_ci_en =
3010                                 VXGE_HW_USE_FLASH_DEFAULT;
3011
3012                 device_config->vp_config[i].rti.timer_ri_en =
3013                                 VXGE_HW_USE_FLASH_DEFAULT;
3014
3015                 device_config->vp_config[i].rti.rtimer_val =
3016                                 VXGE_HW_USE_FLASH_DEFAULT;
3017
3018                 device_config->vp_config[i].rti.util_sel =
3019                                 VXGE_HW_USE_FLASH_DEFAULT;
3020
3021                 device_config->vp_config[i].rti.ltimer_val =
3022                                 VXGE_HW_USE_FLASH_DEFAULT;
3023
3024                 device_config->vp_config[i].rti.urange_a =
3025                                 VXGE_HW_USE_FLASH_DEFAULT;
3026
3027                 device_config->vp_config[i].rti.uec_a =
3028                                 VXGE_HW_USE_FLASH_DEFAULT;
3029
3030                 device_config->vp_config[i].rti.urange_b =
3031                                 VXGE_HW_USE_FLASH_DEFAULT;
3032
3033                 device_config->vp_config[i].rti.uec_b =
3034                                 VXGE_HW_USE_FLASH_DEFAULT;
3035
3036                 device_config->vp_config[i].rti.urange_c =
3037                                 VXGE_HW_USE_FLASH_DEFAULT;
3038
3039                 device_config->vp_config[i].rti.uec_c =
3040                                 VXGE_HW_USE_FLASH_DEFAULT;
3041
3042                 device_config->vp_config[i].rti.uec_d =
3043                                 VXGE_HW_USE_FLASH_DEFAULT;
3044
3045                 device_config->vp_config[i].mtu =
3046                                 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU;
3047
3048                 device_config->vp_config[i].rpa_strip_vlan_tag =
3049                         VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT;
3050         }
3051
3052         return VXGE_HW_OK;
3053 }
3054
3055 /*
3056  * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath.
3057  * Set the swapper bits appropriately for the vpath.
3058  */
3059 static enum vxge_hw_status
3060 __vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem *vpath_reg)
3061 {
3062 #ifndef __BIG_ENDIAN
3063         u64 val64;
3064
3065         val64 = readq(&vpath_reg->vpath_general_cfg1);
3066         wmb();
3067         val64 |= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN;
3068         writeq(val64, &vpath_reg->vpath_general_cfg1);
3069         wmb();
3070 #endif
3071         return VXGE_HW_OK;
3072 }
3073
3074 /*
3075  * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc.
3076  * Set the swapper bits appropriately for the vpath.
3077  */
3078 static enum vxge_hw_status
3079 __vxge_hw_kdfc_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg,
3080                            struct vxge_hw_vpath_reg __iomem *vpath_reg)
3081 {
3082         u64 val64;
3083
3084         val64 = readq(&legacy_reg->pifm_wr_swap_en);
3085
3086         if (val64 == VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE) {
3087                 val64 = readq(&vpath_reg->kdfcctl_cfg0);
3088                 wmb();
3089
3090                 val64 |= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0 |
3091                         VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1  |
3092                         VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2;
3093
3094                 writeq(val64, &vpath_reg->kdfcctl_cfg0);
3095                 wmb();
3096         }
3097
3098         return VXGE_HW_OK;
3099 }
3100
3101 /*
3102  * vxge_hw_mgmt_reg_read - Read Titan register.
3103  */
3104 enum vxge_hw_status
3105 vxge_hw_mgmt_reg_read(struct __vxge_hw_device *hldev,
3106                       enum vxge_hw_mgmt_reg_type type,
3107                       u32 index, u32 offset, u64 *value)
3108 {
3109         enum vxge_hw_status status = VXGE_HW_OK;
3110
3111         if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
3112                 status = VXGE_HW_ERR_INVALID_DEVICE;
3113                 goto exit;
3114         }
3115
3116         switch (type) {
3117         case vxge_hw_mgmt_reg_type_legacy:
3118                 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
3119                         status = VXGE_HW_ERR_INVALID_OFFSET;
3120                         break;
3121                 }
3122                 *value = readq((void __iomem *)hldev->legacy_reg + offset);
3123                 break;
3124         case vxge_hw_mgmt_reg_type_toc:
3125                 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
3126                         status = VXGE_HW_ERR_INVALID_OFFSET;
3127                         break;
3128                 }
3129                 *value = readq((void __iomem *)hldev->toc_reg + offset);
3130                 break;
3131         case vxge_hw_mgmt_reg_type_common:
3132                 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
3133                         status = VXGE_HW_ERR_INVALID_OFFSET;
3134                         break;
3135                 }
3136                 *value = readq((void __iomem *)hldev->common_reg + offset);
3137                 break;
3138         case vxge_hw_mgmt_reg_type_mrpcim:
3139                 if (!(hldev->access_rights &
3140                         VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
3141                         status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3142                         break;
3143                 }
3144                 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
3145                         status = VXGE_HW_ERR_INVALID_OFFSET;
3146                         break;
3147                 }
3148                 *value = readq((void __iomem *)hldev->mrpcim_reg + offset);
3149                 break;
3150         case vxge_hw_mgmt_reg_type_srpcim:
3151                 if (!(hldev->access_rights &
3152                         VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
3153                         status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3154                         break;
3155                 }
3156                 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
3157                         status = VXGE_HW_ERR_INVALID_INDEX;
3158                         break;
3159                 }
3160                 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
3161                         status = VXGE_HW_ERR_INVALID_OFFSET;
3162                         break;
3163                 }
3164                 *value = readq((void __iomem *)hldev->srpcim_reg[index] +
3165                                 offset);
3166                 break;
3167         case vxge_hw_mgmt_reg_type_vpmgmt:
3168                 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
3169                         (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3170                         status = VXGE_HW_ERR_INVALID_INDEX;
3171                         break;
3172                 }
3173                 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
3174                         status = VXGE_HW_ERR_INVALID_OFFSET;
3175                         break;
3176                 }
3177                 *value = readq((void __iomem *)hldev->vpmgmt_reg[index] +
3178                                 offset);
3179                 break;
3180         case vxge_hw_mgmt_reg_type_vpath:
3181                 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) ||
3182                         (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3183                         status = VXGE_HW_ERR_INVALID_INDEX;
3184                         break;
3185                 }
3186                 if (index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) {
3187                         status = VXGE_HW_ERR_INVALID_INDEX;
3188                         break;
3189                 }
3190                 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
3191                         status = VXGE_HW_ERR_INVALID_OFFSET;
3192                         break;
3193                 }
3194                 *value = readq((void __iomem *)hldev->vpath_reg[index] +
3195                                 offset);
3196                 break;
3197         default:
3198                 status = VXGE_HW_ERR_INVALID_TYPE;
3199                 break;
3200         }
3201
3202 exit:
3203         return status;
3204 }
3205
3206 /*
3207  * vxge_hw_vpath_strip_fcs_check - Check for FCS strip.
3208  */
3209 enum vxge_hw_status
3210 vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device *hldev, u64 vpath_mask)
3211 {
3212         struct vxge_hw_vpmgmt_reg       __iomem *vpmgmt_reg;
3213         int i = 0, j = 0;
3214
3215         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3216                 if (!((vpath_mask) & vxge_mBIT(i)))
3217                         continue;
3218                 vpmgmt_reg = hldev->vpmgmt_reg[i];
3219                 for (j = 0; j < VXGE_HW_MAC_MAX_MAC_PORT_ID; j++) {
3220                         if (readq(&vpmgmt_reg->rxmac_cfg0_port_vpmgmt_clone[j])
3221                         & VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_STRIP_FCS)
3222                                 return VXGE_HW_FAIL;
3223                 }
3224         }
3225         return VXGE_HW_OK;
3226 }
3227 /*
3228  * vxge_hw_mgmt_reg_Write - Write Titan register.
3229  */
3230 enum vxge_hw_status
3231 vxge_hw_mgmt_reg_write(struct __vxge_hw_device *hldev,
3232                       enum vxge_hw_mgmt_reg_type type,
3233                       u32 index, u32 offset, u64 value)
3234 {
3235         enum vxge_hw_status status = VXGE_HW_OK;
3236
3237         if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
3238                 status = VXGE_HW_ERR_INVALID_DEVICE;
3239                 goto exit;
3240         }
3241
3242         switch (type) {
3243         case vxge_hw_mgmt_reg_type_legacy:
3244                 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
3245                         status = VXGE_HW_ERR_INVALID_OFFSET;
3246                         break;
3247                 }
3248                 writeq(value, (void __iomem *)hldev->legacy_reg + offset);
3249                 break;
3250         case vxge_hw_mgmt_reg_type_toc:
3251                 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
3252                         status = VXGE_HW_ERR_INVALID_OFFSET;
3253                         break;
3254                 }
3255                 writeq(value, (void __iomem *)hldev->toc_reg + offset);
3256                 break;
3257         case vxge_hw_mgmt_reg_type_common:
3258                 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
3259                         status = VXGE_HW_ERR_INVALID_OFFSET;
3260                         break;
3261                 }
3262                 writeq(value, (void __iomem *)hldev->common_reg + offset);
3263                 break;
3264         case vxge_hw_mgmt_reg_type_mrpcim:
3265                 if (!(hldev->access_rights &
3266                         VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
3267                         status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3268                         break;
3269                 }
3270                 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
3271                         status = VXGE_HW_ERR_INVALID_OFFSET;
3272                         break;
3273                 }
3274                 writeq(value, (void __iomem *)hldev->mrpcim_reg + offset);
3275                 break;
3276         case vxge_hw_mgmt_reg_type_srpcim:
3277                 if (!(hldev->access_rights &
3278                         VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
3279                         status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3280                         break;
3281                 }
3282                 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
3283                         status = VXGE_HW_ERR_INVALID_INDEX;
3284                         break;
3285                 }
3286                 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
3287                         status = VXGE_HW_ERR_INVALID_OFFSET;
3288                         break;
3289                 }
3290                 writeq(value, (void __iomem *)hldev->srpcim_reg[index] +
3291                         offset);
3292
3293                 break;
3294         case vxge_hw_mgmt_reg_type_vpmgmt:
3295                 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
3296                         (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3297                         status = VXGE_HW_ERR_INVALID_INDEX;
3298                         break;
3299                 }
3300                 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
3301                         status = VXGE_HW_ERR_INVALID_OFFSET;
3302                         break;
3303                 }
3304                 writeq(value, (void __iomem *)hldev->vpmgmt_reg[index] +
3305                         offset);
3306                 break;
3307         case vxge_hw_mgmt_reg_type_vpath:
3308                 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES-1) ||
3309                         (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3310                         status = VXGE_HW_ERR_INVALID_INDEX;
3311                         break;
3312                 }
3313                 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
3314                         status = VXGE_HW_ERR_INVALID_OFFSET;
3315                         break;
3316                 }
3317                 writeq(value, (void __iomem *)hldev->vpath_reg[index] +
3318                         offset);
3319                 break;
3320         default:
3321                 status = VXGE_HW_ERR_INVALID_TYPE;
3322                 break;
3323         }
3324 exit:
3325         return status;
3326 }
3327
3328 /*
3329  * __vxge_hw_fifo_abort - Returns the TxD
3330  * This function terminates the TxDs of fifo
3331  */
3332 static enum vxge_hw_status __vxge_hw_fifo_abort(struct __vxge_hw_fifo *fifo)
3333 {
3334         void *txdlh;
3335
3336         for (;;) {
3337                 vxge_hw_channel_dtr_try_complete(&fifo->channel, &txdlh);
3338
3339                 if (txdlh == NULL)
3340                         break;
3341
3342                 vxge_hw_channel_dtr_complete(&fifo->channel);
3343
3344                 if (fifo->txdl_term) {
3345                         fifo->txdl_term(txdlh,
3346                         VXGE_HW_TXDL_STATE_POSTED,
3347                         fifo->channel.userdata);
3348                 }
3349
3350                 vxge_hw_channel_dtr_free(&fifo->channel, txdlh);
3351         }
3352
3353         return VXGE_HW_OK;
3354 }
3355
3356 /*
3357  * __vxge_hw_fifo_reset - Resets the fifo
3358  * This function resets the fifo during vpath reset operation
3359  */
3360 static enum vxge_hw_status __vxge_hw_fifo_reset(struct __vxge_hw_fifo *fifo)
3361 {
3362         enum vxge_hw_status status = VXGE_HW_OK;
3363
3364         __vxge_hw_fifo_abort(fifo);
3365         status = __vxge_hw_channel_reset(&fifo->channel);
3366
3367         return status;
3368 }
3369
3370 /*
3371  * __vxge_hw_fifo_delete - Removes the FIFO
3372  * This function freeup the memory pool and removes the FIFO
3373  */
3374 static enum vxge_hw_status
3375 __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle *vp)
3376 {
3377         struct __vxge_hw_fifo *fifo = vp->vpath->fifoh;
3378
3379         __vxge_hw_fifo_abort(fifo);
3380
3381         if (fifo->mempool)
3382                 __vxge_hw_mempool_destroy(fifo->mempool);
3383
3384         vp->vpath->fifoh = NULL;
3385
3386         __vxge_hw_channel_free(&fifo->channel);
3387
3388         return VXGE_HW_OK;
3389 }
3390
3391 /*
3392  * __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD
3393  * list callback
3394  * This function is callback passed to __vxge_hw_mempool_create to create memory
3395  * pool for TxD list
3396  */
3397 static void
3398 __vxge_hw_fifo_mempool_item_alloc(
3399         struct vxge_hw_mempool *mempoolh,
3400         u32 memblock_index, struct vxge_hw_mempool_dma *dma_object,
3401         u32 index, u32 is_last)
3402 {
3403         u32 memblock_item_idx;
3404         struct __vxge_hw_fifo_txdl_priv *txdl_priv;
3405         struct vxge_hw_fifo_txd *txdp =
3406                 (struct vxge_hw_fifo_txd *)mempoolh->items_arr[index];
3407         struct __vxge_hw_fifo *fifo =
3408                         (struct __vxge_hw_fifo *)mempoolh->userdata;
3409         void *memblock = mempoolh->memblocks_arr[memblock_index];
3410
3411         vxge_assert(txdp);
3412
3413         txdp->host_control = (u64) (size_t)
3414         __vxge_hw_mempool_item_priv(mempoolh, memblock_index, txdp,
3415                                         &memblock_item_idx);
3416
3417         txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
3418
3419         vxge_assert(txdl_priv);
3420
3421         fifo->channel.reserve_arr[fifo->channel.reserve_ptr - 1 - index] = txdp;
3422
3423         /* pre-format HW's TxDL's private */
3424         txdl_priv->dma_offset = (char *)txdp - (char *)memblock;
3425         txdl_priv->dma_addr = dma_object->addr + txdl_priv->dma_offset;
3426         txdl_priv->dma_handle = dma_object->handle;
3427         txdl_priv->memblock   = memblock;
3428         txdl_priv->first_txdp = txdp;
3429         txdl_priv->next_txdl_priv = NULL;
3430         txdl_priv->alloc_frags = 0;
3431 }
3432
3433 /*
3434  * __vxge_hw_fifo_create - Create a FIFO
3435  * This function creates FIFO and initializes it.
3436  */
3437 static enum vxge_hw_status
3438 __vxge_hw_fifo_create(struct __vxge_hw_vpath_handle *vp,
3439                       struct vxge_hw_fifo_attr *attr)
3440 {
3441         enum vxge_hw_status status = VXGE_HW_OK;
3442         struct __vxge_hw_fifo *fifo;
3443         struct vxge_hw_fifo_config *config;
3444         u32 txdl_size, txdl_per_memblock;
3445         struct vxge_hw_mempool_cbs fifo_mp_callback;
3446         struct __vxge_hw_virtualpath *vpath;
3447
3448         if ((vp == NULL) || (attr == NULL)) {
3449                 status = VXGE_HW_ERR_INVALID_HANDLE;
3450                 goto exit;
3451         }
3452         vpath = vp->vpath;
3453         config = &vpath->hldev->config.vp_config[vpath->vp_id].fifo;
3454
3455         txdl_size = config->max_frags * sizeof(struct vxge_hw_fifo_txd);
3456
3457         txdl_per_memblock = config->memblock_size / txdl_size;
3458
3459         fifo = (struct __vxge_hw_fifo *)__vxge_hw_channel_allocate(vp,
3460                                         VXGE_HW_CHANNEL_TYPE_FIFO,
3461                                         config->fifo_blocks * txdl_per_memblock,
3462                                         attr->per_txdl_space, attr->userdata);
3463
3464         if (fifo == NULL) {
3465                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
3466                 goto exit;
3467         }
3468
3469         vpath->fifoh = fifo;
3470         fifo->nofl_db = vpath->nofl_db;
3471
3472         fifo->vp_id = vpath->vp_id;
3473         fifo->vp_reg = vpath->vp_reg;
3474         fifo->stats = &vpath->sw_stats->fifo_stats;
3475
3476         fifo->config = config;
3477
3478         /* apply "interrupts per txdl" attribute */
3479         fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ;
3480         fifo->tim_tti_cfg1_saved = vpath->tim_tti_cfg1_saved;
3481         fifo->tim_tti_cfg3_saved = vpath->tim_tti_cfg3_saved;
3482
3483         if (fifo->config->intr)
3484                 fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST;
3485
3486         fifo->no_snoop_bits = config->no_snoop_bits;
3487
3488         /*
3489          * FIFO memory management strategy:
3490          *
3491          * TxDL split into three independent parts:
3492          *      - set of TxD's
3493          *      - TxD HW private part
3494          *      - driver private part
3495          *
3496          * Adaptative memory allocation used. i.e. Memory allocated on
3497          * demand with the size which will fit into one memory block.
3498          * One memory block may contain more than one TxDL.
3499          *
3500          * During "reserve" operations more memory can be allocated on demand
3501          * for example due to FIFO full condition.
3502          *
3503          * Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close
3504          * routine which will essentially stop the channel and free resources.
3505          */
3506
3507         /* TxDL common private size == TxDL private  +  driver private */
3508         fifo->priv_size =
3509                 sizeof(struct __vxge_hw_fifo_txdl_priv) + attr->per_txdl_space;
3510         fifo->priv_size = ((fifo->priv_size  +  VXGE_CACHE_LINE_SIZE - 1) /
3511                         VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
3512
3513         fifo->per_txdl_space = attr->per_txdl_space;
3514
3515         /* recompute txdl size to be cacheline aligned */
3516         fifo->txdl_size = txdl_size;
3517         fifo->txdl_per_memblock = txdl_per_memblock;
3518
3519         fifo->txdl_term = attr->txdl_term;
3520         fifo->callback = attr->callback;
3521
3522         if (fifo->txdl_per_memblock == 0) {
3523                 __vxge_hw_fifo_delete(vp);
3524                 status = VXGE_HW_ERR_INVALID_BLOCK_SIZE;
3525                 goto exit;
3526         }
3527
3528         fifo_mp_callback.item_func_alloc = __vxge_hw_fifo_mempool_item_alloc;
3529
3530         fifo->mempool =
3531                 __vxge_hw_mempool_create(vpath->hldev,
3532                         fifo->config->memblock_size,
3533                         fifo->txdl_size,
3534                         fifo->priv_size,
3535                         (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
3536                         (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
3537                         &fifo_mp_callback,
3538                         fifo);
3539
3540         if (fifo->mempool == NULL) {
3541                 __vxge_hw_fifo_delete(vp);
3542                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
3543                 goto exit;
3544         }
3545
3546         status = __vxge_hw_channel_initialize(&fifo->channel);
3547         if (status != VXGE_HW_OK) {
3548                 __vxge_hw_fifo_delete(vp);
3549                 goto exit;
3550         }
3551
3552         vxge_assert(fifo->channel.reserve_ptr);
3553 exit:
3554         return status;
3555 }
3556
3557 /*
3558  * __vxge_hw_vpath_pci_read - Read the content of given address
3559  *                          in pci config space.
3560  * Read from the vpath pci config space.
3561  */
3562 static enum vxge_hw_status
3563 __vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath *vpath,
3564                          u32 phy_func_0, u32 offset, u32 *val)
3565 {
3566         u64 val64;
3567         enum vxge_hw_status status = VXGE_HW_OK;
3568         struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
3569
3570         val64 = VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset);
3571
3572         if (phy_func_0)
3573                 val64 |= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0;
3574
3575         writeq(val64, &vp_reg->pci_config_access_cfg1);
3576         wmb();
3577         writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ,
3578                         &vp_reg->pci_config_access_cfg2);
3579         wmb();
3580
3581         status = __vxge_hw_device_register_poll(
3582                         &vp_reg->pci_config_access_cfg2,
3583                         VXGE_HW_INTR_MASK_ALL, VXGE_HW_DEF_DEVICE_POLL_MILLIS);
3584
3585         if (status != VXGE_HW_OK)
3586                 goto exit;
3587
3588         val64 = readq(&vp_reg->pci_config_access_status);
3589
3590         if (val64 & VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR) {
3591                 status = VXGE_HW_FAIL;
3592                 *val = 0;
3593         } else
3594                 *val = (u32)vxge_bVALn(val64, 32, 32);
3595 exit:
3596         return status;
3597 }
3598
3599 /**
3600  * vxge_hw_device_flick_link_led - Flick (blink) link LED.
3601  * @hldev: HW device.
3602  * @on_off: TRUE if flickering to be on, FALSE to be off
3603  *
3604  * Flicker the link LED.
3605  */
3606 enum vxge_hw_status
3607 vxge_hw_device_flick_link_led(struct __vxge_hw_device *hldev, u64 on_off)
3608 {
3609         struct __vxge_hw_virtualpath *vpath;
3610         u64 data0, data1 = 0, steer_ctrl = 0;
3611         enum vxge_hw_status status;
3612
3613         if (hldev == NULL) {
3614                 status = VXGE_HW_ERR_INVALID_DEVICE;
3615                 goto exit;
3616         }
3617
3618         vpath = &hldev->virtual_paths[hldev->first_vp_id];
3619
3620         data0 = on_off;
3621         status = vxge_hw_vpath_fw_api(vpath,
3622                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL,
3623                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
3624                         0, &data0, &data1, &steer_ctrl);
3625 exit:
3626         return status;
3627 }
3628
3629 /*
3630  * __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables
3631  */
3632 enum vxge_hw_status
3633 __vxge_hw_vpath_rts_table_get(struct __vxge_hw_vpath_handle *vp,
3634                               u32 action, u32 rts_table, u32 offset,
3635                               u64 *data0, u64 *data1)
3636 {
3637         enum vxge_hw_status status;
3638         u64 steer_ctrl = 0;
3639
3640         if (vp == NULL) {
3641                 status = VXGE_HW_ERR_INVALID_HANDLE;
3642                 goto exit;
3643         }
3644
3645         if ((rts_table ==
3646              VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT) ||
3647             (rts_table ==
3648              VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT) ||
3649             (rts_table ==
3650              VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK) ||
3651             (rts_table ==
3652              VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY)) {
3653                 steer_ctrl = VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL;
3654         }
3655
3656         status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
3657                                       data0, data1, &steer_ctrl);
3658         if (status != VXGE_HW_OK)
3659                 goto exit;
3660
3661         if ((rts_table != VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) &&
3662             (rts_table !=
3663              VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
3664                 *data1 = 0;
3665 exit:
3666         return status;
3667 }
3668
3669 /*
3670  * __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables
3671  */
3672 enum vxge_hw_status
3673 __vxge_hw_vpath_rts_table_set(struct __vxge_hw_vpath_handle *vp, u32 action,
3674                               u32 rts_table, u32 offset, u64 steer_data0,
3675                               u64 steer_data1)
3676 {
3677         u64 data0, data1 = 0, steer_ctrl = 0;
3678         enum vxge_hw_status status;
3679
3680         if (vp == NULL) {
3681                 status = VXGE_HW_ERR_INVALID_HANDLE;
3682                 goto exit;
3683         }
3684
3685         data0 = steer_data0;
3686
3687         if ((rts_table == VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
3688             (rts_table ==
3689              VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
3690                 data1 = steer_data1;
3691
3692         status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
3693                                       &data0, &data1, &steer_ctrl);
3694 exit:
3695         return status;
3696 }
3697
3698 /*
3699  * vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing.
3700  */
3701 enum vxge_hw_status vxge_hw_vpath_rts_rth_set(
3702                         struct __vxge_hw_vpath_handle *vp,
3703                         enum vxge_hw_rth_algoritms algorithm,
3704                         struct vxge_hw_rth_hash_types *hash_type,
3705                         u16 bucket_size)
3706 {
3707         u64 data0, data1;
3708         enum vxge_hw_status status = VXGE_HW_OK;
3709
3710         if (vp == NULL) {
3711                 status = VXGE_HW_ERR_INVALID_HANDLE;
3712                 goto exit;
3713         }
3714
3715         status = __vxge_hw_vpath_rts_table_get(vp,
3716                      VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
3717                      VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3718                         0, &data0, &data1);
3719         if (status != VXGE_HW_OK)
3720                 goto exit;
3721
3722         data0 &= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) |
3723                         VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3));
3724
3725         data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN |
3726         VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size) |
3727         VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm);
3728
3729         if (hash_type->hash_type_tcpipv4_en)
3730                 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN;
3731
3732         if (hash_type->hash_type_ipv4_en)
3733                 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN;
3734
3735         if (hash_type->hash_type_tcpipv6_en)
3736                 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN;
3737
3738         if (hash_type->hash_type_ipv6_en)
3739                 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN;
3740
3741         if (hash_type->hash_type_tcpipv6ex_en)
3742                 data0 |=
3743                 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN;
3744
3745         if (hash_type->hash_type_ipv6ex_en)
3746                 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN;
3747
3748         if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0))
3749                 data0 &= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3750         else
3751                 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3752
3753         status = __vxge_hw_vpath_rts_table_set(vp,
3754                 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY,
3755                 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3756                 0, data0, 0);
3757 exit:
3758         return status;
3759 }
3760
3761 static void
3762 vxge_hw_rts_rth_data0_data1_get(u32 j, u64 *data0, u64 *data1,
3763                                 u16 flag, u8 *itable)
3764 {
3765         switch (flag) {
3766         case 1:
3767                 *data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j)|
3768                         VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN |
3769                         VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA(
3770                         itable[j]);
3771                 fallthrough;
3772         case 2:
3773                 *data0 |=
3774                         VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j)|
3775                         VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN |
3776                         VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA(
3777                         itable[j]);
3778                 fallthrough;
3779         case 3:
3780                 *data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j)|
3781                         VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN |
3782                         VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA(
3783                         itable[j]);
3784                 fallthrough;
3785         case 4:
3786                 *data1 |=
3787                         VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j)|
3788                         VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN |
3789                         VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA(
3790                         itable[j]);
3791         default:
3792                 return;
3793         }
3794 }
3795 /*
3796  * vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT).
3797  */
3798 enum vxge_hw_status vxge_hw_vpath_rts_rth_itable_set(
3799                         struct __vxge_hw_vpath_handle **vpath_handles,
3800                         u32 vpath_count,
3801                         u8 *mtable,
3802                         u8 *itable,
3803                         u32 itable_size)
3804 {
3805         u32 i, j, action, rts_table;
3806         u64 data0;
3807         u64 data1;
3808         u32 max_entries;
3809         enum vxge_hw_status status = VXGE_HW_OK;
3810         struct __vxge_hw_vpath_handle *vp = vpath_handles[0];
3811
3812         if (vp == NULL) {
3813                 status = VXGE_HW_ERR_INVALID_HANDLE;
3814                 goto exit;
3815         }
3816
3817         max_entries = (((u32)1) << itable_size);
3818
3819         if (vp->vpath->hldev->config.rth_it_type
3820                                 == VXGE_HW_RTH_IT_TYPE_SOLO_IT) {
3821                 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3822                 rts_table =
3823                         VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT;
3824
3825                 for (j = 0; j < max_entries; j++) {
3826
3827                         data1 = 0;
3828
3829                         data0 =
3830                         VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3831                                 itable[j]);
3832
3833                         status = __vxge_hw_vpath_rts_table_set(vpath_handles[0],
3834                                 action, rts_table, j, data0, data1);
3835
3836                         if (status != VXGE_HW_OK)
3837                                 goto exit;
3838                 }
3839
3840                 for (j = 0; j < max_entries; j++) {
3841
3842                         data1 = 0;
3843
3844                         data0 =
3845                         VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN |
3846                         VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3847                                 itable[j]);
3848
3849                         status = __vxge_hw_vpath_rts_table_set(
3850                                 vpath_handles[mtable[itable[j]]], action,
3851                                 rts_table, j, data0, data1);
3852
3853                         if (status != VXGE_HW_OK)
3854                                 goto exit;
3855                 }
3856         } else {
3857                 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3858                 rts_table =
3859                         VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT;
3860                 for (i = 0; i < vpath_count; i++) {
3861
3862                         for (j = 0; j < max_entries;) {
3863
3864                                 data0 = 0;
3865                                 data1 = 0;
3866
3867                                 while (j < max_entries) {
3868                                         if (mtable[itable[j]] != i) {
3869                                                 j++;
3870                                                 continue;
3871                                         }
3872                                         vxge_hw_rts_rth_data0_data1_get(j,
3873                                                 &data0, &data1, 1, itable);
3874                                         j++;
3875                                         break;
3876                                 }
3877
3878                                 while (j < max_entries) {
3879                                         if (mtable[itable[j]] != i) {
3880                                                 j++;
3881                                                 continue;
3882                                         }
3883                                         vxge_hw_rts_rth_data0_data1_get(j,
3884                                                 &data0, &data1, 2, itable);
3885                                         j++;
3886                                         break;
3887                                 }
3888
3889                                 while (j < max_entries) {
3890                                         if (mtable[itable[j]] != i) {
3891                                                 j++;
3892                                                 continue;
3893                                         }
3894                                         vxge_hw_rts_rth_data0_data1_get(j,
3895                                                 &data0, &data1, 3, itable);
3896                                         j++;
3897                                         break;
3898                                 }
3899
3900                                 while (j < max_entries) {
3901                                         if (mtable[itable[j]] != i) {
3902                                                 j++;
3903                                                 continue;
3904                                         }
3905                                         vxge_hw_rts_rth_data0_data1_get(j,
3906                                                 &data0, &data1, 4, itable);
3907                                         j++;
3908                                         break;
3909                                 }
3910
3911                                 if (data0 != 0) {
3912                                         status = __vxge_hw_vpath_rts_table_set(
3913                                                         vpath_handles[i],
3914                                                         action, rts_table,
3915                                                         0, data0, data1);
3916
3917                                         if (status != VXGE_HW_OK)
3918                                                 goto exit;
3919                                 }
3920                         }
3921                 }
3922         }
3923 exit:
3924         return status;
3925 }
3926
3927 /**
3928  * vxge_hw_vpath_check_leak - Check for memory leak
3929  * @ringh: Handle to the ring object used for receive
3930  *
3931  * If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to
3932  * PRC_CFG6_VPn.RXD_SPAT then a leak has occurred.
3933  * Returns: VXGE_HW_FAIL, if leak has occurred.
3934  *
3935  */
3936 enum vxge_hw_status
3937 vxge_hw_vpath_check_leak(struct __vxge_hw_ring *ring)
3938 {
3939         enum vxge_hw_status status = VXGE_HW_OK;
3940         u64 rxd_new_count, rxd_spat;
3941
3942         if (ring == NULL)
3943                 return status;
3944
3945         rxd_new_count = readl(&ring->vp_reg->prc_rxd_doorbell);
3946         rxd_spat = readq(&ring->vp_reg->prc_cfg6);
3947         rxd_spat = VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat);
3948
3949         if (rxd_new_count >= rxd_spat)
3950                 status = VXGE_HW_FAIL;
3951
3952         return status;
3953 }
3954
3955 /*
3956  * __vxge_hw_vpath_mgmt_read
3957  * This routine reads the vpath_mgmt registers
3958  */
3959 static enum vxge_hw_status
3960 __vxge_hw_vpath_mgmt_read(
3961         struct __vxge_hw_device *hldev,
3962         struct __vxge_hw_virtualpath *vpath)
3963 {
3964         u32 i, mtu = 0, max_pyld = 0;
3965         u64 val64;
3966
3967         for (i = 0; i < VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
3968
3969                 val64 = readq(&vpath->vpmgmt_reg->
3970                                 rxmac_cfg0_port_vpmgmt_clone[i]);
3971                 max_pyld =
3972                         (u32)
3973                         VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN
3974                         (val64);
3975                 if (mtu < max_pyld)
3976                         mtu = max_pyld;
3977         }
3978
3979         vpath->max_mtu = mtu + VXGE_HW_MAC_HEADER_MAX_SIZE;
3980
3981         val64 = readq(&vpath->vpmgmt_reg->xmac_vsport_choices_vp);
3982
3983         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3984                 if (val64 & vxge_mBIT(i))
3985                         vpath->vsport_number = i;
3986         }
3987
3988         val64 = readq(&vpath->vpmgmt_reg->xgmac_gen_status_vpmgmt_clone);
3989
3990         if (val64 & VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK)
3991                 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_UP);
3992         else
3993                 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_DOWN);
3994
3995         return VXGE_HW_OK;
3996 }
3997
3998 /*
3999  * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed
4000  * This routine checks the vpath_rst_in_prog register to see if
4001  * adapter completed the reset process for the vpath
4002  */
4003 static enum vxge_hw_status
4004 __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath)
4005 {
4006         enum vxge_hw_status status;
4007
4008         status = __vxge_hw_device_register_poll(
4009                         &vpath->hldev->common_reg->vpath_rst_in_prog,
4010                         VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(
4011                                 1 << (16 - vpath->vp_id)),
4012                         vpath->hldev->config.device_poll_millis);
4013
4014         return status;
4015 }
4016
4017 /*
4018  * __vxge_hw_vpath_reset
4019  * This routine resets the vpath on the device
4020  */
4021 static enum vxge_hw_status
4022 __vxge_hw_vpath_reset(struct __vxge_hw_device *hldev, u32 vp_id)
4023 {
4024         u64 val64;
4025
4026         val64 = VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id));
4027
4028         __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
4029                                 &hldev->common_reg->cmn_rsthdlr_cfg0);
4030
4031         return VXGE_HW_OK;
4032 }
4033
4034 /*
4035  * __vxge_hw_vpath_sw_reset
4036  * This routine resets the vpath structures
4037  */
4038 static enum vxge_hw_status
4039 __vxge_hw_vpath_sw_reset(struct __vxge_hw_device *hldev, u32 vp_id)
4040 {
4041         enum vxge_hw_status status = VXGE_HW_OK;
4042         struct __vxge_hw_virtualpath *vpath;
4043
4044         vpath = &hldev->virtual_paths[vp_id];
4045
4046         if (vpath->ringh) {
4047                 status = __vxge_hw_ring_reset(vpath->ringh);
4048                 if (status != VXGE_HW_OK)
4049                         goto exit;
4050         }
4051
4052         if (vpath->fifoh)
4053                 status = __vxge_hw_fifo_reset(vpath->fifoh);
4054 exit:
4055         return status;
4056 }
4057
4058 /*
4059  * __vxge_hw_vpath_prc_configure
4060  * This routine configures the prc registers of virtual path using the config
4061  * passed
4062  */
4063 static void
4064 __vxge_hw_vpath_prc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4065 {
4066         u64 val64;
4067         struct __vxge_hw_virtualpath *vpath;
4068         struct vxge_hw_vp_config *vp_config;
4069         struct vxge_hw_vpath_reg __iomem *vp_reg;
4070
4071         vpath = &hldev->virtual_paths[vp_id];
4072         vp_reg = vpath->vp_reg;
4073         vp_config = vpath->vp_config;
4074
4075         if (vp_config->ring.enable == VXGE_HW_RING_DISABLE)
4076                 return;
4077
4078         val64 = readq(&vp_reg->prc_cfg1);
4079         val64 |= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE;
4080         writeq(val64, &vp_reg->prc_cfg1);
4081
4082         val64 = readq(&vpath->vp_reg->prc_cfg6);
4083         val64 |= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN;
4084         writeq(val64, &vpath->vp_reg->prc_cfg6);
4085
4086         val64 = readq(&vp_reg->prc_cfg7);
4087
4088         if (vpath->vp_config->ring.scatter_mode !=
4089                 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT) {
4090
4091                 val64 &= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3);
4092
4093                 switch (vpath->vp_config->ring.scatter_mode) {
4094                 case VXGE_HW_RING_SCATTER_MODE_A:
4095                         val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4096                                         VXGE_HW_PRC_CFG7_SCATTER_MODE_A);
4097                         break;
4098                 case VXGE_HW_RING_SCATTER_MODE_B:
4099                         val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4100                                         VXGE_HW_PRC_CFG7_SCATTER_MODE_B);
4101                         break;
4102                 case VXGE_HW_RING_SCATTER_MODE_C:
4103                         val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4104                                         VXGE_HW_PRC_CFG7_SCATTER_MODE_C);
4105                         break;
4106                 }
4107         }
4108
4109         writeq(val64, &vp_reg->prc_cfg7);
4110
4111         writeq(VXGE_HW_PRC_CFG5_RXD0_ADD(
4112                                 __vxge_hw_ring_first_block_address_get(
4113                                         vpath->ringh) >> 3), &vp_reg->prc_cfg5);
4114
4115         val64 = readq(&vp_reg->prc_cfg4);
4116         val64 |= VXGE_HW_PRC_CFG4_IN_SVC;
4117         val64 &= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3);
4118
4119         val64 |= VXGE_HW_PRC_CFG4_RING_MODE(
4120                         VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER);
4121
4122         if (hldev->config.rth_en == VXGE_HW_RTH_DISABLE)
4123                 val64 |= VXGE_HW_PRC_CFG4_RTH_DISABLE;
4124         else
4125                 val64 &= ~VXGE_HW_PRC_CFG4_RTH_DISABLE;
4126
4127         writeq(val64, &vp_reg->prc_cfg4);
4128 }
4129
4130 /*
4131  * __vxge_hw_vpath_kdfc_configure
4132  * This routine configures the kdfc registers of virtual path using the
4133  * config passed
4134  */
4135 static enum vxge_hw_status
4136 __vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4137 {
4138         u64 val64;
4139         u64 vpath_stride;
4140         enum vxge_hw_status status = VXGE_HW_OK;
4141         struct __vxge_hw_virtualpath *vpath;
4142         struct vxge_hw_vpath_reg __iomem *vp_reg;
4143
4144         vpath = &hldev->virtual_paths[vp_id];
4145         vp_reg = vpath->vp_reg;
4146         status = __vxge_hw_kdfc_swapper_set(hldev->legacy_reg, vp_reg);
4147
4148         if (status != VXGE_HW_OK)
4149                 goto exit;
4150
4151         val64 = readq(&vp_reg->kdfc_drbl_triplet_total);
4152
4153         vpath->max_kdfc_db =
4154                 (u32)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE(
4155                         val64+1)/2;
4156
4157         if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4158
4159                 vpath->max_nofl_db = vpath->max_kdfc_db;
4160
4161                 if (vpath->max_nofl_db <
4162                         ((vpath->vp_config->fifo.memblock_size /
4163                         (vpath->vp_config->fifo.max_frags *
4164                         sizeof(struct vxge_hw_fifo_txd))) *
4165                         vpath->vp_config->fifo.fifo_blocks)) {
4166
4167                         return VXGE_HW_BADCFG_FIFO_BLOCKS;
4168                 }
4169                 val64 = VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0(
4170                                 (vpath->max_nofl_db*2)-1);
4171         }
4172
4173         writeq(val64, &vp_reg->kdfc_fifo_trpl_partition);
4174
4175         writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE,
4176                 &vp_reg->kdfc_fifo_trpl_ctrl);
4177
4178         val64 = readq(&vp_reg->kdfc_trpl_fifo_0_ctrl);
4179
4180         val64 &= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) |
4181                    VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF));
4182
4183         val64 |= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(
4184                  VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY) |
4185 #ifndef __BIG_ENDIAN
4186                  VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN |
4187 #endif
4188                  VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0);
4189
4190         writeq(val64, &vp_reg->kdfc_trpl_fifo_0_ctrl);
4191         writeq((u64)0, &vp_reg->kdfc_trpl_fifo_0_wb_address);
4192         wmb();
4193         vpath_stride = readq(&hldev->toc_reg->toc_kdfc_vpath_stride);
4194
4195         vpath->nofl_db =
4196                 (struct __vxge_hw_non_offload_db_wrapper __iomem *)
4197                 (hldev->kdfc + (vp_id *
4198                 VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE(
4199                                         vpath_stride)));
4200 exit:
4201         return status;
4202 }
4203
4204 /*
4205  * __vxge_hw_vpath_mac_configure
4206  * This routine configures the mac of virtual path using the config passed
4207  */
4208 static enum vxge_hw_status
4209 __vxge_hw_vpath_mac_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4210 {
4211         u64 val64;
4212         struct __vxge_hw_virtualpath *vpath;
4213         struct vxge_hw_vp_config *vp_config;
4214         struct vxge_hw_vpath_reg __iomem *vp_reg;
4215
4216         vpath = &hldev->virtual_paths[vp_id];
4217         vp_reg = vpath->vp_reg;
4218         vp_config = vpath->vp_config;
4219
4220         writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER(
4221                         vpath->vsport_number), &vp_reg->xmac_vsport_choice);
4222
4223         if (vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4224
4225                 val64 = readq(&vp_reg->xmac_rpa_vcfg);
4226
4227                 if (vp_config->rpa_strip_vlan_tag !=
4228                         VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) {
4229                         if (vp_config->rpa_strip_vlan_tag)
4230                                 val64 |= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
4231                         else
4232                                 val64 &= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
4233                 }
4234
4235                 writeq(val64, &vp_reg->xmac_rpa_vcfg);
4236                 val64 = readq(&vp_reg->rxmac_vcfg0);
4237
4238                 if (vp_config->mtu !=
4239                                 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) {
4240                         val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4241                         if ((vp_config->mtu  +
4242                                 VXGE_HW_MAC_HEADER_MAX_SIZE) < vpath->max_mtu)
4243                                 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4244                                         vp_config->mtu  +
4245                                         VXGE_HW_MAC_HEADER_MAX_SIZE);
4246                         else
4247                                 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4248                                         vpath->max_mtu);
4249                 }
4250
4251                 writeq(val64, &vp_reg->rxmac_vcfg0);
4252
4253                 val64 = readq(&vp_reg->rxmac_vcfg1);
4254
4255                 val64 &= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) |
4256                         VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE);
4257
4258                 if (hldev->config.rth_it_type ==
4259                                 VXGE_HW_RTH_IT_TYPE_MULTI_IT) {
4260                         val64 |= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(
4261                                 0x2) |
4262                                 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE;
4263                 }
4264
4265                 writeq(val64, &vp_reg->rxmac_vcfg1);
4266         }
4267         return VXGE_HW_OK;
4268 }
4269
4270 /*
4271  * __vxge_hw_vpath_tim_configure
4272  * This routine configures the tim registers of virtual path using the config
4273  * passed
4274  */
4275 static enum vxge_hw_status
4276 __vxge_hw_vpath_tim_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4277 {
4278         u64 val64;
4279         struct __vxge_hw_virtualpath *vpath;
4280         struct vxge_hw_vpath_reg __iomem *vp_reg;
4281         struct vxge_hw_vp_config *config;
4282
4283         vpath = &hldev->virtual_paths[vp_id];
4284         vp_reg = vpath->vp_reg;
4285         config = vpath->vp_config;
4286
4287         writeq(0, &vp_reg->tim_dest_addr);
4288         writeq(0, &vp_reg->tim_vpath_map);
4289         writeq(0, &vp_reg->tim_bitmap);
4290         writeq(0, &vp_reg->tim_remap);
4291
4292         if (config->ring.enable == VXGE_HW_RING_ENABLE)
4293                 writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM(
4294                         (vp_id * VXGE_HW_MAX_INTR_PER_VP) +
4295                         VXGE_HW_VPATH_INTR_RX), &vp_reg->tim_ring_assn);
4296
4297         val64 = readq(&vp_reg->tim_pci_cfg);
4298         val64 |= VXGE_HW_TIM_PCI_CFG_ADD_PAD;
4299         writeq(val64, &vp_reg->tim_pci_cfg);
4300
4301         if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4302
4303                 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
4304
4305                 if (config->tti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4306                         val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4307                                 0x3ffffff);
4308                         val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4309                                         config->tti.btimer_val);
4310                 }
4311
4312                 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
4313
4314                 if (config->tti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
4315                         if (config->tti.timer_ac_en)
4316                                 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4317                         else
4318                                 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4319                 }
4320
4321                 if (config->tti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
4322                         if (config->tti.timer_ci_en)
4323                                 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4324                         else
4325                                 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4326                 }
4327
4328                 if (config->tti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
4329                         val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4330                         val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4331                                         config->tti.urange_a);
4332                 }
4333
4334                 if (config->tti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
4335                         val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4336                         val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4337                                         config->tti.urange_b);
4338                 }
4339
4340                 if (config->tti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
4341                         val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4342                         val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4343                                         config->tti.urange_c);
4344                 }
4345
4346                 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
4347                 vpath->tim_tti_cfg1_saved = val64;
4348
4349                 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
4350
4351                 if (config->tti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
4352                         val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4353                         val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4354                                                 config->tti.uec_a);
4355                 }
4356
4357                 if (config->tti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
4358                         val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4359                         val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4360                                                 config->tti.uec_b);
4361                 }
4362
4363                 if (config->tti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
4364                         val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4365                         val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4366                                                 config->tti.uec_c);
4367                 }
4368
4369                 if (config->tti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
4370                         val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4371                         val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4372                                                 config->tti.uec_d);
4373                 }
4374
4375                 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
4376                 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
4377
4378                 if (config->tti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
4379                         if (config->tti.timer_ri_en)
4380                                 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4381                         else
4382                                 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4383                 }
4384
4385                 if (config->tti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4386                         val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4387                                         0x3ffffff);
4388                         val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4389                                         config->tti.rtimer_val);
4390                 }
4391
4392                 if (config->tti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
4393                         val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4394                         val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
4395                 }
4396
4397                 if (config->tti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4398                         val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4399                                         0x3ffffff);
4400                         val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4401                                         config->tti.ltimer_val);
4402                 }
4403
4404                 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
4405                 vpath->tim_tti_cfg3_saved = val64;
4406         }
4407
4408         if (config->ring.enable == VXGE_HW_RING_ENABLE) {
4409
4410                 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
4411
4412                 if (config->rti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4413                         val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4414                                         0x3ffffff);
4415                         val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4416                                         config->rti.btimer_val);
4417                 }
4418
4419                 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
4420
4421                 if (config->rti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
4422                         if (config->rti.timer_ac_en)
4423                                 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4424                         else
4425                                 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4426                 }
4427
4428                 if (config->rti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
4429                         if (config->rti.timer_ci_en)
4430                                 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4431                         else
4432                                 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4433                 }
4434
4435                 if (config->rti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
4436                         val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4437                         val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4438                                         config->rti.urange_a);
4439                 }
4440
4441                 if (config->rti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
4442                         val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4443                         val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4444                                         config->rti.urange_b);
4445                 }
4446
4447                 if (config->rti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
4448                         val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4449                         val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4450                                         config->rti.urange_c);
4451                 }
4452
4453                 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
4454                 vpath->tim_rti_cfg1_saved = val64;
4455
4456                 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4457
4458                 if (config->rti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
4459                         val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4460                         val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4461                                                 config->rti.uec_a);
4462                 }
4463
4464                 if (config->rti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
4465                         val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4466                         val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4467                                                 config->rti.uec_b);
4468                 }
4469
4470                 if (config->rti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
4471                         val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4472                         val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4473                                                 config->rti.uec_c);
4474                 }
4475
4476                 if (config->rti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
4477                         val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4478                         val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4479                                                 config->rti.uec_d);
4480                 }
4481
4482                 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4483                 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4484
4485                 if (config->rti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
4486                         if (config->rti.timer_ri_en)
4487                                 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4488                         else
4489                                 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4490                 }
4491
4492                 if (config->rti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4493                         val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4494                                         0x3ffffff);
4495                         val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4496                                         config->rti.rtimer_val);
4497                 }
4498
4499                 if (config->rti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
4500                         val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4501                         val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
4502                 }
4503
4504                 if (config->rti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4505                         val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4506                                         0x3ffffff);
4507                         val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4508                                         config->rti.ltimer_val);
4509                 }
4510
4511                 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4512                 vpath->tim_rti_cfg3_saved = val64;
4513         }
4514
4515         val64 = 0;
4516         writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4517         writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4518         writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4519         writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4520         writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4521         writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4522
4523         val64 = VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_PRD(150);
4524         val64 |= VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_DIV(0);
4525         val64 |= VXGE_HW_TIM_WRKLD_CLC_CNT_RX_TX(3);
4526         writeq(val64, &vp_reg->tim_wrkld_clc);
4527
4528         return VXGE_HW_OK;
4529 }
4530
4531 /*
4532  * __vxge_hw_vpath_initialize
4533  * This routine is the final phase of init which initializes the
4534  * registers of the vpath using the configuration passed.
4535  */
4536 static enum vxge_hw_status
4537 __vxge_hw_vpath_initialize(struct __vxge_hw_device *hldev, u32 vp_id)
4538 {
4539         u64 val64;
4540         u32 val32;
4541         enum vxge_hw_status status = VXGE_HW_OK;
4542         struct __vxge_hw_virtualpath *vpath;
4543         struct vxge_hw_vpath_reg __iomem *vp_reg;
4544
4545         vpath = &hldev->virtual_paths[vp_id];
4546
4547         if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4548                 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4549                 goto exit;
4550         }
4551         vp_reg = vpath->vp_reg;
4552
4553         status =  __vxge_hw_vpath_swapper_set(vpath->vp_reg);
4554         if (status != VXGE_HW_OK)
4555                 goto exit;
4556
4557         status =  __vxge_hw_vpath_mac_configure(hldev, vp_id);
4558         if (status != VXGE_HW_OK)
4559                 goto exit;
4560
4561         status =  __vxge_hw_vpath_kdfc_configure(hldev, vp_id);
4562         if (status != VXGE_HW_OK)
4563                 goto exit;
4564
4565         status = __vxge_hw_vpath_tim_configure(hldev, vp_id);
4566         if (status != VXGE_HW_OK)
4567                 goto exit;
4568
4569         val64 = readq(&vp_reg->rtdma_rd_optimization_ctrl);
4570
4571         /* Get MRRS value from device control */
4572         status  = __vxge_hw_vpath_pci_read(vpath, 1, 0x78, &val32);
4573         if (status == VXGE_HW_OK) {
4574                 val32 = (val32 & VXGE_HW_PCI_EXP_DEVCTL_READRQ) >> 12;
4575                 val64 &=
4576                     ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7));
4577                 val64 |=
4578                     VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32);
4579
4580                 val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE;
4581         }
4582
4583         val64 &= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7));
4584         val64 |=
4585             VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(
4586                     VXGE_HW_MAX_PAYLOAD_SIZE_512);
4587
4588         val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN;
4589         writeq(val64, &vp_reg->rtdma_rd_optimization_ctrl);
4590
4591 exit:
4592         return status;
4593 }
4594
4595 /*
4596  * __vxge_hw_vp_terminate - Terminate Virtual Path structure
4597  * This routine closes all channels it opened and freeup memory
4598  */
4599 static void __vxge_hw_vp_terminate(struct __vxge_hw_device *hldev, u32 vp_id)
4600 {
4601         struct __vxge_hw_virtualpath *vpath;
4602
4603         vpath = &hldev->virtual_paths[vp_id];
4604
4605         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN)
4606                 goto exit;
4607
4608         VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath->hldev->tim_int_mask0,
4609                 vpath->hldev->tim_int_mask1, vpath->vp_id);
4610         hldev->stats.hw_dev_info_stats.vpath_info[vpath->vp_id] = NULL;
4611
4612         /* If the whole struct __vxge_hw_virtualpath is zeroed, nothing will
4613          * work after the interface is brought down.
4614          */
4615         spin_lock(&vpath->lock);
4616         vpath->vp_open = VXGE_HW_VP_NOT_OPEN;
4617         spin_unlock(&vpath->lock);
4618
4619         vpath->vpmgmt_reg = NULL;
4620         vpath->nofl_db = NULL;
4621         vpath->max_mtu = 0;
4622         vpath->vsport_number = 0;
4623         vpath->max_kdfc_db = 0;
4624         vpath->max_nofl_db = 0;
4625         vpath->ringh = NULL;
4626         vpath->fifoh = NULL;
4627         memset(&vpath->vpath_handles, 0, sizeof(struct list_head));
4628         vpath->stats_block = NULL;
4629         vpath->hw_stats = NULL;
4630         vpath->hw_stats_sav = NULL;
4631         vpath->sw_stats = NULL;
4632
4633 exit:
4634         return;
4635 }
4636
4637 /*
4638  * __vxge_hw_vp_initialize - Initialize Virtual Path structure
4639  * This routine is the initial phase of init which resets the vpath and
4640  * initializes the software support structures.
4641  */
4642 static enum vxge_hw_status
4643 __vxge_hw_vp_initialize(struct __vxge_hw_device *hldev, u32 vp_id,
4644                         struct vxge_hw_vp_config *config)
4645 {
4646         struct __vxge_hw_virtualpath *vpath;
4647         enum vxge_hw_status status = VXGE_HW_OK;
4648
4649         if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4650                 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4651                 goto exit;
4652         }
4653
4654         vpath = &hldev->virtual_paths[vp_id];
4655
4656         spin_lock_init(&vpath->lock);
4657         vpath->vp_id = vp_id;
4658         vpath->vp_open = VXGE_HW_VP_OPEN;
4659         vpath->hldev = hldev;
4660         vpath->vp_config = config;
4661         vpath->vp_reg = hldev->vpath_reg[vp_id];
4662         vpath->vpmgmt_reg = hldev->vpmgmt_reg[vp_id];
4663
4664         __vxge_hw_vpath_reset(hldev, vp_id);
4665
4666         status = __vxge_hw_vpath_reset_check(vpath);
4667         if (status != VXGE_HW_OK) {
4668                 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4669                 goto exit;
4670         }
4671
4672         status = __vxge_hw_vpath_mgmt_read(hldev, vpath);
4673         if (status != VXGE_HW_OK) {
4674                 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4675                 goto exit;
4676         }
4677
4678         INIT_LIST_HEAD(&vpath->vpath_handles);
4679
4680         vpath->sw_stats = &hldev->stats.sw_dev_info_stats.vpath_info[vp_id];
4681
4682         VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev->tim_int_mask0,
4683                 hldev->tim_int_mask1, vp_id);
4684
4685         status = __vxge_hw_vpath_initialize(hldev, vp_id);
4686         if (status != VXGE_HW_OK)
4687                 __vxge_hw_vp_terminate(hldev, vp_id);
4688 exit:
4689         return status;
4690 }
4691
4692 /*
4693  * vxge_hw_vpath_mtu_set - Set MTU.
4694  * Set new MTU value. Example, to use jumbo frames:
4695  * vxge_hw_vpath_mtu_set(my_device, 9600);
4696  */
4697 enum vxge_hw_status
4698 vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle *vp, u32 new_mtu)
4699 {
4700         u64 val64;
4701         enum vxge_hw_status status = VXGE_HW_OK;
4702         struct __vxge_hw_virtualpath *vpath;
4703
4704         if (vp == NULL) {
4705                 status = VXGE_HW_ERR_INVALID_HANDLE;
4706                 goto exit;
4707         }
4708         vpath = vp->vpath;
4709
4710         new_mtu += VXGE_HW_MAC_HEADER_MAX_SIZE;
4711
4712         if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > vpath->max_mtu))
4713                 status = VXGE_HW_ERR_INVALID_MTU_SIZE;
4714
4715         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
4716
4717         val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4718         val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu);
4719
4720         writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
4721
4722         vpath->vp_config->mtu = new_mtu - VXGE_HW_MAC_HEADER_MAX_SIZE;
4723
4724 exit:
4725         return status;
4726 }
4727
4728 /*
4729  * vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics.
4730  * Enable the DMA vpath statistics. The function is to be called to re-enable
4731  * the adapter to update stats into the host memory
4732  */
4733 static enum vxge_hw_status
4734 vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle *vp)
4735 {
4736         enum vxge_hw_status status = VXGE_HW_OK;
4737         struct __vxge_hw_virtualpath *vpath;
4738
4739         vpath = vp->vpath;
4740
4741         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4742                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4743                 goto exit;
4744         }
4745
4746         memcpy(vpath->hw_stats_sav, vpath->hw_stats,
4747                         sizeof(struct vxge_hw_vpath_stats_hw_info));
4748
4749         status = __vxge_hw_vpath_stats_get(vpath, vpath->hw_stats);
4750 exit:
4751         return status;
4752 }
4753
4754 /*
4755  * __vxge_hw_blockpool_block_allocate - Allocates a block from block pool
4756  * This function allocates a block from block pool or from the system
4757  */
4758 static struct __vxge_hw_blockpool_entry *
4759 __vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *devh, u32 size)
4760 {
4761         struct __vxge_hw_blockpool_entry *entry = NULL;
4762         struct __vxge_hw_blockpool  *blockpool;
4763
4764         blockpool = &devh->block_pool;
4765
4766         if (size == blockpool->block_size) {
4767
4768                 if (!list_empty(&blockpool->free_block_list))
4769                         entry = (struct __vxge_hw_blockpool_entry *)
4770                                 list_first_entry(&blockpool->free_block_list,
4771                                         struct __vxge_hw_blockpool_entry,
4772                                         item);
4773
4774                 if (entry != NULL) {
4775                         list_del(&entry->item);
4776                         blockpool->pool_size--;
4777                 }
4778         }
4779
4780         if (entry != NULL)
4781                 __vxge_hw_blockpool_blocks_add(blockpool);
4782
4783         return entry;
4784 }
4785
4786 /*
4787  * vxge_hw_vpath_open - Open a virtual path on a given adapter
4788  * This function is used to open access to virtual path of an
4789  * adapter for offload, GRO operations. This function returns
4790  * synchronously.
4791  */
4792 enum vxge_hw_status
4793 vxge_hw_vpath_open(struct __vxge_hw_device *hldev,
4794                    struct vxge_hw_vpath_attr *attr,
4795                    struct __vxge_hw_vpath_handle **vpath_handle)
4796 {
4797         struct __vxge_hw_virtualpath *vpath;
4798         struct __vxge_hw_vpath_handle *vp;
4799         enum vxge_hw_status status;
4800
4801         vpath = &hldev->virtual_paths[attr->vp_id];
4802
4803         if (vpath->vp_open == VXGE_HW_VP_OPEN) {
4804                 status = VXGE_HW_ERR_INVALID_STATE;
4805                 goto vpath_open_exit1;
4806         }
4807
4808         status = __vxge_hw_vp_initialize(hldev, attr->vp_id,
4809                         &hldev->config.vp_config[attr->vp_id]);
4810         if (status != VXGE_HW_OK)
4811                 goto vpath_open_exit1;
4812
4813         vp = vzalloc(sizeof(struct __vxge_hw_vpath_handle));
4814         if (vp == NULL) {
4815                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4816                 goto vpath_open_exit2;
4817         }
4818
4819         vp->vpath = vpath;
4820
4821         if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4822                 status = __vxge_hw_fifo_create(vp, &attr->fifo_attr);
4823                 if (status != VXGE_HW_OK)
4824                         goto vpath_open_exit6;
4825         }
4826
4827         if (vpath->vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4828                 status = __vxge_hw_ring_create(vp, &attr->ring_attr);
4829                 if (status != VXGE_HW_OK)
4830                         goto vpath_open_exit7;
4831
4832                 __vxge_hw_vpath_prc_configure(hldev, attr->vp_id);
4833         }
4834
4835         vpath->fifoh->tx_intr_num =
4836                 (attr->vp_id * VXGE_HW_MAX_INTR_PER_VP)  +
4837                         VXGE_HW_VPATH_INTR_TX;
4838
4839         vpath->stats_block = __vxge_hw_blockpool_block_allocate(hldev,
4840                                 VXGE_HW_BLOCK_SIZE);
4841         if (vpath->stats_block == NULL) {
4842                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4843                 goto vpath_open_exit8;
4844         }
4845
4846         vpath->hw_stats = vpath->stats_block->memblock;
4847         memset(vpath->hw_stats, 0,
4848                 sizeof(struct vxge_hw_vpath_stats_hw_info));
4849
4850         hldev->stats.hw_dev_info_stats.vpath_info[attr->vp_id] =
4851                                                 vpath->hw_stats;
4852
4853         vpath->hw_stats_sav =
4854                 &hldev->stats.hw_dev_info_stats.vpath_info_sav[attr->vp_id];
4855         memset(vpath->hw_stats_sav, 0,
4856                         sizeof(struct vxge_hw_vpath_stats_hw_info));
4857
4858         writeq(vpath->stats_block->dma_addr, &vpath->vp_reg->stats_cfg);
4859
4860         status = vxge_hw_vpath_stats_enable(vp);
4861         if (status != VXGE_HW_OK)
4862                 goto vpath_open_exit8;
4863
4864         list_add(&vp->item, &vpath->vpath_handles);
4865
4866         hldev->vpaths_deployed |= vxge_mBIT(vpath->vp_id);
4867
4868         *vpath_handle = vp;
4869
4870         attr->fifo_attr.userdata = vpath->fifoh;
4871         attr->ring_attr.userdata = vpath->ringh;
4872
4873         return VXGE_HW_OK;
4874
4875 vpath_open_exit8:
4876         if (vpath->ringh != NULL)
4877                 __vxge_hw_ring_delete(vp);
4878 vpath_open_exit7:
4879         if (vpath->fifoh != NULL)
4880                 __vxge_hw_fifo_delete(vp);
4881 vpath_open_exit6:
4882         vfree(vp);
4883 vpath_open_exit2:
4884         __vxge_hw_vp_terminate(hldev, attr->vp_id);
4885 vpath_open_exit1:
4886
4887         return status;
4888 }
4889
4890 /**
4891  * vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath
4892  * (vpath) open
4893  * @vp: Handle got from previous vpath open
4894  *
4895  * This function is used to close access to virtual path opened
4896  * earlier.
4897  */
4898 void vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle *vp)
4899 {
4900         struct __vxge_hw_virtualpath *vpath = vp->vpath;
4901         struct __vxge_hw_ring *ring = vpath->ringh;
4902         struct vxgedev *vdev = netdev_priv(vpath->hldev->ndev);
4903         u64 new_count, val64, val164;
4904
4905         if (vdev->titan1) {
4906                 new_count = readq(&vpath->vp_reg->rxdmem_size);
4907                 new_count &= 0x1fff;
4908         } else
4909                 new_count = ring->config->ring_blocks * VXGE_HW_BLOCK_SIZE / 8;
4910
4911         val164 = VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count);
4912
4913         writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164),
4914                 &vpath->vp_reg->prc_rxd_doorbell);
4915         readl(&vpath->vp_reg->prc_rxd_doorbell);
4916
4917         val164 /= 2;
4918         val64 = readq(&vpath->vp_reg->prc_cfg6);
4919         val64 = VXGE_HW_PRC_CFG6_RXD_SPAT(val64);
4920         val64 &= 0x1ff;
4921
4922         /*
4923          * Each RxD is of 4 qwords
4924          */
4925         new_count -= (val64 + 1);
4926         val64 = min(val164, new_count) / 4;
4927
4928         ring->rxds_limit = min(ring->rxds_limit, val64);
4929         if (ring->rxds_limit < 4)
4930                 ring->rxds_limit = 4;
4931 }
4932
4933 /*
4934  * __vxge_hw_blockpool_block_free - Frees a block from block pool
4935  * @devh: Hal device
4936  * @entry: Entry of block to be freed
4937  *
4938  * This function frees a block from block pool
4939  */
4940 static void
4941 __vxge_hw_blockpool_block_free(struct __vxge_hw_device *devh,
4942                                struct __vxge_hw_blockpool_entry *entry)
4943 {
4944         struct __vxge_hw_blockpool  *blockpool;
4945
4946         blockpool = &devh->block_pool;
4947
4948         if (entry->length == blockpool->block_size) {
4949                 list_add(&entry->item, &blockpool->free_block_list);
4950                 blockpool->pool_size++;
4951         }
4952
4953         __vxge_hw_blockpool_blocks_remove(blockpool);
4954 }
4955
4956 /*
4957  * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open
4958  * This function is used to close access to virtual path opened
4959  * earlier.
4960  */
4961 enum vxge_hw_status vxge_hw_vpath_close(struct __vxge_hw_vpath_handle *vp)
4962 {
4963         struct __vxge_hw_virtualpath *vpath = NULL;
4964         struct __vxge_hw_device *devh = NULL;
4965         u32 vp_id = vp->vpath->vp_id;
4966         u32 is_empty = TRUE;
4967         enum vxge_hw_status status = VXGE_HW_OK;
4968
4969         vpath = vp->vpath;
4970         devh = vpath->hldev;
4971
4972         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4973                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4974                 goto vpath_close_exit;
4975         }
4976
4977         list_del(&vp->item);
4978
4979         if (!list_empty(&vpath->vpath_handles)) {
4980                 list_add(&vp->item, &vpath->vpath_handles);
4981                 is_empty = FALSE;
4982         }
4983
4984         if (!is_empty) {
4985                 status = VXGE_HW_FAIL;
4986                 goto vpath_close_exit;
4987         }
4988
4989         devh->vpaths_deployed &= ~vxge_mBIT(vp_id);
4990
4991         if (vpath->ringh != NULL)
4992                 __vxge_hw_ring_delete(vp);
4993
4994         if (vpath->fifoh != NULL)
4995                 __vxge_hw_fifo_delete(vp);
4996
4997         if (vpath->stats_block != NULL)
4998                 __vxge_hw_blockpool_block_free(devh, vpath->stats_block);
4999
5000         vfree(vp);
5001
5002         __vxge_hw_vp_terminate(devh, vp_id);
5003
5004 vpath_close_exit:
5005         return status;
5006 }
5007
5008 /*
5009  * vxge_hw_vpath_reset - Resets vpath
5010  * This function is used to request a reset of vpath
5011  */
5012 enum vxge_hw_status vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle *vp)
5013 {
5014         enum vxge_hw_status status;
5015         u32 vp_id;
5016         struct __vxge_hw_virtualpath *vpath = vp->vpath;
5017
5018         vp_id = vpath->vp_id;
5019
5020         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
5021                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
5022                 goto exit;
5023         }
5024
5025         status = __vxge_hw_vpath_reset(vpath->hldev, vp_id);
5026         if (status == VXGE_HW_OK)
5027                 vpath->sw_stats->soft_reset_cnt++;
5028 exit:
5029         return status;
5030 }
5031
5032 /*
5033  * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize.
5034  * This function poll's for the vpath reset completion and re initializes
5035  * the vpath.
5036  */
5037 enum vxge_hw_status
5038 vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle *vp)
5039 {
5040         struct __vxge_hw_virtualpath *vpath = NULL;
5041         enum vxge_hw_status status;
5042         struct __vxge_hw_device *hldev;
5043         u32 vp_id;
5044
5045         vp_id = vp->vpath->vp_id;
5046         vpath = vp->vpath;
5047         hldev = vpath->hldev;
5048
5049         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
5050                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
5051                 goto exit;
5052         }
5053
5054         status = __vxge_hw_vpath_reset_check(vpath);
5055         if (status != VXGE_HW_OK)
5056                 goto exit;
5057
5058         status = __vxge_hw_vpath_sw_reset(hldev, vp_id);
5059         if (status != VXGE_HW_OK)
5060                 goto exit;
5061
5062         status = __vxge_hw_vpath_initialize(hldev, vp_id);
5063         if (status != VXGE_HW_OK)
5064                 goto exit;
5065
5066         if (vpath->ringh != NULL)
5067                 __vxge_hw_vpath_prc_configure(hldev, vp_id);
5068
5069         memset(vpath->hw_stats, 0,
5070                 sizeof(struct vxge_hw_vpath_stats_hw_info));
5071
5072         memset(vpath->hw_stats_sav, 0,
5073                 sizeof(struct vxge_hw_vpath_stats_hw_info));
5074
5075         writeq(vpath->stats_block->dma_addr,
5076                 &vpath->vp_reg->stats_cfg);
5077
5078         status = vxge_hw_vpath_stats_enable(vp);
5079
5080 exit:
5081         return status;
5082 }
5083
5084 /*
5085  * vxge_hw_vpath_enable - Enable vpath.
5086  * This routine clears the vpath reset thereby enabling a vpath
5087  * to start forwarding frames and generating interrupts.
5088  */
5089 void
5090 vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle *vp)
5091 {
5092         struct __vxge_hw_device *hldev;
5093         u64 val64;
5094
5095         hldev = vp->vpath->hldev;
5096
5097         val64 = VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET(
5098                 1 << (16 - vp->vpath->vp_id));
5099
5100         __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
5101                 &hldev->common_reg->cmn_rsthdlr_cfg1);
5102 }