Merge tag 'kconfig-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[linux-2.6-microblaze.git] / drivers / net / ethernet / natsemi / sonic.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * sonic.c
4  *
5  * (C) 2005 Finn Thain
6  *
7  * Converted to DMA API, added zero-copy buffer handling, and
8  * (from the mac68k project) introduced dhd's support for 16-bit cards.
9  *
10  * (C) 1996,1998 by Thomas Bogendoerfer (tsbogend@alpha.franken.de)
11  *
12  * This driver is based on work from Andreas Busse, but most of
13  * the code is rewritten.
14  *
15  * (C) 1995 by Andreas Busse (andy@waldorf-gmbh.de)
16  *
17  *    Core code included by system sonic drivers
18  *
19  * And... partially rewritten again by David Huggins-Daines in order
20  * to cope with screwed up Macintosh NICs that may or may not use
21  * 16-bit DMA.
22  *
23  * (C) 1999 David Huggins-Daines <dhd@debian.org>
24  *
25  */
26
27 /*
28  * Sources: Olivetti M700-10 Risc Personal Computer hardware handbook,
29  * National Semiconductors data sheet for the DP83932B Sonic Ethernet
30  * controller, and the files "8390.c" and "skeleton.c" in this directory.
31  *
32  * Additional sources: Nat Semi data sheet for the DP83932C and Nat Semi
33  * Application Note AN-746, the files "lance.c" and "ibmlana.c". See also
34  * the NetBSD file "sys/arch/mac68k/dev/if_sn.c".
35  */
36
37 static unsigned int version_printed;
38
39 static int sonic_debug = -1;
40 module_param(sonic_debug, int, 0);
41 MODULE_PARM_DESC(sonic_debug, "debug message level");
42
43 static void sonic_msg_init(struct net_device *dev)
44 {
45         struct sonic_local *lp = netdev_priv(dev);
46
47         lp->msg_enable = netif_msg_init(sonic_debug, 0);
48
49         if (version_printed++ == 0)
50                 netif_dbg(lp, drv, dev, "%s", version);
51 }
52
53 static int sonic_alloc_descriptors(struct net_device *dev)
54 {
55         struct sonic_local *lp = netdev_priv(dev);
56
57         /* Allocate a chunk of memory for the descriptors. Note that this
58          * must not cross a 64K boundary. It is smaller than one page which
59          * means that page alignment is a sufficient condition.
60          */
61         lp->descriptors =
62                 dma_alloc_coherent(lp->device,
63                                    SIZEOF_SONIC_DESC *
64                                    SONIC_BUS_SCALE(lp->dma_bitmode),
65                                    &lp->descriptors_laddr, GFP_KERNEL);
66
67         if (!lp->descriptors)
68                 return -ENOMEM;
69
70         lp->cda = lp->descriptors;
71         lp->tda = lp->cda + SIZEOF_SONIC_CDA *
72                             SONIC_BUS_SCALE(lp->dma_bitmode);
73         lp->rda = lp->tda + SIZEOF_SONIC_TD * SONIC_NUM_TDS *
74                             SONIC_BUS_SCALE(lp->dma_bitmode);
75         lp->rra = lp->rda + SIZEOF_SONIC_RD * SONIC_NUM_RDS *
76                             SONIC_BUS_SCALE(lp->dma_bitmode);
77
78         lp->cda_laddr = lp->descriptors_laddr;
79         lp->tda_laddr = lp->cda_laddr + SIZEOF_SONIC_CDA *
80                                         SONIC_BUS_SCALE(lp->dma_bitmode);
81         lp->rda_laddr = lp->tda_laddr + SIZEOF_SONIC_TD * SONIC_NUM_TDS *
82                                         SONIC_BUS_SCALE(lp->dma_bitmode);
83         lp->rra_laddr = lp->rda_laddr + SIZEOF_SONIC_RD * SONIC_NUM_RDS *
84                                         SONIC_BUS_SCALE(lp->dma_bitmode);
85
86         return 0;
87 }
88
89 /*
90  * Open/initialize the SONIC controller.
91  *
92  * This routine should set everything up anew at each open, even
93  *  registers that "should" only need to be set once at boot, so that
94  *  there is non-reboot way to recover if something goes wrong.
95  */
96 static int sonic_open(struct net_device *dev)
97 {
98         struct sonic_local *lp = netdev_priv(dev);
99         int i;
100
101         netif_dbg(lp, ifup, dev, "%s: initializing sonic driver\n", __func__);
102
103         spin_lock_init(&lp->lock);
104
105         for (i = 0; i < SONIC_NUM_RRS; i++) {
106                 struct sk_buff *skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2);
107                 if (skb == NULL) {
108                         while(i > 0) { /* free any that were allocated successfully */
109                                 i--;
110                                 dev_kfree_skb(lp->rx_skb[i]);
111                                 lp->rx_skb[i] = NULL;
112                         }
113                         printk(KERN_ERR "%s: couldn't allocate receive buffers\n",
114                                dev->name);
115                         return -ENOMEM;
116                 }
117                 /* align IP header unless DMA requires otherwise */
118                 if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
119                         skb_reserve(skb, 2);
120                 lp->rx_skb[i] = skb;
121         }
122
123         for (i = 0; i < SONIC_NUM_RRS; i++) {
124                 dma_addr_t laddr = dma_map_single(lp->device, skb_put(lp->rx_skb[i], SONIC_RBSIZE),
125                                                   SONIC_RBSIZE, DMA_FROM_DEVICE);
126                 if (dma_mapping_error(lp->device, laddr)) {
127                         while(i > 0) { /* free any that were mapped successfully */
128                                 i--;
129                                 dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
130                                 lp->rx_laddr[i] = (dma_addr_t)0;
131                         }
132                         for (i = 0; i < SONIC_NUM_RRS; i++) {
133                                 dev_kfree_skb(lp->rx_skb[i]);
134                                 lp->rx_skb[i] = NULL;
135                         }
136                         printk(KERN_ERR "%s: couldn't map rx DMA buffers\n",
137                                dev->name);
138                         return -ENOMEM;
139                 }
140                 lp->rx_laddr[i] = laddr;
141         }
142
143         /*
144          * Initialize the SONIC
145          */
146         sonic_init(dev, true);
147
148         netif_start_queue(dev);
149
150         netif_dbg(lp, ifup, dev, "%s: Initialization done\n", __func__);
151
152         return 0;
153 }
154
155 /* Wait for the SONIC to become idle. */
156 static void sonic_quiesce(struct net_device *dev, u16 mask, bool may_sleep)
157 {
158         struct sonic_local * __maybe_unused lp = netdev_priv(dev);
159         int i;
160         u16 bits;
161
162         for (i = 0; i < 1000; ++i) {
163                 bits = SONIC_READ(SONIC_CMD) & mask;
164                 if (!bits)
165                         return;
166                 if (!may_sleep)
167                         udelay(20);
168                 else
169                         usleep_range(100, 200);
170         }
171         WARN_ONCE(1, "command deadline expired! 0x%04x\n", bits);
172 }
173
174 /*
175  * Close the SONIC device
176  */
177 static int sonic_close(struct net_device *dev)
178 {
179         struct sonic_local *lp = netdev_priv(dev);
180         int i;
181
182         netif_dbg(lp, ifdown, dev, "%s\n", __func__);
183
184         netif_stop_queue(dev);
185
186         /*
187          * stop the SONIC, disable interrupts
188          */
189         SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
190         sonic_quiesce(dev, SONIC_CR_ALL, true);
191
192         SONIC_WRITE(SONIC_IMR, 0);
193         SONIC_WRITE(SONIC_ISR, 0x7fff);
194         SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
195
196         /* unmap and free skbs that haven't been transmitted */
197         for (i = 0; i < SONIC_NUM_TDS; i++) {
198                 if(lp->tx_laddr[i]) {
199                         dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
200                         lp->tx_laddr[i] = (dma_addr_t)0;
201                 }
202                 if(lp->tx_skb[i]) {
203                         dev_kfree_skb(lp->tx_skb[i]);
204                         lp->tx_skb[i] = NULL;
205                 }
206         }
207
208         /* unmap and free the receive buffers */
209         for (i = 0; i < SONIC_NUM_RRS; i++) {
210                 if(lp->rx_laddr[i]) {
211                         dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
212                         lp->rx_laddr[i] = (dma_addr_t)0;
213                 }
214                 if(lp->rx_skb[i]) {
215                         dev_kfree_skb(lp->rx_skb[i]);
216                         lp->rx_skb[i] = NULL;
217                 }
218         }
219
220         return 0;
221 }
222
223 static void sonic_tx_timeout(struct net_device *dev, unsigned int txqueue)
224 {
225         struct sonic_local *lp = netdev_priv(dev);
226         int i;
227         /*
228          * put the Sonic into software-reset mode and
229          * disable all interrupts before releasing DMA buffers
230          */
231         SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
232         sonic_quiesce(dev, SONIC_CR_ALL, false);
233
234         SONIC_WRITE(SONIC_IMR, 0);
235         SONIC_WRITE(SONIC_ISR, 0x7fff);
236         SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
237         /* We could resend the original skbs. Easier to re-initialise. */
238         for (i = 0; i < SONIC_NUM_TDS; i++) {
239                 if(lp->tx_laddr[i]) {
240                         dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
241                         lp->tx_laddr[i] = (dma_addr_t)0;
242                 }
243                 if(lp->tx_skb[i]) {
244                         dev_kfree_skb(lp->tx_skb[i]);
245                         lp->tx_skb[i] = NULL;
246                 }
247         }
248         /* Try to restart the adaptor. */
249         sonic_init(dev, false);
250         lp->stats.tx_errors++;
251         netif_trans_update(dev); /* prevent tx timeout */
252         netif_wake_queue(dev);
253 }
254
255 /*
256  * transmit packet
257  *
258  * Appends new TD during transmission thus avoiding any TX interrupts
259  * until we run out of TDs.
260  * This routine interacts closely with the ISR in that it may,
261  *   set tx_skb[i]
262  *   reset the status flags of the new TD
263  *   set and reset EOL flags
264  *   stop the tx queue
265  * The ISR interacts with this routine in various ways. It may,
266  *   reset tx_skb[i]
267  *   test the EOL and status flags of the TDs
268  *   wake the tx queue
269  * Concurrently with all of this, the SONIC is potentially writing to
270  * the status flags of the TDs.
271  */
272
273 static int sonic_send_packet(struct sk_buff *skb, struct net_device *dev)
274 {
275         struct sonic_local *lp = netdev_priv(dev);
276         dma_addr_t laddr;
277         int length;
278         int entry;
279         unsigned long flags;
280
281         netif_dbg(lp, tx_queued, dev, "%s: skb=%p\n", __func__, skb);
282
283         length = skb->len;
284         if (length < ETH_ZLEN) {
285                 if (skb_padto(skb, ETH_ZLEN))
286                         return NETDEV_TX_OK;
287                 length = ETH_ZLEN;
288         }
289
290         /*
291          * Map the packet data into the logical DMA address space
292          */
293
294         laddr = dma_map_single(lp->device, skb->data, length, DMA_TO_DEVICE);
295         if (!laddr) {
296                 pr_err_ratelimited("%s: failed to map tx DMA buffer.\n", dev->name);
297                 dev_kfree_skb_any(skb);
298                 return NETDEV_TX_OK;
299         }
300
301         spin_lock_irqsave(&lp->lock, flags);
302
303         entry = (lp->eol_tx + 1) & SONIC_TDS_MASK;
304
305         sonic_tda_put(dev, entry, SONIC_TD_STATUS, 0);       /* clear status */
306         sonic_tda_put(dev, entry, SONIC_TD_FRAG_COUNT, 1);   /* single fragment */
307         sonic_tda_put(dev, entry, SONIC_TD_PKTSIZE, length); /* length of packet */
308         sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_L, laddr & 0xffff);
309         sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_H, laddr >> 16);
310         sonic_tda_put(dev, entry, SONIC_TD_FRAG_SIZE, length);
311         sonic_tda_put(dev, entry, SONIC_TD_LINK,
312                 sonic_tda_get(dev, entry, SONIC_TD_LINK) | SONIC_EOL);
313
314         sonic_tda_put(dev, lp->eol_tx, SONIC_TD_LINK, ~SONIC_EOL &
315                       sonic_tda_get(dev, lp->eol_tx, SONIC_TD_LINK));
316
317         netif_dbg(lp, tx_queued, dev, "%s: issuing Tx command\n", __func__);
318
319         SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
320
321         lp->tx_len[entry] = length;
322         lp->tx_laddr[entry] = laddr;
323         lp->tx_skb[entry] = skb;
324
325         lp->eol_tx = entry;
326
327         entry = (entry + 1) & SONIC_TDS_MASK;
328         if (lp->tx_skb[entry]) {
329                 /* The ring is full, the ISR has yet to process the next TD. */
330                 netif_dbg(lp, tx_queued, dev, "%s: stopping queue\n", __func__);
331                 netif_stop_queue(dev);
332                 /* after this packet, wait for ISR to free up some TDAs */
333         }
334
335         spin_unlock_irqrestore(&lp->lock, flags);
336
337         return NETDEV_TX_OK;
338 }
339
340 /*
341  * The typical workload of the driver:
342  * Handle the network interface interrupts.
343  */
344 static irqreturn_t sonic_interrupt(int irq, void *dev_id)
345 {
346         struct net_device *dev = dev_id;
347         struct sonic_local *lp = netdev_priv(dev);
348         int status;
349         unsigned long flags;
350
351         /* The lock has two purposes. Firstly, it synchronizes sonic_interrupt()
352          * with sonic_send_packet() so that the two functions can share state.
353          * Secondly, it makes sonic_interrupt() re-entrant, as that is required
354          * by macsonic which must use two IRQs with different priority levels.
355          */
356         spin_lock_irqsave(&lp->lock, flags);
357
358         status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT;
359         if (!status) {
360                 spin_unlock_irqrestore(&lp->lock, flags);
361
362                 return IRQ_NONE;
363         }
364
365         do {
366                 SONIC_WRITE(SONIC_ISR, status); /* clear the interrupt(s) */
367
368                 if (status & SONIC_INT_PKTRX) {
369                         netif_dbg(lp, intr, dev, "%s: packet rx\n", __func__);
370                         sonic_rx(dev);  /* got packet(s) */
371                 }
372
373                 if (status & SONIC_INT_TXDN) {
374                         int entry = lp->cur_tx;
375                         int td_status;
376                         int freed_some = 0;
377
378                         /* The state of a Transmit Descriptor may be inferred
379                          * from { tx_skb[entry], td_status } as follows.
380                          * { clear, clear } => the TD has never been used
381                          * { set,   clear } => the TD was handed to SONIC
382                          * { set,   set   } => the TD was handed back
383                          * { clear, set   } => the TD is available for re-use
384                          */
385
386                         netif_dbg(lp, intr, dev, "%s: tx done\n", __func__);
387
388                         while (lp->tx_skb[entry] != NULL) {
389                                 if ((td_status = sonic_tda_get(dev, entry, SONIC_TD_STATUS)) == 0)
390                                         break;
391
392                                 if (td_status & SONIC_TCR_PTX) {
393                                         lp->stats.tx_packets++;
394                                         lp->stats.tx_bytes += sonic_tda_get(dev, entry, SONIC_TD_PKTSIZE);
395                                 } else {
396                                         if (td_status & (SONIC_TCR_EXD |
397                                             SONIC_TCR_EXC | SONIC_TCR_BCM))
398                                                 lp->stats.tx_aborted_errors++;
399                                         if (td_status &
400                                             (SONIC_TCR_NCRS | SONIC_TCR_CRLS))
401                                                 lp->stats.tx_carrier_errors++;
402                                         if (td_status & SONIC_TCR_OWC)
403                                                 lp->stats.tx_window_errors++;
404                                         if (td_status & SONIC_TCR_FU)
405                                                 lp->stats.tx_fifo_errors++;
406                                 }
407
408                                 /* We must free the original skb */
409                                 dev_consume_skb_irq(lp->tx_skb[entry]);
410                                 lp->tx_skb[entry] = NULL;
411                                 /* and unmap DMA buffer */
412                                 dma_unmap_single(lp->device, lp->tx_laddr[entry], lp->tx_len[entry], DMA_TO_DEVICE);
413                                 lp->tx_laddr[entry] = (dma_addr_t)0;
414                                 freed_some = 1;
415
416                                 if (sonic_tda_get(dev, entry, SONIC_TD_LINK) & SONIC_EOL) {
417                                         entry = (entry + 1) & SONIC_TDS_MASK;
418                                         break;
419                                 }
420                                 entry = (entry + 1) & SONIC_TDS_MASK;
421                         }
422
423                         if (freed_some || lp->tx_skb[entry] == NULL)
424                                 netif_wake_queue(dev);  /* The ring is no longer full */
425                         lp->cur_tx = entry;
426                 }
427
428                 /*
429                  * check error conditions
430                  */
431                 if (status & SONIC_INT_RFO) {
432                         netif_dbg(lp, rx_err, dev, "%s: rx fifo overrun\n",
433                                   __func__);
434                 }
435                 if (status & SONIC_INT_RDE) {
436                         netif_dbg(lp, rx_err, dev, "%s: rx descriptors exhausted\n",
437                                   __func__);
438                 }
439                 if (status & SONIC_INT_RBAE) {
440                         netif_dbg(lp, rx_err, dev, "%s: rx buffer area exceeded\n",
441                                   __func__);
442                 }
443
444                 /* counter overruns; all counters are 16bit wide */
445                 if (status & SONIC_INT_FAE)
446                         lp->stats.rx_frame_errors += 65536;
447                 if (status & SONIC_INT_CRC)
448                         lp->stats.rx_crc_errors += 65536;
449                 if (status & SONIC_INT_MP)
450                         lp->stats.rx_missed_errors += 65536;
451
452                 /* transmit error */
453                 if (status & SONIC_INT_TXER) {
454                         u16 tcr = SONIC_READ(SONIC_TCR);
455
456                         netif_dbg(lp, tx_err, dev, "%s: TXER intr, TCR %04x\n",
457                                   __func__, tcr);
458
459                         if (tcr & (SONIC_TCR_EXD | SONIC_TCR_EXC |
460                                    SONIC_TCR_FU | SONIC_TCR_BCM)) {
461                                 /* Aborted transmission. Try again. */
462                                 netif_stop_queue(dev);
463                                 SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
464                         }
465                 }
466
467                 /* bus retry */
468                 if (status & SONIC_INT_BR) {
469                         printk(KERN_ERR "%s: Bus retry occurred! Device interrupt disabled.\n",
470                                 dev->name);
471                         /* ... to help debug DMA problems causing endless interrupts. */
472                         /* Bounce the eth interface to turn on the interrupt again. */
473                         SONIC_WRITE(SONIC_IMR, 0);
474                 }
475
476                 status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT;
477         } while (status);
478
479         spin_unlock_irqrestore(&lp->lock, flags);
480
481         return IRQ_HANDLED;
482 }
483
484 /* Return the array index corresponding to a given Receive Buffer pointer. */
485 static int index_from_addr(struct sonic_local *lp, dma_addr_t addr,
486                            unsigned int last)
487 {
488         unsigned int i = last;
489
490         do {
491                 i = (i + 1) & SONIC_RRS_MASK;
492                 if (addr == lp->rx_laddr[i])
493                         return i;
494         } while (i != last);
495
496         return -ENOENT;
497 }
498
499 /* Allocate and map a new skb to be used as a receive buffer. */
500 static bool sonic_alloc_rb(struct net_device *dev, struct sonic_local *lp,
501                            struct sk_buff **new_skb, dma_addr_t *new_addr)
502 {
503         *new_skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2);
504         if (!*new_skb)
505                 return false;
506
507         if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
508                 skb_reserve(*new_skb, 2);
509
510         *new_addr = dma_map_single(lp->device, skb_put(*new_skb, SONIC_RBSIZE),
511                                    SONIC_RBSIZE, DMA_FROM_DEVICE);
512         if (!*new_addr) {
513                 dev_kfree_skb(*new_skb);
514                 *new_skb = NULL;
515                 return false;
516         }
517
518         return true;
519 }
520
521 /* Place a new receive resource in the Receive Resource Area and update RWP. */
522 static void sonic_update_rra(struct net_device *dev, struct sonic_local *lp,
523                              dma_addr_t old_addr, dma_addr_t new_addr)
524 {
525         unsigned int entry = sonic_rr_entry(dev, SONIC_READ(SONIC_RWP));
526         unsigned int end = sonic_rr_entry(dev, SONIC_READ(SONIC_RRP));
527         u32 buf;
528
529         /* The resources in the range [RRP, RWP) belong to the SONIC. This loop
530          * scans the other resources in the RRA, those in the range [RWP, RRP).
531          */
532         do {
533                 buf = (sonic_rra_get(dev, entry, SONIC_RR_BUFADR_H) << 16) |
534                       sonic_rra_get(dev, entry, SONIC_RR_BUFADR_L);
535
536                 if (buf == old_addr)
537                         break;
538
539                 entry = (entry + 1) & SONIC_RRS_MASK;
540         } while (entry != end);
541
542         WARN_ONCE(buf != old_addr, "failed to find resource!\n");
543
544         sonic_rra_put(dev, entry, SONIC_RR_BUFADR_H, new_addr >> 16);
545         sonic_rra_put(dev, entry, SONIC_RR_BUFADR_L, new_addr & 0xffff);
546
547         entry = (entry + 1) & SONIC_RRS_MASK;
548
549         SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, entry));
550 }
551
552 /*
553  * We have a good packet(s), pass it/them up the network stack.
554  */
555 static void sonic_rx(struct net_device *dev)
556 {
557         struct sonic_local *lp = netdev_priv(dev);
558         int entry = lp->cur_rx;
559         int prev_entry = lp->eol_rx;
560         bool rbe = false;
561
562         while (sonic_rda_get(dev, entry, SONIC_RD_IN_USE) == 0) {
563                 u16 status = sonic_rda_get(dev, entry, SONIC_RD_STATUS);
564
565                 /* If the RD has LPKT set, the chip has finished with the RB */
566                 if ((status & SONIC_RCR_PRX) && (status & SONIC_RCR_LPKT)) {
567                         struct sk_buff *new_skb;
568                         dma_addr_t new_laddr;
569                         u32 addr = (sonic_rda_get(dev, entry,
570                                                   SONIC_RD_PKTPTR_H) << 16) |
571                                    sonic_rda_get(dev, entry, SONIC_RD_PKTPTR_L);
572                         int i = index_from_addr(lp, addr, entry);
573
574                         if (i < 0) {
575                                 WARN_ONCE(1, "failed to find buffer!\n");
576                                 break;
577                         }
578
579                         if (sonic_alloc_rb(dev, lp, &new_skb, &new_laddr)) {
580                                 struct sk_buff *used_skb = lp->rx_skb[i];
581                                 int pkt_len;
582
583                                 /* Pass the used buffer up the stack */
584                                 dma_unmap_single(lp->device, addr, SONIC_RBSIZE,
585                                                  DMA_FROM_DEVICE);
586
587                                 pkt_len = sonic_rda_get(dev, entry,
588                                                         SONIC_RD_PKTLEN);
589                                 skb_trim(used_skb, pkt_len);
590                                 used_skb->protocol = eth_type_trans(used_skb,
591                                                                     dev);
592                                 netif_rx(used_skb);
593                                 lp->stats.rx_packets++;
594                                 lp->stats.rx_bytes += pkt_len;
595
596                                 lp->rx_skb[i] = new_skb;
597                                 lp->rx_laddr[i] = new_laddr;
598                         } else {
599                                 /* Failed to obtain a new buffer so re-use it */
600                                 new_laddr = addr;
601                                 lp->stats.rx_dropped++;
602                         }
603                         /* If RBE is already asserted when RWP advances then
604                          * it's safe to clear RBE after processing this packet.
605                          */
606                         rbe = rbe || SONIC_READ(SONIC_ISR) & SONIC_INT_RBE;
607                         sonic_update_rra(dev, lp, addr, new_laddr);
608                 }
609                 /*
610                  * give back the descriptor
611                  */
612                 sonic_rda_put(dev, entry, SONIC_RD_STATUS, 0);
613                 sonic_rda_put(dev, entry, SONIC_RD_IN_USE, 1);
614
615                 prev_entry = entry;
616                 entry = (entry + 1) & SONIC_RDS_MASK;
617         }
618
619         lp->cur_rx = entry;
620
621         if (prev_entry != lp->eol_rx) {
622                 /* Advance the EOL flag to put descriptors back into service */
623                 sonic_rda_put(dev, prev_entry, SONIC_RD_LINK, SONIC_EOL |
624                               sonic_rda_get(dev, prev_entry, SONIC_RD_LINK));
625                 sonic_rda_put(dev, lp->eol_rx, SONIC_RD_LINK, ~SONIC_EOL &
626                               sonic_rda_get(dev, lp->eol_rx, SONIC_RD_LINK));
627                 lp->eol_rx = prev_entry;
628         }
629
630         if (rbe)
631                 SONIC_WRITE(SONIC_ISR, SONIC_INT_RBE);
632 }
633
634
635 /*
636  * Get the current statistics.
637  * This may be called with the device open or closed.
638  */
639 static struct net_device_stats *sonic_get_stats(struct net_device *dev)
640 {
641         struct sonic_local *lp = netdev_priv(dev);
642
643         /* read the tally counter from the SONIC and reset them */
644         lp->stats.rx_crc_errors += SONIC_READ(SONIC_CRCT);
645         SONIC_WRITE(SONIC_CRCT, 0xffff);
646         lp->stats.rx_frame_errors += SONIC_READ(SONIC_FAET);
647         SONIC_WRITE(SONIC_FAET, 0xffff);
648         lp->stats.rx_missed_errors += SONIC_READ(SONIC_MPT);
649         SONIC_WRITE(SONIC_MPT, 0xffff);
650
651         return &lp->stats;
652 }
653
654
655 /*
656  * Set or clear the multicast filter for this adaptor.
657  */
658 static void sonic_multicast_list(struct net_device *dev)
659 {
660         struct sonic_local *lp = netdev_priv(dev);
661         unsigned int rcr;
662         struct netdev_hw_addr *ha;
663         unsigned char *addr;
664         int i;
665
666         rcr = SONIC_READ(SONIC_RCR) & ~(SONIC_RCR_PRO | SONIC_RCR_AMC);
667         rcr |= SONIC_RCR_BRD;   /* accept broadcast packets */
668
669         if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
670                 rcr |= SONIC_RCR_PRO;
671         } else {
672                 if ((dev->flags & IFF_ALLMULTI) ||
673                     (netdev_mc_count(dev) > 15)) {
674                         rcr |= SONIC_RCR_AMC;
675                 } else {
676                         unsigned long flags;
677
678                         netif_dbg(lp, ifup, dev, "%s: mc_count %d\n", __func__,
679                                   netdev_mc_count(dev));
680                         sonic_set_cam_enable(dev, 1);  /* always enable our own address */
681                         i = 1;
682                         netdev_for_each_mc_addr(ha, dev) {
683                                 addr = ha->addr;
684                                 sonic_cda_put(dev, i, SONIC_CD_CAP0, addr[1] << 8 | addr[0]);
685                                 sonic_cda_put(dev, i, SONIC_CD_CAP1, addr[3] << 8 | addr[2]);
686                                 sonic_cda_put(dev, i, SONIC_CD_CAP2, addr[5] << 8 | addr[4]);
687                                 sonic_set_cam_enable(dev, sonic_get_cam_enable(dev) | (1 << i));
688                                 i++;
689                         }
690                         SONIC_WRITE(SONIC_CDC, 16);
691                         SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
692
693                         /* LCAM and TXP commands can't be used simultaneously */
694                         spin_lock_irqsave(&lp->lock, flags);
695                         sonic_quiesce(dev, SONIC_CR_TXP, false);
696                         SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
697                         sonic_quiesce(dev, SONIC_CR_LCAM, false);
698                         spin_unlock_irqrestore(&lp->lock, flags);
699                 }
700         }
701
702         netif_dbg(lp, ifup, dev, "%s: setting RCR=%x\n", __func__, rcr);
703
704         SONIC_WRITE(SONIC_RCR, rcr);
705 }
706
707
708 /*
709  * Initialize the SONIC ethernet controller.
710  */
711 static int sonic_init(struct net_device *dev, bool may_sleep)
712 {
713         struct sonic_local *lp = netdev_priv(dev);
714         int i;
715
716         /*
717          * put the Sonic into software-reset mode and
718          * disable all interrupts
719          */
720         SONIC_WRITE(SONIC_IMR, 0);
721         SONIC_WRITE(SONIC_ISR, 0x7fff);
722         SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
723
724         /* While in reset mode, clear CAM Enable register */
725         SONIC_WRITE(SONIC_CE, 0);
726
727         /*
728          * clear software reset flag, disable receiver, clear and
729          * enable interrupts, then completely initialize the SONIC
730          */
731         SONIC_WRITE(SONIC_CMD, 0);
732         SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS | SONIC_CR_STP);
733         sonic_quiesce(dev, SONIC_CR_ALL, may_sleep);
734
735         /*
736          * initialize the receive resource area
737          */
738         netif_dbg(lp, ifup, dev, "%s: initialize receive resource area\n",
739                   __func__);
740
741         for (i = 0; i < SONIC_NUM_RRS; i++) {
742                 u16 bufadr_l = (unsigned long)lp->rx_laddr[i] & 0xffff;
743                 u16 bufadr_h = (unsigned long)lp->rx_laddr[i] >> 16;
744                 sonic_rra_put(dev, i, SONIC_RR_BUFADR_L, bufadr_l);
745                 sonic_rra_put(dev, i, SONIC_RR_BUFADR_H, bufadr_h);
746                 sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_L, SONIC_RBSIZE >> 1);
747                 sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_H, 0);
748         }
749
750         /* initialize all RRA registers */
751         SONIC_WRITE(SONIC_RSA, sonic_rr_addr(dev, 0));
752         SONIC_WRITE(SONIC_REA, sonic_rr_addr(dev, SONIC_NUM_RRS));
753         SONIC_WRITE(SONIC_RRP, sonic_rr_addr(dev, 0));
754         SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, SONIC_NUM_RRS - 1));
755         SONIC_WRITE(SONIC_URRA, lp->rra_laddr >> 16);
756         SONIC_WRITE(SONIC_EOBC, (SONIC_RBSIZE >> 1) - (lp->dma_bitmode ? 2 : 1));
757
758         /* load the resource pointers */
759         netif_dbg(lp, ifup, dev, "%s: issuing RRRA command\n", __func__);
760
761         SONIC_WRITE(SONIC_CMD, SONIC_CR_RRRA);
762         sonic_quiesce(dev, SONIC_CR_RRRA, may_sleep);
763
764         /*
765          * Initialize the receive descriptors so that they
766          * become a circular linked list, ie. let the last
767          * descriptor point to the first again.
768          */
769         netif_dbg(lp, ifup, dev, "%s: initialize receive descriptors\n",
770                   __func__);
771
772         for (i=0; i<SONIC_NUM_RDS; i++) {
773                 sonic_rda_put(dev, i, SONIC_RD_STATUS, 0);
774                 sonic_rda_put(dev, i, SONIC_RD_PKTLEN, 0);
775                 sonic_rda_put(dev, i, SONIC_RD_PKTPTR_L, 0);
776                 sonic_rda_put(dev, i, SONIC_RD_PKTPTR_H, 0);
777                 sonic_rda_put(dev, i, SONIC_RD_SEQNO, 0);
778                 sonic_rda_put(dev, i, SONIC_RD_IN_USE, 1);
779                 sonic_rda_put(dev, i, SONIC_RD_LINK,
780                         lp->rda_laddr +
781                         ((i+1) * SIZEOF_SONIC_RD * SONIC_BUS_SCALE(lp->dma_bitmode)));
782         }
783         /* fix last descriptor */
784         sonic_rda_put(dev, SONIC_NUM_RDS - 1, SONIC_RD_LINK,
785                 (lp->rda_laddr & 0xffff) | SONIC_EOL);
786         lp->eol_rx = SONIC_NUM_RDS - 1;
787         lp->cur_rx = 0;
788         SONIC_WRITE(SONIC_URDA, lp->rda_laddr >> 16);
789         SONIC_WRITE(SONIC_CRDA, lp->rda_laddr & 0xffff);
790
791         /*
792          * initialize transmit descriptors
793          */
794         netif_dbg(lp, ifup, dev, "%s: initialize transmit descriptors\n",
795                   __func__);
796
797         for (i = 0; i < SONIC_NUM_TDS; i++) {
798                 sonic_tda_put(dev, i, SONIC_TD_STATUS, 0);
799                 sonic_tda_put(dev, i, SONIC_TD_CONFIG, 0);
800                 sonic_tda_put(dev, i, SONIC_TD_PKTSIZE, 0);
801                 sonic_tda_put(dev, i, SONIC_TD_FRAG_COUNT, 0);
802                 sonic_tda_put(dev, i, SONIC_TD_LINK,
803                         (lp->tda_laddr & 0xffff) +
804                         (i + 1) * SIZEOF_SONIC_TD * SONIC_BUS_SCALE(lp->dma_bitmode));
805                 lp->tx_skb[i] = NULL;
806         }
807         /* fix last descriptor */
808         sonic_tda_put(dev, SONIC_NUM_TDS - 1, SONIC_TD_LINK,
809                 (lp->tda_laddr & 0xffff));
810
811         SONIC_WRITE(SONIC_UTDA, lp->tda_laddr >> 16);
812         SONIC_WRITE(SONIC_CTDA, lp->tda_laddr & 0xffff);
813         lp->cur_tx = 0;
814         lp->eol_tx = SONIC_NUM_TDS - 1;
815
816         /*
817          * put our own address to CAM desc[0]
818          */
819         sonic_cda_put(dev, 0, SONIC_CD_CAP0, dev->dev_addr[1] << 8 | dev->dev_addr[0]);
820         sonic_cda_put(dev, 0, SONIC_CD_CAP1, dev->dev_addr[3] << 8 | dev->dev_addr[2]);
821         sonic_cda_put(dev, 0, SONIC_CD_CAP2, dev->dev_addr[5] << 8 | dev->dev_addr[4]);
822         sonic_set_cam_enable(dev, 1);
823
824         for (i = 0; i < 16; i++)
825                 sonic_cda_put(dev, i, SONIC_CD_ENTRY_POINTER, i);
826
827         /*
828          * initialize CAM registers
829          */
830         SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
831         SONIC_WRITE(SONIC_CDC, 16);
832
833         /*
834          * load the CAM
835          */
836         SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
837         sonic_quiesce(dev, SONIC_CR_LCAM, may_sleep);
838
839         /*
840          * enable receiver, disable loopback
841          * and enable all interrupts
842          */
843         SONIC_WRITE(SONIC_RCR, SONIC_RCR_DEFAULT);
844         SONIC_WRITE(SONIC_TCR, SONIC_TCR_DEFAULT);
845         SONIC_WRITE(SONIC_ISR, 0x7fff);
846         SONIC_WRITE(SONIC_IMR, SONIC_IMR_DEFAULT);
847         SONIC_WRITE(SONIC_CMD, SONIC_CR_RXEN);
848
849         netif_dbg(lp, ifup, dev, "%s: new status=%x\n", __func__,
850                   SONIC_READ(SONIC_CMD));
851
852         return 0;
853 }
854
855 MODULE_LICENSE("GPL");